prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import csv import shutil import hashlib import tempfile import numpy as np import pandas as pd from rdkit import Chem from rdkit.Chem import AllChem, MACCSkeys from rdkit.Chem import MolFromSmiles from padelpy import padeldescriptor # required to calculate KlekotaRothFingerPrint from metstab_shap.config import csv_section, utils_section DATA = 'DATA' test = 'test' def load_data(data_config, fingerprint, morgan_nbits=None): datasets = [] indices = [] this_start = 0 for path in sorted(data_config[DATA].values()): x, y, smiles = preprocess_dataset(path=path, data_config=data_config, fingerprint=fingerprint, morgan_nbits=morgan_nbits) datasets.append((x, y, smiles)) indices.append((this_start, this_start+len(y))) this_start += len(y) x = np.vstack([el[0] for el in datasets]) y = np.hstack([el[1] for el in datasets]) smiles = np.hstack([el[2] for el in datasets]) cv_split = get_cv_split(indices) # test set test_x, test_y, test_smiles = preprocess_dataset(path=data_config[utils_section][test], data_config=data_config, fingerprint=fingerprint, morgan_nbits=morgan_nbits) return x, y, cv_split, test_x, test_y, smiles, test_smiles def load_data_from_df(dataset_paths, smiles_index, y_index, skip_line=False, delimiter=',', scale=None, average=None): """ Load multiple files from csvs, concatenate and return smiles and ys :param dataset_paths: list: paths to csv files with data :param smiles_index: int: index of the column with smiles :param y_index: int: index of the column with the label :param skip_line: boolean: True if the first line of the file contains column names, False otherwise :param delimiter: delimeter used in csv :param scale: should y be scaled? (useful with skewed distributions of y) :param average: if the same SMILES appears multiple times how should its values be averaged? :return: (smiles, labels) - np.arrays """ # column names present in files? header = 0 if skip_line else None # load all files dfs = [] for data_path in dataset_paths: dfs.append(pd.read_csv(data_path, delimiter=delimiter, header=header)) # merge data_df =
pd.concat(dfs)
pandas.concat
import pandas as pd from pandas import DataFrame import logging logger = logging.getLogger('jsonml') class MDataFrame: ''' 基于DataFrame 的数据处理类,构造函数只接收DataFrame一个参数 ''' def __init__(self, data=None): if isinstance(data, DataFrame): self.data = data else: raise Exception("error data type, must be DataFrame") def columns(self): ''' 所有列名 :return: list 列名 ''' return self.data.columns.values.tolist() def size_column(self): ''' 列的长度 :return: int 列数 ''' return len(self.data.columns) def size_row(self): ''' 数据行数 :return: int 行数 ''' return len(self.data) def select(self, columns): ''' 选取部分列 :param columns: list 所选列名 :return: 在当前对象上选取部分列,与当前对象一致 ''' self.data = self.data[[column for column in columns]] return self def drop(self, columns): ''' 去掉部分列 :param columns: list 删除列名 :return: 在当前对象上删除部分列,与当前对象一致 ''' self.data.drop(columns, axis=1, inplace=True) return self def copy_column(self, input_columns, output_columns): ''' 复制列 :param input_columns: :param output_columns: :return: 在当前对象上复制列,与当前对象一致 ''' for index, input in enumerate(input_columns): self.data[output_columns[index]] = self.data[input] return self def add_column(self, columns, value): ''' 添加列 :param columns: 列名,list or str :param value: 添加列填充的值 :return: ''' if isinstance(columns, (list, set)): for column in columns: self.data[column] = value else: self.data[columns] = value def merge(self, mDataFrame): ''' 与另外一个对象进行逐行合并,等效于pandas的concat([], axis=1) :param MDataFrame: 列名与当前对象不能重复,否则会报错,行数需与当前对象相同,否则报错 :return: 合并后的对象,与当前对象一致 ''' self.data = pd.concat([self.data, mDataFrame.datas()], axis=1) return self def join(self, MDataFrame, columns, type='inner'): ''' 与另外一个对象进行按行叉乘合并 :param MDataFrame: 列名与当前对象仅不能重复,否则会报错,行数需与当前对象相同,否则报错 :param columns: join列名 :param type: join类型,可以选择 'inner', 'outer', 'left_outer', 'right_outer' :return: 合并后的对象,与当前对象一致 ''' return self def rename(self, columns): ''' 重命名列名 :param columns: 支持dict和list。 list长度需与当前列长一致,dict时新列名不能为空 :return: 修改列名后的对象,与原来对象是同一个 ''' if isinstance(columns, dict): self.data.rename(columns=columns, inplace=True) else: self.data.columns = columns return self def order_column(self, columns): ''' 对列按照指定顺序输出 :param columns: 指定顺序 :return: 修改列顺序后的对象,与原来对象是同一个 ''' self.data = self.data[columns] return self def process_udf(self, udf, columns_input, columns_output=None, keep_input_columns=False): ''' 单行多列处理,包括单列变单列,单列表多列,多列变单列,多列变多列 :param udf: udf: 自定义处理方法的对象 :param columns_input: list[list] 输入列名, 第二维表示用该udf可以同时处理多个,第一维需与udf方法参数顺序和个数一致 :param columns_output: list[list] 输出列名,可为空,为空时默认填充。如果第一维大小为1,并且udf输出为list,则展开list,并自动加后缀命名 :param keep_input_colums: boolean 是否保留输入列,默认不保留 :return: 数据处理后的对象,与原来对象是同一个 ''' if len(columns_input) == 0: raise Exception('columns can not be empty') # 一维数组处理 if not isinstance(columns_input[0], list): columns_tmp = [] for columns in columns_input: columns_tmp.append([columns]) columns_input = columns_tmp if not isinstance(columns_output[0], list): columns_tmp = [] for columns in columns_output: columns_tmp.append([columns]) columns_output = columns_tmp for index, columns in enumerate(columns_input): output_column = columns_output[index] logger.debug('input = ' + str(columns)) logger.debug('output = ' + str(output_column)) result_list = [udf.process(*x) for x in zip(self.data[columns[0]])] if len(columns) == 1 \ else [udf.process(*x) for x in zip(*tuple([self.data[column] for column in columns]))] if not keep_input_columns: self.drop(columns) else: self.drop([column for column in columns if column in output_column]) if len(output_column) > 1: result_df = DataFrame(result_list, columns=output_column) self.data =
pd.concat([self.data, result_df], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 21 23:24:11 2021 @author: rayin """ import os, sys import pandas as pd import matplotlib.pyplot as plt import numpy as np import math import re import random from collections import Counter from pprint import pprint os.chdir("/Users/rayin/Google Drive/Harvard/5_data/UDN/work") case_gene_update = pd.read_csv("data/processed/variant_clean.csv", index_col=0) aa_variant = list(case_gene_update['\\12_Candidate variants\\09 Protein\\']) #pd.DataFrame(aa_variant).to_csv('aa_variant.csv') #aa_variant_update = pd.read_csv("data/processed/aa_variant_update.csv", index_col=0) #aa_variant_update = list(aa_variant_update['\\12_Candidate variants\\09 Protein\\']) amino_acid = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M', 'TER': 'X'} aa_3 = [] aa_1 = [] for i in amino_acid.keys(): aa_3.append(i) aa_1.append(amino_acid[i]) for i in range(0, len(aa_variant)): for j in range(len(aa_3)): if isinstance(aa_variant[i], float): break aa_variant[i] = str(aa_variant[i].upper()) if aa_3[j] in aa_variant[i]: aa_variant[i] = aa_variant[i].replace(aa_3[j], aa_1[j]) #extracting aa properties from aaindex #https://www.genome.jp/aaindex/ aa = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'] #RADA880108 polarity = [-0.06, -0.84, -0.48, -0.80, 1.36, -0.73, -0.77, -0.41, 0.49, 1.31, 1.21, -1.18, 1.27, 1.27, 0.0, -0.50, -0.27, 0.88, 0.33, 1.09] aa_polarity = pd.concat([pd.Series(aa), pd.Series(polarity)], axis=1) aa_polarity = aa_polarity.rename(columns={0:'amino_acid', 1: 'polarity_value'}) #KLEP840101 net_charge = [0, 1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] aa_net_charge = pd.concat([pd.Series(aa), pd.Series(net_charge)], axis=1) aa_net_charge = aa_net_charge.rename(columns={0:'amino_acid', 1: 'net_charge_value'}) #CIDH920103 hydrophobicity = [0.36, -0.52, -0.90, -1.09, 0.70, -1.05, -0.83, -0.82, 0.16, 2.17, 1.18, -0.56, 1.21, 1.01, -0.06, -0.60, -1.20, 1.31, 1.05, 1.21] aa_hydrophobicity = pd.concat([pd.Series(aa), pd.Series(hydrophobicity)], axis=1) aa_hydrophobicity = aa_hydrophobicity.rename(columns={0:'amino_acid', 1: 'hydrophobicity_value'}) #FAUJ880103 -- Normalized van der Waals volume normalized_vdw = [1.00, 6.13, 2.95, 2.78, 2.43, 3.95, 3.78, 0.00, 4.66, 4.00, 4.00, 4.77, 4.43, 5.89, 2.72, 1.60, 2.60, 8.08, 6.47, 3.00] aa_normalized_vdw = pd.concat([pd.Series(aa), pd.Series(normalized_vdw)], axis=1) aa_normalized_vdw = aa_normalized_vdw.rename(columns={0:'amino_acid', 1: 'normalized_vdw_value'}) #CHAM820101 polarizability = [0.046, 0.291, 0.134, 0.105, 0.128, 0.180, 0.151, 0.000, 0.230, 0.186, 0.186, 0.219, 0.221, 0.290, 0.131, 0.062, 0.108, 0.409, 0.298, 0.140] aa_polarizability = pd.concat([pd.Series(aa), pd.Series(polarizability)], axis=1) aa_polarizability = aa_polarizability.rename(columns={0:'amino_acid', 1: 'polarizability_value'}) #JOND750102 pK_COOH = [2.34, 1.18, 2.02, 2.01, 1.65, 2.17, 2.19, 2.34, 1.82, 2.36, 2.36, 2.18, 2.28, 1.83, 1.99, 2.21, 2.10, 2.38, 2.20, 2.32] aa_pK_COOH = pd.concat([pd.Series(aa), pd.Series(pK_COOH)], axis=1) aa_pK_COOH = aa_pK_COOH.rename(columns={0:'amino_acid', 1: 'pK_COOH_value'}) #FASG760104 pK_NH2 = [9.69, 8.99, 8.80, 9.60, 8.35, 9.13, 9.67, 9.78, 9.17, 9.68, 9.60, 9.18, 9.21, 9.18, 10.64, 9.21, 9.10, 9.44, 9.11, 9.62] aa_pK_NH2 = pd.concat([pd.Series(aa), pd.Series(pK_NH2)], axis=1) aa_pK_NH2 = aa_pK_NH2.rename(columns={0:'amino_acid', 1: 'pK_NH2_value'}) #ROBB790101 Hydration free energy hydration = [-1.0, 0.3, -0.7, -1.2, 2.1, -0.1, -0.7, 0.3, 1.1, 4.0, 2.0, -0.9, 1.8, 2.8, 0.4, -1.2, -0.5, 3.0, 2.1, 1.4] aa_hydration = pd.concat([pd.Series(aa), pd.Series(hydration)], axis=1) aa_hydration = aa_hydration.rename(columns={0:'amino_acid', 1: 'hydration_value'}) #FASG760101 molecular_weight = [89.09, 174.20, 132.12, 133.10, 121.15, 146.15, 147.13, 75.07, 155.16, 131.17, 131.17, 146.19, 149.21, 165.19, 115.13, 105.09, 119.12, 204.24, 181.19, 117.15] aa_molecular_weight = pd.concat([
pd.Series(aa)
pandas.Series
# -*- coding: utf-8 -*- """ Tests dtype specification during parsing for all of the parsers defined in parsers.py """ import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex, Categorical from pandas.compat import StringIO from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.errors import ParserWarning class DtypeTests(object): def test_passing_dtype(self): # see gh-6607 df = DataFrame(np.random.rand(5, 2).round(4), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # see gh-3795: passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) expected = df.astype(str) tm.assert_frame_equal(result, expected) # for parsing, interpret object as str result = self.read_csv(path, dtype=object, index_col=0) tm.assert_frame_equal(result, expected) # we expect all object columns, so need to # convert to test for equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype pytest.raises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # see gh-12048: empty frame actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) assert result['one'].dtype == 'u1' assert result['two'].dtype == 'object' def test_categorical_dtype(self): # GH 10153 data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['a', 'a', 'b']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype=CategoricalDtype()) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'a': 'category', 'b': 'category', 'c': CategoricalDtype()}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'b': 'category'}) expected = pd.DataFrame({'a': [1, 1, 2], 'b': Categorical(['a', 'a', 'b']), 'c': [3.4, 3.4, 4.5]}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) # unsorted data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', 'b', 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) # missing data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', np.nan, 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) @pytest.mark.slow def test_categorical_dtype_high_cardinality_numeric(self): # GH 18186 data = np.sort([str(i) for i in range(524289)]) expected = DataFrame({'a': Categorical(data, ordered=True)}) actual = self.read_csv(StringIO('a\n' + '\n'.join(data)), dtype='category') actual["a"] = actual["a"].cat.reorder_categories( np.sort(actual.a.cat.categories), ordered=True) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_encoding(self): # GH 10153 pth = tm.get_data_path('unicode_series.csv') encoding = 'latin-1' expected = self.