prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with tm.assert_produces_warning(FutureWarning): res = cat.labels self.assert_numpy_array_equal(res, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_deprecated_levels(self): # TODO: levels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.categories with tm.assert_produces_warning(FutureWarning): res = cat.levels self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): res = pd.Categorical([1, 2, 3, np.nan], levels=[1, 2, 3]) self.assert_numpy_array_equal(res.categories, exp) self.assertFalse(LooseVersion(pd.__version__) >= '0.18') def test_removed_names_produces_warning(self): # 10482 with tm.assert_produces_warning(UserWarning): Categorical([0, 1], name="a") with tm.assert_produces_warning(UserWarning): Categorical.from_codes([1, 2], ["a", "b", "c"], name="a") def test_datetime_categorical_comparison(self): dt_cat = pd.Categorical( pd.date_range('2014-01-01', periods=3), ordered=True) self.assert_numpy_array_equal(dt_cat > dt_cat[0], [False, True, True]) self.assert_numpy_array_equal(dt_cat[0] < dt_cat, [False, True, True]) def test_reflected_comparison_with_scalars(self): # GH8658 cat = pd.Categorical([1, 2, 3], ordered=True) self.assert_numpy_array_equal(cat > cat[0], [False, True, True]) self.assert_numpy_array_equal(cat[0] < cat, [False, True, True]) def test_comparison_with_unknown_scalars(self): # https://github.com/pydata/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = pd.Categorical([1, 2, 3], ordered=True) self.assertRaises(TypeError, lambda: cat < 4) self.assertRaises(TypeError, lambda: cat > 4) self.assertRaises(TypeError, lambda: 4 < cat) self.assertRaises(TypeError, lambda: 4 > cat) self.assert_numpy_array_equal(cat == 4, [False, False, False]) self.assert_numpy_array_equal(cat != 4, [True, True, True]) class TestCategoricalAsBlock(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) self.cat = df def test_dtypes(self): # GH8143 index = ['cat', 'obj', 'num'] cat = pd.Categorical(['a', 'b', 'c']) obj = pd.Series(['a', 'b', 'c']) num = pd.Series([1, 2, 3]) df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == 'object' expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'int64' expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == 'category' expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_codes_dtypes(self): # GH 8453 result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = Categorical(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') result = Categorical(['foo%05d' % i for i in range(40000)]) self.assertTrue(result.codes.dtype == 'int32') # adding cats result = Categorical(['foo', 'bar', 'baz']) self.assertTrue(result.codes.dtype == 'int8') result = result.add_categories(['foo%05d' % i for i in range(400)]) self.assertTrue(result.codes.dtype == 'int16') # removing cats result = result.remove_categories(['foo%05d' % i for i in range(300)]) self.assertTrue(result.codes.dtype == 'int8') def test_basic(self): # test basic creation / coercion of categoricals s = Series(self.factor, name='A') self.assertEqual(s.dtype, 'category') self.assertEqual(len(s), len(self.factor)) str(s.values) str(s) # in a frame df = DataFrame({'A': self.factor}) result = df['A'] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) df = DataFrame({'A': s}) result = df['A'] tm.assert_series_equal(result, s) self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # multiples df = DataFrame({'A': s, 'B': s, 'C': 1}) result1 = df['A'] result2 = df['B'] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) self.assertEqual(result2.name, 'B') self.assertEqual(len(df), len(self.factor)) str(df.values) str(df) # GH8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name ) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] self.assertEqual(result, expected) result = x.person_name[0] self.assertEqual(result, expected) result = x.person_name.loc[0] self.assertEqual(result, expected) def test_creation_astype(self): l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) l = [1, 2, 3, 1] s = pd.Series(l) exp = pd.Series(Categorical(l)) res = s.astype('category') tm.assert_series_equal(res, exp) df = pd.DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = pd.DataFrame({"cats": ['a', 'b', 'b', 'a', 'a', 'd'], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical(['a', 'b', 'b', 'a', 'a', 'd']) exp_df = pd.DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords l = ["a", "b", "c", "a"] s = pd.Series(l) exp = pd.Series(Categorical(l, ordered=True)) res = s.astype('category', ordered=True) tm.assert_series_equal(res, exp) exp = pd.Series(Categorical( l, categories=list('abcdef'), ordered=True)) res = s.astype('category', categories=list('abcdef'), ordered=True) tm.assert_series_equal(res, exp) def test_construction_series(self): l = [1, 2, 3, 1] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) l = ["a", "b", "c", "a"] exp = Series(l).astype('category') res = Series(l, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = pd.date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_construction_frame(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([pd.Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([pd.Categorical(list('abc')), pd.Categorical(list( 'abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([pd.Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) self.assertRaises( ValueError, lambda: DataFrame([pd.Categorical(list('abc')), pd.Categorical(list('abdefg'))])) # ndim > 1 self.assertRaises(NotImplementedError, lambda: pd.Categorical(np.array([list('abcd')]))) def test_reshaping(self): p = tm.makePanel() p['str'] = 'foo' df = p.to_frame() df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(p.major_axis)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=p.major_axis.set_names('major')) tm.assert_frame_equal(result, expected) def test_reindex(self): index = pd.date_range('20000101', periods=3) # reindexing to an invalid Categorical s = Series(['a', 'b', 'c'], dtype='category') result = s.reindex(index) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index tm.assert_series_equal(result, expected) # partial reindexing expected = Series(Categorical(values=['b', 'c'], categories=['a', 'b', 'c'])) expected.index = [1, 2] result = s.reindex([1, 2]) tm.assert_series_equal(result, expected) expected = Series(Categorical( values=['c', np.nan], categories=['a', 'b', 'c'])) expected.index = [2, 3] result = s.reindex([2, 3]) tm.assert_series_equal(result, expected) def test_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat, copy=True) self.assertFalse(s.cat is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) exp_cat = np.array(["a", "b", "c", "a"]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = pd.Series(cat) self.assertTrue(s.values is cat) s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s) self.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1]) self.assert_numpy_array_equal(s.__array__(), exp_s2) self.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_nan_handling(self): # Nans are represented as -1 in labels s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(s.values.codes, np.array([0, 1, -1, 0])) # If categories have nan included, the label should point to that # instead with tm.assert_produces_warning(FutureWarning): s2 = Series(Categorical( ["a", "b", np.nan, "a"], categories=["a", "b", np.nan])) self.assert_numpy_array_equal(s2.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s2.values.codes, np.array([0, 1, 2, 0])) # Changing categories should also make the replaced category np.nan s3 = Series(Categorical(["a", "b", "c", "a"])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s3.cat.categories = ["a", "b", np.nan] self.assert_numpy_array_equal(s3.cat.categories, np.array( ["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(s3.values.codes, np.array([0, 1, 2, 0])) def test_cat_accessor(self): s = Series(Categorical(["a", "b", np.nan, "a"])) self.assert_numpy_array_equal(s.cat.categories, np.array(["a", "b"])) self.assertEqual(s.cat.ordered, False) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s.cat.set_categories(["b", "a"], inplace=True) self.assertTrue(s.values.equals(exp)) res = s.cat.set_categories(["b", "a"]) self.assertTrue(res.values.equals(exp)) exp = Categorical(["a", "b", np.nan, "a"], categories=["b", "a"]) s[:] = "a" s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, np.array(["a"])) def test_sequence_like(self): # GH 7839 # make sure can iterate df = DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df['grade'] = Categorical(df['raw_grade']) # basic sequencing testing result = list(df.grade.values) expected = np.array(df.grade.values).tolist() tm.assert_almost_equal(result, expected) # iteration for t in df.itertuples(index=False): str(t) for row, s in df.iterrows(): str(s) for c, col in df.iteritems(): str(s) def test_series_delegations(self): # invalid accessor self.assertRaises(AttributeError, lambda: Series([1, 2, 3]).cat) tm.assertRaisesRegexp( AttributeError, r"Can only use .cat accessor with a 'category' dtype", lambda: Series([1, 2, 3]).cat) self.assertRaises(AttributeError, lambda: Series(['a', 'b', 'c']).cat) self.assertRaises(AttributeError, lambda: Series(np.arange(5.)).cat) self.assertRaises(AttributeError, lambda: Series([Timestamp('20130101')]).cat) # Series should delegate calls to '.categories', '.codes', '.ordered' # and the methods '.set_categories()' 'drop_unused_categories()' to the # categorical s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) s.cat.categories = [1, 2, 3] exp_categories = np.array([1, 2, 3]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) exp_codes = Series([0, 1, 2, 0], dtype='int8') tm.assert_series_equal(s.cat.codes, exp_codes) self.assertEqual(s.cat.ordered, True) s = s.cat.as_unordered() self.assertEqual(s.cat.ordered, False) s.cat.as_ordered(inplace=True) self.assertEqual(s.cat.ordered, True) # reorder s = Series(Categorical(["a", "b", "c", "a"], ordered=True)) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) s = s.cat.set_categories(["c", "b", "a"]) self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # remove unused categories s = Series(Categorical(["a", "b", "b", "a"], categories=["a", "b", "c" ])) exp_categories = np.array(["a", "b"]) exp_values = np.array(["a", "b", "b", "a"]) s = s.cat.remove_unused_categories() self.assert_numpy_array_equal(s.cat.categories, exp_categories) self.assert_numpy_array_equal(s.values.__array__(), exp_values) self.assert_numpy_array_equal(s.__array__(), exp_values) # This method is likely to be confused, so test that it raises an error # on wrong inputs: def f(): s.set_categories([4, 3, 2, 1]) self.assertRaises(Exception, f) # right: s.cat.set_categories([4,3,2,1]) def test_series_functions_no_warnings(self): df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_assignment_to_dataframe(self): # assignment df = DataFrame({'value': np.array( np.random.randint(0, 10000, 100), dtype='int32')}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] df = df.sort_values(by=['value'], ascending=True) s = pd.cut(df.value, range(0, 10500, 500), right=False, labels=labels) d = s.values df['D'] = d str(df) result = df.dtypes expected = Series( [np.dtype('int32'), com.CategoricalDtype()], index=['value', 'D']) tm.assert_series_equal(result, expected) df['E'] = s str(df) result = df.dtypes expected = Series([np.dtype('int32'), com.CategoricalDtype(), com.CategoricalDtype()], index=['value', 'D', 'E']) tm.assert_series_equal(result, expected) result1 = df['D'] result2 = df['E'] self.assertTrue(result1._data._block.values.equals(d)) # sorting s.name = 'E' self.assertTrue(result2.sort_index().equals(s.sort_index())) cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) df = pd.DataFrame(pd.Series(cat)) def test_describe(self): # Categoricals should not show up together with numerical columns result = self.cat.describe() self.assertEqual(len(result.columns), 1) # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = pd.Series(pd.Categorical(["a", "b", "c", "c"])) df3 = pd.DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) res = df3.describe() self.assert_numpy_array_equal(res["cat"].values, res["s"].values) def test_repr(self): a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") self.assertEqual(exp, a.__unicode__()) a = pd.Series(pd.Categorical(["a", "b"] * 25)) exp = u("0 a\n1 b\n" + " ..\n" + "48 a\n49 b\n" + "dtype: category\nCategories (2, object): [a, b]") with option_context("display.max_rows", 5): self.assertEqual(exp, repr(a)) levs = list("abcdefghijklmnopqrstuvwxyz") a = pd.Series(pd.Categorical( ["a", "b"], categories=levs, ordered=True)) exp = u("0 a\n1 b\n" + "dtype: category\n" "Categories (26, object): [a < b < c < d ... w < x < y < z]") self.assertEqual(exp, a.__unicode__()) def test_categorical_repr(self): c = pd.Categorical([1, 2, 3]) exp = """[1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1, 2, 3, 4, 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20)) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0, 1, 2, 3, ..., 16, 17, 18, 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_ordered(self): c = pd.Categorical([1, 2, 3], ordered=True) exp = """[1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) exp = """[1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(c), exp) c = pd.Categorical([1, 2, 3, 4, 5] * 10, ordered=True) exp = """[1, 2, 3, 4, 5, ..., 1, 2, 3, 4, 5] Length: 50 Categories (5, int64): [1 < 2 < 3 < 4 < 5]""" self.assertEqual(repr(c), exp) c = pd.Categorical(np.arange(20), ordered=True) exp = """[0, 1, 2, 3, 4, ..., 15, 16, 17, 18, 19] Length: 20 Categories (20, int64): [0 < 1 < 2 < 3 ... 16 < 17 < 18 < 19]""" self.assertEqual(repr(c), exp) def test_categorical_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) # TODO(wesm): exceeding 80 characters in the console is not good # behavior exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]""") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, " "2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, " "2011-01-01 13:00:00]\n" "Categories (5, datetime64[ns]): [2011-01-01 09:00:00, " "2011-01-01 10:00:00, 2011-01-01 11:00:00,\n" " 2011-01-01 12:00:00, " "2011-01-01 13:00:00]") self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = ( "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, " "2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, " "2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, " "2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]\n" "Categories (5, datetime64[ns, US/Eastern]): " "[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00,\n" " " "2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00,\n" " " "2011-01-01 13:00:00-05:00]") self.assertEqual(repr(c), exp) def test_categorical_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00, 2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00] Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" # noqa self.assertEqual(repr(c), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" # noqa self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00, 2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00] Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00, 2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00] Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(c), exp) idx = pd.period_range('2011-01', freq='M', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[2011-01, 2011-02, 2011-03, 2011-04, 2011-05, 2011-01, 2011-02, 2011-03, 2011-04, 2011-05] Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) c = pd.Categorical(idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[1 days, 2 days, 3 days, 4 days, 5 days, 1 days, 2 days, 3 days, 4 days, 5 days] Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(c), exp) idx = pd.timedelta_range('1 hours', periods=20) c = pd.Categorical(idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 20 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) c = pd.Categorical(idx.append(idx), categories=idx, ordered=True) exp = """[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, ..., 15 days 01:00:00, 16 days 01:00:00, 17 days 01:00:00, 18 days 01:00:00, 19 days 01:00:00] Length: 40 Categories (20, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 16 days 01:00:00 < 17 days 01:00:00 < 18 days 01:00:00 < 19 days 01:00:00]""" self.assertEqual(repr(c), exp) def test_categorical_series_repr(self): s = pd.Series(pd.Categorical([1, 2, 3])) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1, 2, 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10))) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0, 1, 2, 3, ..., 6, 7, 8, 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_ordered(self): s = pd.Series(pd.Categorical([1, 2, 3], ordered=True)) exp = """0 1 1 2 2 3 dtype: category Categories (3, int64): [1 < 2 < 3]""" self.assertEqual(repr(s), exp) s = pd.Series(pd.Categorical(np.arange(10), ordered=True)) exp = """0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 dtype: category Categories (10, int64): [0 < 1 < 2 < 3 ... 6 < 7 < 8 < 9]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00 1 2011-01-01 10:00:00 2 2011-01-01 11:00:00 3 2011-01-01 12:00:00 4 2011-01-01 13:00:00 dtype: category Categories (5, datetime64[ns]): [2011-01-01 09:00:00 < 2011-01-01 10:00:00 < 2011-01-01 11:00:00 < 2011-01-01 12:00:00 < 2011-01-01 13:00:00]""" self.assertEqual(repr(s), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 2011-01-01 11:00:00-05:00 3 2011-01-01 12:00:00-05:00 4 2011-01-01 13:00:00-05:00 dtype: category Categories (5, datetime64[ns, US/Eastern]): [2011-01-01 09:00:00-05:00 < 2011-01-01 10:00:00-05:00 < 2011-01-01 11:00:00-05:00 < 2011-01-01 12:00:00-05:00 < 2011-01-01 13:00:00-05:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01, 2011-02, 2011-03, 2011-04, 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01-01 09:00 1 2011-01-01 10:00 2 2011-01-01 11:00 3 2011-01-01 12:00 4 2011-01-01 13:00 dtype: category Categories (5, period): [2011-01-01 09:00 < 2011-01-01 10:00 < 2011-01-01 11:00 < 2011-01-01 12:00 < 2011-01-01 13:00]""" self.assertEqual(repr(s), exp) idx = pd.period_range('2011-01', freq='M', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 2011-01 1 2011-02 2 2011-03 3 2011-04 4 2011-05 dtype: category Categories (5, period): [2011-01 < 2011-02 < 2011-03 < 2011-04 < 2011-05]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days, 2 days, 3 days, 4 days, 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, ..., 6 days 01:00:00, 7 days 01:00:00, 8 days 01:00:00, 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_series_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 1 days 1 2 days 2 3 days 3 4 days 4 5 days dtype: category Categories (5, timedelta64[ns]): [1 days < 2 days < 3 days < 4 days < 5 days]""" self.assertEqual(repr(s), exp) idx = pd.timedelta_range('1 hours', periods=10) s = pd.Series(pd.Categorical(idx, ordered=True)) exp = """0 0 days 01:00:00 1 1 days 01:00:00 2 2 days 01:00:00 3 3 days 01:00:00 4 4 days 01:00:00 5 5 days 01:00:00 6 6 days 01:00:00 7 7 days 01:00:00 8 8 days 01:00:00 9 9 days 01:00:00 dtype: category Categories (10, timedelta64[ns]): [0 days 01:00:00 < 1 days 01:00:00 < 2 days 01:00:00 < 3 days 01:00:00 ... 6 days 01:00:00 < 7 days 01:00:00 < 8 days 01:00:00 < 9 days 01:00:00]""" self.assertEqual(repr(s), exp) def test_categorical_index_repr(self): idx = pd.CategoricalIndex(pd.Categorical([1, 2, 3])) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=False, dtype='category')""" self.assertEqual(repr(idx), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10))) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_ordered(self): i = pd.CategoricalIndex(pd.Categorical([1, 2, 3], ordered=True)) exp = """CategoricalIndex([1, 2, 3], categories=[1, 2, 3], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(np.arange(10), ordered=True)) exp = """CategoricalIndex([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], categories=[0, 1, 2, 3, 4, 5, 6, 7, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_datetime_ordered(self): idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00', '2011-01-01 10:00:00', '2011-01-01 11:00:00', '2011-01-01 12:00:00', '2011-01-01 13:00:00'], categories=[2011-01-01 09:00:00, 2011-01-01 10:00:00, 2011-01-01 11:00:00, 2011-01-01 12:00:00, 2011-01-01 13:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx), ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00', '2011-01-01 09:00:00-05:00', '2011-01-01 10:00:00-05:00', '2011-01-01 11:00:00-05:00', '2011-01-01 12:00:00-05:00', '2011-01-01 13:00:00-05:00'], categories=[2011-01-01 09:00:00-05:00, 2011-01-01 10:00:00-05:00, 2011-01-01 11:00:00-05:00, 2011-01-01 12:00:00-05:00, 2011-01-01 13:00:00-05:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period(self): # test all length idx = pd.period_range('2011-01-01 09:00', freq='H', periods=1) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00'], categories=[2011-01-01 09:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=2) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=3) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) i = pd.CategoricalIndex(pd.Categorical(idx.append(idx))) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00', '2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_period_ordered(self): idx = pd.period_range('2011-01-01 09:00', freq='H', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00', '2011-01-01 12:00', '2011-01-01 13:00'], categories=[2011-01-01 09:00, 2011-01-01 10:00, 2011-01-01 11:00, 2011-01-01 12:00, 2011-01-01 13:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.period_range('2011-01', freq='M', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05'], categories=[2011-01, 2011-02, 2011-03, 2011-04, 2011-05], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=False, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_index_repr_timedelta_ordered(self): idx = pd.timedelta_range('1 days', periods=5) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], categories=[1 days 00:00:00, 2 days 00:00:00, 3 days 00:00:00, 4 days 00:00:00, 5 days 00:00:00], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) idx = pd.timedelta_range('1 hours', periods=10) i = pd.CategoricalIndex(pd.Categorical(idx, ordered=True)) exp = """CategoricalIndex(['0 days 01:00:00', '1 days 01:00:00', '2 days 01:00:00', '3 days 01:00:00', '4 days 01:00:00', '5 days 01:00:00', '6 days 01:00:00', '7 days 01:00:00', '8 days 01:00:00', '9 days 01:00:00'], categories=[0 days 01:00:00, 1 days 01:00:00, 2 days 01:00:00, 3 days 01:00:00, 4 days 01:00:00, 5 days 01:00:00, 6 days 01:00:00, 7 days 01:00:00, ...], ordered=True, dtype='category')""" self.assertEqual(repr(i), exp) def test_categorical_frame(self): # normal DataFrame dt = pd.date_range('2011-01-01 09:00', freq='H', periods=5, tz='US/Eastern') p = pd.period_range('2011-01', freq='M', periods=5) df = pd.DataFrame({'dt': dt, 'p': p}) exp = """ dt p 0 2011-01-01 09:00:00-05:00 2011-01 1 2011-01-01 10:00:00-05:00 2011-02 2 2011-01-01 11:00:00-05:00 2011-03 3 2011-01-01 12:00:00-05:00 2011-04 4 2011-01-01 13:00:00-05:00 2011-05""" df = pd.DataFrame({'dt': pd.Categorical(dt), 'p': pd.Categorical(p)}) self.assertEqual(repr(df), exp) def test_info(self): # make sure it works n = 2500 df = DataFrame({'int64': np.random.randint(100, size=n)}) df['category'] = Series(np.array(list('abcdefghij')).take( np.random.randint(0, 10, size=n))).astype('category') df.isnull() df.info() df2 = df[df['category'] == 'd'] df2.info() def test_groupby_sort(self): # http://stackoverflow.com/questions/23814368/sorting-pandas-categorical-labels-after-groupby # This should result in a properly sorted Series so that the plot # has a sorted x axis # self.cat.groupby(['value_group'])['value_group'].count().plot(kind='bar') res = self.cat.groupby(['value_group'])['value_group'].count() exp = res[sorted(res.index, key=lambda x: float(x.split()[0]))] exp.index = pd.CategoricalIndex(exp.index, name=exp.index.name) tm.assert_series_equal(res, exp) def test_min_max(self): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Series(Categorical(["a", "b", "c", "d"], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Series(Categorical(["a", "b", "c", "d"], categories=[ 'd', 'c', 'b', 'a'], ordered=True)) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Series(Categorical( [np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a' ], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") cat = Series(Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) def test_mode(self): s = Series(Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([5, 1], categories=[ 5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) s = Series(Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True)) res = s.mode() exp = Series(Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)) tm.assert_series_equal(res, exp) def test_value_counts(self): s = pd.Series(pd.Categorical( ["a", "b", "c", "c", "c", "b"], categories=["c", "a", "b", "d"])) res = s.value_counts(sort=False) exp = Series([3, 1, 2, 0], index=pd.CategoricalIndex(["c", "a", "b", "d"])) tm.assert_series_equal(res, exp) res = s.value_counts(sort=True) exp = Series([3, 2, 1, 0], index=pd.CategoricalIndex(["c", "b", "a", "d"])) tm.assert_series_equal(res, exp) def test_value_counts_with_nan(self): # https://github.com/pydata/pandas/issues/9443 s = pd.Series(["a", "b", "a"], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) s = pd.Series(["a", "b", None, "a", None, None], dtype="category") tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) # When we aren't sorting by counts, and np.nan isn't a # category, it should be last. tm.assert_series_equal( s.value_counts(dropna=False, sort=False), pd.Series([2, 1, 3], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", "a"], categories=["a", "b", np.nan])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([2, 1, 0], index=pd.CategoricalIndex(["a", "b", np.nan]))) with tm.assert_produces_warning(FutureWarning): s = pd.Series(pd.Categorical( ["a", "b", None, "a", None, None], categories=["a", "b", np.nan ])) tm.assert_series_equal( s.value_counts(dropna=True), pd.Series([2, 1], index=pd.CategoricalIndex(["a", "b"]))) tm.assert_series_equal( s.value_counts(dropna=False), pd.Series([3, 2, 1], index=pd.CategoricalIndex([np.nan, "a", "b"]))) def test_groupby(self): cats = Categorical( ["a", "a", "a", "b", "b", "b", "c", "c", "c" ], categories=["a", "b", "c", "d"], ordered=True) data = DataFrame({"a": [1, 1, 1, 2, 2, 2, 3, 4, 5], "b": cats}) expected = DataFrame({'a': Series( [1, 2, 4, np.nan], index=pd.CategoricalIndex( ['a', 'b', 'c', 'd'], name='b'))}) result = data.groupby("b").mean() tm.assert_frame_equal(result, expected) raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) # single grouper gb = df.groupby("A") exp_idx = pd.CategoricalIndex(['a', 'b', 'z'], name='A') expected = DataFrame({'values': Series([3, 7, np.nan], index=exp_idx)}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers gb = df.groupby(['A', 'B']) expected = DataFrame({'values': Series( [1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan ], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']))}) result = gb.sum() tm.assert_frame_equal(result, expected) # multiple groupers with a non-cat df = df.copy() df['C'] = ['foo', 'bar'] * 2 gb = df.groupby(['A', 'B', 'C']) expected = DataFrame({'values': Series( np.nan, index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y'], ['foo', 'bar'] ], names=['A', 'B', 'C']))}).sortlevel() expected.iloc[[1, 2, 7, 8], 0] = [1, 2, 3, 4] result = gb.sum() tm.assert_frame_equal(result, expected) # GH 8623 x = pd.DataFrame([[1, '<NAME>'], [2, '<NAME>'], [1, '<NAME>']], columns=['person_id', 'person_name']) x['person_name'] = pd.Categorical(x.person_name) g = x.groupby(['person_id']) result = g.transform(lambda x: x) tm.assert_frame_equal(result, x[['person_name']]) result = x.drop_duplicates('person_name') expected = x.iloc[[0, 1]] tm.assert_frame_equal(result, expected) def f(x): return x.drop_duplicates('person_name').iloc[0] result = g.apply(f) expected = x.iloc[[0, 1]].copy() expected.index = Index([1, 2], name='person_id') expected['person_name'] = expected['person_name'].astype('object') tm.assert_frame_equal(result, expected) # GH 9921 # Monotonic df = DataFrame({"a": [5, 15, 25]}) c = pd.cut(df.a, bins=[0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.max(xs)), df[['a']]) # Filter tm.assert_series_equal(df.a.groupby(c).filter(np.all), df['a']) tm.assert_frame_equal(df.groupby(c).filter(np.all), df) # Non-monotonic df = DataFrame({"a": [5, 15, 25, -5]}) c = pd.cut(df.a, bins=[-10, 0, 10, 20, 30, 40]) result = df.a.groupby(c).transform(sum) tm.assert_series_equal(result, df['a'], check_names=False) self.assertTrue(result.name is None) tm.assert_series_equal( df.a.groupby(c).transform(lambda xs: np.sum(xs)), df['a']) tm.assert_frame_equal(df.groupby(c).transform(sum), df[['a']]) tm.assert_frame_equal( df.groupby(c).transform(lambda xs: np.sum(xs)), df[['a']]) # GH 9603 df = pd.DataFrame({'a': [1, 0, 0, 0]}) c = pd.cut(df.a, [0, 1, 2, 3, 4]) result = df.groupby(c).apply(len) expected = pd.Series([1, 0, 0, 0], index=pd.CategoricalIndex(c.values.categories)) expected.index.name = 'a' tm.assert_series_equal(result, expected) def test_pivot_table(self): raw_cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) raw_cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": raw_cat1, "B": raw_cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B']) expected = Series([1, 2, np.nan, 3, 4, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex.from_product( [['a', 'b', 'z'], ['c', 'd', 'y']], names=['A', 'B']), name='values') tm.assert_series_equal(result, expected) def test_count(self): s = Series(Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True)) result = s.count() self.assertEqual(result, 2) def test_sort(self): c = Categorical(["a", "b", "b", "a"], ordered=False) cat = Series(c) # 9816 deprecated with tm.assert_produces_warning(FutureWarning): c.order() # sort in the categories order expected = Series( Categorical(["a", "a", "b", "b"], ordered=False), index=[0, 3, 1, 2]) result = cat.sort_values() tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "c", "b", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) cat = Series(Categorical(["a", "c", "b", "d"], categories=[ "a", "b", "c", "d"], ordered=True)) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res.__array__(), exp) raw_cat1 = Categorical(["a", "b", "c", "d"], categories=["a", "b", "c", "d"], ordered=False) raw_cat2 = Categorical(["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True) s = ["a", "b", "c", "d"] df = DataFrame({"unsort": raw_cat1, "sort": raw_cat2, "string": s, "values": [1, 2, 3, 4]}) # Cats must be sorted in a dataframe res = df.sort_values(by=["string"], ascending=False) exp = np.array(["d", "c", "b", "a"]) self.assert_numpy_array_equal(res["sort"].values.__array__(), exp) self.assertEqual(res["sort"].dtype, "category") res = df.sort_values(by=["sort"], ascending=False) exp = df.sort_values(by=["string"], ascending=True) self.assert_numpy_array_equal(res["values"], exp["values"]) self.assertEqual(res["sort"].dtype, "category") self.assertEqual(res["unsort"].dtype, "category") # unordered cat, but we allow this df.sort_values(by=["unsort"], ascending=False) # multi-columns sort # GH 7848 df = DataFrame({"id": [6, 5, 4, 3, 2, 1], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']}) df["grade"] = pd.Categorical(df["raw_grade"], ordered=True) df['grade'] = df['grade'].cat.set_categories(['b', 'e', 'a']) # sorts 'grade' according to the order of the categories result = df.sort_values(by=['grade']) expected = df.iloc[[1, 2, 5, 0, 3, 4]] tm.assert_frame_equal(result, expected) # multi result = df.sort_values(by=['grade', 'id']) expected = df.iloc[[2, 1, 5, 4, 3, 0]] tm.assert_frame_equal(result, expected) # reverse cat = Categorical(["a", "c", "c", "b", "d"], ordered=True) res = cat.sort_values(ascending=False) exp_val = np.array(["d", "c", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) # some NaN positions cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='first') exp_val = np.array([np.nan, "d", "c", "b", "a"], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) cat = Categorical(["a", "c", "b", "d", np.nan], ordered=True) res = cat.sort_values(ascending=False, na_position='last') exp_val = np.array(["d", "c", "b", "a", np.nan], dtype=object) exp_categories = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp_val) self.assert_numpy_array_equal(res.categories, exp_categories) def test_slicing(self): cat = Series(Categorical([1, 2, 3, 4])) reversed = cat[::-1] exp = np.array([4, 3, 2, 1]) self.assert_numpy_array_equal(reversed.__array__(), exp) df = DataFrame({'value': (np.arange(100) + 1).astype('int64')}) df['D'] = pd.cut(df.value, bins=[0, 25, 50, 75, 100]) expected = Series([11, '(0, 25]'], index=['value', 'D'], name=10) result = df.iloc[10] tm.assert_series_equal(result, expected) expected = DataFrame({'value': np.arange(11, 21).astype('int64')}, index=np.arange(10, 20).astype('int64')) expected['D'] = pd.cut(expected.value, bins=[0, 25, 50, 75, 100]) result = df.iloc[10:20] tm.assert_frame_equal(result, expected) expected = Series([9, '(0, 25]'], index=['value', 'D'], name=8) result = df.loc[8] tm.assert_series_equal(result, expected) def test_slicing_and_getting_ops(self): # systematically test the slicing operations: # for all slicing ops: # - returning a dataframe # - returning a column # - returning a row # - returning a single value cats = pd.Categorical( ["a", "c", "b", "c", "c", "c", "c"], categories=["a", "b", "c"]) idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 2, 3, 4, 5, 6, 7] df = pd.DataFrame({"cats": cats, "values": values}, index=idx) # the expected values cats2 = pd.Categorical(["b", "c"], categories=["a", "b", "c"]) idx2 = pd.Index(["j", "k"]) values2 = [3, 4] # 2:4,: | "j":"k",: exp_df = pd.DataFrame({"cats": cats2, "values": values2}, index=idx2) # :,"cats" | :,0 exp_col = pd.Series(cats, index=idx, name='cats') # "j",: | 2,: exp_row = pd.Series(["b", 3], index=["cats", "values"], dtype="object", name="j") # "j","cats | 2,0 exp_val = "b" # iloc # frame res_df = df.iloc[2:4, :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.iloc[2, :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.iloc[:, 0] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.iloc[2, 0] self.assertEqual(res_val, exp_val) # loc # frame res_df = df.loc["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.loc["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.loc[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.loc["j", "cats"] self.assertEqual(res_val, exp_val) # ix # frame # res_df = df.ix["j":"k",[0,1]] # doesn't work? res_df = df.ix["j":"k", :] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) # row res_row = df.ix["j", :] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) # col res_col = df.ix[:, "cats"] tm.assert_series_equal(res_col, exp_col) self.assertTrue(com.is_categorical_dtype(res_col)) # single value res_val = df.ix["j", 0] self.assertEqual(res_val, exp_val) # iat res_val = df.iat[2, 0] self.assertEqual(res_val, exp_val) # at res_val = df.at["j", "cats"] self.assertEqual(res_val, exp_val) # fancy indexing exp_fancy = df.iloc[[2]] res_fancy = df[df["cats"] == "b"] tm.assert_frame_equal(res_fancy, exp_fancy) res_fancy = df[df["values"] == 3] tm.assert_frame_equal(res_fancy, exp_fancy) # get_value res_val = df.get_value("j", "cats") self.assertEqual(res_val, exp_val) # i : int, slice, or sequence of integers res_row = df.iloc[2] tm.assert_series_equal(res_row, exp_row) tm.assertIsInstance(res_row["cats"], compat.string_types) res_df = df.iloc[slice(2, 4)] tm.assert_frame_equal(res_df, exp_df) self.assertTrue(com.is_categorical_dtype(res_df["cats"])) res_df = df.iloc[[2, 3]]
tm.assert_frame_equal(res_df, exp_df)
pandas.util.testing.assert_frame_equal
""" This module handles the conversion of scraped data to different formats. """ # inbuilt or third party libs import pandas as pd import json from datetime import datetime import logging from typing import Dict, Optional, List, Union from pathlib import Path import os from ast import literal_eval as make_tuple # project modules from modules import misc, style from locations import dirs, paths def convert_dict_into_df(docketlist: List[Dict], county: str) -> pd.DataFrame: # SET PANDAS OPTIONS FOR PRINT DISPLAY pd.set_option("display.max_columns", 20)
pd.set_option("display.width", 2000)
pandas.set_option
#!/usr/bin/env python # coding: utf-8 import os import ee import datetime import tqdm import json import pandas as pd import geopandas as gp import numpy as np import rsfuncs as rs import multiprocessing as mp import scipy.interpolate as interp import matplotlib.pyplot as plt from tqdm import tqdm from tqdm.contrib.concurrent import process_map # or thread_map ee.Initialize() # Helper functions def dict2arr(data_dict, var_name): '''converts ee dictionary output from .getInfo() to a numpy array. Wraps array_from_df''' data = data_dict[var_name] lats = data_dict['latitude'] lons = data_dict['longitude'] df = pd.DataFrame([data,lats,lons]).T df.columns = [var_name, "latitude", 'longitude'] arr = rs.array_from_df(df, var_name) return arr def map_cdl2fmp(dictionary,array): '''maps values on cdl image to the fmp''' mapping = dictionary.copy() vec1 = [] vec2 = [] for k,v in mapping.items(): for i in v: if i == "": continue else: vec1.append(int(i)) vec2.append(int(k)) out_im = np.zeros_like(array) for k,v in dict(zip(vec1,vec2)).items(): out_im[array==k] =v return out_im def map_fmp2kc(dictionary,array): '''maps values on fmp image to kc''' mapping = dictionary.copy() vec1 = [] vec2 = [] for k,v in mapping.items(): vec1.append(k) vec2.append(v) out_im = np.zeros_like(array) for k,v in dict(zip(vec1,vec2)).items(): out_im[array==k] =v return out_im def get_monthly_et(dataset, start, end, aoi): ''' Get gridded monthly ET sums from MODIS ''' ImageCollection = dataset[0] var = dataset[1] scaling_factor = dataset[2] resolution = dataset[3] dt_idx = pd.date_range(start,end, freq='MS') ims = [] seq = ee.List.sequence(0, len(dt_idx)-1) num_steps = seq.getInfo() for i in num_steps[:]: t1 = ee.Date(start).advance(i, 'month') t2 = t1.advance(1, 'month'); im = ee.Image(ImageCollection.select(var).filterDate(t1, t2).sum().set('system:time_start', t1.millis())) modis_dat = im.pixelLonLat().addBands(im).multiply(scaling_factor).reduceRegion(reducer=ee.Reducer.toList(), geometry=aoi, scale=1000, crs ='EPSG:4326') modis_dict = modis_dat.getInfo() modis_im = dict2arr(modis_dict, var) ims.append(modis_im) return ims def calc_monthly_sum(dataset, startdate, enddate, area): ''' Calculates monthly sums (pd.Dataframe) for EE data given startdate, enddate, and area Datasets are stored in `data` dict below. Note the "scaling_factor" parameter, which is provided by EE for each dataset, and further scaled by temporal resolution to achieve monthly resolution This is explicitly written in the `data` dict EE will throw a cryptic error if the daterange you input is not valid for the product of interest, or if the AOI is e.g. in middle of ocean ''' ImageCollection = dataset[0] var = dataset[1] scaling_factor = dataset[2] resolution = dataset[3] dt_idx = pd.date_range(startdate,enddate, freq='MS') sums = [] seq = ee.List.sequence(0, len(dt_idx)-1) num_steps = seq.getInfo() for i in num_steps: start = ee.Date(startdate).advance(i, 'month') end = start.advance(1, 'month'); im = ee.Image(ImageCollection.select(var).filterDate(start, end).sum().set('system:time_start', start.millis())) scale = im.projection().nominalScale() scaled_im = im.multiply(scaling_factor).multiply(ee.Image.pixelArea()).multiply(1e-12) # mm --> km^3 sumdict = scaled_im.reduceRegion( reducer = ee.Reducer.sum(), geometry = area, scale = resolution, bestEffort= True) total = sumdict.getInfo()[var] sums.append(total) sumdf = pd.DataFrame(np.array(sums), dt_idx) sumdf.columns = [var] df = sumdf.astype(float) return df def resample_1km_30m(im_1km,im_30m): ''' Interpolates 1 km modis data on to 30m landsat grid ''' W, H = im_1km.shape[:2] new_W, new_H = im_30m.shape[:2] xrange = lambda x: np.linspace(0, 1, x) f = interp.interp2d(xrange(H), xrange(W), im_1km, kind="linear") new_arr = f(xrange(new_H), xrange(new_W)) return new_arr def interp_modis_nans(modis_image): ''' interpolates nans in modis imagery. Doesn't work if a whole row/col at edge of image is all nans ''' W, H = modis_image.shape[:2] # Mask nans array = np.ma.masked_invalid(modis_image) # Make the outgrid xi = np.linspace(0, H, H) yi = np.linspace(0, W, W) xx, yy = np.meshgrid(xi, yi) # xx, yy = np.meshgrid(new_W, new_H) x1 = xx[~array.mask] y1 = yy[~array.mask] newarr = array[~array.mask] new_arr = interp.griddata((x1, y1), newarr.ravel(), (xx, yy),method='linear') return new_arr def find_nearest_nlcd(yearint, yearlist = [2001, 2004, 2006, 2008, 2011, 2013, 2016]): absolute_diff = lambda list_value : abs(list_value - yearint) closest_value = min(yearlist, key=absolute_diff) return closest_value def process_poly(polylist): ''' main routine ''' polygon, polyidx, outdir = polylist[0], polylist[1], polylist[2] tqdm.write("Processing Polygon {}".format(polyidx)) # Setup write dir # outdir = os.path.join(os.getcwd(), "../data/ETkc") # if not os.path.exists(outdir): # os.mkdir(outdir) # Check if file already exists outfn = os.path.join(outdir, str(polyidx) +".csv") if os.path.exists(outfn): print("already processed {} ... skipping".format(polyidx)) return # Load data kc = pd.read_csv('../data/fmp_kc_faunt.csv') data = rs.load_data() aoi = ee.Geometry.Polygon(polygon) polarea = float(aoi.area().getInfo()) # check if polygon is very small, if area < 1 pixel, skip if polarea < 500**2: print("{} is smaller than 1 MODIS Pixel, skipping =====================".format(polyidx)) print("area = {} m^2".format(str(polarea))) print(polygon) return else: try: # Define timerange years = range(2001, 2021) yearlydat = [] for y in years[:]: yearstart = "{}-01-01".format(str(y)) yearend = "{}-12-31".format(str(y)) # Select the nlcd dataset (2001, 2004, 2006, 2008, 2011, 2014, 2016) nearest_year_start = "{}-01-01".format(str(find_nearest_nlcd(y))) nlcd_col = ee.ImageCollection('USGS/NLCD') nlcd = nlcd_col.filterDate(ee.Date(nearest_year_start), ee.Date(nearest_year_start).advance(1, 'years')).first() # Compile NLCD nlcd_dat = ee.Image.pixelLonLat().addBands(nlcd).reduceRegion(reducer=ee.Reducer.toList(),geometry=aoi,scale=30) nlcd_dict = nlcd_dat.getInfo() # get PET classes (11-water, 81-crops, 82-pasture), and make everything else AET nlcd_im = dict2arr(nlcd_dict, 'landcover') petmask = np.isin(nlcd_im, [11,81], invert = False).reshape(nlcd_im.shape).astype(int) aetmask = np.isin(nlcd_im, [11,81], invert = True).reshape(nlcd_im.shape).astype(int) # Select the correct or most recent CDL if y < 2008: cdl = ee.Image("USDA/NASS/CDL/2008") else: cdl = ee.Image("USDA/NASS/CDL/{}".format(str(y))) # Compile CDL cdl_dat = ee.Image.pixelLonLat().addBands(cdl).reduceRegion(reducer=ee.Reducer.toList(),geometry=aoi,scale=30) cdl_dict = cdl_dat.getInfo() # Make the ims cdl_im = dict2arr(cdl_dict, 'cropland') # Map values from the CDL to the FMP mapping = rs.cdl_2_faunt() fmp_im = map_cdl2fmp(mapping, cdl_im) # Map values from the FMP to kc (Schmid, 2004) monthly_ims = [] for i in kc.columns[2:]: kcvals = kc[i] kckeys =kc[kc.columns[0]] kcdict = dict(zip(kckeys, kcvals)) kc_im = map_fmp2kc(kcdict, fmp_im) monthly_ims.append(kc_im) aet = calc_monthly_sum(data['modis_aet'], yearstart, yearend, aoi) pet = calc_monthly_sum(data['modis_pet'], yearstart, yearend, aoi) aetims = get_monthly_et(data['modis_aet'], yearstart, yearend, aoi = aoi) petims = get_monthly_et(data['modis_pet'], yearstart, yearend, aoi = aoi) # Record mean kc per image kc_means = np.array([np.mean(x) for x in monthly_ims]) # Apply the kc method, convert mm to km = 1e-6; m^2 to km^2 = 1e-6; 900 m^2 / cell sums = [] for aetim, petim ,kcim in zip(aetims, petims, monthly_ims): tpet = np.nansum(resample_1km_30m(interp_modis_nans(petim), kcim)* kcim *petmask)* 1e-12 * 900 taet = np.nansum(resample_1km_30m(interp_modis_nans(aetim), kcim)* aetmask)*1e-12 * 900 sums.append(np.sum([tpet, taet])) petsum = [np.nansum(x)*1e-9 * 900 for x in petims] aetsum = [np.nansum(x)*1e-9 * 900 for x in aetims] ETdf =
pd.DataFrame([sums])
pandas.DataFrame
# coding: utf-8 import re import numpy as np import pandas as pd def vnpy_opt_DAY_IN(opt): """ vnpy 优化结果清洗,用于 DAY_IN 和 DAY_OUT :param opt: :return: """ data = re.compile(r'DAY_IN\':\s(\d+),\s\'DAY_OUT\':\s(\d+)\}"\]:\s([\d\.]+)').findall(opt) data = np.array(data).T dic = { "DAY_IN": pd.Series(data[0], dtype=np.int), "DAY_OUT": pd.Series(data[1], dtype=np.int), "capital": pd.Series(data[2], dtype=np.float) } return pd.DataFrame(dic) def vnpy_opt_DAY_IN_2(opt): """ vnpy 优化结果清洗, 针对 DAY_IN_2 :param opt: :return: """ data = re.compile(r'DAY_IN_2\':\s(\d+)\}"\]:\s([\d\.]+)').findall(opt) data = np.array(data).T dic = { "DAY_IN_2": pd.Series(data[0], dtype=np.int), "capital": pd.Series(data[1], dtype=np.float) } return pd.DataFrame(dic) def testest():
pd.DataFrame()
pandas.DataFrame
import pandas as pd import os import logging import yaml import datetime import json import time import sys import holoviews as hv from holoviews import opts from holoviews.element import Div from bokeh.models import HoverTool hv.extension('bokeh') allowed_ontologies = ["KO", "EC", "SSO", "RO", "META", "MSRXN", "MSCPD", "MSCPX", "BIGG", "BIGGCPD", "GO", "TC", "RHEA"] def df_to_ontology(params, pass_df=None, method="Import Annotations"): ''' Takes the text file from staging, or the pandas df passed from the merge app, and converts to an ontology dictionary suitable from the annotation ontology API add_annotation_ontology_events() method The merge app also calls this, and it can use the same params that the import gives... all shared features are in both (except for the annotations_file which the html_add_ontology_summary needs to fix) The new bulk app also calls this, using pass_df and a "fake" params ''' if isinstance(pass_df, pd.DataFrame): annotations = pass_df else: if 'debug' in params and params['debug'] is True: annotations_file_path = os.path.join( '/kb/module/test/test_data', params['annotation_file']) else: annotations_file_path = os.path.join("/staging/", params['annotation_file']) annotations = pd.read_csv(annotations_file_path, sep='\t', header=None, names=['gene', 'term'] ) # remove duplicate rows, if any annotations = annotations.drop_duplicates() ontology = { 'event_id': params['description'], 'description': params['description'], 'ontology_id': params['ontology'], 'method': method, # from above 'method_version': get_app_version(), "timestamp": datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"), 'ontology_terms': {}, 'gene_count': int(annotations['gene'].nunique()), # not used in the api 'term_count': int(annotations['term'].nunique()) # not used in the api } # add imported terms for index, row in annotations.iterrows(): if pd.notnull(row['term']): if row['gene'] in ontology['ontology_terms']: ontology['ontology_terms'][row['gene']].append( {'term': row['term']} ) else: ontology['ontology_terms'][row['gene']] = [ {'term': row['term']} ] return [ontology] def bulk_df_to_ontology(params): ontologies = [] if 'debug' in params and params['debug'] is True: annotations_file_path = os.path.join( '/kb/module/test/test_data', params['annotation_file']) else: annotations_file_path = os.path.join("/staging/", params['annotation_file']) annotations = pd.read_csv(annotations_file_path, sep='\t', header=None, names=['gene', 'term', 'ontology', 'description'] ) for description, description_df in annotations.groupby(annotations['description']): for ontology, ontology_df in description_df.groupby(description_df['ontology']): if ontology.upper() not in allowed_ontologies: sys.exit(f"ERROR: {ontology} is not a valid Ontology string") time.sleep(2) # This just "guarantees" the timestamps will all be different ontology_df = ontology_df[ontology_df['term'].notna()] ontology_df = ontology_df.drop_duplicates() ontology = { 'event_id': description, 'description': description, 'ontology_id': ontology.upper(), 'method': "Import Bulk Annotations", 'method_version': get_app_version(), "timestamp": datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"), 'ontology_terms': {}, 'gene_count': int(ontology_df['gene'].nunique()), # not used in the api 'term_count': int(ontology_df['term'].nunique()) # not used in the api } # add imported terms for index, row in ontology_df.iterrows(): if pd.notnull(row['term']): if row['gene'] in ontology['ontology_terms']: ontology['ontology_terms'][row['gene']].append( {'term': row['term']} ) else: ontology['ontology_terms'][row['gene']] = [ {'term': row['term']} ] ontologies.append(ontology) logging.info(len(ontology['ontology_terms'])) for gene in ontology['ontology_terms']: logging.info(description + "\t" + gene) return ontologies def get_app_version(): with open("/kb/module/kbase.yml", 'r') as stream: data_loaded = yaml.load(stream) return str(data_loaded['module-version']) def html_header(): report = [] report.append("<style>* {font-family: sans-serif; font-size: 14px}</style>") return report def html_add_ontology_summary(params, ontology, api_results, output_directory): logging.info(api_results) output_file = os.path.join(output_directory, "add_ontology_summary.html") # Make report directory and copy over files report = html_header() report.append(f'<h3>Import Annotations Summary</h3>') report.append(f'<b>Import App version:</b> {get_app_version()}<br>') if "annotation_file" in params: report.append(f'<b>Annotations file:</b> {params["annotation_file"]}<br>') report.append(f'<b>Input Ref:</b> {params["genome"]}<br>') report.append(f'<b>Output Ref:</b> {api_results["output_ref"]}<br>') report.append(f'<b>Output Name:</b> {api_results["output_name"]}<br><br>') report.append(f'<b>Features (found):</b> {api_results["ftrs_found"]}<br>') report.append(f'<b>Features (not found):</b> {len(api_results["ftrs_not_found"])}<br><br>') # make table report.append( '<table cellspacing="0" cellpadding="3" border="1"><tr><th>Description</th><th>Timestamp</th><th>Ontology</th><th>Genes in file</th><th>Terms in file</th></tr>') for import_event in ontology: gene_count = len(import_event["ontology_terms"]) # term_count = report.append( f'<tr style="background-color:#EEEEEE"><td>{import_event["description"].split(":")[0]}</td><td>{import_event["timestamp"]}</td><td>{import_event["ontology_id"]}</td><td>{import_event["gene_count"]}</td><td>{import_event["term_count"]}</td></tr>') report.append('</table>') # add missing terms if len(api_results["ftrs_not_found"]) > 0: report.append( f'<br><b>These genes were not found in the genome:</b> <br>{("<br>").join(api_results["ftrs_not_found"])}<br>') # Write to file with open(output_file, 'w') as f: for line in report: f.write(line + "\n") return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'HTML report for import_annotations app'} def get_event_lists(ontology): # print(type(ontology['feature_types'])) gene_features = [k for k, v in ontology['feature_types'].items() if v == "gene"] events = {} for event in ontology["events"]: event_id = event['event_id'] events[event_id] = {'genes': [], 'terms': [], 'msrxns': [], 'gene_msrxns': [], 'description': event['description'], 'timestamp': event['timestamp'], 'method': event['method'], 'method_version': event['method_version'], 'ontology_id': event['ontology_id'] } for gene in event["ontology_terms"]: if gene in gene_features: events[event_id]['genes'].append(gene) for entry in event["ontology_terms"][gene]: if "term" in entry.keys(): events[event_id]['terms'].append(entry['term']) if "modelseed_ids" in entry.keys(): events[event_id]['msrxns'] += entry['modelseed_ids'] for msrxn in entry['modelseed_ids']: events[event_id]['gene_msrxns'].append(gene + '_' + msrxn) events[event_id]['genes'] = list(set(events[event_id]['genes'])) events[event_id]['terms'] = list(set(events[event_id]['terms'])) events[event_id]['msrxns'] = list(set(events[event_id]['msrxns'])) events[event_id]['gene_msrxns'] = list(set(events[event_id]['gene_msrxns'])) return events def html_get_ontology_summary(event_summary, output_directory, to_highlight=[]): ''' Only counts gene features, ignores cds The highlight part is a list of descriptions to have their rows highlighted. ''' output_file = os.path.join(output_directory, "get_ontology_summary.html") report = html_header() report.append(f'<h3>Compare Annotations Summary</h3>') report.append( '<table cellspacing="0" cellpadding="3" border="1"><tr><th>Description</th><th>Timestamp</th><th>KBase App</th><th>Ontology</th><th>Genes</th><th>Unique Terms</th><th>Unique ModelSEED rxns</th><th>Unique Gene/ModelSEED rxn pairs</th></tr>') # get counts and add to new line of table for event in event_summary: if event_summary[event]["description"] in to_highlight: report.append(f'<tr style="background-color:#6CD075"><td>{event_summary[event]["description"].split(":")[0]}</td><td>{event_summary[event]["timestamp"]}</td><td>{event_summary[event]["method"]} v{event_summary[event]["method_version"]}</td><td>{event_summary[event]["ontology_id"]}</td><td>{len(event_summary[event]["genes"])}</td><td>{len(event_summary[event]["terms"])}</td><td>{len(event_summary[event]["msrxns"])}</td><td>{len(event_summary[event]["gene_msrxns"])}</td></tr>') else: report.append(f'<tr><td>{event_summary[event]["description"].split(":")[0]}</td><td>{event_summary[event]["timestamp"]}</td><td>{event_summary[event]["method"]} v{event_summary[event]["method_version"]}</td><td>{event_summary[event]["ontology_id"]}</td><td>{len(event_summary[event]["genes"])}</td><td>{len(event_summary[event]["terms"])}</td><td>{len(event_summary[event]["msrxns"])}</td><td>{len(event_summary[event]["gene_msrxns"])}</td></tr>') report.append('</table>') if len(to_highlight) > 0: report.append( f'<span style="background-color:#6CD075;font-size:12px"><i>* these highlighted rows were used for the merge</i></span>') print(output_file) # Write to file with open(output_file, 'w') as f: for line in report: f.write(line + "\n") return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'Summary Report'} def merge_details_report(df, output_directory): output_file = os.path.join(output_directory, "merge_details.txt") df.to_csv(output_file, sep="\t", index=False) return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'Merge Details'} def filter_selected_ontologies(ontology, params, workflow="compare"): ''' unique will not use params and just give all unique event_ids. compare and merge workflows filter out the ontologies to those selected in the UI, but the merge workflow also adds the annotation_weights to the events. both return all unique if no events are selected, and defaulting to a weight of 1 for the merge The unique functionality is added because of a current bug ''' ontology_selected = {"events": [], "feature_types": ontology["feature_types"]} added_ontologies = [] # the list of selections have different names depending on the app if workflow == "compare": selected_events = params['annotations_to_compare'] elif workflow == "merge": selected_events = params['annotations_to_merge'] elif workflow == "unique": selected_events = [] for event in ontology["events"]: if event["description"] not in added_ontologies: # keeps duplicates from being added twice if workflow == "unique": # add all, don't filter ontology_selected['events'].append(event) added_ontologies.append(event["description"]) else: if len(selected_events) == 0: # if nothing is selected, then grab all events if workflow == "merge": event['annotation_weight'] = 1 ontology_selected['events'].append(event) added_ontologies.append(event["description"]) else: # then grab only events in selected events, which is different for compare vs merge if workflow == "compare": if event["description"] in selected_events: ontology_selected['events'].append(event) added_ontologies.append(event["description"]) elif workflow == "merge": for selected_event in selected_events: # add if event in selected events, or if the first annotation_source is empty if event["description"] in selected_event["annotation_source"] or len(selected_events[0]['annotation_source']) == 0: event['annotation_weight'] = selected_event["annotation_weight"] ontology_selected['events'].append(event) added_ontologies.append(event["description"]) return ontology_selected def merge_ontology_events(ontology): ''' The annotation ontology api can put annotations in the cds features as well as the gene features. This code only considers gene features, and ignores annotations in cds features. I think they only get added to cds features if they were aliases Now, adds to a dictionary by gene/rxn/event... this will keep an event from double dipping and scoring twice for a gene_msrxn pair ''' # get counts and add to new line of table gene_features = [k for k, v in ontology['feature_types'].items() if v == "gene"] ontology_merged = {} for event in ontology["events"]: event_id = event['event_id'] for gene in event["ontology_terms"]: if gene in gene_features: for entry in event["ontology_terms"][gene]: if "modelseed_ids" in entry.keys(): for MSRXN in entry['modelseed_ids']: if gene in ontology_merged: if MSRXN in ontology_merged[gene]: ontology_merged[gene][MSRXN][event_id] = event['annotation_weight'] else: ontology_merged[gene][MSRXN] = { event_id: event['annotation_weight']} else: ontology_merged[gene] = { MSRXN: {event_id: event['annotation_weight']}} return ontology_merged def score_mergers(ontology_merged, params): ''' returns a pandas dataframe suitable for the import annotations workflow ''' df = pd.DataFrame(columns=['gene', 'term', 'score', 'gene_treshold']) for gene_id in ontology_merged: if params["keep_best_annotation_only"] == 1: best_score = 0 for MSRXN in ontology_merged[gene_id]: MSRXN_sum = sum(ontology_merged[gene_id][MSRXN].values()) if MSRXN_sum > best_score: best_score = MSRXN_sum # if best only is true and best_score is above threshold, use best_score as new threshold if best_score > params["annotation_threshold"]: gene_threshold = best_score else: gene_threshold = params["annotation_threshold"] else: gene_threshold = params["annotation_threshold"] for MSRXN in ontology_merged[gene_id]: MSRXN_sum = sum(ontology_merged[gene_id][MSRXN].values()) event_series = pd.Series(ontology_merged[gene_id][MSRXN]) # logging.info( # gene_id + "\t" + MSRXN + "\t" + str(ontology_merged[gene_id][MSRXN]) + "\t" + str(MSRXN_sum) + "\t" + str(gene_threshold)) score_series = pd.Series(data={ 'gene': gene_id, 'term': MSRXN, 'score': MSRXN_sum, 'gene_treshold': gene_threshold}) score_series = score_series.append(event_series) if MSRXN_sum >= gene_threshold: score_series = score_series.append(pd.Series({'pass': 1})) else: score_series = score_series.append(
pd.Series({'pass': 0})
pandas.Series
import pandas as pd import numpy as np import joblib import time df2016 = pd.read_csv('/home/shaury/Desktop/pvsc/alibaba/final.csv') df2017 = pd.read_csv('/home/shaury/final2017.csv') df2018 = pd.read_csv('/home/shaury/Desktop/pvsc/alibaba/final2016.csv') df = pd.concat([df2016,df2017,df2018]).drop("Unnamed: 0",axis=1).reset_index(drop=True) df['time'] =
pd.to_datetime(df['time'],format= "%Y-%m-%d %H:%M:%S")
pandas.to_datetime
from emgpb2.models import * from simulation.path_drawer import draw_path as drawer import pandas as pd def create_path_constant_volocity_one_model(output_measurements='data/measurement1.csv', output_groundtruth='data/groundtruth1.csv', q=0.5, r=1.0, state_dim=4, obs_dim=2, t=200): # create constant velocity model constant_velocity = ConstantVelocity(dt=1.0, q=q, r=r, state_dim=state_dim, obs_dim=obs_dim) Q = constant_velocity.Q R = constant_velocity.R F = constant_velocity.A H = constant_velocity.H # Start point x_tminus1 = np.asarray([[0.0], [0.0], [0.0], [0.0]]) path = [] meas = [] for i in range(t): x_t_ = F @ x_tminus1 x_t = np.random.multivariate_normal(np.squeeze(x_t_), Q) x_t = x_t.reshape((4, 1)) y_t_ = H @ x_t y_t = np.random.multivariate_normal(np.squeeze(y_t_), R) y_t = y_t.reshape((2, 1)) path.append(x_t) meas.append(y_t) x_tminus1 = x_t path = np.squeeze(np.asarray(path)) meas = np.squeeze(np.asarray(meas)) # drawer(meas, path) print('F:') print(F) print('H:') print(H) print('Q: ') print(Q) print('R: ') print(R) print('=====================================================') if output_measurements is not None: meas_df = pd.DataFrame(meas) meas_df.to_csv(output_measurements, index=False, header=False) if output_groundtruth is not None: truth_df = pd.DataFrame(path) truth_df.to_csv(output_groundtruth, index=False, header=False) return meas def create_path_constant_volocity_multi_model(output_measurements='data/measurement2.csv', output_groundtruth='data/groundtruth2.csv', q: list = [1.0, 6.0], r: list = [0.75, 0.5], state_dim=4, obs_dim=2, t=200, change_pnt=[100]): # create constant velocity model num_of_models = len(q) constant_velocity_list = [] for i in range(num_of_models): constant_velocity_list.append(ConstantVelocity(dt=1.0, q=q[i], r=r[i], state_dim=state_dim, obs_dim=obs_dim)) Q = [] R = [] F = [] H = [] for i in range(num_of_models): Q.append(constant_velocity_list[i].Q) R.append(constant_velocity_list[i].R) F.append(constant_velocity_list[i].A) H.append(constant_velocity_list[i].H) # Start point x_tminus1 = np.asarray([[0.0], [0.0], [0.0], [0.0]]) # model switching controller kf_ind = 0 kf_change_pnt = change_pnt path = [] meas = [] for i in range(t): x_t_ = F[kf_ind] @ x_tminus1 x_t = np.random.multivariate_normal(np.squeeze(x_t_), Q[kf_ind]) x_t = x_t.reshape((state_dim, 1)) y_t_ = H[kf_ind] @ x_t y_t = np.random.multivariate_normal(np.squeeze(y_t_), R[kf_ind]) y_t = y_t.reshape((obs_dim, 1)) if i in kf_change_pnt: kf_ind += 1 path.append(x_t) meas.append(y_t) x_tminus1 = x_t path = np.squeeze(np.asarray(path)) meas = np.squeeze(np.asarray(meas)) # drawer(meas, path) for i in range(len(kf_change_pnt) + 1): print('F_' + str(i) + ': ') print(F[i]) print('H_' + str(i) + ': ') print(H[i]) print('Q_' + str(i) + ': ') print(Q[i]) print('R_' + str(i) + ': ') print(R[i]) print('-----------------------------------') print('=====================================================') if output_measurements is not None: meas_df = pd.DataFrame(meas) meas_df.to_csv(output_measurements, index=False, header=False) if output_groundtruth is not None: truth_df = pd.DataFrame(path) truth_df.to_csv(output_groundtruth, index=False, header=False) return meas def create_path_random_walk_multi_model(output_measurements='data/measurement3.csv', output_groundtruth='data/groundtruth3.csv', q: list = [2.0, 10.0], r: list = [1.0, 0.8], state_dim=2, t=500, change_pnt=[300]): # create constant velocity model num_of_models = len(q) random_walk_list = [] for i in range(num_of_models): random_walk_list.append(RandomWalk(q=q[i], r=r[i], state_dim=state_dim)) Q = [] R = [] F = [] H = [] for i in range(num_of_models): Q.append(random_walk_list[i].Q) R.append(random_walk_list[i].R) F.append(random_walk_list[i].A) H.append(random_walk_list[i].H) # Start point x_tminus1 = np.asarray([[0.0], [0.0]]) # model switching controller kf_ind = 0 kf_change_pnt = change_pnt path = [] meas = [] for i in range(t): x_t_ = F[kf_ind] @ x_tminus1 x_t = np.random.multivariate_normal(np.squeeze(x_t_), Q[kf_ind]) x_t = x_t.reshape((2, 1)) y_t_ = H[kf_ind] @ x_t y_t = np.random.multivariate_normal(np.squeeze(y_t_), R[kf_ind]) y_t = y_t.reshape((2, 1)) if i in kf_change_pnt: kf_ind += 1 path.append(x_t) meas.append(y_t) x_tminus1 = x_t path = np.squeeze(np.asarray(path)) meas = np.squeeze(np.asarray(meas)) # drawer(meas, path) for i in range(len(kf_change_pnt) + 1): print('F_' + str(i) + ': ') print(F[i]) print('H_' + str(i) + ': ') print(H[i]) print('Q_' + str(i) + ': ') print(Q[i]) print('R_' + str(i) + ': ') print(R[i]) print('-----------------------------------') print('=====================================================') if output_measurements is not None: meas_df =
pd.DataFrame(meas)
pandas.DataFrame
import pandas as pd import numpy as np import os import itertools def dados_teses(): diretorio = "/media/hdvm02/bd/007/002/007/002" teses_anos = sorted(os.listdir(diretorio)) lista_dfs = [] for tese_ano in teses_anos: csv = os.path.join(diretorio,tese_ano) teses = pd.read_csv(csv, sep=";", encoding='latin-1', on_bad_lines='skip', low_memory=False) lista_dfs.append(teses) print(tese_ano) #print(teses.columns.tolist()) #print(teses.shape) print(teses.dtypes) #print(teses.tail()) #print(teses.describe()) print("########") print("########") #dataset_teses = pd.concat(lista_dfs, ignore_index=True) #dataset_teses.to_csv(f'{diretorio}/01_dados_1987_2012.csv', index=False) #print(dataset_teses) #return dataset_teses def analisa_teses(): diretorio = "/media/hdvm02/bd/007/002/007/002" #df_teses = dados_teses() teses = pd.read_csv(f'{diretorio}/01_dados_1987_2012.csv') busca = teses[teses["TituloTese"].str.contains("mercosul|mercosur", case=False, na=False)] #print(busca) agrupar_por_ano = busca["TituloTese"].groupby(busca["AnoBase"]) busca_por_ano = agrupar_por_ano.count() #print(busca_por_ano) quant_termos = busca_por_ano.values.tolist() anos = busca_por_ano.index.tolist() fig_pandas = busca_por_ano.plot(kind="line", x=anos, y=quant_termos) print(fig_pandas) def gera_dataframes(): diretorio = "/media/hdvm02/bd/007/002/007/002" anos = sorted(os.listdir(diretorio)) anos_1987_2012 = anos[1:27] anos_2013_2016 = anos[27:31] anos_2017_2021 = anos[31:] df_1987_2012 = [] df_2013_2016 = [] df_2017_2021 = [] df_geral = [] for ano_1987, ano_2013, ano_2017 in itertools.zip_longest(anos_1987_2012, anos_2013_2016, anos_2017_2021): csv_1987 = os.path.join(diretorio, ano_1987) teses = pd.read_csv(csv_1987, sep=";", encoding='latin-1', on_bad_lines='skip', low_memory=False) df_1987_2012.append(teses) if ano_2013 != None: csv_2013 = os.path.join(diretorio, ano_2013) teses = pd.read_csv(csv_2013, sep=";", encoding='latin-1', on_bad_lines='skip', low_memory=False) df_2013_2016.append(teses) if ano_2017 != None: csv_2017 = os.path.join(diretorio, ano_2017) teses = pd.read_csv(csv_2017, sep=";", encoding='latin-1', on_bad_lines='skip', low_memory=False) df_2017_2021.append(teses) df_1987_2012_final = pd.concat(df_1987_2012, ignore_index=True) df_2013_2016_final = pd.concat(df_2013_2016, ignore_index=True) df_2017_2021_final =
pd.concat(df_2017_2021, ignore_index=True)
pandas.concat
# Libraries import inspect import pandas as pd # Specific from optparse import OptionParser # Libraries for pint from pint import UnitRegistry # ----------------------------------------- # Main # ----------------------------------------- # Create ureg = UnitRegistry() #auto_reduce_dimensions = False # Define units ureg.define('beat = count') ureg.define('breath = count') ureg.define('copy = count') ureg.define('percent = count = %') # Show all attributes #print(vars(ureg).keys()) """ methods = inspect.getmembers(ureg, predicate=inspect.ismethod) functions = inspect.getmembers(ureg, predicate=inspect.isfunction) #print(ureg.has_option('beat')) print(ureg.get_name('beat')) print(ureg.get_name('feo')) #print(methods) for e in methods: print(e[0]) # Show all units supported_units = pd.DataFrame(vars(ureg)['_units'].keys()).sort_values(0) #print(supported_units) #supported_units.to_csv('units.csv') #supported distance = 42 * ureg.kilometers """ dictionary = { 'hct': 1 * ureg('U/L'), # L/L 'plt': 1 * ureg('kilocount/uL'), # K/uL 'alb': 1 * ureg('mg/dL'), # g/dL, g/L, U/L, umol/L 'wbc': 1 * ureg('kilocount/uL'), # K/uL 'neutrophils': 1 * ureg('gigacount/L'), # x10^9/L or % of WBC 'lymphocytes': 1 * ureg('gigacount/L'), # x10^9/L or % of WBC 'monocytes': 1 * ureg('gigacount/L'), # x10^9/L or % of WBC 'haemoglobin': 1, # g/dL 'ast': 1 * ureg('count/L'), # IU/L 'alt': 1 * ureg('count/L'), # U/L 'alp': 1 * ureg('count/L'), # U/L 'bil': 1 * ureg('mg/dL'), # umol/L or mg/dL 'creatinine': 1, # mg/dL or umol/L 'creatine_kinase': 1 * ureg('ng/mL'), # u/L or ng/mL 'sodium': 1 * ureg('mmol/L'), # mmol/L 'potasium': 1 * ureg('mmol/L'), # mmol/L 'urea': 1 * ureg('mg/dL'), # mmol/L or mg/dL 'lactate': 1 * ureg('mmol/dL'), # mg/dL or mmol/dL 'tk': 1, 'tck': 1, 'fibrinogen': 1 * ureg('g/L'), # g/L 'inr': 1, 'body_temperature': 1 * ureg.celsius, # celsius 'age': 2 * ureg.year, # year 'height': 1 * ureg.cm, # cm 'weight': 1 * ureg.kg, # kg 'pcr_dengue_load': 1 * ureg('copy/mL'), # copies/mL 'igm': 1 * ureg('count/mL'), # u/mL 'igg': 1 * ureg('count/mL'), # u/ml 'dbp': 1 * ureg.mmHg, # mmHg or millimeter_Hg 'sbp': 1 * ureg.mmHg, # mmHg or millimeter_Hg 'pulse': 1 * ureg('beats/minute'), # beats_per_minute (not in pint) 'respiratory_rate': 1 * ureg('breaths/minute'), # breaths_per_minute (not in pint) 'hct_percent': 1 * ureg('percent') } # Create DataFrame df =
pd.Series(dictionary)
pandas.Series
import copy import pickle as pickle import os import sys import time import pandas as pd import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np from numpy import array, float32 import seaborn as sns FRAME = 10 TWINDOW = 300 TDELTA = 600 # 300 MIN_FRAME = 30 nan = np.nan LOG_DIR = 'experiment_logs/' prefix = os.path.expanduser('~') SAVE_DIR = prefix+'/Dropbox/' X_VARS = ['time', 'n_opt_calls', 'n_runs', 'n_learning_iters'] Y_VARS = ['n_success', 'opt_cost', 'tree_life'] def get_colors(n_colors): return cm.rainbow(np.linspace(0, 1, n_colors)) def get_test_data(keywords, include, exclude, pre=False, rerun=False, tdelta=TDELTA, wind=TWINDOW, lab='', lenthresh=0.99, split_runs=False, label_vars=[]): exp_probs = os.listdir(LOG_DIR) all_data = {} for k in keywords: used = [] all_data[k] = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: if dir_name.find(k) < 0 and dir_prefix.find(k) < 0: continue d = dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue if len(include): skip = True for inc in include: if dir_name.find(inc) >= 0 or dir_prefix.find(inc) >= 0: skip = False if skip: continue if len(exclude): skip = False for exc in exclude: if dir_name.find(exc) >= 0 or dir_prefix.find(exc) >= 0: skip = True print(('skipping', dir_name)) if skip: continue full_dir = dir_prefix + dir_name full_exp = full_dir[:full_dir.rfind('_')] if full_exp in used: continue all_data[k][full_exp] = {} used.append(full_exp) i = 0 data = [] while i < 20: cur_dir = '{0}_{1}'.format(full_exp, i) if not os.path.isdir(cur_dir): i += 1 continue fnames = os.listdir(cur_dir) if pre: info = [f for f in fnames if f.find('hl_test_pre') >= 0 and f.endswith('pre_log.npy')] elif rerun: info = [f for f in fnames if f.find('hl_test') >= 0 and f.endswith('test_log.npy')] else: info = [f for f in fnames if f.find('hl_test') >= 0 and f.endswith('test_log.npy')] if len(info): for fname in info: # print(('Loading data from', fname, full_dir)) try: data.append(np.load(cur_dir+'/'+fname)) except Exception as e: print('Skipping', fname, full_dir) continue label = gen_label(cur_dir, label_vars, split_runs, i) all_data[k][full_exp][cur_dir] = {} all_data[k][full_exp][cur_dir][cur_dir] = [] for buf in data: for pts in buf: pt = pts[0] no, nt = int(pt[4]), int(pt[5]) all_data[k][full_exp][cur_dir][cur_dir].append({'time': pt[3], 'success at end': pt[0], 'path length': pt[1], 'distance from goal': pt[2], 'n_data': pt[6], 'key': (no, nt), 'label': label, 'ind': i, 'success anywhere': pt[7], 'optimal_rollout_success': pt[9], 'number of plans': pt[10], 'subgoals anywhere': pt[11], 'subgoals closest distance': pt[12], 'collision': pt[8], 'exp id': i}) if len(pt) > 13: all_data[k][full_exp][cur_dir][cur_dir][-1]['any target'] = pt[13] if len(pt) > 14: all_data[k][full_exp][cur_dir][cur_dir][-1]['smallest tolerance'] = pt[14] if len(pt) > 16: all_data[k][full_exp][cur_dir][cur_dir][-1]['success with postcond'] = pt[16] if len(pt) > 17: all_data[k][full_exp][cur_dir][cur_dir][-1]['success with adj_eta'] = pt[17] if len(pt) > 18: all_data[k][full_exp][cur_dir][cur_dir][-1]['episode return'] = pt[18] # all_data[k][full_exp][cur_dir][cur_dir].append({'time': (pt[3]//tdelta+1)*tdelta, 'success at end': pt[0], 'path length': pt[1], 'distance from goal': pt[2], 'n_data': pt[6], 'key': (no, nt), 'description': label, 'ind': i, 'success anywhere': pt[7], 'optimal_rollout_success': pt[9], 'number of plans': pt[10]}) i += 1 return all_data def get_policy_data(policy, keywords=[], exclude=[], include=[]): exp_probs = os.listdir(LOG_DIR) data = {} for k in keywords: data[k] = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name full_dir = dir_prefix + dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue skip = False for ekey in exclude: if full_dir.find(ekey) >= 0: skip = True if len(include): skip = True for inc in include: if dir_name.find(inc) >= 0 or dir_prefix.find(inc) >= 0: skip = False if skip: continue if len(exclude): skip = False for exc in exclude: if dir_name.find(exc) >= 0 or dir_prefix.find(exc) >= 0: skip = True print(('skipping', dir_name)) if skip: continue if not os.path.isdir(full_dir) or full_dir.find(k) < 0: continue full_exp = full_dir[:-1] if full_exp not in data[k]: data[k][full_exp] = {} file_names = os.listdir(full_dir) r = 'policy_{0}_log.txt'.format(policy) rollout_data = {} if not os.path.isfile(full_dir+'/'+r): r = 'policy_{0}_log.pkl'.format(policy) if not os.path.isfile(full_dir+'/'+r): continue with open(full_dir+'/'+r, 'r') as f: next_data = f.read() if len(next_data): next_data = str.split(next_data, '\n\n') try: r_data = [eval(d) for d in next_data if len(d)] except: continue print('Loading {0} pts for {1}'.format(len(r_data), full_dir+'/'+r)) for pt in r_data: pt['exp id'] = 0 if type(pt['train_loss']) is dict: pt['train_loss'] = pt['train_loss']['loss'] if type(pt['val_loss']) is dict: pt['val_loss'] = pt['val_loss']['loss'] if 'var' in pt and type(pt['var']) is dict: pt['var'] = pt['var'][policy] rollout_data[r] = r_data data[k][full_exp][full_dir] = rollout_data return data def get_motion_data(keywords=[], exclude=[], include=[]): exp_probs = os.listdir(LOG_DIR) data = {} for k in keywords: data[k] = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name full_dir = dir_prefix + dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue skip = False for ekey in exclude: if full_dir.find(ekey) >= 0: skip = True if len(include): skip = True for inc in include: if dir_name.find(inc) >= 0 or dir_prefix.find(inc) >= 0: skip = False if skip: continue if len(exclude): skip = False for exc in exclude: if dir_name.find(exc) >= 0 or dir_prefix.find(exc) >= 0: skip = True print(('skipping', dir_name)) if skip: continue if not os.path.isdir(full_dir) or full_dir.find(k) < 0: continue full_exp = full_dir[:-1] if full_exp not in data[k]: data[k][full_exp] = {} file_names = os.listdir(full_dir) file_names = [fname for fname in file_names if fname.find('MotionInfo') >= 0] rollout_data = {'motion': []} for r in file_names: with open(full_dir+'/'+r, 'r') as f: next_data = f.read() if len(next_data): next_data = str.split(next_data, '\n\n') try: r_data = [eval(d) for d in next_data if len(d)] except: continue for pt in r_data: pt['exp id'] = 0 if full_exp.find('full_feed') >= 0: pt['opt duration per ts'] = 1.4 / pt['opt duration per ts'] pt['description'] = 'RoboSuite' elif full_exp.find('panda') >= 0: pt['opt duration per ts'] = 1.4 / pt['opt duration per ts'] pt['description'] = 'RoboDesk' print('MOTION: Loading {0} pts for {1}'.format(len(r_data), full_dir+'/'+r)) rollout_data['motion'].extend(r_data) data[k][full_exp][full_dir] = rollout_data return data def get_rollout_info_data(keywords=[], exclude=[], include=[]): exp_probs = os.listdir(LOG_DIR) data = {} for k in keywords: data[k] = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name full_dir = dir_prefix + dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue skip = False for ekey in exclude: if full_dir.find(ekey) >= 0: skip = True if len(include): skip = True for inc in include: if dir_name.find(inc) >= 0 or dir_prefix.find(inc) >= 0: skip = False if skip: continue if len(exclude): skip = False for exc in exclude: if dir_name.find(exc) >= 0 or dir_prefix.find(exc) >= 0: skip = True print(('skipping', dir_name)) if skip: continue if not os.path.isdir(full_dir) or full_dir.find(k) < 0: continue full_exp = full_dir[:-1] if full_exp not in data[k]: data[k][full_exp] = {} file_names = os.listdir(full_dir) file_names = [fname for fname in file_names if fname.find('RolloutInfo') >= 0] rollout_data = {'rollout': []} for r in file_names: with open(full_dir+'/'+r, 'r') as f: next_data = f.read() if len(next_data): next_data = str.split(next_data, '\n\n') try: r_data = [eval(d) for d in next_data if len(d)] except: continue for pt in r_data: pt['exp id'] = 0 goal_vals = pt.get('per_goal_success', {'basegoal': 0.}) for goal in goal_vals: new_pt = copy.copy(pt) new_pt['goal'] = goal new_pt['success rate'] = goal_vals[goal] rollout_data['rollout'].append(new_pt) print('ROLLOUT: Loading {0} pts for {1}'.format(len(r_data), full_dir+'/'+r)) #rollout_data['rollout'].extend(r_data) data[k][full_exp][full_dir] = rollout_data return data def get_rollout_data(keywords=[], nfiles=20, exclude=[]): exp_probs = os.listdir(LOG_DIR) data = {} for k in keywords: data[k] = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue full_dir = dir_prefix + dir_name if not os.path.isdir(full_dir) or full_dir.find(k) < 0: continue full_exp = full_dir[:-1] if full_exp not in data[k]: data[k][full_exp] = {} file_names = os.listdir(full_dir) rollout_logs = ['rollout_log_{0}_True.txt'.format(i) for i in range(nfiles)]# [f for f in file_names if f.startswith('rollout')] rollout_logs += ['rollout_log_{0}_False.txt'.format(i) for i in range(nfiles)] rollout_data = {} for r in rollout_logs: if not os.path.isfile(full_dir+'/'+r): continue with open(full_dir+'/'+r, 'r') as f: next_data = f.read() if len(next_data): try: r_data = eval(next_data) except: continue for pt in next_data: pt['exp id'] = 0 rollout_data[r] = r_data else: print(('no data for', r)) data[k][full_exp][full_dir] = rollout_data return data def gen_first_success_plots(x_var='time'): exp_probs = os.listdir(LOG_DIR) master_plot = [] all_data = [] for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue full_dir = dir_prefix + dir_name with open(full_dir+'/exp_info.txt', 'r') as f: exp_info = f.read() file_names = os.listdir(full_dir) rollout_logs = [f for f in file_names if f.startswith('rollout') and f.endswith('False.txt')] rollout_data = {} ts_to_data = {} for i, r in enumerate(rollout_logs): print((exp_name, dir_name, r)) with open(full_dir+'/'+r, 'r') as f: next_data = f.read() if len(next_data): costs = eval(next_data) if 'avg_first_success' not in costs[0]: continue for j, c in enumerate(costs): c['ind'] = np.mean(c['avg_first_success']) if j not in ts_to_data: ts_to_data[j] = [] ts_to_data[j].append(c) rollout_data[r] = costs xs = [np.mean([c[x_var] for c in ts_to_data[n]]) for n in ts_to_data] ys = [np.mean([c['ind'] for c in ts_to_data[n]]) for n in ts_to_data] all_data.append((exp_name+dir_name, xs, ys)) plt.title('Steps to first success') plt.xlabel(x_var) plt.ylabel('Avg. step of first success') colors = get_colors(len(all_data)) for i, (label, xs, ys) in enumerate(all_data): plt.plot(xs, ys, label=label, color=colors[i]) plt.savefig(SAVE_DIR+'/goal_vs_{0}.png'.format(x_var), pad_inches=0.01) plt.clf() def get_td_loss(keywords=[], exclude=[], pre=False): tdelta = 5 exp_probs = os.listdir(LOG_DIR) exp_data = {} for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) # exp_data = [] for dir_name in exp_dirs: d = dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue if len(keywords): skip = True for k in keywords: if dir_name.find(k) >= 0 or dir_prefix.find(k) >= 0: skip = False if skip: continue if len(exclude): skip = False for k in exclude: if dir_name.find(k) >= 0 or dir_prefix.find(k) >= 0: skip = True if skip: continue full_dir = dir_prefix + dir_name full_exp = full_dir[:-1] i = 0 data = [] while i < 20: if not os.path.isdir(full_exp+str(i)): i += 1 continue fnames = os.listdir(full_exp+str(i)) info = [f for f in fnames if f.find('td_error') >= 0 and f.endswith('npy') and f.find('test') < 0] if len(info): cur_data = [] for step in info: cur_data.append(np.load(full_exp+str(i)+'/'+step)) dlen = max([len(dt) for dt in cur_data]) data.append([]) for n in range(dlen): data[-1].append(np.mean([cur_data[ind][n] for ind in range(len(cur_data)) if n < len(cur_data[ind])], axis=0)) data[-1] = np.array(data[-1]) i += 1 if not len(data): print(('skipping', full_exp)) continue dlen = min([len(d) for d in data]) dmax = max([len(d) for d in data]) print(('Gathering data for', full_exp, 'length:', dlen, 'all len:', [len(d) for d in data])) end = False cur_t = 0 while not end: end = True for d in data: next_frame = d[cur_t:cur_t+tdelta] # [pt[0] for pt in d if pt[0,3] >= cur_t and pt[0,3] <= cur_t + TWINDOW] if len(next_frame): end = False if len(next_frame) >= MIN_FRAME: next_pt = np.mean(next_frame, axis=0) no, nt = 0, 0 # int(next_pt[4]), int(next_pt[2]) if (no, nt) not in exp_data: exp_data[no, nt] = [] exp_data[no, nt].append((full_exp, cur_t, next_pt[0])) cur_t += tdelta ''' for i in range(dmax - FRAME): cur_t = np.mean([d[i:i+FRAME,:,3] for d in data if i+FRAME < len(d)]) for d in data: if len(d) < i+FRAME: continue cur_fr = np.mean(d[i:i+FRAME], axis=0) for pt in cur_fr: val = pt[0] # cur_t = pt[3] nt = int(pt[2]) no = int(pt[4]) if (no, nt) not in exp_data: exp_data[no, nt] = [] exp_data[no, nt].append((full_exp, cur_t, val)) ''' for no, nt in exp_data: print('Plotting', no, nt, exp_name) pd_frame = pd.DataFrame(exp_data[no, nt], columns=['exp_name', 'time', 'value']) sns.set() sns_plot = sns.relplot(x='time', y='value', hue='exp_name', kind='line', data=pd_frame) keyid = '' for key in keywords: keyid += '_{0}'.format(key) pre_lab = '_pre' if pre else '' sns_plot.savefig(SAVE_DIR+'/{0}obj_{1}targ_td_error{2}{3}.png'.format(no, nt, keyid, pre_lab)) def get_fail_info(keywords=[], exclude=[], pre=False, rerun=False, xvar='time', avg_time=True, tdelta=TDELTA, wind=TWINDOW, lab='', lenthresh=0.99, label_vars=[], include=[], max_t=14400): exp_probs = os.listdir(LOG_DIR) exp_data = {} exp_len_data = {} exp_dist_data = {} exp_true_data = {} targets = {} used = [] for exp_name in exp_probs: dir_prefix = LOG_DIR + exp_name + '/' if not os.path.isdir(dir_prefix): continue exp_dirs = os.listdir(dir_prefix) for dir_name in exp_dirs: d = dir_name if d.find('.') >= 0 or d.find('trained') >= 0: continue if len(keywords): skip = False for k in keywords: if dir_name.find(k) < 0 and dir_prefix.find(k) < 0: skip = True if skip: continue if len(include): skip = True for k in include: if dir_name.find(k) >= 0 or dir_prefix.find(k) >= 0: skip = False if skip: continue print(dir_name) if len(exclude): skip = False for k in exclude: if dir_name.find(k) >= 0 or dir_prefix.find(k) >= 0: skip = True print(('skipping', dir_name)) if skip: continue full_dir = dir_prefix + dir_name full_exp = full_dir[:full_dir.rfind('_')] if full_exp in used: continue used.append(full_exp) i = 0 data = [] while i < 20: cur_dir = '{0}_{1}'.format(full_exp, i) if not os.path.isdir(cur_dir): i += 1 continue fnames = os.listdir(cur_dir) info = [f for f in fnames if f.find('failure') >= 0 and f.endswith('data.txt')] if len(info): for fname in info: print(('Loading data from', fname)) with open(cur_dir+'/'+fname, 'r') as f: data.append(f.read().splitlines()) label = gen_label(cur_dir, label_vars) for buf in data: for pts in buf: pts = eval(pts) no, nt = int(pts['no']), int(pts['nt']) if (no,nt) not in exp_data: exp_data[no,nt] = [] if (no,nt) not in targets: targets[no,nt] = [] pts['exp_name'] = label exp_data[no,nt].append(pts) targs = pts['goal'] targinfo = [] for targind in range(len(targs)): if targs[targind] == 1: targinfo.append(targind) targets[no,nt].append([tuple(targinfo)]) i += 1 for no, nt in targets: print(('Plotting', no, nt, exp_name)) pd_frame =
pd.DataFrame(targets[no, nt], columns=['targets'])
pandas.DataFrame
# -*- coding: utf-8 -*- import os import pandas as pd pd.options.display.max_rows=10 import numpy as np from indicators import indicators_for_dirverse,indicators_for_crosses from dateutil.parser import parse import talib import sys from scipy import interpolate from datetime import datetime reload(sys) sys.setdefaultencoding('utf-8') CLOSE_SAMPLE=[ 24.76, 24.28, 25.21, 26.25, 28.88, 28.99, 28.35, 31.19,34.31, 36.49, 35.67, 32.1 , 32.18, 31.7 , 30.8 , 30.77,29.77, 27.7 , 28.76] LOW_SAMPLE=[ 24.2 , 24.01, 23.41, 24. , 26.37, 27.25, 27.4 , 31.19,33.4 , 33.4 , 35.08, 32.1 , 30.7 , 31.01, 30.27, 30.5 ,29.45, 27.6 , 27.7 ] GBKM_SAMPLE=[ 75.27683505, 74.16337925, 74.90652869, 77.40264178,81.75542302, 86.66794839, 88.29240889, 86.10675256,84.7067632 , 87.00756837, 90.50308921, 89.76234594,82.57561793, 71.43528003, 59.91510841, 50.53179488,43.08981872, 36.17388661, 29.83802615] CLOSE_SAMPLE2=[ 20.33, 21.05, 21.49, 20.29, 22.32, 24.55, 27.01, 29.71,32.68, 31.77, 34.95, 38.45, 42.3 , 46.53, 51.18, 50. ,47.5 , 48. , 47. , 42.41, 43.68, 48.05] LOW_SAMPLE2=[ 19.99, 20.25, 20.68, 20.29, 19.78, 22.81, 25. , 28.36,30.45, 30.7 , 31.18, 35.52, 41.1 , 46.53, 47.65, 46.63,45.5 , 46. , 45.5 , 42.3 , 41.5 , 43.18] GBKM_SAMPLE2=[ 93.71592611, 91.21636003, 87.46623061, 83.41955066,80.66983087, 81.01571395, 84.73545107, 90.40899863,95.05322187, 96.89845728, 96.5647677 , 95.76976925,96.00042368, 97.37205819, 98.6860291 , 99.1305236 ,98.05462598, 94.43946125, 88.22010362, 79.89313723,70.47144951, 62.78129296] def indicators_for_dirverse(df): df=df.dropna() df=df.sort_index() df['MACD'],df['MACD_signal'],df['MACD_hist']=talib.MACD(np.array(df['close'])) df['var1']=(2*df['close']+df['high']+df['low']+df['open'])/5.0 df['var2']=talib.MIN(np.array(df['low']),timeperiod=34) df['var3']=talib.MAX(np.array(df['low']),timeperiod=34) df['buffer']=(df['var1']-df['var2'])/(df['var3']-df['var2'])*100 df['SK']=talib.EMA(np.array(df['buffer']),timeperiod=13) df['SD']=talib.EMA(np.array(df['SK']),timeperiod=3) df['MACD_MIN']=talib.MIN(np.array(df['MACD']),timeperiod=9) df['PRICE_MIN']=talib.MIN(np.array(df.close),9) df['PRICE_MAX']=talib.MAX(np.array(df.close),9) df['RSI'] = talib.RSI(np.array(df.close)) df=df.sort_index(ascending=False) df=df.dropna() return df def indicators_for_crosses(df): df=df.dropna() df=df.sort_index() df['MA5']=talib.MA(np.array(df['close']),5) df['MA10']=talib.MA(np.array(df['close']),10) df['MA20']=talib.MA(np.array(df['close']),20) df['LONG_ARR']=(df['MA5']>df['MA10'])&(df['MA10']>df['MA20']) df['SHORT_ARR']=(df['MA5']<df['MA10'])&(df['MA10']<df['MA20']) df['PRICE_MAX']=talib.MAX(np.array(df.close),3) df=df.sort_index(ascending=False) df=df.dropna() return df def diverse_strategy_buy(df): #策略 ''' PRICE_MIN_9,MACD,MIN_MACD ''' df['price_gorge']=df['PRICE_MIN']!=df['PRICE_MIN'].shift(-1) df['MACD_gorge']=df['MACD']>df['MACD_MIN'].shift(-1) df['SDSKlt20']=(df['SK']<20)&(df['SD']<20) df['buy_signal']=df['SDSKlt20']&df['MACD_gorge']&df['price_gorge'] df=df.dropna() return df def diverse_strategy_sell(df): '''背离''' df['price_peak']=df['PRICE_MAX']!=df['PRICE_MAX'].shift(-1) df['MACD_peak']=df['MACD']>df['MACD_MIN'].shift(-1) df['SDSKgt80']=(df['SK']>80)&(df['SD']>80) #df['quick_sell']=(df['ma5']<df['ma20'])&(df['ma5'].shift(-1)>df['ma20'].shift(-1)) #df['LossLimit']=df['close']<df['PRICE_MAX']*0.92 df['sell_signal']=(df['SDSKgt80']&df['MACD_peak']&df['price_peak'])#|df['LossLimit']#|df['quick_sell'] df=df.dropna() return df def golden_cross(df): df=indicators_for_crosses(df) df['buy_signal']=df['LONG_ARR']&(df['SHORT_ARR'].shift(-4)) df=df.dropna() return df def dead_cross(df): df=indicators_for_crosses(df) df['sell_signal']=df['SHORT_ARR']&(df['LONG_ARR'].shift(-4)) df=df.dropna() return df def return_similarity(va,vb,ignore_start=True): '''regardless of where you start''' va=np.array(va) vb=np.array(vb) lena=len(va) lenb=len(vb) if lena!=lenb: if lena>lenb: sarr=vb larr=va if lena<lenb: sarr=va larr=vb xs=np.array(np.linspace(1,len(sarr),len(sarr))) xl=np.array(np.linspace(1,len(sarr),len(larr))) f = interpolate.interp1d(xs, sarr) va = f(xl) vb = larr if ignore_start: va=va-va[0] vb=vb-vb[0] num=float(va.T.dot(vb)) denom=np.linalg.norm(va)*np.linalg.norm(vb) an_cos=num/denom an_sin=0.5+0.5*an_cos #越接近1,相似度越高 return an_sin def rs(arr,*args,**kwargs): arr=list(arr) results=[] for sample in args: results.append(return_similarity(arr,sample,ignore_start=True)) result=np.mean(results) return result def rs2(arr,*args,**kwargs): arr=list(arr) results=[] for sample in args: results.append(return_similarity(arr,sample,ignore_start=False)) result=np.mean(results) return result def stra_simi(df,idx,ignore_start=True,*args,**kwargs): ''' idx:column name youwant to compare with args should be passed into samples of list or array type kwargs' keys got 'name'... ''' if not args: return bucket=[] for sample in args: bucket.append(df[idx].rolling(center=False,window=len(sample)).apply(func=rs,args=args)) srs=pd.concat(bucket,axis=1) if kwargs: df[kwargs['name']]=srs.apply(np.mean,axis=1) else: df['Similarity']=srs.apply(np.mean,axis=1) df=df.sort_index() df=df.dropna() return df def stra_simi2(df,idx,ignore_start=True,*args,**kwargs): ''' idx:column name youwant to compare with args should be passed into samples of list or array type kwargs' keys got 'name'... ''' if not args: return bucket=[] for sample in args: bucket.append(df[idx].rolling(center=False,window=len(sample)).apply(func=rs2,args=args)) srs=
pd.concat(bucket,axis=1)
pandas.concat
import numpy as np import pandas as pd import numba import seaborn as sns import matplotlib.animation as animation import matplotlib.pyplot as plt from hfhd import hd @numba.njit def garch_11(n, sigma_sq_0, mu, alpha, beta, omega): r""" Generate GARCH(1, 1) log-returns of size n. This function is accelerated via JIT with Numba. Parameters ---------- n : int The length of the wished time series. sigma_sq_0 : float > 0 The variance starting value. mu : float: The drift of log-returns. alpha : float >= 0 The volatility shock parameter. A higher value will lead to larger spikes in volatility. A.k.a short-term persistence. beta : float >= 0 The volatility persistence parameter. A larger value will result in stronger persistence. A.k.a long-term persistence. omega : float > 0 The variance constant. A higher value results in a higher mean variance. Returns ------- r : numpy.ndarray The GARCH log-returns time series. sigma_sq : numpy.ndarray The resulting variance time series with which each log-return was generated. Notes ----- In general, the conditional variance of a GARCH(p,q) model is given by .. math:: \sigma_{t}^{2}=\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2}. The unconditional variance is given by .. math:: \sigma^{2}=\frac{\omega}{1-\sum_{i=1}^{q} \alpha_{i}-\sum_{j=1}^{p} \beta_{j}}. Here, :math:`p=q=1`, and :math:`\epsilon_{t} \sim \mathcal{N}\left(0, 1\right)` """ nu = np.random.normal(0, 1, n) r = np.zeros(n) epsilon = np.zeros(n) sigma_sq = np.zeros(n) sigma_sq[0] = sigma_sq_0 if min(alpha, beta) < 0: raise ValueError('alpha, beta need to be non-negative') if omega <= 0: raise ValueError('omega needs to be positive') if alpha+beta >= 1: print('''alpha+beta>=1, variance not defined --> time series will not be weakly stationary''') for i in range(n): if i > 0: sigma_sq[i] = omega + alpha * epsilon[i-1]**2 + beta * sigma_sq[i-1] epsilon[i] = (sigma_sq[i]**0.5) * nu[i] r[i] = mu + epsilon[i] return r, sigma_sq class Universe: r""" The universe is a specification from which simulated realizations can be sampled. Stocks follow a factor model, they belong to industries and have an idiosyncratic component. Stocks are predictable by a single feature. Attributes ---------- feature_beta : float The true coefficient. factor_garch_spec : list The garch specification for factor returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` industry_garch_spec : list The garch specification for industry returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` resid_garch_spec : list The garch specification for residual returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` factor_loadings : numpy.ndarray An array with factor loadings for each stock and factor. dim = n_stocks x n_factors industry_loadings : numpy.ndarray An array with industry loadings for each stock and industry. dim = n_stocks x n_industry This is usually a sparse matrix. One stock loads typically on one or two industries. A good number of industries is 10 to 20. liquidity : float A value between 0 and 1 that describes liquidity. A value of 1 means that the probability of observation is 100% each minute. 0.5 means that there is a 50% probability of observing a price each minute. gamma : float >=0 The microstructure noise will be zero-mean Gaussian with variance $\gamma^2 var(r)$, where $var(r)$ is the variance of the underlying true return process. This noise is be added to the price. freq : str, ``'s'`` or ``'m'``. The granularity of the discretized continous price process. """ def __init__(self, feature_beta, factor_garch_spec, industry_garch_spec, resid_garch_spec, factor_loadings, industry_loadings, liquidity=0.5, gamma=2, freq='m'): self.feature_beta = feature_beta self.factor_garch_spec = factor_garch_spec self.industry_garch_spec = industry_garch_spec self.resid_garch_spec = resid_garch_spec self.factor_loadings = factor_loadings self.industry_loadings = industry_loadings self.liquidity = liquidity self.gamma = gamma self.freq = freq self.n_stocks = self.factor_loadings.shape[0] self.n_ind = self.industry_loadings.shape[1] self.n_factors = self.factor_loadings.shape[1] @staticmethod def uncond_var(spec): ''' Compute the uncoditional variance from a GARCH(1,1) specification. Parameters ---------- spec : list The garch specification. ``[sigma_sq_0, mu, alpha, beta, omega]`` Returns ------- float The unconditional variance. ''' return spec[4]/(1-spec[2]-spec[3]) def uncond_cov(self): ''' Compute the uncoditional covariance of stock returns in the universe from a universe specification. Returns ------- numpy.ndarray The unconditional covariance matrix. ''' sf = np.diag([self.uncond_var(self.factor_garch_spec)]*self.n_factors) sr = np.diag([self.uncond_var(self.resid_garch_spec)]*self.n_stocks) si = np.diag([self.uncond_var(self.industry_garch_spec)]*self.n_ind) return (self.factor_loadings @ sf @ self.factor_loadings.T + sr + self.industry_loadings @ si @ self.industry_loadings.T) def cond_cov(self): ''' Compute the daily coditional integrated covariance matrix of stock returns within regular market hours in the universe from a realized universe simulation. Returns ------- list A list containing the conditional integrated covariance matrices of each day. ''' sr = pd.DataFrame(self.sigma_sq_resid) sr.index = pd.to_datetime(sr.index, unit=self.freq) sr = sr.between_time('9:30', '16:00', include_start=True, include_end=True) sr = sr.resample('1d').sum() si =
pd.DataFrame(self.sigma_sq_industry)
pandas.DataFrame
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (
TS('2015-01-05')
pandas.Timestamp
#!/usr/bin/env python # coding: utf-8 # Prerequisite: # 1. the database contains the whole week's data of last week until last Sunday. # e.g. if today is 9/26/18 Wed, it must contains the data until 9/23/18 Sunday # # The program uses ISO Calendar: # 1. first day and last day of the week are respectively Monday(1) and Sunday(7) # 2. the last few days could be counted as in the first week of the next year # e.g. 2014-12-31 is in the week01 of 2015 # vice versa: # e.g. 2016-01-01 is in the week53 of 2015 # # If Gmail is used to receive Outlier Alert emails, # the gmail account's 2 step verification has to be disabled, # and access from less secure apps should be allowed. # # Environment Variables: # the following variables need to be setup in airflow.cfg # smtp_host = 'smtp.gmail.com' # smtp_starttls = True # smtp_ssl = True # smtp_user = 'email address owner's email account' # smtp_password = '<PASSWORD>' # smtp_port = '587' # smtp_mail_from = 'email address to send from' # the folllowing variables need to be setup airflow's webserver UI: Admin -> Variables # email_to = 'address1, address2' # email_cc = 'address3, address4' """ This DAG is to perform Outlier Detection for each individual Council District of LA city """ import logging import os from datetime import datetime, timedelta import airflow import altair as alt import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from airflow.operators.postgres_operator import PostgresOperator from airflow.operators.python_operator import PythonOperator from airflow.utils.email import send_email from dateutil.relativedelta import relativedelta # a csv file with this filename will be saved from a copy of postgres table filename = "/tmp/myla311.csv" prefix = "/tmp/" # get the current Council District data and init cd_dict cd_list = pd.read_csv( "https://opendata.arcgis.com/datasets/76104f230e384f38871eb3c4782f903d_13.csv", index_col=False, ) cd_list.OBJECTID = cd_list.OBJECTID.astype(float) cd_dict = {} for index, row in cd_list.iterrows(): cd_dict[row.OBJECTID] = row.NAME no_cd = len(cd_dict) # email parameters Notice: email addresses need to updated in production message = "This last week's Outliers for Council District {} of LA City:" test = "<EMAIL>,<EMAIL>" test1 = "<EMAIL>" email_to = {key: test for key in cd_dict.keys()} email_cc = {key: test1 for key in cd_dict.keys()} subject = "[Alert] MyLA311 Data Outliers" # outlier type identifiers INDIV_HIGH_OUTLIER = "HIGH INDIVIDUAL REQUEST TYPE OUTLIER" INDIV_LOW_OUTLIER = "LOW INDIVIDUAL REQUEST TYPE OUTLIER" TOTAL_HIGH_OUTLIER = "HIGH TOTAL OUTLER" TOTAL_LOW_OUTLIER = "LOW TOTAL OUTLIER" DIFF_HIGH_OUTLIER = "HIGH TOTAL DIFF OUTLIER" DIFF_LOW_OUTLIER = "LOW TOTAL DIFF OUTLIER" HIGH_PROCESS_TIME_OUTLIER = "HIGH PROCESS TIME OUTLIER" LOW_PROCESS_TIME_OUTLIER = "LOW PROCESS TIME OUTLIER" def make_save_graph(df, cd, col, title): line = ( alt.Chart(df.reset_index(), title=" - ".join([title, col])) .mark_line() .encode(x="year_week:O", y=col + ":Q") ) rule = ( alt.Chart(df) .mark_rule(color="red") .encode(alt.Y("average({})".format(col)), size=alt.value(1)) ) graph = line + rule filename = "chart-cd{}-{}.png".format( int(cd), col.replace("/", "-").replace(" ", "-") ) graph.save(prefix + filename) return filename def make_save_boxplot(df, cd, point, title): # using seaborn sns.set_style("whitegrid") fig, ax = plt.subplots(figsize=(8, 8)) ax.set_title(title, fontsize=15) sns.boxplot(ax=ax, x=df, linewidth=1, color="lightblue") plt.scatter(point, 0, marker="o", s=100, c="red", linewidths=5, label="Outlier") ax.legend() filename = "chart-cd{}-Proc-Time-{}.png".format( int(cd), title.replace("/", "-").replace(" ", "-") ) plt.savefig(prefix + filename) plt.close() return filename def detect_outliers(filename, **kwargs): """ Outlier Detector that detects the following types of outliers: 1. number of Individual Request Type per week, high and low outliers 2. number of Total requests per week, high and low outliers 3. the difference between last week and the week before 4. request process time high and low outliers """ # Retrieve data logging.info("Data is being read from {}".format(filename)) df = pd.read_csv(filename, index_col=False) logging.info( "Data Reading is done from {}. Performing outlier detection".format(filename) ) df.drop( columns=["location_address", "location_city", "location_state", "location_zip"], inplace=True, ) # change data type from object to datatime df["createddate"] =
pd.to_datetime(df["createddate"], errors="coerce")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 8 10:46:31 2018 @author: ksharpey """ # ============================================================================= # This script # 1 - Produces extra Engineered Features (EF) on the unified view # 2 - Filters known outliers, cleans dates # 3 - exports clean & engineered to output folder # # This script does not: correlation, regreression # ============================================================================= import os as os import pandas as pd import seaborn as sns import datetime from datetime import datetime from dateutil import relativedelta from dateutil.relativedelta import relativedelta import calendar import numpy as np from sklearn import datasets, linear_model import pandas as pd import configparser config = configparser.ConfigParser() config.read('config.ini') os.getcwd() #constants INPUT_FILE = config['EFC']['INPUT_FILE'] OUTPUT_DIR = config['DEFAULT']['OUTPUT_DIR'] UNIQUE_ID_COL_NAME = '_id' STATIC_INPUT_COLS = ['IN_form.bp2.accompany_vip', 'IN_form.has_bank_account_vip', 'IN_form.bp2.vehicle_vip', 'IN_form.bp2.has_danger_signs_vip', 'IN_form.bp2.bleeding_vip', 'IN_form.bp2.swelling_vip', 'IN_form.bp2.blurred_vision_vip', 'IN_form.bp2.convulsions_vip', 'IN_form.bp2.rupture_vip'] #9 DYNAMIC_COL_NAMES = ['form.bp2.care_of_home_vip'] #1 OUTCOME_FACTOR_COLS = [ 'OC_form.where_born_vip', 'OC_form.delivery_nature_vip'] ENGINEERED_COL =['EF_tot_TP'] #ABS_FIRST_TP = datetime.strptime(str('01/01/2012'), '%m/%d/%Y') # ============================================================================= # Prep df and output df # ============================================================================= unified_view = pd.read_csv(OUTPUT_DIR+INPUT_FILE) new_df = unified_view # ============================================================================= # CLEAN DATES # ============================================================================= new_df['OC_MIN_timeperiodStart'] = pd.to_datetime(new_df['OC_MIN_timeperiodStart'].dropna()) new_df['OC_MIN_timeperiodStart'].value_counts().sort_index() #dobs = pd.to_datetime(new_df[new_df['OC_date_birth_vip']!='---']['OC_date_birth_vip'].dropna()) # ============================================================================= # HOT ENCODING # https://lukesingham.com/whos-going-to-leave-next/ # ============================================================================= for i in range(0, len(OUTCOME_FACTOR_COLS)): new_df[OUTCOME_FACTOR_COLS[i]] = 'EN_'+OUTCOME_FACTOR_COLS[i].upper()[3:]+'_' + new_df[OUTCOME_FACTOR_COLS[i]].astype(str) # generate dummies column encoding and join y =
pd.get_dummies(new_df[OUTCOME_FACTOR_COLS[i]])
pandas.get_dummies
from pathlib import Path import copy import pickle as pkl from mmap import mmap from scipy import stats as st from scipy.stats._continuous_distns import FitDataError import torch from sklearn import svm from sklearn import linear_model import pandas as pd import seaborn as sns import warnings import numpy as np import os import matplotlib.colors as mcolors from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from mpl_toolkits.mplot3d.art3d import juggle_axes from matplotlib.ticker import MaxNLocator from joblib import Memory import math import lyap import model_loader_utils as loader import initialize_and_train as train import utils memory = Memory(location='./memoization_cache', verbose=2) # memory.clear() ## Functions for computing means and error bars for the plots. 68% confidence # intervals and means are currently # implemented in this code. The commented out code is for using a gamma # distribution to compute these, but uses a # custom version of seaborn plotting library to plot. def orth_proj(v): n = len(v) vv = v.reshape(-1, 1) return torch.eye(n) - ([email protected])/(v@v) USE_ERRORBARS = True # USE_ERRORBARS = False LEGEND = False # LEGEND = True folder_root = '../results/figs/' def ci_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return bounds[1], bounds[0] # ci_acc = 68 # ci_acc = 95 def est_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return median # est_acc = "mean" def ci_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return bounds[1], bounds[0] # ci_dim = 68 # ci_dim = 95 def est_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return median # est_dim = "mean" def point_replace(a_string): a_string = str(a_string) return a_string.replace(".", "p") def get_color(x, cmap=plt.cm.plasma): """Get normalized color assignments based on input data x and colormap cmap.""" mag = torch.max(x) - torch.min(x) x_norm = (x.float() - torch.min(x))/mag return cmap(x_norm) def median_and_bound(samples, perc_bound, dist_type='gamma', loc=0., shift=0, reflect=False): """Get median and probability mass intervals for a gamma distribution fit of samples.""" samples = np.array(samples) def do_reflect(x, center): return -1*(x - center) + center if dist_type == 'gamma': if np.sum(samples[0] == samples) == len(samples): median = samples[0] interval = [samples[0], samples[0]] return median, interval if reflect: samples_reflected = do_reflect(samples, loc) shape_ps, loc_fit, scale = st.gamma.fit(samples_reflected, floc=loc + shift) median_reflected = st.gamma.median(shape_ps, loc=loc, scale=scale) interval_reflected = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) median = do_reflect(median_reflected, loc) interval = do_reflect(interval_reflected, loc) else: shape_ps, loc, scale = st.gamma.fit(samples, floc=loc + shift) median = st.gamma.median(shape_ps, loc=loc, scale=scale) interval = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) else: raise ValueError("Distribution option (dist_type) not recognized.") return median, interval ## Set parameters for figure aesthetics plt.rcParams['font.size'] = 6 plt.rcParams['font.size'] = 6 plt.rcParams['lines.markersize'] = 1 plt.rcParams['lines.linewidth'] = 1 plt.rcParams['axes.labelsize'] = 7 plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.titlesize'] = 8 # Colormaps class_style = 'color' cols11 = np.array([90, 100, 170])/255 cols12 = np.array([37, 50, 120])/255 cols21 = np.array([250, 171, 62])/255 cols22 = np.array([156, 110, 35])/255 cmap_activation_pnts = mcolors.ListedColormap([cols11, cols21]) cmap_activation_pnts_edge = mcolors.ListedColormap([cols12, cols22]) rasterized = False dpi = 800 ext = 'pdf' # Default figure size figsize = (1.5, 1.2) ax_pos = (0, 0, 1, 1) def make_fig(figsize=figsize, ax_pos=ax_pos): """Create figure.""" fig = plt.figure(figsize=figsize) ax = fig.add_axes(ax_pos) return fig, ax def out_fig(fig, figname, subfolder='', show=False, save=True, axis_type=0, name_order=0, data=None): """ Save figure.""" folder = Path(folder_root) figname = point_replace(figname) # os.makedirs('../results/figs/', exist_ok=True) os.makedirs(folder, exist_ok=True) ax = fig.axes[0] ax.set_xlabel('') ax.set_ylabel('') ax.set_rasterized(rasterized) if axis_type == 1: ax.tick_params(axis='both', which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off left=False, top=False, # ticks along the top edge are off labelbottom=False, labelleft=False) # labels along the bottom edge are off elif axis_type == 2: ax.axis('off') if name_order == 0: fig_path = folder/subfolder/figname else: fig_path = folder/subfolder/figname if save: os.makedirs(folder/subfolder, exist_ok=True) fig_file = fig_path.with_suffix('.' + ext) print(f"Saving figure to {fig_file}") fig.savefig(fig_file, dpi=dpi, transparent=True, bbox_inches='tight') if show: fig.tight_layout() fig.show() if data is not None: os.makedirs(folder/subfolder/'data/', exist_ok=True) with open(folder/subfolder/'data/{}_data'.format(figname), 'wb') as fid: pkl.dump(data, fid, protocol=4) plt.close('all') def autocorrelation(train_params, figname='autocorrelation'): train_params_loc = train_params.copy() model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] # val_loss = params['history']['losses']['val'] # val_losses[i0, i1] = val_loss # val_acc = params['history']['accuracies']['val'] # val_accs[i0, i1] = val_acc train_samples_per_epoch = len(class_datasets['train']) class_datasets['train'].max_samples = 10 torch.manual_seed(params['model_seed']) X = class_datasets['train'][:][0] T = 0 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif train_params_loc['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X # X = utils.extend_input(X, 10) loader.load_model_from_epoch_and_dir(model, run_dir, -1) hid = [] hid += model.get_post_activations(X)[:-1] # auto_corr_mean = [] # auto_corr_var = [] auto_corr_table = pd.DataFrame(columns=['t_next', 'autocorr']) h = hid[0] for i0 in range(len(hid)): h_next = hid[i0] overlap = torch.sum(h*h_next, dim=1) norms_h = torch.sqrt(torch.sum(h**2, dim=1)) norms_h_next = torch.sqrt(torch.sum(h_next**2, dim=1)) corrs = overlap/(norms_h*norms_h_next) avg_corr = torch.mean(corrs) d = {'t_next': i0, 'autocorr': corrs} auto_corr_table = auto_corr_table.append(pd.DataFrame(d), ignore_index=True) fig, ax = make_fig(figsize) sns.lineplot(ax=ax, x='t_next', y='autocorr', data=auto_corr_table) out_fig(fig, figname) def snapshots_through_time(train_params, figname="snap", subdir="snaps"): """ Plot PCA snapshots of the representation through time. Parameters ---------- train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. """ subdir = Path(subdir) X_dim = train_params['X_dim'] FEEDFORWARD = train_params['network'] == 'feedforward' num_pnts_dim_red = 800 num_plot = 600 train_params_loc = copy.deepcopy(train_params) model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(train_params_loc['model_seed']) X, Y = class_datasets['train'][:] if FEEDFORWARD: T = 10 y = Y X0 = X else: T = 30 # T = 100 X = utils.extend_input(X, T + 2) X0 = X[:, 0] y = Y[:, -1] loader.load_model_from_epoch_and_dir(model, run_dir, 0, 0) hid_0 = [X0] hid_0 += model.get_post_activations(X)[:-1] loader.load_model_from_epoch_and_dir(model, run_dir, train_params_loc['num_epochs'], 0) hid = [X0] hid += model.get_post_activations(X)[:-1] if FEEDFORWARD: r = model.layer_weights[-1].detach().clone().T else: r = model.Wout.detach().clone() # r0_n = r[0] / torch.norm(r[0]) # r1_n = r[1] / torch.norm(r[1]) # # r0_n_v = r0_n.reshape(r0_n.shape[0], 1) # r1_n_v = r1_n.reshape(r1_n.shape[0], 1) # r0_orth = torch.eye(len(r0_n)) - r0_n_v @ r0_n_v.T # r1_orth = torch.eye(len(r1_n)) - r1_n_v @ r1_n_v.T # h = hid[10] # # h_proj = h @ r_orth # u, s, v = torch.svd(h) # v0 = v[:, 0] # def orth_projector(v): # n = len(v) # return (torch.eye(n) - v.reshape(n, 1)@v.reshape(1, n))/(v@v) # v0_orth = (torch.eye(n) - v0.reshape(n,1)@v0.reshape(1,n))/(v0@v0) # h_v0_orth = h @ v0_orth # r0_e_p = orth_projector(r0_e) # r1_e_p = orth_projector(r1_e) # h_r0_e_p0 = h[y] @ r0_e_p # h_r0_e_p1 = h[y] @ r1_e_p coloring = get_color(y, cmap_activation_pnts)[:num_plot] edge_coloring = get_color(y, cmap_activation_pnts_edge)[:num_plot] ## Now get principal components (pcs) and align them from time point to # time point pcs = [] p_track = 0 norm = np.linalg.norm projs = [] for i1 in range(1, len(hid)): # pc = utils.get_pcs_covariance(hid[i1], [0, 1]) out = utils.get_pcs_covariance(hid[i1], [0, 1], return_extra=True) pc = out['pca_projection'] mu = out['mean'] proj = out['pca_projectors'] mu_proj = mu@proj[:, :2] if i1 > 0: # Check for the best alignment pc_flip_x = pc.clone() pc_flip_x[:, 0] = -pc_flip_x[:, 0] pc_flip_y = pc.clone() pc_flip_y[:, 1] = -pc_flip_y[:, 1] pc_flip_both = pc.clone() pc_flip_both[:, 0] = -pc_flip_both[:, 0] pc_flip_both[:, 1] = -pc_flip_both[:, 1] difference0 = norm(p_track - pc) difference1 = norm(p_track - pc_flip_x) difference2 = norm(p_track - pc_flip_y) difference3 = norm(p_track - pc_flip_both) amin = np.argmin( [difference0, difference1, difference2, difference3]) if amin == 1: pc[:, 0] = -pc[:, 0] proj[:, 0] = -proj[:, 0] elif amin == 2: pc[:, 1] = -pc[:, 1] proj[:, 1] = -proj[:, 1] elif amin == 3: pc[:, 0] = -pc[:, 0] pc[:, 1] = -pc[:, 1] proj[:, 0] = -proj[:, 0] proj[:, 1] = -proj[:, 1] pc = pc + mu_proj p_track = pc.clone() pcs.append(pc[:num_plot]) projs.append(proj) def take_snap(i0, scats, fig, dim=2, border=False): # ax = fig.axes[0] hid_pcs_plot = pcs[i0][:, :dim].numpy() xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) xc = (xm + xM)/2 yc = (ym + yM)/2 hid_pcs_plot[:, 0] = hid_pcs_plot[:, 0] - xc hid_pcs_plot[:, 1] = hid_pcs_plot[:, 1] - yc v = projs[i0] # u, s, v = torch.svd(h) if r.shape[0] == 2: r0_p = r[0]@v r1_p = r[1]@v else: r0_p = r.flatten()@v r1_p = -r.flatten()@v if class_style == 'shape': scats[0][0].set_offsets(hid_pcs_plot) else: if dim == 3: scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') else: scats[0].set_offsets(hid_pcs_plot) scats[1].set_offsets(r0_p[:2].reshape(1, 2)) scats[2].set_offsets(r1_p[:2].reshape(1, 2)) xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) max_extent = max(xM - xm, yM - ym) max_extent_arg = xM - xm > yM - ym if dim == 2: x_factor = .4 if max_extent_arg: ax.set_xlim( [xm - x_factor*max_extent, xM + x_factor*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim( [ym - x_factor*max_extent, yM + x_factor*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) else: if max_extent_arg: ax.set_xlim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_zlim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_zlim([ym - .1*max_extent, yM + .1*max_extent]) # ax.plot([r0_p[0]], [r0_p[1]], 'x', markersize=3, color='black') # ax.plot([r1_p[0]], [r1_p[1]], 'x', markersize=3, color='black') ax.set_ylim([-4, 4]) if dim == 3: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) else: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) return scats, dim = 2 hid_pcs_plot = pcs[0] if dim == 3: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim([-10, 10]) ax.set_ylim([-10, 10]) ax.set_zlim([-10, 10]) else: fig, ax = make_fig() ax.grid(False) scat1 = ax.scatter(*hid_pcs_plot[:num_plot, :dim].T, c=coloring, edgecolors=edge_coloring, s=10, linewidths=.65) ax.plot([0], [0], 'x', markersize=7) scat2 = ax.scatter([0], [0], marker='x', s=3, c='black') scat3 = ax.scatter([0], [0], marker='x', s=3, color='black') scats = [scat1, scat2, scat3] # ax.plot([0], [0], 'o', markersize=10) if FEEDFORWARD: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) else: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 21, 26, 31]) # snap_idx = list(range(T + 1)) for i0 in snap_idx: take_snap(i0, scats, fig, dim=dim, border=False) print def _cluster_holdout_test_acc_stat_fun(h, y, clust_identity, classifier_type='logistic_regression', num_repeats=5, train_ratio=0.8, seed=11): np.random.seed(seed) num_clusts = np.max(clust_identity) + 1 num_clusts_train = int(round(num_clusts*train_ratio)) num_samples = h.shape[0] test_accs = np.zeros(num_repeats) train_accs = np.zeros(num_repeats) for i0 in range(num_repeats): permutation = np.random.permutation(np.arange(len(clust_identity))) perm_inv = np.argsort(permutation) clust_identity_shuffled = clust_identity[permutation] train_idx = clust_identity_shuffled <= num_clusts_train test_idx = clust_identity_shuffled > num_clusts_train hid_train = h[train_idx[perm_inv]] y_train = y[train_idx[perm_inv]] y_test = y[test_idx[perm_inv]] hid_test = h[test_idx[perm_inv]] if classifier_type == 'svm': classifier = svm.LinearSVC(random_state=3*i0 + 1) else: classifier = linear_model.LogisticRegression(random_state=3*i0 + 1, solver='lbfgs') with warnings.catch_warnings(): warnings.simplefilter("ignore") classifier.fit(hid_train, y_train) train_accs[i0] = classifier.score(hid_train, y_train) test_accs[i0] = classifier.score(hid_test, y_test) return train_accs, test_accs def clust_holdout_over_layers(seeds, gs, train_params, figname="clust_holdout_over_layers"): """ Logistic regression training and testing error on the representation through the layers. Compares networks trained with different choices of g_radius (specified by input parameter gs). Parameters ---------- seeds : List[int] List of random number seeds to use for generating instantiations of the model and dataset. Variation over these seeds is used to plot error bars. gs : List[float] Values of g_radius to iterate over. train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. Value of g_radius is overwritten by values in gs. figname : str Name of the figure to save. """ if not hasattr(gs, '__len__'): gs = [gs] layer_label = 'layer' @memory.cache def generate_data_table_clust(seeds, gs, train_params): layer_label = 'layer' clust_acc_table = pd.DataFrame( columns=['seed', 'g_radius', 'training', layer_label, 'LR training', 'LR testing']) train_params_loc = copy.deepcopy(train_params) for i0, seed in enumerate(seeds): for i1, g in enumerate(gs): train_params_loc['g_radius'] = g train_params_loc['model_seed'] = seed num_pnts_dim_red = 500 model, params, run_dir = train.initialize_and_train( **train_params_loc) class_datasets = params['datasets'] num_train_samples = len(class_datasets['train']) class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(params['model_seed']) X, Y = class_datasets['train'][:] if train_params_loc['network'] == 'feedforward': X0 = X else: X0 = X[:, 0] for epoch, epoch_label in zip([0, -1], ['before', 'after']): loader.load_model_from_epoch_and_dir(model, run_dir, epoch) hid = [X0] hid += model.get_post_activations(X)[:-1] if len(Y.shape) > 1: Y = Y[:, -1] cluster_identity = class_datasets['train'].cluster_identity ds = [] for lay, h in enumerate(hid): stat = _cluster_holdout_test_acc_stat_fun(h.numpy(), Y.numpy(), cluster_identity) ds.extend([{ 'seed': seed, 'g_radius': g, 'training': epoch_label, layer_label: lay, 'LR training': stat[0][k], 'LR testing': stat[1][k] } for k in range(len(stat[0]))]) clust_acc_table = clust_acc_table.append(pd.DataFrame(ds), ignore_index=True) clust_acc_table['seed'] = clust_acc_table['seed'].astype('category') clust_acc_table['g_radius'] = clust_acc_table['g_radius'].astype( 'category') clust_acc_table['training'] = clust_acc_table['training'].astype( 'category') return clust_acc_table clust_acc_table = generate_data_table_clust(seeds, gs, train_params) layers = set(clust_acc_table[layer_label]) for stage in ['LR training', 'LR testing']: if stage == 'LR training': clust_acc_table_stage = clust_acc_table.drop(columns=['LR testing']) else: clust_acc_table_stage = clust_acc_table.drop( columns=['LR training']) fig, ax = make_fig((1.5, 1.2)) if USE_ERRORBARS: g = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator=est_acc, ci=ci_acc, style='training', style_order=['after', 'before'], hue='g_radius') else: g1 = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator=None, units='seed', style='training', style_order=['after', 'before'], hue='g_radius', alpha=0.6) g2 = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator='mean', ci=None, style='training', style_order=['after', 'before'], hue='g_radius') if g1.legend_ is not None: g1.legend_.remove() if not LEGEND and g2.legend_ is not None: g2.legend_.remove() if not LEGEND and g.legend_ is not None: g.legend_.remove() ax.set_ylim([-.01, 1.01]) ax.set_xticks(range(len(layers))) out_fig(fig, figname + '_' + stage, subfolder=train_params[ 'network'] + '/clust_holdout_over_layers/', show=False, save=True, axis_type=0, name_order=0, data=clust_acc_table) plt.close('all') def get_stats(stat_fun, train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, *args, **kwargs): train_params_list_hue = [copy.deepcopy(t) for t in train_params_list_hue] style_bool = train_params_list_style is not None if style_bool: train_params_list_style = [copy.deepcopy(t) for t in train_params_list_style] style_bool = train_params_list_style is not None if style_bool and style_key is None: raise ValueError("Please specify a style_key.") hue_bool = len(train_params_list_hue) > 1 if hue_bool and hue_key is None: raise ValueError("Please specify a hue_key.") if seeds is None: seeds = [train_params_list_hue[0]['model_seed']] params_cat = [[], []] params_cat[0] = train_params_list_hue if style_bool: params_cat[1] = train_params_list_style else: params_cat[1] = [None] table = pd.DataFrame() if hue_bool: table.reindex(columns=table.columns.tolist() + [hue_key]) if style_bool: table.reindex(columns=table.columns.tolist() + [style_key]) for i0 in range(len(params_cat)): # hue params for i1 in range(len(params_cat[i0])): params = params_cat[i0][i1] table_piece = stat_fun(params, hue_key, style_key, seeds, *args, **kwargs) table = table.append(table_piece, ignore_index=True) if hue_key is not None: table[hue_key] = table[hue_key].astype('category') if style_key is not None: table[style_key] = table[style_key].astype('category') return table def dim_through_training(train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, figname='', subdir=None, multiprocess_lock=None): if subdir is None: subdir = train_params_list_hue[0][ 'network'] + '/' + 'dim_over_training' + '/' @memory.cache def compute_dim_through_training(params, hue_key, style_key, seeds): num_pnts_dim_red = 500 table_piece = pd.DataFrame() if params is not None: if hue_key is not None: hue_value = params[hue_key] if style_key is not None: style_value = params[style_key] for seed in seeds: params['model_seed'] = seed model, returned_params, run_dir = train.initialize_and_train( **params, multiprocess_lock=multiprocess_lock) class_datasets = returned_params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(int(params['model_seed'])) np.random.seed(int(params['model_seed'])) X, Y = class_datasets['train'][:] T = 0 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif params['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X epochs, saves = loader.get_epochs_and_saves(run_dir) epochs = [epoch for epoch in epochs if epoch <= params['num_epochs']] for i_epoch, epoch in enumerate(epochs): loader.load_model_from_epoch_and_dir(model, run_dir, epoch) hid = [X0] hid += model.get_post_activations(X)[:-1] try: dim = utils.get_effdim(hid[-1], preserve_gradients=False).item() except RuntimeError: print("Dim computation didn't converge.") dim = np.nan num_updates = int( params['num_train_samples_per_epoch']/params[ 'batch_size'])*epoch d = { 'effective_dimension': dim, 'seed': seed, 'epoch_index': i_epoch, 'epoch': epoch, 'num_updates': num_updates } if hue_key is not None: d.update({hue_key: hue_value}) if style_key is not None: d.update({style_key: style_value}) # casting d to DataFrame necessary to preserve type table_piece = table_piece.append(pd.DataFrame(d, index=[0]), ignore_index=True) return table_piece table = get_stats(compute_dim_through_training, train_params_list_hue, train_params_list_style, seeds, hue_key, style_key) table = table.replace([np.inf, -np.inf], np.nan) table = table.dropna() fig, ax = make_fig((1.5, 1.2)) if USE_ERRORBARS: g = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator=est_dim, ci=ci_dim, hue=hue_key, style=style_key) if not LEGEND and g.legend_ is not None: g.legend_.remove() else: g1 = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator=None, units='seed', hue=hue_key, style=style_key, alpha=.6) g2 = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator='mean', ci=None, hue=hue_key, style=style_key) if g1.legend_ is not None: g1.legend_.remove() if not LEGEND and g2.legend_ is not None: g2.legend_.remove() ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) ax.set_ylim([0, None]) out_fig(fig, figname, subfolder=subdir, show=False, save=True, axis_type=0, data=table) plt.close('all') def dim_over_layers(train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, figname="dim_over_layers", subdir=None, T=0, multiprocess_lock=None, use_error_bars=None, **plot_kwargs): """ Effective dimension measured over layers (or timepoints if looking at an RNN) of the network, before and after training. Parameters ---------- seeds : List[int] List of random number seeds to use for generating instantiations of the model and dataset. Variation over these seeds is used to plot error bars. gs : List[float] Values of g_radius to iterate over. train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. Value of g_radius is overwritten by values in gs. figname : str Name of the figure to save. T : int Final timepoint to plot (if looking at an RNN). If 0, disregard this parameter. """ if subdir is None: subdir = train_params_list_hue[0]['network'] + '/dim_over_layers/' if use_error_bars is None: use_error_bars = USE_ERRORBARS train_params_list_hue = [copy.deepcopy(t) for t in train_params_list_hue] style_bool = train_params_list_style is not None if style_bool: train_params_list_style = [copy.deepcopy(t) for t in train_params_list_style] @memory.cache def compute_dim_over_layers(params, hue_key, style_key, seeds): num_pnts_dim_red = 500 table_piece =
pd.DataFrame()
pandas.DataFrame
# Copyright 2022 Accenture Global Solutions Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import dataclasses as dc import typing as tp import datetime as dt import decimal import platform import pyarrow as pa import pyarrow.compute as pc import pandas as pd import tracdap.rt.metadata as _meta import tracdap.rt.exceptions as _ex import tracdap.rt.impl.util as _util @dc.dataclass(frozen=True) class DataSpec: data_item: str data_def: _meta.DataDefinition storage_def: _meta.StorageDefinition schema_def: tp.Optional[_meta.SchemaDefinition] @dc.dataclass(frozen=True) class DataPartKey: @classmethod def for_root(cls) -> DataPartKey: return DataPartKey(opaque_key='part_root') opaque_key: str @dc.dataclass(frozen=True) class DataItem: schema: pa.Schema table: tp.Optional[pa.Table] = None batches: tp.Optional[tp.List[pa.RecordBatch]] = None pandas: tp.Optional[pd.DataFrame] = None pyspark: tp.Any = None @dc.dataclass(frozen=True) class DataView: trac_schema: _meta.SchemaDefinition arrow_schema: pa.Schema parts: tp.Dict[DataPartKey, tp.List[DataItem]] @staticmethod def for_trac_schema(trac_schema: _meta.SchemaDefinition): arrow_schema = DataMapping.trac_to_arrow_schema(trac_schema) return DataView(trac_schema, arrow_schema, dict()) class _DataInternal: @staticmethod def float_dtype_check(): if "Float64Dtype" not in pd.__dict__: raise _ex.EStartup("TRAC D.A.P. requires Pandas >= 1.2") class DataMapping: """ Map primary data between different supported data frameworks, preserving equivalent data types. DataMapping is for primary data, to map metadata types and values use :py:class:`TypeMapping <tracdap.rt.impl.type_system.TypeMapping>` and :py:class:`TypeMapping <tracdap.rt.impl.type_system.MetadataCodec>`. """ __log = _util.logger_for_namespace(_DataInternal.__module__ + ".DataMapping") # Matches TRAC_ARROW_TYPE_MAPPING in ArrowSchema, tracdap-lib-data __TRAC_DECIMAL_PRECISION = 38 __TRAC_DECIMAL_SCALE = 12 __TRAC_TIMESTAMP_UNIT = "ms" __TRAC_TIMESTAMP_ZONE = None __TRAC_TO_ARROW_BASIC_TYPE_MAPPING = { _meta.BasicType.BOOLEAN: pa.bool_(), _meta.BasicType.INTEGER: pa.int64(), _meta.BasicType.FLOAT: pa.float64(), _meta.BasicType.DECIMAL: pa.decimal128(__TRAC_DECIMAL_PRECISION, __TRAC_DECIMAL_SCALE), _meta.BasicType.STRING: pa.utf8(), _meta.BasicType.DATE: pa.date32(), _meta.BasicType.DATETIME: pa.timestamp(__TRAC_TIMESTAMP_UNIT, __TRAC_TIMESTAMP_ZONE) } # Check the Pandas dtypes for handling floats are available before setting up the type mapping __PANDAS_FLOAT_DTYPE_CHECK = _DataInternal.float_dtype_check() __PANDAS_DATETIME_TYPE = pd.to_datetime([]).dtype # Only partial mapping is possible, decimal and temporal dtypes cannot be mapped this way __ARROW_TO_PANDAS_TYPE_MAPPING = { pa.bool_(): pd.BooleanDtype(), pa.int8(): pd.Int8Dtype(), pa.int16(): pd.Int16Dtype(), pa.int32(): pd.Int32Dtype(), pa.int64():
pd.Int64Dtype()
pandas.Int64Dtype
import sys import os import pathlib import argparse import subprocess import json from datetime import datetime import pandas def create_parser(): parser = argparse.ArgumentParser( description="Run a comparison between IPC and our method.") parser.add_argument( "-i", "--input", metavar="path/to/input", type=pathlib.Path, dest="input", help="path to input json(s)", nargs="+") parser.add_argument( "-o", "--output", metavar="path/to/combined-profiles.csv", type=pathlib.Path, dest="output", default=pathlib.Path("combined-profiles.csv"), help="path to output CSV") parser.add_argument( "--absolute-time", action="store_true", default=False, help="save absolute times (seconds) instead of percentages") return parser def parse_arguments(): parser = create_parser() args = parser.parse_args() input = [] for input_file in args.input: if input_file.is_file() and input_file.suffix == ".json": input.append(input_file.resolve()) elif input_file.is_dir(): for script_file in input_file.glob('**/*.json'): input.append(script_file.resolve()) args.input = input return args def append_stem(p, stem_suffix): # return p.with_stem(p.stem + stem_suffix) return p.parent / (p.stem + stem_suffix + p.suffix) def combine_profiles(fixtures, absolute_time=False, base_output=None): fixtures_dir = pathlib.Path(__file__).resolve().parents[1] / "fixtures" combined_profile =
pandas.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from typing import Union, Optional class TreeEnsemble(): def __init__(self, x: pd.DataFrame, y: np.array, x_valid: pd.DataFrame=
pd.DataFrame()
pandas.DataFrame
# PyLS-PM Library # Author: <NAME> # Creation: November 2016 # Description: Library based on <NAME>'s simplePLS, # <NAME>'s plspm and <NAME>'s matrixpls made in R import pandas as pd import numpy as np import scipy as sp import scipy.stats from .qpLRlib4 import otimiza, plotaIC import scipy.linalg from collections import Counter from .pca import * from pandas.plotting import scatter_matrix from .adequacy import * class PyLSpm(object): def PCA(self): for i in range(self.lenlatent): print(self.latent[i]) block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] PCAdo(block, self.latent[i]) print('KMO') print(KMO(block)) print('BTS') print(BTS(block)) def scatterMatrix(self): for i in range(1, self.lenlatent): block = self.data[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] scatter_matrix(block, diagonal='kde') plt.savefig('imgs/scatter' + self.latent[i], bbox_inches='tight') plt.clf() plt.cla() def sampleSize(self): r = 0.3 alpha = 0.05 # power=0.9 C = 0.5 * np.log((1 + r) / (1 - r)) Za = scipy.stats.norm.ppf(1 - (0.05 / 2)) sizeArray = [] powerArray = [] power = 0.5 for i in range(50, 100, 1): power = i / 100 powerArray.append(power) Zb = scipy.stats.norm.ppf(1 - power) N = abs((Za - Zb) / C)**2 + 3 sizeArray.append(N) return [powerArray, sizeArray] def normaliza(self, X): correction = np.sqrt((len(X) - 1) / len(X)) # std factor corretion mean_ = np.mean(X, 0) scale_ = np.std(X, 0) X = X - mean_ X = X / (scale_ * correction) return X def gof(self): r2mean = np.mean(self.r2.T[self.endoexo()[0]].values) AVEmean = self.AVE().copy() totalblock = 0 for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = len(block.columns.values) totalblock += block AVEmean[self.latent[i]] = AVEmean[self.latent[i]] * block AVEmean = np.sum(AVEmean) / totalblock return np.sqrt(AVEmean * r2mean) def endoexo(self): exoVar = [] endoVar = [] for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) return endoVar, exoVar def residuals(self): exoVar = [] endoVar = [] outer_residuals = self.data.copy() # comun_ = self.data.copy() for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = block.columns.values loadings = self.outer_loadings.ix[ block][self.latent[i]].values outer_ = self.fscores.ix[:, i].values outer_ = outer_.reshape(len(outer_), 1) loadings = loadings.reshape(len(loadings), 1) outer_ = np.dot(outer_, loadings.T) outer_residuals.ix[:, block] = self.data_.ix[ :, block] - outer_ # comun_.ix[:, block] = outer_ inner_residuals = self.fscores[endoVar] inner_ = pd.DataFrame.dot(self.fscores, self.path_matrix.ix[endoVar].T) inner_residuals = self.fscores[endoVar] - inner_ residuals = pd.concat([outer_residuals, inner_residuals], axis=1) mean_ = np.mean(self.data, 0) # comun_ = comun_.apply(lambda row: row + mean_, axis=1) sumOuterResid = pd.DataFrame.sum( pd.DataFrame.sum(outer_residuals**2)) sumInnerResid = pd.DataFrame.sum( pd.DataFrame.sum(inner_residuals**2)) divFun = sumOuterResid + sumInnerResid return residuals, outer_residuals, inner_residuals, divFun def srmr(self): srmr = (self.empirical() - self.implied()) srmr = np.sqrt(((srmr.values) ** 2).mean()) return srmr def implied(self): corLVs = pd.DataFrame.cov(self.fscores) implied_ = pd.DataFrame.dot(self.outer_loadings, corLVs) implied = pd.DataFrame.dot(implied_, self.outer_loadings.T) implied.values[[np.arange(len(self.manifests))] * 2] = 1 return implied def empirical(self): empirical = self.data_ return pd.DataFrame.corr(empirical) def frequency(self, data=None, manifests=None): if data is None: data = self.data if manifests is None: manifests = self.manifests frequencia = pd.DataFrame(0, index=range(1, 6), columns=manifests) for i in range(len(manifests)): frequencia[manifests[i]] = data[ manifests[i]].value_counts() frequencia = frequencia / len(data) * 100 frequencia = frequencia.reindex_axis( sorted(frequencia.columns), axis=1) frequencia = frequencia.fillna(0).T frequencia = frequencia[(frequencia.T != 0).any()] maximo = pd.DataFrame.max(pd.DataFrame.max(data, axis=0)) if int(maximo) & 1: neg = np.sum(frequencia.ix[:, 1: ((maximo - 1) / 2)], axis=1) ind = frequencia.ix[:, ((maximo + 1) / 2)] pos = np.sum( frequencia.ix[:, (((maximo + 1) / 2) + 1):maximo], axis=1) else: neg = np.sum(frequencia.ix[:, 1:((maximo) / 2)], axis=1) ind = 0 pos = np.sum(frequencia.ix[:, (((maximo) / 2) + 1):maximo], axis=1) frequencia['Neg.'] = pd.Series( neg, index=frequencia.index) frequencia['Ind.'] = pd.Series( ind, index=frequencia.index) frequencia['Pos.'] = pd.Series( pos, index=frequencia.index) return frequencia def frequencyPlot(self, data_, SEM=None): segmento = 'SEM' SEMmax = pd.DataFrame.max(SEM) ok = None for i in range(1, self.lenlatent): block = data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = pd.concat([block, SEM], axis=1) for j in range(SEMmax + 1): dataSEM = (block.loc[data_[segmento] == j] ).drop(segmento, axis=1) block_val = dataSEM.columns.values dataSEM = self.frequency(dataSEM, block_val)['Pos.'] dataSEM = dataSEM.rename(j + 1) ok = dataSEM if ok is None else pd.concat( [ok, dataSEM], axis=1) for i in range(1, self.lenlatent): block = data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block_val = block.columns.values plotando = ok.ix[block_val].dropna(axis=1) plotando.plot.bar() plt.legend(loc='upper center', bbox_to_anchor=(0.5, -.08), ncol=6) plt.savefig('imgs/frequency' + self.latent[i], bbox_inches='tight') plt.clf() plt.cla() # plt.show() # block.plot.bar() # plt.show() '''for i in range(1, self.lenlatent): block = self.data[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block_val = block.columns.values block = self.frequency(block, block_val) block.plot.bar() plt.show()''' def dataInfo(self): sd_ = np.std(self.data, 0) mean_ = np.mean(self.data, 0) skew = scipy.stats.skew(self.data) kurtosis = scipy.stats.kurtosis(self.data) w = [scipy.stats.shapiro(self.data.ix[:, i])[0] for i in range(len(self.data.columns))] return [mean_, sd_, skew, kurtosis, w] def predict(self, method='redundancy'): exoVar = [] endoVar = [] for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) if (method == 'exogenous'): Beta = self.path_matrix.ix[endoVar][endoVar] Gamma = self.path_matrix.ix[endoVar][exoVar] beta = [1 if (self.latent[i] in exoVar) else 0 for i in range(self.lenlatent)] beta = np.diag(beta) beta_ = [1 for i in range(len(Beta))] beta_ = np.diag(beta_) beta = pd.DataFrame(beta, index=self.latent, columns=self.latent) mid = pd.DataFrame.dot(Gamma.T, np.linalg.inv(beta_ - Beta.T)) mid = (mid.T.values).flatten('F') k = 0 for j in range(len(exoVar)): for i in range(len(endoVar)): beta.ix[endoVar[i], exoVar[j]] = mid[k] k += 1 elif (method == 'redundancy'): beta = self.path_matrix.copy() beta_ = pd.DataFrame(1, index=np.arange( len(exoVar)), columns=np.arange(len(exoVar))) beta.ix[exoVar, exoVar] = np.diag(np.diag(beta_.values)) elif (method == 'communality'): beta = np.diag(np.ones(len(self.path_matrix))) beta = pd.DataFrame(beta) partial_ = pd.DataFrame.dot(self.outer_weights, beta.T.values) prediction = pd.DataFrame.dot(partial_, self.outer_loadings.T.values) predicted = pd.DataFrame.dot(self.data, prediction) predicted.columns = self.manifests mean_ = np.mean(self.data, 0) intercept = mean_ - np.dot(mean_, prediction) predictedData = predicted.apply(lambda row: row + intercept, axis=1) return predictedData def cr(self): # Composite Reliability composite = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): cor_mat = np.cov(block.T) evals, evecs = np.linalg.eig(cor_mat) U, S, V = np.linalg.svd(cor_mat, full_matrices=False) indices = np.argsort(evals) indices = indices[::-1] evecs = evecs[:, indices] evals = evals[indices] loadings = V[0, :] * np.sqrt(evals[0]) numerador = np.sum(abs(loadings))**2 denominador = numerador + (p - np.sum(loadings ** 2)) cr = numerador / denominador composite[self.latent[i]] = cr else: composite[self.latent[i]] = 1 composite = composite.T return(composite) def r2adjusted(self): n = len(self.data_) r2 = self.r2.values r2adjusted = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): p = sum(self.LVariables['target'] == self.latent[i]) r2adjusted[self.latent[i]] = r2[i] - \ (p * (1 - r2[i])) / (n - p - 1) return r2adjusted.T def htmt(self): htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_), index=self.manifests, columns=self.manifests) mean = [] allBlocks = [] for i in range(self.lenlatent): block_ = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] allBlocks.append(list(block_.values)) block = htmt_.ix[block_, block_] mean_ = (block - np.diag(np.diag(block))).values mean_[mean_ == 0] = np.nan mean.append(np.nanmean(mean_)) comb = [[k, j] for k in range(self.lenlatent) for j in range(self.lenlatent)] comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]])) for i in range(self.lenlatent ** 2)] comb__ = [] for i in range(self.lenlatent ** 2): block = (htmt_.ix[allBlocks[comb[i][1]], allBlocks[comb[i][0]]]).values # block[block == 1] = np.nan comb__.append(np.nanmean(block)) htmt__ = np.divide(comb__, comb_) where_are_NaNs = np.isnan(htmt__) htmt__[where_are_NaNs] = 0 htmt = pd.DataFrame(np.tril(htmt__.reshape( (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent) return htmt def comunalidades(self): # Comunalidades return self.outer_loadings**2 def AVE(self): # AVE return self.comunalidades().apply(lambda column: column.sum() / (column != 0).sum()) def fornell(self): cor_ = pd.DataFrame.corr(self.fscores)**2 AVE = self.comunalidades().apply(lambda column: column.sum() / (column != 0).sum()) for i in range(len(cor_)): cor_.ix[i, i] = AVE[i] return(cor_) def rhoA(self): # rhoA rhoA = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): weights = pd.DataFrame(self.outer_weights[self.latent[i]]) weights = weights[(weights.T != 0).any()] result = pd.DataFrame.dot(weights.T, weights) result_ = pd.DataFrame.dot(weights, weights.T) S = self.data_[self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]]] S = pd.DataFrame.dot(S.T, S) / S.shape[0] numerador = ( np.dot(np.dot(weights.T, (S - np.diag(np.diag(S)))), weights)) denominador = ( (np.dot(np.dot(weights.T, (result_ - np.diag(np.diag(result_)))), weights))) rhoA_ = ((result)**2) * (numerador / denominador) if(np.isnan(rhoA_.values)): rhoA[self.latent[i]] = 1 else: rhoA[self.latent[i]] = rhoA_.values return rhoA.T def xloads(self): # Xloadings A = self.data_.transpose().values B = self.fscores.transpose().values A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] ssA = (A_mA**2).sum(1) ssB = (B_mB**2).sum(1) xloads_ = (np.dot(A_mA, B_mB.T) / np.sqrt(np.dot(ssA[:, None], ssB[None]))) xloads = pd.DataFrame( xloads_, index=self.manifests, columns=self.latent) return xloads def corLVs(self): # Correlations LVs corLVs_ = np.tril(pd.DataFrame.corr(self.fscores)) return pd.DataFrame(corLVs_, index=self.latent, columns=self.latent) def alpha(self): # Cronbach Alpha alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): p_ = len(block) correction = np.sqrt((p_ - 1) / p_) soma = np.var(np.sum(block, axis=1)) cor_ = pd.DataFrame.corr(block) denominador = soma * correction**2 numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_))) alpha_ = (numerador / denominador) * (p / (p - 1)) alpha[self.latent[i]] = alpha_ else: alpha[self.latent[i]] = 1 return alpha.T def vif(self): vif = [] totalmanifests = range(len(self.data_.columns)) for i in range(len(totalmanifests)): independent = [x for j, x in enumerate(totalmanifests) if j != i] coef, resid = np.linalg.lstsq( self.data_.ix[:, independent], self.data_.ix[:, i])[:2] r2 = 1 - resid / \ (self.data_.ix[:, i].size * self.data_.ix[:, i].var()) vif.append(1 / (1 - r2)) vif = pd.DataFrame(vif, index=self.manifests) return vif def PLSc(self): ################################################## # PLSc rA = self.rhoA() corFalse = self.corLVs() for i in range(self.lenlatent): for j in range(self.lenlatent): if i == j: corFalse.ix[i][j] = 1 else: corFalse.ix[i][j] = corFalse.ix[i][ j] / np.sqrt(rA.ix[self.latent[i]] * rA.ix[self.latent[j]]) corTrue = np.zeros([self.lenlatent, self.lenlatent]) for i in range(self.lenlatent): for j in range(self.lenlatent): corTrue[j][i] = corFalse.ix[i][j] corTrue[i][j] = corFalse.ix[i][j] corTrue = pd.DataFrame(corTrue, corFalse.columns, corFalse.index) # Loadings attenuedOuter_loadings = pd.DataFrame( 0, index=self.manifests, columns=self.latent) for i in range(self.lenlatent): weights = pd.DataFrame(self.outer_weights[self.latent[i]]) weights = weights[(weights.T != 0).any()] result = pd.DataFrame.dot(weights.T, weights) result_ = pd.DataFrame.dot(weights, weights.T) newLoad = ( weights.values * np.sqrt(rA.ix[self.latent[i]].values)) / (result.values) myindex = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] myindex_ = self.latent[i] attenuedOuter_loadings.ix[myindex.values, myindex_] = newLoad # Path dependent = np.unique(self.LVariables.ix[:, 'target']) for i in range(len(dependent)): independent = self.LVariables[self.LVariables.ix[ :, "target"] == dependent[i]]["source"] dependent_ = corTrue.ix[dependent[i], independent] independent_ = corTrue.ix[independent, independent] # path = np.dot(np.linalg.inv(independent_),dependent_) coef, resid = np.linalg.lstsq(independent_, dependent_)[:2] self.path_matrix.ix[dependent[i], independent] = coef return attenuedOuter_loadings # End PLSc ################################################## def __init__(self, dados, LVcsv, Mcsv, scheme='path', regression='ols', h=0, maximo=300, stopCrit=7, HOC='false', disattenuate='false', method='lohmoller'): self.data = dados self.LVcsv = LVcsv self.Mcsv = Mcsv self.maximo = maximo self.stopCriterion = stopCrit self.h = h self.scheme = scheme self.regression = regression self.disattenuate = disattenuate contador = 0 self.convergiu = 0 data = dados if type( dados) is pd.core.frame.DataFrame else pd.read_csv(dados) LVariables = pd.read_csv(LVcsv) Variables = Mcsv if type( Mcsv) is pd.core.frame.DataFrame else pd.read_csv(Mcsv) latent_ = LVariables.values.flatten('F') latent__ = np.unique(latent_, return_index=True)[1] # latent = np.unique(latent_) latent = [latent_[i] for i in sorted(latent__)] self.lenlatent = len(latent) # Repeating indicators if (HOC == 'true'): data_temp = pd.DataFrame() for i in range(self.lenlatent): block = self.data[Variables['measurement'] [Variables['latent'] == latent[i]]] block = block.columns.values data_temp = pd.concat( [data_temp, data[block]], axis=1) cols = list(data_temp.columns) counts = Counter(cols) for s, num in counts.items(): if num > 1: for suffix in range(1, num + 1): cols[cols.index(s)] = s + '.' + str(suffix) data_temp.columns = cols doublemanifests = list(Variables['measurement'].values) counts = Counter(doublemanifests) for s, num in counts.items(): if num > 1: for suffix in range(1, num + 1): doublemanifests[doublemanifests.index( s)] = s + '.' + str(suffix) Variables['measurement'] = doublemanifests data = data_temp # End data manipulation manifests_ = Variables['measurement'].values.flatten('F') manifests__ = np.unique(manifests_, return_index=True)[1] manifests = [manifests_[i] for i in sorted(manifests__)] self.manifests = manifests self.latent = latent self.Variables = Variables self.LVariables = LVariables data = data[manifests] data_ = self.normaliza(data) self.data = data self.data_ = data_ outer_weights = pd.DataFrame(0, index=manifests, columns=latent) for i in range(len(Variables)): outer_weights[Variables['latent'][i]][ Variables['measurement'][i]] = 1 inner_paths = pd.DataFrame(0, index=latent, columns=latent) for i in range(len(LVariables)): inner_paths[LVariables['source'][i]][LVariables['target'][i]] = 1 path_matrix = inner_paths.copy() if method == 'wold': fscores = pd.DataFrame.dot(data_, outer_weights) intera = self.lenlatent intera_ = 1 # LOOP for iterations in range(0, self.maximo): contador = contador + 1 if method == 'lohmoller': fscores = pd.DataFrame.dot(data_, outer_weights) intera = 1 intera_ = self.lenlatent # fscores = self.normaliza(fscores) # Old Mode A for q in range(intera): # Schemes if (scheme == 'path'): for h in range(intera_): i = h if method == 'lohmoller' else q follow = (path_matrix.ix[i, :] == 1) if (sum(follow) > 0): # i ~ follow inner_paths.ix[inner_paths[follow].index, i] = np.linalg.lstsq( fscores.ix[:, follow], fscores.ix[:, i])[0] predec = (path_matrix.ix[:, i] == 1) if (sum(predec) > 0): semi = fscores.ix[:, predec] a_ = list(fscores.ix[:, i]) cor = [sp.stats.pearsonr(a_, list(semi.ix[:, j].values.flatten()))[ 0] for j in range(len(semi.columns))] inner_paths.ix[inner_paths[predec].index, i] = cor elif (scheme == 'fuzzy'): for h in range(len(path_matrix)): i = h if method == 'lohmoller' else q follow = (path_matrix.ix[i, :] == 1) if (sum(follow) > 0): ac, awL, awR = otimiza(fscores.ix[:, i], fscores.ix[ :, follow], len(fscores.ix[:, follow].columns), 0) inner_paths.ix[inner_paths[follow].index, i] = ac predec = (path_matrix.ix[:, i] == 1) if (sum(predec) > 0): semi = fscores.ix[:, predec] a_ = list(fscores.ix[:, i]) cor = [sp.stats.pearsonr(a_, list(semi.ix[:, j].values.flatten()))[ 0] for j in range(len(semi.columns))] inner_paths.ix[inner_paths[predec].index, i] = cor elif (scheme == 'centroid'): inner_paths = np.sign(pd.DataFrame.multiply( pd.DataFrame.corr(fscores), (path_matrix + path_matrix.T))) elif (scheme == 'factor'): inner_paths = pd.DataFrame.multiply( pd.DataFrame.corr(fscores), (path_matrix + path_matrix.T)) elif (scheme == 'horst'): inner_paths = inner_paths print(inner_paths) if method == 'wold': fscores[self.latent[q]] = pd.DataFrame.dot( fscores, inner_paths) elif method == 'lohmoller': fscores = pd.DataFrame.dot(fscores, inner_paths) last_outer_weights = outer_weights.copy() # Outer Weights for i in range(self.lenlatent): # Reflexivo / Modo A if(Variables['mode'][Variables['latent'] == latent[i]]).any() == "A": a = data_[Variables['measurement'][ Variables['latent'] == latent[i]]] b = fscores.ix[:, latent[i]] # 1/N (Z dot X) res_ = (1 / len(data_)) * np.dot(b, a) myindex = Variables['measurement'][ Variables['latent'] == latent[i]] myindex_ = latent[i] outer_weights.ix[myindex.values, myindex_] = res_ / np.std(res_) # New Mode A # Formativo / Modo B elif(Variables['mode'][Variables['latent'] == latent[i]]).any() == "B": a = data_[Variables['measurement'][ Variables['latent'] == latent[i]]] # (X'X)^-1 X'Y a_ = np.dot(a.T, a) inv_ = np.linalg.inv(a_) res_ = np.dot(np.dot(inv_, a.T), fscores.ix[:, latent[i]]) myindex = Variables['measurement'][ Variables['latent'] == latent[i]] myindex_ = latent[i] outer_weights.ix[myindex.values, myindex_] = res_ / (np.std(np.dot(data_.ix[:, myindex], res_))) if method == 'wold': fscores = pd.DataFrame.dot(fscores, inner_paths) diff_ = np.max( np.max((abs(last_outer_weights) - abs(outer_weights))**2)) if (diff_ < (10**(-(self.stopCriterion)))): self.convergiu = 1 break # END LOOP # print(contador) # Bootstraping trick if(np.isnan(outer_weights).any().any()): self.convergiu = 0 return None # Standardize Outer Weights (w / || scores ||) divide_ = np.diag(1 / (np.std(np.dot(data_, outer_weights), 0) * np.sqrt((len(data_) - 1) / len(data_)))) outer_weights = np.dot(outer_weights, divide_) outer_weights = pd.DataFrame( outer_weights, index=manifests, columns=latent) fscores = pd.DataFrame.dot(data_, outer_weights) # Outer Loadings outer_loadings = pd.DataFrame(0, index=manifests, columns=latent) for i in range(self.lenlatent): a = data_[Variables['measurement'][ Variables['latent'] == latent[i]]] b = fscores.ix[:, latent[i]] cor_ = [sp.stats.pearsonr(a.ix[:, j], b)[0] for j in range(len(a.columns))] myindex = Variables['measurement'][ Variables['latent'] == latent[i]] myindex_ = latent[i] outer_loadings.ix[myindex.values, myindex_] = cor_ # Paths if (regression == 'fuzzy'): path_matrix_low = path_matrix.copy() path_matrix_high = path_matrix.copy() path_matrix_range = path_matrix.copy() r2 = pd.DataFrame(0, index=np.arange(1), columns=latent) dependent = np.unique(LVariables.ix[:, 'target']) for i in range(len(dependent)): independent = LVariables[LVariables.ix[ :, "target"] == dependent[i]]["source"] dependent_ = fscores.ix[:, dependent[i]] independent_ = fscores.ix[:, independent] if (self.regression == 'ols'): # Path Normal coef, resid = np.linalg.lstsq(independent_, dependent_)[:2] # model = sm.OLS(dependent_, independent_) # results = model.fit() # print(results.summary()) # r2[dependent[i]] = results.rsquared r2[dependent[i]] = 1 - resid / \ (dependent_.size * dependent_.var()) path_matrix.ix[dependent[i], independent] = coef # pvalues.ix[dependent[i], independent] = results.pvalues elif (self.regression == 'fuzzy'): size = len(independent_.columns) ac, awL, awR = otimiza(dependent_, independent_, size, self.h) # plotaIC(dependent_, independent_, size) ac, awL, awR = (ac[0], awL[0], awR[0]) if ( size == 1) else (ac, awL, awR) path_matrix.ix[dependent[i], independent] = ac path_matrix_low.ix[dependent[i], independent] = awL path_matrix_high.ix[dependent[i], independent] = awR # Matrix Fuzzy for i in range(len(path_matrix.columns)): for j in range(len(path_matrix.columns)): path_matrix_range.ix[i, j] = str(round( path_matrix_low.ix[i, j], 3)) + ' ; ' + str(round(path_matrix_high.ix[i, j], 3)) r2 = r2.T self.path_matrix = path_matrix self.outer_weights = outer_weights self.fscores = fscores ################################# # PLSc if disattenuate == 'true': outer_loadings = self.PLSc() ################################## # Path Effects indirect_effects = pd.DataFrame(0, index=latent, columns=latent) path_effects = [None] * self.lenlatent path_effects[0] = self.path_matrix for i in range(1, self.lenlatent): path_effects[i] = pd.DataFrame.dot( path_effects[i - 1], self.path_matrix) for i in range(1, len(path_effects)): indirect_effects = indirect_effects + path_effects[i] total_effects = indirect_effects + self.path_matrix if (regression == 'fuzzy'): self.path_matrix_high = path_matrix_high self.path_matrix_low = path_matrix_low self.path_matrix_range = path_matrix_range self.total_effects = total_effects.T self.indirect_effects = indirect_effects self.outer_loadings = outer_loadings self.contador = contador self.r2 = r2 def impa(self): # Unstandardized Scores scale_ = np.std(self.data, 0) outer_weights_ = pd.DataFrame.divide( self.outer_weights, scale_, axis=0) relativo = pd.DataFrame.sum(outer_weights_, axis=0) for i in range(len(outer_weights_)): for j in range(len(outer_weights_.columns)): outer_weights_.ix[i, j] = ( outer_weights_.ix[i, j]) / relativo[j] unstandardizedScores = pd.DataFrame.dot(self.data, outer_weights_) # Rescaled Scores rescaledScores = pd.DataFrame(0, index=range( len(self.data)), columns=self.latent) for i in range(self.lenlatent): block = self.data[self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]]] maximo = pd.DataFrame.max(block, axis=0) minimo = pd.DataFrame.min(block, axis=0) minimo_ = pd.DataFrame.min(minimo) maximo_ =
pd.DataFrame.max(maximo)
pandas.DataFrame.max
# -*- coding: utf-8 -*- """ Created on Wed Sep 5 15:51:36 2018 @author: huangjin """ import pandas as pd from tqdm import tqdm import os def gen_data(df, time_start, time_end): df = df.sort_values(by=['code','pt']) df = df[(df['pt']<=time_end)&(df['pt']>=time_start)] col = [c for c in df.columns if c not in ['code','pt']] df_tem = df.groupby(['code']).shift(1).fillna(0) all_data = df[['code','pt']] for j in tqdm(range(len(col))): tem = df[col[j]]-df_tem[col[j]] all_data = pd.concat([all_data, tem], axis=1) return all_data def process_data(): industry_name = ['非银金融','纺织服装','有色金属','计算机','交通运输','医药生物','钢铁','家用电器', '采掘','国防军工','房地产','建筑材料','休闲服务','综合','建筑装饰','银行', '轻工制造','化工','电子','机械设备','商业贸易','通信','电气设备','公用事业','传媒', '农林牧渔','食品饮料','汽车'] industry_name_english = ['Non bank finance', 'textile and clothing', 'non-ferrous metals', 'computer', 'transportation', 'medical biology', 'steel', 'household appliances','Excavation','Defense Force', 'Real Estate', 'Building Materials', 'Leisure Services', 'Comprehensive', 'Architectural Decoration', 'Bank', 'Light manufacturing', 'Chemical', 'Electronic', 'Mechanical equipment', 'Commercial trade', 'Communication', 'Electrical equipment', 'Utilities', 'Media','Agriculture and fishing', 'food and beverage', 'car'] for industry_name_i in range(len(industry_name)): # 市场值 market_value = pd.read_csv('market_values_end.csv') stocks_info = pd.read_csv('stocks_info.csv') stock_info_tem = stocks_info[['code','level_0']] stock_info_tem = stock_info_tem[stock_info_tem['level_0']==industry_name[industry_name_i]] market_values = pd.merge(stock_info_tem, market_value, how='left', on = 'code') market_values.drop('level_0', axis=1, inplace=True) # 资产负债表 data_all = pd.read_csv('financial_report_balance_sheet.csv') stocks_info = pd.read_csv('stocks_info.csv') stock_info_tem = stocks_info[['code','level_0']] stock_info_tem = stock_info_tem[stock_info_tem['level_0']==industry_name[industry_name_i]] balance_data = pd.merge(stock_info_tem, data_all, how='left', on = 'code') balance_data.drop('level_0', axis=1, inplace=True) print(balance_data.shape) # 利润表 data_all =
pd.read_csv('quant_financial_report_profitloss.csv')
pandas.read_csv
from datetime import datetime, time from itertools import product import numpy as np import pytest import pytz import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, date_range, period_range, to_datetime, ) import pandas.util.testing as tm import pandas.tseries.offsets as offsets @pytest.fixture(params=product([True, False], [True, False])) def close_open_fixture(request): return request.param class TestDataFrameTimeSeriesMethods: def test_pct_change(self, datetime_frame): rs = datetime_frame.pct_change(fill_method=None) tm.assert_frame_equal(rs, datetime_frame / datetime_frame.shift(1) - 1) rs = datetime_frame.pct_change(2) filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = datetime_frame.pct_change(fill_method="bfill", limit=1) filled = datetime_frame.fillna(method="bfill", limit=1) tm.assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = datetime_frame.pct_change(freq="5D") filled = datetime_frame.fillna(method="pad") tm.assert_frame_equal( rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled) ) def test_pct_change_shift_over_nas(self): s = Series([1.0, 1.5, np.nan, 2.5, 3.0]) df = DataFrame({"a": s, "b": s}) chg = df.pct_change() expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2]) edf = DataFrame({"a": expected, "b": expected}) tm.assert_frame_equal(chg, edf) @pytest.mark.parametrize( "freq, periods, fill_method, limit", [ ("5B", 5, None, None), ("3B", 3, None, None), ("3B", 3, "bfill", None), ("7B", 7, "pad", 1), ("7B", 7, "bfill", 3), ("14B", 14, None, None), ], ) def test_pct_change_periods_freq( self, datetime_frame, freq, periods, fill_method, limit ): # GH 7292 rs_freq = datetime_frame.pct_change( freq=freq, fill_method=fill_method, limit=limit ) rs_periods = datetime_frame.pct_change( periods, fill_method=fill_method, limit=limit ) tm.assert_frame_equal(rs_freq, rs_periods) empty_ts = DataFrame(index=datetime_frame.index, columns=datetime_frame.columns) rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit) rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit) tm.assert_frame_equal(rs_freq, rs_periods) def test_frame_ctor_datetime64_column(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") dates = np.asarray(rng) df = DataFrame({"A": np.random.randn(len(rng)), "B": dates}) assert np.issubdtype(df["B"].dtype, np.dtype("M8[ns]")) def test_frame_append_datetime64_column(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert np.issubdtype(df["A"].dtype, np.dtype("M8[ns]")) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="A-DEC")}) # it works! repr(df) def test_frame_append_datetime64_col_other_units(self): n = 100 units = ["h", "m", "s", "ms", "D", "M", "Y"] ns_dtype = np.dtype("M8[ns]") for unit in units: dtype = np.dtype("M8[{unit}]".format(unit=unit)) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype("O")).values assert df[unit].dtype == ns_dtype assert (df[unit].values == ex_vals).all() # Test insertion into existing datetime64 column df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype("M8[{unit}]".format(unit=unit)) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp["dates"] = vals ex_vals = to_datetime(vals.astype("O")).values assert (tmp["dates"].values == ex_vals).all() def test_asfreq(self, datetime_frame): offset_monthly = datetime_frame.asfreq(offsets.BMonthEnd()) rule_monthly = datetime_frame.asfreq("BM") tm.assert_almost_equal(offset_monthly["A"], rule_monthly["A"]) filled = rule_monthly.asfreq("B", method="pad") # noqa # TODO: actually check that this worked. # don't forget! filled_dep = rule_monthly.asfreq("B", method="pad") # noqa # test does not blow up on length-0 DataFrame zero_length = datetime_frame.reindex([]) result = zero_length.asfreq("BM") assert result is not zero_length def test_asfreq_datetimeindex(self): df = DataFrame( {"A": [1, 2, 3]}, index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)], ) df = df.asfreq("B") assert isinstance(df.index, DatetimeIndex) ts = df["A"].asfreq("B") assert isinstance(ts.index, DatetimeIndex) def test_asfreq_fillvalue(self): # test for fill value during upsampling, related to issue 3715 # setup rng = pd.date_range("1/1/2016", periods=10, freq="2S") ts = pd.Series(np.arange(len(rng)), index=rng) df = pd.DataFrame({"one": ts}) # insert pre-existing missing value df.loc["2016-01-01 00:00:08", "one"] = None actual_df = df.asfreq(freq="1S", fill_value=9.0) expected_df = df.asfreq(freq="1S").fillna(9.0) expected_df.loc["2016-01-01 00:00:08", "one"] = None tm.assert_frame_equal(expected_df, actual_df) expected_series = ts.asfreq(freq="1S").fillna(9.0) actual_series = ts.asfreq(freq="1S", fill_value=9.0) tm.assert_series_equal(expected_series, actual_series) @pytest.mark.parametrize( "data,idx,expected_first,expected_last", [ ({"A": [1, 2, 3]}, [1, 1, 2], 1, 2), ({"A": [1, 2, 3]}, [1, 2, 2], 1, 2), ({"A": [1, 2, 3, 4]}, ["d", "d", "d", "d"], "d", "d"), ({"A": [1, np.nan, 3]}, [1, 1, 2], 1, 2), ({"A": [np.nan, np.nan, 3]}, [1, 1, 2], 2, 2), ({"A": [1, np.nan, 3]}, [1, 2, 2], 1, 2), ], ) def test_first_last_valid( self, float_frame, data, idx, expected_first, expected_last ): N = len(float_frame.index) mat = np.random.randn(N) mat[:5] = np.nan mat[-5:] = np.nan frame = DataFrame({"foo": mat}, index=float_frame.index) index = frame.first_valid_index() assert index == frame.index[5] index = frame.last_valid_index() assert index == frame.index[-6] # GH12800 empty = DataFrame() assert empty.last_valid_index() is None assert empty.first_valid_index() is None # GH17400: no valid entries frame[:] = np.nan assert frame.last_valid_index() is None assert frame.first_valid_index() is None # GH20499: its preserves freq with holes frame.index = date_range("20110101", periods=N, freq="B") frame.iloc[1] = 1 frame.iloc[-2] = 1 assert frame.first_valid_index() == frame.index[1] assert frame.last_valid_index() == frame.index[-2] assert frame.first_valid_index().freq == frame.index.freq assert frame.last_valid_index().freq == frame.index.freq # GH 21441 df = DataFrame(data, index=idx) assert expected_first == df.first_valid_index() assert expected_last == df.last_valid_index() @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_first_valid_index_all_nan(self, klass): # GH#9752 Series/DataFrame should both return None, not raise obj = klass([np.nan]) assert obj.first_valid_index() is None assert obj.iloc[:0].first_valid_index() is None def test_first_subset(self): ts = tm.makeTimeDataFrame(freq="12h") result = ts.first("10d") assert len(result) == 20 ts = tm.makeTimeDataFrame(freq="D") result = ts.first("10d") assert len(result) == 10 result = ts.first("3M") expected = ts[:"3/31/2000"] tm.assert_frame_equal(result, expected) result = ts.first("21D") expected = ts[:21] tm.assert_frame_equal(result, expected) result = ts[:0].first("3M") tm.assert_frame_equal(result, ts[:0]) def test_first_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.first("1D") def test_last_subset(self): ts = tm.makeTimeDataFrame(freq="12h") result = ts.last("10d") assert len(result) == 20 ts = tm.makeTimeDataFrame(nper=30, freq="D") result = ts.last("10d") assert len(result) == 10 result = ts.last("21D") expected = ts["2000-01-10":] tm.assert_frame_equal(result, expected) result = ts.last("21D") expected = ts[-21:] tm.assert_frame_equal(result, expected) result = ts[:0].last("3M") tm.assert_frame_equal(result, ts[:0]) def test_last_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.last("1D") def test_at_time(self): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) assert (rs.index.hour == rng[1].hour).all() assert (rs.index.minute == rng[1].minute).all() assert (rs.index.second == rng[1].second).all() result = ts.at_time("9:30") expected = ts.at_time(time(9, 30)) tm.assert_frame_equal(result, expected) result = ts.loc[time(9, 30)] expected = ts.loc[(rng.hour == 9) & (rng.minute == 30)] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range("1/1/2000", "1/31/2000") ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) tm.assert_frame_equal(result, ts) # time doesn't exist rng = date_range("1/1/2012", freq="23Min", periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time("16:00") assert len(rs) == 0 @pytest.mark.parametrize( "hour", ["1:00", "1:00AM", time(1), time(1, tzinfo=pytz.UTC)] ) def test_at_time_errors(self, hour): # GH 24043 dti = pd.date_range("2018", periods=3, freq="H") df = pd.DataFrame(list(range(len(dti))), index=dti) if getattr(hour, "tzinfo", None) is None: result = df.at_time(hour) expected = df.iloc[1:2] tm.assert_frame_equal(result, expected) else: with pytest.raises(ValueError, match="Index must be timezone"): df.at_time(hour) def test_at_time_tz(self): # GH 24043 dti = pd.date_range("2018", periods=3, freq="H", tz="US/Pacific") df = pd.DataFrame(list(range(len(dti))), index=dti) result = df.at_time(time(4, tzinfo=pytz.timezone("US/Eastern"))) expected = df.iloc[1:2] tm.assert_frame_equal(result, expected) def test_at_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.at_time("00:00") @pytest.mark.parametrize("axis", ["index", "columns", 0, 1]) def test_at_time_axis(self, axis): # issue 8839 rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), len(rng))) ts.index, ts.columns = rng, rng indices = rng[(rng.hour == 9) & (rng.minute == 30) & (rng.second == 0)] if axis in ["index", 0]: expected = ts.loc[indices, :] elif axis in ["columns", 1]: expected = ts.loc[:, indices] result = ts.at_time("9:30", axis=axis) tm.assert_frame_equal(result, expected) def test_between_time(self, close_open_fixture): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) inc_start, inc_end = close_open_fixture filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert t >= stime else: assert t > stime if inc_end: assert t <= etime else: assert t < etime result = ts.between_time("00:00", "01:00") expected = ts.between_time(stime, etime) tm.assert_frame_equal(result, expected) # across midnight rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert (t >= stime) or (t <= etime) else: assert (t > stime) or (t <= etime) if inc_end: assert (t <= etime) or (t >= stime) else: assert (t < etime) or (t >= stime) def test_between_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.between_time(start_time="00:00", end_time="12:00") def test_between_time_axis(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") ts = DataFrame(np.random.randn(len(rng), len(rng))) stime, etime = ("08:00:00", "09:00:00") exp_len = 7 if axis in ["index", 0]: ts.index = rng assert len(ts.between_time(stime, etime)) == exp_len assert len(ts.between_time(stime, etime, axis=0)) == exp_len if axis in ["columns", 1]: ts.columns = rng selected = ts.between_time(stime, etime, axis=1).columns assert len(selected) == exp_len def test_between_time_axis_raises(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") mask = np.arange(0, len(rng)) rand_data = np.random.randn(len(rng), len(rng)) ts = DataFrame(rand_data, index=rng, columns=rng) stime, etime = ("08:00:00", "09:00:00") msg = "Index must be DatetimeIndex" if axis in ["columns", 1]: ts.index = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime) with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=0) if axis in ["index", 0]: ts.columns = mask with pytest.raises(TypeError, match=msg): ts.between_time(stime, etime, axis=1) def test_operation_on_NaT(self): # Both NaT and Timestamp are in DataFrame. df = pd.DataFrame({"foo": [pd.NaT, pd.NaT, pd.Timestamp("2012-05-01")]}) res = df.min() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.Timestamp("2012-05-01")], index=["foo"])
tm.assert_series_equal(res, exp)
pandas.util.testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 20 09:59:35 2020 this file should visualize differences between the replicates @author: Thomsn """ import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re def standardsort(bigdir, xaxis, sortlist=None, pnw_topo=None): os.chdir(bigdir) rep_list = [diro for diro in os.listdir() if 'rep_' in diro] rep_list.sort() if sortlist: rep_list = [co for _, co in sorted(zip(sortlist[:-1], rep_list))] rep_mat = pd.DataFrame(columns = xaxis)# np.append(xaxis, 'topo')) rep_arr = np.array([]) topolist = [] tclist = [] shortopolist = [] if 'pnw_topo' in locals(): pntopolist = [] pntclist = [] pnshortopolist = [] for repsdir in rep_list: rep_ind =
pd.read_csv(f'{repsdir}/replicate_data.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """OREGON Arrest Analysis (anna).ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1kchDTfhL69aAuNMBJmlfIrSrP8j7bBrJ """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import pylab from math import pi from google.colab import files uploaded = files.upload() data_path = "oregonfinalversion1.csv" arrests = pd.read_csv(data_path, index_col=0) #arrests.loc[' STATEWIDE TOTAL'] arrests.head() race = ['White', 'Black', 'Other'] totalArrests = [83117, 3307, 10470] fig, ax=plt.subplots(figsize = (5,5)) ##creating bar chart plt.bar(race, totalArrests) plt.xlabel('Race') plt.ylabel('Total Arrests') plt.title('Total Arrests in Oregon in 2019 by Race') for i, data in enumerate(totalArrests): ##adding labels to bars plt.text(x=i, y=data+1, s=f"{data}", ha='center') plt.show() r = ['White', 'Black', 'Other'] rawData = {'greenBars':[83117, 3307,10470], 'blueBars':[3163765,92680,956292]} df = pd.DataFrame(rawData) totals = [i+j for i,j in zip(df['greenBars'], df['blueBars'])] greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)] blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)] fig, ax=plt.subplots(figsize = (5,10)) barWidth = 0.85 names = race plt.bar(r, greenBars, color='#7F8DA8', edgecolor='white', width=barWidth) plt.bar(r, blueBars, bottom=greenBars, color='#FADFC3', edgecolor='white', width=barWidth) plt.xticks(r, names) plt.xlabel("Race") plt.ylabel("Percentage") plt.ylim(0,30) plt.title('Arrests as % of Population in Oregon') plt.show() r2 = ['White', 'Black','Other'] rawData = {'greenBars':[10979,1335,2522], 'blueBars':[83117,3307,10470]} df = pd.DataFrame(rawData) totals = [i+j for i,j in zip(df['greenBars'], df['blueBars'])] greenBars = [i / j * 100 for i,j in zip(df['greenBars'], totals)] blueBars = [i / j * 100 for i,j in zip(df['blueBars'], totals)] fig, ax=plt.subplots(figsize = (5,10)) barWidth = 0.85 names = race plt.bar(r2, greenBars, color='#7F8DA8', edgecolor='white', width=barWidth) plt.bar(r2, blueBars, bottom=greenBars, color='#FADFC3', edgecolor='white', width=barWidth) plt.xticks(r2) plt.ylim(0,30) plt.xlabel("Race") plt.ylabel("Percentage") plt.title('Prison population as a proportion of arrests in Oregon') plt.show() from google.colab import files uploaded = files.upload() data_path = "Oregonarrestoffencetypeanna.csv" arrests =
pd.read_csv(data_path, index_col=0)
pandas.read_csv