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = self.read_csv(pth, header=None, encoding=encoding, dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) pth = tm.get_data_path('utf16_ex.txt') encoding = 'utf-16' expected = self.read_table(pth, encoding=encoding) expected = expected.apply(Categorical) actual = self.read_table(pth, encoding=encoding, dtype='category') tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize(self): # GH 10153 data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [pd.DataFrame({'a': [1, 1], 'b': Categorical(['a', 'b'])}), pd.DataFrame({'a': [1, 2], 'b': Categorical(['b', 'c'])}, index=[2, 3])] actuals = self.read_csv(StringIO(data), dtype={'b': 'category'}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize('ordered', [False, True]) @pytest.mark.parametrize('categories', [ ['a', 'b', 'c'], ['a', 'c', 'b'], ['a', 'b', 'c', 'd'], ['c', 'b', 'a'], ]) def test_categorical_categoricaldtype(self, categories, ordered): data = """a,b 1,a 1,b 1,b 2,c""" expected = pd.DataFrame({ "a": [1, 1, 1, 2], "b": Categorical(['a', 'b', 'b', 'c'], categories=categories, ordered=ordered) }) dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_categoricaldtype_unsorted(self): data = """a,b 1,a 1,b 1,b 2,c""" dtype = CategoricalDtype(['c', 'b', 'a']) expected = pd.DataFrame({ 'a': [1, 1, 1, 2], 'b': Categorical(['a', 'b', 'b', 'c'], categories=['c', 'b', 'a']) }) result = self.read_csv(StringIO(data), dtype={'b': dtype}) tm.assert_frame_equal(result, expected) def test_categoricaldtype_coerces_numeric(self): dtype = {'b': CategoricalDtype([1, 2, 3])} data = "b\n1\n1\n2\n3" expected = pd.DataFrame({'b': Categorical([1, 1, 2, 3])}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categoricaldtype_coerces_datetime(self): dtype = { 'b': CategoricalDtype(pd.date_range('2017', '2019', freq='AS')) } data = "b\n2017-01-01\n2018-01-01\n2019-01-01" expected = pd.DataFrame({'b': Categorical(dtype['b'].categories)}) result = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import requests import pandas as pd from bs4 import BeautifulSoup import time import re from data_loader.accent_data_loader import AccentDataLoader from accent_dataset.audio_downloader import AudioDownloader ROOT_URL = 'http://accent.gmu.edu/' BROWSE_LANGUAGE_URL = 'browse_language.php?function=find&language={}' # WAIT = 1.2 WAIT = 0.1 DEBUG = True def get_htmls(urls): ''' Retrieves html in text form from ROOT_URL :param urls (list): List of urls from which to retrieve html :return (list): list of HTML strings ''' htmls = [] for url in urls: if DEBUG: print('downloading from {}'.format(url)) htmls.append(requests.get(url).text) time.sleep(WAIT) return (htmls) def build_search_urls(languages): ''' creates url from ROOT_URL and languages :param languages (list): List of languages :return (list): List of urls ''' return ([ROOT_URL + BROWSE_LANGUAGE_URL.format(language) for language in languages]) def parse_p(p_tag): ''' Extracts href property from HTML <p> tag string :param p_tag (str): HTML string :return (str): string of link ''' text = p_tag.text.replace(' ', '').split(',') return ([ROOT_URL + p_tag.a['href'], text[0], text[1]]) def get_bio(hrefs): ''' Retrieves HTML from list of hrefs and returns bio information :param hrefs (list): list of hrefs :return (DataFrame): Pandas DataFrame with bio information ''' htmls = get_htmls(hrefs) bss = [BeautifulSoup(html, 'html.parser') for html in htmls] rows = [] bio_row = [] for bs in bss: rows.append([li.text for li in bs.find('ul', 'bio').find_all('li')]) for row in rows: bio_row.append(parse_bio(row)) return (
pd.DataFrame(bio_row)
pandas.DataFrame
import os import datetime as dt import pandas as pd import numpy as np from IPython.display import display from timeit import default_timer as timer # https://stackoverflow.com/questions/7370801/how-to-measure-elapsed-time-in-python from sklearn.model_selection import train_test_split from hommmer.charts import accuracy from hommmer.helpers import check_metric class Model(): def __init__(self, y, X, media_labels, settings, model): # set timestamp self.timestamp = dt.datetime.today().strftime('%Y-%m-%d %H:%M') # train-test split if settings['split']: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=settings['split'], random_state=0) else: X_train, X_test, y_train, y_test = X, X, y, y self.settings = settings self.model = model self.runtime = None # assign X and y self.X_actual = X self.y_actual = y self.X_train = X_train self.y_train = y_train self.X_test = X_test self.y_test = y_test self.media_labels = media_labels # placeholders self.coefficients = [] def _fit(self, y, X): return None def results(self): results_df = pd.DataFrame(self.contribution().sum(), columns=['contribution']) results_df['share'] = results_df['contribution'] / results_df['contribution'].sum() * 100 results_df['coefficient'] = self.coefficients results_df['pvalue'] = self._pvalues() results_df = pd.concat([results_df, self._confidence_intervals()], axis=1) return np.around(results_df, 3) def contribution(self, X=None): if (X) is None: X = self.X_actual coef_df = pd.DataFrame({'coefficient': self.coefficients}, index=X.columns) data = [] for x in list(X.columns): contrib = coef_df['coefficient'].loc[x] * X[x] data.append(contrib) contrib_df =
pd.DataFrame(data)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np from sklearn.manifold import TSNE import pandas as pd import seaborn as sns def reduce_dimensions(embeddings, fraction=None): # Dimensionality reduction with t-SNE # Source: https://www.kaggle.com/ferdzso/knowledge-graph-analysis-with-node2vec number_of_embeddings = len(embeddings) if fraction is not None: idx = np.random.randint(number_of_embeddings, size=int(number_of_embeddings * fraction)) x = embeddings[idx, :] print(f'Number of embeddings: {len(idx)} (fractioned by factor {fraction})') else: x = embeddings print(f'Number of embeddings: {len(x)}') # Perform 2D t-SNE dimensionality reduction x_embedded = TSNE(n_components=2, random_state=1).fit_transform(x) print(f't-SNE object was trained with {x.shape[0]} items') return x_embedded def visualize(embeddings, filename=None, labels=None): if labels is not None: # Generate random colors for each label show_legend = False if len(set(labels)) == 4: colors = ["r", "b", "g", "y"] show_legend = True if len(set(labels)) == 8: colors = ["r", "b", "g", "y", "c", "m", "k", "burlywood"] show_legend = True else: colors = np.random.rand(len(set(labels)), 3) label_map = {} for i, l in enumerate(labels): if l not in label_map: label_map[l] = [] label_map[l].append(i) fig, ax = plt.subplots(figsize=(15, 15)) # Layout fig.suptitle(f'Number of labels: {len(set(labels))}') fig.tight_layout() for i, lab in enumerate(label_map.keys()): idx = label_map[lab] x = list(embeddings[idx, 0]) y = list(embeddings[idx, 1]) ax.scatter(x, y, s=150, color=colors[i], label=lab, alpha=0.5, edgecolors='none') if show_legend: plt.legend(loc=0, fontsize=10) else: plt.figure(figsize=(15, 15)) x = list(embeddings[:, 0]) y = list(embeddings[:, 1]) plt.scatter(x, y, alpha=0.5) # Save or show graph if filename is None: plt.show() else: plt.savefig(filename) def visualize_highlight(embeddings, id1, id2, label, filename=None, labels=None, colors=None): # Generate random colors for each label if colors is None: colors = np.random.rand(len(set(labels)), 3) label_map = {} for i, l in enumerate(labels): if l not in label_map: label_map[l] = [] label_map[l].append(i) fig, ax = plt.subplots(figsize=(15, 15)) # Layout fig.suptitle(f'Number of labels: {len(set(labels))}') fig.tight_layout() df_array = [] for i, lab in enumerate(label_map.keys()): idx = label_map[lab] x = list(embeddings[idx, 0]) y = list(embeddings[idx, 1]) assert len(x) == len(y) for index, emb in enumerate(x): df_array.append([lab, x[index], y[index]]) print(colors) dataframe =
pd.DataFrame(df_array)
pandas.DataFrame
import os import re import sys import pickle import csv import gzip import dill import numpy as np from collections import Counter from itertools import chain from bs4 import BeautifulSoup import pandas as pd from gensim import corpora from gensim.parsing.preprocessing import STOPWORDS from collections import defaultdict from joblib import Parallel, delayed def tokenize_cnn(inputdir, inputfile, outputdir, maxtokens=10000): df = pd.read_csv(os.path.join(inputdir, inputfile)) # Clean up summaries df['true_summary'] = df['true_summary'].str.replace('[^A-Za-z0-9]+', ' ').str.strip().fillna("") df['sentence'] = df['sentence'].str.replace('[^A-Za-z0-9]+', ' ').str.strip().fillna("") df['query'] = df['query'].str.replace('[^A-Za-z0-9]+', ' ').str.strip().fillna("") frequency = defaultdict(int) n = df.shape[0] div = n // 10 qtokens, stokens, tstokens = [], [], [] for i, row in df.iterrows(): qtokens+= [row['query'].split(" ")] stokens+= [row['sentence'].split(" ")] tstokens+= [row['true_summary'].split(" ")] if ((i + 1) % div) == 0: print("%i/%i (%i%%) complete rows." % (i + 1, n, (i + 1) / float(n) * 100 )) # Getting the dictionary with token info dictionary = corpora.Dictionary(stokens + qtokens + tstokens ) # Mapping to numeric list -- adding plus one to tokens dictionary.token2id = {k: v + 1 for k,v in dictionary.token2id.items()} dictionary.id2token = {v:k for k,v in dictionary.token2id.items()} print("Exporting word to index and dictionary to word indices") output = open(os.path.join(outputdir,'LSTMDQN_Dic_token2id_cnn.pkl'), 'ab+') pickle.dump(dictionary.token2id, output) output.close() output = open(os.path.join(outputdir,'LSTMDQN_Dic_id2token_cnn.pkl'), 'ab+') pickle.dump(dictionary.id2token, output) output.close() odf0 =
pd.DataFrame.from_dict(dictionary.dfs, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import pytest import os import numpy as np import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import numpy.testing as npt from numpy.linalg import norm, lstsq from numpy.random import randn from flaky import flaky from lifelines import CoxPHFitter, WeibullAFTFitter, KaplanMeierFitter, ExponentialFitter from lifelines.datasets import load_regression_dataset, load_larynx, load_waltons, load_rossi from lifelines import utils from lifelines import exceptions from lifelines.utils.sklearn_adapter import sklearn_adapter from lifelines.utils.safe_exp import safe_exp def test_format_p_values(): assert utils.format_p_value(2)(0.004) == "<0.005" assert utils.format_p_value(3)(0.004) == "0.004" assert utils.format_p_value(3)(0.000) == "<0.0005" assert utils.format_p_value(3)(0.005) == "0.005" assert utils.format_p_value(3)(0.2111) == "0.211" assert utils.format_p_value(3)(0.2119) == "0.212" def test_ridge_regression_with_penalty_is_less_than_without_penalty(): X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1=2.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) assert norm(utils.ridge_regression(X, Y, c1=1.0, c2=1.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) def test_ridge_regression_with_extreme_c1_penalty_equals_close_to_zero_vector(): c1 = 10e8 c2 = 0.0 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0]) < 10e-4 def test_ridge_regression_with_extreme_c2_penalty_equals_close_to_offset(): c1 = 0.0 c2 = 10e8 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0] - offset) < 10e-4 def test_lstsq_returns_similar_values_to_ridge_regression(): X = randn(2, 2) Y = randn(2) expected = lstsq(X, Y, rcond=None)[0] assert norm(utils.ridge_regression(X, Y)[0] - expected) < 10e-4 def test_lstsq_returns_correct_values(): X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] beta, V = utils.ridge_regression(X, y) expected_beta = [-0.98684211, -0.07894737] expected_v = [ [-0.03289474, -0.49342105, 0.06578947, 0.03289474, 0.49342105], [-0.30263158, 0.46052632, -0.39473684, 0.30263158, -0.46052632], ] assert norm(beta - expected_beta) < 10e-4 for V_row, e_v_row in zip(V, expected_v): assert norm(V_row - e_v_row) < 1e-4 def test_unnormalize(): df = load_larynx() m = df.mean(0) s = df.std(0) ndf = utils.normalize(df) npt.assert_almost_equal(df.values, utils.unnormalize(ndf, m, s).values) def test_normalize(): df = load_larynx() n, d = df.shape npt.assert_almost_equal(utils.normalize(df).mean(0).values, np.zeros(d)) npt.assert_almost_equal(utils.normalize(df).std(0).values, np.ones(d)) def test_median(): sv = pd.DataFrame(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_median_accepts_series(): sv = pd.Series(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_qth_survival_times_with_varying_datatype_inputs(): sf_list = [1.0, 0.75, 0.5, 0.25, 0.0] sf_array = np.array([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_no_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_no_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0]) q = 0.5 assert utils.qth_survival_times(q, sf_list) == 2 assert utils.qth_survival_times(q, sf_array) == 2 assert utils.qth_survival_times(q, sf_df_no_index) == 2 assert utils.qth_survival_times(q, sf_df_index) == 30 assert utils.qth_survival_times(q, sf_series_index) == 30 assert utils.qth_survival_times(q, sf_series_no_index) == 2 def test_qth_survival_times_multi_dim_input(): sf = np.linspace(1, 0, 50) sf_multi_df = pd.DataFrame({"sf": sf, "sf**2": sf ** 2}) medians = utils.qth_survival_times(0.5, sf_multi_df) assert medians["sf"].loc[0.5] == 25 assert medians["sf**2"].loc[0.5] == 15 def test_qth_survival_time_returns_inf(): sf = pd.Series([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.5, sf) == np.inf def test_qth_survival_time_accepts_a_model(): kmf = KaplanMeierFitter().fit([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.8, kmf) > 0 def test_qth_survival_time_with_dataframe(): sf_df_no_index =
pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Retrieve bikeshare trips data.""" # pylint: disable=invalid-name import os import re from glob import glob from typing import Dict, List from zipfile import ZipFile import pandas as pd import pandera as pa import requests from src.utils import log_prefect trips_schema = pa.DataFrameSchema( columns={ "TRIP_ID": pa.Column(pa.Int), "TRIP__DURATION": pa.Column(pa.Int), "START_STATION_ID": pa.Column( pa.Int, nullable=True, ), "START_TIME": pa.Column( pa.Timestamp, checks=[pa.Check(lambda s: s.dt.year.isin([2021, 2022]))], ), "START_STATION_NAME": pa.Column(pd.StringDtype()), "END_STATION_ID": pa.Column( pa.Int, nullable=True, ), "END_TIME": pa.Column( pa.Timestamp, checks=[pa.Check(lambda s: s.dt.year.isin([2021, 2022]))], ), "END_STATION_NAME": pa.Column(pd.StringDtype()), "BIKE_ID": pa.Column(pa.Int, nullable=True), "USER_TYPE": pa.Column( pd.StringDtype(), checks=[ pa.Check( lambda s: s.isin(["Annual Member", "Casual Member"]), ) ], ), }, index=pa.Index(pa.Int), ) urls_schema = pa.DataFrameSchema( columns={ "url": pa.Column(pd.StringDtype()), "name": pa.Column(pd.StringDtype()), "format": pa.Column(pd.StringDtype()), "state": pa.Column(pd.StringDtype()), }, index=pa.Index(pa.Int), ) get_data_status_schema = pa.DataFrameSchema( columns={ "trips_file_name": pa.Column(pd.StringDtype()), "last_modified_opendata": pa.Column( pd.DatetimeTZDtype(tz="America/Toronto") ), "parquet_file_exists": pa.Column(pd.BooleanDtype()), "parquet_file_outdated": pa.Column(pd.BooleanDtype()), "downloaded_file": pa.Column(pd.BooleanDtype()), }, index=pa.Index(pa.Int), ) raw_trips_schema = pa.DataFrameSchema( columns={ "TRIP_ID": pa.Column(pa.Int), "TRIP__DURATION": pa.Column(pa.Int), "START_STATION_ID": pa.Column(pa.Int, nullable=True), "START_STATION_NAME": pa.Column(pd.StringDtype()), "START_TIME": pa.Column( pa.Timestamp, checks=[pa.Check(lambda s: s.dt.year.isin([2021, 2022]))], ), "USER_TYPE": pa.Column( pd.StringDtype(), checks=[ pa.Check( lambda s: s.isin(["Annual Member", "Casual Member"]), ) ], ), }, index=pa.Index(pa.Int), ) def get_local_csv_list( raw_data_dir: str, years_wanted: List[int], use_prefect: bool = False ) -> List[str]: """Getting list of local CSV data files.""" log_prefect("Getting list of local CSV data files...", True, use_prefect) files_by_year = [glob(f"{raw_data_dir}/*{y}*.csv") for y in years_wanted] csvs = sorted([f for files_list in files_by_year for f in files_list]) log_prefect("Done.", False, use_prefect) return csvs def get_ridership_data( raw_data_dir: str, url: str, last_modified_timestamp: pd.Timestamp, use_prefect: bool = False, ) -> Dict[str, str]: """Download bikeshare trips data.""" # Split URL to get the file name file_name = os.path.basename(url) year = os.path.splitext(file_name)[0].split("-")[-1] zip_filepath = os.path.join(raw_data_dir, file_name) destination_dir = os.path.abspath(os.path.join(zip_filepath, os.pardir)) # Check if previously downloaded contents are up-to-dte parquet_data_filepath = os.path.join(raw_data_dir, "agg_data.parquet.gzip") has_parquet = os.path.exists(parquet_data_filepath) if has_parquet: parquet_file_modified_time = ( pd.read_parquet(parquet_data_filepath) .iloc[0] .loc["last_modified_timestamp"] ) # print(last_modified_timestamp, parquet_file_modified_time) parquet_file_outdated_check = ( os.path.exists(zip_filepath) and parquet_file_modified_time < last_modified_timestamp ) else: parquet_file_modified_time = pd.NaT parquet_file_outdated_check = True if not has_parquet or parquet_file_outdated_check: log_prefect( f"Downloading raw data file {file_name}...", True, use_prefect ) # print(zip_filepath, destination_dir, dest_filepath, existing_file) if not os.path.exists(zip_filepath): r = requests.get(url) # Writing the file to the local file system with open(zip_filepath, "wb") as output_file: output_file.write(r.content) csv_files = glob(f"{raw_data_dir}/*{year}-*.csv") # print(csv_files) if not csv_files: with ZipFile(zip_filepath, "r") as zipObj: # Extract all the contents of zip file zipObj.extractall(destination_dir) status_dict = dict( trips_file_name=file_name, last_modified_opendata=last_modified_timestamp, parquet_file_exists=has_parquet, parquet_file_data_last_modified=parquet_file_modified_time, parquet_file_outdated=parquet_file_outdated_check, downloaded_file=True, ) log_prefect("Done downloading raw data.", False, use_prefect) else: log_prefect( f"Found the most recent version of {file_name} locally. " "Did nothing.", True, use_prefect, ) status_dict = dict( trips_file_name=file_name, last_modified_opendata=last_modified_timestamp, parquet_file_exists=has_parquet, parquet_file_data_last_modified=parquet_file_modified_time, parquet_file_outdated=parquet_file_outdated_check, downloaded_file=False, ) return status_dict @pa.check_output(urls_schema) def get_file_urls( main_dataset_url: str, dataset_params: Dict, years_wanted: Dict[int, List], use_prefect: bool = False, ) -> pd.DataFrame: """Get list of ridership file URLs.""" log_prefect("Retrieving data URLs...", True, use_prefect) package = requests.get(main_dataset_url, params=dataset_params).json() resources = package["result"]["resources"] df = ( pd.DataFrame.from_records(resources)[ ["last_modified", "url", "name", "format", "state"] ] .rename(columns={"last_modified": "last_modified_opendata"}) .astype( { "url": pd.StringDtype(), "name": pd.StringDtype(), "format": pd.StringDtype(), "state":
pd.StringDtype()
pandas.StringDtype
from flask import Flask, request, jsonify, g, render_template from flask_json import FlaskJSON, JsonError, json_response, as_json import plotly.graph_objects as go from datetime import datetime from datetime import timedelta import glob import requests from app import db from app.models import * from app.plots import bp import pandas as pd import io from app.api import vis from sqlalchemy import sql import numpy as np from app.tools.curvefit.core.model import CurveModel from app.tools.curvefit.core.functions import gaussian_cdf, gaussian_pdf PHU = {'the_district_of_algoma':'The District of Algoma Health Unit', 'brant_county':'Brant County Health Unit', 'durham_regional':'Durham Regional Health Unit', 'grey_bruce':'Grey Bruce Health Unit', 'haldimand_norfolk':'Haldimand-Norfolk Health Unit', 'haliburton_kawartha_pine_ridge_district':'Haliburton, Kawartha, Pine Ridge District Health Unit', 'halton_regional':'Halton Regional Health Unit', 'city_of_hamilton':'City of Hamilton Health Unit', 'hastings_and_prince_edward_counties':'Hastings and Prince Edward Counties Health Unit', 'huron_county':'Huron County Health Unit', 'chatham_kent':'Chatham-Kent Health Unit', 'kingston_frontenac_and_lennox_and_addington':'Kingston, Frontenac, and Lennox and Addington Health Unit', 'lambton':'Lambton Health Unit', 'leeds_grenville_and_lanark_district':'Leeds, Grenville and Lanark District Health Unit', 'middlesex_london':'Middlesex-London Health Unit', 'niagara_regional_area':'Niagara Regional Area Health Unit', 'north_bay_parry_sound_district':'North Bay Parry Sound District Health Unit', 'northwestern':'Northwestern Health Unit', 'city_of_ottawa':'City of Ottawa Health Unit', 'peel_regional':'Peel Regional Health Unit', 'perth_district':'Perth District Health Unit', 'peterborough_county_city':'Peterborough County–City Health Unit', 'porcupine':'Porcupine Health Unit', 'renfrew_county_and_district':'Renfrew County and District Health Unit', 'the_eastern_ontario':'The Eastern Ontario Health Unit', 'simcoe_muskoka_district':'Simcoe Muskoka District Health Unit', 'sudbury_and_district':'Sudbury and District Health Unit', 'thunder_bay_district':'Thunder Bay District Health Unit', 'timiskaming':'Timiskaming Health Unit', 'waterloo':'Waterloo Health Unit', 'wellington_dufferin_guelph':'Wellington-Dufferin-Guelph Health Unit', 'windsor_essex_county':'Windsor-Essex County Health Unit', 'york_regional':'York Regional Health Unit', 'southwestern':'Southwestern Public Health Unit', 'city_of_toronto':'City of Toronto Health Unit', 'huron_perth_county':'Huron Perth Public Health Unit'} def get_dir(data, today=datetime.today().strftime('%Y-%m-%d')): source_dir = 'data/' + data['classification'] + '/' + data['stage'] + '/' load_dir = source_dir + data['source_name'] + '/' + data['table_name'] file_name = data['table_name'] + '_' + today + '.' + data['type'] file_path = load_dir + '/' + file_name return load_dir, file_path def get_file(data): load_dir, file_path = get_dir(data) files = glob.glob(load_dir + "/*." + data['type']) files = [file.split('_')[-1] for file in files] files = [file.split('.csv')[0] for file in files] dates = [datetime.strptime(file, '%Y-%m-%d') for file in files] max_date = max(dates).strftime('%Y-%m-%d') load_dir, file_path = get_dir(data, max_date) return file_path ## Tests def new_tests_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['New tests'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['New tests'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['New tests'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['New tests'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['New tests'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Tests<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="new tests").first() p.html = div db.session.add(p) db.session.commit() return def total_tests_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Total tested'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['Total tested'].tail(1).values[0], number = {'font': {'size': 60}}, )) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['Total tested'],line=dict(color='#5E5AA1',dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['Total tested'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Total tested'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True,'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Tested<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="tests").first() p.html = div db.session.add(p) db.session.commit() return def tested_positve_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['New Positive pct'].notna()] temp = df.loc[df['New Positive pct'] > 0] fig.add_trace(go.Indicator( mode = "number+delta", value = df['New Positive pct'].tail(1).values[0]*100, number = {'font': {'size': 60}} )) fig.add_trace(go.Scatter(x=temp.Date,y=temp['New Positive pct'],line=dict(color='#FFF', dash='dot'),visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['New Positive pct'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['New Positive pct'].iloc[-2]*100, 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text': f"Percent Positivity<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="tested positive").first() p.html = div db.session.add(p) db.session.commit() return def under_investigation_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Total tested'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['Under Investigation'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['Under Investigation'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['Under Investigation'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Under Investigation'].iloc[-2], 'increasing': {'color':'grey'}, 'decreasing': {'color':'grey'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Under Investigation<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="under investigation").first() p.html = div db.session.add(p) db.session.commit() return ## Hospital def in_hospital_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Hospitalized'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['Hospitalized'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['Hospitalized'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['ICU'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Hospitalized'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"COVID-19 Patients In Hospital<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="in hospital", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def in_icu_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