import pandas as pd import pandas.testing as pdt import pytest import pytz from werkzeug.exceptions import RequestEntityTooLarge from sfa_api.conftest import ( VALID_FORECAST_JSON, VALID_CDF_FORECAST_JSON, demo_forecasts) from sfa_api.utils import request_handling from sfa_api.utils.errors import ( BadAPIRequest, StorageAuthError, NotFoundException) @pytest.mark.parametrize('start,end', [ ('invalid', 'invalid'), ('NaT', 'NaT') ]) def test_validate_start_end_fail(app, forecast_id, start, end): url = f'/forecasts/single/{forecast_id}/values?start={start}&end={end}' with pytest.raises(request_handling.BadAPIRequest): with app.test_request_context(url): request_handling.validate_start_end() @pytest.mark.parametrize('start,end', [ ('20190101T120000Z', '20190101T130000Z'), ('20190101T120000', '20190101T130000'), ('20190101T120000', '20190101T130000Z'), ('20190101T120000Z', '20190101T130000+00:00'), ('20190101T120000Z', '20190101T140000+01:00'), ]) def test_validate_start_end_success(app, forecast_id, start, end): url = f'/forecasts/single/{forecast_id}/values?start={start}&end={end}' with app.test_request_context(url): request_handling.validate_start_end() @pytest.mark.parametrize('query,exc', [ ('?start=20200101T0000Z', {'end'}), ('?end=20200101T0000Z', {'start'}), ('?start=20200101T0000Z&end=20210102T0000Z', {'end'}), ('', {'start', 'end'}), pytest.param('?start=20200101T0000Z&end=20200102T0000Z', {}, marks=pytest.mark.xfail(strict=True)) ]) def test_validate_start_end_not_provided(app, forecast_id, query, exc): url = f'/forecasts/single/{forecast_id}/values{query}' with app.test_request_context(url): with pytest.raises(BadAPIRequest) as err: request_handling.validate_start_end() if exc: assert set(err.value.errors.keys()) == exc @pytest.mark.parametrize('content_type,payload', [ ('text/csv', ''), ('application/json', '{}'), ('application/json', '{"values": "nope"}'), ('text/plain', 'nope'), ]) def test_validate_parsable_fail(app, content_type, payload, forecast_id): url = f'/forecasts/single/{forecast_id}/values/' with pytest.raises(request_handling.BadAPIRequest): with app.test_request_context( url, content_type=content_type, data=payload, method='POST', content_length=len(payload)): request_handling.validate_parsable_values() @pytest.mark.parametrize('content_type', [ ('text/csv'), ('application/json'), ('application/json'), ]) def test_validate_parsable_fail_too_large(app, content_type, forecast_id): url = f'/forecasts/single/{forecast_id}/values/' with pytest.raises(RequestEntityTooLarge): with app.test_request_context( url, content_type=content_type, method='POST', content_length=17*1024*1024): request_handling.validate_parsable_values() @pytest.mark.parametrize('content_type,payload', [ ('text/csv', 'timestamp,value\n2019-01-01T12:00:00Z,5'), ('application/json', ('{"values":[{"timestamp": "2019-01-01T12:00:00Z",' '"value": 5}]}')), ]) def test_validate_parsable_success(app, content_type, payload, forecast_id): with app.test_request_context(f'/forecasts/single/{forecast_id}/values/', content_type=content_type, data=payload, method='POST'): request_handling.validate_parsable_values() def test_validate_observation_values(): df = pd.DataFrame({'value': [0.1, '.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) request_handling.validate_observation_values(df) def test_validate_observation_values_bad_value(): df = pd.DataFrame({'value': [0.1, 's.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'value' in e.value.errors def test_validate_observation_values_no_value(): df = pd.DataFrame({'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'value' in e.value.errors def test_validate_observation_values_bad_timestamp(): df = pd.DataFrame({'value': [0.1, '.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'timestamp' in e.value.errors def test_validate_observation_values_no_timestamp(): df = pd.DataFrame({ 'value': [0.1, '.2'], 'quality_flag': [0.0, 1]}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'timestamp' in e.value.errors @pytest.mark.parametrize('quality', [ [1, .1], [1, '0.9'], [2, 0], ['ham', 0] ]) def test_validate_observation_values_bad_quality(quality): df = pd.DataFrame({'value': [0.1, .2], 'quality_flag': quality, 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'quality_flag' in e.value.errors def test_validate_observation_values_no_quality(): df = pd.DataFrame({'value': [0.1, '.2'], 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'quality_flag' in e.value.errors expected_parsed_df = pd.DataFrame({ 'a': [1, 2, 3, 4], 'b': [4, 5, 6, 7], }) csv_string = "a,b\n1,4\n2,5\n3,6\n4,7\n" json_string = '{"values":{"a":[1,2,3,4],"b":[4,5,6,7]}}' def test_parse_csv_success(): test_df = request_handling.parse_csv(csv_string) pdt.assert_frame_equal(test_df, expected_parsed_df) @pytest.mark.parametrize('csv_input', [ '', "a,b\n1,4\n2.56,2.45\n1,2,3\n" ]) def test_parse_csv_failure(csv_input): with pytest.raises(request_handling.BadAPIRequest): request_handling.parse_csv(csv_input) def test_parse_json_success(): test_df = request_handling.parse_json(json_string) pdt.assert_frame_equal(test_df, expected_parsed_df) @pytest.mark.parametrize('json_input', [ '', "{'a':[1,2,3]}" ]) def test_parse_json_failure(json_input): with pytest.raises(request_handling.BadAPIRequest): request_handling.parse_json(json_input) null_df = pd.DataFrame({ 'timestamp': [ '2018-10-29T12:00:00Z', '2018-10-29T13:00:00Z', '2018-10-29T14:00:00Z', '2018-10-29T15:00:00Z', ], 'value': [32.93, 25.17, None, None], 'quality_flag': [0, 0, 1, 0] }) def test_parse_csv_nan(): test_df = request_handling.parse_csv(""" # comment line timestamp,value,quality_flag 2018-10-29T12:00:00Z,32.93,0 2018-10-29T13:00:00Z,25.17,0 2018-10-29T14:00:00Z,,1 # this value is NaN 2018-10-29T15:00:00Z,NaN,0 """) pdt.assert_frame_equal(test_df, null_df) def test_parse_json_nan(): test_df = request_handling.parse_json(""" {"values":[ {"timestamp": "2018-10-29T12:00:00Z", "value": 32.93, "quality_flag": 0}, {"timestamp": "2018-10-29T13:00:00Z", "value": 25.17, "quality_flag": 0}, {"timestamp": "2018-10-29T14:00:00Z", "value": null, "quality_flag": 1}, {"timestamp": "2018-10-29T15:00:00Z", "value": null, "quality_flag": 0} ]} """) pdt.assert_frame_equal(test_df, null_df) @pytest.mark.parametrize('data,mimetype', [ (csv_string, 'text/csv'), (csv_string, 'application/vnd.ms-excel'), (json_string, 'application/json') ]) def test_parse_values_success(app, data, mimetype): with app.test_request_context(): test_df = request_handling.parse_values(data, mimetype) pdt.assert_frame_equal(test_df, expected_parsed_df) @pytest.mark.parametrize('data,mimetype', [ (csv_string, 'application/fail'), (json_string, 'image/bmp'), ]) def test_parse_values_failure(data, mimetype): with pytest.raises(request_handling.BadAPIRequest): request_handling.parse_values(data, mimetype) @pytest.mark.parametrize('dt_string,expected', [ ('20190101T1200Z', pd.Timestamp('20190101T1200Z')), ('20190101T1200', pd.Timestamp('20190101T1200Z')), ('20190101T1200+0700', pd.Timestamp('20190101T0500Z')) ]) def test_parse_to_timestamp(dt_string, expected): parsed_dt = request_handling.parse_to_timestamp(dt_string) assert parsed_dt == expected @pytest.mark.parametrize('dt_string', [ 'invalid datetime', '21454543251345234', '20190101T2500Z', 'NaT', ]) def test_parse_to_timestamp_error(dt_string): with pytest.raises(ValueError): request_handling.parse_to_timestamp(dt_string) @pytest.mark.parametrize('index,interval_length,previous_time', [ (pd.date_range(start='2019-09-01T1200Z', end='2019-09-01T1300Z', freq='10min'), 10, pd.Timestamp('2019-09-01T1150Z')), (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0200Z', '2019-09-01T0400Z']), 120, None), (pd.DatetimeIndex(['2019-09-01T0006Z', '2019-09-01T0011Z', '2019-09-01T0016Z']), 5, pd.Timestamp('2019-09-01T0001Z')), (pd.DatetimeIndex(['2019-09-01T0006Z', '2019-09-01T0013Z', '2019-09-01T0020Z']), 7, pd.Timestamp('2019-08-31T2352Z')), # out of order pytest.param( pd.DatetimeIndex(['2019-09-01T0013Z', '2019-09-01T0006Z', '2019-09-01T0020Z']), 7, pd.Timestamp('2019-08-31T2352Z'), marks=pytest.mark.xfail), (pd.date_range(start='2019-03-10 00:00', end='2019-03-10 05:00', tz='America/Denver', freq='1h'), 60, None), # DST transition (pd.date_range(start='2019-11-03 00:00', end='2019-11-03 05:00', tz='America/Denver', freq='1h'), 60, None), # DST transition (pd.DatetimeIndex(['2019-01-01T000132Z']), 33, None), (pd.DatetimeIndex(['2019-01-01T000132Z']), 30, pd.Timestamp('2018-12-01T000132Z')), (pd.DatetimeIndex(['2019-01-01T000132Z']), 30, pd.Timestamp('2019-01-02T000132Z')) ]) def test_validate_index_period(index, interval_length, previous_time): request_handling.validate_index_period(index, interval_length, previous_time) def test_validate_index_empty(): with pytest.raises(request_handling.BadAPIRequest): request_handling.validate_index_period(pd.DatetimeIndex([]), 10, None) @pytest.mark.parametrize('index,interval_length', [ (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0200Z', '2019-09-01T0300Z']), 60), (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0030Z', '2019-09-01T0300Z']), 30), (pd.date_range(start='2019-09-01T1200Z', end='2019-09-01T1300Z', freq='20min'), 10), ]) def test_validate_index_period_missing(index, interval_length): with pytest.raises(request_handling.BadAPIRequest) as e: request_handling.validate_index_period(index, interval_length, index[0]) errs = e.value.errors['timestamp'] assert len(errs) == 1 assert 'Missing' in errs[0] @pytest.mark.parametrize('index,interval_length', [ (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0100Z', '2019-09-01T0200Z']), 120), (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0030Z', '2019-09-01T0045Z']), 30), (pd.date_range(start='2019-09-01T1200Z', end='2019-09-01T1300Z', freq='5min'), 10), ]) def test_validate_index_period_extra(index, interval_length): with pytest.raises(request_handling.BadAPIRequest) as e: request_handling.validate_index_period(index, interval_length, index[0]) errs = e.value.errors['timestamp'] assert len(errs) == 1 assert 'extra' in errs[0] @pytest.mark.parametrize('index,interval_length', [ (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0100Z', '2019-09-01T0201Z']), 120), (pd.DatetimeIndex(['2019-09-01T0000Z', '2019-09-01T0030Z', '2019-09-01T0130Z']), 30), (pd.date_range(start='2019-09-01T1200Z', end='2019-09-01T1305Z', freq='5min'), 10), ]) def test_validate_index_period_other(index, interval_length): with pytest.raises(request_handling.BadAPIRequest) as e: request_handling.validate_index_period(index, interval_length, index[0]) errs = e.value.errors['timestamp'] assert len(errs) > 0 @pytest.mark.parametrize('index,interval_length,previous_time', [ (pd.date_range(start='2019-09-01T1200Z', end='2019-09-01T1300Z', freq='10min'), 10, pd.Timestamp('2019-09-01T1155Z')), (pd.DatetimeIndex(['2019-09-01T0006Z', '2019-09-01T0011Z', '2019-09-01T0016Z']), 5, pd.Timestamp('2019-09-01T0000Z')), (pd.DatetimeIndex(['2019-09-01T0006Z', '2019-09-01T0013Z', '2019-09-01T0020Z']), 7, pd.Timestamp('2019-09-01T0000Z')), (pd.DatetimeIndex(['2019-01-01T000132Z']), 30, pd.Timestamp('2018-12-01T000232Z')), (pd.DatetimeIndex(['2019-01-01T000132Z']), 30, pd.Timestamp('2020-12-01T000232Z')) ]) def test_validate_index_period_previous(index, interval_length, previous_time): with pytest.raises(request_handling.BadAPIRequest) as e: request_handling.validate_index_period(index, interval_length, previous_time) errs = e.value.errors['timestamp'] assert len(errs) == 1 assert 'previous time' in errs[0] @pytest.mark.parametrize('ep,res', [ ('{"restrict_upload": true}', True), ('{"restrict_upload": true, "other_key": 1}', True), ('{"restrict_upload" : true}', True), ('{"restrict_upload" : True}', True), ('{"restrict_upload": 1}', False), ('{"restrict_upload": false}', False), ('{"restrict_uploa": true}', False), ('{"upload_restrict_upload": true}', False), ]) def test__restrict_in_extra(ep, res): assert request_handling._restrict_in_extra(ep) is res def test__current_utc_timestamp(): t = request_handling._current_utc_timestamp() assert isinstance(t, pd.Timestamp) assert t.tzinfo == pytz.utc def test_restrict_upload_window_noop(): assert request_handling.restrict_forecast_upload_window( '', None, None) is None @pytest.mark.parametrize('now,first', [ (pd.Timestamp('2019-11-01T11:59Z'), pd.Timestamp('2019-11-01T13:00Z')), (pd.Timestamp('2019-11-01T12:00Z'), pd.Timestamp('2019-11-01T13:00Z')), (
pd.Timestamp('2019-11-01T00:00Z')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Sun May 17 14:48:16 2020 @author: <NAME> """ import json import requests import matplotlib.pyplot as plt import numpy as np import pandas as pd from fbprophet import Prophet import math import time import calendar from datetime import date, datetime def india_world_pred(): plt.close('all') plt.rcParams.update({'figure.max_open_warning': 0}) #**** INDIA **** response = requests.get("https://corona.lmao.ninja/v3/covid-19/historical/india?lastdays=all") india = json.loads(response.text) cases=[] deaths=[] rec=[] for i in india['timeline']: for j in india['timeline'][i].items(): if i == 'cases': cases.append(j) elif i == 'deaths': deaths.append(j) else: rec.append(j) #creating dataframe in the structure acceptable by fb prophet cases = pd.DataFrame(cases,columns = ['ds','y']) deaths = pd.DataFrame(deaths,columns = ['ds','y']) rec=pd.DataFrame(rec,columns = ['ds','y']) #modifying the time #year = (datetime.now()).strftime('%Y') dates_list = [] for i in range(len(cases)): a = cases['ds'][i].split("/") b = a[1]+' '+calendar.month_abbr[int(a[0])]+' 20'+ a[2] dates_list.append(b) dates_list = pd.DataFrame(dates_list,columns = ['Date']) #creating csv file for india original = pd.concat([dates_list['Date'],cases['y'],deaths['y'],rec['y']], axis=1,sort=False) original.columns = ['Date','Cases','Deaths','Recoveries'] original.to_csv("data/india_original.csv") #converting values to log cases['y'] = np.log(cases['y']) deaths['y'] = np.log(deaths['y']) rec['y'] = np.log(rec['y']) #replacing infinite values with 0 for i in range(len(cases)): if math.isinf(cases['y'][i]): cases['y'][i]=0 if math.isinf(deaths['y'][i]): deaths['y'][i]=0 if math.isinf(rec['y'][i]): rec['y'][i]=0 ###predicting cases using fb prophet m = Prophet() m.add_seasonality(name='daily', period=40.5, fourier_order=5) m.fit(cases) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting the model and saving it for cases plot_locations = [] fig = m.plot(forecast) location = "static/img/plot/india_plot_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/india_components_cases" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) #final dataframe for cases final_cases = pd.DataFrame() final_cases['ds'] = forecast['ds'] final_cases['y'] = np.exp(forecast['yhat']) final_cases = final_cases.iloc[(len(final_cases)-7):,:].reset_index() final_cases.drop(columns = 'index',inplace=True) ###predicting deaths using fb prophet model m = Prophet() m.add_seasonality(name='daily', period=40.5, fourier_order=5) m.fit(deaths) future = m.make_future_dataframe(periods=7) # future.tail() forecast = m.predict(future) # forecast[['ds', 'yhat']].tail() #plotting the model and saving it for deaths fig = m.plot(forecast) location = "static/img/plot/india_plot_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] fig.legend(("actual","fitted","80% confidence interval"),loc='center right',fontsize=10) plt.savefig(location,figsize=(15,7),dpi=250) fig = m.plot_components(forecast) location = "static/img/plot/india_component_deaths" + str(date.today()) + ".png" plot_locations = plot_locations + [location] plt.savefig(location,figsize=(15,7),dpi=250) #final dataframe for deaths final_deaths =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import os, errno import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp from scipy.spatial.distance import squareform from sklearn.decomposition.nmf import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc def save_df_to_npz(obj, filename): np.savez_compressed(filename, data=obj.values, index=obj.index.values, columns=obj.columns.values) def save_df_to_text(obj, filename): obj.to_csv(filename, sep='\t') def load_df_from_npz(filename): with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return (p for i,p in enumerate(iterable) if (i-worker_index)%total_workers==0) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1,1)) D += squared_norms.reshape((1,-1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return(beta) def fast_ols_all_cols_df(X,Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return(beta) def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean**2) return(var) def get_highvar_genes_sparse(expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy(); E2.data **= 2; gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean**2)) del(E2) gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var)/gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ((gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high)) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A**2)*gene_mean + (B**2) fano_ratio = (gene_fano/gene_expected_fano) # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T=None else: if not expected_fano_threshold: T = (1. + gene_counts_fano[winsor_box].std()) else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame({ 'mean': gene_mean, 'var': gene_var, 'fano': gene_fano, 'expected_fano': gene_expected_fano, 'high_var': high_var_genes_ind, 'fano_ratio': fano_ratio }) gene_fano_parameters = { 'A': A, 'B': B, 'T':T, 'minimal_mean': minimal_mean, } return(gene_counts_stats, gene_fano_parameters) def get_highvar_genes(input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano = pd.Series(gene_counts_var/gene_counts_mean) # Find parameters for expected fano line top_genes = gene_counts_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_counts_var)/gene_counts_mean)[top_genes].min() w_mean_low, w_mean_high = gene_counts_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_counts_fano.quantile([0.10, 0.90]) winsor_box = ((gene_counts_fano > w_fano_low) & (gene_counts_fano < w_fano_high) & (gene_counts_mean > w_mean_low) & (gene_counts_mean < w_mean_high)) fano_median = gene_counts_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A**2)*gene_counts_mean + (B**2) fano_ratio = (gene_counts_fano/gene_expected_fano) # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T=None else: if not expected_fano_threshold: T = (1. + gene_counts_fano[winsor_box].std()) else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame({ 'mean': gene_counts_mean, 'var': gene_counts_var, 'fano': gene_counts_fano, 'expected_fano': gene_expected_fano, 'high_var': high_var_genes_ind, 'fano_ratio': fano_ratio }) gene_fano_parameters = { 'A': A, 'B': B, 'T':T, 'minimal_mean': minimal_mean, } return(gene_counts_stats, gene_fano_parameters) def compute_tpm(input_counts): """ Default TPM normalization """ tpm = input_counts.copy() sc.pp.normalize_per_cell(tpm, counts_per_cell_after=1e6) return(tpm) class cNMF(): def __init__(self, output_dir=".", name=None): """ Parameters ---------- output_dir : path, optional (default=".") Output directory for analysis files. name : string, optional (default=None) A name for this analysis. Will be prefixed to all output files. If set to None, will be automatically generated from date (and random string). """ self.output_dir = output_dir if name is None: now = datetime.datetime.now() rand_hash = uuid.uuid4().hex[:6] name = '%s_%s' % (now.strftime("%Y_%m_%d"), rand_hash) self.name = name self.paths = None def _initialize_dirs(self): if self.paths is None: # Check that output directory exists, create it if needed. check_dir_exists(self.output_dir) check_dir_exists(os.path.join(self.output_dir, self.name)) check_dir_exists(os.path.join(self.output_dir, self.name, 'cnmf_tmp')) self.paths = { 'normalized_counts' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.norm_counts.h5ad'), 'nmf_replicate_parameters' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.nmf_params.df.npz'), 'nmf_run_parameters' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.nmf_idvrun_params.yaml'), 'nmf_genes_list' : os.path.join(self.output_dir, self.name, self.name+'.overdispersed_genes.txt'), 'tpm' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.tpm.h5ad'), 'tpm_stats' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.tpm_stats.df.npz'), 'iter_spectra' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.iter_%d.df.npz'), 'iter_usages' : os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.usages.k_%d.iter_%d.df.npz'), 'merged_spectra': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.merged.df.npz'), 'local_density_cache': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.local_density_cache.k_%d.merged.df.npz'), 'consensus_spectra': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.spectra.k_%d.dt_%s.consensus.df.npz'), 'consensus_spectra__txt': os.path.join(self.output_dir, self.name, self.name+'.spectra.k_%d.dt_%s.consensus.txt'), 'consensus_usages': os.path.join(self.output_dir, self.name, 'cnmf_tmp',self.name+'.usages.k_%d.dt_%s.consensus.df.npz'), 'consensus_usages__txt': os.path.join(self.output_dir, self.name, self.name+'.usages.k_%d.dt_%s.consensus.txt'), 'consensus_stats': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.stats.k_%d.dt_%s.df.npz'), 'clustering_plot': os.path.join(self.output_dir, self.name, self.name+'.clustering.k_%d.dt_%s.png'), 'gene_spectra_score': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.gene_spectra_score.k_%d.dt_%s.df.npz'), 'gene_spectra_score__txt': os.path.join(self.output_dir, self.name, self.name+'.gene_spectra_score.k_%d.dt_%s.txt'), 'gene_spectra_tpm': os.path.join(self.output_dir, self.name, 'cnmf_tmp', self.name+'.gene_spectra_tpm.k_%d.dt_%s.df.npz'), 'gene_spectra_tpm__txt': os.path.join(self.output_dir, self.name, self.name+'.gene_spectra_tpm.k_%d.dt_%s.txt'), 'k_selection_plot' : os.path.join(self.output_dir, self.name, self.name+'.k_selection.png'), 'k_selection_stats' : os.path.join(self.output_dir, self.name, self.name+'.k_selection_stats.df.npz'), } def get_norm_counts(self, counts, tpm, high_variance_genes_filter = None, num_highvar_genes = None ): """ Parameters ---------- counts : anndata.AnnData Scanpy AnnData object (cells x genes) containing raw counts. Filtered such that no genes or cells with 0 counts tpm : anndata.AnnData Scanpy AnnData object (cells x genes) containing tpm normalized data matching counts high_variance_genes_filter : np.array, optional (default=None) A pre-specified list of genes considered to be high-variance. Only these genes will be used during factorization of the counts matrix. Must match the .var index of counts and tpm. If set to None, high-variance genes will be automatically computed, using the parameters below. num_highvar_genes : int, optional (default=None) Instead of providing an array of high-variance genes, identify this many most overdispersed genes for filtering Returns ------- normcounts : anndata.AnnData, shape (cells, num_highvar_genes) A counts matrix containing only the high variance genes and with columns (genes)normalized to unit variance """ if high_variance_genes_filter is None: ## Get list of high-var genes if one wasn't provided if sp.issparse(tpm.X): (gene_counts_stats, gene_fano_params) = get_highvar_genes_sparse(tpm.X, numgenes=num_highvar_genes) else: (gene_counts_stats, gene_fano_params) = get_highvar_genes(np.array(tpm.X), numgenes=num_highvar_genes) high_variance_genes_filter = list(tpm.var.index[gene_counts_stats.high_var.values]) ## Subset out high-variance genes norm_counts = counts[:, high_variance_genes_filter] ## Scale genes to unit variance if sp.issparse(tpm.X): sc.pp.scale(norm_counts, zero_center=False) if np.isnan(norm_counts.X.data).sum() > 0: print('Warning NaNs in normalized counts matrix') else: norm_counts.X /= norm_counts.X.std(axis=0, ddof=1) if np.isnan(norm_counts.X).sum().sum() > 0: print('Warning NaNs in normalized counts matrix') ## Save a \n-delimited list of the high-variance genes used for factorization open(self.paths['nmf_genes_list'], 'w').write('\n'.join(high_variance_genes_filter)) ## Check for any cells that have 0 counts of the overdispersed genes zerocells = norm_counts.X.sum(axis=1)==0 if zerocells.sum()>0: examples = norm_counts.obs.index[zerocells] print('Warning: %d cells have zero counts of overdispersed genes. E.g. %s' % (zerocells.sum(), examples[0])) print('Consensus step may not run when this is the case') return(norm_counts) def save_norm_counts(self, norm_counts): self._initialize_dirs() sc.write(self.paths['normalized_counts'], norm_counts) def get_nmf_iter_params(self, ks, n_iter = 100, random_state_seed = None, beta_loss = 'kullback-leibler'): """ Create a DataFrame with parameters for NMF iterations. Parameters ---------- ks : integer, or list-like. Number of topics (components) for factorization. Several values can be specified at the same time, which will be run independently. n_iter : integer, optional (defailt=100) Number of iterations for factorization. If several ``k`` are specified, this many iterations will be run for each value of ``k``. random_state_seed : int or None, optional (default=None) Seed for sklearn random state. """ if type(ks) is int: ks = [ks] # Remove any repeated k values, and order. k_list = sorted(set(list(ks))) n_runs = len(ks)* n_iter np.random.seed(seed=random_state_seed) nmf_seeds = np.random.randint(low=1, high=(2**32)-1, size=n_runs) replicate_params = [] for i, (k, r) in enumerate(itertools.product(k_list, range(n_iter))): replicate_params.append([k, r, nmf_seeds[i]]) replicate_params = pd.DataFrame(replicate_params, columns = ['n_components', 'iter', 'nmf_seed']) _nmf_kwargs = dict( alpha=0.0, l1_ratio=0.0, beta_loss=beta_loss, solver='mu', tol=1e-4, max_iter=400, regularization=None, init='random' ) ## Coordinate descent is faster than multiplicative update but only works for frobenius if beta_loss == 'frobenius': _nmf_kwargs['solver'] = 'cd' return(replicate_params, _nmf_kwargs) def save_nmf_iter_params(self, replicate_params, run_params): self._initialize_dirs() save_df_to_npz(replicate_params, self.paths['nmf_replicate_parameters']) with open(self.paths['nmf_run_parameters'], 'w') as F: yaml.dump(run_params, F) def _nmf(self, X, nmf_kwargs): """ Parameters ---------- X : pandas.DataFrame, Normalized counts dataFrame to be factorized. nmf_kwargs : dict, Arguments to be passed to ``non_negative_factorization`` """ (usages, spectra, niter) = non_negative_factorization(X, **nmf_kwargs) return(spectra, usages) def run_nmf(self, worker_i=1, total_workers=1, ): """ Iteratively run NMF with prespecified parameters. Use the `worker_i` and `total_workers` parameters for parallelization. Generic kwargs for NMF are loaded from self.paths['nmf_run_parameters'], defaults below:: ``non_negative_factorization`` default arguments: alpha=0.0 l1_ratio=0.0 beta_loss='kullback-leibler' solver='mu' tol=1e-4, max_iter=200 regularization=None init='random' random_state, n_components are both set by the prespecified self.paths['nmf_replicate_parameters']. Parameters ---------- norm_counts : pandas.DataFrame, Normalized counts dataFrame to be factorized. (Output of ``normalize_counts``) run_params : pandas.DataFrame, Parameters for NMF iterations. (Output of ``prepare_nmf_iter_params``) """ self._initialize_dirs() run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) norm_counts = sc.read(self.paths['normalized_counts']) _nmf_kwargs = yaml.load(open(self.paths['nmf_run_parameters']), Loader=yaml.FullLoader) jobs_for_this_worker = worker_filter(range(len(run_params)), worker_i, total_workers) for idx in jobs_for_this_worker: p = run_params.iloc[idx, :] print('[Worker %d]. Starting task %d.' % (worker_i, idx)) _nmf_kwargs['random_state'] = p['nmf_seed'] _nmf_kwargs['n_components'] = p['n_components'] (spectra, usages) = self._nmf(norm_counts.X, _nmf_kwargs) spectra = pd.DataFrame(spectra, index=np.arange(1, _nmf_kwargs['n_components']+1), columns=norm_counts.var.index) save_df_to_npz(spectra, self.paths['iter_spectra'] % (p['n_components'], p['iter'])) def combine_nmf(self, k, remove_individual_iterations=False): run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) print('Combining factorizations for k=%d.'%k) self._initialize_dirs() combined_spectra = None n_iter = sum(run_params.n_components==k) run_params_subset = run_params[run_params.n_components==k].sort_values('iter') spectra_labels = [] for i,p in run_params_subset.iterrows(): spectra = load_df_from_npz(self.paths['iter_spectra'] % (p['n_components'], p['iter'])) if combined_spectra is None: combined_spectra = np.zeros((n_iter, k, spectra.shape[1])) combined_spectra[p['iter'], :, :] = spectra.values for t in range(k): spectra_labels.append('iter%d_topic%d'%(p['iter'], t+1)) combined_spectra = combined_spectra.reshape(-1, combined_spectra.shape[-1]) combined_spectra = pd.DataFrame(combined_spectra, columns=spectra.columns, index=spectra_labels) save_df_to_npz(combined_spectra, self.paths['merged_spectra']%k) return combined_spectra def consensus(self, k, density_threshold_str='0.5', local_neighborhood_size = 0.30,show_clustering = False, skip_density_and_return_after_stats = False, close_clustergram_fig=True): merged_spectra = load_df_from_npz(self.paths['merged_spectra']%k) norm_counts = sc.read(self.paths['normalized_counts']) if skip_density_and_return_after_stats: density_threshold_str = '2' density_threshold_repl = density_threshold_str.replace('.', '_') density_threshold = float(density_threshold_str) n_neighbors = int(local_neighborhood_size * merged_spectra.shape[0]/k) # Rescale topics such to length of 1. l2_spectra = (merged_spectra.T/np.sqrt((merged_spectra**2).sum(axis=1))).T if not skip_density_and_return_after_stats: # Compute the local density matrix (if not previously cached) topics_dist = None if os.path.isfile(self.paths['local_density_cache'] % k): local_density = load_df_from_npz(self.paths['local_density_cache'] % k) else: # first find the full distance matrix topics_dist = squareform(fast_euclidean(l2_spectra.values)) # partition based on the first n neighbors partitioning_order = np.argpartition(topics_dist, n_neighbors+1)[:, :n_neighbors+1] # find the mean over those n_neighbors (excluding self, which has a distance of 0) distance_to_nearest_neighbors = topics_dist[np.arange(topics_dist.shape[0])[:, None], partitioning_order] local_density = pd.DataFrame(distance_to_nearest_neighbors.sum(1)/(n_neighbors), columns=['local_density'], index=l2_spectra.index) save_df_to_npz(local_density, self.paths['local_density_cache'] % k) del(partitioning_order) del(distance_to_nearest_neighbors) density_filter = local_density.iloc[:, 0] < density_threshold l2_spectra = l2_spectra.loc[density_filter, :] kmeans_model = KMeans(n_clusters=k, n_init=10, random_state=1) kmeans_model.fit(l2_spectra) kmeans_cluster_labels = pd.Series(kmeans_model.labels_+1, index=l2_spectra.index) # Find median usage for each gene across cluster median_spectra = l2_spectra.groupby(kmeans_cluster_labels).median() # Normalize median spectra to probability distributions. median_spectra = (median_spectra.T/median_spectra.sum(1)).T # Compute the silhouette score stability = silhouette_score(l2_spectra.values, kmeans_cluster_labels, metric='euclidean') # Obtain the reconstructed count matrix by re-fitting the usage matrix and computing the dot product: usage.dot(spectra) refit_nmf_kwargs = yaml.load(open(self.paths['nmf_run_parameters']), Loader=yaml.FullLoader) refit_nmf_kwargs.update(dict( n_components = k, H = median_spectra.values, update_H = False )) _, rf_usages = self._nmf(norm_counts.X, nmf_kwargs=refit_nmf_kwargs) rf_usages = pd.DataFrame(rf_usages, index=norm_counts.obs.index, columns=median_spectra.index) rf_pred_norm_counts = rf_usages.dot(median_spectra) # Compute prediction error as a frobenius norm if sp.issparse(norm_counts.X): prediction_error = ((norm_counts.X.todense() - rf_pred_norm_counts)**2).sum().sum() else: prediction_error = ((norm_counts.X - rf_pred_norm_counts)**2).sum().sum() consensus_stats = pd.DataFrame([k, density_threshold, stability, prediction_error], index = ['k', 'local_density_threshold', 'stability', 'prediction_error'], columns = ['stats']) if skip_density_and_return_after_stats: return consensus_stats save_df_to_npz(median_spectra, self.paths['consensus_spectra']%(k, density_threshold_repl)) save_df_to_npz(rf_usages, self.paths['consensus_usages']%(k, density_threshold_repl)) save_df_to_npz(consensus_stats, self.paths['consensus_stats']%(k, density_threshold_repl)) save_df_to_text(median_spectra, self.paths['consensus_spectra__txt']%(k, density_threshold_repl)) save_df_to_text(rf_usages, self.paths['consensus_usages__txt']%(k, density_threshold_repl)) # Compute gene-scores for each GEP by regressing usage on Z-scores of TPM tpm = sc.read(self.paths['tpm']) tpm_stats = load_df_from_npz(self.paths['tpm_stats']) if sp.issparse(tpm.X): norm_tpm = (np.array(tpm.X.todense()) - tpm_stats['__mean'].values) / tpm_stats['__std'].values else: norm_tpm = (tpm.X - tpm_stats['__mean'].values) / tpm_stats['__std'].values usage_coef = fast_ols_all_cols(rf_usages.values, norm_tpm) usage_coef = pd.DataFrame(usage_coef, index=rf_usages.columns, columns=tpm.var.index) save_df_to_npz(usage_coef, self.paths['gene_spectra_score']%(k, density_threshold_repl)) save_df_to_text(usage_coef, self.paths['gene_spectra_score__txt']%(k, density_threshold_repl)) # Convert spectra to TPM units, and obtain results for all genes by running last step of NMF # with usages fixed and TPM as the input matrix norm_usages = rf_usages.div(rf_usages.sum(axis=1), axis=0) refit_nmf_kwargs.update(dict( H = norm_usages.T.values, )) _, spectra_tpm = self._nmf(tpm.X.T, nmf_kwargs=refit_nmf_kwargs) spectra_tpm = pd.DataFrame(spectra_tpm.T, index=rf_usages.columns, columns=tpm.var.index) save_df_to_npz(spectra_tpm, self.paths['gene_spectra_tpm']%(k, density_threshold_repl)) save_df_to_text(spectra_tpm, self.paths['gene_spectra_tpm__txt']%(k, density_threshold_repl)) if show_clustering: if topics_dist is None: topics_dist = squareform(fast_euclidean(l2_spectra.values)) # (l2_spectra was already filtered using the density filter) else: # (but the previously computed topics_dist was not!) topics_dist = topics_dist[density_filter.values, :][:, density_filter.values] spectra_order = [] for cl in sorted(set(kmeans_cluster_labels)): cl_filter = kmeans_cluster_labels==cl if cl_filter.sum() > 1: cl_dist = squareform(topics_dist[cl_filter, :][:, cl_filter]) cl_dist[cl_dist < 0] = 0 #Rarely get floating point arithmetic issues cl_link = linkage(cl_dist, 'average') cl_leaves_order = leaves_list(cl_link) spectra_order += list(np.where(cl_filter)[0][cl_leaves_order]) else: ## Corner case where a component only has one element spectra_order += list(np.where(cl_filter)[0]) from matplotlib import gridspec import matplotlib.pyplot as plt width_ratios = [0.5, 9, 0.5, 4, 1] height_ratios = [0.5, 9] fig = plt.figure(figsize=(sum(width_ratios), sum(height_ratios))) gs = gridspec.GridSpec(len(height_ratios), len(width_ratios), fig, 0.01, 0.01, 0.98, 0.98, height_ratios=height_ratios, width_ratios=width_ratios, wspace=0, hspace=0) dist_ax = fig.add_subplot(gs[1,1], xscale='linear', yscale='linear', xticks=[], yticks=[],xlabel='', ylabel='', frameon=True) D = topics_dist[spectra_order, :][:, spectra_order] dist_im = dist_ax.imshow(D, interpolation='none', cmap='viridis', aspect='auto', rasterized=True) left_ax = fig.add_subplot(gs[1,0], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) left_ax.imshow(kmeans_cluster_labels.values[spectra_order].reshape(-1, 1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) top_ax = fig.add_subplot(gs[0,1], xscale='linear', yscale='linear', xticks=[], yticks=[], xlabel='', ylabel='', frameon=True) top_ax.imshow(kmeans_cluster_labels.values[spectra_order].reshape(1, -1), interpolation='none', cmap='Spectral', aspect='auto', rasterized=True) hist_gs = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=gs[1, 3], wspace=0, hspace=0) hist_ax = fig.add_subplot(hist_gs[0,0], xscale='linear', yscale='linear', xlabel='', ylabel='', frameon=True, title='Local density histogram') hist_ax.hist(local_density.values, bins=np.linspace(0, 1, 50)) hist_ax.yaxis.tick_right() xlim = hist_ax.get_xlim() ylim = hist_ax.get_ylim() if density_threshold < xlim[1]: hist_ax.axvline(density_threshold, linestyle='--', color='k') hist_ax.text(density_threshold + 0.02, ylim[1] * 0.95, 'filtering\nthreshold\n\n', va='top') hist_ax.set_xlim(xlim) hist_ax.set_xlabel('Mean distance to k nearest neighbors\n\n%d/%d (%.0f%%) spectra above threshold\nwere removed prior to clustering'%(sum(~density_filter), len(density_filter), 100*(~density_filter).mean())) fig.savefig(self.paths['clustering_plot']%(k, density_threshold_repl), dpi=250) if close_clustergram_fig: plt.close(fig) def k_selection_plot(self, close_fig=True): ''' Borrowed from <NAME>. 2013 Deciphering Mutational Signatures publication in Cell Reports ''' run_params = load_df_from_npz(self.paths['nmf_replicate_parameters']) stats = [] for k in sorted(set(run_params.n_components)): stats.append(self.consensus(k, skip_density_and_return_after_stats=True).stats) stats = pd.DataFrame(stats) stats.reset_index(drop = True, inplace = True) save_df_to_npz(stats, self.paths['k_selection_stats']) fig = plt.figure(figsize=(6, 4)) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(stats.k, stats.stability, 'o-', color='b') ax1.set_ylabel('Stability', color='b', fontsize=15) for tl in ax1.get_yticklabels(): tl.set_color('b') #ax1.set_xlabel('K', fontsize=15) ax2.plot(stats.k, stats.prediction_error, 'o-', color='r') ax2.set_ylabel('Error', color='r', fontsize=15) for tl in ax2.get_yticklabels(): tl.set_color('r') ax1.set_xlabel('Number of Components', fontsize=15) ax1.grid('on') plt.tight_layout() fig.savefig(self.paths['k_selection_plot'], dpi=250) if close_fig: plt.close(fig) if __name__=="__main__": """ Example commands for now: output_dir="/Users/averes/Projects/Melton/Notebooks/2018/07-2018/cnmf_test/" python cnmf.py prepare --output-dir $output_dir \ --name test --counts /Users/averes/Projects/Melton/Notebooks/2018/07-2018/cnmf_test/test_data.df.npz \ -k 6 7 8 9 --n-iter 5 python cnmf.py factorize --name test --output-dir $output_dir THis can be parallelized as such: python cnmf.py factorize --name test --output-dir $output_dir --total-workers 2 --worker-index WORKER_INDEX (where worker_index starts with 0) python cnmf.py combine --name test --output-dir $output_dir python cnmf.py consensus --name test --output-dir $output_dir """ import sys, argparse parser = argparse.ArgumentParser() parser.add_argument('command', type=str, choices=['prepare', 'factorize', 'combine', 'consensus', 'k_selection_plot']) parser.add_argument('--name', type=str, help='[all] Name for analysis. All output will be placed in [output-dir]/[name]/...', nargs='?', default='cNMF') parser.add_argument('--output-dir', type=str, help='[all] Output directory. All output will be placed in [output-dir]/[name]/...', nargs='?', default='.') parser.add_argument('-c', '--counts', type=str, help='[prepare] Input (cell x gene) counts matrix as df.npz or tab delimited text file') parser.add_argument('-k', '--components', type=int, help='[prepare] Numper of components (k) for matrix factorization. Several can be specified with "-k 8 9 10"', nargs='+') parser.add_argument('-n', '--n-iter', type=int, help='[prepare] Numper of factorization replicates', default=100) parser.add_argument('--total-workers', type=int, help='[all] Total number of workers to distribute jobs to', default=1) parser.add_argument('--seed', type=int, help='[prepare] Seed for pseudorandom number generation', default=None) parser.add_argument('--genes-file', type=str, help='[prepare] File containing a list of genes to include, one gene per line. Must match column labels of counts matrix.', default=None) parser.add_argument('--numgenes', type=int, help='[prepare] Number of high variance genes to use for matrix factorization.', default=2000) parser.add_argument('--tpm', type=str, help='[prepare] Pre-computed (cell x gene) TPM values as df.npz or tab separated txt file. If not provided TPM will be calculated automatically', default=None) parser.add_argument('--beta-loss', type=str, choices=['frobenius', 'kullback-leibler', 'itakura-saito'], help='[prepare] Loss function for NMF.', default='frobenius') parser.add_argument('--densify', dest='densify', help='[prepare] Treat the input data as non-sparse', action='store_true', default=False) parser.add_argument('--worker-index', type=int, help='[factorize] Index of current worker (the first worker should have index 0)', default=0) parser.add_argument('--local-density-threshold', type=str, help='[consensus] Threshold for the local density filtering. This string must convert to a float >0 and <=2', default='0.5') parser.add_argument('--local-neighborhood-size', type=float, help='[consensus] Fraction of the number of replicates to use as nearest neighbors for local density filtering', default=0.30) parser.add_argument('--show-clustering', dest='show_clustering', help='[consensus] Produce a clustergram figure summarizing the spectra clustering', action='store_true') args = parser.parse_args() cnmf_obj = cNMF(output_dir=args.output_dir, name=args.name) cnmf_obj._initialize_dirs() if args.command == 'prepare': if args.counts.endswith('.h5ad'): input_counts = sc.read(args.counts) else: ## Load txt or compressed dataframe and convert to scanpy object if args.counts.endswith('.npz'): input_counts = load_df_from_npz(args.counts) else: input_counts = pd.read_csv(args.counts, sep='\t', index_col=0) if args.densify: input_counts = sc.AnnData(X=input_counts.values, obs=
pd.DataFrame(index=input_counts.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Script to count the number of process exclusions per policy. Description ----------- This script: 1.) Connects to the Cisco AMP for Endpoints API. 2.) Enumberates all of the policies in the environment. 3.) Downloads a copy of the policy.xml file for each policy and stores it in the "output" "policy_files" folder. 4.) Evaluates the exclusions for each policy. 5.) Creates tables with the number of file and policy exclusions for each policy. 6.) Stores the tables in csv format to the "output" folder. 7.) Generates a Caution and Warning message for policies that have a large number of process exclusions. Configure --------- To use the script: 1.) Configure the "api.cfg" file in the "config" folder with your AMP API client ID. 2.) Create credential in Windows "Credential Manager" a.) Under "Windows Credentials" click "Add a generic credential". b.) For "Internet or network address:" enter "AMP". c.) For "User name:" enter the AMP API client ID d.) For "Password:" enter the AMP API client secret File Output ----------- Policy.xml Files: Policy.xml files are stored as <policy_name>.xml in the "policy_files" folder within the "output" folder. Path_exculsions.csv File: The count of path exclusions by policy name can be found in the "path_exclusions.csv" file within the "output" folder. Process_exclusions.csv File: The count of process exclusions by policy name can be found in the "process_exclusions.csv" file within the "output" folder. This output file includes the number of process exclusions that apply to all child processes. Screen Output ------------- The script outputs: File exclusion count for policy by type <table> Process exclusion types by policy <table> CAUTION: Policy has close to the maximum of 100 process exceptions. <policy_name> has <number> exceptions WARNING: Policy exceeds the maximum 100 process exceptions. <policy_name> has <number> exceptions """ import configparser import logging from logging.config import fileConfig import xml.etree.ElementTree as ET import concurrent.futures import requests import keyring import pandas as pd from tabulate import tabulate import numpy as np class AMP4EP(): """AMP4EP class. Attributes ---------- cfg_file: Configuration file path client_id: Cisco AMP for Endpoint API Client ID limit: Number of policies to return url: Cisco AMP for Endpoints API address clt_pwd: Cisco AMP for Endpoints API password session: Request dession to the AMP API """ # Set the config file path cfg_file = r'.\config\api.cfg' # Read the config file config = configparser.ConfigParser() config.read(cfg_file) # Parse settings from config file and assign to class attributes clt_id = config.get('AMP', 'amp_client_id') limit = config.get('AMP', 'limit') url = config.get('AMP', 'amp_host') # Get password from the keyring clt_pwd = keyring.get_password("AMP", clt_id) # Create AMP session session = requests.session() session.auth = (clt_id, clt_pwd) @classmethod def get_policy_list(cls): """ Get list of policies. Parameters ---------- None. Returns ------- polices : Object A list of policies. """ LOG.debug('Attempting to get policy list') url = "{0}policies?limit={1}".format(cls.url, cls.limit) headers = {'Content-Type': 'application/json'} response = cls.session.get(url, headers=headers) HttpResp.status(response, url) policies = response.json() p_count = str(len(policies['data'])) LOG.info('Retrieved list of %s policies', p_count) return policies['data'] @classmethod def get_policy(cls, policy): """ Get policy xml data. Parameters ---------- policy : Objects Specific policy to get xml data for. Returns ------- policy_detail : Object A list of computer guids to move. <policy_name>.xml : file Policy XML file used by AMP4EP. """ # Set Policy Data p_name = policy['name'] p_link = policy['links']['policy'] LOG.debug('Attempting to get details for \"%s\"', p_name) # Get data from AMP API url = "{0}.xml".format(p_link) response = cls.session.get(url) HttpResp.status(response, p_name) # Write policy.xml file to output folder LOG.debug('Attempting to write policy.xml for \"%s\"', p_name) file_out = '.\\output\\policy_files\\' + p_name + '.xml' with open(file_out, 'w') as file: file.write(response.text) # Parse XML results doc = ET.fromstring(response.content) tree = ET.ElementTree(doc) root = tree.getroot() return root @classmethod def parse_path_exclusions(cls, policy, xml): """ Get policy xml data. Parameters ---------- policy : Object Specific policy metadata. xml : Object Specific policy data stored in the policy xml file. Returns ------- e_paths : Dataframe A list of path exclusions found in policies. """ # Create Variables e_paths = pd.DataFrame() # Set policy data p_name = policy['name'] p_guid = policy['guid'] # Find Exclusions LOG.debug('Attempting to find path exclusions for \"%s\"', p_name) # Get Exclusions for xml_exclusion in xml.iter( '{http://www.w3.org/2000/09/xmldsig#}exclusions'): # Get Path Exclusions for xml_path in xml_exclusion.iter( '{http://www.w3.org/2000/09/xmldsig#}info'): for xml_item in xml_path: e_class = 'path' exclusion = xml_item.text.split("|") e_item = {'p_name': p_name, 'p_guid': p_guid, 'e_class': e_class, 'e_type': exclusion[1], 'e_value': exclusion[4]} e_paths = e_paths.append(e_item, ignore_index=True) return e_paths @classmethod def parse_process_exclusions(cls, policy, xml): """ Get policy xml data. Parameters ---------- policy : Object Specific policy metadata. xml : Object Specific policy data stored in the policy xml file. Returns ------- e_processes : Dataframe A list of process exclusions found in policies. """ # Create Variables e_processes = pd.DataFrame() # Set policy data p_name = policy['name'] p_guid = policy['guid'] # Find Exclusions LOG.debug('Attempting to find process exclusions for \"%s\"', p_name) # Get Process Exclusions for xml_exclusion in xml.iter( '{http://www.w3.org/2000/09/xmldsig#}exclusions'): for xml_process in xml_exclusion.iter( '{http://www.w3.org/2000/09/xmldsig#}process'): for xml_item in xml_process: e_class = 'process' exclusion = xml_item.text.split("|") e_flag = int(exclusion[4]) e_item = {'Policy Name': p_name, 'Policy GUID': p_guid, 'Polcy Class': e_class, 'Exclusion Version': exclusion[0], 'Exclusion Auth Type': exclusion[1], 'Exclusion Hash': exclusion[2], 'Exclusion Path': exclusion[3], 'Exclusion Flag': int(e_flag), 'File Scan Child': bool(e_flag & (0b1 << 0)), 'Scan Files Written': bool(e_flag & (0b1 << 1)), 'System Process Protection': bool( e_flag & (0b1 << 2)), 'System Process Protection Child': bool( e_flag & (0b1 << 3)), 'Malicious Activity': bool(e_flag & (0b1 << 4)), 'Malicious Activity Child': bool( e_flag & (0b1 << 5)), 'Self Protect': bool(e_flag & (0b1 << 6)), 'Self Protect Child': bool(e_flag & (0b1 << 7)), 'Behavioral Protection': bool( e_flag & (0b1 << 8)), 'Behavioral Protection Child': bool( e_flag & (0b1 << 9))} e_processes = e_processes.append(e_item, ignore_index=True) return e_processes @classmethod def exclusion_report(cls, path, process): """ Get policy xml data. Parameters ---------- path : Dataframe Dataframe of path exclusions process : Dataframe Datafrome of process exclusions. Returns ------- None. """ # Set Pandas display parameters pd.options.display.max_columns = None pd.options.display.width = None # Cross Tabulate Path Exclusions LOG.debug('Creating Path Exclusion Summary') path_exc = pd.crosstab(path.p_name, path.e_type, rownames=['Policy Name'], margins=True, margins_name='Total Exclusions') path_exc = path_exc.rename(columns={'1': 'Threat', '2': 'Path', '3': 'File Extension', '4': 'File Name', '5': 'Process', '6': 'Wildcard'}) path_exc = path_exc.drop(path_exc.index[len(path_exc) - 1]) # Calculate Process Exclusions LOG.debug('Creating Process Exclusion Summary') process['File Scan'] = process['Exclusion Flag'].apply( lambda x: x in range(0, 3), True) pvt_process = pd.pivot_table(process, values=['Policy GUID', 'File Scan', 'File Scan Child', 'System Process Protection', 'System Process Protection Child', 'Malicious Activity', 'Malicious Activity Child', 'Self Protect', 'Self Protect Child', 'Behavioral Protection', 'Behavioral Protection Child'], index='Policy Name', aggfunc={'Policy GUID': len, 'File Scan': np.sum, 'File Scan Child': np.sum, 'System Process Protection': np.sum, 'System Process Protection Child': np.sum, 'Malicious Activity': np.sum, 'Malicious Activity Child': np.sum, 'Self Protect': np.sum, 'Self Protect Child': np.sum, 'Behavioral Protection': np.sum, 'Behavioral Protection Child': np.sum}, fill_value=0) pvt_process = pvt_process.rename(columns={'Policy GUID': 'Total Exclusions'}) pvt_process = pvt_process[['File Scan', 'File Scan Child', 'System Process Protection', 'System Process Protection Child', 'Malicious Activity', 'Malicious Activity Child', 'Self Protect', 'Self Protect Child', 'Behavioral Protection', 'Behavioral Protection Child', 'Total Exclusions']] # Caution level policies LOG.debug('Find policies with 90 - 100 Process Exclusions') caution_list =
pd.DataFrame()
pandas.DataFrame
""" Tests for Series cumulative operations. See also -------- tests.frame.test_cumulative """ import numpy as np import pytest import pandas as pd import pandas._testing as tm methods = { "cumsum": np.cumsum, "cumprod": np.cumprod, "cummin": np.minimum.accumulate, "cummax": np.maximum.accumulate, } def _check_accum_op(name, series, check_dtype=True): func = getattr(np, name) tm.assert_numpy_array_equal( func(series).values, func(np.array(series)), check_dtype=check_dtype ) # with missing values ts = series.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.dropna())) tm.assert_numpy_array_equal(result.values, expected, check_dtype=False) class TestSeriesCumulativeOps: def test_cumsum(self, datetime_series): _check_accum_op("cumsum", datetime_series) def test_cumprod(self, datetime_series): _check_accum_op("cumprod", datetime_series) @pytest.mark.parametrize("method", ["cummin", "cummax"]) def test_cummin_cummax(self, datetime_series, method): ufunc = methods[method] result = getattr(datetime_series, method)().values expected = ufunc(np.array(datetime_series)) tm.assert_numpy_array_equal(result, expected) ts = datetime_series.copy() ts[::2] = np.NaN result = getattr(ts, method)()[1::2] expected = ufunc(ts.dropna()) result.index = result.index._with_freq(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ts", [ pd.Timedelta(0),
pd.Timestamp("1999-12-31")
pandas.Timestamp
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-21', '2015-01-22') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 310, pd.Timestamp('2015-01-09')), (10, 311, pd.Timestamp('2015-01-15')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-11')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateWindows(NextEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader(bz.data(events), columns) class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp('2015-01-14') @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-09'), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp('2015-01-20')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20')], 'estimate': [130., 131., 230., 231.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30 }) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [140., 240.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40 }) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [150., 250.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50 }) return pd.concat([ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ]) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (-1., 2., 3., 4., 5., 6., 7., 100), 'effective_date': (pd.Timestamp('2014-01-01'), # Filter out # Split before Q1 event & after first estimate pd.Timestamp('2015-01-07'), # Split before Q1 event pd.Timestamp('2015-01-09'), # Split before Q1 event pd.Timestamp('2015-01-13'), # Split before Q1 event pd.Timestamp('2015-01-15'), # Split before Q1 event pd.Timestamp('2015-01-18'), # Split after Q1 event and before Q2 event pd.Timestamp('2015-01-30'), # Filter out - this is after our date index pd.Timestamp('2016-01-01')) }) sid_10_splits = pd.DataFrame({ SID_FIELD_NAME: 10, 'ratio': (.2, .3), 'effective_date': ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp('2015-01-07'), # Apply a single split before Q1 event. pd.Timestamp('2015-01-20')), }) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame({ SID_FIELD_NAME: 20, 'ratio': (.4, .5, .6, .7, .8, .9,), 'effective_date': ( pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18'), pd.Timestamp('2015-01-30')), }) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame({ SID_FIELD_NAME: 30, 'ratio': (8, 9, 10, 11, 12), 'effective_date': ( # Split before the event and before the # split-asof-date. pd.Timestamp('2015-01-07'), # Split on date of event but before the # split-asof-date. pd.Timestamp('2015-01-09'), # Split after the event, but before the # split-asof-date. pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18')), }) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame({ SID_FIELD_NAME: 40, 'ratio': (13, 14), 'effective_date': ( pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-22') ) }) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame({ SID_FIELD_NAME: 50, 'ratio': (15, 16), 'effective_date': ( pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14') ) }) return pd.concat([ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ]) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-12') ]), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150. * 1 / 16, pd.Timestamp('2015-01-09')), ], pd.Timestamp('2015-01-13')), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')) ], pd.Timestamp('2015-01-14')), pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-01-21') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 221*.8*.9,
pd.Timestamp('2015-02-10')
pandas.Timestamp
import os import copy import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import matplotlib.dates as mdates from datetime import date, timedelta, datetime import seaborn as sns import geopandas as gpd import matplotlib.colors as colors from plotting.colors import load_color_palette mpl.rcParams['pdf.fonttype'] = 42 LL_date = '210412' idph_data_path = '/Volumes/fsmresfiles/PrevMed/Covid-19-Modeling/IDPH line list' cleaned_line_list_fname = os.path.join(idph_data_path, 'LL_%s_JGcleaned_no_race.csv' % LL_date) box_data_path = '/Users/jlg1657/Box/NU-malaria-team/data/covid_IDPH' project_path = '/Users/jlg1657/Box/NU-malaria-team/projects/covid_chicago' plot_path = os.path.join(project_path, 'Plots + Graphs', '_trend_tracking') emr_fname = os.path.join(box_data_path, 'emresource_by_region.csv') spec_coll_fname = os.path.join(box_data_path, 'Corona virus reports', '%s_LL_cases_by_EMS_spec_collection.csv' % LL_date) shp_path = os.path.join(box_data_path, 'shapefiles') def load_cleaned_line_list() : df = pd.read_csv(cleaned_line_list_fname) return df def make_heatmap(ax, adf, col) : palette = sns.color_palette('RdYlBu_r', 101) df = adf.dropna(subset=[col]) df = df.groupby([col, 'EMS'])['id'].agg(len).reset_index() df = df.rename(columns={'id' : col, col : 'date'}) df['date'] = pd.to_datetime(df['date']) df = df.sort_values(by=['EMS', 'date']) ax.fill_between([np.min(df['date']), np.max(df['date']) + timedelta(days=1)], [0.5, 0.5], [11.5, 11.5], linewidth=0, color=palette[0]) for ems, edf in df.groupby('EMS') : max_in_col = np.max(edf[col]) print(ems, max_in_col) for r, row in edf.iterrows() : ax.fill_between([row['date'], row['date'] + timedelta(days=1)], [ems-0.5, ems-0.5], [ems+0.5, ems+0.5], color=palette[int(row[col]/max_in_col*100)], linewidth=0) ax.set_title(col) ax.set_ylabel('EMS region') formatter = mdates.DateFormatter("%m-%d") ax.xaxis.set_major_formatter(formatter) ax.xaxis.set_major_locator(mdates.MonthLocator()) def heatmap() : adf = load_cleaned_line_list() fig = plt.figure(figsize=(10,5)) fig.subplots_adjust(left=0.05, right=0.97) cols = ['specimen_collection', 'deceased_date'] for c, col in enumerate(cols) : ax = fig.add_subplot(1,len(cols),c+1) make_heatmap(ax, adf, col) plt.savefig(os.path.join(plot_path, 'EMS_cases_deaths_heatmap_%sLL.png' % LL_date)) plt.show() def aggregate_to_date_spec_collection() : adf = load_cleaned_line_list() col = 'specimen_collection' df = adf.dropna(subset=[col]) df = df.groupby([col, 'EMS'])['id'].agg(len).reset_index() df = df.rename(columns={'id' : col, col : 'date'}) df = df.sort_values(by=['EMS', 'date']) df.to_csv(spec_coll_fname, index=False) def plot_EMS_by_line(colname) : df = pd.read_csv(os.path.join(box_data_path, 'Cleaned Data', '%s_jg_aggregated_covidregion.csv' % LL_date)) df = df[df['covid_region'].isin(range(1,12))] df['date'] = pd.to_datetime(df['date']) # df = df[(df['date'] > date(2020, 2, 29)) & (df['date'] < date(2021, 1, 1))] col = 'moving_ave' sns.set_style('whitegrid', {'axes.linewidth' : 0.5}) fig = plt.figure(figsize=(11,6)) fig.subplots_adjust(left=0.07, right=0.97, bottom=0.05, top=0.95, hspace=0.3, wspace=0.25) palette = sns.color_palette('Set1') formatter = mdates.DateFormatter("%m-%d") for e, (ems, edf) in enumerate(df.groupby('covid_region')) : ax = fig.add_subplot(3,4,e+1) edf['moving_ave'] = edf[colname].rolling(window=7, center=False).mean() max_in_col = np.max(edf[col]) ax.plot(edf['date'], edf[col], color=palette[0], label=ems) ax.fill_between(edf['date'].values, [0]*len(edf[col]), edf[col], color=palette[0], linewidth=0, alpha=0.3) ax.set_title('region %d' % ems) ax.set_ylim(0, max_in_col*1.05) ax.set_xlim(date(2020,3,10), np.max(df['date'])) ax.xaxis.set_major_formatter(formatter) ax.xaxis.set_major_locator(mdates.MonthLocator()) if e%4 == 0 : ax.set_ylabel(colname) fig.suptitle(colname) plt.savefig(os.path.join(plot_path, 'covid_region_%s_%sLL.png' % (colname, LL_date))) # plt.savefig(os.path.join(plot_path, 'covid_region_%s_%sLL_2020.pdf' % (colname, LL_date)), format='PDF') def format_ax(ax, name) : ax.set_title(name) ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') class MidpointNormalize(colors.Normalize): def __init__(self, vmin=None, vmax=None, vcenter=None, clip=False): self.vcenter = vcenter colors.Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.vcenter, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) def plot_ratio_ems() : def get_ratio(adf, ems, w): edf = adf[adf['EMS'] == ems] col = 'specimen_collection' d = edf[col].values if w == 0: recent = np.mean(d[-7:]) else: recent = np.mean(d[-7 * (w + 1):-7 * w]) back = np.mean(d[-7 * (w + 2):-7 * (w + 1)]) return recent / back df = pd.read_csv(spec_coll_fname) df['date'] = pd.to_datetime(df['date']) max_date = date(2020, 7, 8) df = df[df['date'] <= max_date] ems_shp = gpd.read_file(os.path.join(shp_path, 'EMS_Regions', 'EMS_Regions.shp')) ems_shp['REGION'] = ems_shp['REGION'].astype(int) fig = plt.figure(figsize=(12, 10)) fig.subplots_adjust(top=0.95) vmin, vmax = 0.4, 3 norm = MidpointNormalize(vmin=vmin, vcenter=1, vmax=vmax) for week in range(6) : ax = fig.add_subplot(2,3,6-week) format_ax(ax, '%d weeks ago vs %d weeks ago' % (week, week+1)) ems_shp['ratio'] = ems_shp['REGION'].apply(lambda x : get_ratio(df, x, week)) ems_shp.plot(column='ratio', ax=ax, cmap='RdYlBu_r', edgecolor='0.8', linewidth=0.8, legend=False, norm=norm) sm = plt.cm.ScalarMappable(cmap='RdYlBu_r', norm=norm) sm._A = [] cbar = fig.colorbar(sm, ax=ax) fig.suptitle('week over week ratio of cases by specimen collection date\nLL data ending ' + str(max_date)) plt.savefig(os.path.join(plot_path, 'EMS_weekly_case_ratio_%sLL.png' % LL_date)) def load_county_map_with_public_data() : from public_idph_data import load_county_cases df = load_county_cases() county_shp = gpd.read_file(os.path.join(shp_path, 'IL_BNDY_County', 'IL_BNDY_County_Py.shp')) cols = ['Positive_Cases', 'Deaths', 'Tested'] sdf = df[df['County'].isin(['Cook', 'Chicago'])] sdf = sdf.groupby('update_date')[cols].agg(np.sum).reset_index() sdf['County'] = 'Cook' df = df[~df['County'].isin(['Cook', 'Chicago'])] df = pd.concat([df, sdf], sort=True) df['County'] = df['County'].apply(lambda x : x.upper()) df.loc[df['County'] == 'DE WITT', 'County'] = 'DEWITT' # ds_shp = pd.merge(left=county_shp, right=df, left_on='COUNTY_NAM', right_on='County') df = df.sort_values(by=['County', 'update_date']) return county_shp, df def plot_ratio_county() : ds_shp, df = load_county_map_with_public_data() max_date = np.max(df['update_date']) fig = plt.figure(figsize=(12, 10)) fig.subplots_adjust(top=0.95) vmin, vmax = 0, 3 norm = MidpointNormalize(vmin=vmin, vcenter=1, vmax=vmax) def get_ratio(adf, county, w): cdf = adf[adf['County'] == county.upper()] # if len(cdf) == 0 : # return 100 cdf['daily_pos'] = np.insert(np.diff(cdf['Positive_Cases']), 0, 0) d = cdf['daily_pos'].values if w == 0: recent = np.mean(d[-7:]) else: recent = np.mean(d[-7 * (w + 1):-7 * w]) back = np.mean(d[-7 * (w + 2):-7 * (w + 1)]) if back == 0 and recent == 0 : return -1 if back == 0 : return vmax return min([recent / back, vmax]) for week in range(6) : ax = fig.add_subplot(2,3,6-week) format_ax(ax, '%d weeks ago vs %d weeks ago' % (week, week+1)) ds_shp['ratio'] = ds_shp['COUNTY_NAM'].apply(lambda x : get_ratio(df, x, week)) ds_shp.plot(ax=ax, color='#969696', edgecolor='0.8', linewidth=0.8, legend=False) pdf = ds_shp[ds_shp['ratio'] == -1] pdf.plot(ax=ax, color='#313695', edgecolor='0.8', linewidth=0.8, legend=False) pdf = ds_shp[ds_shp['ratio'] >= 0] pdf.plot(column='ratio', ax=ax, cmap='RdYlBu_r', edgecolor='0.8', linewidth=0.8, legend=False, norm=norm) sm = plt.cm.ScalarMappable(cmap='RdYlBu_r', norm=norm) sm._A = [] cbar = fig.colorbar(sm, ax=ax) fig.suptitle('week over week ratio of cases\npublic data ending ' + str(max_date)) plt.savefig(os.path.join(plot_path, 'county_weekly_case_ratio.png')) def plot_LL_all_IL() : df = pd.read_csv(os.path.join(box_data_path, 'Cleaned Data', '%s_jg_aggregated_covidregion.csv' % LL_date)) df = df.groupby('date')[['cases', 'deaths', 'admissions']].agg(np.sum).reset_index() df['date'] = pd.to_datetime(df['date']) df = df.sort_values(by='date') df = df[df['date'] >= date(2020, 3, 15)] palette = load_color_palette('wes') formatter = mdates.DateFormatter("%m-%d") sns.set_style('whitegrid', {'axes.linewidth' : 0.5}) fig = plt.figure(figsize=(8,6)) fig.subplots_adjust(left=0.1, right=0.97, bottom=0.05, top=0.97) def plot_data(adf, ax, col, color) : ax.bar(adf['date'].values, adf[col], align='center', color=color, linewidth=0, alpha=0.5) adf['moving_ave'] = adf[col].rolling(window=7, center=True).mean() ax.plot(adf['date'], adf['moving_ave'], '-', color=color) ax.set_ylabel('positives') ax.xaxis.set_major_formatter(formatter) ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.set_ylabel(col) ax = fig.add_subplot(3,1,1) plot_data(df, ax, 'cases', palette[0]) ax = fig.add_subplot(3,1,2) plot_data(df, ax, 'admissions', palette[4]) ax = fig.add_subplot(3,1,3) plot_data(df, ax, 'deaths', palette[3]) fig.savefig(os.path.join(plot_path, 'IL_cases_deaths_LL%s.png' % LL_date)) fig.savefig(os.path.join(plot_path, 'IL_cases_deaths_LL%s.pdf' % LL_date), format='PDF') def combo_LL_emr() : ldf = pd.read_csv(os.path.join(box_data_path, 'Cleaned Data', '%s_jg_aggregated_ems.csv' % LL_date)) edf = pd.read_csv(os.path.join(box_data_path, 'Corona virus reports', 'emresource_by_region.csv')) edf['date'] = pd.to_datetime(edf['date_of_extract']) edf = edf.rename(columns={'region' : 'EMS'}) edf = edf[['date', 'covid_non_icu', 'confirmed_covid_icu', 'EMS']] ldf['date'] = pd.to_datetime(ldf['date']) df =
pd.merge(left=ldf, right=edf, on=['date', 'EMS'], how='outer')
pandas.merge
import colorlover as cl import glob import logging import os import pandas as pd from bokeh.io import export_svgs, export_png from bokeh.plotting import figure from fivepseq import config from fivepseq.logic.structures.fivepseq_counts import CountManager, FivePSeqCounts from fivepseq.util.writers import FivePSeqOut from fivepseq.viz.bokeh_plots import bokeh_scatter_plot, bokeh_triangle_plot, bokeh_heatmap_grid, bokeh_frame_barplots, \ bokeh_composite, bokeh_fft_plot import numpy as np from fivepseq.logic.structures.codons import Codons class VizPipeline: FILTER_TOP_POPULATED = "populated" FILTER_CANONICAL_TRANSCRIPTS = "canonical" METACOUNTS_TERM = "_metacounts_term" METACOUNTS_START = "_metacounts_start" METACOUNTS_TERM_SCALED = "_metacounts_term_scaled" METACOUNTS_START_SCALED = "_metacounts_start_scaled" TRIANGLE_TERM = "_triangle_term" TRIANGLE_START = "_triangle_start" FRAME_TERM = "_frames_term" FRAME_START = "_frames_start" AMINO_ACID_PAUSES = "_amino_acid_pauses" AMINO_ACID_PAUSES_SCALED = "_amino_acid_pauses_scaled" FFT_TERM = "_fft_term" FFT_START = "_fft_start" count_folders = None title = "fivepseq_plot_canvas" png_dir = None svg_dir = None supplement_dir = "supplement" supplement_png_dir = None supplement_svg_dir = None logger = logging.getLogger(config.FIVEPSEQ_PLOT_LOGGER) fivepseq_counts = None args = None samples = [] meta_count_term_dict = {} meta_count_start_dict = {} count_vector_list_start_dict = {} count_vector_list_term_dict = {} amino_acid_df_dict = {} amino_acid_df_full_dict = {} codon_df_dict = {} codon_basesorted_df_dict = {} frame_count_term_dict = {} frame_count_start_dict = {} frame_stats_df_dict = {} fft_signal_start_dict = {} fft_signal_term_dict = {} loci_meta_counts_dict = {} data_summary_dict = {} transcript_index = None combine = False # do not combine plots until data counts are successfully combined COMBINED = "combined" meta_count_start_combined = pd.DataFrame() meta_count_term_combined = pd.DataFrame() frame_count_START_combined =
pd.DataFrame()
pandas.DataFrame
""" PIData contains a number of auxiliary classes that define common functionality among :class:`PIPoint` and :class:`PIAFAttribute` objects. """ # pragma pylint: disable=unused-import from __future__ import absolute_import, division, print_function, unicode_literals from builtins import ( ascii, bytes, chr, dict, filter, hex, input, int, list, map, next, object, oct, open, pow, range, round, str, super, zip, ) from datetime import datetime # pragma pylint: enable=unused-import try: from abc import ABC, abstractmethod except ImportError: from abc import ABCMeta, abstractmethod from __builtin__ import str as BuiltinStr ABC = ABCMeta(BuiltinStr("ABC"), (object,), {"__slots__": ()}) from pandas import DataFrame, Series from PIconnect.AFSDK import AF from PIconnect.PIConsts import ( BufferMode, CalculationBasis, ExpressionSampleType, RetrievalMode, SummaryType, TimestampCalculation, UpdateMode, get_enumerated_value, ) from PIconnect.time import timestamp_to_index, to_af_time_range, to_af_time class PISeries(Series): """PISeries Create a timeseries, derived from :class:`pandas.Series` Args: tag (str): Name of the new series timestamp (List[datetime]): List of datetime objects to create the new index value (List): List of values for the timeseries, should be equally long as the `timestamp` argument uom (str, optional): Defaults to None. Unit of measurement for the series .. todo:: Remove class, return to either plain :class:`pandas.Series` or a composition where the Series is just an attribute """ version = "0.1.0" def __init__(self, tag, timestamp, value, uom=None, *args, **kwargs): Series.__init__(self, data=value, index=timestamp, name=tag, *args, **kwargs) self.tag = tag self.uom = uom class PISeriesContainer(ABC): """PISeriesContainer With the ABC class we represent a general behaviour with PI Point object (General class for objects that return :class:`PISeries` objects). .. todo:: Move `__boundary_types` to PIConsts as a new enumeration """ version = "0.1.0" __boundary_types = { "inside": AF.Data.AFBoundaryType.Inside, "outside": AF.Data.AFBoundaryType.Outside, "interpolate": AF.Data.AFBoundaryType.Interpolated, } def __init__(self): pass @abstractmethod def _recorded_values(self, time_range, boundary_type, filter_expression): """Abstract implementation for recorded values The internals for retrieving recorded values from PI and PI-AF are different and should therefore be implemented by the respective data containers. """ pass @abstractmethod def _interpolated_values(self, time_range, interval, filter_expression): pass @abstractmethod def _interpolated_value(self, time): pass @abstractmethod def _recorded_value(self, time, retrieval_mode): pass @abstractmethod def _summary(self, time_range, summary_types, calculation_basis, time_type): pass @abstractmethod def _summaries( self, time_range, interval, summary_types, calculation_basis, time_type ): pass @abstractmethod def _filtered_summaries( self, time_range, interval, filter_expression, summary_types, calculation_basis, filter_evaluation, filter_interval, time_type, ): pass @abstractmethod def _current_value(self): pass @abstractmethod def _update_value(self, value, update_mode, buffer_mode): pass @abstractmethod def name(self): pass @abstractmethod def units_of_measurement(self): pass @property def current_value(self): """current_value Return the current value of the attribute.""" return self._current_value() def interpolated_value(self, time): """interpolated_value Return a PISeries with an interpolated value at the given time Args: time (str): String containing the date, and possibly time, for which to retrieve the value. This is parsed, using :afsdk:`AF.Time.AFTime <M_OSIsoft_AF_Time_AFTime__ctor_7.htm>`. Returns: PISeries: A PISeries with a single row, with the corresponding time as the index """ time = to_af_time(time) pivalue = self._interpolated_value(time) return PISeries( tag=self.name, value=pivalue.Value, timestamp=[timestamp_to_index(pivalue.Timestamp.UtcTime)], uom=self.units_of_measurement, ) def recorded_value(self, time, retrieval_mode=RetrievalMode.AUTO): """recorded_value Return a PISeries with the recorded value at or close to the given time Args: time (str): String containing the date, and possibly time, for which to retrieve the value. This is parsed, using :afsdk:`AF.Time.AFTime <M_OSIsoft_AF_Time_AFTime__ctor_7.htm>`. retrieval_mode (int or :any:`PIConsts.RetrievalMode`): Flag determining which value to return if no value available at the exact requested time. Returns: PISeries: A PISeries with a single row, with the corresponding time as the index """ time = to_af_time(time) pivalue = self._recorded_value(time, retrieval_mode) return PISeries( tag=self.name, value=pivalue.Value, timestamp=[timestamp_to_index(pivalue.Timestamp.UtcTime)], uom=self.units_of_measurement, ) def update_value( self, value, time=None, update_mode=UpdateMode.NO_REPLACE, buffer_mode=BufferMode.BUFFER_IF_POSSIBLE, ): """Update value for existing PI object. Args: value: value type should be in cohesion with PI object or it will raise PIException: [-10702] STATE Not Found time (datetime, optional): it is not possible to set future value, it raises PIException: [-11046] Target Date in Future. You can combine update_mode and time to change already stored value. """ if time: time = to_af_time(time) value = AF.Asset.AFValue(value, time) return self._update_value(value, int(update_mode), int(buffer_mode)) def recorded_values( self, start_time, end_time, boundary_type="inside", filter_expression="" ): """recorded_values Return a PISeries of recorded data. Data is returned between the given *start_time* and *end_time*, inclusion of the boundaries is determined by the *boundary_type* attribute. Both *start_time* and *end_time* are parsed by AF.Time and allow for time specification relative to "now" by use of the asterisk. By default the *boundary_type* is set to 'inside', which returns from the first value after *start_time* to the last value before *end_time*. The other options are 'outside', which returns from the last value before *start_time* to the first value before *end_time*, and 'interpolate', which interpolates the first value to the given *start_time* and the last value to the given *end_time*. *filter_expression* is an optional string to filter the returned values, see OSIsoft PI documentation for more information. The AF SDK allows for inclusion of filtered data, with filtered values marked as such. At this point PIconnect does not support this and filtered values are always left out entirely. Args: start_time (str or datetime): Containing the date, and possibly time, from which to retrieve the values. This is parsed, together with `end_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. end_time (str or datetime): Containing the date, and possibly time, until which to retrieve values. This is parsed, together with `start_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. boundary_type (str, optional): Defaults to 'inside'. Key from the `__boundary_types` dictionary to describe how to handle the boundaries of the time range. filter_expression (str, optional): Defaults to ''. Query on which data to include in the results. See :ref:`filtering_values` for more information on filter queries. Returns: PISeries: Timeseries of the values returned by the SDK Raises: ValueError: If the provided `boundary_type` is not a valid key a `ValueError` is raised. """ time_range = to_af_time_range(start_time, end_time) boundary_type = self.__boundary_types.get(boundary_type.lower()) filter_expression = self._normalize_filter_expression(filter_expression) if boundary_type is None: raise ValueError( "Argument boundary_type must be one of " + ", ".join('"%s"' % x for x in sorted(self.__boundary_types.keys())) ) pivalues = self._recorded_values(time_range, boundary_type, filter_expression) timestamps, values = [], [] for value in pivalues: timestamps.append(timestamp_to_index(value.Timestamp.UtcTime)) values.append(value.Value) return PISeries( tag=self.name, timestamp=timestamps, value=values, uom=self.units_of_measurement, ) def interpolated_values(self, start_time, end_time, interval, filter_expression=""): """interpolated_values Return a PISeries of interpolated data. Data is returned between *start_time* and *end_time* at a fixed *interval*. All three values are parsed by AF.Time and the first two allow for time specification relative to "now" by use of the asterisk. *filter_expression* is an optional string to filter the returned values, see OSIsoft PI documentation for more information. The AF SDK allows for inclusion of filtered data, with filtered values marked as such. At this point PIconnect does not support this and filtered values are always left out entirely. Args: start_time (str or datetime): Containing the date, and possibly time, from which to retrieve the values. This is parsed, together with `end_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. end_time (str or datetime): Containing the date, and possibly time, until which to retrieve values. This is parsed, together with `start_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. interval (str): String containing the interval at which to extract data. This is parsed using :afsdk:`AF.Time.AFTimeSpan.Parse <M_OSIsoft_AF_Time_AFTimeSpan_Parse_1.htm>`. filter_expression (str, optional): Defaults to ''. Query on which data to include in the results. See :ref:`filtering_values` for more information on filter queries. Returns: PISeries: Timeseries of the values returned by the SDK """ time_range = to_af_time_range(start_time, end_time) interval = AF.Time.AFTimeSpan.Parse(interval) filter_expression = self._normalize_filter_expression(filter_expression) pivalues = self._interpolated_values(time_range, interval, filter_expression) timestamps, values = [], [] for value in pivalues: timestamps.append(timestamp_to_index(value.Timestamp.UtcTime)) values.append(value.Value) return PISeries( tag=self.name, timestamp=timestamps, value=values, uom=self.units_of_measurement, ) def summary( self, start_time, end_time, summary_types, calculation_basis=CalculationBasis.TIME_WEIGHTED, time_type=TimestampCalculation.AUTO, ): """summary Return one or more summary values over a single time range. Args: start_time (str or datetime): Containing the date, and possibly time, from which to retrieve the values. This is parsed, together with `end_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. end_time (str or datetime): Containing the date, and possibly time, until which to retrieve values. This is parsed, together with `start_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. summary_types (int or PIConsts.SummaryType): Type(s) of summaries of the data within the requested time range. calculation_basis (int or PIConsts.CalculationBasis, optional): Event weighting within an interval. See :ref:`event_weighting` and :any:`CalculationBasis` for more information. Defaults to CalculationBasis.TIME_WEIGHTED. time_type (int or PIConsts.TimestampCalculation, optional): Timestamp to return for each of the requested summaries. See :ref:`summary_timestamps` and :any:`TimestampCalculation` for more information. Defaults to TimestampCalculation.AUTO. Returns: pandas.DataFrame: Dataframe with the unique timestamps as row index and the summary name as column name. """ time_range = to_af_time_range(start_time, end_time) summary_types = int(summary_types) calculation_basis = int(calculation_basis) time_type = int(time_type) pivalues = self._summary( time_range, summary_types, calculation_basis, time_type ) df = DataFrame() for summary in pivalues: key = SummaryType(summary.Key).name value = summary.Value timestamp = timestamp_to_index(value.Timestamp.UtcTime) value = value.Value df = df.join(DataFrame(data={key: value}, index=[timestamp]), how="outer") return df def summaries( self, start_time, end_time, interval, summary_types, calculation_basis=CalculationBasis.TIME_WEIGHTED, time_type=TimestampCalculation.AUTO, ): """summaries Return one or more summary values for each interval within a time range Args: start_time (str or datetime): Containing the date, and possibly time, from which to retrieve the values. This is parsed, together with `end_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. end_time (str or datetime): Containing the date, and possibly time, until which to retrieve values. This is parsed, together with `start_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. interval (str): String containing the interval at which to extract data. This is parsed using :afsdk:`AF.Time.AFTimeSpan.Parse <M_OSIsoft_AF_Time_AFTimeSpan_Parse_1.htm>`. summary_types (int or PIConsts.SummaryType): Type(s) of summaries of the data within the requested time range. calculation_basis (int or PIConsts.CalculationBasis, optional): Event weighting within an interval. See :ref:`event_weighting` and :any:`CalculationBasis` for more information. Defaults to CalculationBasis.TIME_WEIGHTED. time_type (int or PIConsts.TimestampCalculation, optional): Timestamp to return for each of the requested summaries. See :ref:`summary_timestamps` and :any:`TimestampCalculation` for more information. Defaults to TimestampCalculation.AUTO. Returns: pandas.DataFrame: Dataframe with the unique timestamps as row index and the summary name as column name. """ time_range = to_af_time_range(start_time, end_time) interval = AF.Time.AFTimeSpan.Parse(interval) summary_types = int(summary_types) calculation_basis = int(calculation_basis) time_type = int(time_type) pivalues = self._summaries( time_range, interval, summary_types, calculation_basis, time_type ) df = DataFrame() for summary in pivalues: key = SummaryType(summary.Key).name timestamps, values = zip( *[ (timestamp_to_index(value.Timestamp.UtcTime), value.Value) for value in summary.Value ] ) df = df.join(DataFrame(data={key: values}, index=timestamps), how="outer") return df def filtered_summaries( self, start_time, end_time, interval, filter_expression, summary_types, calculation_basis=None, filter_evaluation=None, filter_interval=None, time_type=None, ): """filtered_summaries Return one or more summary values for each interval within a time range Args: start_time (str or datetime): String containing the date, and possibly time, from which to retrieve the values. This is parsed, together with `end_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. end_time (str or datetime): String containing the date, and possibly time, until which to retrieve values. This is parsed, together with `start_time`, using :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. interval (str): String containing the interval at which to extract data. This is parsed using :afsdk:`AF.Time.AFTimeSpan.Parse <M_OSIsoft_AF_Time_AFTimeSpan_Parse_1.htm>`. filter_expression (str, optional): Defaults to ''. Query on which data to include in the results. See :ref:`filtering_values` for more information on filter queries. summary_types (int or PIConsts.SummaryType): Type(s) of summaries of the data within the requested time range. calculation_basis (int or PIConsts.CalculationBasis, optional): Event weighting within an interval. See :ref:`event_weighting` and :any:`CalculationBasis` for more information. Defaults to CalculationBasis.TIME_WEIGHTED. filter_evaluation (int or PIConsts,ExpressionSampleType, optional): Determines whether the filter is applied to the raw events in the database, of if it is applied to an interpolated series with a regular interval. Defaults to ExpressionSampleType.EXPRESSION_RECORDED_VALUES. filter_interval (str, optional): String containing the interval at which to extract apply the filter. This is parsed using :afsdk:`AF.Time.AFTimeSpan.Parse <M_OSIsoft_AF_Time_AFTimeSpan_Parse_1.htm>`. time_type (int or PIConsts.TimestampCalculation, optional): Timestamp to return for each of the requested summaries. See :ref:`summary_timestamps` and :any:`TimestampCalculation` for more information. Defaults to TimestampCalculation.AUTO. Returns: pandas.DataFrame: Dataframe with the unique timestamps as row index and the summary name as column name. """ time_range = to_af_time_range(start_time, end_time) interval = AF.Time.AFTimeSpan.Parse(interval) filter_expression = self._normalize_filter_expression(filter_expression) calculation_basis = get_enumerated_value( enumeration=CalculationBasis, value=calculation_basis, default=CalculationBasis.TIME_WEIGHTED, ) filter_evaluation = get_enumerated_value( enumeration=ExpressionSampleType, value=filter_evaluation, default=ExpressionSampleType.EXPRESSION_RECORDED_VALUES, ) time_type = get_enumerated_value( enumeration=TimestampCalculation, value=time_type, default=TimestampCalculation.AUTO, ) filter_interval = AF.Time.AFTimeSpan.Parse(filter_interval) pivalues = self._filtered_summaries( time_range, interval, filter_expression, summary_types, calculation_basis, filter_evaluation, filter_interval, time_type, ) df = DataFrame() for summary in pivalues: key = SummaryType(summary.Key).name timestamps, values = zip( *[ (timestamp_to_index(value.Timestamp.UtcTime), value.Value) for value in summary.Value ] ) df = df.join(
DataFrame(data={key: values}, index=timestamps)
pandas.DataFrame
from cgi import test import pandas as pd from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, precision_recall_fscore_support, confusion_matrix import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import GridSearchCV from joblib import dump, load from sklearn.preprocessing import StandardScaler train_flag = 0 validation_flag = 1 test_flag = 1 if __name__ == '__main__': df =
pd.read_csv('../data/ADAS_blffuz_2.csv')
pandas.read_csv
# This script takes VIC WRF files supplied by the University of Washington Climate Impacts Group # and exports precipitation and temperature averaged from the multiple climate simulation runs. # wrf_dir and frc_dir are directories where the projections (with temperature) and forcings (with precipitation) # files are located. # Written in Python 3.7 import __init__ import scripts.config as config import numpy as np import pandas as pd import os # ======================================================================= # Load raw VIC WRF climate files wrf_dir = config.data_path / 'precip' / 'VIC_WRF_EllsworthCr' wrf_file = 'flux_46.40625_-123.90625' wrf_cols = ["YEAR", "MONTH", "DAY", "HOUR", "OUT_PREC", "OUT_PET_SHORT", "OUT_SWE", "OUT_EVAP", "OUT_RUNOFF", "OUT_BASEFLOW", "OUT_SOIL_MOIST0", "OUT_SOIL_MOIST1", "OUT_SOIL_MOIST2"] for sim_dir in os.listdir(wrf_dir): runs = os.listdir(wrf_dir / sim_dir) try: runs.remove('sim_avg') except ValueError: pass arrs = [] for run in runs: arr = np.loadtxt(wrf_dir / sim_dir / run / wrf_file) arrs.append(arr) stack = np.dstack(arrs) averaged = np.mean(stack, axis=2) out_dir = wrf_dir / sim_dir / 'sim_avg' try: out_dir.mkdir(parents=True) except FileExistsError: pass np.savetxt(out_dir / '{}.gz'.format(wrf_file), averaged) # ======================================================================= # Save averaged temp file forc_dir = config.data_path / 'precip' / 'WRF_frcs_EllsworthCr_forcings' forc_file = 'forc_46.40625_-123.90625' forc_cols = ['Year', 'Month', 'Day', 'Hour', 'Precip(mm)', 'Temp(C)', 'Wind(m/s)', 'SWrad(W/m2)', 'LWrad(W/m2)', 'pressure(kPa)', 'VaporPress(kPa)'] cols = ['Temp(C)'] inds = [forc_cols.index(x) for x in cols] arrs = [] sim_dirs = [] for sim_dir in os.listdir(forc_dir): if sim_dir == 'pnnl_historical': continue sim_dirs.append(sim_dir) arr = np.loadtxt(forc_dir / sim_dir / forc_file) arrs.append(arr[:, inds]) stack = np.column_stack(arrs) proj_sims_temp = pd.DataFrame(stack, columns=sim_dirs) date_arr = pd.DataFrame(arr, columns=forc_cols) proj_sims_temp = np.column_stack([date_arr[['Year', 'Month', 'Day']], stack]) # Export just averaged temp to speed up imports in the future gcm_avg_forc_dir = forc_dir / 'sim_avg' try: gcm_avg_forc_dir.mkdir(parents=True) except FileExistsError: pass np.savetxt(gcm_avg_forc_dir / 'sim_avg_temp.gz', proj_sims_temp) # ======================================================================= # Save averaged precip file wrf_file = 'flux_46.40625_-123.90625' wrf_cols = ["YEAR", "MONTH", "DAY", "HOUR", "OUT_PREC", "OUT_PET_SHORT", "OUT_SWE", "OUT_EVAP", "OUT_RUNOFF", "OUT_BASEFLOW", "OUT_SOIL_MOIST0", "OUT_SOIL_MOIST1", "OUT_SOIL_MOIST2"] cols = ['OUT_PREC'] inds = [wrf_cols.index(x) for x in cols] arrs = [] sim_dirs = [] for sim_dir in os.listdir(wrf_dir): if sim_dir == 'pnnl_historical': continue sim_dirs.append(sim_dir) arr = np.loadtxt(wrf_dir / sim_dir / 'sim_avg' / '{}.gz'.format(wrf_file)) arrs.append(arr[:, inds]) stack = np.column_stack(arrs) proj_sims_ppt =
pd.DataFrame(stack, columns=sim_dirs)
pandas.DataFrame
import os import pandas as pd from collections import defaultdict import argparse from pattern.text.en import singularize # Dictionary used to store subject counts subject_counts = defaultdict(lambda:0) # Reads in the data def read_data(filename): print("Reading in {}".format(filename)) df = pd.read_csv(filename, skiprows = 1, names = ['doi', 'subjects', 'title'], delimiter="|") return df def sort(df, dhlw): # Used to store our cleaned subject data cleaned_data = pd.DataFrame(columns=['doi', 'subjects', 'title']) cleaned_data_filename = 'data/tru_cleaned.csv' if dhlw: cleaned_data_filename = 'data/dhlw_cleaned.csv' blank_subjects = 0 # number that OSTI listed as blank... removed_subjects = 0 # number of subjects that were all digits, dots, *, -, and whitespaces #p = nltk.PorterStemmer() for i,r in df.iterrows(): subjects_str = r['subjects'] if not pd.isnull(subjects_str): subjects = subjects_str.split(";") cleaned_subjects = [] for s in subjects: cleaned_s = s.lower().strip() # first cleans by removing whitespace and then putting it all to lowercase cleaned_s = cleaned_s.lstrip('0123456789.-* ') # removes all digits, dots, dashes, and spaces from the start if cleaned_s != "": # converts the last word in the subject to be singular cleaned_s_words = cleaned_s.split(" ") cleaned_s_words[len(cleaned_s_words)-1] = singularize(cleaned_s_words[len(cleaned_s_words)-1]) cleaned_s = " ".join(cleaned_s_words) subject_counts[cleaned_s] += 1 cleaned_subjects.append(cleaned_s) else: if s == "": blank_subjects += 1 else: removed_subjects += 1 subjects_str = ';'.join(cleaned_subjects) else: subjects_str = "" cleaned_data = cleaned_data.append(pd.DataFrame({'title':r['title'], 'doi':r['doi'], 'subjects':subjects_str}, index=[0]), ignore_index=True) cleaned_data.to_csv(cleaned_data_filename, sep='|') print("Blank subjects: " + str(blank_subjects)) print("Removed subjects: " + str(removed_subjects)) # Write the output subject counts to a new file def write_files(dhlw): filename = "data/tru_subject_counts.csv" if dhlw: filename = "data/dhlw_subject_counts.csv" df =
pd.DataFrame(columns=['subject','count'])
pandas.DataFrame
#product databases import pandas as pd import csv import numpy as np import random a=np.random.uniform(6.0,7.0,150) b=np.random.uniform(2.0,4.0,150) c=np.random.uniform(5.0,5.5,150) d=np.random.uniform(1.5,2.5,150) q=[] for i in range(150): e=np.random.choice(['a','b']) q.append(e) #print(matix1.shape) dic={'0':a,'1':b,'2':c,'3':d,'4':q} df=pd.DataFrame(dic) df.to_csv('trainingdatabases.csv',index=False) df0=
pd.read_csv('trainingdatabases.csv')
pandas.read_csv