''' Function library for using PyTorch to run representational similarity analysis on convolutional neural networks. This library contains a collection of functions for easily conducting representational similarity analysis (RSA) and related analyses on convolutional neural networks (CNNs), serving as a wrapper for various PyTorch functions. There are also many utility functions to improve quality of life. ''' import torch import torchvision.models as models import torchvision.transforms as transforms from torch.utils import model_zoo import torchvision import numpy as np from os.path import join as opj from collections import OrderedDict from collections import defaultdict import ipdb import os from PIL import Image, ImageOps import copy import random from scipy import stats import itertools as it from sklearn import manifold from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.image import BboxImage from matplotlib.transforms import Bbox, TransformedBbox import matplotlib as mpl import ipympl import cv2 import pickle import seaborn as sns import pandas as pd from sklearn import svm from joblib import Parallel, delayed import multiprocessing import sys from importlib import reload import time import statsmodels.api as sm from scipy import math import cornet import pathos ################################################### ################ UTILITY FUNCTIONS ################ ################################################### def parallel_process(func,arg_dict,num_cores,method='pathos',make_combinations=False): ''' Wrapper to streamline running a function many times in parallel. Utility function to run a function many times in parallel, with many different combinations of arguments. Provide the function, along with a dictionary specifying the arguments to feed into the function. Can run either with the pathos or multiprocessing package. Also contains a flag, make_combinations, to do all combinations of input arguments if desired. Args: func: The function you want to run many times. arg_dict: The structure depends on the make_combinations flag. If this flag is set to false, input a list of dictionaries, where each dictionary contains a set of arguments for one call of the function (i.e., you manually specify each set of arguments for each function call); and each key is an argument name, with the corresponding value being an argument value. If make_combinations is set to false, input a single dictionary of lists, where each key is an argument name, and each value is a list of values to put in for that argument. In the latter case, the function will run every possible permutation of argument values from the different lists. num_cores: The number of cores to run in parallel method: Which Python module to use for the multiprocessing; either pathos or multiprocessing. make_combinations: Whether arg_dict is a list of dictionaries containing each set of arguments to put in (in this case put False), or a single dictionary of lists (in this case put True) Returns: List containing the results of all calls to the function. Examples: >>> def mult(x,y): return x*y >>> parallel_process(func = mult, arg_dict = [{'x':2,'y':4},{'x':5,'y':3}], num_cores = 2, method = 'pathos', make_combinations = False) [8,15] >>> parallel_process(func = mult, arg_dict = {'x':[2,1,3],'y':[6,2,4]}, num_cores=2, method='pathos', make_combinations=True) [12, 4, 8, 6, 2, 4, 18, 6, 12] ''' # Depending on which method is used, different input structure is needed. if make_combinations: for arg in arg_dict: if type(arg_dict[arg]) != list: arg_dict[arg] = [arg_dict[arg]] arg_dict_list = [dict(zip(arg_dict.keys(), values)) for values in it.product(*arg_dict.values())] else: arg_dict_list = arg_dict if method=='pathos': pool = pathos.multiprocessing.ProcessPool(nodes=num_cores) worker_list = [pool.apipe(func,**kwd_dict) for kwd_dict in arg_dict_list] results = [p.get() for p in worker_list] pool.close() pool.join() pool.clear() if method=='multiprocessing': pool = multiprocessing.Pool(processes=num_cores) worker_list = [pool.apply_async(func,kwds=kwd_dict) for kwd_dict in arg_dict_list] results = [p.get() for p in worker_list] pool.close() pool.join() return results def corr_dissim(x,y): """ Convenience function for computing 1-r for two vectors (to turn correlation into a dissimilarity metric). Function that returns 1-r for two vectors x and y. Args: x: First vector (numpy array) y: Second vector (numpy array) Returns: 1-r """ if np.max(np.abs(x-y))==0: r = 0 elif (np.sum(np.abs(x))==0) or (np.sum(np.abs(y))==0): r = np.nan else: r = 1-np.corrcoef(x,y)[0,1] return r # Definition of the default dissimilarity functions. dissim_defs = {'corr':corr_dissim, 'euclidean_distance':lambda x,y:np.linalg.norm(x-y)} def stderr(array): ''' Convenience function that computes the standard error of an array (STD/sqrt(n)) Args: array: 1D numpy array Returns: The standard error of the array. ''' output = np.std(array)/(float(len(array))**.5) return output def almost_equals(x,y,thresh=5): ''' Convenience function for determining whether two 1D arrays (x and y) are approximately equal to each other (within a range of thresh for each element) Args: x: 1D numpy array to compare to y y: 1D numpy array to compare to x thresh: how far apart any element of x can be from the corresponding element of y Returns: True if each element of x is within thresh of each corresponding element of y, false otherwise. ''' return all(abs(a[i]-b[i])<thresh for i in range(len(a))) def filedelete(fname): """ Convenience function to delete files and directories without fuss. Deletes the file or directory if it exists, does nothing otherwise. Args: fname: path of the file or directory Returns: Returns nothing. """ if os.path.exists(fname): try: if os.path.isdir(fname): # delete folder shutil.rmtree(fname) return else: # delete file os.remove(fname) return except: return else: return def pickle_read(fname): ''' Convenience function to read in a pickle file. Args: fname: file path of the pickle file Returns: The Python object stored in the pickle file. ''' output = pickle.load(open(fname,'rb')) return output def pickle_dump(obj,fname): ''' Convenience function to dump a Python object to a pickle file. Args: obj: Any pickle-able Python object. fname: The file path to dump the pickle file to. Returns: Nothing. ''' pickle.dump(obj,open(fname,"wb")) ################################################### ################ IMAGE PREPARATION ################ ################################################### def nonwhite_pixel_mask(image,thresh=230): ''' Takes in a 3D numpy array representing an image (m x n x 3), and returns a 2D boolean mask indicating every non-white pixel. Useful for making a mask indicating the stimulus footprint on a white background. Args: image: 3D numpy array (width m, height n, 3 pixel channels) thresh: RGB cutoff to count as white; if all three of R, G, and B exceed this value, the pixel is counted as white. Returns: 2D numpy array with a 0 for every white pixel and a 1 for every non-white pixel. ''' x,y = image.shape[0],image.shape[1] mask = np.zeros((x,y)) for i in range(x): for j in range(y): if all(image[i,j,:]>thresh): mask[i,j] = 0 else: mask[i,j] = 1 return mask def save_mask(mask,fname): ''' Takes in a 2D numpy array with a binary mask (1s and 0s), and saves it as an RGB JPEG image. Args: mask: 2D numpy array fname: Filename to save the image. Returns: The Image object (in addition to saving it at specified filename) ''' new_mask = Image.fromarray((np.dstack([mask,mask,mask])*255).astype('uint8'),'RGB') new_mask.save(fname,format='jpeg') return(new_mask) def shrink_image(input_image,shrink_ratio,pad_color=(255,255,255),output_size=(224,224)): ''' Put in a PIL image, and it'll shrink the image, while keeping the same resolution as original image and padding the sides with the desired color. Args: input_image: PIL image you want to shrink. shrink_ratio: how much to shrink each dimension of the image by (e.g., .5 to halve the length and width) pad_color: RGB tuple indicating the color to fill the margins of the image with output_size: desired dimensions of the output image Returns: PIL image, shrunk to desired dimensions. ''' orig_size = input_image.size pad_amount = int(round(orig_size[0]*(1-shrink_ratio)/(2*shrink_ratio))) new_size = (orig_size[0]+pad_amount*2,orig_size[1]+pad_amount*2) output_image = Image.new("RGB",new_size,color=pad_color) output_image.paste(input_image,(pad_amount,pad_amount)) output_image = output_image.resize(output_size,Image.ANTIALIAS) return(output_image) def alphatize_image(im,alpha_target=(255,255,255),alpha_range=5): ''' Takes in a PIL image, and makes RGB values within a given range transparent. Any pixel all of whose RGB values are within alpha_range of alpha_target will be made transparent. Used in MDS plotting function. Args: im: Image in PIL format alpha_target: RGB triplet indicating which values to make transparent. alpha_range: how far away a particular RGB value can be from alpha_target and still make it transparent. Returns: PIL image with all pixels in range of alpha_target made transparent. ''' image_alpha = im.convert('RGBA') pixel_data = list(image_alpha.getdata()) for i,pixel in enumerate(pixel_data): if almost_equals(pixel[:3],alpha_target,alpha_range): pixel_data[i] = (255,255,255,0) image_alpha.putdata(pixel_data) return image_alpha # Standard transformation to apply to images before reading them in standard_transform = transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def preprocess_image(input_image,transform=standard_transform): ''' Preprocesses an image to prepare it for running through a network; resizes it, turns it into a tensor, standardizes the mean and SD of the pixels, and pads it to be 4D, as required by many networks (one "dummy" dimension). args: input_image: PIL image return: Preprocessed image ''' output_image = transform(input_image).unsqueeze(0) return output_image ################################################### ############# DEALING WITH MODELS ################# ################################################### def get_layer_activation(module,input_,output_): ''' Utility function that is attached as a "forward hook" to each model layer to store the activations as a numpy array in the dictionary layer_activations. ''' layer_activations[module.layer_name] = output_.cpu().detach().numpy() def index_nested(the_item,indices): ''' Utility function to help with retrieving model layers that are buried in many levels of indexing that can be either numerical (array) or an attribute. args: the_item: top-level item you want to pull something out of indices: list of indices; each element is either a number (if that level of indexing is array-based), or a string if that level is indexing based on attribute. return: Whatever you've pulled out of the_item following the given indices. Examples: >>> import torchvision.models as models >>> alexnet = models.alexnet() >>> index_nested(alexnet._modules,['features', 11]) ReLU(inplace=True) ''' for ind in indices: if type(ind)!=tuple: the_item = the_item[ind] else: the_item = getattr(the_item,ind[1]) return the_item def fetch_layers_internal(current_layer,layer_pointers,layer_indices,layer_counter): ''' Internal helper function that recursively crawls through all layers and sublayers of a network and pulls out their addresses for easy reference. ''' layer_type = type(current_layer) if layer_type==torch.nn.modules.container.Sequential: for i,sub_layer in enumerate(current_layer): layer_pointers,layer_counter = fetch_layers_internal(current_layer[i],layer_pointers,layer_indices+[i],layer_counter) return(layer_pointers,layer_counter) if layer_type==torchvision.models.resnet.Bottleneck: sub_layer_list = current_layer.named_children() sub_layer_list = [sl[0] for sl in sub_layer_list] for sub_layer in sub_layer_list: layer_pointers,layer_counter = fetch_layers_internal(getattr(current_layer,sub_layer),layer_pointers,layer_indices+[('attr',sub_layer)],layer_counter) return(layer_pointers,layer_counter) elif layer_type.__name__=='BasicConv2d': sub_layer_list = current_layer.named_children() sub_layer_list = [sl[0] for sl in sub_layer_list] for sub_layer in sub_layer_list: layer_pointers,layer_counter = fetch_layers_internal(getattr(current_layer,sub_layer),layer_pointers,layer_indices+[('attr',sub_layer)],layer_counter) return(layer_pointers,layer_counter) elif 'Inception' in str(layer_type): sub_layer_list = current_layer.named_children() sub_layer_list = [sl[0] for sl in sub_layer_list] for sub_layer in sub_layer_list: layer_pointers,layer_counter = fetch_layers_internal(getattr(current_layer,sub_layer),layer_pointers,layer_indices+[('attr',sub_layer)],layer_counter) return(layer_pointers,layer_counter) elif 'CORblock_Z' in str(layer_type): sub_layer_list = current_layer.named_children() sub_layer_list = [sl[0] for sl in sub_layer_list] for sub_layer in sub_layer_list: layer_pointers,layer_counter = fetch_layers_internal(getattr(current_layer,sub_layer),layer_pointers,layer_indices+[('attr',sub_layer)],layer_counter) return(layer_pointers,layer_counter) elif 'CORblock_S' in str(layer_type): sub_layer_list = current_layer.named_children() sub_layer_list = [sl[0] for sl in sub_layer_list] for sub_layer in sub_layer_list: layer_pointers,layer_counter = fetch_layers_internal(getattr(current_layer,sub_layer),layer_pointers,layer_indices+[('attr',sub_layer)],layer_counter) return(layer_pointers,layer_counter) elif 'Conv2d' in str(layer_type): num_convs = len([layer for layer in layer_pointers if 'conv' in layer[0]]) layer_pointers[('conv'+str(num_convs+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'Linear' in str(layer_type): num_linear = len([layer for layer in layer_pointers if 'fc' in layer[0]]) layer_pointers[('fc'+str(num_linear+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'MaxPool2d' in str(layer_type): num_maxpools = len([layer for layer in layer_pointers if 'maxpool' in layer[0]]) layer_pointers[('maxpool'+str(num_maxpools+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'AvgPool2d' in str(layer_type): num_avgpools = len([layer for layer in layer_pointers if 'avgpool' in layer[0]]) layer_pointers[('avgpool'+str(num_avgpools+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'ReLU' in str(layer_type): num_relu = len([layer for layer