from itertools import product as it_product from typing import List, Dict import numpy as np import os import pandas as pd from scipy.stats import spearmanr, wilcoxon from provided_code.constants_class import ModelParameters from provided_code.data_loader import DataLoader from provided_code.dose_evaluation_class import EvaluateDose from provided_code.general_functions import get_paths, get_predictions_to_optimize def consolidate_data_for_analysis(cs: ModelParameters, force_new_consolidate: bool = False) \ -> [pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Consolidated data of all reference plans, dose predictions, and KBP plans. This may take about an hour to run, but only needs to be run once for a given set of experiments. Args: cs: A constants object. force_new_consolidate: Flag that will force consolidating data, which will overwrite previous data that was consolidated in previous iterations. Returns: df_dose_error: Summary of dose error df_dvh_metrics: Summary of DVH metric performance (can be converted to DVH error later) df_clinical_criteria: Summary of clinical criteria performance df_ref_dvh_metrics: Summary of reference dose DVH metrics df_ref_clinical_criteria: Summary of reference dose clinical criteria performance df_objective_data: The data from the objective functions (e.g., weights, objective function values) df_solve_time: The time it took to solve models """ # Run consolidate_data_for_analysis when new predictions or plans consolidate_data_paths = {'dose': f'{cs.results_data_dir}/dose_error_df.csv', 'dvh': f'{cs.results_data_dir}/dvh_metric_df.csv', 'clinical_criteria': f'{cs.results_data_dir}/clinical_criteria_df.csv', 'ref_dvh': f'{cs.results_data_dir}/reference_metrics.csv', 'ref_clinical_criteria': f'{cs.results_data_dir}/reference_criteria.csv', 'weights': f'{cs.results_data_dir}/weights_df.csv', 'solve_time': f'{cs.results_data_dir}/solve_time_df.csv' } # Check if consolidated data already exists no_consolidated_date = False for p in consolidate_data_paths.values(): if not os.path.isfile(p): print(p) no_consolidated_date = True os.makedirs(cs.results_data_dir, exist_ok=True) # Make dir for results # Consolidate data if it doesn't exist yet or force flag is True if no_consolidated_date or force_new_consolidate: # Prepare strings for data that will be evaluated predictions_to_optimize, prediction_names = get_predictions_to_optimize(cs) patient_names = os.listdir(cs.reference_data_dir) hold_out_plan_paths = get_paths(cs.reference_data_dir, ext='') # list of paths used for held out testing # Evaluate dose metrics patient_data_loader = DataLoader(hold_out_plan_paths, mode_name='evaluation') # Set data loader dose_evaluator_sample = EvaluateDose(patient_data_loader) # Make reference dose DVH metrics and clinical criteria dose_evaluator_sample.make_metrics() dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_dose_metric_df').to_csv( consolidate_data_paths['ref_dvh']) dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_criteria_df').to_csv( consolidate_data_paths['ref_clinical_criteria']) # Initialize DataFrames for all scores and errors optimizer_names = os.listdir(cs.plans_dir) # Get names of all optimizers dose_error_index_dict, dvh_metric_index_dict = make_error_and_metric_indices(patient_names, dose_evaluator_sample, optimizer_names) df_dose_error_indices = pd.MultiIndex.from_product(**dose_error_index_dict) df_dvh_error_indices = pd.MultiIndex.from_arrays(**dvh_metric_index_dict) # Make DataFrames df_dose_error = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_solve_time = pd.DataFrame(columns=prediction_names, index=df_dose_error_indices) df_dvh_metrics = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) df_clinical_criteria = pd.DataFrame(columns=prediction_names, index=df_dvh_error_indices) weights_list = [] weight_columns = [] # Iterate through each prediction in the list of prediction_names for prediction in prediction_names: # Make a dataloader that loads predicted dose distributions prediction_paths = get_paths(f'{cs.prediction_dir}/{prediction}', ext='csv') prediction_dose_loader = DataLoader(prediction_paths, mode_name='predicted_dose') # Set prediction loader # Evaluate predictions and plans with respect to ground truth dose_evaluator = EvaluateDose(patient_data_loader, prediction_dose_loader) populate_error_dfs(dose_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, 'Prediction') # Make dataloader for plan dose distributions for opt_name in optimizer_names: print(opt_name) # Get the paths of all optimized plans for prediction cs.get_optimization_directories(prediction, opt_name) weights_list, weight_columns = populate_weights_df(cs, weights_list) populate_solve_time_df(cs, df_solve_time) # Make data loader to load plan doses plan_paths = get_paths(cs.plan_dose_from_pred_dir, ext='csv') # List of all plan dose paths plan_dose_loader = DataLoader(plan_paths, mode_name='predicted_dose') # Set plan dose loader plan_evaluator = EvaluateDose(patient_data_loader, plan_dose_loader) # Make evaluation object # Ignore prediction name if no data exists, o/w populate DataFrames if not patient_data_loader.file_paths_list: print('No patient information was given to calculate metrics') else: # Evaluate prediction errors populate_error_dfs(plan_evaluator, df_dose_error, df_dvh_metrics, df_clinical_criteria, prediction, opt_name) # Clean up weights weights_df = pd.DataFrame(weights_list, columns=weight_columns) weights_df.set_index(['Objective', 'Structure', 'Patients', 'Dose_type', 'Prediction'], inplace=True) weights_df = weights_df.unstack('Prediction') # Save dose and DVH error DataFrames df_dose_error.to_csv(consolidate_data_paths['dose']) df_dvh_metrics.to_csv(consolidate_data_paths['dvh']) df_clinical_criteria.to_csv(consolidate_data_paths['clinical_criteria']) weights_df.to_csv(consolidate_data_paths['weights']) df_solve_time.to_csv(consolidate_data_paths['solve_time']) # Loads the DataFrames that contain consolidated data df_dose_error = pd.read_csv(consolidate_data_paths['dose'], index_col=[0, 1]) df_dvh_metrics = pd.read_csv(consolidate_data_paths['dvh'], index_col=[0, 1, 2, 3]) df_clinical_criteria =
pd.read_csv(consolidate_data_paths['clinical_criteria'], index_col=[0, 1, 2, 3])
pandas.read_csv
# -*- coding: utf-8 -*- """ Consensus non-negative matrix factorization (cNMF) adapted from (Kotliar, et al. 2019) """ import numpy as np import pandas as pd import os, errno import glob import shutil import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp import warnings from scipy.spatial.distance import squareform from sklearn.decomposition import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from sklearn.preprocessing import normalize from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc from ._version import get_versions def save_df_to_npz(obj, filename): """ Saves numpy array to `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") np.savez_compressed( filename, data=obj.values, index=obj.index.values, columns=obj.columns.values, ) def save_df_to_text(obj, filename): """ Saves numpy array to tab-delimited text file """ obj.to_csv(filename, sep="\t") def load_df_from_npz(filename): """ Loads numpy array from `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return ( p for i, p in enumerate(iterable) if (i - worker_index) % total_workers == 0 ) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1, 1)) D += squared_norms.reshape((1, -1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return beta def fast_ols_all_cols_df(X, Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return beta def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean ** 2) return var def get_highvar_genes_sparse( expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy() E2.data **= 2 gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean ** 2)) del E2 gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var) / gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ( (gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high) ) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A ** 2) * gene_mean + (B ** 2) fano_ratio = gene_fano / gene_expected_fano # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T = None else: if not expected_fano_threshold: T = 1.0 + gene_counts_fano[winsor_box].std() else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame( { "mean": gene_mean, "var": gene_var, "fano": gene_fano, "expected_fano": gene_expected_fano, "high_var": high_var_genes_ind, "fano_ratio": fano_ratio, } ) gene_fano_parameters = { "A": A, "B": B, "T": T, "minimal_mean": minimal_mean, } return (gene_counts_stats, gene_fano_parameters) def get_highvar_genes( input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano = pd.Series(gene_counts_var / gene_counts_mean) # Find parameters for expected fano line top_genes = gene_counts_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_counts_var) / gene_counts_mean)[top_genes].min() w_mean_low, w_mean_high = gene_counts_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_counts_fano.quantile([0.10, 0.90]) winsor_box = ( (gene_counts_fano > w_fano_low) & (gene_counts_fano < w_fano_high) & (gene_counts_mean > w_mean_low) & (gene_counts_mean < w_mean_high) ) fano_median = gene_counts_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A ** 2) * gene_counts_mean + (B ** 2) fano_ratio = gene_counts_fano / gene_expected_fano # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T = None else: if not expected_fano_threshold: T = 1.0 + gene_counts_fano[winsor_box].std() else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame( { "mean": gene_counts_mean, "var": gene_counts_var, "fano": gene_counts_fano, "expected_fano": gene_expected_fano, "high_var": high_var_genes_ind, "fano_ratio": fano_ratio, } ) gene_fano_parameters = { "A": A, "B": B, "T": T, "minimal_mean": minimal_mean, } return (gene_counts_stats, gene_fano_parameters) def compute_tpm(input_counts): """ Default TPM normalization """ tpm = input_counts.copy() tpm.layers["raw_counts"] = tpm.X.copy() sc.pp.normalize_total(tpm, target_sum=1e6) return tpm def subset_adata(adata, subset): """ Subsets anndata object on one or more `.obs` columns """ print("Subsetting AnnData on {}".format(subset), end="") # initialize .obs column for choosing cells adata.obs["adata_subset_combined"] = 0 # create label as union of given subset args for i in range(len(subset)): adata.obs.loc[ adata.obs[subset[i]].isin(["True", True, 1.0, 1]), "adata_subset_combined" ] = 1 adata = adata[adata.obs["adata_subset_combined"] == 1, :].copy() adata.obs.drop(columns="adata_subset_combined", inplace=True) print(" - now {} cells and {} genes".format(adata.n_obs, adata.n_vars)) return adata def cnmf_markers(adata, spectra_score_file, n_genes=30, key="cnmf"): """ Read cNMF spectra into AnnData object Reads in gene spectra score output from cNMF and saves top gene loadings for each usage as dataframe in adata.uns Parameters ---------- adata : AnnData.AnnData AnnData object spectra_score_file : str `<name>.gene_spectra_score.<k>.<dt>.txt` file from cNMF containing gene loadings n_genes : int, optional (default=30) number of top genes to list for each usage (rows of df) key : str, optional (default="cnmf") prefix of `adata.uns` keys to save Returns ------- adata : AnnData.AnnData adata is edited in place to include gene spectra scores (`adata.varm["cnmf_spectra"]`) and list of top genes by spectra score (`adata.uns["cnmf_markers"]`) """ # load Z-scored GEPs which reflect gene enrichment, save to adata.varm spectra = pd.read_csv(spectra_score_file, sep="\t", index_col=0).T spectra = adata.var[[]].merge( spectra, how="left", left_index=True, right_index=True ) adata.varm["{}_spectra".format(key)] = spectra.values # obtain top n_genes for each GEP in sorted order and combine them into df top_genes = [] for gep in spectra.columns: top_genes.append( list(spectra.sort_values(by=gep, ascending=False).index[:n_genes]) ) # save output to adata.uns adata.uns["{}_markers".format(key)] = pd.DataFrame( top_genes, index=spectra.columns.astype(str) ).T def cnmf_load_results(adata, cnmf_dir, name, k, dt, key="cnmf", **kwargs): """ Load results of cNMF Given adata object and corresponding cNMF output (cnmf_dir, name, k, dt to identify), read in relevant results and save to adata object inplace, and output plot of gene loadings for each GEP usage. Parameters ---------- adata : AnnData.AnnData AnnData object cnmf_dir : str relative path to directory containing cNMF outputs name : str name of cNMF replicate k : int value used for consensus factorization dt : int distance threshold value used for consensus clustering key : str, optional (default="cnmf") prefix of adata.uns keys to save n_points : int how many top genes to include in rank_genes() plot **kwargs : optional (default=None) keyword args to pass to cnmf_markers() Returns ------- adata : AnnData.AnnData `adata` is edited in place to include overdispersed genes (`adata.var["cnmf_overdispersed"]`), usages (`adata.obs["usage_#"]`, `adata.obsm["cnmf_usages"]`), gene spectra scores (`adata.varm["cnmf_spectra"]`), and list of top genes by spectra score (`adata.uns["cnmf_markers"]`). """ # read in cell usages usage = pd.read_csv( "{}/{}/{}.usages.k_{}.dt_{}.consensus.txt".format( cnmf_dir, name, name, str(k), str(dt).replace(".", "_") ), sep="\t", index_col=0, ) usage.columns = ["usage_" + str(col) for col in usage.columns] # normalize usages to total for each cell usage_norm = usage.div(usage.sum(axis=1), axis=0) usage_norm.index = usage_norm.index.astype(str) # add usages to .obs for visualization adata.obs = pd.merge( left=adata.obs, right=usage_norm, how="left", left_index=True, right_index=True ) # replace missing values with zeros for all factors adata.obs.loc[:, usage_norm.columns].fillna(value=0, inplace=True) # add usages as array in .obsm for dimension reduction adata.obsm["cnmf_usages"] = adata.obs.loc[:, usage_norm.columns].values # read in overdispersed genes determined by cNMF and add as metadata to adata.var overdispersed = np.genfromtxt( "{}/{}/{}.overdispersed_genes.txt".format(cnmf_dir, name, name), delimiter="\t", dtype=str, ) adata.var["cnmf_overdispersed"] = 0 adata.var.loc[ [x for x in adata.var.index if x in overdispersed], "cnmf_overdispersed" ] = 1 # read top gene loadings for each GEP usage and save to adata.uns['cnmf_markers'] cnmf_markers( adata, "{}/{}/{}.gene_spectra_score.k_{}.dt_{}.txt".format( cnmf_dir, name, name, str(k), str(dt).replace(".", "_") ), key=key, **kwargs ) class cNMF: """ Consensus NMF object Containerizes the cNMF inputs and outputs to allow for easy pipelining """ def __init__(self, output_dir=".", name=None): """ Parameters ---------- output_dir : path, optional (default=".") Output directory for analysis files. name : string, optional (default=None) A name for this analysis. Will be prefixed to all output files. If set to None, will be automatically generated from date (and random string). """ self.output_dir = output_dir if name is None: now = datetime.datetime.now() rand_hash = uuid.uuid4().hex[:6] name = "%s_%s" % (now.strftime("%Y_%m_%d"), rand_hash) self.name = name self.paths = None def _initialize_dirs(self): if self.paths is None: # Check that output directory exists, create it if needed. check_dir_exists(self.output_dir) check_dir_exists(os.path.join(self.output_dir, self.name)) check_dir_exists(os.path.join(self.output_dir, self.name, "cnmf_tmp")) self.paths = { "normalized_counts": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".norm_counts.h5ad", ), "nmf_replicate_parameters": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".nmf_params.df.npz", ), "nmf_run_parameters": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".nmf_idvrun_params.yaml", ), "nmf_genes_list": os.path.join( self.output_dir, self.name, self.name + ".overdispersed_genes.txt" ), "tpm": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".tpm.h5ad" ), "tpm_stats": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".tpm_stats.df.npz", ), "iter_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.iter_%d.df.npz", ), "iter_usages": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".usages.k_%d.iter_%d.df.npz", ), "merged_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.merged.df.npz", ), "local_density_cache": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".local_density_cache.k_%d.merged.df.npz", ), "consensus_spectra": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".spectra.k_%d.dt_%s.consensus.df.npz", ), "consensus_spectra__txt": os.path.join( self.output_dir, self.name, self.name + ".spectra.k_%d.dt_%s.consensus.txt", ), "consensus_usages": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".usages.k_%d.dt_%s.consensus.df.npz", ), "consensus_usages__txt": os.path.join( self.output_dir, self.name, self.name + ".usages.k_%d.dt_%s.consensus.txt", ), "consensus_stats": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".stats.k_%d.dt_%s.df.npz", ), "clustering_plot": os.path.join( self.output_dir, self.name, self.name + ".clustering.k_%d.dt_%s.png" ), "gene_spectra_score": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".gene_spectra_score.k_%d.dt_%s.df.npz", ), "gene_spectra_score__txt": os.path.join( self.output_dir, self.name, self.name + ".gene_spectra_score.k_%d.dt_%s.txt", ), "gene_spectra_tpm": os.path.join( self.output_dir, self.name, "cnmf_tmp", self.name + ".gene_spectra_tpm.k_%d.dt_%s.df.npz", ), "gene_spectra_tpm__txt": os.path.join( self.output_dir, self.name, self.name + ".gene_spectra_tpm.k_%d.dt_%s.txt", ), "k_selection_plot": os.path.join( self.output_dir, self.name, self.name + ".k_selection.png" ), "k_selection_stats": os.path.join( self.output_dir, self.name, self.name + ".k_selection_stats.df.npz" ), } def get_norm_counts( self, counts, tpm, high_variance_genes_filter=None, num_highvar_genes=None ): """ Parameters ---------- counts : anndata.AnnData Scanpy AnnData object (cells x genes) containing raw counts. Filtered such that no genes or cells with 0 counts tpm : anndata.AnnData Scanpy AnnData object (cells x genes) containing tpm normalized data matching counts high_variance_genes_filter : np.array, optional (default=None) A pre-specified list of genes considered to be high-variance. Only these genes will be used during factorization of the counts matrix. Must match the .var index of counts and tpm. If set to None, high-variance genes will be automatically computed, using the parameters below. num_highvar_genes : int, optional (default=None) Instead of providing an array of high-variance genes, identify this many most overdispersed genes for filtering Returns ------- normcounts : anndata.AnnData, shape (cells, num_highvar_genes) A counts matrix containing only the high variance genes and with columns (genes) normalized to unit variance """ if high_variance_genes_filter is None: ## Get list of high-var genes if one wasn't provided if sp.issparse(tpm.X): (gene_counts_stats, gene_fano_params) = get_highvar_genes_sparse( tpm.X, numgenes=num_highvar_genes ) else: (gene_counts_stats, gene_fano_params) = get_highvar_genes( np.array(tpm.X), numgenes=num_highvar_genes ) high_variance_genes_filter = list( tpm.var.index[gene_counts_stats.high_var.values] ) ## Subset out high-variance genes print( "Selecting {} highly variable genes".format(len(high_variance_genes_filter)) ) norm_counts = counts[:, high_variance_genes_filter] norm_counts = norm_counts[tpm.obs_names, :].copy() ## Scale genes to unit variance if sp.issparse(tpm.X): sc.pp.scale(norm_counts, zero_center=False) if np.isnan(norm_counts.X.data).sum() > 0: print("Warning: NaNs in normalized counts matrix") else: norm_counts.X /= norm_counts.X.std(axis=0, ddof=1) if np.isnan(norm_counts.X).sum().sum() > 0: print("Warning: NaNs in normalized counts matrix") ## Save a \n-delimited list of the high-variance genes used for factorization open(self.paths["nmf_genes_list"], "w").write( "\n".join(high_variance_genes_filter) ) ## Check for any cells that have 0 counts of the overdispersed genes zerocells = norm_counts.X.sum(axis=1) == 0 if zerocells.sum() > 0: print( "Warning: %d cells have zero counts of overdispersed genes - ignoring these cells for factorization." % (zerocells.sum()) ) sc.pp.filter_cells(norm_counts, min_counts=1) return norm_counts def save_norm_counts(self, norm_counts): self._initialize_dirs() norm_counts.write(self.paths["normalized_counts"], compression="gzip") def get_nmf_iter_params( self, ks, n_iter=100, random_state_seed=None, beta_loss="kullback-leibler" ): """ Creates a DataFrame with parameters for NMF iterations Parameters ---------- ks : integer, or list-like. Number of topics (components) for factorization. Several values can be specified at the same time, which will be run independently. n_iter : integer, optional (defailt=100) Number of iterations for factorization. If several `k` are specified, this many iterations will be run for each value of `k`. random_state_seed : int or None, optional (default=None) Seed for sklearn random state. """ if type(ks) is int: ks = [ks] # Remove any repeated k values, and order. k_list = sorted(set(list(ks))) n_runs = len(ks) * n_iter np.random.seed(seed=random_state_seed) nmf_seeds = np.random.randint(low=1, high=(2 ** 32) - 1, size=n_runs) replicate_params = [] for i, (k, r) in enumerate(itertools.product(k_list, range(n_iter))): replicate_params.append([k, r, nmf_seeds[i]]) replicate_params = pd.DataFrame( replicate_params, columns=["n_components", "iter", "nmf_seed"] ) _nmf_kwargs = dict( alpha=0.0, l1_ratio=0.0, beta_loss=beta_loss, solver="mu", tol=1e-4, max_iter=400, regularization=None, init="random", ) ## Coordinate descent is faster than multiplicative update but only works for frobenius if beta_loss == "frobenius": _nmf_kwargs["solver"] = "cd" return (replicate_params, _nmf_kwargs) def save_nmf_iter_params(self, replicate_params, run_params): self._initialize_dirs() save_df_to_npz(replicate_params, self.paths["nmf_replicate_parameters"]) with open(self.paths["nmf_run_parameters"], "w") as F: yaml.dump(run_params, F) def _nmf(self, X, nmf_kwargs): """ Parameters ---------- X : pandas.DataFrame, Normalized counts dataFrame to be factorized. nmf_kwargs : dict, Arguments to be passed to `non_negative_factorization` """ (usages, spectra, niter) = non_negative_factorization(X, **nmf_kwargs) return (spectra, usages) def run_nmf( self, worker_i=1, total_workers=1, ): """ Iteratively runs NMF with prespecified parameters Use the `worker_i` and `total_workers` parameters for parallelization. Generic kwargs for NMF are loaded from `self.paths['nmf_run_parameters']`, defaults below:: `non_negative_factorization` default arguments: alpha=0.0 l1_ratio=0.0 beta_loss='kullback-leibler' solver='mu' tol=1e-4, max_iter=200 regularization=None init='random' random_state, n_components are both set by the prespecified self.paths['nmf_replicate_parameters']. Parameters ---------- norm_counts : pandas.DataFrame, Normalized counts dataFrame to be factorized. (Output of `normalize_counts`) run_params : pandas.DataFrame, Parameters for NMF iterations. (Output of `prepare_nmf_iter_params`) """ self._initialize_dirs() run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) norm_counts = sc.read(self.paths["normalized_counts"]) _nmf_kwargs = yaml.load( open(self.paths["nmf_run_parameters"]), Loader=yaml.FullLoader ) jobs_for_this_worker = worker_filter( range(len(run_params)), worker_i, total_workers ) for idx in jobs_for_this_worker: p = run_params.iloc[idx, :] print("[Worker %d]. Starting task %d." % (worker_i, idx)) _nmf_kwargs["random_state"] = p["nmf_seed"] _nmf_kwargs["n_components"] = p["n_components"] (spectra, usages) = self._nmf(norm_counts.X, _nmf_kwargs) spectra = pd.DataFrame( spectra, index=np.arange(1, _nmf_kwargs["n_components"] + 1), columns=norm_counts.var.index, ) save_df_to_npz( spectra, self.paths["iter_spectra"] % (p["n_components"], p["iter"]) ) def combine_nmf(self, k, remove_individual_iterations=False): run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) print("Combining factorizations for k=%d." % k) self._initialize_dirs() combined_spectra = None n_iter = sum(run_params.n_components == k) run_params_subset = run_params[run_params.n_components == k].sort_values("iter") spectra_labels = [] for i, p in run_params_subset.iterrows(): spectra = load_df_from_npz( self.paths["iter_spectra"] % (p["n_components"], p["iter"]) ) if combined_spectra is None: combined_spectra = np.zeros((n_iter, k, spectra.shape[1])) combined_spectra[p["iter"], :, :] = spectra.values for t in range(k): spectra_labels.append("iter%d_topic%d" % (p["iter"], t + 1)) combined_spectra = combined_spectra.reshape(-1, combined_spectra.shape[-1]) combined_spectra = pd.DataFrame( combined_spectra, columns=spectra.columns, index=spectra_labels ) save_df_to_npz(combined_spectra, self.paths["merged_spectra"] % k) return combined_spectra def consensus( self, k, density_threshold_str="0.5", local_neighborhood_size=0.30, show_clustering=True, skip_density_and_return_after_stats=False, close_clustergram_fig=True, ): merged_spectra = load_df_from_npz(self.paths["merged_spectra"] % k) norm_counts = sc.read(self.paths["normalized_counts"]) if skip_density_and_return_after_stats: density_threshold_str = "2" density_threshold_repl = density_threshold_str.replace(".", "_") density_threshold = float(density_threshold_str) n_neighbors = int(local_neighborhood_size * merged_spectra.shape[0] / k) # Rescale topics such to length of 1. l2_spectra = (merged_spectra.T / np.sqrt((merged_spectra ** 2).sum(axis=1))).T if not skip_density_and_return_after_stats: # Compute the local density matrix (if not previously cached) topics_dist = None if os.path.isfile(self.paths["local_density_cache"] % k): local_density = load_df_from_npz(self.paths["local_density_cache"] % k) else: # first find the full distance matrix topics_dist = squareform(fast_euclidean(l2_spectra.values)) # partition based on the first n neighbors partitioning_order = np.argpartition(topics_dist, n_neighbors + 1)[ :, : n_neighbors + 1 ] # find the mean over those n_neighbors (excluding self, which has a distance of 0) distance_to_nearest_neighbors = topics_dist[ np.arange(topics_dist.shape[0])[:, None], partitioning_order ] local_density = pd.DataFrame( distance_to_nearest_neighbors.sum(1) / (n_neighbors), columns=["local_density"], index=l2_spectra.index, ) save_df_to_npz(local_density, self.paths["local_density_cache"] % k) del partitioning_order del distance_to_nearest_neighbors density_filter = local_density.iloc[:, 0] < density_threshold l2_spectra = l2_spectra.loc[density_filter, :] kmeans_model = KMeans(n_clusters=k, n_init=10, random_state=1) kmeans_model.fit(l2_spectra) kmeans_cluster_labels = pd.Series( kmeans_model.labels_ + 1, index=l2_spectra.index ) # Find median usage for each gene across cluster median_spectra = l2_spectra.groupby(kmeans_cluster_labels).median() # Normalize median spectra to probability distributions. median_spectra = (median_spectra.T / median_spectra.sum(1)).T # Compute the silhouette score stability = silhouette_score( l2_spectra.values, kmeans_cluster_labels, metric="euclidean" ) # Obtain the reconstructed count matrix by re-fitting the usage matrix and computing the dot product: usage.dot(spectra) refit_nmf_kwargs = yaml.load( open(self.paths["nmf_run_parameters"]), Loader=yaml.FullLoader ) refit_nmf_kwargs.update( dict(n_components=k, H=median_spectra.values, update_H=False) ) # ensure dtypes match for factorization if median_spectra.values.dtype != norm_counts.X.dtype: norm_counts.X = norm_counts.X.astype(median_spectra.values.dtype) _, rf_usages = self._nmf(norm_counts.X, nmf_kwargs=refit_nmf_kwargs) rf_usages = pd.DataFrame( rf_usages, index=norm_counts.obs.index, columns=median_spectra.index ) rf_pred_norm_counts = rf_usages.dot(median_spectra) # Compute prediction error as a frobenius norm if sp.issparse(norm_counts.X): prediction_error = ( ((norm_counts.X.todense() - rf_pred_norm_counts) ** 2).sum().sum() ) else: prediction_error = ((norm_counts.X - rf_pred_norm_counts) ** 2).sum().sum() consensus_stats = pd.DataFrame( [k, density_threshold, stability, prediction_error], index=["k", "local_density_threshold", "stability", "prediction_error"], columns=["stats"], ) if skip_density_and_return_after_stats: return consensus_stats save_df_to_npz( median_spectra, self.paths["consensus_spectra"] % (k, density_threshold_repl), ) save_df_to_npz( rf_usages, self.paths["consensus_usages"] % (k, density_threshold_repl) ) save_df_to_npz( consensus_stats, self.paths["consensus_stats"] % (k, density_threshold_repl) ) save_df_to_text( median_spectra, self.paths["consensus_spectra__txt"] % (k, density_threshold_repl), ) save_df_to_text( rf_usages, self.paths["consensus_usages__txt"] % (k, density_threshold_repl) ) # Compute gene-scores for each GEP by regressing usage on Z-scores of TPM tpm = sc.read(self.paths["tpm"]) # ignore cells not present in norm_counts if tpm.n_obs != norm_counts.n_obs: tpm = tpm[norm_counts.obs_names, :].copy() tpm_stats = load_df_from_npz(self.paths["tpm_stats"]) if sp.issparse(tpm.X): norm_tpm = ( np.array(tpm.X.todense()) - tpm_stats["__mean"].values ) / tpm_stats["__std"].values else: norm_tpm = (tpm.X - tpm_stats["__mean"].values) / tpm_stats["__std"].values usage_coef = fast_ols_all_cols(rf_usages.values, norm_tpm) usage_coef = pd.DataFrame( usage_coef, index=rf_usages.columns, columns=tpm.var.index ) save_df_to_npz( usage_coef, self.paths["gene_spectra_score"] % (k, density_threshold_repl) ) save_df_to_text( usage_coef, self.paths["gene_spectra_score__txt"] % (k, density_threshold_repl), ) # Convert spectra to TPM units, and obtain results for all genes by running # last step of NMF with usages fixed and TPM as the input matrix norm_usages = rf_usages.div(rf_usages.sum(axis=1), axis=0) refit_nmf_kwargs.update(dict(H=norm_usages.T.values,)) # ensure dtypes match for factorization if norm_usages.values.dtype != tpm.X.dtype: tpm.X = tpm.X.astype(norm_usages.values.dtype) _, spectra_tpm = self._nmf(tpm.X.T, nmf_kwargs=refit_nmf_kwargs) spectra_tpm = pd.DataFrame( spectra_tpm.T, index=rf_usages.columns, columns=tpm.var.index ) save_df_to_npz( spectra_tpm, self.paths["gene_spectra_tpm"] % (k, density_threshold_repl) ) save_df_to_text( spectra_tpm, self.paths["gene_spectra_tpm__txt"] % (k, density_threshold_repl), ) if show_clustering: if topics_dist is None: topics_dist = squareform(fast_euclidean(l2_spectra.values)) # (l2_spectra was already filtered using the density filter) else: # (but the previously computed topics_dist was not!) topics_dist = topics_dist[density_filter.values, :][ :, density_filter.values ] spectra_order = [] for cl in sorted(set(kmeans_cluster_labels)): cl_filter = kmeans_cluster_labels == cl if cl_filter.sum() > 1: cl_dist = squareform(topics_dist[cl_filter, :][:, cl_filter]) cl_dist[ cl_dist < 0 ] = 0 # Rarely get floating point arithmetic issues cl_link = linkage(cl_dist, "average") cl_leaves_order = leaves_list(cl_link) spectra_order += list(np.where(cl_filter)[0][cl_leaves_order]) else: ## Corner case where a component only has one element spectra_order += list(np.where(cl_filter)[0]) from matplotlib import gridspec import matplotlib.pyplot as plt width_ratios = [0.5, 9, 0.5, 4, 1] height_ratios = [0.5, 9] fig = plt.figure(figsize=(sum(width_ratios), sum(height_ratios))) gs = gridspec.GridSpec( len(height_ratios), len(width_ratios), fig, 0.01, 0.01, 0.98, 0.98, height_ratios=height_ratios, width_ratios=width_ratios, wspace=0, hspace=0, ) dist_ax = fig.add_subplot( gs[1, 1], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) D = topics_dist[spectra_order, :][:, spectra_order] dist_im = dist_ax.imshow( D, interpolation="none", cmap="viridis", aspect="auto", rasterized=True ) left_ax = fig.add_subplot( gs[1, 0], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) left_ax.imshow( kmeans_cluster_labels.values[spectra_order].reshape(-1, 1), interpolation="none", cmap="Spectral", aspect="auto", rasterized=True, ) top_ax = fig.add_subplot( gs[0, 1], xscale="linear", yscale="linear", xticks=[], yticks=[], xlabel="", ylabel="", frameon=True, ) top_ax.imshow( kmeans_cluster_labels.values[spectra_order].reshape(1, -1), interpolation="none", cmap="Spectral", aspect="auto", rasterized=True, ) hist_gs = gridspec.GridSpecFromSubplotSpec( 3, 1, subplot_spec=gs[1, 3], wspace=0, hspace=0 ) hist_ax = fig.add_subplot( hist_gs[0, 0], xscale="linear", yscale="linear", xlabel="", ylabel="", frameon=True, title="Local density histogram", ) hist_ax.hist(local_density.values, bins=np.linspace(0, 1, 50)) hist_ax.yaxis.tick_right() xlim = hist_ax.get_xlim() ylim = hist_ax.get_ylim() if density_threshold < xlim[1]: hist_ax.axvline(density_threshold, linestyle="--", color="k") hist_ax.text( density_threshold + 0.02, ylim[1] * 0.95, "filtering\nthreshold\n\n", va="top", ) hist_ax.set_xlim(xlim) hist_ax.set_xlabel( "Mean distance to k nearest neighbors\n\n%d/%d (%.0f%%) spectra above threshold\nwere removed prior to clustering" % ( sum(~density_filter), len(density_filter), 100 * (~density_filter).mean(), ) ) fig.savefig( self.paths["clustering_plot"] % (k, density_threshold_repl), dpi=250 ) if close_clustergram_fig: plt.close(fig) def k_selection_plot(self, close_fig=True): """ Borrowed from <NAME>. 2013 Deciphering Mutational Signatures publication in Cell Reports """ run_params = load_df_from_npz(self.paths["nmf_replicate_parameters"]) stats = [] for k in sorted(set(run_params.n_components)): stats.append( self.consensus(k, skip_density_and_return_after_stats=True).stats ) stats = pd.DataFrame(stats) stats.reset_index(drop=True, inplace=True) save_df_to_npz(stats, self.paths["k_selection_stats"]) fig = plt.figure(figsize=(6, 4)) ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax1.plot(stats.k, stats.stability, "o-", color="b") ax1.set_ylabel("Stability", color="b", fontsize=15) for tl in ax1.get_yticklabels(): tl.set_color("b") # ax1.set_xlabel('K', fontsize=15) ax2.plot(stats.k, stats.prediction_error, "o-", color="r") ax2.set_ylabel("Error", color="r", fontsize=15) for tl in ax2.get_yticklabels(): tl.set_color("r") ax1.set_xlabel("Number of Components", fontsize=15) ax1.grid(True) plt.tight_layout() fig.savefig(self.paths["k_selection_plot"], dpi=250) if close_fig: plt.close(fig) def pick_k(k_selection_stats_path): k_sel_stats = load_df_from_npz(k_selection_stats_path) return int(k_sel_stats.loc[k_sel_stats.stability.idxmax, "k"]) def prepare(args): argdict = vars(args) cnmf_obj = cNMF(output_dir=argdict["output_dir"], name=argdict["name"]) cnmf_obj._initialize_dirs() print("Reading in counts from {} - ".format(argdict["counts"]), end="") if argdict["counts"].endswith(".h5ad"): input_counts = sc.read(argdict["counts"]) else: ## Load txt or compressed dataframe and convert to scanpy object if argdict["counts"].endswith(".npz"): input_counts = load_df_from_npz(argdict["counts"]) else: input_counts = pd.read_csv(argdict["counts"], sep="\t", index_col=0) if argdict["densify"]: input_counts = sc.AnnData( X=input_counts.values, obs=pd.DataFrame(index=input_counts.index), var=
pd.DataFrame(index=input_counts.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- import pdb, importlib, inspect, time, datetime, json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import datetime from financial import factor_cash_flow from vision.table.valuation import Valuation from vision.table.fin_cash_flow import FinCashFlow from vision.table.fin_income import FinIncome from vision.table.fin_balance_ttm import FinBalanceTTM from vision.table.fin_income_ttm import FinIncomeTTM from vision.table.fin_cash_flow_ttm import FinCashFlowTTM from vision.db.signletion_engine import get_fin_consolidated_statements_pit, get_fundamentals, query # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[{'packet': 'financial.factor_cash_flow', 'class': 'FactorCashFlow'}, ]): self._name = name self._methods = methods self._url = url def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method, x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ # 转换时间格式 time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') # 读取目前涉及到的因子 columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] # report data cash_flow_sets = get_fin_consolidated_statements_pit(FinCashFlow, [FinCashFlow.net_operate_cash_flow, # 经营活动现金流量净额 FinCashFlow.goods_sale_and_service_render_cash, # 销售商品、提供劳务收到的现金 ], dates=[trade_date]).drop(columns, axis=1) income_sets = get_fin_consolidated_statements_pit(FinIncome, [FinIncome.operating_revenue, # 营业收入 FinIncome.total_operating_cost, # 营业总成本 FinIncome.total_operating_revenue, # 营业总收入 ], dates=[trade_date]).drsop(columns, axis=1) tp_cash_flow = pd.merge(cash_flow_sets, income_sets, on="security_code") # ttm data balance_ttm_sets = get_fin_consolidated_statements_pit(FinBalanceTTM, [FinBalanceTTM.total_liability, # 负债合计 FinBalanceTTM.shortterm_loan, # 短期借款 FinBalanceTTM.longterm_loan, # 长期借款 FinBalanceTTM.total_current_liability, # 流动负债合计 FinBalanceTTM.total_current_assets, # 流动资产合计 FinBalanceTTM.total_assets, # 资产总计 ], dates=[trade_date]).drop(columns, axis=1) cash_flow_ttm_sets = get_fin_consolidated_statements_pit(FinCashFlowTTM, [FinCashFlowTTM.net_operate_cash_flow, # 经营活动现金流量净额 FinCashFlowTTM.cash_and_equivalents_at_end, # 期末现金及现金等价物余额 FinCashFlowTTM.goods_sale_and_service_render_cash, # 销售商品、提供劳务收到的现金 ], dates=[trade_date]).drop(columns, axis=1) ttm_cash_flow = pd.merge(balance_ttm_sets, cash_flow_ttm_sets, on="security_code") income_ttm_sets = get_fin_consolidated_statements_pit(FinIncomeTTM, [FinIncomeTTM.total_operating_cost, # 营业总成本 FinIncomeTTM.operating_revenue, # 营业收入 FinIncomeTTM.total_operating_revenue, # 营业总收入 FinIncomeTTM.net_profit, # 净利润 FinIncomeTTM.np_parent_company_owners, # 归属于母公司所有者的净利润 FinIncomeTTM.operating_profit, # 营业利润 ], dates=[trade_date]).drop(columns, axis=1) ttm_cash_flow = pd.merge(income_ttm_sets, ttm_cash_flow, on="security_code") valuation_sets = get_fundamentals(query(Valuation.security_code, Valuation.market_cap ).filter(Valuation.trade_date.in_([trade_date]))) ttm_cash_flow = pd.merge(ttm_cash_flow, valuation_sets, how='outer', on='security_code') tp_cash_flow = pd.merge(tp_cash_flow, valuation_sets, how='outer', on='security_code') return tp_cash_flow, ttm_cash_flow def process_calc_factor(self, trade_date, tp_cash_flow, ttm_factor_sets): tp_cash_flow = tp_cash_flow.set_index('security_code') ttm_factor_sets = ttm_factor_sets.set_index('security_code') cash_flow = factor_cash_flow.FactorCashFlow() cash_flow_sets =
pd.DataFrame()
pandas.DataFrame
def no_sentence_in_voice_column(fle, fleName, target): import re import os import sys import json import openpyxl import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile from dateutil.parser import parse import validators file_name="No_sentence_in_voice_column.py" configFile = 'https://s3.us-east.cloud-object-storage.appdomain.cloud/sharad-saurav-bucket/Configuration.xlsx' rule="No_sentence_in_voice_column" config=pd.read_excel(configFile) newdf=config[config['RULE']==rule] to_check='' for index,row in newdf.iterrows(): to_check=row['TO_CHECK'] to_check=json.loads(to_check) files_to_apply=to_check['files_to_apply'] strings_to_apply=to_check['strings_to_apply'] if(files_to_apply=='ALL' or fleName in files_to_apply): data=[] df = pd.read_excel(fle) df.index = range(2,df.shape[0]+2) for index, row in df.iterrows(): column_value=row['VOICE_ONLY'] if(pd.notnull(row['VOICE_ONLY'])): for string in strings_to_apply: if(string in column_value): #print(index) entry=[index,fleName,'VOICE_ONLY column has '+string+' in its contents'] print('The row '+str(index)+' in the file '+fleName+' has the text\' '+string+' \'in the voice_only column') data.append(entry) df1 = pd.DataFrame(data, columns = ['ROW_NO', 'FILE_NAME', 'COMMENTS']) if(ExcelFile(target).sheet_names[0] == 'Sheet1'): with ExcelWriter(target, engine='openpyxl', mode='w') as writer: df1.to_excel(writer,sheet_name=rule,index=False) else: with
ExcelWriter(target, engine='openpyxl', mode='a')
pandas.ExcelWriter
import pandas as pd import numpy as np from functions import fao_regions as regions data = 'data/' def data_build(crop_proxie, diet_div_crop, diet_source_crop, diet_ls_only, diet_ls_only_source, min_waste): """*** Import of country data to build national diets ***""" WPR_height = pd.read_csv(r"data/worldpopulationreview_height_data.csv") WPR_height.loc[WPR_height.Area == "North Korea", "Area"] = "Democratic People's Republic of Korea" Countrycodes = pd.read_csv(r"data/countrycodes.csv", sep = ";") #FAO_pop = pd.read_excel(data+"/FAOSTAT_Population_v3.xlsx") FAO_pop = pd.read_excel(data+"/FAOSTAT_2018_population.xlsx") FAO_pop.loc[FAO_pop.Area == "Cote d'Ivoire", "Area"] = "Côte d'Ivoire" FAO_pop.loc[FAO_pop.Area == "French Guyana", "Area"] = "French Guiana" FAO_pop.loc[FAO_pop.Area == "Réunion", "Area"] = "Réunion" """*** Import and sorting of data ***""" FAO_crops = pd.read_csv(data+"/FAOSTAT_crop Production.csv") FAO_crops["group"] = FAO_crops.apply(lambda x: regions.group(x["Item Code"]), axis=1) FAO_crops = FAO_crops.rename(columns={"Value" : "Production"}) FAO_crops["Production"] = FAO_crops["Production"] / 1000 FAO_crops["Unit"] = "1000 tonnes" FAO_animals = pd.read_csv(data+"/FAO_animal_prod_2016.csv") FAO_animals["group"] = FAO_animals.apply(lambda x: regions.group(x["Item Code"]), axis=1) FAO_animals.loc[FAO_animals.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_animals = FAO_animals.rename(columns={"Value" : "Production"}) FAO_animals.drop(FAO_animals[FAO_animals.Unit != 'tonnes'].index, inplace = True) FAO_animals["Production"] = FAO_animals["Production"] / 1000 FAO_animals["Unit"] = "1000 tonnes" FAO_animals_5 = pd.read_csv(data+"/FAOSTAT_animal_prod_5.csv") FAO_animals_5["group"] = FAO_animals_5.apply(lambda x: regions.group(x["Item Code (FAO)"]), axis=1) FAO_animals_5.loc[FAO_animals_5.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_animals_5 = FAO_animals_5.rename(columns={"Value" : "Production"}) FAO_animals_5.drop(FAO_animals_5[FAO_animals_5.Unit != 'tonnes'].index, inplace = True) FAO_animals_5["Production"] = FAO_animals_5["Production"] / 1000 FAO_animals_5["Unit"] = "1000 tonnes" FAO_animals_5 = FAO_animals_5.groupby(['Area', 'Item']).mean().reset_index() FAO_animals = pd.merge(FAO_animals, FAO_animals_5[['Area', 'Item', 'Production']], on = ["Area", "Item"], how = 'left') FAO_animals["Production"] = FAO_animals["Production_y"] FAO_animals = FAO_animals.drop(columns = ["Production_x", "Production_y"]) FAO_fish = pd.read_csv(data+"FAOSTAT_Fish.csv") FAO_fish = FAO_fish.rename(columns={"Value" : "Production"}) FAO_fish["group"] = FAO_fish.apply(lambda x: regions.group(x["Item Code"]), axis=1) meat_products = ["eggs", "beef and lamb", "chicken and other poultry",\ "pork", "whole milk or derivative equivalents"] fish_products = ["Freshwater Fish", "Demersal Fish", "Pelagic Fish",\ "Marine Fish, Other", "Crustaceans", "Cephalopods",\ "Molluscs, Other", "Meat, Aquatic Mammals", "Aquatic Animals, Others", "Aquatic Plants", "Fish, Body Oil", "Fish, Liver Oil"] other_items = ["Honey, natural", "Beeswax", "Silk-worm cocoons, reelable"] other_items = ["Beeswax", "Silk-worm cocoons, reelable"] """*** Import of protein data ***""" FAO_Protein = pd.read_csv(data+"protein.csv") FAO_Protein["group"] = FAO_Protein["group"].str.replace("dairy", "whole milk or derivative equivalents") FAO_Protein = FAO_Protein.rename(columns = {"Country": "Area"}) """*** Build main dataframe ***""" POM_data =
pd.concat([FAO_crops])
pandas.concat
# embedding from sklearn.manifold import TSNE import pandas as pd import matplotlib.pyplot as plt from plotnine import aes, geom_point, ggplot, theme_bw def visualize_embedding(multinet, labels=None, verbose=True): embedding = multinet.embedding X = embedding[0] indices = embedding[1] if verbose: print("------ Starting embedding visualization -------") if labels: # optionally match indices to labels and add a column label_vector = [labels[x] for x in indices] X_embedded = TSNE(n_components=2).fit_transform(X) dfr =
pd.DataFrame(X_embedded, columns=['dim1', 'dim2'])
pandas.DataFrame
"""Python module for manipulating datasets.""" from __future__ import absolute_import import random import os import os.path import logging import multiprocessing from functools import partial import pandas as pd import numpy as np from sklearn import cross_validation, preprocessing from sklearn.decomposition import PCA from . import fileutils def first(iterable): """Returns the first element of an iterable""" for element in iterable: return element class SegmentCrossValidator: """Wrapper for the scikit_learn CV generators to generate folds on a segment basis.""" def __init__(self, dataframe, base_cv=None, **cv_kwargs): # We create a copy of the dataframe with a new last level # index which is an enumeration of the rows (like proper indices) self.all_segments = pd.DataFrame({'Preictal': dataframe['Preictal'], 'i': np.arange(len(dataframe))}) self.all_segments.set_index('i', append=True, inplace=True) # Now create a series with only the segments as rows. This is what we will pass into the wrapped cross # validation generator self.segments = self.all_segments['Preictal'].groupby(level='segment').first() self.segments.sort(inplace=True) if base_cv is None: self.cv = cross_validation.StratifiedKFold(self.segments, **cv_kwargs) else: self.cv = base_cv(self.segments, **cv_kwargs) def __iter__(self): """ Return a generator object which returns a pair of indices for every iteration. """ for training_indices, test_indices in self.cv: # The indices returned from self.cv are relative to the segment name data series, we pick out the segment # names they belong to training_segments = list(self.segments[training_indices].index) test_segments = list(self.segments[test_indices].index) # Now that we have the segment names, we pick out the rows in the properly indexed dataframe all_training_indices = self.all_segments.loc[training_segments] all_test_indices = self.all_segments.loc[test_segments] # Now pick out the values for only the 'i' level index of the rows which matched the segment names original_df_training_indices = all_training_indices.index.get_level_values('i') original_df_test_indices = all_test_indices.index.get_level_values('i') yield original_df_training_indices, original_df_test_indices def __len__(self): return len(self.cv) def mean(*dataframes): """Returns the means of the given dataframe(s), calculated without concatenating the frame""" lengths = sum([len(dataframe) for dataframe in dataframes]) sums = dataframes[0].sum() for dataframe in dataframes[1:]: sums += dataframe.sum() means = sums / lengths return means def transform(transformation, interictal, preictal, test): """ Performs a transformation on the supplied *interictal*, *preictal* and *test* Pandas dataframes. :param transformation: An object that implements the fit_transform function, which applies a transformation to a numpy array. :param interictal: Pandas Dataframe containing the interictal samples :param preictal: Pandas Dataframe containing the preictal samples :param test: Pandas Dataframe containing the test samples :return: A List containing the three input Dataframes, with the *transformation* applied to them """ if not hasattr(transformation, 'fit_transform'): logging.warning( "Transformation {} has not fit_transform function, no transformation applied".format(transformation)) return [interictal, preictal, test] interictal = interictal.drop('Preictal', axis=1) preictal = preictal.drop('Preictal', axis=1) # Keep structure info as we will need to rebuild the dataframes interictal_index = interictal.index interictal_columns = interictal.columns preictal_index = preictal.index preictal_columns = preictal.columns test_index = test.index test_columns = test.columns inter_samples = interictal.shape[0] # Concatenate the training data as we will use those for # fitting the scaler # This can be quite memory intensive, especially if the # dataframes are big training_frame =
pd.concat([interictal, preictal], axis=0)
pandas.concat
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-21', '2015-01-22') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, 310, pd.Timestamp('2015-01-09')), (10, 311, pd.Timestamp('2015-01-15')), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-11')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp('2015-01-17'))], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateWindows(NextEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader(bz.data(events), columns) class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp('2015-01-14') @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-09'), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp('2015-01-20')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20')], 'estimate': [130., 131., 230., 231.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30 }) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [140., 240.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40 }) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-02-10')], 'estimate': [150., 250.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50 }) return pd.concat([ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ]) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (-1., 2., 3., 4., 5., 6., 7., 100), 'effective_date': (pd.Timestamp('2014-01-01'), # Filter out # Split before Q1 event & after first estimate pd.Timestamp('2015-01-07'), # Split before Q1 event pd.Timestamp('2015-01-09'), # Split before Q1 event pd.Timestamp('2015-01-13'), # Split before Q1 event pd.Timestamp('2015-01-15'), # Split before Q1 event pd.Timestamp('2015-01-18'), # Split after Q1 event and before Q2 event pd.Timestamp('2015-01-30'), # Filter out - this is after our date index pd.Timestamp('2016-01-01')) }) sid_10_splits = pd.DataFrame({ SID_FIELD_NAME: 10, 'ratio': (.2, .3), 'effective_date': ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp('2015-01-07'), # Apply a single split before Q1 event. pd.Timestamp('2015-01-20')), }) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame({ SID_FIELD_NAME: 20, 'ratio': (.4, .5, .6, .7, .8, .9,), 'effective_date': ( pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18'), pd.Timestamp('2015-01-30')), }) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame({ SID_FIELD_NAME: 30, 'ratio': (8, 9, 10, 11, 12), 'effective_date': ( # Split before the event and before the # split-asof-date. pd.Timestamp('2015-01-07'), # Split on date of event but before the # split-asof-date. pd.Timestamp('2015-01-09'), # Split after the event, but before the # split-asof-date. pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-15'), pd.Timestamp('2015-01-18')), }) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame({ SID_FIELD_NAME: 40, 'ratio': (13, 14), 'effective_date': ( pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-22') ) }) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame({ SID_FIELD_NAME: 50, 'ratio': (15, 16), 'effective_date': ( pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14') ) }) return pd.concat([ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ]) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-12') ]), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150. * 1 / 16, pd.Timestamp('2015-01-09')), ], pd.Timestamp('2015-01-13')), cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')) ], pd.Timestamp('2015-01-14')), pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11, pd.Timestamp('2015-01-09')), (40, 140., pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09')), ], end_date) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-01-21') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 111*.3, pd.Timestamp('2015-01-22')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-01-20')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-01-20')), (30, 231, pd.Timestamp('2015-01-20')), (40, 140.*13*14, pd.Timestamp('2015-01-09')), (50, 150., pd.Timestamp('2015-01-09'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311*.3, pd.Timestamp('2015-02-05')), (20, 221*.8*.9, pd.Timestamp('2015-02-10')), (30, 231, pd.Timestamp('2015-01-20')), (40, 240.*13*14, pd.Timestamp('2015-02-10')), (50, 250., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-01-19')] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131*11*12, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-20', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101*7, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121*.7*.8*.9, pd.Timestamp('2015-02-10')), (30, 131*11*12, pd.Timestamp('2015-01-20')), (40, 140. * 13 * 14, pd.Timestamp('2015-02-10')), (50, 150., pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithSplitAdjustedWindows(PreviousWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 130*1/10, cls.window_test_start_date), (30, 131*1/10, pd.Timestamp('2015-01-09')), (40, 140, pd.Timestamp('2015-01-09')), (50, 150.*1/15*1/16, pd.Timestamp('2015-01-09'))], pd.Timestamp('2015-01-09') ), cls.create_expected_df_for_factor_compute( [(0, 100*1/4, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*5/3, cls.window_test_start_date), (20, 121*5/3, pd.Timestamp('2015-01-07')), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/15*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-12') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250.*1/16, pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-13') ), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07')), (30, 230, cls.window_test_start_date), (40, np.NaN, pd.Timestamp('2015-01-10')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-14') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100*5, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120*.7, cls.window_test_start_date), (20, 121*.7, pd.Timestamp('2015-01-07')), (30, 230*11, cls.window_test_start_date), (40, 240, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16') ]), cls.create_expected_df_for_factor_compute( [(0, 100*5*6, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110*.3, pd.Timestamp('2015-01-09')), (10, 111*.3, pd.Timestamp('2015-01-12')), (20, 120*.7*.8, cls.window_test_start_date), (20, 121*.7*.8, pd.Timestamp('2015-01-07')), (30, 230*11*12, cls.window_test_start_date), (30, 231, pd.Timestamp('2015-01-20')), (40, 240*13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-21') ), cls.create_expected_df_for_factor_compute( [(0, 200 * 5 * 6, pd.Timestamp('2015-01-12')), (10, 110 * .3, pd.Timestamp('2015-01-09')), (10, 111 * .3, pd.Timestamp('2015-01-12')), (20, 220 * .7 * .8, cls.window_test_start_date), (20, 221 * .8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-01-22') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-23', '2015-01-29') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, 310*.3, pd.Timestamp('2015-01-09')), (10, 311*.3, pd.Timestamp('2015-01-15')), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-01-30', '2015-02-05') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], end_date ) for end_date in pd.date_range('2015-02-06', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 200*5*6*7, pd.Timestamp('2015-01-12')), (0, 201, pd.Timestamp('2015-02-10')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8*.9, cls.window_test_start_date), (20, 221*.8*.9, pd.Timestamp('2015-01-17')), (40, 240 * 13 * 14, pd.Timestamp('2015-01-15')), (50, 250., pd.Timestamp('2015-01-12'))], pd.Timestamp('2015-02-10') ) ]) twoq_next = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, 230*1/10, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date), (50, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-09') )] + [cls.create_expected_df_for_factor_compute( [(0, 200*1/4, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*5/3, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-12') )] + [cls.create_expected_df_for_factor_compute( [(0, 200, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-13', '2015-01-14')] + [cls.create_expected_df_for_factor_compute( [(0, 200*5, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-15', '2015-01-16')] + [cls.create_expected_df_for_factor_compute( [(0, 200*5*6, pd.Timestamp('2015-01-12')), (10, np.NaN, cls.window_test_start_date), (20, 220*.7*.8, cls.window_test_start_date), (20, 221*.8, pd.Timestamp('2015-01-17')), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], pd.Timestamp('2015-01-20') )] + [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), (40, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-21', '2015-02-10')] ) return { 1: oneq_next, 2: twoq_next } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextWithSplitAdjustedWindows(NextWithSplitAdjustedWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate'], split_adjusted_asof=cls.split_adjusted_asof_date, ) class WithSplitAdjustedMultipleEstimateColumns(WithEstimates): """ ZiplineTestCase mixin for having multiple estimate columns that are split-adjusted to make sure that adjustments are applied correctly. Attributes ---------- test_start_date : pd.Timestamp The start date of the test. test_end_date : pd.Timestamp The start date of the test. split_adjusted_asof : pd.Timestamp The split-adjusted-asof-date of the data used in the test, to be used to create all loaders of test classes that subclass this mixin. Methods ------- make_expected_timelines_1q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range for each column. Only for 1 quarter out. make_expected_timelines_2q_out -> dict[pd.Timestamp -> dict[str -> np.array]] The expected array of results for each date of the date range. For 2 quarters out, so only for the column that is requested to be loaded with 2 quarters out. Tests ----- test_adjustments_with_multiple_adjusted_columns Tests that if you have multiple columns, we still split-adjust correctly. test_multiple_datasets_different_num_announcements Tests that if you have multiple datasets that ask for a different number of quarters out, and each asks for a different estimates column, we still split-adjust correctly. """ END_DATE = pd.Timestamp('2015-02-10') test_start_date = pd.Timestamp('2015-01-06', tz='utc') test_end_date = pd.Timestamp('2015-01-12', tz='utc') split_adjusted_asof = pd.Timestamp('2015-01-08') @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): sid_0_events = pd.DataFrame({ # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp('2015-01-05'), pd.Timestamp('2015-01-05')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12')], 'estimate1': [1100., 1200.], 'estimate2': [2100., 2200.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # This is just an extra sid to make sure that we apply adjustments # correctly for multiple columns when we have multiple sids. sid_1_events = pd.DataFrame({ # We only want a stale KD here so that adjustments # will be applied. TS_FIELD_NAME: [pd.Timestamp('2015-01-05'), pd.Timestamp('2015-01-05')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-08'), pd.Timestamp('2015-01-11')], 'estimate1': [1110., 1210.], 'estimate2': [2110., 2210.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 1, }) return pd.concat([sid_0_events, sid_1_events]) @classmethod def make_splits_data(cls): sid_0_splits = pd.DataFrame({ SID_FIELD_NAME: 0, 'ratio': (.3, 3.), 'effective_date': (pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09')), }) sid_1_splits = pd.DataFrame({ SID_FIELD_NAME: 1, 'ratio': (.4, 4.), 'effective_date': (pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-09')), }) return pd.concat([sid_0_splits, sid_1_splits]) @classmethod def make_expected_timelines_1q_out(cls): return {} @classmethod def make_expected_timelines_2q_out(cls): return {} @classmethod def init_class_fixtures(cls): super( WithSplitAdjustedMultipleEstimateColumns, cls ).init_class_fixtures() cls.timelines_1q_out = cls.make_expected_timelines_1q_out() cls.timelines_2q_out = cls.make_expected_timelines_2q_out() def test_adjustments_with_multiple_adjusted_columns(self): dataset = MultipleColumnsQuartersEstimates(1) timelines = self.timelines_1q_out window_len = 3 class SomeFactor(CustomFactor): inputs = [dataset.estimate1, dataset.estimate2] window_length = window_len def compute(self, today, assets, out, estimate1, estimate2): assert_almost_equal(estimate1, timelines[today]['estimate1']) assert_almost_equal(estimate2, timelines[today]['estimate2']) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) def test_multiple_datasets_different_num_announcements(self): dataset1 = MultipleColumnsQuartersEstimates(1) dataset2 = MultipleColumnsQuartersEstimates(2) timelines_1q_out = self.timelines_1q_out timelines_2q_out = self.timelines_2q_out window_len = 3 class SomeFactor1(CustomFactor): inputs = [dataset1.estimate1] window_length = window_len def compute(self, today, assets, out, estimate1): assert_almost_equal( estimate1, timelines_1q_out[today]['estimate1'] ) class SomeFactor2(CustomFactor): inputs = [dataset2.estimate2] window_length = window_len def compute(self, today, assets, out, estimate2): assert_almost_equal( estimate2, timelines_2q_out[today]['estimate2'] ) engine = self.make_engine() engine.run_pipeline( Pipeline({'est1': SomeFactor1(), 'est2': SomeFactor2()}), start_date=self.test_start_date, # last event date we have end_date=self.test_end_date, ) class PreviousWithSplitAdjustedMultipleEstimateColumns( WithSplitAdjustedMultipleEstimateColumns, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) @classmethod def make_expected_timelines_1q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 3), 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 3), 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 1110.]]), 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[np.NaN, 2110.]]) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] + [[np.NaN, 1110. * 4]] + [[1100 * 3., 1110. * 4]]), 'estimate2': np.array([[np.NaN, np.NaN]] + [[np.NaN, 2110. * 4]] + [[2100 * 3., 2110. * 4]]) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] * 2 + [[1200 * 3., 1210. * 4]]), 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[2200 * 3., 2210. * 4]]) } } @classmethod def make_expected_timelines_2q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 3) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] * 2 + [[2100 * 3., 2110. * 4]]) } } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousWithMultipleEstimateColumns( PreviousWithSplitAdjustedMultipleEstimateColumns ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousSplitAdjustedEstimatesLoader( bz.data(events), columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) class NextWithSplitAdjustedMultipleEstimateColumns( WithSplitAdjustedMultipleEstimateColumns, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=['estimate1', 'estimate2'], split_adjusted_asof=cls.split_adjusted_asof, ) @classmethod def make_expected_timelines_1q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate1': np.array([[np.NaN, np.NaN]] + [[1100. * 1/.3, 1110. * 1/.4]] * 2), 'estimate2': np.array([[np.NaN, np.NaN]] + [[2100. * 1/.3, 2110. * 1/.4]] * 2), }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate1': np.array([[1100., 1110.]] * 3), 'estimate2': np.array([[2100., 2110.]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate1': np.array([[1100., 1110.]] * 3), 'estimate2': np.array([[2100., 2110.]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate1': np.array([[1100 * 3., 1210. * 4]] * 3), 'estimate2': np.array([[2100 * 3., 2210. * 4]] * 3) }, pd.Timestamp('2015-01-12', tz='utc'): { 'estimate1': np.array([[1200 * 3., np.NaN]] * 3), 'estimate2': np.array([[2200 * 3., np.NaN]] * 3) } } @classmethod def make_expected_timelines_2q_out(cls): return { pd.Timestamp('2015-01-06', tz='utc'): { 'estimate2': np.array([[np.NaN, np.NaN]] + [[2200 * 1/.3, 2210. * 1/.4]] * 2) }, pd.Timestamp('2015-01-07', tz='utc'): { 'estimate2': np.array([[2200., 2210.]] * 3) }, pd.Timestamp('2015-01-08', tz='utc'): { 'estimate2': np.array([[2200, 2210.]] * 3) }, pd.Timestamp('2015-01-09', tz='utc'): { 'estimate2': np.array([[2200 * 3., np.NaN]] * 3) },
pd.Timestamp('2015-01-12', tz='utc')
pandas.Timestamp
import os import pandas as pd import json import re import gc from configparser import ConfigParser from pathlib import Path from typing import List, Dict, Union, Text, Tuple, Iterable from numbers import Number from pathlib import Path from selenium.webdriver import Firefox from selenium.webdriver import firefox from selenium.webdriver.firefox.options import Options from selenium.common.exceptions import NoSuchElementException from scripts.crawler import AcordaosTCU import sqlite3 firefox_webelements = firefox.webelement.FirefoxWebElement firefox_webdriver = firefox.webdriver.WebDriver def parse_json_year_date(year: Number, fullpath: Path) -> Union[Path, None]: """ Filtra os arquivos json por ano. """ if not isinstance(fullpath, Path): raise TypeError("O parâmetro path deve do tipo Path.") pattern_finder = re.search(f"_{year}\.json", fullpath.name) if pattern_finder: return fullpath else: return None def load_into_dataframe(jsonFile: List[Dict]) -> pd.DataFrame: """ Cria uma DataFrame a partir de uma lista de dicionários (JSON). """ # container para armazenar arquivos json container_of_json = [] for file in jsonFile: with open(file, "r", encoding="utf8") as f: d = json.load(f) container_of_json.append(d) # container of dataframes container_of_dataframes = [] for data in container_of_json: df = pd.read_json(json.dumps(data), orient="records", encoding="utf8") container_of_dataframes.append(df) df = pd.concat(container_of_dataframes) return df def get_urn(pattern: str, df: pd.DataFrame) -> Dict: """ Recebe padrão de urn e coleta todos as ocorrências no dataframe. """ urn_container = {} for index, row in df.iterrows(): if type(row["urn"]) == list: for data in row["urn"]: if pattern in data: if pattern in urn_container: continue else: urn_container[row["urn"]] = row["url"] else: if pattern in row["urn"]: if pattern in urn_container: continue else: urn_container[row["urn"]] = row["url"] return urn_container def select_files_based_on_year(path: Path, year: str) -> List[Path]: """ Seleciona os arquivos baseado no ano indicado em seus respectivos nomes. """ if not isinstance(path, Path): raise TypeError("O parâmetro path deve do tipo Path.") container_of_json_year = [] path_to_str = str(path.absolute()) for dirname, _, filenames in os.walk(path_to_str): for filename in filenames: path_filename = Path(os.path.join(dirname, filename)) check_pattern = parse_json_year_date(year, path_filename) if check_pattern: container_of_json_year.append(path_filename) return container_of_json_year def pipeline_to_get_urn( path: Path, years: List[str], patterns: List[str] ) -> (List[Dict], List[int]): """ Pipeline para coletar as urns de um determinado padrão ao longo de vários arquivos. Atributos: path: diretório onde estão os arquivos json years: list de anos que se deseja coletar os dados pattern: a substring oriunda de uma URN que se deseja buscar """ if not isinstance(path, Path): raise TypeError("O parâmetro path deve do tipo Path.") container = [] if not isinstance(years, List): raise TypeError("O parâmetro years precisa ser uma lista.") if not isinstance(patterns, List): raise TypeError("O parâmetro patterns precisa ser uma lista.") #criar container para armazenar os anos que possuem dados filtered_years = [] for year in years: container_of_json_year = select_files_based_on_year(path, year) if not container_of_json_year: print(f"Não há dados relativos ao {path} e {year}.") continue # sort by filename container_of_json_year = sorted( container_of_json_year, key=lambda x: int(x.name.split("_")[0]) ) # carrega os dados df = load_into_dataframe(container_of_json_year) for pattern in patterns: print( f"Iniciando a coleta das urn para o padrão {pattern} na base anual {year}." ) urn_list = get_urn(pattern, df) container.append(urn_list) del urn_list filtered_years.append(year) del df gc.collect() return container, filtered_years def create_df_for_urn_data_and_save(data: Dict, filename: str) -> None: x =
pd.DataFrame.from_dict(data, orient="index")
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """Get DrugCentral as OBO.""" import logging from typing import Iterable import bioversions import pandas as pd from pyobo.struct import Obo, Reference, Term from pyobo.utils.path import ensure_df logger = logging.getLogger(__name__) PREFIX = "drugcentral" URL = "http://unmtid-shinyapps.net/download/structures.smiles.tsv" def get_obo(force: bool = False) -> Obo: """Get DrugCentral OBO.""" version = bioversions.get_version(PREFIX) return Obo( ontology=PREFIX, name="DrugCentral", data_version=version, iter_terms=iter_terms, iter_terms_kwargs=dict(version=version, force=force), auto_generated_by=f"bio2obo:{PREFIX}", ) def iter_terms(version: str, force: bool = False) -> Iterable[Term]: """Iterate over DrugCentral terms.""" df = ensure_df(PREFIX, url=URL, version=version, force=force) for smiles, inchi, inchi_key, drugcentral_id, drugcentral_name, cas in df.values: if pd.isna(smiles) or pd.isna(inchi) or pd.isna(inchi_key): logger.warning("missing data for drugcentral:%s", drugcentral_id) continue term = Term.from_triple(prefix=PREFIX, identifier=drugcentral_id, name=drugcentral_name) term.append_xref(Reference(prefix="inchikey", identifier=inchi_key)) term.append_property("smiles", smiles) term.append_property("inchi", inchi) if
pd.notna(cas)
pandas.notna
""" Copyright (c) 2020, <NAME> <NAME> All rights reserved. This is an information tool to retrieve official business financials (income statements, balance sheets, and cashflow statements) for a sepcified range of times. The code aims to be as vallina as possible by minimizing the depndencies and packages ued to construct functions. This code can be used immediately off the shelf and assumes no more than the following packages to be installed. As a reminder, please ensure that your directory has enough space, ideally at least 100 MB for newly serialized reports to reside on the disk until you decide to clear them. """ import libraries import re import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np from datetime import datetime from selenium import webdriver import os import pickle class Business: # Define a default constructor for the Business object def __init__(self, foreign, symbol, report_type, start_period, end_period ): self.foreign=foreign self.symbol=symbol self.report_type=report_type self.start_period=start_period self.end_period=end_period #-------------Retrieving Annual/Quarter Reports---------- # Define a function to store the url(s) to a company's annual or quarter report(s) def ghost_report_url(self): ############## Check validity of inputs ############# ## Error Message if the foreign argument is not logical if (type(self.foreign)!=bool): raise TypeError("Invalid foreign type: foreign argument must be logical- True or False") ## Error message if the inputted ticker symbol is not a string if(type(self.symbol)!=str): raise TypeError("Invalid ticker symbol type: symbol argument must be a string") ## Error message if the inputted report type is neither 'annual' or 'quarter' if(self.report_type!='annual' and self.report_type!='quarter'): raise TypeError("Invalid report type: only 'annual' or 'quarter' report type is allowed") ## Error message if the specified start period or(and) end period is(are) not valid if ((len(str(self.start_period)))| (len(str(self.end_period)))!=8): raise ValueError("Invalid start period or(and) end period(s): start_period and end_period arguments must be in the form yyyymmdd") ## Error message to warn that foreign quarterly reports are not available on the SEC Edgar database if(self.foreign==True and self.report_type=='quarter'): raise ValueError("Foreign quarterly report(s) not available: try 'annual' report instead") # Convert start_period and end_period inputs to a datetime object start_period=datetime.strptime(str(self.start_period),"%Y%m%d").date() end_period=datetime.strptime(str(self.end_period),"%Y%m%d").date() ################# Retrieving Annual Report(s) (10-K or 20-F) ################ if(self.report_type=='annual'): # Get the url to the company's historic 10-K (including 10-K/A) or 20-F (including 20-F/A) filings(s) historical_filings_url=r"http://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK="+self.symbol+"&type=10-k&dateb=&owner=exclude&count=100" if self.foreign==False else r"http://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK="+self.symbol+"&type=20-f&dateb=&owner=exclude&count=100" # Get table containing descriptions of the company's 10-K(include 10-K/A and others) or 20-F(include 20F/A and others) filings(s) filings_description_table=pd.read_html(str(BeautifulSoup(requests.get(historical_filings_url).content,"html.parser").find("table",{"class":"tableFile2"})))[0] ## Stop and return an error message if the company has no filing type of 10-K or 20-F, given the company symbol and foreign logic if len(filings_description_table[(filings_description_table["Filings"]=="10-K")|(filings_description_table["Filings"]=="20-F")])==0: raise NameError("Invalid company symbol or(and) foreign logical") # Get the company's CIK (Central Index Key) number cik_number=re.search(r"(\d{10})",BeautifulSoup(requests.get(historical_filings_url).content,"html.parser").find("span",{"class":"companyName"}).text)[0] # Get a list of accession numbers of the historic 10-K or 20-F filing(s). raw_accesion_numbers because accession numbers seperated by dashes raw_accession_numbers=filings_description_table[(filings_description_table["Filings"]=="10-K")| (filings_description_table["Filings"]=="20-F")].Description.str.extract(r"(\d{10}\-\d{2}\-\d{6})",expand=False) # Get a list of url(s) to a company's historic 10-K or 20-F report(s) details filing_details_url=r"https://www.sec.gov/Archives/edgar/data/"+cik_number+r"/"+raw_accession_numbers+r"-index.html" filing_details_url=filing_details_url.to_list() # Get a list of url(s) to a company's 10-K or 20-F report(s) documentations document_details_url=r"https://www.sec.gov/cgi-bin/viewer?action=view&cik="+cik_number+"&accession_number="+raw_accession_numbers+"&xbrl_type=v" document_details_url=document_details_url.to_list() # Get report period(s), that is the 10-K or 20-F report(s) as of this(these) date(s) report_periods=[datetime.strptime(BeautifulSoup(requests.get(url).content,"html.parser").find("div",text=re.compile("Period of Report")).find_next("div").text,"%Y-%m-%d").date() for url in filing_details_url] # Get specified filing details url(s) filing_details_url=[filing_details_url[url] for url in range(len(report_periods)) if report_periods[url]>start_period and report_periods[url]<=end_period] # Get specified document details url(s) document_details_url=[document_details_url[url] for url in range(len(report_periods)) if report_periods[url]>start_period and report_periods[url]<=end_period] # Get download url(s) to the company's 10-K or 20F extracts annual_download_url=[] for url in document_details_url: soup=BeautifulSoup(requests.get(url).content,"html.parser").find('a', text = re.compile('View Excel Document'), attrs = {'class' : 'xbrlviewer'}) if soup is not None: annual_download_url.append(r"https://www.sec.gov"+soup['href']) else: annual_download_url.append(None) # Get specified report period(s) report_periods=[report_periods[rp] for rp in range(len(report_periods)) if report_periods[rp]>start_period and report_periods[rp]<=end_period] # Get html table(s) of the document format files tableFile=[BeautifulSoup(requests.get(url).content,"html.parser").find("table", { "summary" : "Document Format Files"}) for url in filing_details_url] # Get url(s) to the annual report html annual_report_url=[] for tab in range(len(tableFile)): if tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a").text.strip()!='': if ".htm" in tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a").text.strip(): annual_report_url.append("https://www.sec.gov"+tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a")["href"].replace("/ix?doc=","")) else: annual_report_url.append("annual report is not in HTML format") else: annual_report_url.append("annual report not available") # Combine the company's report period(s), and annual report url(s) into a data frame annual_report_df=pd.DataFrame({'report_periods':report_periods,'annual_report_url':annual_report_url,'annual_download_url':annual_download_url},index=[self.symbol]*len(report_periods)) # Return the data frame contructed above if it is not empty if not annual_report_df.empty: return annual_report_df else: return "No annual report filing(s) for "+ self.symbol + " between "+ start_period.strftime("%Y-%m-%d")+" and "+end_period.strftime("%Y-%m-%d") ################# Retrieving Quarter Report(s) (10-Q) ######################### if(self.report_type=='quarter'): # Get the url to the company's historic 10-Q historical_filings_url=r"http://www.sec.gov/cgi-bin/browse-edgar?action=getcompany&CIK="+self.symbol+"&type=10-q&dateb=&owner=exclude&count=100" # Get table containing descriptions of the company's 10-Q(include 10-Q/A and others) filings(s) filings_description_table=pd.read_html(str(BeautifulSoup(requests.get(historical_filings_url).content,"html.parser").find("table",{"class":"tableFile2"})))[0] ## Stop and return an error message if the company has no filing type of 10-Q, given the company symbol and foreign logic if len(filings_description_table[filings_description_table["Filings"]=="10-Q"])==0: raise NameError("Invalid company symbol or(and) foreign logical") # Get the company's CIK (Central Index Key) number cik_number=re.search(r"(\d{10})",BeautifulSoup(requests.get(historical_filings_url).content,"html.parser").find("span",{"class":"companyName"}).text)[0] # Get a list of accession numbers of the historic 10-Q. raw_accesion_numbers because accession numbers seperated by dashes raw_accession_numbers=filings_description_table[filings_description_table["Filings"]=="10-Q"].Description.str.extract(r"(\d{10}\-\d{2}\-\d{6})",expand=False) # Get a list of url(s) to a company's historic 10-Q report(s) details filing_details_url=r"https://www.sec.gov/Archives/edgar/data/"+cik_number+r"/"+raw_accession_numbers+r"-index.html" filing_details_url=filing_details_url.to_list() # Get a list of url(s) to a company's 10-Q report(s) documentations document_details_url=r"https://www.sec.gov/cgi-bin/viewer?action=view&cik="+cik_number+"&accession_number="+raw_accession_numbers+"&xbrl_type=v" document_details_url=document_details_url.to_list() ## At this moment, documents before 2009 are not available. Documents of this type are not normally needed anyway # Get report period(s), that is the 10-Q report(s) as of this(these) date(s) report_periods=[datetime.strptime(BeautifulSoup(requests.get(url).content,"html.parser").find("div",text=re.compile("Period of Report")).find_next("div").text,"%Y-%m-%d").date() for url in filing_details_url] # Get specified filing details url(s) filing_details_url=[filing_details_url[url] for url in range(len(report_periods)) if report_periods[url]>start_period and report_periods[url]<=end_period] # Get specified document details url(s) document_details_url=[document_details_url[url] for url in range(len(report_periods)) if report_periods[url]>start_period and report_periods[url]<=end_period] # Get download url(s) to the company's 10-Q extracts quarter_download_url=[] for url in document_details_url: soup=BeautifulSoup(requests.get(url).content,"html.parser").find('a', text = re.compile('View Excel Document'), attrs = {'class' : 'xbrlviewer'}) if soup is not None: quarter_download_url.append(r"https://www.sec.gov"+soup['href']) else: quarter_download_url.append(None) # Get specified report period(s) report_periods=[report_periods[rp] for rp in range(len(report_periods)) if report_periods[rp]>start_period and report_periods[rp]<=end_period] # Get html table(s) of the document format files tableFile=[BeautifulSoup(requests.get(url).content,"html.parser").find("table", { "summary" : "Document Format Files"}) for url in filing_details_url] # Get url(s) to the quarterly report html quarter_report_url=[] for tab in range(len(tableFile)): if tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a").text.strip()!='': if ".htm" in tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a").text.strip(): quarter_report_url.append("https://www.sec.gov"+tableFile[tab].findAll("tr")[1].findAll("td")[2].find("a")["href"].replace("/ix?doc=","")) else: quarter_report_url.append("quarterly report is not in HTML format") else: quarter_report_url.append("quarterly report not available") # Combine the company's report period(s), and quarterly report url(s) into a data frame quarter_report_df=pd.DataFrame({'report_periods':report_periods,'quarter_report_url':quarter_report_url,'quarter_download_url':quarter_download_url},index=[self.symbol]*len(report_periods)) # Return the data frame contructed above if it is not empty if not quarter_report_df.empty: return quarter_report_df else: return "No quarter report filing(s) for "+ self.symbol + " between "+ start_period.strftime("%Y-%m-%d")+" and "+end_period.strftime("%Y-%m-%d") #------------------------ Best-scrolled to the most relevant financial exhibit------------------------ # A function to exhibit financial statements def financial_statements_exhibit(self): ## Errors checked in the ghost_report_url() # Target annual financial statements of U.S. businesses # Prioritize in the order of 'Consolidated Statements of Cash Flows', 'Consolidated Income Statements', 'Consolidated Statements of Operations', 'Consolidated Balance Sheets', 'Consolidated Statements of Financial Position', 'Financial Statements and Supplementary Data', 'Selected Financial Data' if (self.foreign==False and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled financial exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Consolidated Statements of Cash Flows').click() except: try: driver.find_element_by_partial_link_text('Consolidated Income Statements').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Operations').click() except: try: driver.find_element_by_partial_link_text('Consolidated Balance Sheets').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Financial Position').click() except: try: driver.find_element_by_partial_link_text('Financial Statements and Supplementary Data').click() except: try: driver.find_element_by_partial_link_text('Selected Financial Data').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual financial statements require manual browsing.') pass # Open new tab after pulling up the best-scrolled financial exhibit driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) # Target annual financial statements of foreign businesses # Prioritize in the order of 'Consolidated Statements of Cash Flows', 'Consolidated Income Statements', 'Consolidated Statements of Operations', 'Consolidated Balance Sheets', 'Consolidated Statements of Financial Position', 'FINANCIAL STATEMENTS', 'Financial Statements', 'Selected Financial Data' if (self.foreign==True and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the most relevant financial exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Consolidated Statements of Cash Flows').click() except: try: driver.find_element_by_partial_link_text('Consolidated Income Statements').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Operations').click() except: try: driver.find_element_by_partial_link_text('Consolidated Balance Sheets').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Financial Position').click() except: try: driver.find_element_by_partial_link_text('FINANCIAL STATEMENTS').click() except: try: # Since the query is case insensitive, search in other cases driver.find_element_by_partial_link_text('Financial Statements').click() except: try: driver.find_element_by_partial_link_text('Selected Financial Data').click() except: try: driver.find_element_by_partial_link_text('KEY INFORMATION').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual financial statements require manual browsing.') pass # Open new tab after pulling up the best-scrolled financial exhibit driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) # Target quarter financial statements of U.S. businesses # Prioritize in the order of 'Consolidated Balance Sheets', 'Consolidated Statements of Financial Position','Consolidated Statements of Cash Flows','Consolidated Income Statements' 'Consolidated Statements of Operations', 'FINANCIAL STATEMENTS', 'Financial Statements' if(self.foreign==False and self.report_type=='quarter'): # Import quarter_report_url dataframe quarter_report_url=self.ghost_report_url().quarter_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up best-scrolled financial exhibits for url_index in range(len(quarter_report_url)): driver.get(quarter_report_url[url_index]) try: driver.find_element_by_partial_link_text('Consolidated Balance Sheets').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Financial Position').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Cash Flows').click() except: try: driver.find_element_by_partial_link_text('Consolidated Income Statements').click() except: try: driver.find_element_by_partial_link_text('Consolidated Statements of Operations').click() except: try: driver.find_element_by_partial_link_text('FINANCIAL STATEMENTS').click() except: try: driver.find_element_by_partial_link_text('Financial Statements').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' quarter financial statements require manual browsing.' ) pass # Open new tab after pulling up the best-scrolled balance sheet section driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) #------------ Best-scrolled to the most relevant risk factor exhibit------------ # A function to exhibit risk factors def risk_factors_exhibit(self, risk_type): ## Previous errors checked in the ghost_report_url() ## Error message if the inputted risk type is neither 'enterprise' or 'market' if(risk_type!='enterprise' and risk_type!='market'): raise TypeError("Invalid risk type: only 'enterprise' or 'market' risk type is allowed") ########################### Enterprise Risk Exhibit ################################## if(risk_type=='enterprise'): # Target annual and quarter enterprise risk factors of U.S. businesses # Prioritize in the order of 'Risk Factors','RISK FACTORS' if (self.foreign==False and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled enterprise risk factor exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Risk Factors').click() except: try: driver.find_element_by_partial_link_text('RISK FACTORS').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual enterprise risk factors require manual browsing.' ) pass # Open new tab after pulling up the best-scrolled enterprise risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) elif (self.foreign==False and self.report_type=='quarter'): # Import annual_report_url dataframe quarter_report_url=self.ghost_report_url().quarter_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled enterprise risk factor exhibits for url_index in range(len(quarter_report_url)): driver.get(quarter_report_url[url_index]) try: driver.find_element_by_partial_link_text('Risk Factors').click() except: try: driver.find_element_by_partial_link_text('RISK FACTORS').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' quarter enterprise risk factors require manual browsing.') pass # Open new tab after pulling up the best-scrolled enterprise risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) # Target annual enterprise risk factors of foreign businesses # Prioritize in the order of 'Risk Factors', 'RISK FACTORS', 'KEY INFORMATION', 'Key Information' if (self.foreign==True and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled enterprise risk factor exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Risk Factors').click() except: try: driver.find_element_by_partial_link_text('RISK FACTORS').click() except: try: driver.find_element_by_partial_link_text('KEY INFORMATION').click() except: try: driver.find_element_by_partial_link_text('Key Information').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual enterprise risk factors require manual browsing.') pass # Open new tab after pulling up the best-scrolled enterprise risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) ########################### Market Risk Exhibit ############################# elif(risk_type=='market'): # Target annual and quarter market risk factors of U.S. businesses # Prioritize in the order of 'Quantitative and Qualitative Disclosures About Market Risk', 'QUANTITATIVE AND QUALITATIVE DISCLOSURES ABOUT MARKET RISK' if (self.foreign==False and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled market risk factor exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures about Market Risk').click() except: try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures About Market Risk').click() except: try: driver.find_element_by_partial_link_text('QUANTITATIVE AND QUALITATIVE DISCLOSURES ABOUT MARKET RISK').