in layer_pointers if 'relu' in layer[0]]) layer_pointers[('relu'+str(num_relu+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'BatchNorm2d' in str(layer_type): num_batchnorm = len([layer for layer in layer_pointers if 'batchnorm' in layer[0]]) layer_pointers[('batchnorm'+str(num_batchnorm+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'Dropout' in str(layer_type): num_dropout = len([layer for layer in layer_pointers if 'dropout' in layer[0]]) layer_pointers[('dropout'+str(num_dropout+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'Flatten' in str(layer_type): num_flatten = len([layer for layer in layer_pointers if 'flatten' in layer[0]]) layer_pointers[('flatten'+str(num_flatten+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) elif 'Identity' in str(layer_type): num_identity = len([layer for layer in layer_pointers if 'identity' in layer[0]]) layer_pointers[('identity'+str(num_identity+1),layer_counter)] = layer_indices layer_counter += 1 return(layer_pointers,layer_counter) else: return(layer_pointers,layer_counter) def fetch_layers(model): ''' Takes in a CNN model, and returns "addresses" of all the layers to refer to them easily; this is useful since different CNN models can be structured in different ways, with various chunks, layers, sublayers, etc. args: model: a PyTorch CNN model. Currently, at least AlexNet, VGG19, ResNet-50, GoogLeNet, and CORNet-S are supported; no guarantee yet that others will work. returns: ordered dictionary where each key is a layer label of format ('relu2',3) (that is, the second relu layer and third layer overall), and each value is the set of indices needed to refer to that layer in the model. The index_nested function can then be use those indices to refer to a layer of a model when needed. Examples: >>> import torchvision.models as models >>> alexnet = models.alexnet() >>> fetch_layers(alexnet) OrderedDict([(('conv1', 1), ['features', 0]), (('relu1', 2), ['features', 1]), (('maxpool1', 3), ['features', 2]), (('conv2', 4), ['features', 3]), (('relu2', 5), ['features', 4]), (('maxpool2', 6), ['features', 5]), (('conv3', 7), ['features', 6]), (('relu3', 8), ['features', 7]), (('conv4', 9), ['features', 8]), (('relu4', 10), ['features', 9]), (('conv5', 11), ['features', 10]), (('relu5', 12), ['features', 11]), (('maxpool3', 13), ['features', 12]), (('avgpool1', 14), ['avgpool']), (('dropout1', 15), ['classifier', 0]), (('fc1', 16), ['classifier', 1]), (('relu6', 17), ['classifier', 2]), (('dropout2', 18), ['classifier', 3]), (('fc2', 19), ['classifier', 4]), (('relu7', 20), ['classifier', 5]), (('fc3', 21), ['classifier', 6])]) ''' layer_pointers = OrderedDict() layer_counter = 1 for macro_layer in model._modules: layer_pointers,layer_counter = fetch_layers_internal(model._modules[macro_layer],layer_pointers,[macro_layer],layer_counter) return layer_pointers def prepare_models(models_dict): ''' Prepares the models you want to use: loads them with specified weight settings, and registers the forward hooks that allow you to save intermediate activations. args: models_dict: Dictionary specifying the models to prepare, and the weight settings to use. Each key is your internal name you wish to use for your model. Each value is a (base_model,weight_setting), where base_model is the model to use (e.g., "alexnet"), and weight_setting is "trained" for the trained version of the network, "random" for an untrained version of the model with random weights, or a URL linking to the state_dict for the weights to use if you wish to use some custom setting of the weights. returns: A dictionary where each key is your internal name of the model, and each value is the model itself. ''' models_prepped = OrderedDict() for model_name in models_dict: base_model,weights_url = models_dict[model_name] models_prepped[model_name] = prepare_model(base_model,weights_url) return models_prepped def prepare_model(which_model,weights_opt='trained'): ''' Prepares a single model to use: loads them with specified weight settings, and registers the forward hooks that allow you to save intermediate activations. Better to use the prepare_models function, since the output format is assumed by some of the other functions in this library. args: which_model: Base model to use (e.g., "alexnet") weights_opt: Which weights to use. Set to "trained" for trained version of the network, "random" for random weights, or a url linking to the state_dict for the weights if you wish to use some custom setting of the weights. returns: The prepared model. ''' if weights_opt == 'random': pretrain_opt = False else: pretrain_opt = True if which_model=='googlenet': if pretrain_opt==True: model = torch.hub.load('pytorch/vision', 'googlenet', pretrained=pretrain_opt) else: model = torch.hub.load('pytorch/vision', 'googlenet', pretrained=pretrain_opt,aux_logits=False) state_dict = model.state_dict() state_dict['fc.bias'] = state_dict['fc.bias']*0 model.load_state_dict(state_dict) elif which_model=='cornet_z': model = cornet.cornet_z(pretrained=pretrain_opt,map_location='cpu') elif which_model=='cornet_s': model = cornet.cornet_s(pretrained=pretrain_opt,map_location='cpu') else: model = getattr(models,which_model)(pretrained=pretrain_opt) model.eval() if (weights_opt != 'trained') and (weights_opt != 'random'): checkpoint = model_zoo.load_url(weights_opt,map_location='cpu') if 'module' in list(checkpoint['state_dict'].keys())[0]: new_checkpoint_state_dict = OrderedDict() for key in checkpoint['state_dict']: new_key = key[7:] new_checkpoint_state_dict[new_key] = checkpoint['state_dict'][key] else: new_checkpoint_state_dict = checkpoint['state_dict'] model.load_state_dict(new_checkpoint_state_dict,strict=True) # Get the pointers to the layers of interest: layer_pointers = fetch_layers(model) # Now, register forward hooks to all these layers: for layer_name in layer_pointers: layer_index = layer_pointers[layer_name] layer = index_nested(model._modules,layer_index) layer.register_forward_hook(get_layer_activation) layer.layer_name = layer_name return model def get_model_activations_for_image(fname,model): ''' Takes in the file path of an image, and a prepared model (use the prepare_model or prepare_models function), runs the image through the model, and returns a dictionary containing the model activations in each layer. args: fname: file path of the image to run through a model model: a CNN model object that has had the forward hooks attached to save the intermediate activation (use the prepare_model or prepare_models function to do this) returns: Dictionary where each key is a tuple denoting the layer (e.g., (conv3,5) is the third convolutiona layer and the fifth layer overall), and each value is a numpy array of the layer activations. ''' image = Image.open(obj_fname).convert('RGB') global layer_activations layer_activations = OrderedDict() preprocessed_image = preprocess_image(image) model.forward(preprocessed_image) return layer_activations ################################################### ############# DEALING WITH MATRICES ############### ################################################### def get_upper_triang(matrix): ''' Utility function that pulls out the upper triangular values of a matrix and returns them as a 1D vector. args: matrix: a 2D square numpy array returns: 1D numpy vector with the upper triangular elements. ''' n = matrix.shape[0] inds = np.triu_indices(n,1) vals = matrix[inds] return vals def correlate_upper_triang(m1,m2,func=lambda x,y:np.corrcoef(x,y)[0,1]): ''' Utility function that correlates the upper triangular values of two matrices. args: m1,m2: the two matrices in question func: the function to use; defaults to Pearson correlation, put in your own function (e.g., Spearman) if desired. returns: Correlation coefficient between the upper triangular values of the two matrices. ''' out_val = func(get_upper_triang(m1),get_upper_triang(m2)) return out_val def get_array_ranks(array): ''' Put in array, spits out the same array with the entries replaced by their ranks after being sorted (in ascending order). Ties are sorted arbitrarily. args: array: Numpy array of any size. returns: Array where each element corresponds to the rank of the element after sorting (e.g., the smallest element in the original array has value 0 in the returned array, the seconds-smallest have value 1, and so on) ''' return array.ravel().argsort().argsort().reshape(array.shape) def get_extreme_dissims_total(input_rdm,num_items='all'): ''' Takes in a representational dissimilarity matrix and a desired number of items, and returns a subsetted matrix with the items that maximize the total pairwise dissimilarity among all items (more colloquially, the items in the original matrix that are as "different as possible" from each other) args: input_rdm: representational dissimilarity matrix you wish to draw from num_items: how many items to draw from input_rdm returns: output_rdm: the subsetted representational similarity matrix with the maximally dissimilar items inds_to_extract: the indices of the items from the original matrix that ended up being used ''' if num_items=='all': num_items = input_rdm.shape[0] current_rdm = copy.copy(input_rdm) inds_to_extract = [] remaining_inds = list(range(input_rdm.shape[0])) init_pair = list(np.argwhere(current_rdm==np.nanmax(current_rdm))[0]) inds_to_extract = copy.copy(init_pair) for item in range(2,num_items): sub_matrix = current_rdm[np.sort(inds_to_extract),:].sum(axis=0) max_ind = 'NA' max_ind_val = -np.infty for i in range(len(sub_matrix)): if i in inds_to_extract: continue if sub_matrix[i]>max_ind_val: max_ind = i max_ind_val = sub_matrix[i] if (max_ind_val == -np.infty) or (np.isnan(max_ind_val)): break inds_to_extract.append(max_ind) output_rdm = current_rdm[np.ix_(inds_to_extract,inds_to_extract)] return output_rdm,inds_to_extract def get_dissims_that_match(input_rdm,target_val,num_items_final='all'): ''' Takes in a representational dissimilarity matrix and a desired number of items, and returns a subsetted matrix with the items with a mean pairwise similarity that is as close as possible to a target value (e.g., a set of items with a mean pairwise similarity that is as close as possible to .7) args: input_rdm: representational dissimilarity matrix you wish to draw from target_val: the target similarity value for the output RDM num_items_final: how many items to draw from input_rdm returns: output_rdm: The subsetted representational similarity matrix inds_to_extract: The indices of the items from the original matrix that ended up being used mean_dissim: The actual mean dissimilarity (which will hopefully be close to the target value!) ''' if num_items_final=='all': num_items_final = input_rdm.shape[0] current_rdm = copy.copy(input_rdm) inds_to_extract = [] num_items_init = input_rdm.shape[0] remaining_inds = list(range(num_items_init)) init_pair = list(np.argwhere(abs(current_rdm-target_val)==np.nanmin(abs(current_rdm-target_val)))[0]) inds_to_extract = copy.copy(init_pair) current_rdm = input_rdm[np.ix_(inds_to_extract,inds_to_extract)] for item_count in range(2,num_items_final): min_ind = 'NA' min_ind_val = np.infty # Test every item in the array, look at how close the mean similarity is to the desired value. for test_item in range(num_items_init): if test_item in inds_to_extract: continue test_matrix_inds = inds_to_extract + [test_item] test_matrix = input_rdm[np.ix_(test_matrix_inds,test_matrix_inds)] test_matrix_vals = test_matrix[np.triu_indices(test_matrix.shape[0],k=1)].flatten() total_diff = abs(np.mean(test_matrix_vals)-target_val) if total_diff<min_ind_val: min_ind_val = total_diff min_ind = test_item inds_to_extract.append(min_ind) current_rdm = input_rdm[np.ix_(inds_to_extract,inds_to_extract)] mean_dissim = np.mean(current_rdm[np.triu_indices(current_rdm.shape[0],k=1)]) return current_rdm,inds_to_extract,mean_dissim def get_most_uniform_dissims(input_rdm,num_items_final): ''' Takes in a representational dissimilarity matrix and a desired number of items, and returns a subsetted matrix with the items that produces a maximally UNIFORM range of similarities (some very similar, some very dissimilar). args: input_rdm: representational dissimilarity matrix you wish to draw from num_items: how many items to draw from input_rdm returns: output_rdm: the subsetted representational similarity matrix with the maximally uniform range of dissimilarities inds_to_extract: the indices of the items from the original matrix that ended up being used ''' if num_items_final=='all': num_items_final = input_rdm.shape[0] current_rdm = copy.copy(input_rdm) inds_to_extract = [] num_items_init = input_rdm.shape[0] remaining_inds = list(range(num_items_init)) init_pair = list(np.argwhere(current_rdm==current_rdm.max())[0]) inds_to_extract = copy.copy(init_pair) current_rdm = input_rdm[np.ix_(inds_to_extract,inds_to_extract)] for item_count in range(2,num_items_final): max_ind = 'NA' max_ind_val = -1 # initialize p-value, you want the GREATEST possible p-value (most uniform) # Test every item in the array, look at the uniformity of the resulting distribution if you add it in. for test_item in range(num_items_init): if test_item in inds_to_extract: continue test_matrix_inds = inds_to_extract + [test_item] test_matrix = input_rdm[np.ix_(test_matrix_inds,test_matrix_inds)] test_matrix_vals = test_matrix[np.triu_indices(test_matrix.shape[0],k=1)].flatten() trash,p = stats.kstest(test_matrix_vals,stats.uniform(loc=0, scale=1).cdf) if p>max_ind_val: max_ind_val = p max_ind = test_item inds_to_extract.append(max_ind) current_rdm = input_rdm[np.ix_(inds_to_extract,inds_to_extract)] return current_rdm,inds_to_extract ################################################### ############# INPUT AND OUTPUT #################### ################################################### def create_or_append_csv(df,path): ''' Utility function that creates a CSV from a pandas dataframe if no CSV with the given filepath exists; else, if the CSV already exists, appends the contents of the pandas dataframe to the CSV at that filepath. args: df: A pandas dataframe path: The desired file path returns: Nothing ''' if not os.path.exists(path): df.to_csv(path) else: df.to_csv(path,mode='a',header=False) def combine_csvs(path,keys=[]): ''' Utility function that takes in a list of filenames, and loads them all and combines them into a single pandas dataframe. Alternatively, can take in a path for a directory, and it'll combine all the dataframes in that directory into one. Can also specify "keys": requires substrings of the CSV filename for them to be included in the new CSV (e.g., "cat" if you only want the CSVs with "cat" in the filename) args: path: Either a list of filepaths for the CSVs you want to combine, or the path of a directory with the desired CSVs. keys: List of substrings that must appear in a CSV's filename for it to be included. returns: Pandas dataframe consisting of all the CSVs combined. ''' if type(path)==str: filepaths = os.listdir(path) filepaths = [opj(path,f) for f in filepaths if ('.csv' in f) or ('.p' in f)] else: filepaths = path if len(keys)>0: filepaths = [f for f in filepaths if any([key in f for key in keys])] df_list = [] for f in filepaths: if '.csv' in f: df_list.append(pd.read_csv(f,index_col=0)) elif '.p' in f: df_list.append(pickle.load(open(f,'rb'))) out_df = pd.concat(df_list) return(out_df) ################################################### ############# DATAFRAME OPERATIONS ################ ################################################### def df_inds2cols(df): """ Utility function to convert all indices in a dataframe to columns, so they can be handled in a more uniform way. Args: df: dataframe whose indices you want to convert Returns: Dataframe that now has columns where there were once indices. """ # make it a dataframe if not already: if isinstance(df,pd.core.series.Series): df = df.to_frame() num_inds = len(df.index.names) for i in range(0,num_inds): df.reset_index(level=0,inplace=True) # This operation reverses the column order, so need to reverse it back: cols = df.columns.tolist() cols = cols[num_inds-1::-1] + cols[num_inds:] df = df[cols] return df def df_agg(df,group_vars,data_vars,agg_funcs): ''' Utility function to easily aggregate values in a Pandas dataframe (e.g., if you want to take the mean and standard deviation within a bunch of subgroups). There's a built-in Pandas function that does this, but this one is more flexible and keeps the new column names as strings rather than tuples, and also doesn't convert things to indices rather than columns. Args: df: the dataframe whose data you want to aggregate group_vars: list of variables you want to aggregate across (e.g., "city" and "gender" to create group averages across combinations of city and gender, collapsing across other variables). Put 'rem' if you want the group_vars to be all variables EXCEPT the specified data_vars. data_vars: the actual values you want to aggregate (e.g., height if you want the average height). Put 'rem' if you want the data_vars to be all variables EXCEPT the specified group_vars. agg_funcs: list of functions you want to use for aggregating Returns: Dataframe where the data_vars have been aggregated with the agg_funcs within each value of the group_vars. Examples: >>> import pandas as pd >>> df = pd.DataFrame.from_dict({'city':['New York','New York','New York','New York', 'Boston','Boston','Boston','Boston'], 'gender':['Male','Male','Female','Female','Male','Male','Female','Female'], 'height':[70,72,66,65,69,73,64,63], 'income':[50000,100000,80000,150000,120000,90000,70000,110000]}) >>> pfa.df_agg(df,['city','gender'],['height','income'],[np.mean,np.std]) city gender height_mean height_std income_mean income_std 0 Boston Female 63.5 0.707107 90000 28284.271247 1 Boston Male 71.0 2.828427 105000 21213.203436 2 New York Female 65.5 0.707107 115000 49497.474683 3 New York Male 71.0 1.414214 75000 35355.339059 ''' if data_vars == 'rem': data_vars = [] col_names = df.columns.values for col in col_names: if not col in group_vars: data_vars.append(col) if group_vars == 'rem': group_vars = [] col_names = df.columns.values for col in col_names: if not col in data_vars: group_vars.append(col) groups = df.groupby(group_vars) agg_df = groups[data_vars].agg(agg_funcs) if type(agg_funcs)==list: agg_df.columns = agg_df.columns.map('_'.join) agg_df = inds2cols(agg_df) return agg_df def df_subset(df,subset_list): ''' Takes in a Pandas dataframe and subsets it to the desired values of specified columns. Args: df: the dataframe you wish to subset subset_list: a list of tuples specifying how to subset; each tuple is (column_name,vals_to_use), where column_name is the name of the column, and vals_to_use is a list of which values of that column to keep (or can be just a single value if you only want one) Returns: Dataframe that is subsetted in the desired way. Examples: >>> import pandas as pd >>> df = pd.DataFrame.from_dict({'city':['New York','New York','Seattle','Seattle', 'Seattle','Boston','Boston','Boston'], 'gender':['Male','Male','Female','Female','Male','Male','Female','Female'], 'height':[70,72,66,65,69,73,64,63], 'income':[50000,100000,80000,150000,120000,90000,70000,110000]}) >>> pfa.df_subset(df,[('city',['New York','Seattle']), ('gender','Male')]) city gender height income 0 New York Male 70 50000 1 New York Male 72 100000 4 Seattle Male 69 120000 ''' for col in subset_list: if type(col)==tuple: if type(col[1])==list: df = df[df[col[0]].isin(col[1])] else: df = df[df[col[0]]==col[1]] elif type(col)==str: var_value = eval(f"{col}") if type(var_value)==list: df = df[df[col.isin(var_value)]] else: df = df[df[col]==var_value] return df def df_filtsort(df,sortlist): ''' Takes in a Pandas dataframe, and both filters and sorts it based on the values of specified columns. Args: df: The dataframe you wish to filter and sort sortlist: A list of tuples, where each tuple is of format (column_name,sort_vals); column_name is the name of the column to sort by, sort_vals is the desired order of the values in that column. Columns will be sorted by priority based on how they are listed. Returns: Dataframe that is subsetted and sorted in the desired way. Examples >>> import pandas as pd >>> df = pd.DataFrame.from_dict({'city':['New York','New York','New York','Seattle', 'Seattle','Seattle','Boston','Boston','Boston'], 'gender':['Male','Male','Female','Female','Female','Male','Male','Female','Female'], 'height':[70,72,65,66,65,69,73,64,63], 'income':[50000,100000,120000,80000,150000,120000,90000,70000,110000]}) >>> pfa.df_filtsort(df,[('city',['Seattle','New York']),('gender',['Female','Male'])]) city gender height income 3 Seattle Female 66 80000 4 Seattle Female 65 150000 5 Seattle Male 69 120000 2 New York Female 65 120000 0 New York Male 70 50000 1 New York Male 72 100000 ''' # filter it first if type(sortlist)==tuple: sortlist = [sortlist] for (sortcol,sort_order) in sortlist: df = df[df[sortcol].isin(sort_order)] dummy_col_names = [] for ind,(sortcol,sort_order) in enumerate(sortlist): recode_dict = {name:num for num,name in enumerate(sort_order)} df.loc[:,'dummycol'+str(ind)] = df[sortcol].replace(recode_dict) dummy_col_names.append('dummycol'+str(ind)) df = df.sort_values(by=dummy_col_names) df = df.drop(dummy_col_names,axis=1) return df def df_pivot(df,index_cols,var_cols,value_cols,aggfunc='mean'): ''' Functionally identical to the default Pandas pivot function, but allows you to have multiple values columns, and automatically converts indices to columns. Args: df: the df to turn into a pivot table index_cols: list of column names to keep as index columns var_cols: list of columns to pivot value_cols: list of value columns aggfunc: how to aggregate values when there are multiple values per cell Returns: Dataframe converted to pivot table. Example: >>> import pandas as pd >>> df = pd.DataFrame.from_dict({'city':['New York','New York','New York','Seattle', 'Seattle','Seattle','Boston','Boston','Boston'], 'gender':['Male','Male','Female','Female','Female','Male','Male','Female','Female'], 'height':[70,72,65,66,65,69,73,64,63], 'income':[50000,100000,120000,80000,150000,120000,90000,70000,110000]}) >>> pfa.df_pivot(df,['city'],['gender'],['height','income']) city Female_height Male_height Female_income Male_income 0 Boston 63.5 73.0 90000 90000 1 New York 65.0 71.0 120000 75000 2 Seattle 65.5 69.0 115000 120000 ''' if type(value_cols) != list: value_cols = [value_cols] if type(var_cols) != list: var_cols = [var_cols] if type(index_cols) != list: index_cols = [index_cols] sub_dfs = [] for value_col in value_cols: for var_col in var_cols: new_df = df.pivot_table(value_col,index_cols,var_cols,aggfunc) if len(value_cols)>1: colname_dict = {val:val+'_'+value_col for val in list(df[var_col].unique())} new_df = new_df.rename(columns=colname_dict) new_df = new_df.reset_index() new_df.columns.name = '' sub_dfs.append(new_df) # Now merge all the dfs together. Start with the first one, then tack on columns from the others. out_df = sub_dfs[0] for ind in range(1,len(sub_dfs)): new_cols = [col for col in sub_dfs[ind].columns.values if col not in out_df.columns.values] for new_col in new_cols: out_df[new_col] = sub_dfs[ind][new_col] out_df = out_df.reset_index(drop=True) return out_df ########################################### ################# RSA ##################### ########################################### def package_image_sets(image_list,entry_vars,grouping_vars): ''' This is a convenience function for preparing image sets for representational similarity analysis. The use case is that you want to make multiple RDMs, where certain variables vary WITHIN the entries of each RDM (entry_vars), and some variables vary BETWEEN RDMs (grouping_vars). So, you give it a list of images, specifying the entry_vars and grouping_vars for each image, and this function returns a stack of image sets that can then be fed into the get_rdms function. Args: image_list: a list of dictionaries, where each dictionary contains information about one image. Each dictionary must AT LEAST contain a key called "path", whose value is the file path of the image. The other keys and values correspond to the other variables and values associated with the image. entry_vars: list of variable names that vary across the entries of each RDM. grouping vars: list of variable names that vary BETWEEN RDMs. Returns: List of image sets, where each image set is intended to be turned into an RDM; each image set is represented by a tuple that contains: ( Dictionary of grouping variables for that image set Dictionary of images for that image set; each key is the value of an entry_var, each value is the path for that image Tuple of the names of the entry variables Blank list (which can specify ways of combining activation patterns from images if desired) ) This output structure can be directly fed into the get_rdms function to make an RDM for each image set. Examples: >>> image_list = [{'color':'red','shape':'square','path':'red_square.jpg'}, {'color':'blue','shape':'square','path':'blue_square.jpg'}, {'color':'red','shape':'circle','path':'red_circle.jpg'}, {'color':'blue','shape':'circle','path':'blue_square.jpg'}] >>> pfa.package_image_sets(image_list,['shape'],['color']) [(OrderedDict([('color', 'red')]), OrderedDict([(('square',), 'red_square.jpg'), (('circle',), 'red_circle.jpg')]), ('shape',), []), (OrderedDict([('color', 'blue')]), OrderedDict([(('square',), 'blue_square.jpg'), (('circle',), 'blue_square.jpg')]), ('shape',), [])] Each of the top-level tuples is an image set. ''' sample_image = image_list[0] image_keys = list(sample_image.keys()) if 'path' not in image_keys: raise Exception("Need to specify the image path!") image_keys = [key for key in image_keys if key!