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual market risk factors require manual browsing.') pass # Open new tab after pulling up the best-scrolled market risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) elif (self.foreign==False and self.report_type=='quarter'): # Import annual_report_url dataframe quarter_report_url=self.ghost_report_url().quarter_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled market risk factor exhibits for url_index in range(len(quarter_report_url)): driver.get(quarter_report_url[url_index]) try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures about Market Risk').click() except: try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures About Market Risk').click() except: try: driver.find_element_by_partial_link_text('QUANTITATIVE AND QUALITATIVE DISCLOSURES ABOUT MARKET RISK').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' quarter market risk factors require manual browsing.') pass # Open new tab after pulling up the best-scrolled market risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) # Target annual market risk factors of foreign businesses # Prioritize in the order of 'Quantitative and Qualitative Disclosures About Market Risk','QUANTITATIVE AND QUALITATIVE DISCLOSURES ABOUT MARKET RISK' if (self.foreign==True and self.report_type=='annual'): # Import annual_report_url dataframe annual_report_url=self.ghost_report_url().annual_report_url # Import report_periods dataframe report_periods=self.ghost_report_url().report_periods # Locate 'webdrive.exe' file to launch chrome browser driver=webdriver.Chrome(os.getcwd()+'\\chromedriver.exe') # Recurrently pull up the best_scrolled market risk factor exhibits for url_index in range(len(annual_report_url)): driver.get(annual_report_url[url_index]) try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures about Market Risk').click() except: try: driver.find_element_by_partial_link_text('Quantitative and Qualitative Disclosures About Market Risk').click() except: try: driver.find_element_by_partial_link_text('QUANTITATIVE AND QUALITATIVE DISCLOSURES ABOUT MARKET RISK').click() except: print(self.symbol+' '+report_periods[url_index].strftime('%Y-%m-%d')+' annual market risk factors require manual browsing.') pass # Open new tab after pulling up the best-scrolled market risk factor exhibits driver.execute_script("window.open('');") # Focus on the new tab for the next loop driver.switch_to.window(driver.window_handles[-1]) #----------------------------- Curate Financial Statements ----------------------------------------- # A function to curate income statements, balance sheets, and cah flow statements for U.S. and foreign businesses def curate_financial_statements(self,statement_type): ## Error message if inputted statement type is not available if(statement_type!='income' and statement_type!='balance' and statement_type!='cashflow'): raise TypeError("Statement type not available: only 'income', 'balance', or 'cashflow' statement type is allowed") # Probable names for statement selection- may nave to update identifiers as different company uses different statement names income_terms=['Consolidated Income Statement', 'Consolidated Statements of Income', 'Consolidated Statements of Earnings', 'Consolidated Statements of Operations','Consolidated Statements of Profit or Loss','Profit and Loss Statement','P&L Statement','P/L Statement','Consolidated Income Statement','Consolidated Statement of Income', 'Consolidated Statement of Earnings','Consolidated Statement of Operations','Consolidated Statement of Profit or Loss','Consolidated Profit and Loss Statement','Consolidated P&L Statement','Consolidated P/L Statement','Statement of Consolidated Operations','Statements of Consolidated Operations','Statement of Combined Operation','Statements of Combined Operation'] balance_terms=['Consolidated Balance Sheets', 'Consolidated Balance Sheet','Consolidated Statements of Financial Position', 'Consolidated Statements of Financial Condition','Consolidated Statement of Financial Positions','Consolidated Statement of Financial Conditions', 'Statement of Consolidated Financial Position','Statements of Consolidated Financial Position', 'Statement of Consolidated Financial Condition', 'Statements of Consolidated Financial Condition','Combined Balance Sheet'] cashflow_terms=['Consolidated Statements of Cash Flows','Consolidated Statement of Cash Flows','Cash Flow Statement','Consolidated Cash Flow Statement', 'Statement of Consolidated Cash Flows','Statements of Consolidated Cash Flows','Statement of Combined Cash Flow','Statements of Combined Cash Flow'] # Set root diectory for file access root_path=os.getcwd() ########### Extract Annual and Quarter Financial Statements (U.S. and foreign businesses)################# # Retrieve periods and url(s) from the url table called by ghost_report_url() report_table=self.ghost_report_url() report_periods=report_table.report_periods.to_list() if(self.report_type=='annual'): download_url_container=report_table.annual_download_url.to_list() # container to store the download urls of annual statements elif(self.report_type=='quarter'): download_url_container=report_table.quarter_download_url.to_list() # container to store the download urls of quarter statements # Designate a directory to store downloaded statements (begin statement piling) statement_pile_path=os.path.join(root_path,'statement_pile') company_pile_path=os.path.join(statement_pile_path,self.symbol) try: os.mkdir(statement_pile_path) # Create the statement_pile_path path os.mkdir(company_pile_path) # Create the company_pile_path path os.chdir(company_pile_path) # Tab into the company_pile_path path except: try: os.mkdir(company_pile_path) # Create the company_pile_path path os.chdir(company_pile_path) # Tab into the company_pile_path path except: os.chdir(company_pile_path) # Downlaod accessible statements into the statement_pile path # Construct a data frame to store the specified statement type period_container=[] # container to store statement periods statement_container=[] # container to store statement table for url_index in range(len(download_url_container)): statement_period=report_periods[url_index].strftime("%Y-%m-%d") if(download_url_container[url_index] is not None and download_url_container[url_index][download_url_container[url_index].rfind('.')+1:len(download_url_container[url_index])]!='xls'): statement_file=requests.get(download_url_container[url_index]) file_name=self.symbol+statement_period+self.report_type+'.xlsx' with open(file_name, 'wb+') as fs: fs.write(statement_file.content) # populating statement contents dfs=pd.ExcelFile(fs) sheet_headers=list(map(lambda x: x.lower().replace(' ','').replace('_','').replace('-','').replace(',','').replace("'","").replace('&','').replace('/',''), [dfs.parse(sn).columns[0] for sn in dfs.sheet_names])) ############################ Income Statements ################################### if (statement_type=='income'): income_term_header=list(map(lambda x: x.lower().replace(' ','').replace('&','').replace('/',''),income_terms)) select_sheet_bool=[any(x in sheet_headers[i] for x in income_term_header) for i in range(len(sheet_headers))] if(any(select_sheet_bool)): # Identify income statement and store in dataframe form income_statement=dfs.parse(dfs.sheet_names[select_sheet_bool.index(True)]) # Store income statement into the statement container statement_container.append(income_statement) # Store income statement period into the period container period_container.append(statement_period) # Serialize the income statement dataframe into '.pickle'- to be accessed faster next time income_statement.to_pickle(self.symbol+statement_period+self.report_type.capitalize()+statement_type.capitalize()+'.pickle') else: # Store income statement as None in the statement container ## Because not identified or does not exist statement_container.append(None) # Store income statement period into the period container period_container.append(statement_period) # Message to warn that income statement may be non-identified or simply not available print(self.symbol+' '+statement_period+ ' '+self.report_type+' income statement not identified or not available: update income statement identifiers or pass') ############################ Balance Sheets ################################### if (statement_type=='balance'): balance_term_header=list(map(lambda x: x.lower().replace(' ','').replace('&','').replace('/',''), balance_terms)) select_sheet_bool=[any(x in sheet_headers[i] for x in balance_term_header) for i in range(len(sheet_headers))] if(any(select_sheet_bool)): # Identify balance sheet and store in dataframe form balance_sheet=dfs.parse(dfs.sheet_names[select_sheet_bool.index(True)]) # Store balacne sheet into the statement container statement_container.append(balance_sheet) # Store balance sheet period into the period container period_container.append(statement_period) # Serialize the balance sheet dataframe into '.pickle'- to be accessed faster next time balance_sheet.to_pickle(self.symbol+statement_period+self.report_type.capitalize()+statement_type.capitalize()+'.pickle') else: # Store balance sheet as None in the statement container ## Because not identified or does not exist statement_container.append(None) # Store balance sheet period into the period container period_container.append(statement_period) # Message to warn that balance sheet may be non-identified or simply not available print(self.symbol+' '+statement_period+ ' '+self.report_type+' balance sheet not identified or not available: update balance sheet identifiers or pass') ############################ Cash Flow Statements ################################### if (statement_type=='cashflow'): cashflow_term_header=list(map(lambda x: x.lower().replace(' ','').replace('&','').replace('/',''), cashflow_terms)) select_sheet_bool=[any(x in sheet_headers[i] for x in cashflow_term_header) for i in range(len(sheet_headers))] if(any(select_sheet_bool)): # Identify cash flow statement and store in dataframe form cashflow_statement=dfs.parse(dfs.sheet_names[select_sheet_bool.index(True)]) # Store cash flow statement into the statement container statement_container.append(cashflow_statement) # Store cash flow statement period into the period container period_container.append(statement_period) # Serialize the cash flow statement dataframe into '.pickle'- to be accessed faster next time cashflow_statement.to_pickle(self.symbol+statement_period+self.report_type.capitalize()+statement_type.capitalize()+'.pickle') else: # Store cash flow statement as None in the statement container ## Because not identified or does not exist statement_container.append(None) # Store cash flow statement period into the period container period_container.append(statement_period) # Message to warn that cash flow statement may be non-identified or simply not available print(self.symbol+' '+statement_period+ ' '+self.report_type+' cashflow statement not identified or not available: update cash flow statement identifiers or pass') fs.close() # close the downloaded '.xlsx' file os.remove(file_name) # remove the downloaded '.xlsx' file after extracting financial statements else: print(self.symbol+' '+statement_period+' '+self.report_type+' '+statement_type+' statement not available') # Combine the conpany's income statement(s) or balance sheet(s) or cash flow statement(s), and statement periods into a dataframe statement_df=pd.DataFrame({'statement_periods':period_container,statement_type+'_statement':statement_container},index=[self.symbol]*len(period_container)) # Return back to root_path (end statement piling) os.chdir(root_path) # Return the data frame contructed above if it is not empty if not statement_df.empty: return statement_df else: return 'No '+self.report_type+' '+statement_type+' statement for '+self.symbol+' between '+self.start_period.strftime("%Y-%m-%d")+' and '+self.end_period.strftime("%Y-%m-%d") #------------------------Extract Most Recent Income Statements-------------------------------- def ghost_income(self): bin_path=r'.\\statement_pile\\'+self.symbol if (os.path.isdir(bin_path)): bin_files=os.listdir(bin_path) pass else: os.makedirs(bin_path) bin_files=os.listdir(bin_path) # Convert start_period and end_period inputs to a datetime object start_period=datetime.strptime(str(self.start_period),"%Y%m%d").date() end_period=datetime.strptime(str(self.end_period),"%Y%m%d").date() if(self.report_type=='annual'): if any(["AnnualIncome" in s for s in bin_files]): annual_income_file=[s for s in bin_files if "AnnualIncome" in s] annual_income_periods=list(map(lambda x: datetime.strptime(re.search('\d{4}-\d{2}-\d{2}',x).group(),"%Y-%m-%d").date(),annual_income_file)) annual_income_file=[annual_income_file[i] for i in range(len(annual_income_file)) if annual_income_periods[i]>start_period and annual_income_periods[i]<=end_period] annual_income_periods=[annual_income_periods[i] for i in range(len(annual_income_periods)) if annual_income_periods[i]>start_period and annual_income_periods[i]<=end_period] annual_income_file.reverse() annual_income_periods.reverse() try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),pd.read_pickle(bin_path+'\\'+annual_income_file[3]), pd.read_pickle(bin_path+'\\'+annual_income_file[6])], axis = 1) binded_message='Ghosted '+self.report_type+' income statments for '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[0]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[3]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[6]).group() except: try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),pd.read_pickle(bin_path+'\\'+annual_income_file[3]), pd.read_pickle(bin_path+'\\'+annual_income_file[5])], axis = 1) binded_message='Ghosted '+self.report_type+' income statments for '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[0]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[3]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[5]).group() except: try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),pd.read_pickle(bin_path+'\\'+annual_income_file[3]), pd.read_pickle(bin_path+'\\'+annual_income_file[4])], axis = 1) binded_message='Ghosted '+self.report_type+' income statments for '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[0]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[3]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[4]).group() except: try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),pd.read_pickle(bin_path+'\\'+annual_income_file[3])], axis = 1) binded_message='Ghosted '+self.report_type+' income statments for '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[0]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[3]).group() except: try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),pd.read_pickle(bin_path+'\\'+annual_income_file[2])], axis = 1) binded_message='Ghosted '+self.report_type+' income statments for '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[0]).group()+', '+re.search('\d{4}-\d{2}-\d{2}',annual_income_file[2]).group() except: try: binded_income=pd.concat([pd.read_pickle(bin_path+'\\'+annual_income_file[0]),
pd.read_pickle(bin_path+'\\'+annual_income_file[1])
pandas.read_pickle
import datetime import json import typing import pandas as pd import requests URL = "https://www.tpex.org.tw/web/stock/aftertrading/otc_quotes_no1430/stk_wn1430_result.php?l=zh-tw&d={}&se=AL&_={}" # 網頁瀏覽時, 所帶的 request header 參數, 模仿瀏覽器發送 request HEADER = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7", "Connection": "keep-alive", "Host": "www.tpex.org.tw", "Referer": "https://www.tpex.org.tw/web/stock/aftertrading/otc_quotes_no1430/stk_wn1430.php?l=zh-tw", "sec-ch-ua": '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": "Windows", "Sec-Fetch-Dest": "empty", "Sec-Fetch-Mode": "cors", "Sec-Fetch-Site": "same-origin", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.99 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } def crawler(parameters: typing.Dict[str, str]): crawler_date = parameters.get("crawler_date", "") crawler_date = crawler_date.replace( crawler_date.split("-")[0], str(int(crawler_date.split("-")[0]) - 1911) ) crawler_date = crawler_date.replace("-", "/") crawler_timestamp = int(datetime.datetime.now().timestamp()) resp = requests.get( url=URL.format(crawler_date, crawler_timestamp), headers=HEADER ) columns = [ "stock_id", "stock_name", "close", "open", "max", "min", ] if resp.ok: resp_data = json.loads(resp.text) data = pd.DataFrame(resp_data["aaData"]) data = data[[0, 1, 2, 4, 5, 6]] data.columns = columns data["date"] = parameters.get("crawler_date", "") else: data =
pd.DataFrame()
pandas.DataFrame
"""\ Data structures for expt. The "Experiment" data is structured like a 4D array, i.e. Experiment := [hypothesis_name, run_index, index, column] The data is structured in the following ways (from higher to lower level): Experiment (~= Dict[str, List[DataFrame]]): An experiment consists of one or multiple Hypotheses (e.g. different hyperparameters or algorithms) that can be compared with one another. Hypothesis (~= List[DataFrame], or RunGroup): A Hypothesis consists of several `Run`s that share an identical experimental setups (e.g. hyperparameters). This usually corresponds to one single curve for each model. It may also contain additional metadata of the experiment. Run (~= DataFrame == [index, column]): Contains a pandas DataFrame (a table-like structure, str -> Series) as well as more metadata (e.g. path, seed, etc.) Note that one can also manage a collection of Experiments (e.g. the same set of hypotheses or algorithms applied over different environments or dataset). """ import collections import fnmatch import itertools import os.path import re import sys import types from dataclasses import dataclass # for python 3.6, backport needed from multiprocessing.pool import Pool as MultiprocessPool from multiprocessing.pool import ThreadPool from typing import (Any, Callable, Dict, Generator, Iterable, Iterator, List, Mapping, MutableMapping, Optional, Sequence, Set, Tuple, TypeVar, Union) import numpy as np import pandas as pd from pandas.core.accessor import CachedAccessor from pandas.core.groupby.generic import DataFrameGroupBy from typeguard import typechecked from . import plot as _plot from . import util from .path_util import exists, glob, isdir, open T = TypeVar('T') try: from tqdm.auto import tqdm except: tqdm = util.NoopTqdm ######################################################################### # Data Classes ######################################################################### @dataclass class Run: """Represents a single run, containing one pd.DataFrame object as well as other metadata (path, etc.) """ path: str df: pd.DataFrame @classmethod def of(cls, o): """A static factory method.""" if isinstance(o, Run): return Run(path=o.path, df=o.df) elif isinstance(o, pd.DataFrame): return cls.from_dataframe(o) raise TypeError("Unknown type {}".format(type(o))) @classmethod @typechecked def from_dataframe(cls, df: pd.DataFrame): run = cls(path='', df=df) if hasattr(df, 'path'): run.path = df.path return run def __repr__(self): return 'Run({path!r}, df with {rows} rows)'.format( path=self.path, rows=len(self.df)) @property def columns(self) -> Sequence[str]: """Returns all column names.""" return list(self.df.columns) # type: ignore @property def name(self) -> str: """Returns the last segment of the path.""" path = self.path.rstrip('/') return os.path.basename(path) def to_hypothesis(self) -> 'Hypothesis': """Create a new `Hypothesis` consisting of only this run.""" return Hypothesis.of(self) def plot(self, *args, subplots=True, **kwargs): return self.to_hypothesis().plot(*args, subplots=subplots, **kwargs) def hvplot(self, *args, subplots=True, **kwargs): return self.to_hypothesis().hvplot(*args, subplots=subplots, **kwargs) class RunList(Sequence[Run]): """A (immutable) list of Run objects, but with some useful utility methods such as filtering, searching, and handy format conversion.""" def __init__(self, runs: Iterable[Run]): runs = self._validate_type(runs) self._runs = list(runs) @classmethod def of(cls, runs: Iterable[Run]): if isinstance(runs, cls): return runs # do not make a copy else: return cls(runs) # RunList(runs) def _validate_type(self, runs) -> List[Run]: if not isinstance(runs, Iterable): raise TypeError(f"`runs` must be a Iterable, but given {type(runs)}") if isinstance(runs, Mapping): raise TypeError(f"`runs` should not be a dictionary, given {type(runs)} " " (forgot to wrap with pd.DataFrame?)") runs = list(runs) if not all(isinstance(r, Run) for r in runs): raise TypeError("`runs` must be a iterable of Run, " "but given {}".format([type(r) for r in runs])) return runs def __getitem__(self, index_or_slice): o = self._runs[index_or_slice] if isinstance(index_or_slice, slice): o = RunList(o) return o def __next__(self): # This is a hack to prevent panda's pprint_thing() from converting # into a sequence of Runs. raise TypeError("'RunList' object is not an iterator.") def __len__(self): return len(self._runs) def __repr__(self): return "RunList([\n " + "\n ".join(repr(r) for r in self._runs) + "\n]" def extend(self, more_runs: Iterable[Run]): self._runs.extend(more_runs) def to_list(self) -> List[Run]: """Create a new copy of list containing all the runs.""" return list(self._runs) def to_dataframe(self) -> pd.DataFrame: """Return a DataFrame consisting of columns `name` and `run`.""" return pd.DataFrame({ 'name': [r.name for r in self._runs], 'run': self._runs, }) def filter(self, fn: Union[Callable[[Run], bool], str]) -> 'RunList': """Apply a filter function (Run -> bool) and return the filtered runs as another RunList. If a string is given, we convert it as a matcher function (see fnmatch) that matches `run.name`.""" if isinstance(fn, str): pat = str(fn) fn = lambda run: fnmatch.fnmatch(run.name, pat) return RunList(filter(fn, self._runs)) def grep(self, regex: Union[str, 're.Pattern'], flags=0): """Apply a regex-based filter on the path of `Run`, and return the matched `Run`s as a RunList.""" if isinstance(regex, str): regex = re.compile(regex, flags=flags) return self.filter(lambda r: bool(regex.search(r.path))) def map(self, func: Callable[[Run], Any]) -> List: """Apply func for each of the runs. Return the transformation as a plain list.""" return list(map(func, self._runs)) def to_hypothesis(self, name: str) -> 'Hypothesis': """Create a new Hypothesis instance containing all the runs as the current RunList instance.""" return Hypothesis.of(self, name=name) def groupby( self, by: Callable[[Run], T], *, name: Callable[[T], str] = str, ) -> Iterator[Tuple[T, 'Hypothesis']]: r"""Group runs into hypotheses with the key function `by` (Run -> key). This will enumerate tuples (`group_key`, Hypothesis) where `group_key` is the result of the key function for each group, and a Hypothesis object (with name `name(group_key)`) will consist of all the runs mapped to the same group. Args: by: a key function for groupby operation. (Run -> Key) name: a function that maps the group (Key) into Hypothesis name (str). Example: >>> key_func = lambda run: re.search("algo=(\w+),lr=([.0-9]+)", run.name).group(1, 2) >>> for group_name, hypothesis in runs.groupby(key_func): >>> ... """ series = pd.Series(self._runs) groupby = series.groupby(lambda i: by(series[i])) group: T for group, runs_in_group in groupby: yield group, Hypothesis.of(runs_in_group, name=name(group)) def extract(self, pat: str, flags: int = 0) -> pd.DataFrame: r"""Extract capture groups in the regex pattern `pat` as columns. Example: >>> runs[0].name "ppo-halfcheetah-seed0" >>> df = runs.extract(r"(?P<algo>[\w]+)-(?P<env_id>[\w]+)-seed(?P<seed>[\d]+)") >>> assert list(df.columns) == ['algo', 'env_id', 'seed', 'run'] """ df: pd.DataFrame = self.to_dataframe() df = df['name'].str.extract(pat, flags=flags) df['run'] = list(self._runs) return df @dataclass class Hypothesis(Iterable[Run]): name: str runs: RunList def __init__(self, name: str, runs: Union[Run, Iterable[Run]]): if isinstance(runs, Run) or isinstance(runs, pd.DataFrame): if not isinstance(runs, Run): runs = Run.of(runs) runs = [runs] # type: ignore self.name = name self.runs = RunList(runs) def __iter__(self) -> Iterator[Run]: return iter(self.runs) @classmethod def of(cls, runs: Union[Run, Iterable[Run]], *, name: Optional[str] = None) -> 'Hypothesis': """A static factory method.""" if isinstance(runs, Run): name = name or runs.path return cls(name=name or '', runs=runs) def __getitem__(self, k): if isinstance(k, int): return self.runs[k] if k not in self.columns: raise KeyError(k) return pd.DataFrame({r.path: r.df[k] for r in self.runs}) def __repr__(self) -> str: return f"Hypothesis({self.name!r}, <{len(self.runs)} runs>)" def __len__(self) -> int: return len(self.runs) def __hash__(self): return hash(id(self)) def __next__(self): # This is a hack to prevent panda's pprint_thing() from converting # into a sequence of Runs. raise TypeError("'Hypothesis' object is not an iterator.") def describe(self) -> pd.DataFrame: """Report a descriptive statistics as a DataFrame, after aggregating all runs (e.g., mean).""" return self.mean().describe() def summary(self) -> pd.DataFrame: """Return a DataFrame that summarizes the current hypothesis.""" return Experiment(self.name, [self]).summary() # see module expt.plot plot = CachedAccessor("plot", _plot.HypothesisPlotter) plot.__doc__ = _plot.HypothesisPlotter.__doc__ hvplot = CachedAccessor("hvplot", _plot.HypothesisHvPlotter) hvplot.__doc__ = _plot.HypothesisHvPlotter.__doc__ @property def grouped(self) -> DataFrameGroupBy: return pd.concat(self._dataframes, sort=False).groupby(level=0) def empty(self) -> bool: sentinel = object() return next(iter(self.grouped), sentinel) is sentinel # O(1) @property def _dataframes(self) -> List[pd.DataFrame]: """Get all dataframes associated with all the runs.""" def _get_df(o): if isinstance(o, pd.DataFrame): return o else: return o.df return [_get_df(r) for r in self.runs] @property def columns(self) -> Iterable[str]: return util.merge_list(*[df.columns for df in self._dataframes]) def rolling(self, *args, **kwargs): return self.grouped.rolling(*args, **kwargs) def mean(self, *args, **kwargs) -> pd.DataFrame: g = self.grouped return g.mean(*args, **kwargs) def std(self, *args, **kwargs) -> pd.DataFrame: g = self.grouped return g.std(*args, **kwargs) def min(self, *args, **kwargs) -> pd.DataFrame: g = self.grouped return g.min(*args, **kwargs) def max(self, *args, **kwargs) -> pd.DataFrame: g = self.grouped return g.max(*args, **kwargs) class Experiment(Iterable[Hypothesis]): @typechecked def __init__( self, name: Optional[str] = None, hypotheses: Iterable[Hypothesis] = None, ): self._name = name if name is not None else "" self._hypotheses: MutableMapping[str, Hypothesis] self._hypotheses = collections.OrderedDict() if isinstance(hypotheses, np.ndarray): hypotheses = list(hypotheses) for h in (hypotheses or []): if not isinstance(h, Hypothesis): raise TypeError("An element of hypotheses contains a wrong type: " "expected {}, but given {} ".format( Hypothesis, type(h))) if h.name in self._hypotheses: raise ValueError(f"Duplicate hypothesis name: `{h.name}`") self._hypotheses[h.name] = h @classmethod def from_dataframe( cls, df: pd.DataFrame, by: Optional[Union[str, List[str]]] = None, *, run_column: str = 'run', hypothesis_namer: Callable[..., str] = str, name: Optional[str] = None, ) -> 'Experiment': """Constructs a new Experiment object from a DataFrame instance structured as per the convention. Args: by (str, List[str]): The column name to group by. If None (default), it will try to automatically determine from the dataframe if there is only one column other than `run_column`. run_column (str): The column name that contains `Run` objects. See also `RunList.to_dataframe()`. hypothesis_namer: This is a mapping that transforms the group key (a str or tuple) that pandas groupby produces into hypothesis name. This function should take one positional argument for the group key. name: The name for the produced `Experiment`. """ if by is None: # Automatically determine the column from df. by_columns = list(sorted(set(df.columns).difference([run_column]))) if len(by_columns) != 1: raise ValueError("Cannot automatically determine the column to " "group by. Candidates: {}".format(by_columns)) by = next(iter(by_columns)) ex = Experiment(name=name) for hypothesis_key, runs_df in df.groupby(by): hypothesis_name = hypothesis_namer(hypothesis_key) runs = RunList(runs_df[run_column]) h = runs.to_hypothesis(name=hypothesis_name) ex.add_hypothesis(h) return ex def add_runs( self, hypothesis_name: str, runs: List[Union[Run, Tuple[str, pd.DataFrame], pd.DataFrame]], *, color=None, linestyle=None, ) -> Hypothesis: def check_runs_type(runs) -> List[Run]: if isinstance(runs, types.GeneratorType): runs = list(runs) if runs == []: return [] if isinstance(runs, Run): runs = [runs] return [Run.of(r) for r in runs] _runs = check_runs_type(runs) d = Hypothesis.of(name=hypothesis_name, runs=_runs) return self.add_hypothesis(d, extend_if_conflict=True) @typechecked def add_hypothesis( self, h: Hypothesis, extend_if_conflict=False, ) -> Hypothesis: if h.name in self._hypotheses: if not extend_if_conflict: raise ValueError(f"Hypothesis named {h.name} already exists!") d: Hypothesis = self._hypotheses[h.name] d.runs.extend(h.runs) else: self._hypotheses[h.name] = h return self._hypotheses[h.name] @property def name(self) -> str: return self._name @property def title(self) -> str: return self._name def keys(self) -> Iterable[str]: """Return all hypothesis names.""" return self._hypotheses.keys() @property def hypotheses(self) -> Sequence[Hypothesis]: return tuple(self._hypotheses.values()) def select_top( self, key, k=None, descending=True, ) -> Union[Hypothesis, Sequence[Hypothesis]]: """Choose a hypothesis that has the largest value on the specified column. Args: key: str (y_name) or Callable(Hypothesis -> number). k: If None, the top-1 hypothesis will be returned. Otherwise (integer), top-k hypotheses will be returned as a tuple. descending: If True, the hypothesis with largest value in key will be chosen. If False, the hypothesis with smallest value will be chosen. Returns: the top-1 hypothesis (if `k` is None) or a tuple of k hypotheses in the order specified by `key`. """ if k is not None and k <= 0: raise ValueError("k must be greater than 0.") if k is not None and k > len(self._hypotheses): raise ValueError("k must be smaller than the number of " "hypotheses ({})".format(len(self._hypotheses))) if isinstance(key, str): y = str(key) # make a copy for closure if descending: key = lambda h: h.mean()[y].max() else: key = lambda h: h.mean()[y].min() elif callable(key): pass # key: Hypothesis -> scalar. else: raise TypeError( f"`key` must be a str or a callable, but got: {type(key)}") candidates = sorted(self.hypotheses, key=key, reverse=descending) assert isinstance(candidates, list) if k is None: return candidates[0] else: return candidates[:k] def __iter__(self) -> Iterator[Hypothesis]: return iter(self._hypotheses.values()) def __repr__(self) -> str: return ( f"Experiment('{self.name}', {len(self._hypotheses)} hypotheses: [ \n " + '\n '.join([repr(exp) for exp in self.hypotheses]) + "\n])") def __getitem__( self, key: Union[str, Tuple], ) -> Union[Hypothesis, np.ndarray, Run, pd.DataFrame]: """Return self[key]. `key` can be one of the following: - str: The hypothesis's name to retrieve. - int: An index [0, len(self)) in all hypothesis. A numpy-style fancy indexing is supported. - Tuple(hypo_key: str|int, column: str): - The first axis is the same as previous (hypothesis' name or index) - The second one is the column name. The return value will be same as self[hypo_key][column]. """ if isinstance(key, str): name = key return self._hypotheses[name] elif isinstance(key, int): try: _keys = self._hypotheses.keys() name = next(itertools.islice(_keys, key, None)) except StopIteration: raise IndexError("out of range: {} (should be < {})".format( key, len(self._hypotheses))) return self._hypotheses[name] elif isinstance(key, tuple): hypo_key, column = key hypos = self[hypo_key] if isinstance(hypos, list): raise NotImplementedError("2-dim fancy indexing is not implemented") # yapf: disable return hypos[column] # type: ignore elif isinstance(key, Iterable): key = list(key) if all(isinstance(k, bool) for k in key): # fancy indexing through bool if len(key) != len(self._hypotheses): raise IndexError("boolean index did not match indexed array along" " dimension 0; dimension is {} but corresponding " " boolean dimension is {}".format( len(self._hypotheses), len(key))) r = np.empty(len(key), dtype=object) r[:] = list(self._hypotheses.values()) return r[key] else: # fancy indexing through int? # TODO: support str hypo_keys = list(self._hypotheses.keys()) to_key = lambda k: k if isinstance(k, str) else hypo_keys[k] return [self._hypotheses[to_key(k)] for k in key] else: raise ValueError("Unsupported index: {}".format(key)) def __setitem__( self, name: str, hypothesis_or_runs: Union[Hypothesis, List[Run]], ) -> Hypothesis: """An dict-like method for adding hypothesis or runs.""" if isinstance(hypothesis_or_runs, Hypothesis): if hypothesis_or_runs in self._hypotheses: raise ValueError(f"A hypothesis named {name} already exists") self._hypotheses[name] = hypothesis_or_runs else: # TODO metadata (e.g. color) self.add_runs(name, hypothesis_or_runs) # type: ignore return self._hypotheses[name] @property def columns(self) -> Iterable[str]: # merge and uniquify all columns but preserving the order. return util.merge_list(*[h.columns for h in self._hypotheses.values()]) @staticmethod def AGGREGATE_MEAN_LAST(portion: float): return (lambda series: series.rolling(max(1, int(len(series) * portion)) ).mean().iloc[-1]) # yapf: disable def summary(self, columns=None, aggregate=None) -> pd.DataFrame: """Return a DataFrame that summarizes the current experiments, whose rows are all hypothesis. Args: columns: The list of columns to show. Defaults to `self.columns` plus `"index"`. aggregate: A function or a dict of functions ({column_name: ...}) specifying a strategy to aggregate a `Series`. Defaults to take the average of the last 10% of the series. Example Usage: >>> pd.set_option('display.max_colwidth', 2000) # hypothesis name can be long! >>> df = ex.summary(columns=['index', 'loss', 'return']) >>> df.style.background_gradient(cmap='viridis') """ columns = columns or (['index'] + list(self.columns)) aggregate = aggregate or self.AGGREGATE_MEAN_LAST(0.1) df = pd.DataFrame({'hypothesis': [h.name for h in self.hypotheses]}) hypo_means = [ (h.mean() if not all(len(df) == 0 for df in h._dataframes) \ else pd.DataFrame()) for h in self.hypotheses ] for column in columns: def df_series(df: pd.DataFrame): if column == 'index': return df.index if column not in df: return [] else: return df[column].dropna() def aggregate_h(series): if len(series) == 0: # after dropna, no numeric types to aggregate? return np.nan aggregate_fn = aggregate if not callable(aggregate_fn): aggregate_fn = aggregate[column] v = aggregate_fn(series) if column != 'index' else series.max() return v df[column] = [aggregate_h(df_series(hm)) for hm in hypo_means] return df def hvplot(self, *args, **kwargs): plot = None for i, (name, hypo) in enumerate(self._hypotheses.items()): p = hypo.hvplot(*args, label=name, **kwargs) plot = (plot * p) if plot else p return plot plot = CachedAccessor("plot", _plot.ExperimentPlotter) plot.__doc__ = _plot.ExperimentPlotter.__doc__ ######################################################################### # Data Parsing Functions ######################################################################### def parse_run(run_folder, fillna=False, verbose=False) -> pd.DataFrame: """Create a pd.DataFrame object from a single directory.""" if verbose: # TODO Use python logging print(f"Reading {run_folder} ...", file=sys.stderr, flush=True) # make it more general (rather than being specific to progress.csv) # and support tensorboard eventlog files, etc. sources = [ parse_run_progresscsv, parse_run_tensorboard, ] for fn in sources: try: df = fn(run_folder, fillna=fillna, verbose=verbose) if df is not None: break except (FileNotFoundError, IOError) as e: if verbose: print(f"{fn.__name__} -> {e}\n", file=sys.stderr, flush=True) else: raise
pd.errors.EmptyDataError(f"Cannot handle dir: {run_folder}")
pandas.errors.EmptyDataError
import re import socket from datetime import datetime from urlextract import URLExtract import urllib.parse as urlparse from urllib.parse import parse_qs import click import argparse import csv import os from dateutil.parser import parse import pandas as pd from urllib.parse import unquote import hashlib # When you need to connect to a database #from pandas.io import sql #import mysql.connector #from sqlalchemy import create_engine #import mysql.connector #Global Variables data = [] map_refer = {} # Missing a ArgumentParser #parser = argparse.ArgumentParser(description='Description of your program') #parser.add_argument('-p','--path', help='Localization of the patching files', default= "./Files/") #args = vars(parser.parse_args()) def extract(request): """ Extract url domain from wayback request. """ extractor = URLExtract() try: urls = extractor.find_urls('/'.join(request.split('/')[3:])) if urls: return urls[0] else: return None except: import pdb;pdb.set_trace() def getParametersFromRequestWayback(request, df, i): """ Extract parameters from wayback request. """ # Just a sanity check. if not pd.isnull(df.at[i, 'DATE']): try: # Generate timestamp using the parameter DATE date_simple = df.at[i, 'DATE'].replace("[", "").replace("]", "") date = datetime.strptime(date_simple, "%d/%b/%Y:%H:%M:%S") # Just a sanity check. if re.match(r"GET /wayback/[0-9]+", request): #Extract url domain url = extract(request) if urlparse.urlparse(url).netloc != "": final_url = urlparse.urlparse(url).netloc else: final_url = url #Put into a list to later generate a dataframe data.append([df.at[i, "IP_ADDRESS"], df.at[i, "USER_AGENT"], date.timestamp(), df.at[i, "REQUEST"], df.at[i, "STATUS_CODE"], df.at[i, "PREVIOUS_REQUEST"], final_url]) except: raise ValueError("Error - getParametersFromRequestWayback function") def getParametersFromRequest(request, df, i, boolRequest): """ Extract and process the parameters from query request. Function only used for Apache logs. """ # Check whether we are processing the request or the previous_request if boolRequest: #This request will not be analyzed in the first analysis, however it is done for later analysis. #Image Search JSP and Page Search JSP will be treated as equals. if request.startswith("GET /search.jsp?") or request.startswith("GET /images.jsp?"): # Set the parameter BOOL_QUERY (i.e., =1 means the line is a query) df.at[i, 'BOOL_QUERY'] = 1 # Set the parameter TYPE_SEARCH if request.startswith("GET /search.jsp?"): df.at[i, 'TYPE_SEARCH'] = "search_jsp" else: df.at[i, 'TYPE_SEARCH'] = "images_jsp" # Parse the REQUEST and Set the parameters TRACKINGID, USER_TRACKING_ID, SEARCH_TRACKING_ID, QUERY, LANG_REQUEST, FROM_REQUEST, TO_REQUEST parsed = urlparse.urlparse(request) try: df.at[i, 'TRACKINGID'] = parse_qs(parsed.query)['trackingId'][0] df.at[i, 'USER_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[0] df.at[i, 'SEARCH_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[1] except: df.at[i, 'TRACKINGID'] = "" try: df.at[i, 'QUERY'] = unquote(parse_qs(parsed.query)['query'][0]) df.at[i, 'LANG_REQUEST'] = parse_qs(parsed.query)['l'][0] except: df.at[i, 'BOT'] = 1 try: df.at[i, 'FROM_REQUEST'] = parse_qs(parsed.query)['dateStart'][0] df.at[i, 'TO_REQUEST'] = parse_qs(parsed.query)['dateEnd'][0] except: df.at[i, 'FROM_REQUEST'] = None df.at[i, 'TO_REQUEST'] = None #Image Search API and Page Search API calls will be treated as equals. elif "textsearch?" in request or "imagesearch?" in request: # Set the parameter BOOL_QUERY (i.e., =1 means the line is a query) df.at[i, 'BOOL_QUERY'] = 1 # Set the parameter TYPE_SEARCH if request.startswith("GET /imagesearch?"): df.at[i, 'TYPE_SEARCH'] = "imagesearch" else: df.at[i, 'TYPE_SEARCH'] = "textsearch" # Parse the REQUEST and Set the parameters TRACKINGID, USER_TRACKING_ID, SEARCH_TRACKING_ID, QUERY, MAXITEMS, PAGE, FROM_REQUEST, TO_REQUEST parsed = urlparse.urlparse(request) try: df.at[i, 'TRACKINGID'] = parse_qs(parsed.query)['trackingId'][0] df.at[i, 'USER_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[0] df.at[i, 'SEARCH_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[1] except: df.at[i, 'TRACKINGID'] = "" try: #import pdb;pdb.set_trace() df.at[i, 'QUERY'] = unquote(parse_qs(parsed.query)['q'][0]) offset = int(parse_qs(parsed.query)['offset'][0]) df.at[i, 'MAXITEMS'] = int(parse_qs(parsed.query)['maxItems'][0]) df.at[i, 'PAGE'] = int(offset/df.at[i, 'MAXITEMS']) except: df.at[i, 'BOT'] = 1 try: df.at[i, 'FROM_REQUEST'] = parse_qs(parsed.query)['from'][0] df.at[i, 'TO_REQUEST'] = parse_qs(parsed.query)['to'][0] except: df.at[i, 'FROM_REQUEST'] = None df.at[i, 'TO_REQUEST'] = None #Process the parameter REQUEST and set the parameter PREVIOUS_REQUEST else: if request.startswith("GET /search.jsp?") or request.startswith("GET /images.jsp?"): parsed = urlparse.urlparse(request) df.at[i, 'PREVIOUS_QUERY'] = parse_qs(parsed.query)['query'][0] elif request.startswith("GET /imagesearch?") or request.startswith("GET /textsearch?"): parsed = urlparse.urlparse(request) df.at[i, 'PREVIOUS_QUERY'] = parse_qs(parsed.query)['q'][0] def processDataframe(request, previous_request, file_name, df, i, all_info_date): """ Function to process each log depending on the format (Apache vs Log4j) """ # Check if we are processing the Apache Log if "logfile" in file_name: getParametersFromRequest(request.replace(" HTTP/1.1", ""), df, i, True) if pd.isnull(previous_request): getParametersFromRequest(previous_request.replace(" HTTP/1.1", ""), df, i, False) # if we are not processing the Apache Log else: #Only thing needed from request parsed = urlparse.urlparse(request) try: df.at[i, 'TRACKINGID'] = parse_qs(parsed.query)['trackingId'][0] df.at[i, 'USER_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[0] df.at[i, 'SEARCH_TRACKING_ID'] = parse_qs(parsed.query)['trackingId'][0].split("_")[1] except: df.at[i, 'TRACKINGID'] = "" # Just a sanity check. if not pd.isnull(df.at[i, 'DATE']): try: # Generate TIMESTAMP using the parameter DATE and Set the parameters YEAR, MONTH, DAY, HOUR, MINUTE date_simple = df.at[i, 'DATE'].replace("[", "").replace("]", "") date = datetime.strptime(date_simple, "%d/%b/%Y:%H:%M:%S") df.at[i, 'TIMESTAMP'] = date.timestamp() if all_info_date: df.at[i, 'YEAR'] = date.year df.at[i, 'MONTH'] = date.month df.at[i, 'DAY'] = date.day df.at[i, 'HOUR'] = date.hour df.at[i, 'MINUTE'] = date.minute except: df.at[i, 'BOT'] = 1 else: df.at[i, 'BOT'] = 1 return date def mergeFiles(): """ Function that will process each log and merge them (The core of this file). """ click.secho("Start Process...", fg='green') #Location\path of the Logs. mypath = "./data/" #Create Dataframes for each (Apache Log, Image Search API Log4j, Page Search API Log4j, Webapp API Log4j). df_merge_apache_file = None df_merge_image_file = None df_merge_page_file = None df_merge_arquivo_webapp_file = None # Just to initialize variables that we are going to use (can be removed). df_log = None df_image = None df_page = None df_arquivo = None ## For each log file: for subdir, dirs, files in os.walk(mypath): #If list is not empty. if files: ## Progress bar with the number of log files. with click.progressbar(length=len(files), show_pos=True) as progress_bar_total: for file in files: progress_bar_total.update(1) #Get Filename file_name = os.path.join(subdir, file) # Process Apache Logs if file_name.startswith("./data/logs/arquivo.pt_apache/logfile"): #Read file into Dataframe names_apache = ["IP_ADDRESS", "CLIENT_ID", "USER_ID", "DATE", "ZONE", "REQUEST", "STATUS_CODE", "SIZE_RESPONSE", "PREVIOUS_REQUEST", "USER_AGENT", "RESPONSE_TIME"] df_log = pd.read_csv(file_name, sep='\s+', names=names_apache) #Init new collumns df_log["UNIQUE_USER"] = "" df_log["SPELLCHECKED"] = 0 df_log["REFER"] = "" #Tracking df_log["TRACKINGID"] = "" df_log["USER_TRACKING_ID"] = "" df_log["SEARCH_TRACKING_ID"] = "" #Date df_log["TIMESTAMP"] = 0 df_log["YEAR"] = 0 df_log["MONTH"] = 0 df_log["DAY"] = 0 df_log["HOUR"] = 0 df_log["MINUTE"] = 0 #Search and Query df_log["TYPE_SEARCH"] = "" df_log["QUERY"] = "" df_log["LANG_REQUEST"] = "" df_log["FROM_REQUEST"] = "" df_log["TO_REQUEST"] = "" df_log["PREVIOUS_QUERY"] = "" df_log["MAXITEMS"] = 0 df_log["PAGE"] = 0 #Query from robots or internal requests (default is 0, "Not a Bot") df_log["BOT"] = 0 ## Progress Bar of the number of lines processed (Apache Log File). with click.progressbar(length=df_log.shape[0], show_pos=True) as progress_bar: for i in df_log.index: progress_bar.update(1) #Get Request request = df_log.at[i, 'REQUEST'] #Get Previous Request previous_request = df_log.at[i, 'PREVIOUS_REQUEST'] #Problem with some requestes if isinstance(request, str) and isinstance(previous_request, str): #We will create different files (Query Log file and Wayback Log file) # Check if the request is not from wayback if "wayback" not in request: # Only process requests from textsearch, imagesearch, search.jsp, and images.jsp. if request.startswith("GET /textsearch?") or request.startswith("GET /imagesearch?") or request.startswith("GET /search.jsp?") or request.startswith("GET /images.jsp?"): processDataframe(request, previous_request, file_name, df_log, i, True) #Generate a unique identifier for each user, making it an anonymized user. string_user = str(df_log.at[i, 'IP_ADDRESS']) + str(df_log.at[i, 'USER_AGENT']) df_log.at[i, 'UNIQUE_USER'] = int(hashlib.sha1(string_user.encode("utf-8")).hexdigest(), 16) % (10 ** 8) #Check if the entry was generated because the user clicked on the query suggestion. if "spellchecked=true" in previous_request: df_log.at[i, 'SPELLCHECKED'] = 1 #Get a dictionary with the refers if "arquivo.pt" not in previous_request: df_log.at[i, 'REFER'] = previous_request if previous_request not in map_refer: map_refer[previous_request] = 1 else: map_refer[previous_request] += 1 else: #This condition removes lines such as "GET /js/jquery-1.3.2.min.js HTTP/1.1" df_log.at[i, 'BOT'] = 1 else: """ Process the wayback requests """ #Set the entrie as "Bot" to not appear in the queries dataset. df_log.at[i, 'BOT'] = 1 getParametersFromRequestWayback(request, df_log, i) else: df_log.at[i, 'BOT'] = 1 #Remove entries from "BOTs" df_log = df_log[df_log['BOT']==0] #Concatenate the file with previous files df_log = df_log[['IP_ADDRESS', 'STATUS_CODE', 'REQUEST', 'USER_AGENT', 'TRACKINGID', 'USER_TRACKING_ID', 'SEARCH_TRACKING_ID', 'TIMESTAMP', 'YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', 'TYPE_SEARCH', 'QUERY', 'PAGE', 'MAXITEMS', 'LANG_REQUEST', 'FROM_REQUEST', 'TO_REQUEST', 'REFER', 'SPELLCHECKED', 'UNIQUE_USER']] frames = [df_merge_apache_file, df_log] df_merge_apache_file = pd.concat(frames) ## Logs Image Search API if file_name.startswith("./data/logs/arquivo.pt_image_search/imagesearch"): #Read file into DataFrame names_image_search = ["DATE", "LOG_TYPE", "APPLICATION", "-", "IP_ADDRESS", "USER_AGENT", "URL_REQUEST", "IMAGE_SEARCH_RESPONSE(ms)", "IMAGE_SEARCH_PARAMETERS", "IMAGE_SEARCH_RESULTS"] df_image = pd.read_csv(file_name, sep='\t', error_bad_lines=False, names=names_image_search) #Init New Collumns df_image["TRACKINGID"] = "" df_image["BOT"] = 0 df_image["TIMESTAMP"] = 0 ## Progress Bar of the number of lines processed (Image Search API Log4j). with click.progressbar(length=df_image.shape[0], show_pos=True) as progress_bar: for i in df_image.index: progress_bar.update(1) # Just a sanity check. if not pd.isnull(df_image.at[i, 'IP_ADDRESS']): request = df_image.at[i, 'URL_REQUEST'] # Just a sanity check. if not pd.isnull(request): #Missing process better the URL #FIXME processDataframe(request, "", file_name, df_image, i, False) #Remove "ms" from the string df_image.at[i, 'IMAGE_SEARCH_RESPONSE(ms)'] = df_image.at[i, 'IMAGE_SEARCH_RESPONSE(ms)'].replace("ms", "") else: df_image.at[i, 'BOT'] = 1 else: df_image.at[i, 'BOT'] = 1 #Remove entries from "BOTs" and entries with empty TRACKINGID df_image = df_image[df_image['BOT']==0] df_image = df_image[df_image["TRACKINGID"] != ""] #Concatenate the file with previous files df_image = df_image[["TIMESTAMP", "IP_ADDRESS", "USER_AGENT", "URL_REQUEST", "IMAGE_SEARCH_RESPONSE(ms)", "IMAGE_SEARCH_PARAMETERS", "IMAGE_SEARCH_RESULTS", "TRACKINGID"]] frames = [df_merge_image_file, df_image] df_merge_image_file =
pd.concat(frames)
pandas.concat
""" Transfer applications. |pic1| .. |pic1| image:: ../images_source/transfer_tools/transfer.png :width: 30% """ import os import sys from subprocess import Popen, PIPE from pathlib import Path import pandas as pd import pexpect import requests import zipfile from selenium.webdriver.chrome import webdriver import urllib3 import pdfplumber import io class Access: """ Functions for accessing file systems and protocols. """ @classmethod def proxies(cls, domain): """ A function to create an http/https proxy address. :param domain: domain address. :return: Http/https proxy address. """ res = { 'http': 'http://' + \ os.environ['usr'] + \ ':' + os.environ['pwd'] + \ f'@proxyfarm.{domain}.com:8080' , 'https': 'https://' + \ os.environ['usr'] + \ ':' + os.environ['pwd'] + \ f'@proxyfarm.{domain}.com:8080' } return res class Local: """ Functions for accessing local files. """ @classmethod def zip_dir(cls, directory_list, zipname): """ Compress a directory into a single ZIP file. :param directory_list: List of files to compress into zip file. :param zipname: Name of zip file to compress files into. :return: Zip file containing files. """ outZipFile = zipfile.ZipFile(zipname, 'w', zipfile.ZIP_DEFLATED) for idx, dir in enumerate(directory_list): # if idx == 0: break if not os.path.exists(dir): print(f"Error, directory {dir} does not exist") continue # The root directory within the ZIP file. rootdir = os.path.basename(dir) try: os.listdir(dir) for dirpath, dirnames, filenames in os.walk(dir): for filename in filenames: # Write the file named filename to the archive, # giving it the archive name 'arcname'. filepath = os.path.join(dirpath, filename) parentpath = os.path.relpath(filepath, dir) arcname = os.path.join(rootdir, parentpath) outZipFile.write(filepath, arcname) except: # exception means there are no files inside the directory # so we write the normal file outZipFile.write(dir, dir.split("/")[-1]) outZipFile.close() @classmethod def clear_delete_directory(cls, directory, method="delete"): """ Clears and/or deletes a directory and its contents. :param directory: Filepath of directory. :param method: Optional delete for the directory folder. :return: Nothing. """ directory = Path(directory) for item in directory.iterdir(): if item.is_dir(): Local.clear_delete_directory(item) else: item.unlink() if method == "delete": directory.rmdir() @classmethod def fix_user_path(cls, dir): """ Fixes a local filepath. :param dir: Directory to patch. :return: Patched directory. """ dir_components = dir.split("/") search = "Users" for idx, elem in enumerate(dir_components): if elem == search: break dir_components[idx + 1] = os.environ['os_name'] r = "/".join(dir_components) return r @classmethod def get_all_filetimes(cls, dir, exclude=False): """ Creates a Pandas DataFrame of filenames and file times in a given directory. :param dir: Directory of files. :param exclude: A string to search for files to exclude. :return: Pandas DataFrame of filenames and file times to a directory. """ files = os.listdir(dir) if exclude: files = [f for f in files if exclude not in f] times = [os.path.getmtime(dir + f) for f in files] file_times = pd.DataFrame({"files": files, "times": times}) return file_times @classmethod def get_latest_file(cls, name, dir, exclude=False): """ Get the latest file in a directory. :param name: String match name of file(s). :param dir: Directory for the file search. :param exclude: A string to search for files to exclude. :return: Name of most recent file. """ # file name str to lowercase name = name.lower() # get list of files files = os.listdir(dir) if exclude: files = [f for f in files if exclude not in f] times = [os.path.getmtime(dir + f) for f in files] file_times = pd.DataFrame({"files": files, "times": times}) file_times['files_lower'] = file_times['files'].str.lower() file_times = file_times[file_times['files_lower'].str.contains(name)] read_file = file_times[file_times['times'] == max(file_times['times'])]['files'] read_file = read_file.values[0] return read_file @classmethod def read_files_like(cls, name, dir, ext_typ, sheet_name=False): """ Reads and concatenates files in a directory that match a string. Returns a Pandas DataFrame. :param name: A string search to match. :param dir: Directory to search for files in. :param ext_typ: Extension type to search for (.XLSX OR .CSV) :param sheet_name: If extension type is not ".CSV", specifies the sheet number or sheet name to read. :return: Concatenated Pandas DataFrames that match a string. """ files = os.listdir(dir) files = pd.DataFrame({"files": files}) files['files'] = files['files'].str.lower() files = files[( files['files'].str.contains(name) & files['files'].str.contains(ext_typ) )] files.reset_index(inplace=True) for idx, f in files.iterrows(): if ext_typ == "csv": dat =
pd.read_csv(dir + f['files'])
pandas.read_csv
""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import numpy as np import pytest from pandas.core.dtypes.common import is_extension_array_dtype import pandas as pd import pandas._testing as tm from pandas.core.arrays import integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension import base def make_data(): return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_for_twos(dtype): return integer_array(np.ones(100) * 2, dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([pd.NA, 1], dtype=dtype) @pytest.fixture def data_for_sorting(dtype): return integer_array([1, 2, 0], dtype=dtype) @pytest.fixture def data_missing_for_sorting(dtype): return integer_array([1, pd.NA, 0], dtype=dtype) @pytest.fixture def na_cmp(): # we are pd.NA return lambda x, y: x is pd.NA and y is pd.NA @pytest.fixture def na_value(): return pd.NA @pytest.fixture def data_for_grouping(dtype): b = 1 a = 0 c = 2 na = pd.NA return
integer_array([b, b, na, na, a, a, b, c], dtype=dtype)
pandas.core.arrays.integer_array
""" (C) IBM Corp, 2019, All rights reserved Created on Aug 25, 2019 @author: <NAME> """ import unittest import pandas as pd import numpy as np from causallib.estimation import MarginalOutcomeEstimator class TestMarginalOutcomeEstimator(unittest.TestCase): @classmethod def setUpClass(cls): cls.X = pd.DataFrame([[1, 1, 0, 0, 1, 0, 0, 0, 1, 1]]) cls.y = pd.Series([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) cls.a = pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 1, 1]) def setUp(self): self.model = MarginalOutcomeEstimator(learner=None) def test_fit_return(self): model = self.model.fit(self.X, self.a, self.y) self.assertTrue(isinstance(model, MarginalOutcomeEstimator)) def test_outcome_estimation(self): self.model.fit(self.X, self.a, self.y) outcomes = self.model.estimate_population_outcome(self.X, self.a, self.y) truth = pd.Series([1 / 5, 4 / 5], index=[0, 1]) pd.testing.assert_series_equal(truth, outcomes) with self.subTest("Change covariate and see no change in estimation"): X = pd.DataFrame(np.arange(20).reshape(4, 5)) # Different values and shape outcomes = self.model.estimate_population_outcome(X, self.a, self.y) truth =
pd.Series([1/5, 4/5], index=[0, 1])
pandas.Series
from sklearn.preprocessing import StandardScaler, LabelEncoder, Imputer from keras.utils import np_utils import pandas as pd import numpy as np import logging class explicit_imputer(): def __init__(self): pass def transform(self, data): if not isinstance(data, pd.DataFrame): raise Exception("Input to explicit imputer has to be a pandas df") data_out = data.fillna('None') return data_out def preprocess_labels(labels, encoder=None, categorical=True): if not encoder: encoder = LabelEncoder() encoder.fit(labels) y = encoder.transform(labels).astype(np.int32) if categorical: y = np_utils.to_categorical(y) # convert label vector to dummy binaries matrix return y, encoder def drop_irrelevant_cols(data, cols_to_drop): """ Drop the cols_to_drop from the input data :param data: pd.DataFrame :param cols_to_drop: list :return: pd.DataFrame, reduced dataframe """ reduced_data = data.drop(cols_to_drop, axis=1) return reduced_data def tidy_data(X): """ Calculate the additinoal fields, based on the raw fields in the dataset. :param X: pd.DataFrame, input dataset :return: X """ if not isinstance(X, pd.DataFrame): raise Exception("Input to derive_data() has to be a pandas df") # Calculate Age if 'dem_mat_age' not in X.columns: if ('dem_dob' in X.columns) and ('t1_date_of_exam' in X.columns): X['t1_date_of_exam'] = pd.to_datetime(X['t1_date_of_exam'], format='%Y-%m-%d') X['dem_dob'] =
pd.to_datetime(X['dem_dob'], format='%Y-%m-%d')
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # # Python script for automatic quality-control procedures (CEMADEN data) # # Created on Aug.12.2020 # ### By: # <NAME> # <NAME> # <NAME> # Importing libraries used in this code # In[ ]: import numpy as np import pandas as pd from datetime import datetime import glob import warnings from datetime import datetime import sys import esda import libpysal as lps # Assigning values to main variables and other parameters # In[ ]: #Data storage path path = 'D:/CEMADEN/' years = [2014 , 2015, 2016, 2017, 2018, 2019,2020] #years used in the analysis states = ['PE','PB','RN','BA','SE','PI','CE','MA','AL','AC','AM','RO','RR','AP','TO','PA','MT', 'MS','DF','GO','RS','SC','PR','ES','MG','RJ','SP'] #states used in the analysis #Filters variables threshold_missing_data_days=60 #days in a year without data threshold_days_without_rain=200 #days in a row without rain threshold_constant_days=35 #days in a row with rain = 0,2mm threshold_max_peak=40 #record of xmm in 10min #Moran's I variables properties=['rainfall_events','mean_rainfall_depth','yearly_rainfall'] #properties calculated based on the events durations defined mits_integer = [60, 360,1439] #mit lenghts used n_neighbors = 5 p_value = 0.05 # Functions # ------ # In[ ]: #This function inserts a beginning and ending date for each code, each year (1st january till 31st december) to compute 365 days def insert_begin_end(df, year, code): datatemp=str(year)+'-01-01 00:00:10' #temporary date - beginning data_b = {'gauge_code': [code], 'city': ['x'], 'state': ['x'], 'datetime': [datatemp], #assigning beginning date to code 'rain_mm': [-1], } datatemp=str(year)+'-12-31 23:59:10' #temporary date - end data_e = {'gauge_code': [code], 'city': ['x'], 'state': ['x'], 'datetime': [datatemp], 'rain_mm': [0], } df_b = pd.DataFrame(data_b) df_e = pd.DataFrame(data_e) df_b['datetime']=
pd.to_datetime(df_b['datetime'])
pandas.to_datetime
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, delta, box): # only test adding/sub offsets as + is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + delta tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, delta, box): # only test adding/sub offsets as - is now numeric if box is pd.DataFrame and isinstance(delta, pd.DateOffset): pytest.xfail(reason="Returns object dtype instead of m8[ns]") rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - delta tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="Index fails to return " "NotImplemented on " "reverse op", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_add_offset_index(self, names, box): # GH#18849, GH#19744 tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) # TODO: combine with test_td64arr_add_offset_index by parametrizing # over second box? def test_td64arr_add_offset_array(self, box_df_fail): # GH#18849 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] + other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_sub_offset_index(self, names, box_df_fail): # GH#18824, GH#19744 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer', name=names[2]) tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) def test_td64arr_sub_offset_array(self, box_df_fail): # GH#18824 box = box_df_fail # tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) expected = TimedeltaIndex([tdi[n] - other[n] for n in range(len(tdi))], freq='infer') tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with tm.assert_produces_warning(PerformanceWarning): res = tdi - other tm.assert_equal(res, expected) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="object dtype Series " "fails to return " "NotImplemented", strict=True, raises=TypeError)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_td64arr_with_offset_series(self, names, box): # GH#18849 box2 = Series if box is pd.Index else box tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00'], name=names[0]) other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1]) expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=names[2]) tdi = tm.box_expected(tdi, box) expected_add = tm.box_expected(expected_add, box2) with tm.assert_produces_warning(PerformanceWarning): res = tdi + other tm.assert_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + tdi tm.assert_equal(res2, expected_add) # TODO: separate/parametrize add/sub test? expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=names[2]) expected_sub = tm.box_expected(expected_sub, box2) with tm.assert_produces_warning(PerformanceWarning): res3 = tdi - other tm.assert_equal(res3, expected_sub) @pytest.mark.parametrize('obox', [np.array, pd.Index, pd.Series]) def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_df_fail): # GH#18824 box = box_df_fail # DataFrame tries to broadcast incorrectly tdi = TimedeltaIndex(['1 days 00:00:00', '3 days 04:00:00']) tdi = tm.box_expected(tdi, box) anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi + anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored + tdi with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): tdi - anchored with pytest.raises(TypeError): with tm.assert_produces_warning(PerformanceWarning): anchored - tdi class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # Multiplication # organized with scalar others first, then array-like def test_td64arr_mul_int(self, box_df_fail): box = box_df_fail # DataFrame op returns object instead of m8[ns] idx = TimedeltaIndex(np.arange(5, dtype='int64')) idx = tm.box_expected(idx, box) result = idx * 1 tm.assert_equal(result, idx) result = 1 * idx tm.assert_equal(result, idx) def test_td64arr_mul_tdlike_scalar_raises(self, delta, box): if box is pd.DataFrame and not isinstance(delta, pd.DateOffset): pytest.xfail(reason="returns m8[ns] instead of raising") rng = timedelta_range('1 days', '10 days', name='foo') rng = tm.box_expected(rng, box) with pytest.raises(TypeError): rng * delta def test_tdi_mul_int_array_zerodim(self, box_df_fail): box = box_df_fail # DataFrame op returns object dtype rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 * 5) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * np.array(5, dtype='int64') tm.assert_equal(result, expected) def test_tdi_mul_int_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly rng5 = np.arange(5, dtype='int64') idx = TimedeltaIndex(rng5) expected = TimedeltaIndex(rng5 ** 2) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx * rng5 tm.assert_equal(result, expected) def test_tdi_mul_int_series(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly idx = TimedeltaIndex(np.arange(5, dtype='int64')) expected = TimedeltaIndex(np.arange(5, dtype='int64') ** 2) idx = tm.box_expected(idx, box) box2 = pd.Series if box is pd.Index else box expected =
tm.box_expected(expected, box2)
pandas.util.testing.box_expected
# Prepare data script for longitudinal predictions. import os import pandas as pd import numpy as np from tqdm.auto import tqdm def preprocess(tadpoleD1D2File, out_dir, leaderboard=0, tadpoleLB1LB2File=''): # Settings #leaderboard = 0 # Input directory #str_exp = os.path.dirname(os.path.realpath(__file__)) #os.chdir(str_exp) # Input file #tadpoleD1D2File = os.path.join(str_exp, 'Data', 'TADPOLE_D1_D2.csv') Dtadpole = pd.read_csv(tadpoleD1D2File) idx_progress = np.logical_and(Dtadpole['DXCHANGE'] >= 4, Dtadpole['DXCHANGE'] <= 6) SubC = np.unique(Dtadpole.loc[idx_progress, 'RID']) SubC =
pd.Series(SubC)
pandas.Series
import copy import json import sdg import pandas as pd import numpy as np import collections.abc from sdg.translations import TranslationHelper from sdg.Loggable import Loggable class Indicator(Loggable): """Data model for SDG indicators.""" def __init__(self, inid, name=None, data=None, meta=None, options=None, logging=None): """Constructor for the SDG indicator instances. Parameters ---------- inid : string The three-part dash-delimited ID (eg, 1-1-1). name : string The name of the indicator. data : Dataframe Dataframe of all data, with at least "Year" and "Value" columns. meta : dict Dict of fielded metadata. options : IndicatorOptions Output-specific options provided by the OutputBase class. """ Loggable.__init__(self, logging=logging) self.inid = inid self.name = name self.data = data self.meta = meta self.options = sdg.IndicatorOptions() if options is None else options self.set_headline() self.set_edges() self.translations = {} self.serieses = None self.data_matching_schema = {} def has_name(self): """Check to see if the indicator has a name. Returns ------- boolean True if the indicator has a name. """ return self.name is not None def get_name(self): """Get the name of the indicator if known, or otherwise the id. Returns ------- string The name (or id) of the indicator. """ return self.name if self.name is not None else self.inid def set_name(self, name=None): """Set the name of the indicator.""" if name is not None: self.name = name def has_data(self): """Check to see if this indicator has data. Returns ------- boolean True if the indicator has data. """ if self.data is None: # If data has not been set yet, return False. return False # Otherwise return False if there are no rows in the dataframe. return False if len(self.data) < 1 else True def has_meta(self): """Check to see if this indicator has metadata. Returns ------- boolean True if the indicator has metadata. """ return False if self.meta is None else True def set_data(self, val): """Set the indicator data if a value is passed. Parameters ---------- val : Dataframe or None """ # If empty or None, do nothing. if val is None or not isinstance(val, pd.DataFrame) or val.empty: return self.data = val self.set_headline() self.set_edges() def set_meta(self, val): """Set the indicator metadata if a value is passed. Parameters ---------- val : Dict or None """ if val is not None and val: if self.has_meta(): self.meta = self.deepUpdate(self.meta, val) else: self.meta = val def deepUpdate(self, d, u): """Recursive utility method for merging nested dicts.""" for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = self.deepUpdate(d.get(k, {}), v) else: d[k] = v return d def set_headline(self): """Calculate and set the headline for this indicator.""" self.require_data() non_disaggregation_columns = self.options.get_non_disaggregation_columns() self.headline = sdg.data.filter_headline(self.data, non_disaggregation_columns) def has_headline(self): """Report whether this indicator has a headline.""" return hasattr(self, 'headline') and not self.headline.empty def set_edges(self): """Calculate and set the edges for this indicator.""" self.require_data() non_disaggregation_columns = self.options.get_non_disaggregation_columns() self.edges = sdg.edges.edge_detection(self.inid, self.data, non_disaggregation_columns) def has_edges(self): """Report whether this indicator has edges.""" return hasattr(self, 'edges') and not self.edges.empty def get_goal_id(self): """Get the goal number for this indicator. Returns ------- string The number of the goal. """ return self.inid if self.is_standalone() else self.inid.split('-')[0] def get_target_id(self): """Get the target id for this indicator. Returns ------- string The target id, dot-delimited. """ return self.inid if self.is_standalone() else '.'.join(self.inid.split('-')[0:2]) def get_indicator_id(self): """Get the indicator id for this indicator (dot-delimited version). Returns ------- string The indicator id, dot-delimited. """ return self.inid if self.is_standalone() else self.inid.replace('-', '.') def get_slug(self): """Get the dash-delimited id for this indicator (eg, for use in URLs). Returns ------- string The indicator id, dash-delimited. """ return self.inid def require_meta(self, minimum_metadata=None): """Ensure the metadata for this indicator has minimum necessary values. Parameters ---------- minimum_metadata : Dict Key/value pairs of minimum metadata for this indicator. """ if minimum_metadata is None: minimum_metadata = {} if self.meta is None: self.meta = minimum_metadata else: for key in minimum_metadata: if key not in self.meta: self.meta[key] = minimum_metadata[key] def require_data(self): """Ensure at least an empty dataset for this indicator.""" if self.data is None: df =
pd.DataFrame({'Year':[], 'Value':[]})
pandas.DataFrame
import pandas as pd import ast import json import pickle import binascii from parallelm.mlops.constants import Constants, HistogramType from parallelm.mlops.stats_category import StatGraphType from parallelm.mlops.mlops_exception import MLOpsException from parallelm.mlops.constants import DataframeColNames expected_jsons = [{"id":"","configurable":False,"mlStat":{"name":"","graphType":"BARGRAPH"},"values":[{"name":"stat","columns":["time","value"],"values":[["2018-02-08T18:27:28.273Z","{\"bar\": \"{\\\"Col1\\\": 10,\\\"Col2\\\": 15}\"}"]]}]}, {"id":"","configurable":False,"mlStat":{"name":"","id":"","graphType":"MULTILINEGRAPH"},"values":[{"name":"stat","columns":["time","value"],"values":[["2018-02-08T18:27:28.262Z","{\"l2\": 15, \"l3\": 22, \"l1\": 0}"]]}]}, {"id":"bebd75ee-0ce3-4ea8-90fa-ad90316b71b3","configurable":False,"mlStat":{"name":"","id":"", "graphType":"LINEGRAPH"},"values":[{"name": "stat","columns":["time","value"],"values":[["2018-02-08T18:27:27.183Z","{\"0\":1.0}"],["2018-02-08T18:27:27.187Z","{\"0\":2.0}"]]}]}] class DataFrameHelper(object): """ Helper class to convert json to dataframes. """ @staticmethod def _update_data_dict(data, key_values, time_stamp, column_name): """ Function to append dictionary to existing dictionary of columns : values :return: Updated dictionary """ for k, v in key_values.items(): if k in data: data[k].append(v) else: data[k] = [v] if column_name in data: data[column_name].append(time_stamp) else: data[column_name] = [time_stamp] return data @staticmethod def _create_dict(graph_type, values, stat_name, columns, no_of_lines): """ Function to create dictionary with given number of columns : values :return: Dictionary :raises: MLOpsException """ data_dictionary = {} data = {} lines = 0 for value in values: if lines == no_of_lines: data_dictionary.update(data) return data_dictionary if len(value) == len(columns) and len(value) >= Constants.MIN_STAT_COLUMNS: if graph_type == StatGraphType.LINEGRAPH: if columns[1] in data: data[columns[1]].append(list(ast.literal_eval(value[1]).values())[0]) data[columns[0]].append(value[0]) else: data[columns[1]] = list(ast.literal_eval(value[1]).values()) data[columns[0]] = [value[0]] elif graph_type == StatGraphType.MULTILINEGRAPH: temp_values = ast.literal_eval(value[1]) data.update(DataFrameHelper._update_data_dict(data, temp_values, value[0], columns[0])) elif graph_type == StatGraphType.BARGRAPH: temp_values = ast.literal_eval(value[1]) for k, v in temp_values.items(): # To ignore legend of graph key, need to go one more level down temp_bar_values = {} if type(v) == list: hist = [] bin_edges = [] keys = [] for item in v: hist.append(list(item.values())[0]) key = list(item.keys())[0] keys.append(key) for bin_edge in key.split(HistogramType.HISTOGRAM_BIN_IDENTIFIER): if bin_edge not in bin_edges: bin_edges.append(bin_edge) if all(HistogramType.HISTOGRAM_BIN_IDENTIFIER in edge for edge in keys): temp_bar_values[HistogramType.HISTOGRAM_TYPE_COLUMN] = \ StatGraphType.HISTOGRAM_TYPE_CONTIGOUOUS else: temp_bar_values[HistogramType.HISTOGRAM_TYPE_COLUMN] = \ StatGraphType.HISTOGRAM_TYPE_CATEGORICAL temp_bar_values[HistogramType.HISTOGRAM_COLUMN] = hist temp_bar_values[HistogramType.BIN_EDGES_COLUMN] = bin_edges temp_bar_values[HistogramType.STAT_NAME_COLUMN] = stat_name else: temp_bar_values = ast.literal_eval(v) data.update(DataFrameHelper._update_data_dict(data, temp_bar_values, value[0], columns[0])) elif graph_type == StatGraphType.OPAQUE: vv = ast.literal_eval(value[1]) key, opq_data = vv.popitem() opq_data = pickle.loads(binascii.unhexlify(opq_data.encode('utf-8'))) if len(data) == 0: data[columns[0]] = [value[0]] data[DataframeColNames.OPAQUE_DATA] = [opq_data] else: data[columns[0]].append(value[0]) data[DataframeColNames.OPAQUE_DATA].append(opq_data) else: raise MLOpsException("Invalid json, Number of columns and values don't match. Given columns: {}, " "values: {}. \nExpected json formats:{}".format(columns, value, expected_jsons)) lines += 1 data_dictionary.update(data) return data_dictionary @staticmethod def single_histogram_dict(json_dict, stat_name): hist_values = [] bin_edges = [] all_bin_str = [] for bin_and_value in json_dict: bin_str = None value = None for item in bin_and_value.items(): bin_str = item[0] value = item[1] break hist_values.append(value) all_bin_str.append(bin_str) for bin_edge in bin_str.split(HistogramType.HISTOGRAM_BIN_IDENTIFIER): if bin_edge not in bin_edges: bin_edges.append(bin_edge) if all(HistogramType.HISTOGRAM_BIN_IDENTIFIER in edge for edge in all_bin_str): hist_type = StatGraphType.HISTOGRAM_TYPE_CONTIGOUOUS else: hist_type = StatGraphType.HISTOGRAM_TYPE_CATEGORICAL hist_dict = { HistogramType.STAT_NAME_COLUMN: stat_name, HistogramType.HISTOGRAM_TYPE_COLUMN: hist_type, HistogramType.HISTOGRAM_COLUMN: hist_values, HistogramType.BIN_EDGES_COLUMN: bin_edges } return hist_dict @staticmethod def multi_histogram_df(multi_histogram_dict): hist_list = [] for attribute in multi_histogram_dict: hist_dict = DataFrameHelper.single_histogram_dict(multi_histogram_dict[attribute], attribute) hist_list.append(hist_dict) df =
pd.DataFrame(data=hist_list)
pandas.DataFrame
""" 将原来的数据库,变成一个stock id一个文件的数据库 """ import os import pandas as pd import numpy as np import pickle # 导入行情数据 file_path = 'C:/Users/Administrator/Desktop/program/data/hangqing/' file_list = os.listdir(file_path) columns_name = pd.read_csv(file_path+file_list[0]).columns hangqing_record = [] temp_record = pd.DataFrame(columns=columns_name) for i in range(len(file_list)): now_path = file_path+file_list[i] now_df = pd.read_table(now_path, sep=',') temp_record = pd.concat((temp_record, now_df), axis=0) if (i+1) % 50 == 0 or (i+1) == len(file_list): del temp_record['Unnamed: 0'] del temp_record['Unnamed: 25'] hangqing_record.append(temp_record) temp_record =
pd.DataFrame(columns=columns_name)
pandas.DataFrame
''' Created on Nov. 11, 2019 Mosaik interface for the Distribution State Estimation. @file simulator_dse.py @author <NAME> @date 2019.11.11 @version 0.1 @company University of Alberta - Computing Science ''' import mosaik_api import numpy as np import pandas as pd import os import sys import csv from ast import literal_eval import scipy.io as spio import math from pathlib import Path META = { 'models': { 'Estimator': { 'public': True, 'params': ['idt', 'ymat_file', 'devs_file', 'acc_period', 'max_iter', 'threshold', 'baseS', 'baseV', 'baseNode', 'basePF', 'se_period', 'se_result', 'pseudo_loads', 'verbose'], 'attrs': ['v', 't'], }, }, } class DSESim(mosaik_api.Simulator): def __init__(self): super().__init__(META) self.entities = {} self.next = {} self.instances = {} self.devParams = {} self.data = {} def init(self, sid, eid_prefix=None, step_size=1, verbose=0): if eid_prefix is not None: self.eid_prefix = eid_prefix self.sid = sid self.step_size = step_size self.verbose = verbose self.cktState = {} self.MsgCount = 0 return self.meta def create(self, num, model, idt, ymat_file, devs_file, acc_period, max_iter, threshold, baseS, baseV, baseNode, basePF, se_period, pseudo_loads, se_result): if (self.verbose > 0): print('simulator_dse::create', num, model, idt) eid = '%s%s' % (self.eid_prefix, idt) self.entities[eid] = {} self.entities[eid]['ymat_file'] = ymat_file self.entities[eid]['devs_file'] = devs_file self.entities[eid]['acc_period'] = acc_period self.entities[eid]['max_iter'] = max_iter self.entities[eid]['threshold'] = threshold self.entities[eid]['type'] = model self.entities[eid]['baseS'] = baseS self.entities[eid]['baseV'] = baseV self.entities[eid]['baseI'] = baseS/baseV self.entities[eid]['baseY'] = baseS/np.power(baseV,2) self.entities[eid]['baseNode'] = baseNode self.entities[eid]['basePF'] = basePF self.entities[eid]['se_period'] = se_period self.entities[eid]['pseudo_loads'] = pseudo_loads self.entities[eid]['se_result'] = se_result self.entities[eid]['vecZ'] = {} self.entities[eid]['nodes'] = 0 self.entities[eid]['df_devs'] =
pd.DataFrame({})
pandas.DataFrame
""" Import as: import core.test.test_statistics as cttsta """ import logging from typing import List import numpy as np import pandas as pd import pytest import core.artificial_signal_generators as casgen import core.finance as cfinan import core.signal_processing as csproc import core.statistics as cstati import helpers.printing as hprint import helpers.unit_test as hut _LOG = logging.getLogger(__name__) class TestComputeMoments(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.compute_moments(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.compute_moments(series, prefix="moments_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test3(self) -> None: series = pd.Series([]) cstati.compute_moments(series) def test4(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.compute_moments(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.compute_moments(series, nan_mode="ffill_and_drop_leading") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test6(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.compute_moments(series) def test7(self) -> None: """ Test series with `inf`. """ series = self._get_series(seed=1) # Place some `NaN` values in the series. series[4] = np.inf actual = cstati.compute_moments(series, nan_mode="ffill_and_drop_leading") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestComputeFracZero(hut.TestCase): def test1(self) -> None: data = [0.466667, 0.2, 0.13333, 0.2, 0.33333] index = [0, 1, 2, 3, 4] expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_zero(self._get_df(seed=1)) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test2(self) -> None: data = [ 0.4, 0.0, 0.2, 0.4, 0.4, 0.2, 0.4, 0.0, 0.6, 0.4, 0.6, 0.2, 0.0, 0.0, 0.2, ] index = pd.date_range(start="1-04-2018", periods=15, freq="30T") expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_zero(self._get_df(seed=1), axis=1) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test3(self) -> None: # Equals 20 / 75 = num_zeros / num_points. expected = 0.266666 actual = cstati.compute_frac_zero(self._get_df(seed=1), axis=None) np.testing.assert_almost_equal(actual, expected, decimal=3) def test4(self) -> None: series = self._get_df(seed=1)[0] expected = 0.466667 actual = cstati.compute_frac_zero(series) np.testing.assert_almost_equal(actual, expected, decimal=3) def test5(self) -> None: series = self._get_df(seed=1)[0] expected = 0.466667 actual = cstati.compute_frac_zero(series, axis=0) np.testing.assert_almost_equal(actual, expected, decimal=3) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.compute_frac_zero(series) @staticmethod def _get_df(seed: int) -> pd.DataFrame: nrows = 15 ncols = 5 num_nans = 15 num_infs = 5 num_zeros = 20 # np.random.seed(seed=seed) mat = np.random.randn(nrows, ncols) mat.ravel()[np.random.choice(mat.size, num_nans, replace=False)] = np.nan mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = np.inf mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = -np.inf mat.ravel()[np.random.choice(mat.size, num_zeros, replace=False)] = 0 # index = pd.date_range(start="01-04-2018", periods=nrows, freq="30T") df = pd.DataFrame(data=mat, index=index) return df class TestComputeFracNan(hut.TestCase): def test1(self) -> None: data = [0.4, 0.133333, 0.133333, 0.133333, 0.2] index = [0, 1, 2, 3, 4] expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_nan(self._get_df(seed=1)) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test2(self) -> None: data = [ 0.4, 0.0, 0.2, 0.4, 0.2, 0.2, 0.2, 0.0, 0.4, 0.2, 0.6, 0.0, 0.0, 0.0, 0.2, ] index = pd.date_range(start="1-04-2018", periods=15, freq="30T") expected = pd.Series(data=data, index=index) actual = cstati.compute_frac_nan(self._get_df(seed=1), axis=1) pd.testing.assert_series_equal(actual, expected, check_less_precise=3) def test3(self) -> None: # Equals 15 / 75 = num_nans / num_points. expected = 0.2 actual = cstati.compute_frac_nan(self._get_df(seed=1), axis=None) np.testing.assert_almost_equal(actual, expected, decimal=3) def test4(self) -> None: series = self._get_df(seed=1)[0] expected = 0.4 actual = cstati.compute_frac_nan(series) np.testing.assert_almost_equal(actual, expected, decimal=3) def test5(self) -> None: series = self._get_df(seed=1)[0] expected = 0.4 actual = cstati.compute_frac_nan(series, axis=0) np.testing.assert_almost_equal(actual, expected, decimal=3) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.compute_frac_nan(series) @staticmethod def _get_df(seed: int) -> pd.DataFrame: nrows = 15 ncols = 5 num_nans = 15 num_infs = 5 num_zeros = 20 # np.random.seed(seed=seed) mat = np.random.randn(nrows, ncols) mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = np.inf mat.ravel()[np.random.choice(mat.size, num_infs, replace=False)] = -np.inf mat.ravel()[np.random.choice(mat.size, num_zeros, replace=False)] = 0 mat.ravel()[np.random.choice(mat.size, num_nans, replace=False)] = np.nan # index = pd.date_range(start="01-04-2018", periods=nrows, freq="30T") df = pd.DataFrame(data=mat, index=index) return df class TestComputeNumFiniteSamples(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati.count_num_finite_samples(series) class TestComputeNumUniqueValues(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati.count_num_unique_values(series) class TestComputeDenominatorAndPackage(hut.TestCase): @staticmethod # Smoke test for empty input. def test1() -> None: series = pd.Series([]) cstati._compute_denominator_and_package(reduction=1, data=series) class TestTTest1samp(hut.TestCase): # Smoke test for empty input. def test1(self) -> None: series = pd.Series([]) cstati.ttest_1samp(series) def test2(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.ttest_1samp(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.ttest_1samp(series, nan_mode="ffill_and_drop_leading") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test4(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.ttest_1samp(series) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestMultipleTests(hut.TestCase): # Smoke test for empty input. def test1(self) -> None: series = pd.Series([]) cstati.multipletests(series) # Test if error is raised with default arguments when input contains NaNs. @pytest.mark.xfail() def test2(self) -> None: series_with_nans = self._get_series(seed=1) series_with_nans[0:5] = np.nan actual = cstati.multipletests(series_with_nans) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: series_with_nans = self._get_series(seed=1) series_with_nans[0:5] = np.nan actual = cstati.multipletests(series_with_nans, nan_mode="drop") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) @staticmethod def _get_series(seed: int) -> pd.Series: date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = hut.get_random_df( num_cols=1, seed=seed, **date_range, )[0] return series class TestMultiTTest(hut.TestCase): # Smoke test for empty input. def test1(self) -> None: df = pd.DataFrame(columns=["series_name"]) cstati.multi_ttest(df) def test2(self) -> None: df = self._get_df_of_series(seed=1) actual = cstati.multi_ttest(df) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: df = self._get_df_of_series(seed=1) actual = cstati.multi_ttest(df, prefix="multi_ttest_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test4(self) -> None: df = self._get_df_of_series(seed=1) actual = cstati.multi_ttest(df, popmean=1) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: df = self._get_df_of_series(seed=1) actual = cstati.multi_ttest(df, nan_mode="fill_with_zero") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test6(self) -> None: df = self._get_df_of_series(seed=1) actual = cstati.multi_ttest(df, method="sidak") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) @pytest.mark.xfail() def test7(self) -> None: df = self._get_df_of_series(seed=1) df.iloc[:, 0] = np.nan actual = cstati.multi_ttest(df) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) @staticmethod def _get_df_of_series(seed: int) -> pd.DataFrame: n_series = 7 arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} # Generating a dataframe from different series. df = pd.DataFrame( [ arma_process.generate_sample( date_range_kwargs=date_range, seed=seed + i ) for i in range(n_series) ], index=["series_" + str(i) for i in range(n_series)], ).T return df class TestApplyNormalityTest(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_normality_test(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_normality_test(series, prefix="norm_test_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test3(self) -> None: series = pd.Series([]) cstati.apply_normality_test(series) def test4(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.apply_normality_test(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) # Place some `NaN` values in the series. series[:5] = np.nan series[8:10] = np.nan actual = cstati.apply_normality_test( series, nan_mode="ffill_and_drop_leading" ) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test6(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.apply_normality_test(series) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestApplyAdfTest(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_adf_test(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_adf_test(series, regression="ctt") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_adf_test(series, maxlag=5) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test4(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_adf_test(series, autolag="t-stat") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_adf_test(series, prefix="adf_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.apply_adf_test(series) def test7(self) -> None: series = self._get_series(seed=1) series[3:5] = np.nan actual = cstati.apply_adf_test(series, nan_mode="fill_with_zero") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test8(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.apply_adf_test(series) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestApplyKpssTest(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_kpss_test(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_kpss_test(series, regression="ct") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_kpss_test(series, nlags="auto") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test4(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_kpss_test(series, nlags=5) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_kpss_test(series, prefix="kpss_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test6(self) -> None: series = pd.Series([]) cstati.apply_kpss_test(series) def test7(self) -> None: series = self._get_series(seed=1) series[3:5] = np.nan actual = cstati.apply_kpss_test(series, nan_mode="fill_with_zero") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for input of `np.nan`s. def test8(self) -> None: series = pd.Series([np.nan for i in range(10)]) cstati.apply_kpss_test(series) @staticmethod def _get_series(seed: int) -> pd.Series: arparams = np.array([0.75, -0.25]) maparams = np.array([0.65, 0.35]) arma_process = casgen.ArmaProcess(arparams, maparams) date_range = {"start": "1/1/2010", "periods": 40, "freq": "M"} series = arma_process.generate_sample( date_range_kwargs=date_range, seed=seed ) return series class TestApplyLjungBoxTest(hut.TestCase): def test1(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test2(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series, lags=3) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test3(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series, model_df=3) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test4(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series, period=5) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test5(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series, prefix="lb_") actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) def test6(self) -> None: series = self._get_series(seed=1) actual = cstati.apply_ljung_box_test(series, return_df=False) actual_string = hut.convert_df_to_string(actual, index=True) self.check_string(actual_string) # Smoke test for empty input. def test7(self) -> None: series =