='path'] if len(image_keys) != len(entry_vars)+len(grouping_vars): raise Exception("Make sure the image variables match the entry/grouping variables.") image_sets = [] for image in image_list: # Check that the image set exists: image_set_dict = OrderedDict() for key in image: if key in grouping_vars: image_set_dict[key] = image[key] image_set_exists = False for i,image_set in enumerate(image_sets): if image_set[0]==image_set_dict: image_set_exists=True which_image_set = i if not image_set_exists: new_image_set = [] new_image_set.append(image_set_dict) new_image_set.append(OrderedDict()) new_image_set.append(tuple(entry_vars)) new_image_set.append([]) new_image_set = tuple(new_image_set) image_sets.append(new_image_set) which_image_set = -1 image_key = [] for key in image: if key in entry_vars: image_key.append(image[key]) image_key = tuple(image_key) image_sets[which_image_set][1][image_key] = image['path'] return(image_sets) def get_image_set_rdm(image_set, model_name, models_dict, out_fname, rdm_name='rdm_default_name', which_layers={}, dissim_metrics=['corr'], kernel_sets=('all','all'), num_perms=0, append=True, verbose=False, debug_check=False): ''' Internal helper function for the get_rdms function in order to enable parallel processing. See get_rdms function for full documentation. ''' image_set_labels,images,entry_types,combination_list = image_set if append and os.path.exists(out_fname): append = True existing_df = ut.pickle_read(out_fname) subset_opts = [(var,image_set_labels[var]) for var in image_set_labels] existing_df = ut.df_subset(existing_df,[('model',model_name)]) existing_df = ut.df_subset(existing_df,subset_opts) else: append = False print(f"{','.join(list(image_set_labels.values()))}") image_names = list(images.keys()) combination_names = [comb[0] for comb in combination_list] entry_names = image_names + [comb[0] for comb in combination_list] # labels of the rows and columns # If you want to do different color spaces, fill this in someday. Fill in funcs that take in RGB and spit out desired color space. color_space_funcs = {} color_space_list = [] rdms_dict = defaultdict(lambda:[]) perm_list = ['orig_data'] + list(range(1,num_perms+1)) model = models_dict[model_name] print(f"\tModel {model_name}") # Get layer activations for images. print("\t\tComputing image activations...") obj_activations = OrderedDict() for image_name in images: if verbose: print(image_name) image = images[image_name] if type(image)==str: # in case it's a file path. image = Image.open(image) preprocessed_image = preprocess_image(image) obj_activations[image_name] = OrderedDict() obj_activations[image_name][('original_rgb',0),'feature_means'] = np.array(preprocessed_image).squeeze() obj_activations[image_name][('original_rgb',0),'unit_level'] = np.array(preprocessed_image).squeeze().mean(axis=(1,2)) # If you want to include different color spaces. for cs in color_space_list: converted_image = copy.copy(preprocessed_image) for i,j in it.product(range(converted_image.shape[0]),range(converted_image.shape[1])): converted_image[i,j,:] = color_space_funcs[cs](converted_image[i,j,:]) obj_activations[image_name][f'original_{cs}','with_space'] = preprocessed_image.squeeze() obj_activations[image_name][f'original_{cs}','no_space'] = preprocessed_image.squeeze().mean(axis=(0,1)) global layer_activations layer_activations = OrderedDict() model.forward(preprocessed_image) for layer in layer_activations: layer_dim = len(layer_activations[layer].squeeze().shape) if layer_dim == 1: obj_activations[image_name][layer,'unit_level'] = layer_activations[layer].squeeze() obj_activations[image_name][layer,'feature_means'] = layer_activations[layer].squeeze() else: obj_activations[image_name][layer,'unit_level'] = layer_activations[layer].squeeze() obj_activations[image_name][layer,'feature_means'] = layer_activations[layer].squeeze().mean(axis=(1,2)) # If you want to combine the patterns in any way. for comb_name,comb_stim,comb_func,comb_func_args,unpack_args in combination_list: obj_activations[comb_name] = OrderedDict() # For different layers and activation types. keys = list(obj_activations[comb_stim[0]].keys()) for key in keys: stim_activations = [obj_activations[stim][key] for stim in comb_stim] if unpack_args: obj_activations[comb_name][key] = comb_func(*stim_activations,**comb_func_args) else: obj_activations[comb_name][key] = comb_func(stim_activations,**comb_func_args) # Now make the RDM. print("Making RDMs...") layer_list = [('original_rgb',0)] + list(layer_activations.keys()) for layer,dm in it.product(layer_list,dissim_metrics): layer_name = layer[0] # Check if the layer is one of the specified layers. If it's a model with only specified layers, check # if the current layer is in it or not. if model_name in which_layers: model_layer_list = which_layers[model_name] if (layer not in model_layer_list) and (layer_name not in model_layer_list) and (layer_name != 'original_rgb'): continue print(f"\n\t{layer},{dm}") activation_types = ['unit_level','feature_means'] if dm in dissim_defs: dissim_func = dissim_defs[dm] elif type(dm)==tuple: dissim_func = dm[1] dm = dm[0] for activation_type,ks,which_perm in it.product(activation_types,kernel_sets,perm_list): print(f"\t\tKernel set {ks[0]}, activation {activation_type}, perm {which_perm}") ks_name,ks_dict = ks perm_scramble = list(range(len(entry_names))) if which_perm != 'orig_data': random.shuffle(perm_scramble) perm_dict = {i:perm_scramble[i] for i in range(len(entry_names))} if (layer,activation_type) not in obj_activations[list(obj_activations.keys())[0]]: continue if append: subset_opts = [('model',model_name),('layer_label',layer),('activation_type',activation_type),('kernel_set_name',ks_name),('dissim_metric',dm),('perm',which_perm)] for label in image_set_labels: subset_opts.append((label,image_set_labels[label])) df_subset = ut.df_subset(existing_df,subset_opts) if len(df_subset)>0: print("\t\t\t Already done, skipping...") continue sample_image = obj_activations[list(obj_activations.keys())[0]][layer,activation_type] if ks_dict == 'all': kernel_inds = list(range(sample_image.shape[0])) elif (model_name,layer_name) in ks_dict: kernel_inds = ks_dict[(model_name,layer_name)] else: print(f"*****Kernels not specified for {model_name},{layer}; using all kernels.*****") kernel_inds = list(range(sample_image.shape[0])) rdm = np.empty((len(entry_names),len(entry_names))) * np.nan num_pairs = len(entry_names)*len(entry_names)/2 pair_num = 0 next_percent = 0 for (i1,im1) in enumerate(entry_names): for (i2,im2) in enumerate(entry_names): if i2<i1: continue if verbose: pair_num += 1 if (pair_num/num_pairs)*100 > next_percent: print(f"{next_percent}%",end=' ',flush=True) next_percent=next_percent+1 ind1 = perm_dict[i1] ind2 = perm_dict[i2] ind1_im = entry_names[ind1] ind2_im = entry_names[ind2] pattern1 = obj_activations[ind1_im][layer,activation_type] pattern2 = obj_activations[ind2_im][layer,activation_type] pattern1_final = pattern1[kernel_inds,...].flatten().astype(float) pattern2_final = pattern2[kernel_inds,...].flatten().astype(float) dissim = dissim_func(pattern1_final,pattern2_final) rdm[i1,i2] = dissim rdm[i2,i1] = dissim trash,dissim_rankings = get_extreme_dissims_total(rdm,'all') rdms_dict['df_name'].append(rdm_name) rdms_dict['model'].append(model_name) rdms_dict['layer'].append(layer_name) rdms_dict['layer_num'].append(layer[1]) rdms_dict['layer_label'].append(layer) rdms_dict['dissim_metric'].append(dm) rdms_dict['activation_type'].append(activation_type) rdms_dict['matrix'].append(rdm) rdms_dict['entry_keys'].append(tuple(entry_names)) rdms_dict['entry_labels'].append(tuple([{entry_types[i]:entry[i] for i in range(len(entry))} for entry in entry_names])) rdms_dict['kernel_set_name'].append(ks_name) rdms_dict['kernel_inds'].append(tuple(kernel_inds)) rdms_dict['perm'].append(which_perm) rdms_dict['perm_scramble'].append(perm_scramble) rdms_dict['dissim_rankings'].append(tuple(dissim_rankings)) for label in image_set_labels: rdms_dict[label].append(image_set_labels[label]) if debug_check: print(pd.DataFrame.from_dict(rdms_dict)) ipdb.set_trace() debug_check=False # Only check the first one, then continue. del(obj_activations) rdms_df = pd.DataFrame.from_dict(rdms_dict) if append: rdms_df = pd.concat([rdms_df,existing_df]) return rdms_df def get_rdms(image_sets, models_dict, out_fname, rdm_name='default_name', which_layers={}, dissim_metrics=['corr'], kernel_sets=[('all','all')], num_perms = 0, num_cores = 'na', verbose=False, debug_check=False, append=True): ''' This is the core function of this package: it takes in several (possibly many) image sets, creates an RDM for each one, and stores this stack of RDMs as a Pandas dataframe, which can then be easily fed into other functions to perform higher-order RSA (e.g., to compare RDMs across layers and models), or to visualize the results. The basic idea is that your images can vary according to multiple variables; some of these will vary within an RDM (entry_vars), and some will vary between RDMs (grouping_vars). The only work involved is preparing the inputs to this function; a minimal example is shown at the end of this documentation, and also in the accompanying readme.txt in the GitHub repo. Args: image_sets: A list of image sets; an RDM will be computed separately for each one. Each image_set is a tuple of the format: ( Dictionary of grouping variables for that image set Dictionary of images for that image set; each key is the value of an entry_var, each value is the path for that image Tuple of the names of the entry variables Blank list (which can specify ways of combining activation patterns from images if desired) ) models_dict: a dictionary of models to use, where each key is your name for the model, and each value is the model itself. out_fname: the file path to save the dataframe at, stored in Pickle format (so .p suffix) rdm_name: the name to give to the RDM which_layers: a dictionary specifying which layers from each model to use (e.g., {'alexnet':['conv1','fc3']}); if a model is not specified, all layers are assumed dissim_metrics: a list of which dissimilarity metrics to use for the RDMs. Put 'corr' for 1-correlation; put 'euclidean_distance' for euclidean distance. If you wish to use a different one, have that entry in the list be of format (dissim_func_name,dissim_func), such as ('spearman',stats.spearmanr) kernel_sets: If you wish to only compute the RDMs over a subset of the kernels, specify it here. This will be a list of tuples. Each tuple is of (kernel_set_name,kernel_set_dict). Kernel_set_name is the name of the kernel_set. kerkel_set_dict is a dictionary specifying which kernels to select from each layer; each key is of format (model,layer_name), and each value is the list of kernel indices to use (so, {('alexnet','conv1'):[1,5,7]}). By default, all kernels are used and this can be ignored. num_perms: If you wish to do a permutation test where you shuffle the labels of your RDM entries multiple times, specify how many permutations to do here. num_cores: If you wish to use parallel processing, specify how many cores here; put 'na' if you don't want to process in parallel verbose: If you want it to give you the progress of each RDM as it's computed, put True, else put False. debug_check: Put True if you want to stop and debug with ipdb after each RDM is computed, put False otherwise. append: If you want to append the output dataframe to an existing dataframe, put True and it'll append the results to the dataframe at that filename (and skip any entries that are already in that dataframe). Else, that dataframe will be overwritten. Returns: Dataframe where each row is an RDM along with accompanying metadata. The columns of this dataframe are: matrix: The actual RDM, as a 2D numpy aray. df_name: The name of the dataframe. Purely cosmetic model: The name of the model used. layer: The layer name (e.g., conv1) layer_num: Where the layer falls in the network (e.g., conv1 is 1) layer_label: The layer name along with where it is in the network (e.g., (conv1,1) ) entry_keys: tuple of tuples where each tuple indicates the values of the entry variables for the items in the RDM. For example, if the entries of the RDM are square, circle, and triangle, this would be (('square'),('circle'),('triangle')). entry_labels: Same as entry keys, but it indicates the name of the entry variables. For example, ({'shape':'square'},{'shape':'circle'},{'shape':'triangle'}) dissim_metric: the dissim metric used in that RDM (e.g., euclidean_distance) activation_type: Whether the RDM was computed by averaging across space for the convolutional layers ('feature_means'), versus simply vectorizing the spatial dimension ('unit_level'). By default the function does both. kernel_set_name: The name of the kernel set being used. kernel_set_inds: The indices of the kernels that are used. perm: 'orig_data' if it's not permuted, or the permutation number if you specified permuted data. dissim_rankings: The ranking of the entries that would yield a sub-matrix with the highest dissimilarity. For example, (3,5,6,2) means that a submatrix with entries 3 and 5 from the matrix would yield the highest dissimilarity for two elements, a submatrix with 3,5,6 would yieldthe highest dissimilarity for three elements, and so on. Additionally, there will be columns specifying the labels for each RDM, which will be whatever you specified in the input image sets. Examples: >>> image_list = [{'color':'red','shape':'square','path':'red_square.jpg'}, {'color':'blue','shape':'square','path':'blue_square.jpg'}, {'color':'red','shape':'circle','path':'red_circle.jpg'}, {'color':'blue','shape':'circle','path':'blue_square.jpg'}] >>> image_sets = package_image_sets(image_list,['shape'],['color']) >>> models_prepped = prepare_models({'alexnet':('alexnet','trained'), 'vgg19':('vgg19','random')}) >>> get_rdms(image_sets = image_sets, # the stack of image sets models_dict = models_prepped, # the desired models which_layers = {'alexnet':['conv1','fc3']} # which layers to use; if not specified uses all layers out_fname = os.path.join(rdm_df.p), # where to save the output rdm_name = 'my_rdms', # the name of the output RDM dissim_metrics = ['corr','euclidean_distance'], # the dissimilarity metrics you want to try num_cores = 2 # How many cores to use for parallel processing) ''' print("*****Computing RDMs*****") if num_cores=='na': rdm_df_list = [] for image_set,model_name in it.product(image_sets,models_dict): new_df = get_image_set_rdm(image_set,model_name,models_dict,out_fname,rdm_name,which_layers, dissim_metrics,kernel_sets,num_perms,append,verbose,debug_check) rdm_df_list.append(new_df) else: #rdm_df_list = Parallel(n_jobs=num_cores)(delayed(get_image_set_rdm)(image_set,model_name,models, #rdm_name,which_layer_types, #dissim_metrics,kernel_sets,num_perms,debug_check=False) for image_set,model_name in it.product(image_sets,models)) pool = multiprocessing.Pool(processes=num_cores) rdm_df_list = [pool.apply_async(get_image_set_rdm,args=(image_set,model_name,models_dict,out_fname,rdm_name,which_layers, dissim_metrics,kernel_sets,num_perms,append,verbose,debug_check)) for image_set,model_name in it.product(image_sets,models_dict)] rdm_df_list = [p.get() for p in rdm_df_list] rdms_df =