pd.Series([])
pandas.Series
import numpy as np import pandas as pd import seaborn as sns import json from basic.plot import short_name from basic.read_data import file_settings, read_specify # clean the dataframe ordered by the sampling-based sensitivity indices def read_total_effects(fpath_save, product_uniform): if product_uniform == 'beta': dist_type = 'beta' elif product_uniform == 'exact': dist_type = 'exact' else: dist_type = 'uniform' filename = f'adaptive-reduce-{dist_type}_552.npz' fileread = np.load(f'{fpath_save}{filename}', allow_pickle=True) return fileread def df_read(df, result_type, type_num): _, parameters = read_specify('parameter', 'reduced', 'uniform', num_vars=11) df.rename(columns={'Unnamed: 0' : 'Parameters'}, inplace=True) df['Parameters'] = parameters df['Type'] = result_type df['Type_num'] = type_num return df # End df_read() fpath_save = '../output/test/' # read total effects calculated by different PCE settings. nsample = 156 fileread = read_total_effects(fpath_save, product_uniform='uniform') df_temp =
pd.DataFrame.from_dict(fileread[fileread.files[-1]][()][f'nsample_{nsample}'])
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import torch from scipy.interpolate import CubicSpline # for warping from transforms3d.axangles import axangle2mat # for rotation import pywt from scipy import signal import pandas as pd class AddGaussianNoise(object): def __init__(self, mean=0.0, variance=1.0, amplitude=1.0): self.mean = mean self.variance = variance self.amplitude = amplitude def __call__(self, img): img = np.array(img) h, w, c = img.shape N = self.amplitude * np.random.normal(loc=self.mean, scale=self.variance, size=(h, w, 1)) N = np.repeat(N, c, axis=2) img = N + img #img[img > 255] = 255 # 避免有值超过255而反转 #img = Image.fromarray(img.astype('uint8')).convert('RGB') return img class dataReshape(object): def __init__(self, len): self.len = len pass def __call__(self, data): if self.len == 3: data = data.squeeze(2) elif self.len == 4: data = data.unsqueeze(2) return data ## This example using cubic splice is not the best approach to generate random curves. ## You can use other aprroaches, e.g., Gaussian process regression, Bezier curve, etc. def GenerateRandomCurves(X, sigma=0.2, knot=4): # X (C, L) # out (C, L) np.ndarry from scipy.interpolate import CubicSpline xx = (np.ones((X.shape[0], 1)) * (np.arange(0, X.shape[1], (X.shape[1] - 1) / (knot + 1)))).transpose() yy = np.random.normal(loc=1.0, scale=sigma, size=(knot + 2, X.shape[0])) x_range = np.arange(X.shape[1]) cs = [] for i in range(X.shape[0]): cs.append(CubicSpline(xx[:, i], yy[:, i])) return np.array([cs_i(x_range) for cs_i in cs]) class GenerateRandomCurvesClass(object): def __init__(self, sigma=0.2, knot=4): self.sigma = sigma self.knot = knot def __call__(self, tensor): res = GenerateRandomCurves(tensor, self.sigma, self.knot) res = torch.from_numpy(res) return res def DistortTimesteps(X, sigma=0.2): # X: (C, L) # out: (C, L) np.ndarry tt = GenerateRandomCurves(X, sigma).transpose() # Regard these samples aroun 1 as time intervals tt_cum = np.cumsum(tt, axis=0) # Add intervals to make a cumulative graph # Make the last value to have X.shape[0] t_scale = [(X.shape[1] - 1) / tt_cum[-1, i] for i in range(X.shape[0])] for i in range(X.shape[0]): tt_cum[:,i] = tt_cum[:,i]*t_scale[i] return tt_cum.transpose() class DistortTimestepsClass(object): def __init__(self, sigma=0.2): self.sigma = sigma def __call__(self, tensor): x = DistortTimesteps(tensor, self.sigma) x = torch.from_numpy(x) return x def RandSampleTimesteps(X, nSample=1000): # X: (C, L) # out: (C, L) np.ndarry tt = np.zeros((nSample,X.shape[0]), dtype=int) for i in range(X.shape[0]): tt[1:-1,i] = np.sort(np.random.randint(1,X.shape[1]-1,nSample-2)) tt[-1,:] = X.shape[1]-1 return tt.transpose() class RandSampleTimestepsClass(object): def __init__(self, nSample=1000): self.nSample = nSample def __call__(self, tensor): x = RandSampleTimesteps(tensor, self.nSample) x = torch.from_numpy(x) return x def WTfilt_1d(sig): coeffs = pywt.wavedec(data=sig, wavelet='db5', level=9) cA9, cD9, cD8, cD7, cD6, cD5, cD4, cD3, cD2, cD1 = coeffs # 如果按照原来的写法loss会变成NaN #threshold = (np.median(np.abs(cD1)) / 0.6745) * (np.sqrt(2 * np.log(len(cD1)))) threshold = (np.median(np.abs(cD1)) / 0.6745) * (np.sqrt(2 * np.log(len(cD1[0])))) # 将高频信号cD1、cD2置零 cD1.fill(0) cD2.fill(0) # 将其他中低频信号按软阈值公式滤波 for i in range(1, len(coeffs) - 2): coeffs[i] = pywt.threshold(coeffs[i], threshold) rdata = pywt.waverec(coeffs=coeffs, wavelet='db5') return rdata class WTfilt_1d_Class(object): def __init__(self): pass def __call__(self, tensor): x = WTfilt_1d(tensor) x = torch.from_numpy(x) return x class Jitter(object): """ Args: sigma """ def __init__(self, sigma=0.05): self.sigma = sigma def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ myNoise = torch.normal(mean=torch.zeros(tensors.shape), std=self.sigma) # print("This is Jitter") # print(type(tensors + myNoise)) return (tensors + myNoise).float() def __repr__(self): return self.__class__.__name__ + '(sigma={0})'.format(self.sigma) class Scaling(object): """ Args: sigma """ def __init__(self, sigma=0.1): self.sigma = sigma def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ scalingFactor = torch.normal(mean=torch.ones((tensors.shape[0], 1)), std=self.sigma) myNoise = torch.matmul(scalingFactor, torch.ones((1, tensors.shape[1]))) # print("This is Scaling") # print(type(tensors * myNoise)) return (tensors * myNoise).float() def __repr__(self): return self.__class__.__name__ + '(sigma={0})'.format(self.sigma) class MagWarp(object): """ Args: sigma """ def __init__(self, sigma=0.2): self.sigma = sigma def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ # print("This is MagWarp") # print(type(tensors * torch.from_numpy(GenerateRandomCurves(tensors, self.sigma)))) return tensors * torch.from_numpy(GenerateRandomCurves(tensors, self.sigma)) def __repr__(self): return self.__class__.__name__ + '(sigma={0})'.format(self.sigma) class TimeWarp(object): """ Args: sigma """ def __init__(self, sigma=0.2): self.sigma = sigma def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ tt_new = DistortTimesteps(tensors, self.sigma) X_new = np.zeros(tensors.shape) x_range = np.arange(tensors.shape[1]) for i in range(tensors.shape[0]): X_new[i, :] = np.interp(x_range, tt_new[i, :], tensors[i, :]) # print("This is TimeWarp") # print(type(torch.from_numpy(X_new))) return torch.from_numpy(X_new).float() def __repr__(self): return self.__class__.__name__ + '(sigma={0})'.format(self.sigma) class Rotation(object): """ Args: """ def __init__(self): pass def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ #axis = torch.Tensor(tensors.shape[0]).uniform_(-1, 1) #angle = torch.Tensor().uniform_(-np.pi, np.pi) axis = torch.Tensor(1).uniform_(-1, 1) angle = torch.Tensor(1).uniform_(-np.pi, np.pi) x = axangle2mat(axis, angle) x = torch.from_numpy(x) return torch.matmul(x, tensors).float() # print("This is Rotation") # print(type(torch.matmul(axangle2mat(axis, angle), tensors))) #return torch.matmul(axangle2mat(axis, angle), tensors).float() def __repr__(self): return self.__class__.__name__ class Permutation(object): """ Args: nPerm: minSegLength: """ def __init__(self, nPerm=4, minSegLength=10): self.nPerm = nPerm self.minSegLength = minSegLength def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ # 注意X_new的dtype要改成float,否则无法生成希望的效果 X_new = torch.zeros(tensors.shape, dtype=torch.float) idx = torch.randperm(self.nPerm) bWhile = True while bWhile == True: segs = torch.zeros(self.nPerm + 1, dtype=torch.int64) segs[1:-1] = torch.sort(torch.randint(self.minSegLength, tensors.shape[1] - self.minSegLength, (self.nPerm - 1,))).values segs[-1] = tensors.shape[1] if torch.min(segs[1:] - segs[0:-1]) > self.minSegLength: bWhile = False pp = 0 for ii in range(self.nPerm): x_temp = tensors[:, segs[idx[ii]]:segs[idx[ii] + 1]] X_new[:, pp:pp + x_temp.shape[1]] = x_temp pp += x_temp.shape[1] # print("This is Permutation") # print(type(X_new)) return (X_new).float() def __repr__(self): return self.__class__.__name__ class RandSampling(object): """ Args: nSample: """ def __init__(self, nSample=1000): self.nSample = nSample def __call__(self, tensors): """ Args: tensor (Tensor): Tensor of size (C, L) to be scaled. Returns: Tensor: Scaled Tensor. """ tt = RandSampleTimesteps(tensors, self.nSample) X_new = np.zeros(tensors.shape) for i in range(tensors.shape[0]): X_new[i, :] = np.interp(np.arange(tensors.shape[1]), tt[i, :], tensors[i, tt[i, :]]) # print("This is RandSampling") # print(type(torch.from_numpy(X_new))) return (torch.from_numpy(X_new).float()) def __repr__(self): return self.__class__.__name__ class filter_and_detrend(object): """ Args: """ def __init__(self): pass def __call__(self, data): """ Args: data: 12 lead ECG data . For example,the shape of data is (12,5000) Returns: Tensor: 12 lead ECG data after filtered and detrended """ filtered_data =
pd.DataFrame()
pandas.DataFrame
r''' myapps\tkinter_stuff\official-example-pandastable.py import page_gui_menu_support from Mytable import mytable # implement pandastable # ---- self.PD = Mytable(top) self.PD.place(relx=0.0, rely=0.0, relheight=1.0, relwidth=1.0) if __name__ == '__main__': vp_start_gui() ''' # pylint: disable=wildcard-import # pylint: disable=unused-import # pylint: disable=unused-wildcard-import # pylint: disable=wrong-import-order, inconsistent-return-statements, # pylint: disable=no-self-use import os # import logging # from blinker import signal import blinker from tkinter import * # noqa: F403, F401 from tkinter.ttk import * # noqa: F403, F401 import pandas as pd import numpy as np from pandastable.core import Table # from pandastable.data import TableModel import logzero from logzero import logger from extract_rows import extract_rows SIG_TABLE = blinker.signal('table') SIG_PAD = blinker.signal('pad') # LOGGER = logging.getLogger(__name__) # LOGGER.addHandler(logging.NullHandler()) _ = os.environ.get("ALIGNER_DEBUG") if _ is not None and _.lower() in ["1", "true"]: level = 20 else: level = 20 from logzero import setup_logger logger = setup_logger( name=__file__, level=level, ) logger.debug('os.environ.get("ALIGNER_DEBUG"): %s', _) class MyTable(Table): # pylint: disable=too-many-ancestors """ Custom table class inherits from Table. You can then override required methods """ def __init__(self, parent=None, **kwargs): # Table.__init__(self, parent, **kwargs) super().__init__(parent, **kwargs) def handle_signal(sender, **kw): self.slot_table(sender, **kw) self.handle_signal = handle_signal # important, not for nothing SIG_TABLE.connect(handle_signal) # in effect SIG_TABLE.connect(self.slot_table) self.row_clicked = None self.column_clicked = None # setup for initial open1 open2 pad # in open1/open2: do extract_rows and SIG_TABLE.send (imitate handle_left_click) self.row_clicked = 0 self.column_clicked = 0 self.showstatusbar = True # print(*args, **kwargs) # print('** rows cols **: ', self.rows, self.cols) # ''' # pandastable default rows == 30, cols == 5? if self.rows == 20 and self.cols == 5: _ = ' ' * 40 _ = ' ' * 60 _ = ' ' * 1 dataframe = pd.DataFrame({ # 'a': range(3), # 'a': ['0', '1', 2], 'text1': ['0' + _, '1', '2'], # 'b': range(3, 3 + 3), # 'b': ['3', '4', 5], 'text2': ['3' + _, '4', '5'], # 'c': range(6, 6 + 3), # 'c': ['6', '7', 8], # 'merit': [0.6, 0.7, 0.8], 'merit': ["", "", ""], }) Table.__init__(self, parent, dataframe=dataframe, showstatusbar=True) # activate pad: imitate left click row-0 of table data = extract_rows(self.model.df, self.row_clicked) # SIG_TABLE.send('table', data=data) # SIG_TABLE.send(data=data) SIG_PAD.send(data=data) # self.dataframe = dataframe # self.show() # ''' # Canvas .geometry("988x447+626+56") # mytable.columnwidths: {'text1': 300, 'text2': 300, 'merit': 80} self.columnwidths = {'text1': 430, 'text2': 430, 'merit': 80} self.show() if parent is not None: logger.debug("parent.winfo_width(): %s", parent.winfo_width()) logger.debug("parent.winfo_geometry(): %s", parent.winfo_geometry()) logger.debug("mytable.columnwidths: %s", self.columnwidths) def handle_left_click(self, event): r''' handle left click left-click to select myapps\tkinter_stuff\row_clicked_selected-pandastable.py pandastable source code: handle_right_click sans popmenu ''' super().handle_left_click(event) rowclicked = self.get_row_clicked(event) self.row_clicked = rowclicked # logger.info("event: %s, type: %s", event, type(event)) logger.debug("RowClicked: %s", rowclicked) rowsel = self.getSelectedRow() logger.debug("RowSelected: %s", rowsel) # left click to select # table.currentrow = rowclicked # table.setSelectedRow(rowclicked) # from source code handle_right_click(self, event) # (popmenu removed), substitute self with table self.delete('tooltip') self.rowheader.clearSelected() if hasattr(self, 'rightmenu'): self.rightmenu.destroy() rowclicked = self.get_row_clicked(event) colclicked = self.get_col_clicked(event) if rowclicked is None or colclicked is None: return None # color the third col # self.Table.setRowColors(rows=rows1, clr="#FF0000", cols=[2]) # self.Table.update_rowcolors() # for elm in range(self.rows): # slow response for long table # self.setRowColors(rows=elm, clr="#FF0000", cols=[2]) # logger.info("clicked, self.rows: %s", self.rows) # df = self.model.df # idx = df.index[rows] # df = self.model.df # logger.info(" df.index: %s, df.to_dict(): %s", df.index, df.to_dict()) # self.setRowColors(rows=list(range(self.rows)), clr="#FF0000", cols=[2]) # self.update_rowcolors() # self.redraw() # self.setColorbyValue() # popup if 0 <= rowclicked < self.rows and 0 <= colclicked < self.cols: self.clearSelected() self.allrows = False self.setSelectedRow(rowclicked) self.setSelectedCol(colclicked) self.drawSelectedRect(self.currentrow, self.currentcol) self.drawSelectedRow() # self.model.df.iloc[self.currentrow, self.currentcol] = 0 # clear # self.redraw() # !OKOK # --- # print(self.model.df) # print("currentrow: ", self.currentrow) # print("currentcol: ", self.currentcol) # populate to MyPad # blinker? data = extract_rows(self.model.df, self.row_clicked) # SIG_TABLE.send('table', data=data) # SIG_TABLE.send(data=data) SIG_PAD.send(data=data) # self.setRowColors(rows=list(range(self.rows)), clr="#FF0000", cols=[2]) # self.setRowColors(rows=[-2, -1], clr="#FF0000", cols=[2]) # does not work # """ def slot_table(self, sender, **kw): ''' handle data for SIG_TABLE (from mypad and other sources) ''' # logger.debug('**************Enter slot_table, received - sender: %s, kw: \n%s', sender, kw) # handle df from longtime_job: SIG_PAD.send('job', df=df_data) # logger.debug(" received kw: %s", kw) logger.debug(" received kw ") df = kw.get("df") if df is not None: columns = ["text1", "text2", "merit"] df =
pd.DataFrame(df, columns=columns)
pandas.DataFrame
import pandas as pd import numpy as np # from datetime import datetime # from tzwhere import tzwhere # from dateutil import tz # import pytz def haversine_np(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) All args must be of equal length. """ lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2 c = 2 * np.arcsin(np.sqrt(a)) km = 6367 * c return km def generate_zone_att(data, save_file, data_output_path): data['stops'] = data['stops'].fillna('NA') data.loc[data['type'] == 'Station', 'zone_id'] = 'INIT' data['zone_id'] = data['zone_id'].fillna(method='bfill') data['zone_id'] = data['zone_id'].fillna(method='ffill') # data = data.dropna(subset = ['zone_id']) data['total_vol'] = data['depth_cm'] * data['height_cm'] * data['width_cm'] # data['num_pkg'] = data.groupby(['']) data['max_dhw'] = np.maximum(np.maximum(data['depth_cm'].values, data['height_cm'].values), data['width_cm'].values) data['time_window_end_dt'] = pd.to_datetime(data['time_window_end'], format='%Y-%m-%d %H:%M:%S') data['departure_date_time'] = data['date'] + ' ' + data['departure_time'] data['departure_date_time_dt'] = pd.to_datetime(data['departure_date_time'], format='%Y-%m-%d %H:%M:%S') data['time_window_end_from_departure_sec'] = data['time_window_end_dt'] - data['departure_date_time_dt'] data['time_window_end_from_departure_sec'] = data['time_window_end_from_departure_sec'].dt.total_seconds() data['time_window_end_from_departure_sec'] = data['time_window_end_from_departure_sec'].fillna(99999) data_stops = data[['route_id', 'zone_id', 'stops', 'lat', 'lng']].drop_duplicates() data_stops['total_num_stops_per_zone'] = data_stops.groupby(['route_id', 'zone_id'])['stops'].transform('count') data_stops['lat_mean'] = data_stops.groupby(['route_id', 'zone_id'])['lat'].transform('mean') data_stops['lng_mean'] = data_stops.groupby(['route_id', 'zone_id'])['lng'].transform('mean') data_stops = data_stops[ ['route_id', 'zone_id', 'lat_mean', 'lng_mean', 'total_num_stops_per_zone']].drop_duplicates() data['n_pkg'] = data.groupby(['route_id', 'zone_id'])['pack_ID'].transform('count') col_to_group = ['route_id', 'zone_id', 'station_code', 'departure_date_time', 'exe_cap_cm3', 'route_score', 'n_pkg'] data_zone = data.groupby(col_to_group, sort=False).agg({'planned_service_time': ['sum'], 'depth_cm': ['max', 'mean', 'sum'], 'height_cm': ['max', 'mean', 'sum'], 'width_cm': ['max', 'mean', 'sum'], 'total_vol': ['max', 'mean', 'sum'], 'max_dhw': ['max', 'mean', 'sum'], 'time_window_end_from_departure_sec': [ 'min']}).reset_index() data_zone.columns = data_zone.columns = ['_'.join(col).strip() for col in data_zone.columns.values] for col in col_to_group: data_zone = data_zone.rename(columns={col + '_': col}) data_zone = data_zone.merge(data_stops, on=['route_id', 'zone_id']) ################ ## get num tra sigs # station_location = pd.read_csv('../data/station_location.csv') # station_list = list(station_location['station_code']) # sig_station = [] # for station in station_list: # nodes = pd.read_csv('../baichuan_ML_test/' + station + 'net/primary/node.csv') # nodes = nodes.loc[:, ['node_id', 'osm_highway', 'x_coord', 'y_coord']] # # cross = nodes.loc[nodes['osm_highway'] == 'crossing'] # signals = nodes.loc[nodes['osm_highway'] == 'traffic_signals'].copy() # signals['station_code'] = station # sig_station.append(signals) # a = 1 # # sig_station = pd.concat(sig_station) # data_zone['key'] = 1 # sig_station['key'] = 1 # data_zone_sig = data_zone.merge(sig_station, on=['key', 'station_code']) # data_zone_sig['dist'] = haversine_np(data_zone_sig['lng_mean'], data_zone_sig['lat_mean'], data_zone_sig['x_coord'], # data_zone_sig['y_coord']) # # # nearby = 0.5 # 5km # # # data_zone_sig = data_zone_sig.loc[data_zone_sig['dist'] <= nearby] # data_zone_sig_num = data_zone_sig.groupby(['route_id', 'zone_id'])['osm_highway'].count().reset_index() # data_zone_sig_num = data_zone_sig_num.rename(columns={'osm_highway': 'num_tra_sig'}) # data_zone = data_zone.merge(data_zone_sig_num, on=['route_id', 'zone_id'], how='left') # data_zone['num_tra_sig'] = data_zone['num_tra_sig'].fillna(0) ############### ######################### ### calculate local time # tz_func = tzwhere.tzwhere() # # station_unique = data_zone.drop_duplicates(['station_code']).copy() # station_unique['time_zone'] = station_unique[['lat_mean', 'lng_mean']].apply(lambda x: tz_func.tzNameAt(x[0], x[1]), # axis=1) # # # from_zone = tz.gettz('UTC') # # data_zone['zone_seq'] = data_zone.groupby(['route_id'], sort=False).cumcount() + 1 # # time_diff_list = [0] * len(station_unique) # count = 0 # # for idx, row in station_unique.iterrows(): # time_zone_pytz = pytz.timezone(row['time_zone']) # time_diff = time_zone_pytz.utcoffset(datetime(2018, 7, 30)) # time_diff_list[count] = time_diff # count += 1 # # station_unique['time_diff'] = time_diff_list # # data_zone = data_zone.merge(station_unique[['station_code', 'time_zone', 'time_diff']], on=['station_code']) # # data_zone['departure_date_time_dt'] = pd.to_datetime(data_zone['departure_date_time'], format='%Y-%m-%d %H:%M:%S') # data_zone['departure_date_time_local'] = data_zone['departure_date_time_dt'] + data_zone['time_diff'] # data_zone['day_of_week'] = data_zone['departure_date_time_local'].dt.dayofweek # Monday 0 Sunday 6 # data_zone['hour'] = data_zone['departure_date_time_local'].dt.hour # # # data_zone['hour'].hist() # # data_zone['departure_date_time_local'] = data_zone['departure_date_time_local'].astype("str") # # data_zone = data_zone.fillna(0) # data_zone = data_zone.drop(columns=['departure_date_time_dt', 'time_diff', 'time_zone']) ############################# if save_file: data_zone.to_csv(data_output_path + 'data/zone_data.csv',index = False) return data_zone def generate_zone_att_apply(data, save_file, data_apply_output_path): data['stops'] = data['stops'].fillna('NA') data.loc[data['type'] == 'Station', 'zone_id'] = 'INIT' data['zone_id'] = data['zone_id'].fillna(method='bfill') data['zone_id'] = data['zone_id'].fillna(method='ffill') # data = data.dropna(subset = ['zone_id']) data['total_vol'] = data['depth_cm'] * data['height_cm'] * data['width_cm'] # data['num_pkg'] = data.groupby(['']) data['max_dhw'] = np.maximum(np.maximum(data['depth_cm'].values, data['height_cm'].values), data['width_cm'].values) data['time_window_end_dt'] =
pd.to_datetime(data['time_window_end'], format='%Y-%m-%d %H:%M:%S')
pandas.to_datetime
import matplotlib.pyplot as plt import seaborn as sns import altair as alt import panel as pn import pandas as pd import numpy as np plt.style.use('ggplot') alt.data_transformers.disable_max_rows() def bv_linePlot(data, engine, xlabel, ylabel1, ylabel2): data = data.copy() data.rename(columns={'plotY':ylabel1, 'plotX1':ylabel2}, inplace=True) if engine == 'Static': fig, axes = plt.subplots(figsize=(9,6)) axes.plot(data[ylabel1], marker='o', markersize=1.5) axes.legend([ylabel1]) axes_r = axes.twinx() axes_r.plot(data[ylabel2], marker='o', markersize=1.5, color='orange') axes_r.legend([ylabel2], loc=1) axes.set_xlabel(xlabel, fontsize = 15) axes.set_ylabel(ylabel1, fontsize = 15) axes_r.set_ylabel(ylabel2, fontsize = 15) axes.grid(b=True, which='major', color='k', linewidth=0.25) plt.close() return pn.pane.Matplotlib(fig, tight=True) elif engine == 'Interactive': data=data.dropna() # Selection Brush brush = alt.selection(type='interval', encodings=['x'], name='isel') # Base Plot base = alt.Chart(data.reset_index()) base = base.encode(x = alt.X('{0}:T'.format(data.index.name), title=''), tooltip = ylabel1) base = base.properties(width = 580, height = 275) # Upper Plot upper1 = base.mark_line(color='#3d84ba') upper1 = upper1.encode(x = alt.X('{0}:T'.format(data.index.name), scale=alt.Scale(domain=brush), title=''), y = alt.Y('{0}:Q'.format(ylabel1), scale=alt.Scale(zero=False), axis=alt.Axis(format='~s'))) upper2 = base.mark_line(color='#f57542') upper2 = upper2.encode(x = alt.X('{0}:T'.format(data.index.name), scale=alt.Scale(domain=brush), title=''), y = alt.Y('{0}:Q'.format(ylabel2), scale=alt.Scale(zero=False), axis=alt.Axis(format='~s'))) # Lower Plot lower = base.mark_area(line={'color':'darkgray'}, color=alt.Gradient( gradient='linear', stops=[alt.GradientStop(color='white', offset=0), alt.GradientStop(color='darkgray', offset=1)], x1=1, x2=1, y1=1, y2=0 )) lower = lower.encode(y=alt.Y('{0}:Q'.format(ylabel1), title='', axis=None)) lower = lower.properties(height=20) lower = lower.add_selection(brush) lower.encoding.x.title = 'Interval Selection' # Base Statistics1 base_stat1 = upper1.transform_filter(brush) base_stat1 = base_stat1.transform_aggregate(Mean1='mean({0})'.format(ylabel1), StdDev1='stdev({0})'.format(ylabel1), Var1='variance({0})'.format(ylabel1)) label_stat1 = base_stat1.transform_calculate(stat_label1="'Mean = ' + format(datum.Mean1, '~s') + \ '; Standard Deviation = ' + format(datum.StdDev1, '~s') +\ '; Variance = ' + format(datum.Var1, '~s')") label_stat1 = label_stat1.mark_text(align='left', baseline='bottom', color='#3d84ba') label_stat1 = label_stat1.encode(x=alt.value(0.0), y=alt.value(12.0), text=alt.Text('stat_label1:N')) # Base Statistics2 base_stat2 = upper2.transform_filter(brush) base_stat2 = base_stat2.transform_aggregate(Mean2='mean({0})'.format(ylabel2), StdDev2='stdev({0})'.format(ylabel2), Var2='variance({0})'.format(ylabel2)) label_stat2 = base_stat2.transform_calculate(stat_label1="'Mean = ' + format(datum.Mean2, '~s') + \ '; Standard Deviation = ' + format(datum.StdDev2, '~s') +\ '; Variance = ' + format(datum.Var2, '~s')") label_stat2 = label_stat2.mark_text(align='left', baseline='bottom', color='#f57542') label_stat2 = label_stat2.encode(x=alt.value(0.0), y=alt.value(25.0), text=alt.Text('stat_label1:N')) upper1 = upper1 + label_stat1 upper2 = upper2 + label_stat2 upper = (upper1+upper2).resolve_scale(y='independent') ## Y LABEL 1 # Values _ymean_uu1 = data[ylabel1].max() _ymean1 = data[ylabel1].mean() # Inspired from :- https://stats.stackexchange.com/a/350278 _maxvar_in_slice1 = ((data[ylabel1].max()-data[ylabel1].min())/2)**2 _ystd_uu1 = np.sqrt(_maxvar_in_slice1) _ystd1 = data[ylabel1].std() _yvar_uu1 = _maxvar_in_slice1 _yvar1 = data[ylabel1].var() # Stat Bar Base stats_barbase1 = base_stat1.mark_bar(color='#3d84ba') stats_barbase1 = stats_barbase1.properties(width = 188, height = 20) # Mean Bar mean_bar1 = stats_barbase1.encode(x=alt.X('Mean1:Q', title='', scale=alt.Scale(domain=[-_ymean_uu1,_ymean_uu1]), axis=alt.Axis(format='~s')), y=alt.value(10.5)) totmean_line1 = alt.Chart(pd.DataFrame({'x': [_ymean1]})) totmean_line1 = totmean_line1.mark_rule(color='red', size=5) totmean_line1 = totmean_line1.encode(x='x') mean_bar1 += totmean_line1 # Standard Deviation Bar std_bar1 = stats_barbase1.encode(x=alt.X('StdDev1:Q', title='', scale=alt.Scale(domain=[-_ystd_uu1,_ystd_uu1]), axis=alt.Axis(format='~s')), y=alt.value(10.5)) totstd_line1 = alt.Chart(pd.DataFrame({'x': [_ystd1]})) totstd_line1 = totstd_line1.mark_rule(color='red', size=5) totstd_line1 = totstd_line1.encode(x='x') std_bar1 += totstd_line1 # Variance Bar var_bar1 = stats_barbase1.encode(x=alt.X('Var1:Q', title='', scale=alt.Scale(domain=[-_yvar_uu1,_yvar_uu1]), axis=alt.Axis(format='~s')), y=alt.value(10.5)) totvar_line1 = alt.Chart(pd.DataFrame({'x': [_yvar1]})) totvar_line1 = totvar_line1.mark_rule(color='red', size=5) totvar_line1 = totvar_line1.encode(x='x') var_bar1 += totvar_line1 ## Y LABEL 2 # Values _ymean_uu2 = data[ylabel2].max() _ymean2 = data[ylabel2].mean() # Inspired from :- https://stats.stackexchange.com/a/350278 _maxvar_in_slice2 = ((data[ylabel2].max()-data[ylabel2].min())/2)**2 _ystd_uu2 = np.sqrt(_maxvar_in_slice2) _ystd2 = data[ylabel2].std() _yvar_uu2 = _maxvar_in_slice2 _yvar2 = data[ylabel2].var() # Stat Bar Base stats_barbase2 = base_stat2.mark_bar(color='#f57542') stats_barbase2 = stats_barbase2.properties(width = 188, height = 20) # Mean Bar mean_bar2 = stats_barbase2.encode(x=alt.X('Mean2:Q', title='Mean', scale=alt.Scale(domain=[-_ymean_uu2,_ymean_uu2]), axis=alt.Axis(format='~s')), y=alt.value(10.5)) totmean_line2 = alt.Chart(
pd.DataFrame({'x': [_ymean2]})
pandas.DataFrame
import itertools import traceback import uuid from functools import partial, reduce from typing import Any, Callable, Dict, Iterable, List, Tuple, Union from pdb import set_trace as st import numpy as np import pandas as pd import os import tensorflow as tf from nninst_graph import AttrMap, Graph, GraphAttrKey import nninst_mode as mode from dataset import cifar10 from dataset.mnist_transforms import * from dataset.config import MNIST_PATH, CIFAR10_PATH # from nninst.backend.tensorflow.dataset import imagenet, imagenet_raw # from nninst.backend.tensorflow.dataset.imagenet_hierarchy import imagenet_class_tree # from nninst.backend.tensorflow.dataset.imagenet_preprocessing import ( # alexnet_preprocess_image, # ) from tf_graph import ( MaskWeightWithTraceHook, model_fn_with_fetch_hook, ) from model import LeNet from model.resnet18cifar10 import ResNet18Cifar10 from model.resnet10cifar10 import ResNet10Cifar10 # from nninst.backend.tensorflow.model import AlexNet, LeNet, ResNet50 from model.config import ModelConfig # from nninst.backend.tensorflow.model.config import ( # ALEXNET, # RESNET_50, # VGG_16, # ModelConfig, # ) from trace.common import ( get_predicted_value, get_rank, predict, reconstruct_class_trace_from_tf, reconstruct_trace_from_tf, reconstruct_trace_from_tf_brute_force, ) from trace.common import ( reconstruct_stat_from_tf, reconstruct_trace_from_tf_v2, ) # from nninst.dataset.envs import IMAGENET_RAW_DIR from nninst_op import Conv2dOp from nninst_path import ( get_trace_path_in_fc_layers, get_trace_path_intersection_in_fc_layers, ) from nninst_statistics import ( calc_trace_path_num, calc_trace_size, calc_trace_size_per_layer, ) from nninst_trace import ( TraceKey, compact_edge, compact_trace, merge_compact_trace, merge_compact_trace_diff, merge_compact_trace_intersect, ) from nninst_utils import filter_value_not_null, merge_dict from nninst_utils.fs import CsvIOAction, ImageIOAction, IOAction, abspath from nninst_utils.numpy import arg_approx, arg_sorted_topk from nninst_utils.ray import ray_iter __all__ = [ "clean_overlap_ratio", "overlap_ratio", "get_overlay_summary", "resnet_50_imagenet_overlap_ratio", "alexnet_imagenet_overlap_ratio", "resnet_50_imagenet_overlap_ratio_error", "get_overlay_summary_one_side", "resnet_50_imagenet_overlap_ratio_rand", "alexnet_imagenet_overlap_ratio_top5", "resnet_50_imagenet_overlap_ratio_top5_rand", "resnet_50_imagenet_overlap_ratio_top5", "alexnet_imagenet_overlap_ratio_error", "alexnet_imagenet_overlap_ratio_rand", "alexnet_imagenet_overlap_ratio_top5_rand", "alexnet_imagenet_overlap_ratio_top5_diff", ] def calc_all_overlap( class_trace: AttrMap, trace: AttrMap, overlap_fn: Callable[[AttrMap, AttrMap, str], float], node_name: str = None, compact: bool = False, use_intersect_size: bool = False, key: str = TraceKey.EDGE, ) -> Dict[str, float]: if node_name is None: if use_intersect_size: overlap_ratio, intersect_size = overlap_fn( class_trace, trace, key, return_size=True ) return {key + "_size": intersect_size, key: overlap_ratio} else: return { **{ key + "_size": calc_trace_size(trace, key, compact=compact) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] }, **{ key: overlap_fn(class_trace, trace, key) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] }, } else: all_overlap = { key: overlap_fn(class_trace, trace, key, node_name) for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ] } for key in [ TraceKey.EDGE, TraceKey.POINT, TraceKey.WEIGHT ]: if node_name in trace.ops: node_trace = trace.ops[node_name] if key in node_trace: if compact: all_overlap[key + "_size"] = np.count_nonzero( np.unpackbits(node_trace[key]) ) else: all_overlap[key + "_size"] = TraceKey.to_array( node_trace[key] ).size return all_overlap # Compute mnist overlap ratio between the traces of clean test images and class traces def clean_overlap_ratio( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, num_gpus:float = 0.2, images_per_class: int = 1, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath("result/lenet/model_dropout") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) # print(class_id, predicted_label) # st() if predicted_label != class_id: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), } # st() return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), chunksize=1, out_of_order=True, num_gpus=0.2, ) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) # Compute transformed (translation, rotation and scale) # mnist overlap ratio between the traces of clean test images and class traces def translation_overlap_ratio( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, images_per_class: int = 1, transforms=None, name = None, num_gpus = 0.2, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath("result/lenet/model_augmentation") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) # Check the prediction on clean untransformed image, so don't need # transform predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) # print(class_id, predicted_label) # st() if predicted_label != class_id: return [{}] if per_node else {} # Reconstruct regardless of the correctness of prediction trace = reconstruct_trace_from_tf_brute_force( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir, transforms=transforms) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ) # row = { # "image_id": image_id, # **map_prefix( # calc_all_overlap( # class_trace_fn(class_id).load(), trace, overlap_fn # ), # "original", # ), # } # st() return row traces = ray_iter( get_row, ( (class_id, image_id) # for image_id in range(0, images_per_class) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), chunksize=1, out_of_order=True, num_gpus=num_gpus, ) traces = [trace for trace in traces if len(trace) != 0] acc = len(traces) / (images_per_class * 10) traces = pd.DataFrame(traces).mean() traces.loc['accuracy'] = acc traces = traces.to_frame() traces.columns = [name] return traces return CsvIOAction(path, init_fn=get_overlap_ratio) # Compute the mean overlap ratio of attacked image def attack_overlap_ratio( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, images_per_class: int = 1, num_gpus: float = 0.2, model_dir = "result/lenet/model_augmentation", transforms = None, transform_name = "noop", **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: nonlocal model_dir mode.check(False) data_dir = abspath(MNIST_PATH) model_dir = abspath(model_dir) ckpt_dir = f"{model_dir}/ckpts" create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=ckpt_dir, ) if predicted_label != class_id: return [{}] if per_node else {} adversarial_example = lenet_mnist_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, # model_dir not ckpt_dir model_dir=model_dir, transforms = transforms, transform_name = transform_name, mode = "test", ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_predicted_label = predict( create_model=create_model, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), model_dir=ckpt_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir, transforms=transforms) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] if trace is None: return [{}] if per_node else {} adversarial_trace = reconstruct_trace_from_tf_brute_force( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), select_fn=select_fn, model_dir=ckpt_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, "class_id": class_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), **map_prefix( calc_all_overlap( class_trace_fn(adversarial_label).load(), adversarial_trace, overlap_fn, ), "adversarial", ), } # row = calc_all_overlap( # class_trace_fn(class_id).load(), adversarial_trace, overlap_fn # ) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, images_per_class) for class_id in range(0, 10) ), # ((-1, image_id) for image_id in range(mnist_info.test().size)), chunksize=1, out_of_order=True, num_gpus=num_gpus, ) traces = [trace for trace in traces if len(trace) != 0] # acc = len(traces) / (images_per_class * 10) # traces = pd.DataFrame(traces).mean() # traces.loc['clean_accuracy'] = acc # traces = traces.to_frame() # traces.columns = [attack_name] # return traces return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def lenet_mnist_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_example() -> np.ndarray: data_dir = abspath(MNIST_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) create_model = lambda: LeNet(data_format="channels_first") if mode == "test": dataset = mnist.test elif mode == "train": dataset = mnist.train else: raise RuntimeError("Dataset invalid") input = dataset(data_dir, normed=False, transforms=transforms, ) # st() # input = input.filter(lambda image, label: tf.equal(tf.convert_to_tensor(class_id, dtype=tf.int32), label)) adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: dataset(data_dir, normed=False, transforms=transforms, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}_{transform_name}" result_dir = f"{model_dir}/attack/{mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def resnet18_cifar10_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, dataset_mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_one_input_from_dataset(dataset): input = (dataset .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ) return input def get_example() -> np.ndarray: data_dir = abspath(CIFAR10_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) # create_model = lambda: LeNet(data_format="channels_first") create_model = lambda: partial( ResNet18Cifar10(), training = False, ) from dataset.cifar10_main import input_fn_for_adversarial_examples # dataset = input_fn_for_adversarial_examples( # is_training= False, # data_dir=data_dir, # num_parallel_batches=1, # is_shuffle=False, # transform_fn=None, # ) # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: get_one_input_from_dataset( # dataset # ), # attack_fn=attack_fn, # model_dir=ckpt_dir, # **kwargs, # ) adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: ( input_fn_for_adversarial_examples( is_training= False, data_dir=data_dir, num_parallel_batches=1, is_shuffle=False, transform_fn=None, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ), attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}_{transform_name}" result_dir = f"{model_dir}/attack/{dataset_mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def resnet10_cifar10_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, model_dir: str, dataset_mode: str , transform_name: str = "noop", transforms: Transforms = None, **kwargs, ) -> IOAction[np.ndarray]: def get_one_input_from_dataset(dataset): input = (dataset .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ) return input def get_example() -> np.ndarray: data_dir = abspath(CIFAR10_PATH) ckpt_dir = f"{model_dir}/ckpts" ckpt_dir = abspath(ckpt_dir) # create_model = lambda: LeNet(data_format="channels_first") create_model = lambda: partial( ResNet10Cifar10(), training = False, ) from dataset.cifar10_main import input_fn_for_adversarial_examples adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: ( input_fn_for_adversarial_examples( is_training= (dataset_mode=="train"), data_dir=data_dir, num_parallel_batches=1, is_shuffle=False, transform_fn=None, ) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1) .make_one_shot_iterator() .get_next()[0] ), attack_fn=attack_fn, model_dir=ckpt_dir, **kwargs, ) return adversarial_example name = f"{attack_name}" result_dir = f"{model_dir}/attack/{dataset_mode}/{name}/{class_id}" path = os.path.join(result_dir, f"{image_id}.pkl") return IOAction(path, init_fn=get_example, cache=True, compress=True) def adversarial_example_image( example_io: IOAction[np.ndarray], cache: bool = True ) -> IOAction[np.ndarray]: def get_example() -> np.ndarray: example = example_io.load() if example is None: return None return (np.squeeze(example, axis=0) * 255).astype(np.uint8) path = example_io.path.replace(".pkl", ".png") return ImageIOAction(path, init_fn=get_example, cache=cache) def generate_examples( example_fn: Callable[..., IOAction[np.ndarray]], class_ids: Iterable[int], image_ids: Iterable[int], attack_name: str, transform_name: str = "noop", transforms = None, cache: bool = True, num_gpus=0.2, **kwargs, ): def generate_examples_fn( class_id: int, image_id: int ) -> Union[Tuple[int, int], Tuple[int, int, str]]: try: class_id = int(class_id) image_id = int(image_id) example_io = example_fn( attack_name=attack_name, class_id=class_id, image_id=image_id, cache=cache, transforms = transforms, transform_name = transform_name, **kwargs, ) example_io.save() adversarial_example_image(example_io, cache=cache).save() return class_id, image_id except Exception: return class_id, image_id, traceback.format_exc() name = f"{attack_name}_{transform_name}" print(f"begin {name}, num_gpu={num_gpus}") if len(image_ids) > 99: chunksize = 4 else: chunksize = 1 results = ray_iter( generate_examples_fn, [(class_id, image_id) for image_id in image_ids for class_id in class_ids], chunksize=chunksize, out_of_order=True, num_gpus=num_gpus, # huge_task=True, ) for result in results: if len(result) == 3: class_id, image_id, tb = result print(f"## raise exception from class {class_id}, image {image_id}:") print(tb) else: class_id, image_id = result # print(f"finish class {class_id} image {image_id}") print(f"finish {name}") def get_overlay_summary( overlap_ratios: pd.DataFrame, trace_key: str, threshold=1 ) -> Dict[str, int]: condition_positive = len(overlap_ratios) if condition_positive == 0: return {} original_key = f"original.{trace_key}" false_positive = np.count_nonzero(overlap_ratios[original_key] < threshold) adversarial_key = f"adversarial.{trace_key}" true_positive = np.count_nonzero(overlap_ratios[adversarial_key] < threshold) predicted_condition_positive = true_positive + false_positive recall = (true_positive / condition_positive) if condition_positive != 0 else 0 precision = ( (true_positive / predicted_condition_positive) if predicted_condition_positive != 0 else 0 ) f1 = (2 / ((1 / recall) + (1 / precision))) if recall != 0 and precision != 0 else 0 return dict( threshold=threshold, condition_positive=condition_positive, # predicted_condition_positive=predicted_condition_positive, original_is_higher=np.count_nonzero( (overlap_ratios[original_key] - overlap_ratios[adversarial_key]) > 0 ), # adversarial_is_higher=np.count_nonzero( # (overlap_ratios[adversarial_key] - overlap_ratios[original_key]) > 0), true_positive=true_positive, false_positive=false_positive, recall=recall, precision=precision, f1=f1, ) def overlap_ratio( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, per_node: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = abspath("/home/yxqiu/data/mnist/raw") model_dir = abspath("tf/lenet/model_early") create_model = lambda: LeNet(data_format="channels_first") graph = LeNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) predicted_label = predict( create_model=create_model, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), model_dir=model_dir, ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: mnist.test(data_dir, normed=False) # .filter(lambda image, label: # tf.equal( # tf.convert_to_tensor(class_id, dtype=tf.int32), # label)) # .skip(image_id).take(1).batch(1) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = lenet_mnist_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_predicted_label = predict( create_model=create_model, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: mnist.test(data_dir) .filter( lambda image, label: tf.equal( tf.convert_to_tensor(class_id, dtype=tf.int32), label ) ) .skip(image_id) .take(1) .batch(1), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] # class_id = mnist_info.test().label(image_id) # # if class_id != trace.attrs[GraphAttrKey.PREDICT]: # return [{}] if per_node else {} if trace is None: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: mnist.test(data_dir, normed=False) # .filter(lambda image, label: # tf.equal( # tf.convert_to_tensor(class_id, dtype=tf.int32), # label)) # .skip(image_id).take(1).batch(1) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) # # if adversarial_example is None: # return [{}] if per_node else {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( mnist.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] if class_id != adversarial_label: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} row = { "image_id": image_id, **map_prefix( calc_all_overlap( class_trace_fn(class_id).load(), trace, overlap_fn ), "original", ), **map_prefix( calc_all_overlap( class_trace_fn(adversarial_label).load(), adversarial_trace, overlap_fn, ), "adversarial", ), } return row else: return {} # traces = ray_iter(get_row, (image_id for image_id in range(300, 350)), # traces = ray_iter(get_row, (image_id for image_id in range(131, 300)), traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 100) for class_id in range(0, 10) ), # ((-1, image_id) for image_id in range(mnist_info.test().size)), chunksize=1, out_of_order=True, num_gpus=0, ) # chunksize=1, out_of_order=False, num_gpus=1) # count = 0 # result = [] # for trace in traces: # result.append(trace) # print(count) # count += 1 # traces = [trace for trace in result if len(trace) != 0] traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio( attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_class_trace_from_tf( class_id, model_fn=model_fn, input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id), model_dir=model_dir, select_fn=select_fn, per_channel=per_channel, ) if trace is None: return {} adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) if adversarial_example is None: return {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] if class_id != adversarial_label: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = class_trace_fn(class_id).load() adversarial_class_trace = class_trace_fn(adversarial_label).load() trace = compact_edge(trace, graph, per_channel=per_channel) adversarial_trace = compact_edge( adversarial_trace, graph, per_channel=per_channel ) if per_node: rows = [] for node_name in class_trace.nodes: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "node_name": node_name, **map_prefix( calc_all_overlap( class_trace, trace, overlap_fn, node_name ), "original", ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn, node_name, ), "adversarial", ), } if ( row[f"original.{TraceKey.WEIGHT}"] is not None or row[f"original.{TraceKey.EDGE}"] is not None ): rows.append(row) return rows else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn ), "adversarial", ), } print(row) return row else: return [{}] if per_node else {} # traces = ray_iter(get_row, (image_id for image_id in range(300, 350)), # traces = ray_iter(get_row, (image_id for image_id in range(131, 300)), traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) # for image_id in range(0, 50) for class_id in range(1, 1001) ), # for class_id in range(1, 2)), chunksize=1, out_of_order=True, num_gpus=0, ) # chunksize=1, out_of_order=False, num_gpus=1) # count = 0 # result = [] # for trace in traces: # result.append(trace) # print(count) # count += 1 # traces = [trace for trace in result if len(trace) != 0] if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio_top5( attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id), select_fn=select_fn, model_dir=model_dir, top_5=True, per_channel=per_channel, )[0] if trace is None: return {} label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) if adversarial_example is None: return {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, top_5=True, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] if adversarial_label not in label_top5: # if np.intersect1d(label_top5, adversarial_label_top5).size == 0: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = merge_compact_trace( *[class_trace_fn(label).load() for label in label_top5] ) adversarial_class_trace = merge_compact_trace( *[class_trace_fn(label).load() for label in adversarial_label_top5] ) trace = compact_edge(trace, graph, per_channel=per_channel) adversarial_trace = compact_edge( adversarial_trace, graph, per_channel=per_channel ) if per_node: rows = [] for node_name in class_trace.nodes: row = { "image_id": image_id, "node_name": node_name, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap( class_trace, trace, overlap_fn, node_name ), "original", ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn, node_name, ), "adversarial", ), } if ( row[f"original.{TraceKey.WEIGHT}"] is not None or row[f"original.{TraceKey.EDGE}"] is not None ): rows.append(row) return rows else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn ), "adversarial", ), } print(row) return row else: return [{}] if per_node else {} traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(1, 1001) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio_error( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] if class_id == trace.attrs[GraphAttrKey.PREDICT]: return {} def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = class_trace_fn(class_id).load() trace = compact_edge(trace, graph, per_channel=per_channel) row = { "image_id": image_id, "label": class_id, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 3) for class_id in range(1, 1001) ), chunksize=1, out_of_order=True, num_gpus=0, ) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio_rand( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) example = np.random.random_sample((1, 224, 224, 3)).astype(np.float32) trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = class_trace_fn(class_id).load() trace = compact_edge(trace, graph, per_channel=per_channel) row = { "image_id": image_id, "label": class_id, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(1, 1001) ), chunksize=1, out_of_order=True, num_gpus=0, ) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def resnet_50_imagenet_overlap_ratio_top5_rand( class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_channel: bool = False, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) model_dir = abspath("tf/resnet-50-v2/model") create_model = lambda: ResNet50() graph = ResNet50.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) example = np.random.random_sample((1, 224, 224, 3)).astype(np.float32) trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize(example) ), select_fn=select_fn, model_dir=model_dir, top_5=True, per_channel=per_channel, )[0] def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = merge_compact_trace( *[ class_trace_fn(label).load() for label in trace.attrs[GraphAttrKey.PREDICT_TOP5] ] ) trace = compact_edge(trace, graph, per_channel=per_channel) row = { "image_id": image_id, "label": class_id, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(1, 1001) ), chunksize=1, out_of_order=True, num_gpus=0, ) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def alexnet_imagenet_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, cache: bool = True, **kwargs, ) -> IOAction[np.ndarray]: return imagenet_example( model_config=ALEXNET.with_model_dir("tf/alexnet/model_import"), attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, cache=cache, **kwargs, ) # deprecated def alexnet_imagenet_example_trace_old( attack_name: str, class_id: int, image_id: int, threshold: float ) -> IOAction[AttrMap]: def get_example() -> AttrMap: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return None trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=lambda input: arg_approx(input, threshold), model_dir=model_dir, )[0] return compact_trace(trace, graph) name = "alexnet_imagenet" path = f"store/analysis/example_trace/{name}/threshold={threshold:.3f}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example, cache=True, compress=True) def alexnet_imagenet_example_trace_of_target_class( attack_name: str, class_id: int, image_id: int, threshold: float ) -> IOAction[AttrMap]: def get_example() -> AttrMap: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return None adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=None, generate_adversarial_fn=None, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return None adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) trace_of_target_class = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=lambda input: arg_approx(input, threshold), model_dir=model_dir, select_seed_fn=lambda _: np.array([adversarial_label]), )[0] return compact_trace(trace_of_target_class, graph) name = "alexnet_imagenet" path = f"store/analysis/example_trace_of_target_class/{name}/attack={attack_name}/threshold={threshold:.3f}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example, cache=True, compress=True) def alexnet_imagenet_adversarial_example_trace( attack_name: str, class_id: int, image_id: int, threshold: float ) -> IOAction[AttrMap]: def get_example() -> AttrMap: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return None adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=None, generate_adversarial_fn=None, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return None adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return None adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=lambda input: arg_approx(input, threshold), model_dir=model_dir, )[0] return compact_trace(adversarial_trace, graph) name = "alexnet_imagenet" path = f"store/analysis/adversarial_example_trace/{name}/attack={attack_name}/threshold={threshold:.3f}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example, cache=True, compress=True) def alexnet_imagenet_adversarial_example_trace_of_original_class( attack_name: str, class_id: int, image_id: int, threshold: float ) -> IOAction[AttrMap]: def get_example() -> AttrMap: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return None adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=None, generate_adversarial_fn=None, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return None adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return None adversarial_trace_of_original_class = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=lambda input: arg_approx(input, threshold), model_dir=model_dir, select_seed_fn=lambda _: np.array([class_id]), )[0] return compact_trace(adversarial_trace_of_original_class, graph) name = "alexnet_imagenet" path = f"store/analysis/adversarial_example_trace_of_original_class/{name}/attack={attack_name}/threshold={threshold:.3f}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example, cache=True, compress=True) def generate_traces( trace_fn: Callable[..., IOAction[AttrMap]], attack_name: str, class_ids: Iterable[int], image_ids: Iterable[int], **kwargs, ): def generate_traces_fn( class_id: int, image_id: int ) -> Union[Tuple[int, int], Tuple[int, int, str]]: try: class_id = int(class_id) image_id = int(image_id) trace_fn( attack_name=attack_name, class_id=class_id, image_id=image_id, **kwargs ).save() return class_id, image_id except Exception: return class_id, image_id, traceback.format_exc() results = ray_iter( generate_traces_fn, [(class_id, image_id) for image_id in image_ids for class_id in class_ids], chunksize=1, out_of_order=True, num_gpus=0, huge_task=True, ) for result in results: if len(result) == 3: class_id, image_id, tb = result print(f"## raise exception from class {class_id}, image {image_id}:") print(tb) else: class_id, image_id = result print(f"finish class {class_id} image {image_id}") def resnet_50_imagenet_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, cache: bool = True, **kwargs, ) -> IOAction[np.ndarray]: return imagenet_example( model_config=RESNET_50, attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, cache=cache, **kwargs, ) def vgg_16_imagenet_example( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, cache: bool = True, **kwargs, ) -> IOAction[np.ndarray]: return imagenet_example( model_config=VGG_16, attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, cache=cache, **kwargs, ) def imagenet_example( model_config: ModelConfig, attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, cache: bool = True, **kwargs, ) -> IOAction[np.ndarray]: def get_example() -> np.ndarray: data_dir = IMAGENET_RAW_DIR model_dir = abspath(model_config.model_dir) create_model = lambda: model_config.network_class() adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False, class_from_zero=model_config.class_from_zero, preprocessing_fn=model_config.preprocessing_fn, ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) return adversarial_example name = f"{model_config.name}_imagenet" path = f"store/example/{attack_name}/{name}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example, cache=cache, compress=True) def alexnet_imagenet_example_stat( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, stat_name: str = None, cache: bool = True, **kwargs, ) -> IOAction[Dict[str, np.ndarray]]: return imagenet_example_stat( model_config=ALEXNET.with_model_dir("tf/alexnet/model_import"), attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, stat_name=stat_name, cache=cache, **kwargs, ) def resnet_50_imagenet_example_stat( attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, stat_name: str = None, cache: bool = True, **kwargs, ) -> IOAction[Dict[str, np.ndarray]]: return imagenet_example_stat( model_config=RESNET_50, attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, stat_name=stat_name, cache=cache, **kwargs, ) def imagenet_example_trace( model_config: ModelConfig, attack_name, attack_fn, generate_adversarial_fn, trace_fn, class_id: int, image_id: int, threshold: float, per_channel: bool = False, cache: bool = True, train: bool = False, **kwargs, ) -> IOAction[AttrMap]: def get_example_trace() -> AttrMap: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath(model_config.model_dir) create_model = lambda: model_config.network_class() graph = model_config.network_class.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: (imagenet_raw.train if train else imagenet_raw.test)( data_dir, class_id, image_id, class_from_zero=model_config.class_from_zero, preprocessing_fn=model_config.preprocessing_fn, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return None if attack_name == "original": trace = reconstruct_trace_from_tf_v2( class_id=class_id, model_fn=model_fn, input_fn=input_fn, trace_fn=partial( trace_fn, select_fn=lambda input: arg_approx(input, threshold) ), model_dir=model_dir, )[0] trace = compact_trace(trace, graph, per_channel=per_channel) return trace adversarial_example = imagenet_example( model_config=model_config, attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return None adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( model_config.normalize_fn(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return None adversarial_trace = reconstruct_trace_from_tf_v2( model_fn=model_fn, input_fn=adversarial_input_fn, trace_fn=partial( trace_fn, select_fn=lambda input: arg_approx(input, threshold) ), model_dir=model_dir, )[0] adversarial_trace = compact_trace( adversarial_trace, graph, per_channel=per_channel ) return adversarial_trace name = f"{model_config.name}_imagenet" if train: name = f"{name}_train" if per_channel: trace_name = "example_channel_trace" else: trace_name = "example_trace" path = f"store/{trace_name}/approx_{threshold:.3f}/{attack_name}/{name}/{class_id}/{image_id}.pkl" return IOAction(path, init_fn=get_example_trace, cache=cache, compress=True) # alexnet_imagenet_example_trace = partial( # imagenet_example_trace, # model_config=ALEXNET.with_model_dir("tf/alexnet/model_import"), # ) # # resnet_50_imagenet_example_trace = partial( # imagenet_example_trace, model_config=RESNET_50 # ) # # vgg_16_imagenet_example_trace = partial(imagenet_example_trace, model_config=VGG_16) def imagenet_example_stat( model_config: ModelConfig, attack_name, attack_fn, generate_adversarial_fn, class_id: int, image_id: int, stat_name: str = "avg", cache: bool = True, **kwargs, ) -> IOAction[Dict[str, np.ndarray]]: def get_example_trace() -> Dict[str, np.ndarray]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath(model_config.model_dir) create_model = lambda: model_config.network_class() graph = model_config.network_class.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) # input_fn = lambda: imagenet_raw.test(data_dir, class_id, image_id, input_fn = lambda: imagenet_raw.train( data_dir, class_id, image_id, class_from_zero=model_config.class_from_zero, preprocessing_fn=model_config.preprocessing_fn, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) # if predicted_label != class_id: # return None if attack_name == "original": trace = reconstruct_stat_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, model_dir=model_dir, stat_name=stat_name, )[0] return trace adversarial_example = imagenet_example( model_config=model_config, attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return None adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( model_config.normalize_fn(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return None adversarial_trace = reconstruct_stat_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, model_dir=model_dir, stat_name=stat_name, )[0] return adversarial_trace name = f"{model_config.name}_imagenet" trace_name = "example_stat" path = ( f"store/{trace_name}/{stat_name}/{attack_name}/{name}/{class_id}/{image_id}.pkl" ) return IOAction(path, init_fn=get_example_trace, cache=cache, compress=True) def generate_example_traces( example_trace_fn: Callable[..., IOAction[AttrMap]], class_ids: Iterable[int], image_ids: Iterable[int], attack_name: str, attack_fn, generate_adversarial_fn, threshold: float, per_channel: bool = False, cache: bool = True, select_seed_fn: Callable[[np.ndarray], np.ndarray] = None, entry_points: List[int] = None, train: bool = False, **kwargs, ): def generate_examples_fn( class_id: int, image_id: int ) -> Union[Tuple[int, int], Tuple[int, int, str]]: try: class_id = int(class_id) image_id = int(image_id) example_trace_io = example_trace_fn( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, threshold=threshold, per_channel=per_channel, cache=cache, select_seed_fn=select_seed_fn, entry_points=entry_points, train=train, **kwargs, ) example_trace_io.save() return class_id, image_id except Exception as e: raise e # return class_id, image_id, traceback.format_exc() print(f"begin {attack_name}") results = ray_iter( generate_examples_fn, [(class_id, image_id) for image_id in image_ids for class_id in class_ids], chunksize=1, out_of_order=True, num_gpus=0, huge_task=True, ) for result in results: if len(result) == 3: class_id, image_id, tb = result print(f"## raise exception from class {class_id}, image {image_id}:") print(tb) else: class_id, image_id = result # print(f"finish class {class_id} image {image_id}") print(f"finish {attack_name}") def generate_example_stats( example_trace_fn: Callable[..., IOAction[Dict[str, np.ndarray]]], class_ids: Iterable[int], image_ids: Iterable[int], attack_name: str, attack_fn, generate_adversarial_fn, stat_name: str = None, cache: bool = True, **kwargs, ): def generate_examples_fn( class_id: int, image_id: int ) -> Union[Tuple[int, int], Tuple[int, int, str]]: try: class_id = int(class_id) image_id = int(image_id) example_trace_io = example_trace_fn( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, stat_name=stat_name, cache=cache, **kwargs, ) example_trace_io.save() return class_id, image_id except Exception as e: raise e # return class_id, image_id, traceback.format_exc() print(f"begin {attack_name}") results = ray_iter( generate_examples_fn, [(class_id, image_id) for image_id in image_ids for class_id in class_ids], chunksize=1, out_of_order=True, num_gpus=0, huge_task=True, ) for result in results: if len(result) == 3: class_id, image_id, tb = result print(f"## raise exception from class {class_id}, image {image_id}:") print(tb) else: class_id, image_id = result # print(f"finish class {class_id} image {image_id}") print(f"finish {attack_name}") def alexnet_imagenet_overlap_ratio( attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) trace = reconstruct_class_trace_from_tf( class_id, model_fn=model_fn, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ), model_dir=model_dir, select_fn=select_fn, per_channel=per_channel, ) if trace is None: return {} adversarial_example = generate_adversarial_fn( label=class_id, create_model=create_model, input_fn=lambda: imagenet_raw.test( data_dir, class_id, image_id, normed=False, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) .make_one_shot_iterator() .get_next()[0], attack_fn=attack_fn, model_dir=model_dir, **kwargs, ) if adversarial_example is None: return {} adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ), select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] if class_id != adversarial_label: def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} class_trace = class_trace_fn(class_id).load() adversarial_class_trace = class_trace_fn(adversarial_label).load() trace = compact_edge(trace, graph, per_channel=per_channel) adversarial_trace = compact_edge( adversarial_trace, graph, per_channel=per_channel ) if per_node: rows = [] for node_name in class_trace.nodes: row = { "image_id": image_id, "node_name": node_name, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap( class_trace, trace, overlap_fn, node_name ), "original", ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn, node_name, ), "adversarial", ), } if ( ( f"original.{TraceKey.WEIGHT}" in row and row[f"original.{TraceKey.WEIGHT}"] is not None ) or ( f"original.{TraceKey.EDGE}" in row and row[f"original.{TraceKey.EDGE}"] ) is not None ): rows.append(row) return rows else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, **map_prefix( calc_all_overlap(class_trace, trace, overlap_fn), "original" ), **map_prefix( calc_all_overlap( adversarial_class_trace, adversarial_trace, overlap_fn ), "adversarial", ), } print(row) return row else: return [{}] if per_node else {} traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(0, 1000) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def get_predicted_value_contribution( trace: AttrMap, graph: Graph, class_id: int, create_model, input_fn, model_dir ) -> float: # print(calc_density_compact(trace, TraceKey.EDGE)) return get_predicted_value( class_id=class_id, create_model=create_model, input_fn=input_fn, model_dir=model_dir, prediction_hooks=[MaskWeightWithTraceHook(graph, trace)], ) def alexnet_imagenet_overlap_ratio_top5_diff( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, topk_share_range: int = 5, topk_calc_range: int = 5, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id, normed=False, # class_from_zero=True, preprocessing_fn=alexnet_preprocess_image) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return [{}] if per_node else {} with tf.Session() as sess: original_example = sess.run( imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, normed=False, ) .make_one_shot_iterator() .get_next()[0] ) adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] assert trace is not None label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] label_top5_value = trace.attrs[GraphAttrKey.PREDICT_TOP5_VALUE] adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_label_top5_value = adversarial_trace.attrs[ GraphAttrKey.PREDICT_TOP5_VALUE ] assert class_id != adversarial_label def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} assert ( class_id == label_top5[0] and adversarial_label == adversarial_label_top5[0] ) trace = compact_trace(trace, graph, per_channel=per_channel) adversarial_trace = compact_trace( adversarial_trace, graph, per_channel=per_channel ) class_traces = {} def get_class_trace(class_id: int) -> AttrMap: if class_id not in class_traces: class_traces[class_id] = class_trace_fn(class_id).load() return class_traces[class_id] # return class_trace_fn(class_id).load() def get_overlap( base_class_id: int, class_ids: List[int], trace: AttrMap, input_fn ): rest_class_ids = class_ids.copy() rest_class_ids.remove(base_class_id) rest_class_trace = merge_compact_trace( *[get_class_trace(class_id) for class_id in rest_class_ids] ) class_trace = get_class_trace(base_class_id) class_specific_trace = merge_compact_trace_diff( class_trace, rest_class_trace ) example_specific_trace = merge_compact_trace_diff( trace, rest_class_trace ) example_trace_in_class_in_rest = merge_compact_trace_intersect( class_trace, trace, rest_class_trace ) example_trace_in_class_not_in_rest = merge_compact_trace_intersect( class_specific_trace, example_specific_trace ) example_trace_not_in_class_in_rest = merge_compact_trace_diff( merge_compact_trace_intersect(trace, rest_class_trace), class_trace ) example_trace_not_in_class_not_in_rest = merge_compact_trace_diff( example_specific_trace, class_specific_trace ) example_trace_share = merge_compact_trace_diff( trace, example_trace_not_in_class_not_in_rest ) example_trace_specific = merge_compact_trace_diff( trace, example_trace_not_in_class_in_rest ) predicted_value_contributions = { key: get_predicted_value_contribution( current_trace, graph=graph, class_id=base_class_id, create_model=create_model, input_fn=input_fn, model_dir=model_dir, ) for key, current_trace in [ ("pvc_total", trace), ("pvc_share", example_trace_share), ("pvc_specific", example_trace_specific), ("pvc_in_class_in_rest", example_trace_in_class_in_rest), ( "pvc_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), # ("pvc_not_in_class_in_rest", example_trace_not_in_class_in_rest), # ("pvc_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest), ] } overlap_sizes = { key: calc_trace_size(current_trace, compact=True) for key, current_trace in [ ("overlap_size_total", trace), ( "overlap_size_in_class_in_rest", example_trace_in_class_in_rest, ), ( "overlap_size_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), ( "overlap_size_not_in_class_in_rest", example_trace_not_in_class_in_rest, ), ( "overlap_size_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest, ), ] } return { **calc_all_overlap( class_specific_trace, example_specific_trace, overlap_fn, compact=True, use_intersect_size=True, ), **predicted_value_contributions, **overlap_sizes, } row = {} for k, base_class_id in zip(range(1, topk_calc_range + 1), label_top5): row = { **row, **map_prefix( get_overlap(base_class_id, label_top5, trace, input_fn), f"original.top{k}", ), } for k, base_class_id in zip( range(1, topk_calc_range + 1), adversarial_label_top5 ): row = { **row, **map_prefix( get_overlap( base_class_id, adversarial_label_top5, adversarial_trace, adversarial_input_fn, ), f"adversarial.top{k}", ), } if per_node: raise RuntimeError() else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, "label_top5_value": label_top5_value, "adversarial_label_top5_value": adversarial_label_top5_value, "label_value": label_top5_value[0], "adversarial_label_value": adversarial_label_top5_value[0], "perturbation": np.linalg.norm( adversarial_example - original_example ) / original_example.size, **row, } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(0, 1000) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def alexnet_imagenet_overlap_ratio_top5_diff_uint8( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, topk_share_range: int = 5, topk_calc_range: int = 5, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id, normed=False, # class_from_zero=True, preprocessing_fn=alexnet_preprocess_image) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = adversarial_example_image( alexnet_imagenet_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ) ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_example = ( np.expand_dims(adversarial_example, axis=0).astype(np.float32) / 255 ) with tf.Session() as sess: original_example = sess.run( imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, normed=False, ) .make_one_shot_iterator() .get_next()[0] ) adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] assert trace is not None label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] label_top5_value = trace.attrs[GraphAttrKey.PREDICT_TOP5_VALUE] adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_label_top5_value = adversarial_trace.attrs[ GraphAttrKey.PREDICT_TOP5_VALUE ] assert class_id != adversarial_label def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} assert ( class_id == label_top5[0] and adversarial_label == adversarial_label_top5[0] ) trace = compact_trace(trace, graph, per_channel=per_channel) adversarial_trace = compact_trace( adversarial_trace, graph, per_channel=per_channel ) class_traces = {} def get_class_trace(class_id: int) -> AttrMap: if class_id not in class_traces: class_traces[class_id] = class_trace_fn(class_id).load() return class_traces[class_id] # return class_trace_fn(class_id).load() def get_overlap( base_class_id: int, class_ids: List[int], trace: AttrMap, input_fn ): rest_class_ids = class_ids.copy() rest_class_ids.remove(base_class_id) rest_class_trace = merge_compact_trace( *[get_class_trace(class_id) for class_id in rest_class_ids] ) class_trace = get_class_trace(base_class_id) class_specific_trace = merge_compact_trace_diff( class_trace, rest_class_trace ) example_specific_trace = merge_compact_trace_diff( trace, rest_class_trace ) example_trace_in_class_in_rest = merge_compact_trace_intersect( class_trace, trace, rest_class_trace ) example_trace_in_class_not_in_rest = merge_compact_trace_intersect( class_specific_trace, example_specific_trace ) example_trace_not_in_class_in_rest = merge_compact_trace_diff( merge_compact_trace_intersect(trace, rest_class_trace), class_trace ) example_trace_not_in_class_not_in_rest = merge_compact_trace_diff( example_specific_trace, class_specific_trace ) example_trace_share = merge_compact_trace_diff( trace, example_trace_not_in_class_not_in_rest ) example_trace_specific = merge_compact_trace_diff( trace, example_trace_not_in_class_in_rest ) predicted_value_contributions = { key: get_predicted_value_contribution( current_trace, graph=graph, class_id=base_class_id, create_model=create_model, input_fn=input_fn, model_dir=model_dir, ) for key, current_trace in [ ("pvc_total", trace), ("pvc_share", example_trace_share), ("pvc_specific", example_trace_specific), ("pvc_in_class_in_rest", example_trace_in_class_in_rest), ( "pvc_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), # ("pvc_not_in_class_in_rest", example_trace_not_in_class_in_rest), # ("pvc_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest), ] } overlap_sizes = { key: calc_trace_size(current_trace, compact=True) for key, current_trace in [ ("overlap_size_total", trace), ( "overlap_size_in_class_in_rest", example_trace_in_class_in_rest, ), ( "overlap_size_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), ( "overlap_size_not_in_class_in_rest", example_trace_not_in_class_in_rest, ), ( "overlap_size_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest, ), ] } return { **calc_all_overlap( class_specific_trace, example_specific_trace, overlap_fn, compact=True, use_intersect_size=True, ), **predicted_value_contributions, **overlap_sizes, } row = {} for k, base_class_id in zip(range(1, topk_calc_range + 1), label_top5): row = { **row, **map_prefix( get_overlap(base_class_id, label_top5, trace, input_fn), f"original.top{k}", ), } for k, base_class_id in zip( range(1, topk_calc_range + 1), adversarial_label_top5 ): row = { **row, **map_prefix( get_overlap( base_class_id, adversarial_label_top5, adversarial_trace, adversarial_input_fn, ), f"adversarial.top{k}", ), } if per_node: raise RuntimeError() else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, "label_top5_value": label_top5_value, "adversarial_label_top5_value": adversarial_label_top5_value, "label_value": label_top5_value[0], "adversarial_label_value": adversarial_label_top5_value[0], "perturbation": np.linalg.norm( adversarial_example - original_example ) / original_example.size, **row, } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(0, 1000) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def alexnet_imagenet_overlap_ratio_logit_diff( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, topk_share_range: int = 5, topk_calc_range: int = 5, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id, normed=False, # class_from_zero=True, preprocessing_fn=alexnet_preprocess_image) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] assert trace is not None label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] label_top5_value = trace.attrs[GraphAttrKey.PREDICT_TOP5_VALUE] adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_label_top5_value = adversarial_trace.attrs[ GraphAttrKey.PREDICT_TOP5_VALUE ] assert class_id != adversarial_label def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} assert ( class_id == label_top5[0] and adversarial_label == adversarial_label_top5[0] ) trace = compact_trace(trace, graph, per_channel=per_channel) adversarial_trace = compact_trace( adversarial_trace, graph, per_channel=per_channel ) class_traces = {} def get_class_trace(class_id: int) -> AttrMap: if class_id not in class_traces: class_traces[class_id] = class_trace_fn(class_id).load() return class_traces[class_id] # return class_trace_fn(class_id).load() def get_overlap( base_class_id: int, class_ids: List[int], trace: AttrMap, input_fn ): rest_class_ids = class_ids.copy() if base_class_id in rest_class_ids: rest_class_ids.remove(base_class_id) rest_class_trace = merge_compact_trace( *[get_class_trace(class_id) for class_id in rest_class_ids] ) class_trace = get_class_trace(base_class_id) class_specific_trace = merge_compact_trace_diff( class_trace, rest_class_trace ) example_specific_trace = merge_compact_trace_diff( trace, rest_class_trace ) example_trace_in_class_in_rest = merge_compact_trace_intersect( class_trace, trace, rest_class_trace ) example_trace_in_class_not_in_rest = merge_compact_trace_intersect( class_specific_trace, example_specific_trace ) example_trace_not_in_class_in_rest = merge_compact_trace_diff( merge_compact_trace_intersect(trace, rest_class_trace), class_trace ) example_trace_not_in_class_not_in_rest = merge_compact_trace_diff( example_specific_trace, class_specific_trace ) example_trace_in_class = merge_compact_trace_intersect( class_trace, trace ) example_trace_share = merge_compact_trace_diff( trace, example_trace_not_in_class_not_in_rest ) example_trace_specific = merge_compact_trace_diff( trace, example_trace_not_in_class_in_rest ) predicted_value_contributions = { key: get_predicted_value_contribution( current_trace, graph=graph, class_id=base_class_id, create_model=create_model, input_fn=input_fn, model_dir=model_dir, ) for key, current_trace in [ ("pvc_total", trace), ("pvc_share", example_trace_share), ("pvc_specific", example_trace_specific), # ("pvc_in_class_in_rest", example_trace_in_class_in_rest), ("pvc_in_class", example_trace_in_class), ( "pvc_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), # ("pvc_not_in_class_in_rest", example_trace_not_in_class_in_rest), # ("pvc_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest), ] } overlap_sizes = { key: calc_trace_size(current_trace, compact=True) for key, current_trace in [ ("overlap_size_total", trace), ( "overlap_size_in_class_in_rest", example_trace_in_class_in_rest, ), ( "overlap_size_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), ( "overlap_size_not_in_class_in_rest", example_trace_not_in_class_in_rest, ), ( "overlap_size_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest, ), ] } return { **calc_all_overlap( class_specific_trace, example_specific_trace, overlap_fn, compact=True, use_intersect_size=True, ), **predicted_value_contributions, **overlap_sizes, } # if (class_id not in adversarial_label_top5) or (adversarial_label not in label_top5): # return [{}] if per_node else {} row = {} row = { **row, **map_prefix( get_overlap(class_id, label_top5, trace, input_fn), f"original.origin", ), } trace_target_class = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, select_seed_fn=lambda _: np.array([adversarial_label]), )[0] trace_target_class = compact_trace( trace_target_class, graph, per_channel=per_channel ) row = { **row, **map_prefix( get_overlap( adversarial_label, label_top5, trace_target_class, input_fn ), f"original.target", ), } row = { **row, **map_prefix( get_overlap( adversarial_label, adversarial_label_top5, adversarial_trace, adversarial_input_fn, ), f"adversarial.target", ), } adversarial_trace_original_class = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, topk=topk_share_range, select_seed_fn=lambda _: np.array([class_id]), )[0] adversarial_trace_original_class = compact_trace( adversarial_trace_original_class, graph, per_channel=per_channel ) row = { **row, **map_prefix( get_overlap( class_id, adversarial_label_top5, adversarial_trace_original_class, adversarial_input_fn, ), f"adversarial.origin", ), } if per_node: raise RuntimeError() else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, "label_top5_value": label_top5_value, "adversarial_label_top5_value": adversarial_label_top5_value, "label_value": label_top5_value[0], "adversarial_label_value": adversarial_label_top5_value[0], **row, } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(0, 1000) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return pd.DataFrame(traces) return CsvIOAction(path, init_fn=get_overlap_ratio) def alexnet_imagenet_ideal_metrics( attack_name: str, attack_fn, generate_adversarial_fn, class_trace_fn: Callable[[int], IOAction[AttrMap]], select_fn: Callable[[np.ndarray], np.ndarray], overlap_fn: Callable[[AttrMap, AttrMap, str], float], path: str, per_node: bool = False, per_channel: bool = False, topk_share_range: int = 5, topk_calc_range: int = 5, **kwargs, ): def get_overlap_ratio() -> pd.DataFrame: def get_row(class_id: int, image_id: int) -> Dict[str, Any]: mode.check(False) data_dir = IMAGENET_RAW_DIR model_dir = abspath("tf/alexnet/model_import") create_model = lambda: AlexNet() graph = AlexNet.graph().load() model_fn = partial( model_fn_with_fetch_hook, create_model=create_model, graph=graph ) input_fn = lambda: imagenet_raw.test( data_dir, class_id, image_id, class_from_zero=True, preprocessing_fn=alexnet_preprocess_image, ) predicted_label = predict( create_model=create_model, input_fn=input_fn, model_dir=model_dir ) if predicted_label != class_id: return [{}] if per_node else {} # adversarial_example = generate_adversarial_fn( # label=class_id, # create_model=create_model, # input_fn=lambda: imagenet_raw.test(data_dir, class_id, image_id, normed=False, # class_from_zero=True, preprocessing_fn=alexnet_preprocess_image) # .make_one_shot_iterator().get_next()[0], # attack_fn=attack_fn, # model_dir=model_dir, # **kwargs, # ) adversarial_example = alexnet_imagenet_example( attack_name=attack_name, attack_fn=attack_fn, generate_adversarial_fn=generate_adversarial_fn, class_id=class_id, image_id=image_id, ).load() if adversarial_example is None: return [{}] if per_node else {} adversarial_input_fn = lambda: tf.data.Dataset.from_tensors( imagenet.normalize_alexnet(adversarial_example) ) adversarial_predicted_label = predict( create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ) if predicted_label == adversarial_predicted_label: return [{}] if per_node else {} trace = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] assert trace is not None label_top5 = trace.attrs[GraphAttrKey.PREDICT_TOP5] label_top5_value = trace.attrs[GraphAttrKey.PREDICT_TOP5_VALUE] adversarial_trace = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, )[0] adversarial_label = adversarial_trace.attrs[GraphAttrKey.PREDICT] adversarial_label_top5 = adversarial_trace.attrs[GraphAttrKey.PREDICT_TOP5] adversarial_label_top5_value = adversarial_trace.attrs[ GraphAttrKey.PREDICT_TOP5_VALUE ] assert class_id != adversarial_label def map_prefix(map: Dict[str, Any], prefix: str) -> Dict[str, Any]: return {f"{prefix}.{key}": value for key, value in map.items()} assert ( class_id == label_top5[0] and adversarial_label == adversarial_label_top5[0] ) trace = compact_trace(trace, graph, per_channel=per_channel) adversarial_trace = compact_trace( adversarial_trace, graph, per_channel=per_channel ) class_traces = {} def get_class_trace(class_id: int) -> AttrMap: if class_id not in class_traces: class_traces[class_id] = class_trace_fn(class_id).load() return class_traces[class_id] # return class_trace_fn(class_id).load() def get_overlap( base_class_id: int, rest_class_id: int, trace: AttrMap, input_fn ): rest_class_trace = get_class_trace(rest_class_id) class_trace = get_class_trace(base_class_id) class_specific_trace = merge_compact_trace_diff( class_trace, rest_class_trace ) example_specific_trace = merge_compact_trace_diff( trace, rest_class_trace ) example_trace_in_class_in_rest = merge_compact_trace_intersect( class_trace, trace, rest_class_trace ) example_trace_in_class_not_in_rest = merge_compact_trace_intersect( class_specific_trace, example_specific_trace ) example_trace_not_in_class_in_rest = merge_compact_trace_diff( merge_compact_trace_intersect(trace, rest_class_trace), class_trace ) example_trace_not_in_class_not_in_rest = merge_compact_trace_diff( example_specific_trace, class_specific_trace ) example_trace_in_class = merge_compact_trace_intersect( class_trace, trace ) example_trace_share = merge_compact_trace_diff( trace, example_trace_not_in_class_not_in_rest ) example_trace_specific = merge_compact_trace_diff( trace, example_trace_not_in_class_in_rest ) predicted_value_contributions = { key: get_predicted_value_contribution( current_trace, graph=graph, class_id=base_class_id, create_model=create_model, input_fn=input_fn, model_dir=model_dir, ) for key, current_trace in [ ("pvc_total", trace), ("pvc_share", example_trace_share), ("pvc_specific", example_trace_specific), # ("pvc_in_class_in_rest", example_trace_in_class_in_rest), ("pvc_in_class", example_trace_in_class), ( "pvc_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), # ("pvc_not_in_class_in_rest", example_trace_not_in_class_in_rest), # ("pvc_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest), ] } overlap_sizes = { key: calc_trace_size(current_trace, compact=True) for key, current_trace in [ ("overlap_size_total", trace), ( "overlap_size_in_class_in_rest", example_trace_in_class_in_rest, ), ( "overlap_size_in_class_not_in_rest", example_trace_in_class_not_in_rest, ), ( "overlap_size_not_in_class_in_rest", example_trace_not_in_class_in_rest, ), ( "overlap_size_not_in_class_not_in_rest", example_trace_not_in_class_not_in_rest, ), ] } return { **calc_all_overlap( class_specific_trace, example_specific_trace, overlap_fn, compact=True, use_intersect_size=True, ), **predicted_value_contributions, **overlap_sizes, } row = {} row = { **row, **map_prefix( get_overlap(class_id, adversarial_label, trace, input_fn), f"original.origin", ), } trace_target_class = reconstruct_trace_from_tf( class_id=class_id, model_fn=model_fn, input_fn=input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, select_seed_fn=lambda _: np.array([adversarial_label]), )[0] trace_target_class = compact_trace( trace_target_class, graph, per_channel=per_channel ) row = { **row, **map_prefix( get_overlap( adversarial_label, class_id, trace_target_class, input_fn ), f"original.target", ), } row = { **row, **map_prefix( get_overlap( adversarial_label, class_id, adversarial_trace, adversarial_input_fn, ), f"adversarial.target", ), } adversarial_trace_original_class = reconstruct_trace_from_tf( model_fn=model_fn, input_fn=adversarial_input_fn, select_fn=select_fn, model_dir=model_dir, per_channel=per_channel, select_seed_fn=lambda _: np.array([class_id]), )[0] adversarial_trace_original_class = compact_trace( adversarial_trace_original_class, graph, per_channel=per_channel ) row = { **row, **map_prefix( get_overlap( class_id, adversarial_label, adversarial_trace_original_class, adversarial_input_fn, ), f"adversarial.origin", ), } if per_node: raise RuntimeError() else: row = { "image_id": image_id, "label": class_id, "adversarial_label": adversarial_label, "label_top5": label_top5, "adversarial_label_top5": adversarial_label_top5, "label_top5_value": label_top5_value, "adversarial_label_top5_value": adversarial_label_top5_value, "label_value": label_top5_value[0], "adversarial_label_value": adversarial_label_top5_value[0], "original_class_rank_in_adversarial_example": get_rank( class_id=class_id, create_model=create_model, input_fn=adversarial_input_fn, model_dir=model_dir, ), "target_class_rank_in_original_example": get_rank( class_id=adversarial_label, create_model=create_model, input_fn=input_fn, model_dir=model_dir, ), **row, } print(row) return row traces = ray_iter( get_row, ( (class_id, image_id) for image_id in range(0, 1) for class_id in range(0, 1000) ), chunksize=1, out_of_order=True, num_gpus=0, ) if per_node: traces = list(itertools.chain.from_iterable(traces)) traces = [trace for trace in traces if len(trace) != 0] return
pd.DataFrame(traces)
pandas.DataFrame
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '3D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(['now', pd.Timestamp.max]) dtimin = pd.to_datetime(['now', pd.Timestamp.min]) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants: with pytest.raises(OverflowError): dtimax - variant expected = pd.Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = pd.Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError): dtimin - variant @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_add_offset_array(self, tz, box): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_index_equal(res2, expected) @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_sub_offset_array(self, tz, box): # GH#18824 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti - other expected = DatetimeIndex([dti[n] - other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) @pytest.mark.parametrize('names', [(None, None, None), ('foo', 'bar', None), ('foo', 'foo', 'foo')]) def test_dti_with_offset_series(self, tz, names): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz, name=names[0]) other = Series([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) expected_add = Series([dti[n] + other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other tm.assert_series_equal(res, expected_add) with tm.assert_produces_warning(PerformanceWarning): res2 = other + dti tm.assert_series_equal(res2, expected_add) expected_sub = Series([dti[n] - other[n] for n in range(len(dti))], name=names[2]) with tm.assert_produces_warning(PerformanceWarning): res3 = dti - other tm.assert_series_equal(res3, expected_sub) # GH 10699 @pytest.mark.parametrize('klass,assert_func', zip([Series, DatetimeIndex], [tm.assert_series_equal, tm.assert_index_equal])) def test_datetime64_with_DateOffset(klass, assert_func): s = klass(date_range('2000-01-01', '2000-01-31'), name='a') result = s + pd.DateOffset(years=1) result2 = pd.DateOffset(years=1) + s exp = klass(date_range('2001-01-01', '2001-01-31'), name='a') assert_func(result, exp) assert_func(result2, exp) result = s - pd.DateOffset(years=1) exp = klass(date_range('1999-01-01', '1999-01-31'), name='a') assert_func(result, exp) s = klass([Timestamp('2000-01-15 00:15:00', tz='US/Central'), pd.Timestamp('2000-02-15', tz='US/Central')], name='a') result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = klass([
Timestamp('2000-01-16 00:15:00', tz='US/Central')
pandas.Timestamp
import cv2 import json from tqdm import tqdm import pandas as pd from .bb_polygon import * def draw_arrow(image, start_point, end_point, color): start_point = tuple(start_point) end_point = tuple(end_point) image = cv2.line(image, start_point, end_point, color, 3) image = cv2.circle(image, end_point, 8, color, -1) return image def draw_start_last_points(ori_im, start_point, last_point, color=(0, 255, 0)): return draw_arrow(ori_im, start_point, last_point, color) def draw_one_box(img, box, key=None, value=None, color=None, line_thickness=None): tl = line_thickness or int(round(0.001 * max(img.shape[0:2]))) # line thickness coord = [box[0], box[1], box[2], box[3]] c1, c2 = (int(coord[0]), int(coord[1])), (int(coord[2]), int(coord[3])) img = cv2.rectangle(img, c1, c2, color, thickness=tl*2) if key is not None and value is not None: header = f'{key} || {value}' tf = max(tl - 2, 1) # font thickness s_size = cv2.getTextSize(f'| {value}', 0, fontScale=float(tl) / 3, thickness=tf)[0] t_size = cv2.getTextSize(f'{key} |', 0, fontScale=float(tl) / 3, thickness=tf)[0] c2 = c1[0] + t_size[0] + s_size[0] + 15, c1[1] - t_size[1] - 3 img = cv2.rectangle(img, c1, c2, color, -1) # filled img = cv2.putText(img, header, (c1[0], c1[1] - 2), 0, float(tl) / 3, [0, 0, 0], thickness=tf, lineType=cv2.FONT_HERSHEY_SIMPLEX) return img def draw_text( img, text, uv_top_left=None, color=(255, 255, 255), fontScale=0.75, thickness=1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, outline_color=(0, 0, 0), line_spacing=1.5, ): """ Draws multiline with an outline. """ assert isinstance(text, str) lines = text.splitlines() if uv_top_left is None: # set the text start position, at the bottom left of video (w, h), _ = cv2.getTextSize( text=lines[0], fontFace=fontFace, fontScale=fontScale, thickness=thickness, ) text_offset_x = 10 text_offset_y = img.shape[0] - h*(len(lines)+3) uv_top_left = (text_offset_x, text_offset_y) uv_top_left = np.array(uv_top_left, dtype=float) assert uv_top_left.shape == (2,) for line in lines: (w, h), _ = cv2.getTextSize( text=line, fontFace=fontFace, fontScale=fontScale, thickness=thickness, ) uv_bottom_left_i = uv_top_left + [0, h] org = tuple(uv_bottom_left_i.astype(int)) if outline_color is not None: cv2.putText( img, text=line, org=org, fontFace=fontFace, fontScale=fontScale, color=outline_color, thickness=thickness * 3, lineType=cv2.LINE_AA, ) cv2.putText( img, text=line, org=org, fontFace=fontFace, fontScale=fontScale, color=color, thickness=thickness, lineType=cv2.LINE_AA, ) uv_top_left += [0, h * line_spacing] return img def draw_anno(image, polygon=None, paths=None): colors = [(0, 0, 255), # red 0 (0, 255, 0), # green 1 (255, 0, 0), # blue 2 (0, 255, 255), # cyan 3 (128, 0, 128), # purple 4 (0, 0, 0), # black 5 (255, 255, 255)] # white 6 if polygon: polygon = np.array(polygon, np.int32) polygon = polygon.reshape((-1, 1, 2)) image = cv2.polylines(image, [polygon], True, colors[0], 5) if paths: for path, points in paths.items(): points = np.array(points, np.int32) image = draw_arrow(image, points[0], points[1], colors[5]) image = cv2.putText(image, path, (points[1][0], points[1][1]), cv2.FONT_HERSHEY_PLAIN, fontScale=1.5, color=colors[5], thickness=3) return image def draw_frame_count(img, frame_id): text = f"Frame:{frame_id}" text_offset = (10, 25) return draw_text(img, text, text_offset, color=(0,255,0)) def load_zone_anno(zone_path): with open(zone_path, 'r') as f: anno = json.load(f) directions = {} zone = anno['shapes'][0]['points'] for i in anno['shapes']: if i['label'].startswith('direction'): directions[i['label'][-2:]] = i['points'] return zone, directions def find_best_match_direction(obj_vector,paths): """ paths: dict {key: vector,...} """ directions = list(paths.keys()) best_score = 0 best_match = directions[0] for direction_id in directions: vector = paths[direction_id] score = cosin_similarity(obj_vector, vector) if score > best_score: best_score = score best_match = direction_id return best_match def save_tracking_to_csv(track_dict, filename): num_classes = len(track_dict) obj_dict = { 'track_id': [], 'frame_id': [], 'box': [], 'color': [], 'label': [], 'direction': [], 'fpoint': [], 'lpoint': [], 'fframe': [], 'lframe': [] } for label_id in range(num_classes): for track_id in track_dict[label_id].keys(): direction = track_dict[label_id][track_id]['direction'] boxes = track_dict[label_id][track_id]['boxes'] frames = track_dict[label_id][track_id]['frames'] color = track_dict[label_id][track_id]['color'] frame_first = frames[0] frame_last = frames[-1] box_first = boxes[0] box_last = boxes[-1] center_point_first = ((box_first[2]+box_first[0]) / 2, (box_first[3] + box_first[1])/2) center_point_last = ((box_last[2]+box_last[0]) / 2, (box_last[3] + box_last[1])/2) for i in range(len(track_dict[label_id][track_id]['boxes'])): obj_dict['track_id'].append(track_id) obj_dict['frame_id'].append(frames[i]) obj_dict['box'].append(boxes[i].tolist()) obj_dict['color'].append(color) obj_dict['label'].append(label_id) obj_dict['direction'].append(direction) obj_dict['fpoint'].append(center_point_first) obj_dict['lpoint'].append(center_point_last) obj_dict['fframe'].append(frame_first) obj_dict['lframe'].append(frame_last) df = pd.DataFrame(obj_dict) df.to_csv(filename, index=False) def convert_frame_dict(track_dict): """ return result dict: { frame_id: { 'boxes': [], 'colors': [], 'fpoints': [], 'lpoints': [] } } """ result_dict = {} num_classes = len(track_dict) for label_id in range(num_classes): for track_id in track_dict[label_id].keys(): direction = track_dict[label_id][track_id]['direction'] boxes = track_dict[label_id][track_id]['boxes'] frames = track_dict[label_id][track_id]['frames'] color = track_dict[label_id][track_id]['color'] for i in range(len(track_dict[label_id][track_id])): frame_id = frames[i] box = boxes[i] if frame_id not in result_dict.keys(): result_dict[frame_id] = { 'boxes': [], 'colors': [], 'fpoints': [], 'lpoints': [], 'labels': [], 'directions': [] } first_box = box[0] last_box = box[-1] center_point_first = ((first_box[2]+first_box[0]) / 2, (first_box[3] + first_box[1])/2) center_point_last = ((last_box[2]+last_box[0]) / 2, (last_box[3] + last_box[1])/2) result_dict[frame_id]['boxes'].append(box) result_dict[frame_id]['fpoints'].append(center_point_first) result_dict[frame_id]['lpoints'].append(center_point_last) result_dict[frame_id]['directions'].append(direction) result_dict[frame_id]['colors'].append(color) result_dict[frame_id]['labels'].append(label_id) return result_dict def visualize_one_frame(img, df): # track_id frame_id box color label direction fpoint lpoint fframe lframe anns = [ i for i in zip( df.track_id, df.box, df.color, df.label, df.fpoint) ] for (track_id, box, color, label, fpoint) in anns: box = eval(box) fpoint = np.array(eval(fpoint)).astype(int) color = eval(color) cpoint = np.array([(box[2]+box[0]) / 2, (box[3] + box[1])/2]).astype(int) img = draw_start_last_points(img, fpoint, cpoint, color) img = draw_one_box( img, box, key=f'id: {track_id}', value=f'cls: {label}', color=color) return img def count_frame_directions(df, count_dict): anns = [ i for i in zip( df.frame_id, df.label, df.direction, df.lframe) ] for (frame_id, label, direction, lframe) in anns: if lframe == frame_id: count_dict[direction][label] += 1 count_text = [] for dir in count_dict.keys(): tmp_text = f"direction:{dir} || " for cls_id in count_dict[dir].keys(): tmp_text += f"{cls_id}:{count_dict[dir][cls_id]} | " count_text.append(tmp_text) count_text = "\n".join(count_text) return count_dict, count_text def visualize_merged(videoloader, csv_path, directions, zones, num_classes, outvid): df =
pd.read_csv(csv_path)
pandas.read_csv
import pandas as pd from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison import scipy as sp import numpy as np FULL_DATASET = True # Decide whether to run the old code with the full dataset or the new code # with selected peptides if (FULL_DATASET): # Load excel file of party processed data data_xls = pd.ExcelFile('./data/timeseries/merged_normalized.xlsx') # Create empty data frame for result data result_data = pd.DataFrame() # Load all of the sheets into a list sheet_list = {} index = 0 for sheet_name in data_xls.sheet_names: # Load sheet into list sheet_list[index] = data_xls.parse(sheet_name) index += 1 # Get rid of all rows except duplicates duplicate_data = sheet_list[0][(sheet_list[0]['peptide'].isin(sheet_list[1]['peptide']))].dropna().reset_index(drop=True) duplicate_data = duplicate_data[(duplicate_data['peptide'].isin(sheet_list[2]['peptide']))].dropna().reset_index(drop=True) # Trim the duplicate data to just the first four rows (information about peptides) result_data = duplicate_data.iloc[:,0:4] # Create variables for the data in A, B, and C data_A = sheet_list[0][(sheet_list[0]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) data_B = sheet_list[1][(sheet_list[1]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) data_C = sheet_list[2][(sheet_list[2]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) # Add the data from sheets A, B, and C respectively result_data = pd.concat([result_data, data_A.iloc[:,4:12]], axis=1, ignore_index=True) result_data = pd.concat([result_data, data_B.iloc[:,4:12]], axis=1, ignore_index=True) result_data = pd.concat([result_data, data_C.iloc[:,4:12]], axis=1, ignore_index=True) print(result_data) # # Get the data for the stats MulitComparison test array_A = np.asarray(data_A.iloc[:,4:12]) array_B = np.asarray(data_B.iloc[:,4:12]) array_C = np.asarray(data_C.iloc[:,4:12]) # Stack the dataframes into one df = pd.DataFrame() df_A =
pd.DataFrame(array_A)
pandas.DataFrame
import pandas as pd import numpy as np from tia.analysis.model.trd import TradeBlotter from tia.analysis.util import per_level, per_series __all__ = ['per_level', 'per_series', 'sma', 'ema', 'wilderma', 'ma', 'macd', 'rsi', 'true_range', 'dmi', 'cross_signal', 'Signal'] @per_series() def sma(arg, n): """ If n is 0 then return the ltd mean; else return the n day mean """ if n == 0: return pd.expanding_mean(arg) else: return pd.rolling_mean(arg, n, min_periods=n) @per_series() def ema(arg, n): if n == 0: return pd.ewma(arg, span=len(arg), min_periods=1) else: return pd.ewma(arg, span=n, min_periods=n) @per_series() def wilderma(arg, n): converted = arg.dropna() values = converted.values if len(values) < n: return pd.Series(np.nan, index=arg.index) else: result = np.empty(len(values), dtype=float) result[:n - 1] = np.nan result[n - 1] = values[:n].mean() i, sz = n, len(values) pm = 1. / n wm = 1. - pm while i < sz: result[i] = pm * values[i] + wm * result[i - 1] i += 1 return pd.Series(result, index=converted.index).reindex(arg.index) def ma(arg, n, matype='sma'): if matype == 'sma': return sma(arg, n) elif matype == 'ema': return ema(arg, n) elif matype == 'wma': return wilderma(arg, n) else: raise ValueError('unknown moving average type %s' % matype) def _ensure_sorf(arg): if not isinstance(arg, (pd.DataFrame, pd.Series)): raise Exception('expected Series or DataFrame') def _ensure_col(arg, **kwds): for k, v in kwds.items(): if v not in arg: raise Exception('failed to find column for argument %s=%s' % (k, v)) def true_range(arg, high_col='high', low_col='low', close_col='close', skipna=0): """ http://en.wikipedia.org/wiki/Average_true_range The greatest of the following: - Current High less the current Low - Current High less the previous Close (absolute value) - Curre nt Low less the previous Close (absolute value) """ _ensure_col(arg, high_col=high_col, low_col=low_col, close_col=close_col) yclose = arg[close_col].shift(1) low, high = arg[low_col], arg[high_col] mx = pd.DataFrame({'a': high, 'b': yclose}).max(axis=1, skipna=skipna) mn = pd.DataFrame({'a': low, 'b': yclose}).min(axis=1, skipna=skipna) result = mx - mn return pd.Series(result, index=arg.index, name='true_range') def dmi(arg, n, high_col='high', low_col='low', close_col='close'): """ Return the dmi+, dmi-, Average directional index ( http://en.wikipedia.org/wiki/Average_Directional_Index ) TODO - break up calcuat """ converted = arg[[close_col, high_col, low_col]] converted.columns = ['close', 'high', 'low'] up_mv = converted.high.diff() dn_mv = -1 * converted.low.diff() up_mv[~((up_mv > 0) & (up_mv > dn_mv))] = 0 dn_mv[~((dn_mv > 0) & (dn_mv > up_mv))] = 0 tr = true_range(converted, 'high', 'low', 'close') atr = wilderma(tr, n) di_pos = 100. * wilderma(up_mv, n) / atr di_neg = 100. * wilderma(dn_mv, n) / atr dx = 100. * np.abs(di_pos - di_neg) / (di_pos + di_neg) adx = wilderma(dx, n) data = [ ('DI+', di_pos), ('DI-', di_neg), ('DX', dx), ('ADX', adx), ] return pd.DataFrame.from_items(data) def aroon(arg, n, up_col='close', dn_col='close'): """ TODO - need to verify that the dropna does not take away too many entries (ie maybe set to all? ) This function assumes that the length of up_col is always equal to dn_col (ie values not missing in just one series) arg: Series or DataFrame n: lookback count columns: list of up column name, down column name or single column name for both or none """ if isinstance(arg, pd.DataFrame): tmp = arg[[up_col, dn_col]].dropna() idx = tmp.index upvals = tmp[up_col].values dnvals = tmp[dn_col].values else: tmp = arg.dropna() idx = tmp.index upvals = tmp.values dnvals = upvals n = int(n) up, dn = np.empty(len(upvals), 'd'), np.empty(len(upvals), 'd') up[:n] = np.nan dn[:n] = np.nan for i in range(n, len(upvals)): up[i] = 100. * (n - upvals[i - n:i + 1][::-1].argmax()) / n dn[i] = 100. * (n - dnvals[i - n:i + 1][::-1].argmin()) / n osc = up - dn data = [ ('UP',
pd.Series(up, index=idx)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/10/8 23:47 # @Author : strawsyz # @File : csv_dataset.py # @desc: import pandas as pd from matplotlib import pyplot as plt """read information data from csv file""" class CsvFile: def __init__(self, csv_path, encoding=None): self.data = pd.read_csv(csv_path, encoding=encoding)
pd.set_option('display.max_columns', None)
pandas.set_option
import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier import plotly.express as px # train-test split by a percentage. # input: dataframe, label column name, split ration, and random state # returns: x_train, x_test, y_train, y_test def split_df(user_df: pd.DataFrame, label_name: str, split_ratio=0.8, random_value=42): x_train = user_df.sample(frac=split_ratio, random_state=random_value) x_test = user_df.drop(x_train.index) return x_train.drop(label_name, axis=1), x_test.drop(label_name, axis=1), pd.DataFrame( x_train[label_name]), pd.DataFrame(x_test[label_name]) # import data and preprocess it def preprocessing(file_name: str): # data import heart_df = pd.read_csv(file_name) # converting target to 1 and -1 new_label = [] for x in heart_df['target']: if x == 1: new_label.append(1) else: new_label.append(-1) heart_df['target'] = new_label # heart_df = heart_df.rename(columns={'target': 'label'}) # hot encoding of relevant features dummy_features_list = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'] non_dummy_features_list = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak', 'target'] new_heart_df = pd.DataFrame(heart_df[non_dummy_features_list]) for feature in dummy_features_list: new_heart_df = new_heart_df.join(pd.get_dummies(heart_df[feature], prefix=feature)) return heart_df # Create as arrays of stump tree in a given size def create_stump_forest(forest_size: int, random_state_local: int): stump_forest = [] for i in range(0, forest_size, 1): stump_forest.append(DecisionTreeClassifier(criterion='gini', max_depth=1, random_state=random_state_local)) return stump_forest # update weight of each row and randomly generate a new weighted data frame # input: x/y data, predictions list, current stump weight # return: new weighted x and y data frames def create_new_weighted_data(x: pd.DataFrame, y: pd.DataFrame, predictions: np.ndarray, stump_weight: list): # initiate weights sample_weight = 1/len(x) new_weights = [] # calculate new weights based on correct and incorrect decisions for i in range(0, len(predictions), 1): if predictions[i] == 1: new_weights.append(sample_weight*np.exp(-np.sum(stump_weight))) else: new_weights.append(sample_weight*np.exp(np.sum(stump_weight))) # normalize weights sum_of_new_weights = sum(new_weights) new_normalized_weights = new_weights/sum_of_new_weights # create normalized distributions weights for random rows pulling distribution_weights = [] accumulator = 0 for new_normalized_weight in new_normalized_weights: accumulator += new_normalized_weight distribution_weights.append(accumulator) # based to rows weights values, randomly pick new data new_x = pd.DataFrame(columns=x.columns) new_y = pd.DataFrame(columns=y.columns) array_of_distributions = np.asarray(distribution_weights) # transform list to array for np usage for i in range(0, len(array_of_distributions), 1): random_number = np.random.uniform(0, 1, 1) index_of_row = (np.abs(array_of_distributions - random_number)).argmin() if array_of_distributions[index_of_row] < random_number and index_of_row < len(x)-1: index_of_row += 1 x_new_row = pd.DataFrame(x.iloc[index_of_row]).T y_new_row =
pd.DataFrame(y.iloc[index_of_row])
pandas.DataFrame
from datetime import datetime import warnings import pytest import pandas as pd import pyodbc from mssql_dataframe.connect import connect from mssql_dataframe.core import custom_warnings, conversion, create pd.options.mode.chained_assignment = "raise" class package: def __init__(self, connection): self.connection = connection.connection self.create = create.create(self.connection) self.create_meta = create.create(self.connection, include_metadata_timestamps=True) @pytest.fixture(scope="module") def sql(): db = connect(database="tempdb", server="localhost") yield package(db) db.connection.close() @pytest.fixture(scope="module") def sample(): dataframe = pd.DataFrame( { "_varchar": [None, "b", "c", "4", "e"], "_tinyint": [None, 2, 3, 4, 5], "_smallint": [256, 2, 6, 4, 5], # tinyint max is 255 "_int": [32768, 2, 3, 4, 5], # smallint max is 32,767 "_bigint": [2147483648, 2, 3, None, 5], # int max size is 2,147,483,647 "_float": [1.111111, 2, 3, 4, 5], # any decicmal places "_time": [str(datetime.now().time())] * 5, # string in format HH:MM:SS.ffffff "_datetime": [datetime.now()] * 4 + [pd.NaT], "_empty": [None] * 5, } ) return dataframe def test_table_errors(sql): table_name = "##test_table_column" with pytest.raises(KeyError): columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, primary_key_column="Z") def test_table_column(sql): table_name = "##test_table_column" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "A") assert all(schema["sql_type"] == "varchar") assert all(schema["is_nullable"] == True) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "string") assert all(schema["odbc_type"] == pyodbc.SQL_VARCHAR) assert all(schema["odbc_size"] == 0) assert all(schema["odbc_precision"] == 0) def test_table_pk(sql): table_name = "##test_table_pk" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "FLOAT"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, pd.NA, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_composite_pk(sql): table_name = "##test_table_composite_pk" columns = {"A": "TINYINT", "B": "VARCHAR(5)", "C": "FLOAT"} primary_key_column = ["A", "B"] not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, ) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 3 assert all(schema.index == ["A", "B", "C"]) assert all(schema["sql_type"] == ["tinyint", "varchar", "float"]) assert all(schema["is_nullable"] == [False, False, True]) assert all(schema["ss_is_identity"] == False) assert schema["pk_seq"].equals( pd.Series([1, 2, pd.NA], index=["A", "B", "C"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, False, True]) assert all(schema["pandas_type"] == ["UInt8", "string", "float64"]) assert all( schema["odbc_type"] == [pyodbc.SQL_TINYINT, pyodbc.SQL_VARCHAR, pyodbc.SQL_FLOAT] ) assert all(schema["odbc_size"] == [1, 0, 8]) assert all(schema["odbc_precision"] == [0, 0, 53]) def test_table_pk_input_error(sql): with pytest.raises(ValueError): table_name = "##test_table_pk_input_error" columns = {"A": "TINYINT", "B": "VARCHAR(100)", "C": "DECIMAL(5,2)"} primary_key_column = "A" not_nullable = "B" sql.create.table( table_name, columns, not_nullable=not_nullable, primary_key_column=primary_key_column, sql_primary_key=True, ) def test_table_sqlpk(sql): table_name = "##test_table_sqlpk" columns = {"A": "VARCHAR"} sql.create.table(table_name, columns, sql_primary_key=True) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 2 assert all(schema.index == ["_pk", "A"]) assert all(schema["sql_type"] == ["int identity", "varchar"]) assert all(schema["is_nullable"] == [False, True]) assert all(schema["ss_is_identity"] == [True, False]) assert schema["pk_seq"].equals( pd.Series([1, pd.NA], index=["_pk", "A"], dtype="Int64") ) assert all(schema["pk_name"].isna() == [False, True]) assert all(schema["pandas_type"] == ["Int32", "string"]) assert all(schema["odbc_type"] == [pyodbc.SQL_INTEGER, pyodbc.SQL_VARCHAR]) assert all(schema["odbc_size"] == [4, 0]) assert all(schema["odbc_precision"] == [0, 0]) def test_table_from_dataframe_simple(sql): table_name = "##test_table_from_dataframe_simple" dataframe = pd.DataFrame({"ColumnA": [1]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) assert len(schema) == 1 assert all(schema.index == "ColumnA") assert all(schema["sql_type"] == "tinyint") assert all(schema["is_nullable"] == False) assert all(schema["ss_is_identity"] == False) assert all(schema["pk_seq"].isna()) assert all(schema["pk_name"].isna()) assert all(schema["pandas_type"] == "UInt8") assert all(schema["odbc_type"] == pyodbc.SQL_TINYINT) assert all(schema["odbc_size"] == 1) assert all(schema["odbc_precision"] == 0) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result.equals(dataframe) def test_table_from_dataframe_datestr(sql): table_name = "##test_table_from_dataframe_datestr" dataframe = pd.DataFrame({"ColumnA": ["06/22/2021"]}) with warnings.catch_warnings(record=True) as warn: dataframe = sql.create_meta.table_from_dataframe(table_name, dataframe) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame({ 'column_name': pd.Series(['ColumnA','_time_insert']), 'sql_type': pd.Series(['date','datetime2'], dtype='string'), 'is_nullable': pd.Series([False, True]), 'ss_is_identity': pd.Series([False, False]), 'pk_seq': pd.Series([None, None], dtype='Int64'), 'pk_name': pd.Series([None, None], dtype='string'), 'pandas_type': pd.Series(['datetime64[ns]', 'datetime64[ns]'], dtype='string'), 'odbc_type': pd.Series([pyodbc.SQL_TYPE_DATE, pyodbc.SQL_TYPE_TIMESTAMP], dtype='int64'), 'odbc_size': pd.Series([10, 27], dtype='int64'), 'odbc_precision': pd.Series([0, 7], dtype='int64'), }).set_index(keys='column_name') assert schema[expected.columns].equals(expected) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result[dataframe.columns].equals(dataframe) def test_table_from_dataframe_errorpk(sql, sample): with pytest.raises(ValueError): table_name = "##test_table_from_dataframe_nopk" sql.create.table_from_dataframe(table_name, sample, primary_key="ColumnName") def test_table_from_dataframe_nopk(sql, sample): table_name = "##test_table_from_dataframe_nopk" with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe( table_name, sample.copy(), primary_key=None ) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame( { "column_name": pd.Series( [ "_varchar", "_tinyint", "_smallint", "_int", "_bigint", "_float", "_time", "_datetime", "_empty", ], dtype="string", ), "sql_type": pd.Series( [ "varchar", "tinyint", "smallint", "int", "bigint", "float", "time", "datetime2", "nvarchar", ], dtype="string", ), "is_nullable": pd.Series( [True, True, False, False, True, False, False, True, True], dtype="bool" ), "ss_is_identity": pd.Series([False] * 9, dtype="bool"), "pk_seq": pd.Series([pd.NA] * 9, dtype="Int64"), "pk_name": pd.Series([pd.NA] * 9, dtype="string"), "pandas_type": pd.Series( [ "string", "UInt8", "Int16", "Int32", "Int64", "float64", "timedelta64[ns]", "datetime64[ns]", "string", ], dtype="string", ), "odbc_type": pd.Series( [ pyodbc.SQL_VARCHAR, pyodbc.SQL_TINYINT, pyodbc.SQL_SMALLINT, pyodbc.SQL_INTEGER, pyodbc.SQL_BIGINT, pyodbc.SQL_FLOAT, pyodbc.SQL_SS_TIME2, pyodbc.SQL_TYPE_TIMESTAMP, pyodbc.SQL_WVARCHAR, ], dtype="int64", ), "odbc_size": pd.Series([0, 1, 2, 4, 8, 8, 16, 27, 0], dtype="int64"), "odbc_precision": pd.Series([0, 0, 0, 0, 0, 53, 7, 7, 0], dtype="int64"), } ).set_index(keys="column_name") assert schema[expected.columns].equals(expected.loc[schema.index]) result = conversion.read_values(f'SELECT * FROM {table_name}', schema, sql.connection) assert result[dataframe.columns].equals(dataframe) def test_table_from_dataframe_sqlpk(sql, sample): table_name = "##test_table_from_dataframe_sqlpk" with warnings.catch_warnings(record=True) as warn: dataframe = sql.create.table_from_dataframe( table_name, sample.copy(), primary_key="sql" ) assert len(warn) == 1 assert isinstance(warn[0].message, custom_warnings.SQLObjectAdjustment) assert "Created table" in str(warn[0].message) schema, _ = conversion.get_schema(sql.connection, table_name) expected = pd.DataFrame( { "column_name": pd.Series( [ "_pk", "_varchar", "_tinyint", "_smallint", "_int", "_bigint", "_float", "_time", "_datetime", "_empty", ], dtype="string", ), "sql_type": pd.Series( [ "int identity", "varchar", "tinyint", "smallint", "int", "bigint", "float", "time", "datetime2", "nvarchar", ], dtype="string", ), "is_nullable": pd.Series( [False, True, True, False, False, True, False, False, True, True], dtype="bool", ), "ss_is_identity": pd.Series([True] + [False] * 9, dtype="bool"), "pk_seq": pd.Series([1] + [pd.NA] * 9, dtype="Int64"), "pandas_type": pd.Series( [ "Int32", "string", "UInt8", "Int16", "Int32", "Int64", "float64", "timedelta64[ns]", "datetime64[ns]", "string", ], dtype="string", ), "odbc_type": pd.Series( [ pyodbc.SQL_INTEGER, pyodbc.SQL_VARCHAR, pyodbc.SQL_TINYINT, pyodbc.SQL_SMALLINT, pyodbc.SQL_INTEGER, pyodbc.SQL_BIGINT, pyodbc.SQL_FLOAT, pyodbc.SQL_SS_TIME2, pyodbc.SQL_TYPE_TIMESTAMP, pyodbc.SQL_WVARCHAR, ], dtype="int64", ), "odbc_size": pd.Series([4, 0, 1, 2, 4, 8, 8, 16, 27, 0], dtype="int64"), "odbc_precision":
pd.Series([0, 0, 0, 0, 0, 0, 53, 7, 7, 0], dtype="int64")
pandas.Series
## NOTES ## Data was not published on 2021-03-31 (Wednesday) -- not yet corrected but appears to be 3 staff on-campus cases import sys import re import math import json import hashlib import pandas as pd import numpy as np from bs4 import BeautifulSoup from pathlib import Path from datetime import datetime, timedelta, date from collections import defaultdict DATA_FIELDS = { 9: "staff.on", 10: "staff.off", 11: "student.on", 12: "student.off", 14: "staff7.on", 15: "staff7.off", 16: "student7.on", 17: "student7.off", 19: "stafftotal.on", 20: "stafftotal.off", 21: "studenttotal.on", 22: "studenttotal.off", } TEXT_FIELDS = { 1: "Staff", 2: "Students", 4: "On campus *", 5: "Off campus **", 6: "On campus *", 7: "Off campus **", 8: "New cases in last counted 24 hour period ***", 13: "New cases in last counted 7 day period ***", 18: "Total cases since 28 Sept 2020 (start of Term 1)", } DEBUG = False MONDAY = 0 DATE_LABEL = 'date' DATASET_NAMES = ['staff.on', 'staff.off', 'student.on', 'student.off', 'staff7.on', 'staff7.off', 'student7.on', 'student7.off', 'stafftotal.on', 'stafftotal.off', 'studenttotal.on', 'studenttotal.off'] DATE_UPDATED = 'date.updated' ## These figures need smoothing over the weekend SMOOTHED_NAMES = ['staff.on', 'staff.off', 'student.on', 'student.off'] def debug_log(*args): if DEBUG: print(*args, file=sys.stderr) def cleanup_value(tag, file_date, field_index): if tag.string == "New cases in last 24 hours ***" and field_index == 8: return TEXT_FIELDS[8] elif tag.string == "New cases in last 7 days ***" and field_index == 13: return TEXT_FIELDS[13] s = " ".join(tag.stripped_strings) if ((file_date == date(2020,10,27) or file_date == date(2020,10,28)) and field_index in set([19, 20, 21, 22])): ## Totals published 2020-10-27 had a dagger symbol ## "The total now includes an additional 89 positive student cases that were confirmed ## by the UCL COVID-19 testing programme. These are mainly cases of symptomatic students ## in university accomodation who did not update Connect to Protect with their ## positive test result." return s.replace("\u2020", "") elif ((file_date == date(2020,11,5) or file_date == date(2020,11,6)) and field_index == 16): ## 7-day total was revised on 2020-11-05 ## "This number has been updated following a review of historic cases on Connect to Protect" return s.replace("\u2020", "") elif file_date == date(2021,7,15) and field_index == 22: ## Was listed as 41, but this was clearly a typo return "414" else: return s def parse_html_date(groups, file_date): year = groups[2] if year is None: if groups[1] in set(["October", "November", "December"]): year = "2020" else: year = "2021" html_date = datetime.strptime(groups[0] + " " + groups[1] + " " + year, "%d %B %Y").date() return html_date DATE_RE = re.compile(r"\(last update \w+\s(\d+)\s(\w+)(?:\s(\d+))?\)") def parse_file(fh, file_date = None): soup = BeautifulSoup(fh, 'html.parser') header = soup.select_one('.box > h2:nth-child(1)') table = soup.select_one('#current-confirmed-cases-covid-19 > div.site-content.wrapper > div > div > div > article > div > table') data = {} if header.string == "Daily reported coronavirus cases (last update Tuesday\xa05\xa0January)": ## Handle data for start of term all_tags = table.find_all(["td","th"]) data["staff.on"] = int(cleanup_value(all_tags[9], file_date, 9)) data["staff.off"] = int(cleanup_value(all_tags[10], file_date, 10)) data["student.on"] = int(cleanup_value(all_tags[11], file_date, 11)) data["student.off"] = int(cleanup_value(all_tags[12], file_date, 12)) data["stafftotal.on"] = int(cleanup_value(all_tags[14], file_date, 13)) data["stafftotal.off"] = int(cleanup_value(all_tags[15], file_date, 14)) data["studenttotal.on"] = int(cleanup_value(all_tags[16], file_date, 15)) data["studenttotal.off"] = int(cleanup_value(all_tags[17], file_date, 16)) data[DATE_UPDATED] = date(2021, 1, 5) return table, data match = DATE_RE.search(header.string) assert(match) html_date = parse_html_date(match.groups(), file_date) data[DATE_UPDATED] = html_date for i, tag in enumerate(table.find_all(["td","th"])): if i in TEXT_FIELDS: assert(cleanup_value(tag, file_date, i) == TEXT_FIELDS[i]) elif i in DATA_FIELDS: data[DATA_FIELDS[i]] = int(cleanup_value(tag, file_date, i)) return table, data def extract_df(): p = Path('../data') duplicates = p / 'duplicates' duplicates.mkdir(exist_ok=True) original = p / 'original' last_data = None last_hash = None ## File date of the last file read last_date = None ## Data to build into PANDAS dataframe pd_data = [] tfh = open(p / 'original-tables.html', "w", newline='', encoding="utf-8") tfh.write('<html><head><meta charset="UTF-8"></head><body>\n') for file in sorted(original.glob("covid-*.html")): debug_log("Loading from", file) with file.open("rb") as fh: data = fh.read() if len(data) == 0: continue hash = hashlib.sha256() hash.update(data) file_hash = hash.hexdigest() if file_hash == last_hash: debug_log("File is a duplicate (hash)", file.name) file.rename(duplicates / file.name) continue else: last_hash = file_hash with file.open("rb") as fh: file_date = datetime.strptime(file.name, "covid-%Y-%m-%dT%H-%M-%S.html").date() if file_date.weekday() == 0: ## Monday, data is correct as of Friday 5pm data_date = file_date - timedelta(days = 3) else: ## other days, data is correct as of previous day at 5pm data_date = file_date - timedelta(days = 1) table, data = parse_file(fh, file_date) if data != last_data: ## Check if data has changed but file date has not is_extra = (file_date == last_date) if is_extra: debug_log("Extra data at", file_date) last_date = file_date debug_log("New data at", file_date) if is_extra: tfh.write('<h2 style="color: red">Extra data published on ' + file_date.strftime("%Y-%m-%d (%A)") + "</h2>\n") else: tfh.write("<h2>Data published on " + file_date.strftime("%Y-%m-%d (%A)") + "</h2>\n") tfh.write("<code>"+file.name+"</code>\n") tfh.write(str(table)) if (data[DATE_UPDATED] != file_date): debug_log("Date mismatch at " + str(data[DATE_UPDATED]) + " (html) and " + str(file_date) + "(file name)") pd_row = [] pd_row.append(
pd.to_datetime(data_date)
pandas.to_datetime
import addfips import os import pandas as pd import datetime ageVariables = { 'DATE': 'date_stamp', 'AGE_RANGE': 'age_group', 'AR_TOTALCASES': 'cnt_confirmed', 'AR_TOTALPERCENT': 'pct_confirmed', 'AR_NEWCASES': 'cnt_confirmed_new', 'AR_NEWPERCENT': 'pct_confirmed_new', 'AR_TOTALDEATHS' : 'cnt_death', 'AR_NEWDEATHS': 'cnt_death_new' } countyVariables = { 'DATE': 'date_stamp', 'COUNTY': 'us_county_fips', 'TOTAL_CASES': 'cnt_total', 'NEW_CASES': 'cnt_total_new', 'TOTAL_CONFIRMED': 'cnt_confirmed', 'NEW_CONFIRMED': 'cnt_confirmed_new', 'TOTAL_PROBABLE': 'cnt_probable', 'NEW_PROBABLE': 'cnt_probable_new', 'POS_TESTS': 'cnt_tested_pos', 'NEG_TESTS': 'cnt_tested_neg', 'TOTAL_TESTS': 'cnt_tested', 'NEW_TESTS': 'cnt_tested_new', 'NEW_DEATHS': 'cnt_death_new', 'TOTAL_DEATHS': 'cnt_death', 'NEW_RECOVERED': 'cnt_recovered_new', 'TOTAL_RECOVERED': 'cnt_recovered', 'NEW_ACTIVE': 'cnt_active_new', 'TOTAL_ACTIVE': 'cnt_active', 'NEW_HOSPITALIZED': 'cnt_hospitalized_new', 'TOTAL_HOSPITALIZED': 'cnt_hospitalized', } dailyVariables = { 'DATE': 'date_stamp', 'TOTAL_CASES': 'cnt_total', 'NEW_CASES': 'cnt_total_new', 'TOTAL_CONFIRMED': 'cnt_confirmed', 'NEW_CONFIRMED': 'cnt_confirmed_new', 'TOTAL_PROBABLE': 'cnt_probable', 'NEW_PROBABLE': 'cnt_probable_new', 'POS_TESTS': 'cnt_tested_pos', 'NEG_TESTS': 'cnt_tested_neg', 'TOTAL_TESTS': 'cnt_tested', 'NEW_TESTS': 'cnt_tested_new', 'NEW_DEATHS': 'cnt_death_new', 'TOTAL_DEATHS': 'cnt_death', 'NEW_RECOVERED': 'cnt_recovered_new', 'TOTAL_RECOVERED': 'cnt_recovered', 'NEW_ACTIVE': 'cnt_active_new', 'TOTAL_ACTIVE': 'cnt_active', 'NEW_HOSP': 'cnt_hospitalized_new', 'TOTAL_HOSP': 'cnt_hospitalized', } raceEthSexVariables = { 'Date': 'date_stamp', 'Category': 'category_type', 'Cat_Detail': 'category_name', 'CAT_DETAIL': 'category_name', 'Cat_CaseCount': 'cnt_confirmed', 'Cat_Percent': 'pct_confirmed', 'CAT_DEATHCOUNT' : 'cnt_death', 'CAT_DEATHPERCENT': 'pct_death' } def cleanAgeData(data): df = pd.DataFrame(data) # Rename the file headers df.rename(ageVariables, axis="columns", inplace=True) # Reformat dates df['date_stamp'] = pd.to_datetime(df['date_stamp'], format='%m-%d-%y') # Code age ranges df['age_group'] = df['age_group'].map({ '0-10 years':'00', '11-20 years': '11', '21-30 years': '21', '31-40 years': '31', '41-50 years': '41', '51-60 years': '51', '61-70 years': '61', '71-80 years': '71', '81+ years': '81', 'Pending': '99' }) # multiply the percentages by 100 df['pct_confirmed'] = df['pct_confirmed'].apply(lambda x: round(x*100,4)) df['pct_confirmed_new'] = df['pct_confirmed_new'].apply(lambda x: round(x*100, 4)) #cast count variables to integers df['cnt_death'] = df['cnt_death'].astype(pd.Int32Dtype()) df['cnt_death_new'] = df['cnt_death_new'].astype(pd.Int32Dtype()) df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) # reorder so that the cnt and new are always next to each other in the same order df = df[['date_stamp', 'age_group', 'cnt_confirmed', 'cnt_confirmed_new', 'pct_confirmed', 'pct_confirmed_new', 'cnt_death', 'cnt_death_new']] # order the records by date df = df.sort_values(by=['date_stamp','age_group'], ascending=True) return df def cleanCountyData(data): df = pd.DataFrame(data) # Rename the file headers df.rename(countyVariables, axis="columns", inplace=True) # Reformat dates df['date_stamp'] = pd.to_datetime(df['date_stamp'], format='%m-%d-%y') # Copy original county value to keep the pending and out of state values df['tn_covid_geo'] = df['us_county_fips'] # Change county name to fips code af = addfips.AddFIPS() fips = [] for key, value in df['us_county_fips'].items(): fips.append(af.get_county_fips(value, 'Tennessee')) df['us_county_fips'] = fips # Copy appropriate fips codes to covid geo df.loc[(df['tn_covid_geo'] != 'Pending') & (df['tn_covid_geo'] != 'Out of State'), 'tn_covid_geo'] = df['us_county_fips'] df.loc[df['tn_covid_geo'] == 'Pending', 'tn_covid_geo'] = '47PEN' df.loc[df['tn_covid_geo'] == 'Out of State', 'tn_covid_geo'] = '47OOS' # format as Integers a none df['cnt_total'] = df['cnt_total'].astype(pd.Int32Dtype()) df['cnt_total_new'] = df['cnt_total_new'].astype(pd.Int32Dtype()) df['cnt_confirmed'] = df['cnt_confirmed'].astype(pd.Int32Dtype()) df['cnt_confirmed_new'] = df['cnt_confirmed_new'].astype(pd.Int32Dtype()) if 'cnt_probable' in df.columns: df['cnt_probable'] = df['cnt_probable'].astype(pd.Int32Dtype()) df['cnt_probable_new'] = df['cnt_probable_new'].astype(pd.Int32Dtype()) df['cnt_tested_pos'] = df['cnt_tested_pos'].astype(pd.Int32Dtype()) df['cnt_tested_neg'] = df['cnt_tested_neg'].astype(pd.Int32Dtype()) df['cnt_tested'] = df['cnt_tested'].astype(pd.Int32Dtype()) df['cnt_tested_new'] = df['cnt_tested_new'].astype(pd.Int32Dtype()) df['cnt_death_new'] = df['cnt_death_new'].astype(pd.Int32Dtype()) df['cnt_death'] = df['cnt_death'].astype(pd.Int32Dtype()) df['cnt_recovered_new'] = df['cnt_recovered_new'].astype(pd.Int32Dtype()) df['cnt_recovered'] = df['cnt_recovered'].astype(pd.Int32Dtype()) df['cnt_active_new'] = df['cnt_active_new'].astype(pd.Int32Dtype()) df['cnt_active'] = df['cnt_active'].astype(pd.Int32Dtype()) df['cnt_hospitalized_new'] = df['cnt_hospitalized_new'].astype(
pd.Int32Dtype()
pandas.Int32Dtype
__all__=["query_unit_data","query_all_data"] import numpy as np import pandas as pd import sqlite3 import pathlib # this is internal use. def query_unit_data(unitcode,start_date,end_date=None,train_days=7): #print(pathlib.Path(__file__).parents[0].joinpath('data','overlook','temp_db.db').__str__()) conn=sqlite3.connect(pathlib.Path(__file__).parents[1].joinpath('data','bldg1','temp_db.db').__str__()) strftime_format="%Y-%m-%d %H:%M:%S" #filter time in this format start_date_utc=pd.Timestamp(start_date,tz="America/Indianapolis").tz_convert("UTC") if end_date is None: end_date_utc=(start_date_utc+pd.Timedelta(days=train_days)) else: end_date_utc=pd.Timestamp(end_date,tz="America/Indianapolis").tz_convert("UTC") query_weather=f"SELECT * from WEATHER where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}'" data_weather= pd.read_sql_query(query_weather, conn) query_gem=f"SELECT * from GEM where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}' and unitcode='{unitcode}' " data_gem= pd.read_sql_query(query_gem, conn) query_ecobee=f"SELECT * from ECOBEE where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}' and unitcode='{unitcode}' " data_ecobee= pd.read_sql_query(query_ecobee, conn) conn.close() # convert timestamp to INDY time data_gem['timestamp']=pd.to_datetime(data_gem['timestamp'],utc=True).dt.tz_convert("America/Indianapolis") data_weather['timestamp']=pd.to_datetime(data_weather['timestamp'],utc=True).dt.tz_convert("America/Indianapolis") data_ecobee['timestamp']=pd.to_datetime(data_ecobee['timestamp'],utc=True).dt.tz_convert("America/Indianapolis") # select columns data_gem['hvac']=data_gem['heatpump']+data_gem['ahu'] data_gem=data_gem[['timestamp','unitcode','ahu','heatpump','hvac','net']] # wattsecond to watt dtime=pd.Timedelta(data_gem['timestamp'][1]-data_gem['timestamp'][0]).seconds #print(dtime) data_gem=data_gem.apply(lambda x: x/dtime if x.name in ['ahu', 'heatpump','hvac','net'] else x) data_ecobee=data_ecobee[['timestamp','unitcode','operation','t_unit','rh_unit']] data_ecobee['t_unit']=((data_ecobee['t_unit'].to_numpy())-32)/1.8 # F to C data_ecobee['rh_unit']=((data_ecobee['rh_unit'].to_numpy()/100)) # % to - vec=data_ecobee['operation'].to_numpy() vec[vec=="heat"]="heat1" vec[vec=="cool"]="cool1" vec[vec=="aux"]="aux1" vec[vec=="heat_aux"]="heat1_aux1" data_ecobee['operation']=vec #data_ecobee['t_rs_m']=((data_ecobee['t_rs_m'].to_numpy())-32)/1.8 # F to C #data_ecobee['sp_heat']=((data_ecobee['sp_heat'].to_numpy())-32)/1.8 # F to C #data_ecobee['sp_cool']=((data_ecobee['sp_cool'].to_numpy())-32)/1.8 # F to C data_weather=data_weather[['timestamp','t_out','rh_out']] data_weather['t_out']=((data_weather['t_out'].to_numpy())-32)/1.8 # F to C data_weather['rh_out']=((data_weather['rh_out'].to_numpy()/100)) # % to - # join tables data_unit=pd.merge(pd.merge(data_gem,data_ecobee,on=['timestamp','unitcode'],how='left'),data_weather,on='timestamp',how='left') data_unit=data_unit.rename(columns={"t_out":"T_out"}) data_unit=data_unit.rename(columns={"t_unit":"T_in"}) data_unit=data_unit.rename(columns={"rh_unit":"rh_in"}) #self.observed_model_input=data_unit[['timestamp','function','state','setpoint_cooling','setpoint_heating','t_out']].copy() return data_unit def query_all_data(start_date,train_days=7): #print(pathlib.Path(__file__).parents[0].joinpath('data','overlook','temp_db.db').__str__()) conn=sqlite3.connect(pathlib.Path(__file__).parents[1].joinpath('data','bldg1','temp_db.db').__str__()) strftime_format="%Y-%m-%d %H:%M:%S" #filter time in this format start_date_utc=pd.Timestamp(start_date,tz="America/Indianapolis").tz_convert("UTC") end_date_utc=(start_date_utc+pd.Timedelta(days=train_days)) query_weather=f"SELECT * from WEATHER where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}'" data_weather= pd.read_sql_query(query_weather, conn) query_gem=f"SELECT * from GEM where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}'" data_gem= pd.read_sql_query(query_gem, conn) query_ecobee=f"SELECT * from ECOBEE where timestamp>= '{start_date_utc.strftime(strftime_format)}' and timestamp <'{end_date_utc.strftime(strftime_format)}'" data_ecobee= pd.read_sql_query(query_ecobee, conn) conn.close() # convert timestamp to INDY time data_gem['timestamp']=pd.to_datetime(data_gem['timestamp'],utc=True).dt.tz_convert("America/Indianapolis") print(data_gem.head()) data_weather['timestamp']=pd.to_datetime(data_weather['timestamp'],utc=True).dt.tz_convert("America/Indianapolis") data_ecobee['timestamp']=
pd.to_datetime(data_ecobee['timestamp'],utc=True)
pandas.to_datetime
import os from tqdm import tqdm import albumentations as A import cv2 import matplotlib.pyplot as plt import time from visualizer import visualize from PIL import Image import pandas as pd DIR_IMG_SRC = "data\\img\\ori" DIR_MASK_SRC = "data\\img\\mask" MASK_FORMAT = ".png" IMG_FORMAT = ".jpg" N_IMG = len(os.listdir(DIR_IMG_SRC)) N_AUG_PER_IMG = 0 DATASET =
pd.read_csv("data\\label\\dataset.csv", sep=',', index_col=0)
pandas.read_csv
"""Test attributing simple impact.""" import numpy as np import pandas as pd import pytest from nbaspa.data.endpoints.pbp import EventTypes from nbaspa.player_rating.tasks import SimplePlayerImpact @pytest.mark.parametrize( "evt", [ EventTypes.REBOUND, EventTypes.FREE_THROW, EventTypes.VIOLATION, EventTypes.FIELD_GOAL_MISSED ] ) def test_basic_impact(evt): """Test attributing simple impact.""" df = pd.DataFrame( { "EVENTMSGTYPE": evt, "NBA_WIN_PROB_CHANGE": [0.1, 0.1], "HOMEDESCRIPTION": ["DESCRIPTION", None], "VISITORDESCRIPTION": [None, "DESCRIPTION"], "PLAYER1_ID": [123, 456], "PLAYER2_ID": 0, "HOME_TEAM_ID": [161, 161], "VISITOR_TEAM_ID": [162, 162], "SHOT_VALUE": np.nan, "HOME_OFF_RATING": 100, "VISITOR_OFF_RATING": 100, "TIME": [1, 2] } ) tsk = SimplePlayerImpact() output = tsk.run(pbp=df, mode="nba") assert output["PLAYER1_IMPACT"].equals(pd.Series([0.1, -0.1])) assert output["PLAYER2_IMPACT"].equals(pd.Series([0.0, 0.0])) assert output["PLAYER3_IMPACT"].equals(pd.Series([0.0, 0.0])) def test_foul_impact(): """Test attributing foul impact.""" df = pd.DataFrame( { "EVENTMSGTYPE": EventTypes.FOUL, "NBA_WIN_PROB_CHANGE": [0.1, 0.1], "HOMEDESCRIPTION": ["DESCRIPTION", None], "VISITORDESCRIPTION": [None, "DESCRIPTION"], "PLAYER1_ID": [123, 456], "PLAYER2_ID": [456, 123], "HOME_TEAM_ID": [161, 161], "VISITOR_TEAM_ID": [162, 162], "SHOT_VALUE": np.nan, "HOME_OFF_RATING": 100, "VISITOR_OFF_RATING": 100, "TIME": [1, 2] } ) tsk = SimplePlayerImpact() output = tsk.run(pbp=df, mode="nba") assert output["PLAYER1_IMPACT"].equals(pd.Series([0.1, -0.1])) assert output["PLAYER2_IMPACT"].equals(pd.Series([-0.1, 0.1])) assert output["PLAYER3_IMPACT"].equals(pd.Series([0.0, 0.0])) def test_deadball_impact(): """Test attributing deadball turnover impact.""" df = pd.DataFrame( { "EVENTMSGTYPE": EventTypes.TURNOVER, "NBA_WIN_PROB_CHANGE": 0.1, "HOMEDESCRIPTION": ["DESCRIPTION", None], "VISITORDESCRIPTION": [None, "DESCRIPTION"], "PLAYER1_ID": [123, 456], "PLAYER2_ID": 0, "HOME_TEAM_ID": [161, 161], "VISITOR_TEAM_ID": [162, 162], "SHOT_VALUE": np.nan, "HOME_OFF_RATING": 100, "VISITOR_OFF_RATING": 100, "TIME": [1, 2] } ) tsk = SimplePlayerImpact() output = tsk.run(pbp=df, mode="nba") assert output["PLAYER1_IMPACT"].equals(pd.Series([0.1, -0.1])) assert output["PLAYER2_IMPACT"].equals(pd.Series([0.0, 0.0])) assert output["PLAYER3_IMPACT"].equals(pd.Series([0.0, 0.0])) def test_steal_impact(): """Test attributing steal impact.""" df = pd.DataFrame( { "EVENTMSGTYPE": EventTypes.TURNOVER, "NBA_WIN_PROB_CHANGE": [0.1, 0.1], "HOMEDESCRIPTION": ["STL", None], "VISITORDESCRIPTION": [None, "STL"], "PLAYER1_ID": [123, 456], "PLAYER2_ID": [456, 123], "HOME_TEAM_ID": [161, 161], "VISITOR_TEAM_ID": [162, 162], "SHOT_VALUE": np.nan, "HOME_OFF_RATING": 100, "VISITOR_OFF_RATING": 100, "TIME": [1, 2] } ) tsk = SimplePlayerImpact() output = tsk.run(pbp=df, mode="nba") assert output["PLAYER1_IMPACT"].equals(pd.Series([-0.1, 0.1])) assert output["PLAYER2_IMPACT"].equals(
pd.Series([0.1, -0.1])
pandas.Series
############################################################################################### #### Initialization import pandas as pd import numpy as np df = pd.read_csv(filename, header=None, names=col_names, na_values={'col_name':['-1']}, \ parse_dates=[[0, 1, 2]], index_col='Date') # if the first 3 columns are 'year','month','day', then the dataframe would have a single col named # 'year_month_day' of datatype 'datatime64[ns]' # Can use df.index = df['year_month_day'] to reassign this col as the index of df ## EDA == Exploratory Data Analysis ############################################################################################### #### Basic data exploration df.shape # shape of dataframe df.head(7) # print the head part of dataset df.tail(5) # print the tail part of dataset df.info() # return data type of each column, and number of non-null values df.count() # count items for each column df.describe() # summary stat of numerical data # df.mean(), df.median(), df.std(), df.quantile([0.25, 0.75]), df.min(), df.max() df['one_col_name'].unique() # unique values in a column df['one_col_name'].value_counts(dropna=False) # return frequency counts of a column df['one_col_name'].value_counts(dropna=False).head() # note the result of prev line is a pandas Series df.idxmax(axis=0) # Or use axis='index' df.idxmin(axis=1) # Or use axis='columns' # indexes of max/min vals for each column/row ############################################################################################### #### Row & column index manipulation df.columns # names of all the columns, usually class of Index # can be assigned with a list of new names. df.index # can be assigned with list of new indexes. # row indexes, can be class of Index or DatatimeIndex df.index = df.index.map(str.lower) # use map to transform the index with a function # pandas Index objects are immutable. Must reset the whole indexes of df at once df = df.set_index(['col1', 'col2']) # change to multiple index (index being of class MultiIndex) df = df.sort_index() # change multiple index to hierarchical index # use tuple to slice multiple index # use slice(None) to indicate ":" in the tuple # more advanced manipulation of multiple indexes = stacking and unstacking # please refer to datacamp course "Manipulating DataFrames with pandas" df.reindex(ordered_index) # order rows by original index with the order in ordered_index # ordered_index = somehow ordered list of original df indices # if some item in ordered_index is not in orig_df_indices, there would be a row with that index but NA values df.sort_index() ############################################################################################### #### Data visualization for inspection # use Bar plots for discrete data counts # use Histograms for continuous data counts df['one_col_name'].plot('hist') import matplotlib.pyplot as plt plt.show() df.boxplot(column='one_numerical_col', by='one_categorical_col') # two columns are involved df.boxplot(column='population', by='continent') # example of above ############################################################################################### #### Data extraction & assignment (general) ## direct column access by column name df["country"] # This is 1D labeled array (class: pandas.core.series.Series) df[["country"]] # This is dataframe (class: pandas.core.frame.DataFrame) ## row/column access by (built-in) numerircal indexes df[1:2] # single row as a dataframe... # Note: row slicing cannot use a single number, which would be regarded as a col name df.iloc[1] # row as pandas Series df.iloc[[1, 2, 3]] df.iloc[[1,2,3], [0, 1]] df.iloc[:, [0,1]] ## row/column access by labels df.loc["RU"] # row as Pandas Series df.loc[["RU", "IN", "CH"]] # row as Pandas dataframe df.loc[["RU", "IN", "CH"], ["country", "capital"]] df.loc[:, ["country", "capital"]] ## filtering df[df["area"] > 8] df[np.logical_and(df["area"] > 8, df["area"] < 10)] # or use the next line df[(df["area"] > 8 & df["area"] < 10)] df[np.logical_or(df["area"] < 8, df["area"] > 10)] # or use the next line df[(df["area"] < 8 | df["area"] > 10)] ## extract df values as ndarrays data_array = df.values # extract the values as ndarray col_array = df['col_name'].values # extract column values as ndarray np.concatenate([arr1, arr2], axis=1) ## create new columns df['new_col'] = df['existing_col'].str[0] # extract 1st char of 'existing_col' and save as 'new_col' in df # note that 'str' here is an attribute name df['str_split'] = df['existing_col'].str.split('_') # split string with '_' and save as 'str_split' col df['new_col0'] = df['str_split'].str.get(0) df['new_col1'] = df['str_split'].str.get(1) df['new_col'] = df['col_name'].str.upper() df['new_mask_col'] = df['col_name'].str.contains('given_substring') # Boolean data for label, row in df.iterrows(): df.loc[label, "new_col"] = len(row["country"]) # added a new column "new_col" as function of existing data df["new_col"] = df["country"].apply(len) df['new_col'] = 0.0 # assign values with broadcasting ## create new copies of existing dataframes df2 = df.copy() sorted_df = df.sort_values('col_name') # sort rows (including index) by values in col 'col_name' ## modify existing entries df.iloc[::3, -1] = np.nan # assign values with broadcasting ## delete row/column del df['col_name'] df.drop(['col_name1', 'col_name2'], axis=1) df.drop([1, 2]) # delete rows by numerical indexes df.drop(index='row_ind') # delete rows by row index ## manage data types df['treatment b'] = df['treatment b'].astype(str) df['sex'] = df['sex'].astype('category') df['treatment a'] = pd.to_numeric(df['treatment a'], errors='coerce') # force conversion ## manage duplicate rows df = df.drop_duplicates() # drop duplicate rows ## manage missing data (NA/null/NaN) df_dropped = df.dropna(how='any') # drop rows with NaN values df['sex'] = df['sex'].fillna(obj_to_fill) # in 'sex' column, fill NaN with obj_to_fill (e.g. mean value) checker_df = df.notnull() # boolean for each entry of the dataframe checker_df_reverse = df.isnull() # boolean for each entry of the dataframe checker_each_col = df.notnull().all() # aggregated for each column checker_each_col_reverse = df.isnull().any() # aggregated for each column checker_col = df.one_col_name.notnull() # boolean for the col "one_col_name" ############################################################################################### #### tidy data # tidy data principle: rows contain observations, columns form variables # pd.melt(): solve the problem of columns (names) containing values, instead of variables # ... by turning columns into rows new_df = pd.melt(frame=df, id_vars=list_names_cols, value_vars=['treatment a', 'treatment b'], \ var_name='treatment', value_name='result') # the columns in list_names_cols remain unchanged # the 'treatment a' and 'treatment b' cols become values of a new col called 'treatment' # the original table values are collected as values of a new col called 'result' # pivot: opposite of melting # ... by taking unique values from a column and create new columns weather_tidy = weather.pivot(index='date', columns='element', values='value') # the levels in 'element' column become new col names # if the values are not specified or multiple, the new columns would become hierarchical index # if there is duplicate conflict, use aggregate function weather_tidy = weather.pivot(index='date', columns='element', values='value', aggfunc=np.mean) # more advanced manipulation of multiple indexes = stacking and unstacking # please refer to datacamp course "Manipulating DataFrames with pandas" ############################################################################################### #### Data (table) joining/concatenation (like in SQL) ## concatenate dataframes vertical_stacked = df1.append(df2) # indices are also stacked vertical_stacked.reset_index(drop=True) # result would be the same as the following line vertical_stacked = pd.concat([df1, df2], axis=0, ignore_index=True) # new indexes range from 0 to n_tot hori_cat = pd.concat([df1, df2], axis=1, join='outer') # rows with the same index would be merged to single row. cols are stacked hori_cat = pd.concat([df1, df2], axis=1, join='inner') # only return rows with index in both df1 and df2 df1.join(df2, how='inner/outer/left/right') # join by index ## concatenate lots of tables import glob csv_files = glob.glob('*.csv') list_data = [pd.read_csv(filename) for filename in csv_files] pd.concat(list_data) ## merge data (index is usually ignored)
pd.merge(left=df_state_populations, right=df_state_codes, on=None, left_on='state', right_on='name')
pandas.merge
# -*- coding: utf-8 -*- """ Created on Mon Jun 27 13:53:50 2016 @author: au194693 """ import numpy as np import scipy.io as sio import pandas as pd from my_settings import * data = sio.loadmat(data_path + "behavoural_results.mat")["data_all"] b_df = pd.DataFrame() for j in range(len(data)): baseline = data[j, 0].mean() invol_trials = data[j, 3].squeeze() if len(invol_trials) is 90: invol_trials = invol_trials[1:] error = (np.std(data[j, 3]) * 2 + invol_trials.mean(), -np.std(data[j, 3]) * 2 + invol_trials.mean()) for i in range(len(invol_trials)): row = pd.DataFrame([{"subject": "p%s" % (j + 2), "condition": "invol", "binding": invol_trials[i] - baseline, "trial_number": i + 1, "trial_status": error[1] <= (invol_trials[i] - baseline) <= error[0], "error": error, "raw_trial": invol_trials[i], "baseline": baseline}]) b_df = b_df.append(row, ignore_index=True) # b_df = pd.DataFrame() for j in range(len(data)): baseline = data[j, 0].mean() vol_trials = data[j, 2].squeeze() # if len(vol_trials) is 90: # vol_trials = vol_trials[1:] error = (np.std(data[j, 3]) * 2 + vol_trials.mean(), -np.std(data[j, 3]) * 2 + vol_trials.mean()) for i in range(len(vol_trials)): row = pd.DataFrame([{"subject": "p%s" % (j + 2), "condition": "vol", "binding": vol_trials[i] - baseline, "trial_number": i + 1, "trial_status": error[1] <= (vol_trials[i] - baseline) <= error[0], "error": error, "raw_trial": vol_trials[i], "baseline": baseline}]) b_df = b_df.append(row, ignore_index=True) # Calculate mean correlation b_df =
pd.read_csv(results_folder + "/behavioural_results.csv")
pandas.read_csv
# GLMMOD @hamiHamtaro # dependencies: import numpy as np import matplotlib.pyplot as plt import seaborn as sns import math import pandas as pd import scipy as sp import statistics import mat73 class glm: def __init__(self, ST, P, hd): # remove nans and infinite values idx_finite = np.where(np.isfinite(P[:,1]))[0] idx_notnan = np.where(~np.isnan(P[:,1]))[0] keep_idx = np.intersect1d(idx_finite, idx_notnan) self.P = P[keep_idx,:] self.x = P[keep_idx,1] self.y = P[keep_idx,2] self.t = P[keep_idx,0] self.hd = hd[keep_idx,0];# make sure input is [0,2pi] self.dt = P[1,0]-P[0,0] self.ST = ST # spiketimes (not train) def get_size(self): '''get size of recording box''' boxsz = np.nanmax([np.nanmax(self.x), np.nanmax(self.y)]) return boxsz def pos_map(self, nbins=10): '''design matrix for position variables''' boxsz = self.get_size() bins = np.arange(boxsz/nbins/2, boxsz-boxsz/nbins/2, round(boxsz/nbins)) posgrid = np.zeros((len(self.x), nbins**2)) for idx,val in enumerate(self.x): xvec = np.abs(self.x[idx]-bins); yvec = np.abs(self.y[idx]-bins); min_x = np.min(xvec) min_y = np.min(yvec) idx_x = np.where(xvec == min_x); idx_x = idx_x[0][0]; idx_y = np.where(yvec == min_y); idx_y = idx_y[0][0]; bin_idx = np.ravel_multi_index((idx_y,idx_x), dims=(nbins,nbins), order='C') # a11=0, a12=1, a13=2; posgrid[idx, bin_idx] = 1 return posgrid, bins def eb_map(self, nbins=10, rp=[75,75]): '''design matrix for egocentric variables''' refx = rp[0]; refy = rp[1] allo = (np.arctan2(refy-self.y, refx-self.x) + (np.pi/2)) % (2*np.pi) # add 90 deg (so that up is 0 deg) ego = (allo - self.hd) % (2*np.pi) ego = sp.ndimage.gaussian_filter1d(ego, 3) # smooth by 3 std. egogrid = np.zeros((len(self.P),nbins)) bins = np.linspace(0, 2*np.pi,nbins+1) bins[0] = -0.0001 bins[-1] = 2.*np.pi+0.0001 for i in np.arange(nbins): whiches = (ego>bins[i])*(ego<=bins[i+1]) egogrid[whiches, i] = 1 # print(np.sum(egogrid,axis=0)) return egogrid,ego, bins def hd_map(self, nbins=10): '''design matrix for head direction''' hd = sp.ndimage.gaussian_filter1d(self.hd, 3) # smooth by 3 std. hdgrid = np.zeros((len(self.P),nbins)); bins = np.linspace(0, 2*np.pi,nbins+1) bins[0] = -0.0001 bins[-1] = 2.*np.pi+0.0001 for i in np.arange(nbins): whiches = (hd>bins[i])*(hd<=bins[i+1]) hdgrid[whiches, i] = 1 return hdgrid, bins def conv_spktrain(self, Xx=np.linspace(-4,4,9), sigma=2,c=0,defaultST=True,spikeIn=[1,2,3],dt=0.02): '''get smoothed spiketrain from spiketimes (in Hz) **kwargs: spikeTrain- 'False' if user wants self.ST (spiketimes) 'True' if user wants to use a pre-allocated spiketrain spikeIn- use this optional kwarg iff spikeTrain==True ''' if defaultST==True: t = self.t; dt = self.dt; # time per frame boolean_spk = np.logical_and(t[0] <= self.ST, self.ST <= t[-1]) spikes = self.ST[boolean_spk == True] edgesT = np.linspace(t[0], t[-1], len(t)+1) binnedSpikes, timeEdges = np.histogram(spikes, edgesT) elif defaultST==False: binnedSpikes = spikeIn # remove any nans/infinite values in spiketrain idx_inf = np.where(~np.isfinite(binnedSpikes))[0] idx_nan = np.where(np.isnan(binnedSpikes))[0] replace_idx = np.union1d(idx_inf, idx_nan) binnedSpikes[replace_idx] = 0 # convolve w/ gaussian membership function filt = np.exp((-(Xx-c)**2)/(2*(sigma**2))) smooth_spike_count = np.convolve(binnedSpikes, filt, mode='same') smooth_fr = smooth_spike_count/dt # rate (hz) return smooth_fr, binnedSpikes, filt, dt def get_speed(self): '''get speed of the animal (cm*s^-2)''' t=self.P[:,0] x=self.P[:,1] y=self.P[:,2] ntime = len(t) v = np.zeros((ntime,1)); for idx in range(1,ntime-1): v[idx,0] = np.sqrt((x[idx+1]-x[idx-1])**2 + (y[idx+1]-y[idx-1])**2)/(t[idx+1]-t[idx-1]) v[0,0] = v[1,0]; v[-1,0] = v[-2,0] # pad the array return v def speed_threshold(self,inputData): v = self.get_speed() maxspeed=50; minspeed=4 inbounds = np.logical_and((v<=maxspeed), (v>=minspeed)) inbounds = np.where(inbounds==True); inbounds = inbounds[0] if np.ndim(inputData) == 1: filtData = inputData[inbounds] if np.ndim(inputData) == 2: filtData = inputData[inbounds,:] return filtData def squish_statemat(self, spiketrain, stateIn, modelType='PE'): """ Combine state matrices for multivariate models and compose expression for calculating rate parameter. Spiketrain should be counts, and not smoothed. Parameters ---------- spiketrain : np array speed-thresholded spiketrain (counts) stateIn : np array or list of np arrays for example [posgrid,ebgrid] stateIn : str model label, for example 'PE' Returns ------- df dataframe with response variable and state matrix expr expression for the model of interest """ if modelType == 'PE': posgrid = stateIn[0]; ebgrid = stateIn[1] ntime,nbins_eb = np.shape(ebgrid) _,nbins_p = np.shape(posgrid) A = np.zeros((ntime, nbins_p+nbins_eb)) #P+EB A[:,0:nbins_p] = posgrid; A[:,nbins_p:] = ebgrid df =
pd.DataFrame(A)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = pd.unique(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = pd.unique(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
import requests import pandas as pd import numpy as np import time class FMP_CONNECTION(object): def __init__(self,api_key:str): self._api_key = api_key def set_apikey(self,new_apikey): self._api_key = new_apikey def get_apikey(self) -> str: return self._api_key def _merge_dfs(first_df:pd.DataFrame, second_df:pd.DataFrame, how:str = 'left'): cols_to_use = second_df.columns.difference(first_df.columns) new_df = pd.merge(first_df, second_df[cols_to_use], left_index=True, right_index=True, how=how) return new_df def _get_df(self,url:str,is_historical:bool = False) -> pd.DataFrame: response = requests.get(url) if response.status_code == 200: if response.json() == {}: print('Requested instrument is empty when retrieving data') return None if is_historical == False: response_df = pd.DataFrame.from_dict(response.json()) return response_df else: symbol = response.json()['symbol'] df = pd.DataFrame.from_dict(response.json()['historical']) df.insert(0,'symbol',symbol) df['date'] = pd.to_datetime(df['date'],infer_datetime_format=True) df.sort_values(by='date',ascending=True,inplace=True) df.set_index('date',inplace=True) df.set_index = pd.to_datetime(df.index, infer_datetime_format=True) return df else: raise ConnectionError('Could not connect to FMP Api, this was the response: \n',response.json()) def historical_price_by_interval(self,ticker:str,interval:str='1d') -> pd.DataFrame: """ Retrieve historical price data from various time granularities Parameters ---------- ticker:str : The ticker of the financial instrument to retrieve historical price data. api_key:str : your FMP API Key interval: {1min,5min,15min,30min,1hour,4hour,1d,1w,1m,1q,1y} : The granularity of how often the price historical data must be retrieved (Default value = '1d') Returns ------- pd.DataFrame """ url = None # Retrieve Historical info from 1 min to 4 hours if interval in ['4hour','1hour','30min','15min','5min','1min']: url = f'https://financialmodelingprep.com/api/v3/historical-chart/{interval}/{ticker}?apikey={self._api_key}' historical_df = self._get_df(url) historical_df.insert(0,'symbol',ticker) if 'close' and 'date' in list(historical_df.columns): historical_df.sort_values(by='date',ascending=True,inplace=True) historical_df.set_index('date',inplace=True) historical_df.index = pd.to_datetime(historical_df.index, infer_datetime_format=True) historical_df['change'] = historical_df['close'].pct_change() historical_df['realOpen'] = historical_df['close'].shift(1) return historical_df # Retrieve Daily Info elif interval == '1d': url = f'https://financialmodelingprep.com/api/v3/historical-price-full/{ticker}?apikey={self._api_key}' historical_df = self._get_df(url,True) historical_df['change'] = historical_df['close'].pct_change() historical_df['realOpen'] = historical_df['close'].shift(1) return historical_df url = f'https://financialmodelingprep.com/api/v3/historical-price-full/{ticker}?apikey={self._api_key}' historical_df = self._get_df(url,True) historical_df['daily'] = pd.to_datetime(historical_df.index, infer_datetime_format=True) # Retrieve Weekly, Monthly, Quarterly and Yearly Price Data if interval == '1w': historical_df['week'] = historical_df['daily'].dt.to_period('w').apply(lambda r: r.start_time) df = historical_df.drop_duplicates(subset=['week'],keep='first') df['change'] = df['close'].pct_change() df['realOpen'] = df['close'].shift(1) return df elif interval == '1m': historical_df['monthly'] = historical_df['daily'].astype('datetime64[M]') df = historical_df.drop_duplicates(subset=['monthly'],keep='first') df['change'] = df['close'].pct_change() df['realOpen'] = df['close'].shift(1) return df elif interval == '1q': historical_df['quarter'] = historical_df['daily'].dt.to_period('q') df = historical_df.drop_duplicates(subset=['quarter'], keep='first') df['change'] = df['close'].pct_change() df['realOpen'] = df['close'].shift(1) return df elif interval == '1y': historical_df['year'] = historical_df['daily'].dt.year df = historical_df.drop_duplicates(subset=['year'],keep='first') df['change'] = df['close'].pct_change() df['realOpen'] = df['close'].shift(1) return df else: raise ValueError('unsupported interval for ',interval,'check your spelling') def historical_closing_price(self,ticker:str,interval:str = '1d'): url = f'https://financialmodelingprep.com/api/v3/historical-price-full/{ticker}?serietype=line&apikey={self._api_key}' df = self._get_df(url,True) if df is None: return None # df['date'] = pd.to_datetime(df.index, infer_datetime_format=True) if interval == '1d': return df elif interval == '1w': df['week'] = df['date'].dt.to_period('w').apply(lambda r: r.start_time) df = df.drop_duplicates(subset=['week'], keep='first') df = df.drop(columns=['week']) elif interval == '1m': df['monthly'] = df['date'].astype('datetime64[M]') df = df.drop_duplicates(subset=['monthly'],keep='first') df = df.drop(columns=['monthly']) df['date'] = df['date'].astype('datetime64[M]') elif interval == '1q': df['quarter'] = df['date'].dt.to_period('q') df = df.drop_duplicates(subset=['quarter'], keep='first') df = df.drop(columns=['quarter']) elif interval == '1y': df['year'] = df['date'].dt.year df = df.drop_duplicates(subset=['year'],keep='first') df = df.drop(columns=['year']) df = df.drop(columns=['date']) return df def get_closing_prices(self,tickers:[str], interval:str = '1d', from_date:str = None): if isinstance(tickers,str): df = self.historical_closing_price(tickers,interval) closing_df = pd.pivot_table(data=df,index=df.index,columns='symbol',values='close',aggfunc='mean') closing_df.index = pd.to_datetime(closing_df.index, infer_datetime_format=True) from_d = from_date if from_date != None else closing_df.index.min() return closing_df[from_d:] else: dfs = [] for ticker in tickers: df = self.historical_closing_price(ticker,interval) dfs.append(df) x = pd.concat(dfs) closing_df = pd.pivot_table(data=x, index=x.index, columns='symbol',values='close',aggfunc='mean') closing_df.index = pd.to_datetime(closing_df.index, infer_datetime_format=True) from_d = from_date if from_date != None else closing_df.index.min() return closing_df[from_d:] ## CRYPTO CURRENCIES RELATED def get_crypto_quote(self,ticker): if isinstance(ticker,str): url = f'https://financialmodelingprep.com/api/v3/quote/{ticker}?apikey={self.get_apikey()}' df = self._get_df(url) return df elif isinstance(ticker,list): dfs = [] for tick in ticker: url = f'https://financialmodelingprep.com/api/v3/quote/{tick}?apikey={self.get_apikey()}' df = self._get_df(url) dfs.append(df) cryptos = pd.concat(dfs) cryptos.set_index('symbol',inplace=True) return cryptos def get_available_cryptos(self,min_marketcap=None): url = f'https://financialmodelingprep.com/api/v3/symbol/available-cryptocurrencies?apikey={self.get_apikey()}' df = self._get_df(url) tickers = df['symbol'].unique() quotes_info = [] for ticker in tickers: quote = self.get_crypto_quote(ticker=ticker) time.sleep(0.1) quotes_info.append(quote) quotes_df =
pd.concat(quotes_info)
pandas.concat
import numpy as np import imageio import os import pandas as pd from glob import glob import matplotlib.pyplot as plt from brainio_base.stimuli import StimulusSet class Stimulus: def __init__(self, size_px=[448, 448], bit_depth=8, stim_id=1000, save_dir='images', type_name='stimulus', format_id='{0:04d}'): self.save_dir = save_dir self.stim_id = stim_id self.format_id = format_id self.type_name = type_name self.white = np.uint8(2**bit_depth-1) self.black = np.uint8(0) self.gray = np.uint8(self.white/2+1) self.size_px = size_px self.objects = [] self.stimulus = np.ones(self.size_px, dtype=np.uint8) * self.gray def add_object(self, stim_object): self.objects.append(stim_object) def build_stimulus(self): for obj in self.objects: self.stimulus[obj.mask] = obj.stimulus[obj.mask] def clear_stimulus(self): self.stimulus = np.ones(self.size, dtype=np.uint8) * self.gray def show_stimulus(self): my_dpi = 192 fig = plt.figure() fig.set_size_inches(self.size_px[1] / my_dpi, self.size_px[0] / my_dpi, forward=False) ax = plt.axes([0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(self.stimulus, cmap='gray') plt.show() def save_stimulus(self): file_name= self.type_name + '_' + self.format_id.format(self.stim_id) + '.png' imageio.imwrite(self.save_dir + os.sep + file_name, self.stimulus) return file_name class Grating: def __init__(self, orientation=0, phase=0, sf=2, size_px=[448, 448], width=8, contrast=1, bit_depth=8, pos=[0, 0], rad=5, sig=0, stim_id=1000, format_id='{0:04d}', save_dir='images', type_name='grating'): # save directory self.save_dir = save_dir self.stim_id = stim_id self.format_id = format_id # label for type of stimulus self.type_name = type_name # 1 channel colors, white, black, grey self.white = np.uint8(2**bit_depth-1) self.black = np.uint8(0) self.gray = np.uint8(self.white/2+1) # pixel dimensions of the image self.size_px = np.array(size_px) # position of image in field of view self.pos = np.array(pos) # pixel to visual field degree conversion self.px_to_deg = self.size_px[1] / width # size of stimulus in visual field in degrees self.size = self.size_px / self.px_to_deg # orientation in radians self.orientation = orientation / 180 * np.pi # phase of the grating self.phase = phase / 180 * np.pi # spatial frequency of the grating self.sf = sf # contrast of the grating self.contrast = contrast # make self.xv and self.yv store the degree positions of all pixels in the image self.xv = np.zeros(size_px) self.yv = np.zeros(size_px) self.update_frame() self.mask = np.ones(size_px, dtype=bool) self.set_circ_mask(rad=rad) self.tex = np.zeros(size_px) self.stimulus = np.ones(size_px, dtype=np.uint8) * self.gray self.envelope = np.ones(size_px) if sig is 0: self.update_tex() else: self.set_gaussian_envelope(sig) def update_frame(self): x = (np.arange(self.size_px[1]) - self.size_px[1]/2) / self.px_to_deg - self.pos[1] y = (np.arange(self.size_px[0]) - self.size_px[0]/2) / self.px_to_deg - self.pos[0] # all possible degree coordinates in matrices of points self.xv, self.yv = np.meshgrid(x, y) def update_tex(self): # make the grating pattern self.tex = (np.sin((self.xv * np.cos(self.orientation) + self.yv * np.sin(self.orientation)) * self.sf * 2 * np.pi + self.phase) * self.contrast * self.envelope) def update_stimulus(self): self.stimulus[self.mask] = np.uint8(((self.tex[self.mask]+1)/2)*self.white) self.stimulus[np.logical_not(self.mask)] = self.gray def set_circ_mask(self, rad): # apply operation to put a 1 for all points inclusively within the degree radius and a 0 outside it self.mask = self.xv**2 + self.yv**2 <= rad ** 2 # same as circular mask but for an annulus def set_annular_mask(self, inner_rad, outer_rad): self.mask = (self.xv ** 2 + self.yv ** 2 <= outer_rad ** 2) * \ (self.xv ** 2 + self.yv ** 2 > inner_rad ** 2) def set_gaussian_envelope(self, sig): d = np.sqrt(self.xv**2 + self.yv**2) self.envelope = np.exp(-d**2/(2 * sig**2)) self.update_tex() def show_stimulus(self): # pyplot stuff self.update_stimulus() my_dpi = 192 fig = plt.figure() fig.set_size_inches(self.size_px[1] / my_dpi, self.size_px[0] / my_dpi, forward=False) ax = plt.axes([0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(self.stimulus, cmap='gray') plt.show() def save_stimulus(self): # save to correct (previously specified) directory self.update_stimulus() file_name = self.type_name + '_' + self.format_id.format(self.stim_id) + '.png' imageio.imwrite(self.save_dir + os.sep + file_name, self.stimulus) return file_name def load_stim_info(stim_name, data_dir): stim = pd.read_csv(os.path.join(data_dir, 'stimulus_set'), dtype={'image_id': str}) image_paths = dict((key, value) for (key, value) in zip(stim['image_id'].values, [os.path.join(data_dir, image_name) for image_name in stim['image_file_name'].values])) stim_set = StimulusSet(stim[stim.columns[:-1]]) stim_set.image_paths = image_paths stim_set.identifier = stim_name return stim_set def gen_blank_stim(degrees, size_px, save_dir): if not (os.path.isdir(save_dir)): os.mkdir(save_dir) stim = Stimulus(size_px=[size_px, size_px], type_name='blank_stim', save_dir=save_dir, stim_id=0) stimuli = pd.DataFrame({'image_id': str(0), 'degrees': [degrees]}) image_names = (stim.save_stimulus()) stimuli['image_file_name'] = pd.Series(image_names) stimuli['image_current_local_file_path'] = pd.Series(save_dir + os.sep + image_names) stimuli.to_csv(save_dir + os.sep + 'stimulus_set', index=False) def gen_grating_stim(degrees, size_px, stim_name, grat_params, save_dir): if not (os.path.isdir(save_dir)): os.mkdir(save_dir) width = degrees nStim = grat_params.shape[0] print('Generating stimulus: #', nStim) stimuli = pd.DataFrame({'image_id': [str(n) for n in range(nStim)], 'degrees': [width] * nStim}) image_names = nStim * [None] image_local_file_path = nStim * [None] all_y = nStim * [None] all_x = nStim * [None] all_c = nStim * [None] all_r = nStim * [None] all_s = nStim * [None] all_o = nStim * [None] all_p = nStim * [None] for i in np.arange(nStim): stim_id = np.uint64(grat_params[i, 0] * 10e9 + grat_params[i, 1] * 10e7 + grat_params[i, 3] * 10e5 + grat_params[i, 4] * 10e3 + grat_params[i, 5] * 10e1 + grat_params[i, 6]) grat = Grating(width=width, pos=[grat_params[i, 0], grat_params[i, 1]], contrast=grat_params[i, 2], rad=grat_params[i, 3], sf=grat_params[i, 4], orientation=grat_params[i, 5], phase=grat_params[i, 6], stim_id= stim_id, format_id='{0:012d}', save_dir=save_dir, size_px=[size_px, size_px], type_name=stim_name) image_names[i] = (grat.save_stimulus()) image_local_file_path[i] = save_dir + os.sep + image_names[i] all_y[i] = grat_params[i, 0] all_x[i] = grat_params[i, 1] all_c[i] = grat_params[i, 2] all_r[i] = grat_params[i, 3] all_s[i] = grat_params[i, 4] all_o[i] = grat_params[i, 5] all_p[i] = grat_params[i, 6] stimuli['position_y'] = pd.Series(all_y) stimuli['position_x'] = pd.Series(all_x) stimuli['contrast'] = pd.Series(all_c) stimuli['radius'] = pd.Series(all_r) stimuli['spatial_frequency'] = pd.Series(all_s) stimuli['orientation'] = pd.Series(all_o) stimuli['phase'] = pd.Series(all_p) stimuli['image_file_name'] = pd.Series(image_names) stimuli['image_current_local_file_path'] = pd.Series(image_local_file_path) stimuli.to_csv(save_dir + os.sep + 'stimulus_set', index=False) def gen_grating_stim_old(degrees, size_px, stim_name, grat_contrast, grat_pos, grat_rad, grat_sf, grat_orientation, grat_phase, save_dir): if not (os.path.isdir(save_dir)): os.mkdir(save_dir) width = degrees nStim = len(grat_pos) * len(grat_pos) * len(grat_contrast) * len(grat_rad) * len(grat_sf) * len(grat_orientation) \ * len(grat_phase) print('Generating stimulus: #', nStim) stimuli = pd.DataFrame({'image_id': [str(n) for n in range(nStim)], 'degrees': [width] * nStim}) image_names = nStim * [None] image_local_file_path = nStim * [None] all_y = nStim * [None] all_x = nStim * [None] all_c = nStim * [None] all_r = nStim * [None] all_s = nStim * [None] all_o = nStim * [None] all_p = nStim * [None] i = 0 for y in np.arange(len(grat_pos)): for x in np.arange(len(grat_pos)): for c in np.arange(len(grat_contrast)): for r in np.arange(len(grat_rad)): for s in np.arange(len(grat_sf)): for o in np.arange(len(grat_orientation)): for p in np.arange(len(grat_phase)): grat = Grating(width=width, pos=[grat_pos[y], grat_pos[x]], contrast=grat_contrast[c], rad=grat_rad[r], sf=grat_sf[s], orientation=grat_orientation[o], phase=grat_phase[p], stim_id=np.uint64( y * 10e9 + x * 10e7 + r * 10e5 + s * 10e3 + o * 10e1 + p), format_id='{0:012d}', save_dir=save_dir, size_px=[size_px, size_px], type_name=stim_name) image_names[i] = (grat.save_stimulus()) image_local_file_path[i] = save_dir + os.sep + image_names[i] all_y[i] = grat_pos[y] all_x[i] = grat_pos[x] all_c[i] = grat_contrast[c] all_r[i] = grat_rad[r] all_s[i] = grat_sf[s] all_o[i] = grat_orientation[o] all_p[i] = grat_phase[p] i += 1 stimuli['position_y'] = pd.Series(all_y) stimuli['position_x'] =
pd.Series(all_x)
pandas.Series
import pandas as pd import numpy as np # 1 创建dataframe d = { 'one': pd.Series([1., 2., 3.], index=['a', 'b', 'c']), 'two': pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd']) } df1 = pd.DataFrame(d) print(df1) # 2 创建dataframe df2 = pd.DataFrame({ 'A': 1., 'B':
pd.Timestamp('20160101')
pandas.Timestamp
import json import os from datetime import datetime import joblib import numpy as np import pandas as pd from xgboost import XGBRegressor, XGBClassifier from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier np.set_printoptions(precision=2) """ Generating the gradient boosting model with the pre-saved hyperparameters. """ def generate_model(simulation_folder, method='RF', mode='classification'): """ Function for generating model for given scenario and feature based model :param simulation_folder: str, name of subfolder for given data set :return: none, model is saved down as side effect """ Start = datetime.now() project_directory = os.path.dirname(os.getcwd()) path_to_data = os.path.join(project_directory, "Data", simulation_folder) path_to_characteristics_data = os.path.join(path_to_data, "Characteristics") path_to_model = os.path.join(project_directory, "Models", simulation_folder, method, "Model") path_to_hyperparameters = os.path.join(path_to_model, "hyperparameters.json") X_train = np.load(os.path.join(path_to_characteristics_data, "X_train.npy")) y_train = np.load(os.path.join(path_to_characteristics_data, "y_train.npy")) with open(path_to_hyperparameters, 'r') as f: param_data = json.load(f) if method == 'RF': if mode == 'classification': model = RandomForestClassifier() elif mode == 'regression': model = RandomForestRegressor() elif method == 'GB': if mode == 'classification': model = GradientBoostingClassifier() elif mode == 'regression': model = GradientBoostingRegressor() elif method == 'XGB': if mode == 'classification': model = XGBClassifier() elif mode == 'regression': model = XGBRegressor() model.set_params(**param_data) model.fit(X_train, y_train) joblib.dump(model, os.path.join(path_to_model, 'model.sav')) End = datetime.now() ExecutedTime = End - Start df =
pd.DataFrame({'ExecutedTime': [ExecutedTime]})
pandas.DataFrame
# Created by woochanghwang at 21/05/2020 # Modified by woochanghwang at 12/07/2020 # Modified at 18/07/2020 # Modified at 19/07/2021 for Method paper ''' Make input files for CIRCUS including selected drug targets in the network, key genes # Modified by woochanghwang at 21/07/2020 - Hidden enrichment test (High level paths) - Metabolism of RNA, Immune System, Cell Cycle, Other # Modified by Woochang at 19/07/2021 - for Method paper ''' import pandas as pd import csv import networkx as nx import toolbox.data_handler as dh import toolbox.visual_utilities as vu def make_link_file(network_edge, circos_data_file_a, circos_link_file_a): ''' - edge file : [from to] - circos data file : [chr band start(number) to(number) name] :return: circos link file [ band start to band start to ] ''' # network_edge_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/src_visual/ULK1_sigGene_diNetwork.tsv" # circos_data_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_text.txt" # circos_link_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_link_v2.txt" circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos circos_link = [] for edge in network_edge: link_from = circos_band_dict.get(edge[0],'NA') link_to = circos_band_dict.get(edge[1],'NA') if link_from == 'NA' or link_to == 'NA' : continue circos_link.append('\t'.join(link_from+link_to)) with open(circos_link_file_a,'w') as circos_link_f: circos_link_f.write('\n'.join(circos_link)) def make_link_with_symbol_file(network_edge_addr, circos_data_file_a, circos_link_file_a): ''' - edge file : [from to] - circos data file : [chr band start(number) to(number) name] :return: circos link file [ band start to band start to ] ''' # network_edge_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/src_visual/ULK1_sigGene_diNetwork.tsv" # circos_data_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_text.txt" # circos_link_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_link_v2.txt" with open(network_edge_addr) as network_edge_f: network_edge = [x.strip().split('\t') for x in network_edge_f.readlines()] circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] # gene_pos = line[:-1] gene_band = line[0] circos_band_dict[gene] = gene_band circos_link = [] # print(network_edge[:5]) for edge in network_edge: link_from = circos_band_dict.get(edge[0],'NA') link_to = circos_band_dict.get(edge[1],'NA') if link_from == 'NA' or link_to == 'NA' : continue circos_link.append([edge[0],link_from,edge[1],link_to]) print(circos_link[:5]) circos_link_df = pd.DataFrame(circos_link, columns=["Gene A","Gene A Group","Gene B","Gene B Group"]) circos_link_df.to_excel(circos_link_file_a,index=False) # with open(circos_link_file_a,'w') as circos_link_f: # circos_link_f.write('\n'.join(circos_link)) def make_link_file_for_specific_groups(network_edge, groups, circos_data_file_a, circos_link_file_a): ''' - edge file : [from to] - circos data file : [chr band start(number) to(number) name] :return: circos link file [ band start to band start to ] ''' # network_edge_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/src_visual/ULK1_sigGene_diNetwork.tsv" # circos_data_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_text.txt" # circos_link_file_a = "/Users/woochanghwang/PycharmProjects/LifeArc/General/circos/ulk1/data/ulk1_sigGene_cluster_link_v2.txt" circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] group_genes = [] for circos_genes in circos_band_data: if circos_genes[0] in groups: # print(circos_genes) group_genes.append(circos_genes[-1]) # print(group_genes) for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos circos_link = [] for edge in network_edge: if len(set(edge)&set(group_genes)) >=1: link_from = circos_band_dict.get(edge[0],'NA') link_to = circos_band_dict.get(edge[1],'NA') if link_from == 'NA' or link_to == 'NA' : continue circos_link.append('\t'.join(link_from+link_to)) with open(circos_link_file_a,'w') as circos_link_f: circos_link_f.write('\n'.join(circos_link)) def make_rwr_hist_file_for_heatmap (circos_data_file_a, rwr_result_file_addr, rwr_hist_file_a): ''' Gene RWR for histogram :return: [clsuter, gene, fold change] ''' with open(rwr_result_file_addr) as rwr_result_f: gene_rwr_result = [x.strip().split('\t') for x in rwr_result_f.readlines()] gene_rwr_list = [x[:2] for x in gene_rwr_result[1:]] # header = False circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos circos_gene_fc_data = [] for gene_rwr in gene_rwr_list: gene_pos = circos_band_dict[gene_rwr[0]] rwr = str(gene_rwr[1]) a_gene = [gene_pos[0], gene_pos[1], gene_pos[1], rwr, 'id=rwr'] circos_gene_fc_data.append('\t'.join(a_gene)) with open(rwr_hist_file_a, 'w') as circos_gene_rwr_f: circos_gene_rwr_f.write('\n'.join(circos_gene_fc_data)) def get_whole_node(): core_network_addr = "/Users/woochanghwang/PycharmProjects/LifeArc/ULK/data/string_interactions_GBM_ULK_e150_in_TCGA.tsv" # core_network_addr = "/Users/woochanghwang/PycharmProjects/LifeArc/ULK/data/string_interactions_new_symbol.tsv" core_network_df= pd.read_table(core_network_addr,sep='\t') core_G = nx.from_pandas_edgelist(core_network_df,'node1','node2') print(len(core_G.nodes)) key_gene_addr = "/Users/woochanghwang/PycharmProjects/LifeArc/ULK/data/GBM_OT_TCGA_ULK.txt" key_gene_df = pd.read_table(key_gene_addr,sep='\t') key_gene = key_gene_df['Gene'] print(len(set(key_gene)-set(core_G.nodes()))) from_ppi_genes = list(set(core_G.nodes()) - set(key_gene)) new_gene_list = [] for gene in from_ppi_genes: new_gene_list.append(['STRING',gene]) for string_gene in new_gene_list: key_gene_df = key_gene_df.append(pd.Series(string_gene,index=['Group','Gene']),ignore_index=True) print(key_gene_df) key_gene_df.to_csv("/Users/woochanghwang/PycharmProjects/LifeArc/ULK/data/GBM_OT_TCGA_STRING_ULK.txt",'\t',index=False,header=False) def make_tcga_fc_file_for_heatmap(tcga_fc_addr, circos_data_file_a, circos_gene_fc_file_a): tcga_logfc_result = dh.load_obj(tcga_fc_addr) circos_data_df = pd.read_csv(circos_data_file_a,sep='\t',names=['Group','posA','posB','Gene']) whole_gene = list(circos_data_df['Gene']) print(whole_gene) # df_final_result = pd.DataFrame(columns=['Gene', 'FoldChange(log2)']) whole_fc_gene = [] for gene in whole_gene: whole_fc_gene.append(tcga_logfc_result.get(gene, '')) gene_fc_list = list(zip(whole_gene,whole_fc_gene)) # gene_fc_df = pd.DataFrame(gene_fc_list, columns=['Gene', 'FoldChange(log2)']) circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos # for gene, gene_pos in circos_band_dict.items(): # gene_fc_df = gene_fc_df.replace(gene, '\t'.join(gene_pos)) circos_gene_fc_data = [] for gene_fc in gene_fc_list: gene_pos = circos_band_dict[gene_fc[0]] fc = str(gene_fc[1]) if fc == 'inf': fc = '' a_gene = [gene_pos[0],gene_pos[1], gene_pos[1],fc,'id=fc'] circos_gene_fc_data.append('\t'.join(a_gene)) with open(circos_gene_fc_file_a,'w') as circos_gene_fc_f: circos_gene_fc_f.write('\n'.join(circos_gene_fc_data)) def make_drug_score_file_for_heatmap(drug_score_file, circos_data_file_a, circos_data_final_file_a): ''' Gene RWR for histogram :return: [clsuter, gene, fold change] ''' with open(drug_score_file) as drug_score_f: drug_score_list = [x.strip().split('\t') for x in drug_score_f.readlines()] drug_score_list = drug_score_list[1:] #header = False circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos circos_gene_drug_data = [] for drug_score in drug_score_list: gene_pos = circos_band_dict.get(drug_score[0],'NA') if gene_pos == 'NA': continue score = str(drug_score[1]) a_gene = [gene_pos[0], gene_pos[1], gene_pos[1], score, 'id=drug'] circos_gene_drug_data.append('\t'.join(a_gene)) with open(circos_data_final_file_a, 'w') as circos_gene_drug_f: circos_gene_drug_f.write('\n'.join(circos_gene_drug_data)) def make_depmap_score_file_for_heatmap(depmap_score_file_a, circos_data_file_a, circos_depmap_score_file_a): with open(depmap_score_file_a) as depmap_score_f: drug_depmap_data = [x.strip().split('\t') for x in depmap_score_f.readlines()] depmap_score_list = [] for drug in drug_depmap_data[1:]: #Header = False a_depmap = [drug[0],drug[-1]] depmap_score_list.append(a_depmap) print(depmap_score_list[:10]) circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos circos_gene_depmap_data = [] for depmap_score in depmap_score_list: gene_pos = circos_band_dict.get(depmap_score[0],'NA') if gene_pos == 'NA': continue score = str(depmap_score[1]) a_gene = [gene_pos[0], gene_pos[1], gene_pos[1], score, 'id=depmap'] circos_gene_depmap_data.append('\t'.join(a_gene)) with open(circos_depmap_score_file_a, 'w') as circos_gene_depmap_f: circos_gene_depmap_f.write('\n'.join(circos_gene_depmap_data)) def make_final_target_file_for_heatmap(gene_list_file_ulk1,gene_list_file_ulk2, circos_data_file_a, circos_final_targets_file_a): ''' Gene RWR result from files :return: [clsuter, gene, fold change] ''' result_ulk1_df = pd.read_table(gene_list_file_ulk1, sep='\t') result_ulk2_df = pd.read_table(gene_list_file_ulk2, sep='\t') print(list(result_ulk1_df)) print(list(result_ulk2_df)) final_col_names=['Gene','Final score normalized'] ulk1_final_df = result_ulk1_df[final_col_names] ulk2_final_df = result_ulk2_df[final_col_names] ulk1_top20_df = ulk1_final_df.sort_values(by=['Final score normalized'],ascending=False).iloc[:20] ulk2_top20_df = ulk2_final_df.sort_values(by=['Final score normalized'],ascending=False).iloc[:20] ulk1_2_final_top20_df = pd.concat([ulk1_top20_df,ulk2_top20_df]).drop_duplicates(subset='Gene',keep='last').reset_index(drop=True) # ################# circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] gene_pos = line[:-1] circos_band_dict[gene] = gene_pos for gene,gene_pos in circos_band_dict.items(): ulk1_2_final_top20_df = ulk1_2_final_top20_df.replace(gene,'\t'.join(gene_pos)) ulk1_2_final_top20_df.insert(2,'id','id=fc') print(ulk1_2_final_top20_df) ulk1_2_final_top20_df[['cluster','pos_x','pos_y']]=ulk1_2_final_top20_df.Gene.str.split("\t",expand=True) ulk1_2_final_top20_df_write = ulk1_2_final_top20_df[['cluster','pos_x','pos_y','Final score normalized','id']] print(ulk1_2_final_top20_df_write) ulk1_2_final_top20_df_write.to_csv(circos_final_targets_file_a, sep='\t', header=False, index=False,quoting=csv.QUOTE_NONE,quotechar="", escapechar='\\') def make_final_target_file_for_text(gene_list_file_ulk1,gene_list_file_ulk2, circos_data_file_a, circos_final_targets_file_a): result_ulk1_df = pd.read_table(gene_list_file_ulk1, sep='\t') result_ulk2_df = pd.read_table(gene_list_file_ulk2, sep='\t') print(list(result_ulk1_df)) print(list(result_ulk2_df)) final_col_names=['Gene','Final score normalized'] ulk1_final_df = result_ulk1_df[final_col_names] ulk2_final_df = result_ulk2_df[final_col_names] ulk1_top20_df = ulk1_final_df.sort_values(by=['Final score normalized'],ascending=False).iloc[:20] ulk2_top20_df = ulk2_final_df.sort_values(by=['Final score normalized'],ascending=False).iloc[:20] ulk1_2_final_top20_df = pd.concat([ulk1_top20_df,ulk2_top20_df]).drop_duplicates(subset='Gene',keep='last').reset_index(drop=True) # ################# circos_band_dict = dict() with open(circos_data_file_a) as circos_band_f: circos_band_data = [x.strip().split('\t') for x in circos_band_f.readlines()] for line in circos_band_data: gene = line[-1] # gene_pos = line[:-1] gene_pos = line # too keep gene name circos_band_dict[gene] = gene_pos for gene,gene_pos in circos_band_dict.items(): # print(gene,gene_pos) ulk1_2_final_top20_df = ulk1_2_final_top20_df.replace(gene,'\t'.join(gene_pos)) print(ulk1_2_final_top20_df) ulk1_2_final_top20_df[['cluster','pos_x','pos_y','Gene']]=ulk1_2_final_top20_df.Gene.str.split("\t",expand=True) ulk1_2_final_top20_df_text= ulk1_2_final_top20_df[['cluster','pos_x','pos_y','Gene']] print(ulk1_2_final_top20_df_text) ulk1_2_final_top20_df_text.to_csv(circos_final_targets_file_a, sep='\t', header=False, index=False,quoting=csv.QUOTE_NONE,quotechar="", escapechar='\\') def make_color_file(virus, circos_data_file_a, circos_color_file_a): circos_data_df = pd.read_csv(circos_data_file_a, sep='\t', names=['Group','posA','posB','Gene']) groups = circos_data_df.Group.unique() print(groups) group_size_df = circos_data_df.groupby('Group').size() print(group_size_df['hs1']) circos_color_info = [] ################## # Add Chr info ################## # grp_names = ['DIP','Virus_entry','Virus_replication','Virus/Immune','Metabolism','Anti-inflammatory','Immune_system','Ohter','DEP'] # grp_names = ['E','M','N','nsp1','nsp2','nsp4','nsp5','nsp6','nsp7','nsp8','nsp9','nsp10','nsp12','nsp13','nsp14','nsp15','orf3a','orf6','orf7a','orf8','orf9b','orf9c','orf10', # 'VR_VE_MB','VE_MB','DEP','VR','AI_IR','Unknwown'] ###v2 # grp_names = ['E', 'M', 'N', '1', '2', '4', '5', '6', '7', '8', '9', '10', '12', # '13', '14', '15', '3a', '6', '7a', '8', '9b', '9c', '10', # 'VRVEMB', 'DEP', 'VR', 'AIIR', 'Unknown'] ###Localization if virus == "SARS-CoV": grp_names = ['E', 'M', 'N', '2', '6', '9', '10', '12', '13', '15', '16', '3a','3b', '7a','7b', '8a','8b', '9b','S', 'Met.RNA','CellCycle','Immune','Met.Proteins', 'Other','DEP'] elif virus =="SARS-CoV-2": grp_names = ['E', 'M', 'N', '1','4', '6', '9', '3', '7a','7b','8', 'Met.RNA','CellCycle','Immune','Met.Proteins', 'Other','DEP'] # grp_names = ['T','PPT','AG','DRUG','TF','TCGA','FRANK','MIDDLE'] chr_number = 0 for grp,name in zip(groups,grp_names): chr_number += 1 # print(grp, name) a_grp = ['chr','-',grp,name,'0',str(group_size_df[grp]),'chr'+str(chr_number)] # print(a_grp) circos_color_info.append('\t'.join(a_grp)) ################ # Add Band Info ################ with open(circos_data_file_a) as circos_data_f: circos_dota_for_color = [x.strip().split('\t') for x in circos_data_f.readlines()] #band hs1 ULK1 ULK1 0 1 grey for gene in circos_dota_for_color: a_band = ['band',gene[0],gene[-1],gene[-1],gene[1],gene[2],'grey'] circos_color_info.append('\t'.join(a_band)) ############## # make file ############## with open(circos_color_file_a,'w') as circos_color_f: circos_color_f.write('\n'.join(circos_color_info)) def make_circos_data_file_for_covid(virus, circos_data_file_a, circos_nodes_file_a): circos_covid_network_df = pd.read_csv(circos_nodes_file_a, sep='\t', names=['Group','Gene']) circos_covid_network_df = circos_covid_network_df.drop_duplicates(subset='Gene') circos_covid_network_df = circos_covid_network_df.reset_index(drop=True) circos_group_list = list(circos_covid_network_df['Group']) circos_posA_list = [] circos_posB_list = [] cur_group = circos_group_list[0] posA=0 posB=1 for group in circos_group_list: if group == cur_group: circos_posA_list.append(posA) circos_posB_list.append(posB) posA +=1 posB += 1 else: cur_group = group posA=0 posB=1 circos_posA_list.append(posA) circos_posB_list.append(posB) posA +=1 posB +=1 circos_covid_network_df['posA'] = pd.Series(circos_posA_list) circos_covid_network_df['posB'] = pd.Series(circos_posB_list) circos_covid_network_df = circos_covid_network_df[['Group','posA','posB','Gene']] # circos_covid_network_df = circos_covid_network_df.astype({'posA':int, 'posB':int}) if virus == "SARS-CoV": ###localization circos_covid_network_df = circos_covid_network_df.replace({'Group':{'E':'hs1', 'M':'hs2', 'N':'hs3', 'S':'hs4', 'NSP2':'hs5', 'NSP6':'hs6', 'NSP9':'hs7', 'NSP10':'hs8', 'NSP12': 'hs9', 'NSP13': 'hs10', 'NSP15': 'hs11', 'NSP16': 'hs12', 'ORF3a':'hs13', 'ORF3b':'hs14', 'ORF7a':'hs15', 'ORF7b':'hs16', 'ORF8a':'hs17', 'ORF8b':'hs18', 'ORF9b':'hs19', 'Met.RNA': 'hs20', 'CellCycle': 'hs21', 'Immune': 'hs22', 'Met.Proteins': 'hs23', 'Other': 'hs24', 'DEP': 'hs25' }}) elif virus == "SARS-CoV-2": circos_covid_network_df = circos_covid_network_df.replace({'Group':{'E':'hs1', 'M':'hs2', 'N':'hs3', 'NSP1':'hs4', 'NSP4':'hs5', 'NSP6':'hs6', 'NSP9':'hs7', 'ORF3':'hs8', 'ORF7a':'hs9', 'ORF7b':'hs10', 'ORF8':'hs11', 'Met.RNA': 'hs12', 'CellCycle': 'hs13', 'Immune': 'hs14', 'Met.Proteins': 'hs15', 'Other': 'hs16', 'DEP': 'hs17' }}) print(circos_covid_network_df) circos_covid_network_df.to_csv(circos_data_file_a,sep='\t',index=False,header=False) def get_drug_targets_in_network(network_time,candidate_drug_df): # print(network_time) candidate_drugs_in_networktime = candidate_drug_df[candidate_drug_df['Network_time']==network_time] candidate_drugs_target_list = candidate_drugs_in_networktime['Target Proteins in Network'].to_list() drug_targets = [] for targets in candidate_drugs_target_list: drug_targets += targets.split(',') drug_targets = list(set(drug_targets)) return drug_targets import re def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): return [ atoi(c) for c in re.split('(\d+)',text) ] def get_sig_genes_by_centrality(centrality_results_6hr, centrality_bands): threshold = 0.01 sig_genes_dict = dict() for centrality in centrality_bands: centrality_pvalue_col = "{}_pvalue".format(centrality) sig_genes = centrality_results_6hr[centrality_results_6hr[centrality_pvalue_col]<=threshold]['Gene'].to_list() sig_genes_dict[centrality] = sig_genes # common_genes = [] # for key, value in sig_genes_dict.items(): # print(key, len(value),value[:5]) # if len(common_genes) == 0: # common_genes = value # else: # common_genes = list(set(common_genes)&set(value)) # # print("common:",len(common_genes)) # sig_genes_without_common = dict() return sig_genes_dict def sort_hidden_by_centrality(covid_network_hidden_keyGene, centrality_bands): centrality_results_6hr = pd.read_csv("/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Centrality/6hr/round2/COVID_6hr_gene_score_by_centrality_pvalue.csv") centrality_results_24hr = pd.read_csv("/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Centrality/24hr/round6/COVID_24hr_gene_score_by_centrality_pvalue.csv") centrality_genes_6hr = get_sig_genes_by_centrality(centrality_results_6hr,centrality_bands) centrality_genes_24hr = get_sig_genes_by_centrality(centrality_results_24hr, centrality_bands) ###################### # for venn ###################### centrality_genes_all_for_venn = {} centrality_genes_24hr_hidden_for_venn = {} centrality_genes_6hr_hidden_for_venn ={} ################### centrality_genes_in_hidden_dict = dict() common_genes = [] for centrality in centrality_bands: sig_genes_6hr = centrality_genes_6hr[centrality] sig_genes_24hr = centrality_genes_24hr[centrality] centality_sig_genes= list(set(sig_genes_6hr).union(set(sig_genes_24hr))) centality_sig_genes_in_hidden = list(set(centality_sig_genes)&set(covid_network_hidden_keyGene)) if len(common_genes) == 0: common_genes = centality_sig_genes_in_hidden else: common_genes = list(set(common_genes)&set(centality_sig_genes_in_hidden)) centrality_genes_in_hidden_dict[centrality] = sorted(centality_sig_genes_in_hidden) ############################################# centrality_genes_all_for_venn[centrality] = set(centality_sig_genes_in_hidden) centrality_genes_6hr_hidden_for_venn[centrality] = set(sig_genes_6hr)&set(centality_sig_genes_in_hidden) centrality_genes_24hr_hidden_for_venn[centrality] = set(sig_genes_24hr)&set(centality_sig_genes_in_hidden) ######################################### for key, value in centrality_genes_in_hidden_dict.items(): print(key, len(value), value[:5]) print("common:", len(common_genes)) import toolbox.visual_utilities as vu from venn import venn import matplotlib.pyplot as plt # vu.draw_venn_3group(centrality_genes_in_hidden_dict['RWR'],centrality_genes_in_hidden_dict['eigen'],centrality_genes_in_hidden_dict['degree'],group_labels=['RWR','eigen','degree'], # save_addr= "/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Sig.Genes/keygenes_RWR_eigen_degree.png") ########################### venn(centrality_genes_all_for_venn) plt.savefig("/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Sig.Genes/keygenes_RWR_eigen_degree_bw.pdf") plt.show() venn(centrality_genes_24hr_hidden_for_venn) plt.savefig( "/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Sig.Genes/24hr_keygenes_RWR_eigen_degree_bw.pdf") plt.show() venn(centrality_genes_6hr_hidden_for_venn) plt.savefig( "/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Sig.Genes/6hr_keygenes_RWR_eigen_degree_bw.pdf") plt.show() # print(centrality_results_6hr) def sort_hidden_by_localization(covid_network_hidden_keyGene, localization_bands): key_gene_localization_df = pd.read_csv("/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/result/Circos/data/network_backbone_node_info_key_genes_moa_based_som_reverse_subcellular_conf4_v3.tsv", sep='\t') key_gene_localization_groupby = key_gene_localization_df.groupby('Protein')['Subcellular'].agg(list) print(key_gene_localization_groupby) subcellular = set(key_gene_localization_df['Subcellular'].to_list()) print(subcellular-set(localization_bands)) covid_network_hidden_keyGene.sort() print(covid_network_hidden_keyGene[:5]) covid_network_hidden_keyGene_copy = covid_network_hidden_keyGene[:] covid_network_hidden_keyGene_localizaition_nucleus_ER = [] covid_network_hidden_keyGene_localizaition_nucleus_no_ER = [] covid_network_hidden_keyGene_localizaition_nucleus_with_ER = [] covid_network_hidden_keyGene_localizaition_ER = [] covid_network_hidden_keyGene_localizaition_else = [] for localization in localization_bands[:1]: for gene in covid_network_hidden_keyGene_copy: if (localization in key_gene_localization_groupby[gene]) and ( localization_bands[1] not in key_gene_localization_groupby[gene]): covid_network_hidden_keyGene_localizaition_nucleus_no_ER.append(gene) elif (localization in key_gene_localization_groupby[gene]) and ( localization_bands[1] in key_gene_localization_groupby[gene]): covid_network_hidden_keyGene_localizaition_nucleus_with_ER.append(gene) covid_network_hidden_keyGene_copy = list(set(covid_network_hidden_keyGene_copy)- set(covid_network_hidden_keyGene_localizaition_nucleus_no_ER)- set(covid_network_hidden_keyGene_localizaition_nucleus_with_ER)) covid_network_hidden_keyGene_copy.sort() for localization in localization_bands[1:2]: for gene in covid_network_hidden_keyGene_copy: if localization in key_gene_localization_groupby[gene]: covid_network_hidden_keyGene_localizaition_ER.append(gene) covid_network_hidden_keyGene_copy = list(set(covid_network_hidden_keyGene_copy)-set(covid_network_hidden_keyGene_localizaition_ER)) covid_network_hidden_keyGene_copy.sort() covid_network_hidden_keyGene_localizaition_nucleus_ER += covid_network_hidden_keyGene_localizaition_nucleus_no_ER covid_network_hidden_keyGene_localizaition_nucleus_ER += covid_network_hidden_keyGene_localizaition_nucleus_with_ER covid_network_hidden_keyGene_localizaition_nucleus_ER += covid_network_hidden_keyGene_localizaition_ER for localization in localization_bands[2:]: for gene in covid_network_hidden_keyGene_copy: if localization in key_gene_localization_groupby[gene]: covid_network_hidden_keyGene_localizaition_else.append(gene) covid_network_hidden_keyGene_copy = list(set(covid_network_hidden_keyGene_copy)-set(covid_network_hidden_keyGene_localizaition_else)) covid_network_hidden_keyGene_copy.sort() covid_network_hidden_keyGene_localizaition_else += covid_network_hidden_keyGene_copy covid_network_hidden_sorted = [] covid_network_hidden_sorted.append(covid_network_hidden_keyGene_localizaition_nucleus_ER) covid_network_hidden_sorted.append(covid_network_hidden_keyGene_localizaition_else) return covid_network_hidden_sorted def sort_hidden_by_enrichedPaths(covid_network_hidden_keyGene): hidden_enrichedPaths_dict = dh.load_obj("/Users/woochanghwang/PycharmProjects/LifeArc/COVID-19/data/hidden_to_keyPaths_dict") hidden_sorted_dict = {} hidden_met_rna = [] hidden_immune = [] hidden_cellcycle = [] hidden_others = [] covid_network_hidden_keyGene_copied = covid_network_hidden_keyGene[:] for gene in covid_network_hidden_keyGene_copied: if gene in hidden_enrichedPaths_dict["Met.RNA"]: hidden_met_rna.append(gene) elif gene in hidden_enrichedPaths_dict["CellCycle"]: hidden_cellcycle.append(gene) elif gene in hidden_enrichedPaths_dict["Immune"]: hidden_immune.append(gene) else: hidden_others.append(gene) hidden_sorted_dict["Met.RNA"] = sorted(hidden_met_rna,reverse=True) hidden_sorted_dict["CellCycle"] = sorted(hidden_cellcycle,reverse=True) hidden_sorted_dict["Immune"] = sorted(hidden_immune, reverse=True) hidden_sorted_dict["Other"] = sorted(hidden_others,reverse=True) covid_network_hidden_sorted = [] for label, genes in hidden_sorted_dict.items(): print(label, genes) for gene in genes: covid_network_hidden_sorted.append([label,gene]) return covid_network_hidden_sorted def sort_hidden_by_centrality_rwr(gene_set, centrality_dict): sorted_gene_set = [] gene_set_eigen = list(set(gene_set)&set(centrality_dict['key_eigen'])) gene_set_degree = list(set(gene_set)&set(centrality_dict['key_degree'])) gene_set_bw = list(set(gene_set)&set(centrality_dict['key_bw'])) gene_set_rwr = list(set(gene_set)&set(centrality_dict['key_rwr'])) gene_set_other = list(set(gene_set)-set(gene_set_eigen)-set(gene_set_degree)-set(gene_set_bw)-set(gene_set_rwr)) sorted_gene_set = sorted(gene_set_eigen,reverse=True) \ + sorted(gene_set_degree,reverse=True) \ + sorted(gene_set_bw,reverse=True) \ + sorted(gene_set_rwr,reverse=True) \ + sorted(gene_set_other,reverse=True) return sorted_gene_set def sort_hidden_by_enrichedPaths_centrality(covid_network_hidden_keyGene, centrality_dict): hidden_enrichedPaths_dict = dh.load_obj("../Data/hidden_to_keyPaths_dict") hidden_sorted_dict = {} hidden_met_rna = [] hidden_immune = [] hidden_cellcycle = [] hidden_met_proteins = [] hidden_others = [] covid_network_hidden_keyGene_copied = covid_network_hidden_keyGene[:] for gene in covid_network_hidden_keyGene_copied: if gene in hidden_enrichedPaths_dict["Met.RNA"]: hidden_met_rna.append(gene) elif gene in hidden_enrichedPaths_dict["CellCycle"]: hidden_cellcycle.append(gene) elif gene in hidden_enrichedPaths_dict["Immune"]: hidden_immune.append(gene) elif gene in hidden_enrichedPaths_dict["Met.Proteins"]: hidden_met_proteins.append(gene) else: hidden_others.append(gene) hidden_sorted_dict["Met.RNA"] = sort_hidden_by_centrality_rwr(hidden_met_rna, centrality_dict) hidden_sorted_dict["CellCycle"] = sort_hidden_by_centrality_rwr(hidden_cellcycle, centrality_dict) hidden_sorted_dict["Immune"] = sort_hidden_by_centrality_rwr(hidden_immune, centrality_dict) hidden_sorted_dict["Met.Proteins"] = sort_hidden_by_centrality_rwr(hidden_met_proteins, centrality_dict) hidden_sorted_dict["Other"] = sort_hidden_by_centrality_rwr(hidden_others, centrality_dict) covid_network_hidden_sorted = [] for label, genes in hidden_sorted_dict.items(): print(label, genes) for gene in genes: covid_network_hidden_sorted.append([label,gene]) return covid_network_hidden_sorted def make_backbone_key_genes_file(virus, key_gene_SARS, circos_node_file_a): graph_SARS = dh.load_obj(f"../result/{virus}/network/{virus}_All_Structure_All_Shortest_Paths_Graph") covid_network_all_nodes = list(set(graph_SARS.nodes())) covid_network_all_nodes = list(set(covid_network_all_nodes)) network_anaysis_df = pd.read_csv(f"../result/{virus}/network_analysis/{virus}_A549_24h_centrality_RWR_result_pvalue.csv") eigen_list = network_anaysis_df[network_anaysis_df['Eigen_pvalue']< 0.01]['Gene'].tolist() degree_list = network_anaysis_df[network_anaysis_df['Degree_pvalue']< 0.01]['Gene'].tolist() bw_list = network_anaysis_df[network_anaysis_df['Between_plvaue']< 0.01]['Gene'].tolist() rwr_list = network_anaysis_df[network_anaysis_df['RWR_pvalue']< 0.01]['Gene'].tolist() key_genes = list(set(key_gene_SARS)) key_genes_eigen = list(set(key_gene_SARS) & set(eigen_list)) key_genes_degree = list(set(key_gene_SARS) & set(degree_list) - set(key_genes_eigen)) key_genes_bw = list(set(key_gene_SARS) & set(bw_list) - set(key_genes_eigen)-set(key_genes_degree)) key_genes_rwr = list(set(key_gene_SARS) & set(rwr_list) - set(key_genes_eigen)-set(key_genes_degree)-set(key_genes_bw)) centrality_dict = { "key_genes": key_genes, "key_eigen" : key_genes_eigen, "key_degree" : key_genes_degree, "key_bw" : key_genes_bw, "key_rwr" : key_genes_rwr } print("key_target",len(key_genes), len(key_genes_eigen), len(key_genes_degree), len(key_genes_bw), len(key_genes_rwr)) dip_df = pd.read_csv(f"../Data/DIP/{virus}_DIP_no_duple.csv") dip_protein = pd.read_csv(f"../Data/DIP/{virus}_DIP_no_duple.csv")['gene_name'].tolist() covid_network_dip = list(set(covid_network_all_nodes)&set(dip_protein)) covid_network_dip_keyGene = list(set(covid_network_dip)&set(key_genes)) covid_network_dip_keyGene_eigen = list(set(covid_network_dip_keyGene)&set(key_genes_eigen)) covid_network_dip_keyGene_degree = list(set(covid_network_dip_keyGene)&set(key_genes_degree)) covid_network_dip_keyGene_bw = list(set(covid_network_dip_keyGene) & set(key_genes_bw)) covid_network_dip_keyGene_rwr = list(set(covid_network_dip_keyGene) & set(key_genes_rwr)) # print(len(covid_network_dip_keyGene),len(covid_network_dip_keyGene_degree),len(covid_network_dip_keyGene_bw), len(covid_network_dip_keyGene_eigen)) dep_SARS_protein = pd.read_csv(f"../Data/DEP/{virus}_DEP.csv")['Gene_name'].tolist() dep_protein = list(set(dep_SARS_protein)-set(dip_protein)) # covid_network_dep = list(set(covid_network_all_nodes)&set(dep_protein)) covid_network_dep_keyGene = list(set(covid_network_dep)&set(key_genes) - set(covid_network_dip_keyGene)) covid_network_dep_keyGene_eigen = list(set(covid_network_dep_keyGene) & set(key_genes_eigen)) covid_network_dep_keyGene_degree = list(set(covid_network_dep_keyGene) & set(key_genes_degree)) covid_network_dep_keyGene_bw = list(set(covid_network_dep_keyGene) & set(key_genes_bw)) covid_network_dep_keyGene_rwr = list(set(covid_network_dep_keyGene) & set(key_genes_rwr)) covid_network_hidden = list(set(covid_network_all_nodes)-set(dep_protein)-set(dip_protein)) covid_network_hidden_keyGene = list(set(covid_network_hidden)&set(key_genes)) # print(len(covid_network_all_nodes)) # print(len(key_genes), len(key_genes)) print(len(covid_network_dip_keyGene)) print(len(covid_network_dep_keyGene)) print(len(covid_network_hidden_keyGene)) ########## ## DIP to sub structure ######### # moa_to_pathway_groupby_df = moa_to_pathway_df.groupby('MoA_Category')['Pathways'].agg(list) # print(dip_df) dip_preygene_df = dip_df.groupby('bait_name')['gene_name'].agg(list) print(dip_preygene_df) dip_bait_gene_dict = dict() for key,value in dip_preygene_df.items(): # print(key) # string_gene = dip_stringgene_df[key] # bait_gene = list(set(value).union(set(string_gene))) dip_bait_gene_dict[key] = value dip_bait_gene_dict_key_sorted = sorted(list(dip_bait_gene_dict.keys()),key=natural_keys) dip_bait_gene_dict_sorted = dict() for key in dip_bait_gene_dict_key_sorted: # print(key) dip_bait_gene_dict_sorted[key] = dip_bait_gene_dict[key] # print(dip_bait_gene_dict_sorted.keys()) covid_network_dip_node_with_structure = [] covid_network_dip_coreGene_backup = covid_network_dip_keyGene[:] for structure,bait_gene in dip_bait_gene_dict_sorted.items(): key_genes_in_structrure = list(set(covid_network_dip_keyGene)&set(bait_gene)) ####################### # for sort ####################### structure_degree_gene = list(set(covid_network_dip_keyGene_degree)&set(key_genes_in_structrure)) structure_bw_gene = list(set(covid_network_dip_keyGene_bw)&set(key_genes_in_structrure)) structure_eigen_gene = list(set(covid_network_dip_keyGene_eigen)&set(key_genes_in_structrure)) structure_rwr_gene = list(set(covid_network_dip_keyGene_rwr)&set(key_genes_in_structrure)) structure_degree_gene.sort() structure_bw_gene.sort() structure_eigen_gene.sort() structure_rwr_gene.sort() for gene in structure_eigen_gene: covid_network_dip_node_with_structure.append([structure,gene]) for gene in structure_degree_gene: covid_network_dip_node_with_structure.append([structure, gene]) for gene in structure_bw_gene: covid_network_dip_node_with_structure.append([structure, gene]) for gene in structure_rwr_gene: covid_network_dip_node_with_structure.append([structure, gene]) ######################## # covid_network_dip_keyGene = list(set(covid_network_dip_keyGene) - set(key_genes_in_structrure)) # print(dip_bait_gene_dict.keys()) # print(covid_network_dip_node_with_structure) # print(len(covid_network_dip_node_with_structure)) # covid_network_dep_node = [['DEP',x] for x in covid_network_dep_keyGene] ################ # sort dep genes ################ covid_network_dep_keyGene_degree.sort() covid_network_dep_keyGene_bw.sort() covid_network_dep_keyGene_eigen.sort() covid_network_dep_keyGene_rwr.sort() covid_network_dep_keyGene_sorted = covid_network_dep_keyGene_eigen+covid_network_dep_keyGene_degree+covid_network_dep_keyGene_bw + covid_network_dep_keyGene_rwr covid_network_dep_node = [['DEP', x] for x in covid_network_dep_keyGene_sorted] ################### ## HIDDEN ############## # HIDDEN enriched pathways ############## covid_network_hidden_sorted = sort_hidden_by_enrichedPaths_centrality(covid_network_hidden_keyGene, centrality_dict) covid_network_background_node = [] covid_network_background_node += covid_network_dip_node_with_structure covid_network_background_node += covid_network_hidden_sorted covid_network_background_node += covid_network_dep_node ############################################ covid_network_background_df =
pd.DataFrame(covid_network_background_node, columns=['Mode','Gene'])
pandas.DataFrame
import os import numpy as np import pandas as pd import pytorch_lightning as pl from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import LabelEncoder import torch import src.config as proj_config class EventDataset(Dataset): @staticmethod def get_embeddings_vec(events, feature_name): embeddings_vec = events[feature_name].values embeddings = [torch.tensor(vec, dtype=torch.float64) for vec in embeddings_vec] embeddings = torch.stack(embeddings, dim=0) return embeddings @staticmethod def check_diff_in_days(day1, day2, diff): dt1 = pd.to_datetime(day1, format='%Y/%m/%d') dt2 =
pd.to_datetime(day2, format='%Y/%m/%d')
pandas.to_datetime
import pandas as pd import numpy as np import warnings from datetime import datetime from typing import Optional, Union class Genes: """Internal function that generate a pool of genes (search space) according to the given parameters. Parameters ---------- search_space : dict Where keys are parameter names (strings) and values are int, float or str. Represents search space over parameters of the provided estimator. pop_size : int Size of the initial population. """ def __init__(self, search_space: dict, pop_size: int): cuerrent_time: str if pop_size < 10: cuerrent_time = datetime.now().strftime("%H:%M:%S") warnings.warn(f'[{cuerrent_time}] Low Population Warning: Small initial population size maybe cause premature convergence. Please consider initializing a larger population size.') def _is_all_str(dictionary): for v in dictionary.values(): if all(isinstance(item, str) for item in v): return True return False self.all_str = _is_all_str(search_space) self.search_space = search_space self.pop_size = pop_size def _make_genes_numeric(self, lower: Optional[Union[int, float, str]], upper: Optional[Union[int, float, str]], prior: str, pop_size: int) -> pd.DataFrame: """Generate numerical values for solution candidates according to given statistical distribution. Parameters ---------- lower : integer Defines the lower boundaries of the distributions. upper : integer Defines the upper boundaries of the distributions. pop_size : integer A parameter to control the size of the population. prior : string A parameter that defines the sampling distribution. """ allele: np.array mu: float sigma: float genes: Union[float, list] # Check if upper is bigger than lower if lower >= upper: raise Exception('Upper must be larger than lower boundary.') # Check if sampling distribution available if prior not in ['normal', 'uniform', 'log-normal']: raise Exception('Prior for search space must be "normal", "uniform", "log-normal".') # Obtains mu and sigma from the interval allele = np.arange(lower, upper) mu = allele.mean() sigma = allele.std() # Sampling from normal distribution if prior == 'normal': genes = np.random.normal(loc=mu, scale=sigma, size=pop_size) # Sampling from uniform distribution elif prior == 'uniform': genes = np.random.uniform(low=lower, high=upper, size=pop_size) # Sampling from log-normal distribution elif prior == 'log-normal': genes = np.random.lognormal(mu=mu, sigma=sigma, size=pop_size) genes = (genes - genes.min()) / (genes.max() - genes.min()) * (upper - lower) + lower if isinstance(lower, int) and isinstance(upper, int): genes = [int(round(i)) for i in genes] return pd.DataFrame(genes, dtype='O') def _make_genes_categorical(self, categories: tuple, pop_size: int) -> pd.DataFrame: """Randomly generate categorical values for solution candidates. Parameters ---------- categories : tuple Contains all possible categories for particular genes. pop_size : int A parameter to control the size of the population. """ categorical_genes: Union[np.array, pd.DataFrame] categorical_genes = np.random.choice(a=categories, size=pop_size) categorical_genes =
pd.DataFrame(categorical_genes)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Manipulação de dados - III # ## Agregação e agrupamento # ### Agregando informações de linhas ou colunas # # Para agregar informações (p.ex. somar, tomar médias etc.) de linhas ou colunas podemos utilizar alguns métodos específicos já existentes em *DataFrames* e *Series*, tais como `sum`, `mean`, `cumsum` e `aggregate` (ou equivalentemente `agg`): # In[1]: import pandas as pd import numpy as np dados_covid_PB = pd.read_csv('https://superset.plataformatarget.com.br/superset/explore_json/?form_data=%7B%22slice_id%22%3A1550%7D&csv=true', sep=',', index_col=0) # In[2]: dados_covid_PB.agg(lambda vetor: np.sum(vetor))[['casosNovos','obitosNovos']].astype('int') # Podemos conferir esta agregação resultante com o número de casos acumulados e óbitos acumulados # In[3]: dados_covid_PB.head() # Isto também pode ser obtido utilizando o método `sum` de *DataFrames* e *Series*: # In[4]: dados_covid_PB[['casosNovos','obitosNovos']].sum() # Podemos recriar a coluna `'obitosAcumulados'` com o método `cumsum` (soma cumulativa): # In[5]: dados_covid_PB.obitosNovos.sort_index().cumsum() # ### Selecionando entradas distintas # # Para selecionar entradas distintas utilizamos o método `drop_duplicate`. Aqui, para exemplificar, vamos utilizar o banco de dados oficial sobre COVID no Brasil: # In[6]: # pode levar um tempo para ler... covid_BR = pd.read_excel('../database/HIST_PAINEL_COVIDBR_18jul2020.xlsx') # In[7]: covid_BR.tail(3) # In[8]: # resumo da tabela covid_BR.info() # In[9]: # todos os estados únicos covid_BR.estado.drop_duplicates().array # In[10]: # ordena alfabeticamente covid_BR.estado.drop_duplicates().dropna().sort_values().array # ### Agrupando dados por valores em colunas e agregando os resultados # # Vamos determinar uma coluna para agrupar. Consideraremos o *DataFrame* `covid_BR`e selecionaremos os estados *PB*, *PE*, *RJ* e *SP* para realizar análises agrupando os resultados por estados. # In[11]: covid_BR.query('estado in ["PB", "PE", "RJ", "SP"]') # Inspecionando o conjunto de dados, observamos que os dados para estado são apresentados com o valor `NaN` para `codmun` e quando `codmun` possui um valor diferente de `NaN`, o resultado é apenas para o município do código em questão. # # Como estamos interessados nos valores por estado, vamos selecionar apenas os dados com `codmun` contendo `NaN`. # In[12]: covid_estados = covid_BR.query('estado in ["PB", "PE", "RJ", "SP"]') covid_apenas_estados = covid_estados.loc[covid_estados['codmun'].isna()] # Vamos agora selecionar apenas as colunas de interesse. Para tanto, vejamos os nomes das colunas: # In[13]: covid_apenas_estados.columns # In[14]: covid_apenas_estados = covid_apenas_estados[['estado', 'data', 'casosNovos', 'obitosNovos']] # A data parece ser o *index* natural, já que o *index* atual não representa nada. Observe que teremos *index* repetidos, pois teremos as mesmas datas em estados diferentes. # In[15]: covid_apenas_estados # In[16]: covid_apenas_estados = covid_apenas_estados.set_index('data') # In[17]: covid_apenas_estados # ### Agrupando com o método *groupby* # # Podemos escolher uma (ou mais colunas, incluindo o índice) para agrupar os dados. Ao agruparmos os dados, receberemos um objeto do tipo `DataFrameGroupBy`. Para vermos os resultados, devemos agregar os valores: # In[18]: covid_estados_agrupado = covid_apenas_estados.groupby('estado') # In[19]: covid_estados_agrupado.sum().rename({'casosNovos':'Casos Totais', 'obitosNovos':'Obitos Totais'},axis=1) # Podemos agrupar por mais de uma coluna. Vamos fazer dois grupos. *grupo_1* formado por PB e PE e *grupo_2* formado por RJ e SP. Em seguida, vamos agrupar por grupo e por data: # In[20]: covid_estados_grupos = covid_apenas_estados.copy() col_grupos = covid_estados_grupos.estado.map(lambda estado: 'grupo_1' if estado in ['PB','PE'] else 'grupo_2') covid_estados_grupos['grupo'] = col_grupos # In[21]: covid_estados_grupos # Agora vamos agrupar e agregar: # In[22]: covid_grupo_agrupado = covid_estados_grupos.groupby(['grupo','data']) # In[23]: covid_grupo_agrupado.sum() # ### Mesclando *DataFrames* # # Vamos agora ver algumas formas de juntar dois ou mais *DataFrames* com *index* ou colunas em comum para formar um novo *DataFrame*. # # #### Mesclando *DataFrames* através de concatenações # # Concatenar nada mais é do que "colar" dois ou mais *DataFrames*. Podemos concatenar por linhas ou por colunas. # # A função que realiza a concatenação é `concat`. Os dois argumentos mais utilizados são a lista de *DataFrames* a serem concatenados e `axis`, onde `axis = 0` indica concatenação por linha (um *DataFrame* "embaixo" do outro) e `axis=1` indica concatenação por coluna (um *DataFrame* ao lado do outro). # Relembre do *DataFrame* `df_dict_series`: # In[24]: df_dict_series = pd.read_csv('../database/df_dict_series.csv') # Vamos criar um novo, com novas pessoas: # In[25]: serie_Idade_nova = pd.Series({'Augusto':13, 'André': 17, 'Alexandre': 45}, name="Idade") serie_Peso_novo = pd.Series({'Augusto':95, 'André': 65, 'Alexandre': 83}, name="Peso") serie_Altura_nova = pd.Series({'Augusto':192, 'André': 175, 'Alexandre': 177}, name="Altura") serie_sobrenome = pd.Series({'Augusto':'Castro', 'André':'Castro', 'Alexandre':'Castro'}, name='Sobrenome') dicionario_novo = {'Sobrenome':serie_sobrenome, 'Peso': serie_Peso_novo, 'Idade': serie_Idade_nova, 'Altura': serie_Altura_nova} df_novo =
pd.DataFrame(dicionario_novo)
pandas.DataFrame
""" This script creates a boolean mask based on rules 1. is it boreal forest zone 2. In 2000, was there sufficent forest """ #============================================================================== __title__ = "FRI calculator for the other datasets" __author__ = "<NAME>" __version__ = "v1.0(21.08.2019)" __email__ = "<EMAIL>" #============================================================================== # +++++ Check the paths and set ex path to fireflies folder +++++ import os import sys if not os.getcwd().endswith("fireflies"): if "fireflies" in os.getcwd(): p1, p2, _ = os.getcwd().partition("fireflies") os.chdir(p1+p2) else: raise OSError( "This script was called from an unknown path. CWD can not be set" ) sys.path.append(os.getcwd()) #============================================================================== # Import packages import numpy as np import pandas as pd import argparse import datetime as dt from collections import OrderedDict import warnings as warn from netCDF4 import Dataset, num2date, date2num from scipy import stats # import rasterio import xarray as xr from dask.diagnostics import ProgressBar from numba import jit import bottleneck as bn import scipy as sp from scipy import stats import glob # Import plotting and colorpackages import matplotlib.pyplot as plt import matplotlib.colors as mpc import matplotlib as mpl import palettable import seaborn as sns import cartopy.crs as ccrs import cartopy.feature as cpf from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER # import regionmask as rm # import itertools # Import debugging packages import ipdb # from rasterio.warp import transform from shapely.geometry import Polygon # import geopandas as gpd # from rasterio import features # from affine import Affine # +++++ Import my packages +++++ import myfunctions.corefunctions as cf # import MyModules.PlotFunctions as pf # import MyModules.NetCDFFunctions as ncf #============================================================================== def main(): # ========== Setup the paths ========== TCF = 10 # TCF = 50 dpath, chunksize = syspath() data = datasets(dpath, chunksize, TCF=TCF) # ========== select and analysis scale ========== mwbox = [1]#, 2, 5]#, 10] #in decimal degrees maskds = "esacci" maskforce = False # Added to allow skiping of the mask for dsn in data: print(dsn) # ========== Set up the filename and global attributes ========= if dsn.startswith("HANSEN"): ppath = dpath + "/BurntArea/HANSEN/FRI/" force = True else: ppath = dpath + "/BurntArea/%s/FRI/" % dsn force = False cf.pymkdir(ppath) # ========== Get the dataset ========= mask = landseamaks(data, dsn, dpath, maskforce ) # ========== Calculate the annual burn frewuency ========= ds_ann = ANNcalculator(data, dsn, mask, force, ppath, dpath, chunksize, TCF) # force = True # breakpoint() # ========== work out the FRI ========== FRIcal(ds_ann, mask, dsn, force, ppath, dpath, mwbox, data, chunksize, TCF) # force = False print(dsn, " Complete at:", pd.Timestamp.now()) ipdb.set_trace() #============================================================================== def FRIcal(ds_ann, mask, dsn, force, ppath, dpath, mwbox, data, chunksize, TCF): """""" """ Function to caluclate the FRI at different resolutions """ # ========== Add a loading string for forest cover in Hansen Datasets ========== if dsn.startswith("HANSEN") and (TCF > 0.): tcfs = "_%dperTC" % np.round(TCF) else: tcfs = "" # ========== Setup a working path ========== tpath = ppath+"tmp/" # ========== work out the ration ========== pix = abs(np.unique(np.diff(ds_ann.latitude.values))[0]) # ds_ann = ds_ann.chunk({"latitude":chunksize, "longitude":-1}) print(f"Loading annual data into ram at: {
pd.Timestamp.now()
pandas.Timestamp.now
__author__ = '<NAME>' import numpy as np import pandas as pd import random import platform import os if platform.system() == 'Linux': import xlsxwriter # support saving xlsx file in unix-domain systems def makedir(save): """ Create required directory if not exists Args: population: population which will be saved in save function file_name: file created inside directory """ def wrapper(*args): directory = os.path.join(os.getcwd(), 'datasets') if not os.path.exists(directory): os.makedirs(directory) save(*args) return wrapper class Configuration_Executer(object): ''' This class provide functional operations on given configuration dataset whose will give reasonable output after transformations ''' def __init__(self, population_size, chromosome_size, equal_chromosomes, initialization_method, representation, saving_method): try: self.population_size = int(population_size) except ValueError as v: print("Wrong type of population_size input, check the DEFAULTS for more info") raise try: self.chromosome_size = int(chromosome_size) except ValueError as v: raise v("Wrong type of chromosome_size input, check the DEFAULTS for more info") try: self.equal_chromosomes = bool(equal_chromosomes) except ValueError as v: print("Wrong type of equal_chromosomes input, check the DEFAULTS for more info") raise self.initialization_method = initialization_method self.representation = representation self.saving_method = saving_method def count_chromosomes(self, chromosome_layer : str) -> int: try: count = int(input('How many chromosomes in {0} layer, full chromosome length is {1} : '.format(chromosome_layer, self.chromosome_size))) if count > self.chromosome_size: count = self.chromosome_size if count < 0: raise Exception('Numer of chromosomes cannot be negative value') return count except ValueError as v: raise Exception('Number of chromosomes in each layer must be an integer value!') def random_initialization(self): population =
pd.DataFrame()
pandas.DataFrame
import math import load_data import pickle import pandas as pd import numpy as np import datetime from collections import deque import scipy.stats as st import ast import astpretty import re def main(): # Used first in Organization.ipynb print('\nCell Output') get_cell_output() print('\nCell Stats') get_cell_stats() print('\nCell Order') get_cell_order() print('\nCell Types') get_cell_types() print('\nComments') get_comments() # Used first in Packages.ipynb print('\nGet Imports') get_nb_imports() print('\nGet Code') get_nb_code() print('\nGetting nb_imports_code_df') nb_imports_code_df = load_data.load_nb_imports(code = True) print('\nnb_imports_code_df loaded') cell_types_df = load_data.load_cell_types() print('\ncell_types loaded') cell_stats_df = load_data.load_cell_stats() print('\ncell_stats loaded') cell_info_code_df = cell_types_df.merge( cell_stats_df, on = 'file' ).merge( nb_imports_code_df.rename(columns={'code':'code_list'}), on = 'file' ) print('\ndfs combined') #Used first in APIs.ipynb print('\nGet Objects') get_all_objects(cell_info_code_df) print('\nGet Lines Per Code Cell') get_lines_per_code_cell(cell_info_code_df) print('\nGet Function Definitions') get_function_defs(cell_info_code_df) print('\nGet Function Uses') get_function_use(cell_info_code_df) print('\nSeparate User-defined functions from not user-defined') add_user_funcs() # Used first in Struggles.ipynb print('\nGet Erros') get_errors() print('\nGet Statuses') get_statuses() # Used first in Visualizations.ipynb print('\nGet Visualization Uses') get_vis_uses(nb_imports_code_df) print('\nAdd Visualization Uses to Notebooks') get_vis_uses_nb(nb_imports_code_df) # Used first in Models.ipynb print('\nGet Framework Uses') get_framework_uses(nb_imports_code_df) print('\nGet Magic') get_magic() def get_magic(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','cell_id','code'], chunksize = 10000 ) def aggregate_special_lines(list_of_lines_of_code): return [ l for l in load_data.flatten([l.split('\n') for l in list_of_lines_of_code if str(l) != 'nan']) if l.startswith('%') or '!' in l or l.startswith('?') or l.endswith('?') ] special_dfs = [] i = 0 start = datetime.datetime.now() i = len(special_dfs) for chunk in df_chunks: df = chunk.groupby('file')['code'].aggregate( aggregate_special_lines ).reset_index() special_dfs.append(df) if i%1000 == 0: print(i, datetime.datetime.now() - start) i+=1 end = datetime.datetime.now() print('Chunks done in', end - start) start = datetime.datetime.now() special_df = pd.concat( special_dfs, sort = False ).reset_index(drop = True).groupby('file')['code'].aggregate( load_data.flatten ).reset_index() end = datetime.datetime.now() print('Combined in', end - start) start = datetime.datetime.now() f = open('analysis_data/special_functions.df', 'wb') pickle.dump(special_df, f) f.close() end = datetime.datetime.now() print('Saved in', end - start) def get_nb_code(): start = datetime.datetime.now() df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','code','cell_type'], chunksize=10000 ) # 25 minutes start = datetime.datetime.now() i = 0 code_dfs = [] for chunk in df_chunks: code_dfs.append( chunk[chunk.cell_type == 'code'].groupby('file')['code'].aggregate(lambda x: list(x)).reset_index() ) if i%1000 == 0: print(i, datetime.datetime.now() - start) i += 1 end = datetime.datetime.now() print('Chunks', end - start) code_df = pd.concat(code_dfs, sort = False).reset_index(drop=True) start = datetime.datetime.now() code_df = code_df.groupby('file')['code'].aggregate(load_data.flatten).reset_index() end = datetime.datetime.now() print('Combined', end - start) print('now saving') start = datetime.datetime.now() try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: try: f = open('analysis_data/nb_code.df', 'wb') pickle.dump(code_df, f) f.close() print('saved to pickle') except: code_df.to_csv('analysis_data/nb_code.csv', index = False) print('saved to csv') end = datetime.datetime.now() print(end - start) def get_all_objects(cell_info_code_df): # 1.5 hours start = datetime.datetime.now() all_objects = [] unprocessed = 0 target_types = [ast.Name,ast.Tuple, ast.Attribute, ast.Subscript, ast.List ] for i, row in cell_info_code_df.iterrows(): o = { 'file': row['file'], 'objects': [] } try: all_code = '\n'.join([ c for c in '\n'.join([l for l in row.code_list if type(l) == str]).split('\n') if (c != '' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!') ) ]) tree = ast.parse(all_code) except Exception as e: all_objects.append(o) unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start, unprocessed, 'unprocessed') continue for t in tree.body: if type(t) == ast.Assign: value_type = type(t.value) for target in t.targets: if type(target) in [ast.Tuple, ast.List]: for node in ast.walk(target): if type(node) == ast.Name: o['objects'].append((node.id, value_type)) else: if type(target) == ast.Name: for node in ast.walk(target): if type(node) == ast.Name: o['objects'].append((node.id, value_type)) all_objects.append(o) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Found objects', end - start) all_objects_df = pd.DataFrame(all_objects) # 14 seconds start = datetime.datetime.now() f = open('analysis_data/all_objects.df', 'wb') pickle.dump(all_objects_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_lines_per_code_cell(cell_info_code_df): # 12.5 minutes start = datetime.datetime.now() lines_per_code_cell = [ row['lines_of_code'] / row['code'] for i, row in cell_info_code_df.iterrows() if row['code'] != 0 ] end = datetime.datetime.now() print('Calculated', end - start) # 0.2 seconds start = datetime.datetime.now() f = open('analysis_data/lines_per_code_cell.list', 'wb') pickle.dump(lines_per_code_cell, f) f.close() end = datetime.datetime.now() print('Saved',end - start) def get_function_use(cell_info_code_df): ''' Get all function calls from a python file The MIT License (MIT) Copyright (c) 2016 <NAME> <<EMAIL>> ''' class FuncCallVisitor(ast.NodeVisitor): def __init__(self): self._name = deque() @property def name(self): return '.'.join(self._name) @name.deleter def name(self): self._name.clear() def visit_Name(self, node): self._name.appendleft(node.id) def visit_Attribute(self, node): try: self._name.appendleft(node.attr) self._name.appendleft(node.value.id) except AttributeError: self.generic_visit(node) def get_func_calls(tree): func_calls = [] for node in ast.walk(tree): if isinstance(node, ast.Call): callvisitor = FuncCallVisitor() callvisitor.visit(node.func) func_calls.append((callvisitor.name, [type(a) for a in node.args])) return func_calls # 1 hour 45 minutes start = datetime.datetime.now() function_use = { 'functions': [], 'parameters': [], 'file': [] } unprocessed = 0 for i, row in cell_info_code_df.iterrows(): nb_funcs = [] nb_params = [] try: all_code = '\n'.join([c for c in '\n'.join([l for l in row.code_list if str(l) != 'nan']).split('\n') if (c != '' and str(c) != 'nan' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!'))]) tree = ast.parse(all_code) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue for t in tree.body: try: for f in get_func_calls(t): if f[0] not in nb_funcs: nb_funcs.append(f[0]) nb_params.append(len(f[1])) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue function_use['functions'].append(nb_funcs) function_use['parameters'].append(nb_params) function_use['file'].append(row['file']) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Gone through for function uses', end - start) function_use_df = pd.DataFrame(function_use) # 48 seconds start = datetime.datetime.now() f = open('analysis_data/nb_function_use.df', 'wb') pickle.dump(function_use_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def get_function_defs(cell_info_code_df): start = datetime.datetime.now() unprocessed = 0 function_defs = { 'function': [], 'parameters':[], 'file': [] } for i, row in cell_info_code_df.iterrows(): try: all_code = '\n'.join([c for c in '\n'.join([l for l in row.code_list if str(l) != 'nan']).split('\n') if (c != '' and str(c) != 'nan' and not c.strip().startswith('%') and not c.strip().startswith('?') and not c.strip().startswith('!'))]) tree = ast.parse(all_code) except: unprocessed += 1 if i%200000 == 0: print(i, datetime.datetime.now() - start) continue for t in tree.body: if type(t) == ast.FunctionDef: name = t.name num_args = 0 for a in ast.walk(t.args): if type(a) == ast.arg: num_args += 1 function_defs['function'].append(name) function_defs['parameters'].append(num_args) function_defs['file'].append(row.file) elif type(t) == ast.ClassDef: name = t.name num_args = 0 for b in t.body: if type(b) == ast.FunctionDef and b.name == '__init__': for a in ast.walk(b.args): if type(a) == ast.arg and a.arg != 'self': num_args += 1 elif type(b) == ast.FunctionDef: name_b = name+"."+b.name num_args_b = 0 for a in ast.walk(b.args): if type(a) == ast.arg and a.arg != 'self': num_args_b += 1 function_defs['function'].append(name_b) function_defs['parameters'].append(num_args_b) function_defs['file'].append(row.file) function_defs['function'].append(name) function_defs['parameters'].append(num_args) function_defs['file'].append(row.file) if i%200000 == 0: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print('Through cell_info_code for functions', end - start) start = datetime.datetime.now() function_defs_df = pd.DataFrame(function_defs) f = open('analysis_data/function_defs.df', 'wb') pickle.dump(function_defs_df, f) f.close() end = datetime.datetime.now() print('Saved', end - start) def add_user_funcs(): notebooks = load_data.load_notebooks() cell_stats_df = load_data.load_cell_stats() cell_types_df = load_data.load_cell_types() function_defs_df = load_data.load_function_defs() function_use_df = load_data.load_function_use() print('grouping...') start = datetime.datetime.now() function_defs_nb_df = function_defs_df.groupby('file')['function'].aggregate(lambda x: list(x)).reset_index().rename(columns={'function':'function_defs'}) end = datetime.datetime.now() print('...grouped', end - start) print('merging...') start = datetime.datetime.now() functions_df = function_use_df.merge(function_defs_nb_df, on = 'file', how = 'left') functions_df.function_defs.loc[functions_df.function_defs.isna()] = [[]]*sum(functions_df.function_defs.isna()) end = datetime.datetime.now() print('...merged', end - start) start = datetime.datetime.now() all_def = [] all_not = [] for i, row in functions_df.iterrows(): def_uses = [f for f in row.functions if f in row.function_defs] not_uses = [f for f in row.functions if f not in row.function_defs] all_def.append(def_uses) all_not.append(not_uses) if i%100000 == 0 or i == 100 or i == 1000: print(i, datetime.datetime.now() - start) end = datetime.datetime.now() print(end - start) function_use_df['user_def'] = all_def function_use_df['not_user_def'] = all_not t = datetime.datetime.now() print('Added to df', t - end) f = open('analysis_data/nb_function_use.df', 'wb') pickle.dump(function_use_df, f) f.close() print('Saved', datetime.datetime.now() - t) print('DONE') def get_errors(): df_chunks = pd.read_csv( 'data_final/cells_final.csv', header = 0, usecols = ['file','num_error','error_names','cell_id'], chunksize=10000 ) # 25 minutes start = datetime.datetime.now() error_dfs = [] i = 0 for chunk in df_chunks: try: load_data.string_to_list(chunk, 'error_names') error_dfs.append( chunk.groupby('file')['num_error'].aggregate(['sum','count']).reset_index().merge( chunk.groupby('file')['error_names'].aggregate(load_data.flatten).reset_index(), on = 'file' ) ) except Exception: print(i, type(chunk)) if i%1000 == 0: print(i, datetime.datetime.now() - start) i+=1 end = datetime.datetime.now() print('Chunks', end - start) error_df = pd.concat(error_dfs, sort = False).reset_index(drop=True) start = datetime.datetime.now() error_df = error_df.groupby('file')['count'].sum().reset_index().merge( error_df.groupby('file')['error_names'].aggregate(load_data.flatten).reset_index(), on = 'file' ) end = datetime.datetime.now() print('Combined', end - start) # 5 seconds start = datetime.datetime.now() f = open('analysis_data/error.df', 'wb') pickle.dump(error_df, f) f.close end = datetime.datetime.now() print('Saved', end - start) def get_vis_uses_nb(nb_imports_code_df): notebooks =
pd.read_csv('data_final/notebooks_final.csv')
pandas.read_csv
# Copyright (c) 2019-2020, RTE (https://www.rte-france.com) # See AUTHORS.txt # This Source Code Form is subject to the terms of the Apache License, version 2.0. # If a copy of the Apache License, version 2.0 was not distributed with this file, you can obtain one at http://www.apache.org/licenses/LICENSE-2.0. # SPDX-License-Identifier: Apache-2.0 # This file is part of hadar-simulator, a python adequacy library for everyone. from copy import deepcopy from functools import reduce from typing import TypeVar, List, Generic, Type import numpy as np import pandas as pd from hadar.optimizer.domain.input import Study from hadar.optimizer.domain.output import Result __all__ = ["ResultAnalyzer", "NetworkFluentAPISelector"] T = TypeVar("T") class Index(Generic[T]): """ Generic Index to use to select and rank data. """ def __init__(self, column, index=None): """ Initiate instance. :param column: column name link to this index :param index: list of index or element to filter from data. None by default to say keep all data. """ self.column = column if index is None: self.all = True elif isinstance(index, list): self.index = tuple(index) self.all = len(index) == 0 elif not isinstance(index, tuple): self.index = tuple([index]) self.all = False else: self.index = index self.all = False def filter(self, df: pd.DataFrame) -> pd.Series: """ Filter dataframe. Filter columns with columns attributes with index values. :param df: dataframe to filter :return: Series of boolean to set row to keep """ if self.all: return df[self.column].notnull() return df[self.column].isin(self.index) def is_alone(self) -> bool: """ Ask if index filter element is alone. :return: if index filter only one value return True else False """ return not self.all and len(self.index) <= 1 class ProdIndex(Index[str]): """Index implementation to filter productions""" def __init__(self, index): Index.__init__(self, column="name", index=index) class ConsIndex(Index[str]): """ Index implementation to filter consumptions""" def __init__(self, index): Index.__init__(self, column="name", index=index) class StorIndex(Index[str]): """ Index implementation to filter storage""" def __init__(self, index): Index.__init__(self, column="name", index=index) class LinkIndex(Index[str]): """Index implementation to filter destination node""" def __init__(self, index): Index.__init__(self, column="dest", index=index) class SrcConverter(Index[str]): """Index implementation to filter source converter""" def __init__(self, index): Index.__init__(self, column="name", index=index) class DestConverter(Index[str]): """Index implementation to filter destination converter""" def __init__(self, index): Index.__init__(self, column="name", index=index) class NodeIndex(Index[str]): """Index implementation to filter node""" def __init__(self, index): Index.__init__(self, column="node", index=index) class NetworkIndex(Index[str]): """Index implementation fo filter network""" def __init__(self, index): Index.__init__(self, column="network", index=index) class IntIndex(Index[int]): """Index implementation to handle int index with slice""" def __init__(self, column: str, index): """ Create instance. :param index: one element or list on element to filter. :param start: start datetime to filter (to use instead of index) :param end: end datetime to filter (to use instead of index) """ if isinstance(index, slice): start = 0 if index.start is None else index.start stop = -1 if index.start is None else index.stop step = 1 if index.step is None else index.step index = tuple(range(start, stop, step)) Index.__init__(self, column=column, index=index) class TimeIndex(IntIndex): """Index implementation to filter by time step""" def __init__(self, index): IntIndex.__init__(self, column="t", index=index) class ScnIndex(IntIndex): """index implementation to filter by scenario""" def __init__(self, index): IntIndex.__init__(self, column="scn", index=index) class ResultAnalyzer: """ Single object to encapsulate all postprocessing aggregation. """ def __init__(self, study: Study, result: Result): """ Create an instance. :param study: study to use :param result: result of study used """ self.result = result self.study = study self.consumption = ResultAnalyzer._build_consumption(self.study, self.result) self.production = ResultAnalyzer._build_production(self.study, self.result) self.storage = ResultAnalyzer._build_storage(self.study, self.result) self.link = ResultAnalyzer._build_link(self.study, self.result) self.src_converter = ResultAnalyzer._build_src_converter( self.study, self.result ) self.dest_converter = ResultAnalyzer._build_dest_converter( self.study, self.result ) @staticmethod def _build_consumption(study: Study, result: Result): """ Flat all data to build global consumption dataframe columns: | cost | name | node | network | asked | given | t | scn | """ h = study.horizon scn = study.nb_scn elements = sum( [ sum([len(n.consumptions) for n in net.nodes.values()]) for net in study.networks.values() ] ) size = scn * h * elements cons = { "cost": np.empty(size, dtype=float), "asked": np.empty(size, dtype=float), "given": np.empty(size, dtype=float), "name": np.empty(size, dtype=str), "node": np.empty(size, dtype=str), "network": np.empty(size, dtype=str), "t": np.empty(size, dtype=float), "scn": np.empty(size, dtype=float), } cons =
pd.DataFrame(data=cons)
pandas.DataFrame
import streamlit as st import json import ast import os import datetime from new_card_transformation import transform_card import pandas as pd import numpy as np from functions import obtain_unique_values, load_models, predict_dummy_binary, predict_dummy_multiclass, predict_dummy_numeric from streamlit_player import st_player import nltk # Download nltk english stopwords nltk.download('stopwords') # Show Magic's logo st.sidebar.image('./static/Magic-The-Gathering-Logo.png', use_column_width=True) # Title to display on the App st.markdown(""" # Magic The Gathering ### Artificial Intelligence Models Welcome to our **Magic: The Gathering card prediction models** with **Artificial Intelligence**! *Our vision is to bring AI to Magic and help evolving this amazing game!* """) col4, col5 = st.columns(2) # If they check this button, we show a much detailed description if col4.checkbox('<<< HOW DOES IT WORK?'): st.markdown(""" This site serves as demonstration to many Machine Learning models that are trained using the information from cards the Scryfall Magic The Gathering API. **The process goes something like this**: First we get all Magic cards from the Scryfall API, we then transform those cards into data prepared for machine learning, converting each card into hundreds of different data points. That's when we proceed to *show* that data to differe tmachine learning models alongside with the target we want to predict. The model will start learning patterns hidden within the data and improve with the more data we feed it, until it's able by itself to provide accurate predictions. As of today, we have 3 types of models and use 3 different algorithms: * **BINARY** models, **MULTICLASS** models and **NUMERIC** models, to define the type of prediction we want to do (a YES or NO question vs a specific category prediction) * **Logistic/Linear Regression**, **Gradient Boosting** and **Deep Learning** (Embeddings and bidirectional LSTM network) If you want to learn more about the process, [**here's an article**](https://towardsdatascience.com/artificial-intelligence-in-magic-the-gathering-4367e88aee11) **How do you start testing the models?** * **<<<** Look at the sidebar on the left. There's where you pick a card or create a card yourself! * Select the data source * FROM JSON: you provide the JSON file with your card (you can also download the template). * USE FORM: you complete a form with your own card data, starting from a template. * FROM DB: you load a REAL card from the app's database. You can also modify the card! * **vvv** Look down below: Select the model you want to use * Run the model with the **EXECUTE MODEL** button """) # Link to the YouTube channel link = '[Watch all the videos in the YouTube channel](https://www.youtube.com/channel/UC3__atAqSUrIMNLg_-6aJBA)' col5.markdown(link, unsafe_allow_html=True) # Embed a video tutorial st_player("https://youtu.be/30_tT_R7qtQ") # youtube video tutorial # st.video("./static/Media1.mp4", format="video/mp4") # Load the Card DB card_db = pd.read_csv("./datasets/WEBAPP_datasets_vow_20211220_FULL.csv") # Obtain the unique values from "keywords" column keyword_unique_list = obtain_unique_values(card_db, 'keywords') # Obtain the unique values from "set_type" column settype_unique_list = list(card_db['set_type'].unique()) # Model selection with open('./models/model_marketplace.json') as json_file: model_dict = json.load(json_file) # Title for model section st.write("### Use the models") # Allow the user to select a model model_selected = st.selectbox('Select your model', list(model_dict.keys())) # Get all the data of the model selected model = model_dict[model_selected]['MODEL'] # Print some description of the selected model to the user col1, col2, col3 = st.columns(3) col1.write(f"""**Model Family**: {model_dict[model_selected]['MODEL FAMILY']}""") col2.write(f"""**Model Question**: {model_dict[model_selected]['MODEL QUESTION']}""") col3.write(f"""**Model Description**: {model_dict[model_selected]['MODEL DESCRIPTION']}""") # Source Selection source_selection = st.sidebar.radio('Select a new card!', ['FROM JSON', 'USE FORM', 'FROM DB']) # FROM JSON if source_selection == 'FROM JSON': # Load a new JSON with a card json_file = st.sidebar.file_uploader('Upload a card in JSON format') # Load the sample JSON to allow user to download a sample file with open("./dummy/sample.json", encoding="utf-8") as jsonFile: sample_json = json.load(jsonFile) # Allow the user to download the sample in JSON format st.sidebar.download_button('Download JSON sample', json.dumps(sample_json, ensure_ascii=False), file_name="sample.json") try: new_card = json.load(json_file) st.sidebar.write(new_card) except: pass # FROM FORM else: if source_selection == 'USE FORM': name = st.sidebar.text_input('Cardname', value="Normal Creature") lang = st.sidebar.selectbox('Language', sorted(card_db['lang'].unique())) released_at = st.sidebar.date_input('Released at', value=datetime.datetime(2021, 9, 24)) mana_cost = st.sidebar.text_input('Mana Cost', value="{3}{W}") cmc = st.sidebar.number_input('CMC', value=4) type_line = st.sidebar.text_input('Card Type', value="Creature — Warrior") oracle_text = st.sidebar.text_area('Oracle Text', value="Vigilance\nWhenever cardname attacks, put a +1/+1 counter on it") oracle_text_1 = st.sidebar.text_area('DFC: Oracle Text Face', value="None") oracle_text_2 = st.sidebar.text_area('DFC: Oracle Text Back', value="None") power = st.sidebar.select_slider('Power', [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,"None"], value=5) toughness = st.sidebar.select_slider('Toughness', [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,"None"], value=3) colors = st.sidebar.multiselect('Colors', ['W', 'U', 'B', 'R', 'G'], default=["W"]) color_identity = st.sidebar.multiselect('Color Identity', ['W', 'U', 'B', 'R', 'G'], default=["W"]) keywords = st.sidebar.multiselect('Keywords', keyword_unique_list, default=["Vigilance"]) legality_standard = st.sidebar.select_slider('Standard Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_alchemy = st.sidebar.select_slider('Alchemy Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_future = st.sidebar.select_slider('Future Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_historic = st.sidebar.select_slider('Historic Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_gladiator = st.sidebar.select_slider('Gladiator Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_pioneer = st.sidebar.select_slider('Pioneer Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_modern = st.sidebar.select_slider('Modern Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_legacy = st.sidebar.select_slider('Legacy Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_pauper = st.sidebar.select_slider('Pauper Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="not_legal") legality_vintage = st.sidebar.select_slider('Vintage Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_penny = st.sidebar.select_slider('Penny Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_commander = st.sidebar.select_slider('Commander Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_brawl = st.sidebar.select_slider('Brawl Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_histbrawl = st.sidebar.select_slider('Historic Brawl Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_paupercomm = st.sidebar.select_slider('Pauper Commander Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="restricted") legality_duel = st.sidebar.select_slider('Duel Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="legal") legality_oldschool = st.sidebar.select_slider('Oldschool Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="not_legal") legality_premodern = st.sidebar.select_slider('Premodern Legality', ["legal","restricted","not_legal", "banned", "suspended"], value="not_legal") games = st.sidebar.multiselect('Games', ["arena", "paper", "mtgo"], default=["arena", "paper", "mtgo"]) set = st.sidebar.text_input('Set', value="kld") set_name = st.sidebar.text_input('Set Name', value="Kaladesh") set_type = st.sidebar.select_slider('Set Type', settype_unique_list, value="expansion") digital = st.sidebar.select_slider('Digital', [True,False], value=False) rarity = st.sidebar.select_slider('Rarity', ['common','uncommon','rare','mythic'], value='uncommon') flavor_text = st.sidebar.text_area('Flavor Text', value="") artist = st.sidebar.text_input('Artist Name', value="<NAME>") edhrec_rank = st.sidebar.number_input('EDHREC Rank', value=21000) price_usd = st.sidebar.number_input('USD Price',step=1.,format="%.2f", value=0.07) price_usdfoil = st.sidebar.number_input('USD Foil Price',step=1.,format="%.2f", value=0.13) price_usdetched = st.sidebar.number_input('USD Etched Foil Price',step=1.,format="%.2f", value=0.13) price_eur = st.sidebar.number_input('EUR Price',step=1.,format="%.2f", value=0.23) price_eurfoil = st.sidebar.number_input('EUR Foil Price',step=1.,format="%.2f", value=0.30) price_tix = st.sidebar.number_input('TIX Price',step=1.,format="%.2f", value=0.01) loyalty = st.sidebar.select_slider('Planeswalker Loyalty', [0,1,2,3,4,5,6,7,"None"], value="None") prints = st.sidebar.number_input('Prints', value=1) image_uris = st.sidebar.text_input('Image uris', value="None") image_uris_1 = st.sidebar.text_input('Image uris 1', value="None") image_uris_2 = st.sidebar.text_input('Image uris 2', value="None") card_faces = st.sidebar.text_input('Card Faces', value=None) new_card = {"name": name, "lang": lang, "released_at": str(released_at), "mana_cost": mana_cost, "cmc": cmc, "type_line": type_line, "oracle_text": oracle_text, "power": str(power), "toughness": str(toughness), "colors": colors, "color_identity": color_identity, "keywords": keywords, "legalities": {"standard": legality_standard, "alchemy": legality_alchemy, "future": legality_future, "historic": legality_historic, "gladiator": legality_gladiator, "pioneer": legality_pioneer, "modern": legality_modern, "legacy": legality_legacy, "pauper": legality_pauper, "vintage": legality_vintage, "penny": legality_penny, "commander": legality_commander, "brawl": legality_brawl, "historicbrawl": legality_histbrawl, "paupercommander": legality_paupercomm, "duel": legality_duel, "oldschool": legality_oldschool, "premodern": legality_premodern}, "games": games, "set": set, "set_name": set_name, "set_type": set_type, "digital": digital, "rarity": rarity, "flavor_text": flavor_text, "artist": artist, "edhrec_rank": edhrec_rank, "prices": {"usd": price_usd, "usd_foil": price_usdfoil, "usd_etched": price_usdetched, "eur": price_eur, "eur_foil": price_eurfoil, "tix": price_tix}, "loyalty": loyalty, "prints": prints, "image_uris": image_uris, "card_faces": card_faces, "oracle_text_1": oracle_text_1, "oracle_text_2": oracle_text_2, "image_uris_1": image_uris_1, "image_uris_2": image_uris_2} # Allow the user to download the card in JSON format st.sidebar.download_button('Download JSON', json.dumps(new_card, ensure_ascii=False), file_name="new_card.json") try: st.sidebar.write(new_card) except: pass # FROM DB else: if source_selection == 'FROM DB': st.sidebar.write("Images are courtesy of the Scryfall API") # Allow the user to select the set selected_set = st.sidebar.selectbox('Select a set', sorted(card_db['set_name'].unique())) # Allow the user to select a card # Get the data from the selected card selected_card = st.sidebar.selectbox('Select your card', card_db[card_db['set_name']==selected_set]['name'].unique()) selected_card_df = card_db[(card_db['set_name']==selected_set) & (card_db['name']==selected_card)] # Show the Card Picture try: st.sidebar.image(ast.literal_eval(selected_card_df['image_uris'].values[0])['large'], width=200) except: st.sidebar.image([ast.literal_eval(selected_card_df['image_uris_1'].values[0])['large'], ast.literal_eval(selected_card_df['image_uris_2'].values[0])['large']], width=200) name = st.sidebar.text_input('Cardname', value=selected_card_df['name'].values[0]) lang = st.sidebar.text_input('Language', value=selected_card_df['lang'].values[0]) released_at = st.sidebar.date_input('Released at', value=datetime.datetime.strptime(selected_card_df['released_at'].values[0], '%Y-%m-%d')) mana_cost = st.sidebar.text_input('Mana Cost', value=selected_card_df['mana_cost'].values[0]) cmc = st.sidebar.number_input('CMC', value=int(selected_card_df['cmc'].values[0])) type_line = st.sidebar.text_input('Card Type', value=selected_card_df['type_line'].values[0]) oracle_text = st.sidebar.text_area('Oracle Text', value=selected_card_df['oracle_text'].values[0]) oracle_text_1 = st.sidebar.text_area('DFC: Oracle Text Face', value=selected_card_df['oracle_text_1'].values[0]) oracle_text_2 = st.sidebar.text_area('DFC: Oracle Text Back', value=selected_card_df['oracle_text_2'].values[0]) power = st.sidebar.select_slider('Power', ['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15',"None"], value=selected_card_df['power'].values[0]) toughness = st.sidebar.select_slider('Toughness', ['0','1','2','3','4','5','6','7','8','9','10','11','12','13','14','15',"None"], value=selected_card_df['toughness'].values[0]) colors = st.sidebar.multiselect('Colors', ['W', 'U', 'B', 'R', 'G'], default=ast.literal_eval(selected_card_df['colors'].values[0])) color_identity = st.sidebar.multiselect('Color Identity', ['W', 'U', 'B', 'R', 'G'], default=ast.literal_eval(selected_card_df['color_identity'].values[0])) keywords = st.sidebar.multiselect('Keywords', keyword_unique_list, default=ast.literal_eval(selected_card_df['keywords'].values[0])) legality_standard = st.sidebar.select_slider('Standard Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['standard']) legality_alchemy = st.sidebar.select_slider('Alchemy Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['alchemy']) legality_future = st.sidebar.select_slider('Future Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['future']) legality_historic = st.sidebar.select_slider('Historic Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['historic']) legality_gladiator = st.sidebar.select_slider('Gladiator Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['gladiator']) legality_pioneer = st.sidebar.select_slider('Pioneer Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['pioneer']) legality_modern = st.sidebar.select_slider('Modern Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['modern']) legality_legacy = st.sidebar.select_slider('Legacy Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['legacy']) legality_pauper = st.sidebar.select_slider('Pauper Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['pauper']) legality_vintage = st.sidebar.select_slider('Vintage Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['vintage']) legality_penny = st.sidebar.select_slider('Penny Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['penny']) legality_commander = st.sidebar.select_slider('Commander Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['commander']) legality_brawl = st.sidebar.select_slider('Brawl Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['brawl']) legality_histbrawl = st.sidebar.select_slider('Historic Brawl Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['historicbrawl']) legality_paupercomm = st.sidebar.select_slider('Pauper Commander Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['paupercommander']) legality_duel = st.sidebar.select_slider('Duel Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['duel']) legality_oldschool = st.sidebar.select_slider('Oldschool Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['oldschool']) legality_premodern = st.sidebar.select_slider('Premodern Legality', ["legal","restricted","not_legal", "banned", "suspended"], value=ast.literal_eval(selected_card_df['legalities'].values[0])['premodern']) games = st.sidebar.multiselect('Games', ["arena", "paper", "mtgo"], default=ast.literal_eval(selected_card_df['games'].values[0])) set = st.sidebar.text_input('Set', value=selected_card_df['set'].values[0]) set_name = st.sidebar.text_input('Set Name', value=selected_card_df['set_name'].values[0]) set_type = st.sidebar.select_slider('Set Type', settype_unique_list, value=selected_card_df['set_type'].values[0]) digital = st.sidebar.select_slider('Digital', [True,False], value=selected_card_df['digital'].values[0]) rarity = st.sidebar.select_slider('Rarity', ['common','uncommon','rare','mythic'], value=selected_card_df['rarity'].values[0]) flavor_text = st.sidebar.text_area('Flavor Text', value=selected_card_df['flavor_text'].values[0]) artist = st.sidebar.text_input('Artist Name', value=selected_card_df['artist'].values[0]) edhrec_rank = st.sidebar.number_input('EDHREC Rank', value=int(selected_card_df['edhrec_rank'].values[0])) price_usd = st.sidebar.number_input('USD Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['usd']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['usd']))) price_usdfoil = st.sidebar.number_input('USD Foil Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['usd_foil']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['usd_foil']))) price_usdetched = st.sidebar.number_input('USD Etched Foil Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['usd_etched']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['usd_etched']))) price_eur = st.sidebar.number_input('EUR Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['eur']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['eur']))) price_eurfoil = st.sidebar.number_input('EUR Foil Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['eur_foil']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['eur_foil']))) price_tix = st.sidebar.number_input('TIX Price',step=1.,format="%.2f", value=float(np.where(ast.literal_eval(selected_card_df['prices'].values[0])['tix']==None,0,ast.literal_eval(selected_card_df['prices'].values[0])['tix']))) loyalty = st.sidebar.select_slider('Planeswalker Loyalty', ['0','1','2','3','4','5','6','7',"None"], value=selected_card_df['loyalty'].values[0]) prints = st.sidebar.number_input('Prints', value=int(selected_card_df['prints'].values[0])) try: image_uris = st.sidebar.text_input('Image uris', value=ast.literal_eval(selected_card_df['image_uris'].values[0])['normal']) except: image_uris = st.sidebar.text_input('Image uris', value="None") try: image_uris_1 = st.sidebar.text_input('Image uris 1', value=ast.literal_eval(selected_card_df['image_uris_1'].values[0])['normal']) except: image_uris_1 = st.sidebar.text_input('Image uris_1', value="None") try: image_uris_2 = st.sidebar.text_input('Image uris 2', value=ast.literal_eval(selected_card_df['image_uris_1'].values[0])['normal']) except: image_uris_2 = st.sidebar.text_input('Image uris_2', value="None") card_faces = st.sidebar.text_input('Card Faces', value=None) new_card = {"name": name, "lang": lang, "released_at": str(released_at), "mana_cost": mana_cost, "cmc": cmc, "type_line": type_line, "oracle_text": oracle_text, "power": str(power), "toughness": str(toughness), "colors": colors, "color_identity": color_identity, "keywords": keywords, "legalities": {"standard": legality_standard, "alchemy": legality_alchemy, "future": legality_future, "historic": legality_historic, "gladiator": legality_gladiator, "pioneer": legality_pioneer, "modern": legality_modern, "legacy": legality_legacy, "pauper": legality_pauper, "vintage": legality_vintage, "penny": legality_penny, "commander": legality_commander, "brawl": legality_brawl, "historicbrawl": legality_histbrawl, "paupercommander": legality_paupercomm, "duel": legality_duel, "oldschool": legality_oldschool, "premodern": legality_premodern}, "games": games, "set": set, "set_name": set_name, "set_type": set_type, "digital": digital, "rarity": rarity, "flavor_text": flavor_text, "artist": artist, "edhrec_rank": edhrec_rank, "prices": {"usd": price_usd, "usd_foil": price_usdfoil, "usd_etched": price_usdetched, "eur": price_eur, "eur_foil": price_eurfoil, "tix": price_tix}, "loyalty": loyalty, "prints": prints, "image_uris": image_uris, "card_faces": card_faces, "oracle_text_1": oracle_text_1, "oracle_text_2": oracle_text_2, "image_uris_1": image_uris_1, "image_uris_2": image_uris_2} # Allow the user to download the card in JSON format st.sidebar.download_button('Download JSON', json.dumps(new_card, ensure_ascii=False), file_name="new_card.json") try: st.sidebar.write(new_card) except: pass # Get the model type and the model target model_type, target = (model).split("_",1) if st.button('EXECUTE MODEL!'): try: with st.spinner('Executing...'): # Transform the card to the data format required # processed_card = transform_card(card_from_json) processed_card = transform_card(new_card) # Print it to the app st.write("#### Card transformed to data:") st.dataframe(processed_card) # Load the models and define the target lr_model, gb_model, dl_model, scaler, tokenizer, required_model_cols, max_seq_lens, selected_classes, int_to_color = load_models(model_type, target) # PREDICTIONS if model_type == "BIN": # Obtain the predictions BINARY prediction_response = predict_dummy_binary(processed_card, tokenizer, max_seq_lens, scaler, required_model_cols, lr_model, gb_model, dl_model) else: if model_type == "MULT": # Obtain the predictions MULTICLASS prediction_response = predict_dummy_multiclass(processed_card, tokenizer, max_seq_lens, scaler, required_model_cols, selected_classes, int_to_color, lr_model, gb_model, dl_model) else: if model_type == "REGR": # for cmc minimum_val = 0 # Obtain the NUMERIC prediction_response = predict_dummy_numeric(processed_card, tokenizer, max_seq_lens, scaler, required_model_cols, minimum_val, lr_model, gb_model, dl_model) else: pass # Print the predictions to the app # Predictions in Markup format st.write("#### Predictions:") for i in prediction_response: st.write(f"##### {i}") prediction_df =
pd.DataFrame([prediction_response[i]])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Sep 27 08:59:17 2019 @author: <NAME> @contact: <EMAIL> """ import pandas as pd def relative_strong_signal(data,threshold,val_threshold): """ This function compute date based sectional relative strong/weak indicator given dataframe with structure = {"row":"dates","col":"product price"} we select the dates when market overal drops/raise but a very small portion(threshold) of it goes opposite Output dataframe gives relative strong/weak indicator with that date return and associated quantile """ answers = {} # Output={"Product":[Dates,return,threshold]..} ans_df =
pd.DataFrame()
pandas.DataFrame
""" Utilities for loading datasets """ import os import pandas as pd from ..utils.load_data import load_from_tsfile_to_dataframe __all__ = [ "load_airline", "load_gunpoint", "load_arrow_head", "load_italy_power_demand", "load_basic_motions", "load_japanese_vowels", "load_shampoo_sales", "load_longley", "load_lynx" ] __author__ = ['<NAME>', '<NAME>', '@big-o'] DIRNAME = 'data' MODULE = os.path.dirname(__file__) # time series classification data sets def _load_dataset(name, split, return_X_y): """ Helper function to load time series classification datasets. """ if split in ("train", "test"): fname = name + '_' + split.upper() + '.ts' abspath = os.path.join(MODULE, DIRNAME, name, fname) X, y = load_from_tsfile_to_dataframe(abspath) # if split is None, load both train and test set elif split is None: X = pd.DataFrame(dtype="object") y = pd.Series(dtype="object") for split in ("train", "test"): fname = name + '_' + split.upper() + '.ts' abspath = os.path.join(MODULE, DIRNAME, name, fname) result = load_from_tsfile_to_dataframe(abspath) X = pd.concat([X, pd.DataFrame(result[0])]) y = pd.concat([y, pd.Series(result[1])]) else: raise ValueError("Invalid `split` value") # Return appropriately if return_X_y: return X, y else: X['class_val'] =
pd.Series(y)
pandas.Series