pd.concat(rdm_df_list)
pandas.concat
import os import numpy as np import pandas as pd from covid19model.data.utils import convert_age_stratified_property class QALY_model(): def __init__(self, comorbidity_distribution): self.comorbidity_distribution = comorbidity_distribution # Define absolute path abs_dir = os.path.dirname(__file__) # Import life table (q_x) self.life_table = pd.read_csv(os.path.join(abs_dir, '../../../data/interim/QALYs/Life_table_Belgium_2019.csv'),sep=';',index_col=0) # Compute the vector mu_x and append to life table self.life_table['mu_x']= self.compute_death_rate(self.life_table['q_x']) # Define mu_x explictly to enhance readability of the code self.mu_x = self.life_table['mu_x'] # Load comorbidity QoL scores for the Belgian population from <NAME> QoL_Van_Wilder=pd.read_excel(os.path.join(abs_dir,"../../../data/interim/QALYs/De_Wilder_QoL_scores.xlsx"),index_col=0,sheet_name='QoL_scores') QoL_Van_Wilder.columns = ['0','1','2','3+'] QoL_Van_Wilder.index = pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left') self.QoL_Van_Wilder = QoL_Van_Wilder # Define overall Belgian QoL scores self.QoL_Belgium = pd.Series(index=pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left'), data=[0.85, 0.85, 0.84, 0.83, 0.805, 0.78, 0.75, 0.72, 0.72]) # Convert Belgian QoL and Van Wilder QoL to age bins of self.comorbidity_distribution self.QoL_Belgium = convert_age_stratified_property(self.QoL_Belgium, self.comorbidity_distribution.index) tmp_QoL_Van_Wilder = pd.DataFrame(index=self.comorbidity_distribution.index, columns=self.QoL_Van_Wilder.columns) for column in self.QoL_Van_Wilder.columns: tmp_QoL_Van_Wilder[column] = convert_age_stratified_property(self.QoL_Van_Wilder[column], self.comorbidity_distribution.index) self.QoL_Van_Wilder = tmp_QoL_Van_Wilder # Compute the QoL scores of the studied population self.QoL_df = self.build_comorbidity_QoL(self.comorbidity_distribution, self.QoL_Van_Wilder, self.QoL_Belgium) # Load comorbidity SMR estimates SMR_pop_df=pd.read_excel(os.path.join(abs_dir,"../../../data/interim/QALYs/De_Wilder_QoL_scores.xlsx"), index_col=0, sheet_name='SMR') SMR_pop_df.columns = ['0','1','2','3+'] SMR_pop_df.index = pd.IntervalIndex.from_tuples([(0,10),(10,20),(20,30),(30,40),(40,50),(50,60),(60,70),(70,80),(80,120)], closed='left') self.SMR_pop_df = SMR_pop_df # Convert comorbidity SMR estimates to age bins of self.comorbidity_distribution tmp_SMR_pop_df = pd.DataFrame(index=self.comorbidity_distribution.index, columns=self.SMR_pop_df.columns) for column in self.SMR_pop_df.columns: tmp_SMR_pop_df[column] = convert_age_stratified_property(self.SMR_pop_df[column], self.comorbidity_distribution.index) self.SMR_pop_df = tmp_SMR_pop_df # Compute the SMR of the studied population self.SMR_df = self.build_comorbidity_SMR(self.comorbidity_distribution, self.SMR_pop_df) def build_comorbidity_SMR(self, comorbidity_distribution, population_SMR): """ A function to compute the Standardized Mortality Ratios (SMRs) in a studied population, based on the comorbidity distribution of the studied population and the comorbidity distribution of the Belgian population Parameters ---------- comorbidity_distribution : pd.Dataframe A dataframe containing the studied population fraction with x comorbidities. This dataframe is the input of the comorbidity-QALY model. The studied population are usually recovered or deceased COVID-19 patients in hospitals. The dataframe must have te age group as its index and make use of a pandas multicolumn, where the first level denotes the population (usually R or D, but the code is written to use n populations). The second level denotes the number of comorbidities, which must be equal to 0, 1, 2 or 3+. population_SMR : pd.Dataframe A dataframe containing the age-stratified SMRs for individuals with 0, 1, 2 or 3+ comorbidities in the general Belgian population. Computed using the comorbidity distributions for the general Belgian population obtained from <NAME>, and the relative risk of dying by Charslon et. al (computation performed in MS Excel). Returns ------- SMR_df: pd.DataFrame The weighted Standardized Mortality Ratios (SMRs) in the studied population. An SMR > 1 indicates the studied population is less healthy than the general Belgian population. """ # Extract names of populations populations = list(comorbidity_distribution.columns.get_level_values(0).unique()) # Initialize dataframe df = pd.DataFrame(index=population_SMR.index, columns=populations) # Fill dataframe for idx,age_group in enumerate(df.index): for jdx,pop in enumerate(populations): df.loc[age_group, pop] = sum(comorbidity_distribution.loc[age_group, pop]*population_SMR.loc[age_group]) # Append SMR of average Belgian df.loc[slice(None), 'BE'] = 1 return df def build_comorbidity_QoL(self, comorbidity_distribution, comorbidity_QoL, average_QoL): """ A function to compute the QoL scores in a studied population, based on the comorbidity distribution of the studied population and the QoL scores for 0, 1, 2, 3+ comorbidities for the Belgian population Parameters ---------- comorbidity_distribution : pd.Dataframe A dataframe containing the studied population fraction with x comorbidities. This dataframe is the input of the comorbidity-QALY model. The studied population are usually recovered or deceased COVID-19 patients in hospitals. The dataframe must have te age group as its index and make use of a pandas multicolumn, where the first level denotes the population (usually R or D, but the code is written to use n populations). The second level denotes the number of comorbidities, which must be equal to 0, 1, 2 or 3+. comorbidity_QoL : pd.Dataframe A dataframe containing the age-stratified QoL scores for individuals with 0, 1, 2 or 3+ comorbidities in the general Belgian population. Obtained from <NAME>. average_QoL : pd.Series A series containing the average QoL score for the (Belgian) population Returns ------- QoL_df: pd.DataFrame The comorbidity-weighted QoL scores of the studied population. """ # Extract names of populations populations = list(comorbidity_distribution.columns.get_level_values(0).unique()) # Initialize dataframe df = pd.DataFrame(index=comorbidity_QoL.index, columns=populations) # Fill dataframe for idx,age_group in enumerate(df.index): for jdx,pop in enumerate(populations): df.loc[age_group, pop] = sum(comorbidity_distribution.loc[age_group, pop]*comorbidity_QoL.loc[age_group]) # Append SMR of average Belgian df.loc[slice(None), 'BE'] = average_QoL return df def compute_death_rate(self, q_x): """ A function to compute the force of mortality (instantaneous death rate at age x) Parameters ---------- q_x : list or np.array Probability of dying between age x and age x+1. Returns ------- mu_x : np.array Instantaneous death rage at age x """ # Pre-allocate mu_x = np.zeros(len(q_x)) # Compute first entry mu_x[0] = -np.log(1-q_x[0]) # Loop over remaining entries for age in range(1,len(q_x)): mu_x[age] = -0.5*(np.log(1-q_x[age])+np.log(1-q_x[age-1])) return mu_x def survival_function(self, SMR=1): """ A function to compute the probability of surviving until age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x SMR : float "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. Returns ------- S_x : pd.Series Survival function, i.e. the probability of surviving up until age x """ # Pre-allocate as np.array S_x = np.zeros(len(self.mu_x)) # Survival rate at age 0 is 100% S_x[0] = 1 # Loop for age in range(1,len(self.mu_x)): S_x[age] = S_x[age-1]*np.exp(-SMR*self.mu_x[age]) # Post-allocate as pd.Series object S_x = pd.Series(index=range(len(self.mu_x)), data=S_x) S_x.index.name = 'x' return S_x def life_expectancy(self,SMR=1): """ A function to compute the life expectancy at age x Parameters ---------- SMR : float "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. Returns ------- LE_x : pd.Series Life expectancy at age x """ # Compute survival function S_x = self.survival_function(SMR) # First compute inner sum tmp = np.zeros(len(S_x)) for age in range(len(S_x)-1): tmp[age] = 0.5*(S_x[age]+S_x[age+1]) # Then sum from x to the end of the table to obtain life expectancy LE_x = np.zeros(len(S_x)) for x in range(len(S_x)): LE_x[x] = np.sum(tmp[x:]) # Post-allocate to pd.Series object LE_x = pd.Series(index=range(len(self.mu_x)), data=LE_x) LE_x.index.name = 'x' return LE_x def compute_QALE_x(self, population='BE', SMR_method='convergent'): """ A function to compute the quality-adjusted life expectancy at age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x self.SMR_df : pd.Dataframe "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. self.QoL_df : pd.Dataframe Quality-of-life utility weights, as imported from `~/data/interim/QALYs/QoL_scores_Belgium_2018_v3.csv`. Must contain two columns: "group_limit" and "QoL_score" population : string Choice of QoL scores. Valid options are 'Belgium', 'R' and 'D'. 'Belgium' : Overall QoL scores for the Belgian population by De Wilder et. al and an SMR=1 are applied (this represents average QALY loss) 'R' : QoL scores and SMR for those recovering from COVID-19 in the hospital (most likely higher quality than average) 'D' : QoL scores and SMR for those dying from COVID-19 in the hospital (most likely lower quality than average) SMR_method : string Choice of SMR model for remainder of life. Valid options are 'convergent' and 'constant'. 'convergent' : the SMR gradually converges to SMR=1 by the end of the subjects life. If a person is expected to be healthy (SMR<1), this method represents the heuristic that we do not know how healthy this person will be in the future. We just assume his "healthiness" converges back to the population average as time goes by. 'constant' : the SMR used to compute the QALEs remains equal to the expected value for the rest of the subjects life. If a person is expected to be healthy (SMR<1), this method assumes the person will remain equally healthy for his entire life. Returns ------- QALE_x : pd.Series Quality-adjusted ife expectancy at age x """ # Pre-allocate results QALE_x = np.zeros(len(self.mu_x)) # Loop over x for x in range(len(self.mu_x)): # Pre-allocate dQALY dQALE = np.zeros([len(self.mu_x)-x-1]) # Set age-dependant utility weights to lowest possible j=0 age_limit=self.QoL_df.index[j].right - 1 QoL_x=self.QoL_df[population].values[j] # Calculate the SMR at age x if ((SMR_method == 'convergent')|(SMR_method == 'constant')): k = np.where(self.QoL_df.index.contains(x))[0][-1] age_limit = self.QoL_df.index[k].right - 1 SMR_x = self.SMR_df[population].values[k] # Loop over years remaining after year x for i in range(x,len(self.mu_x)-1): # Find the right age bin j = np.where(self.QoL_df.index.contains(i))[0][-1] age_limit = self.QoL_df.index[j].right - 1 # Choose the right QoL score QoL_x = self.QoL_df[population].values[j] # Choose the right SMR if SMR_method == 'convergent': # SMR gradually converges to one by end of life SMR = 1 + (SMR_x-1)*((len(self.mu_x)-1-i)/(len(self.mu_x)-1-x)) elif SMR_method == 'constant': # SMR is equal to SMR at age x for remainder of life SMR = SMR_x # Compute the survival function S_x = self.survival_function(SMR) # Then compute the quality-adjusted life years lived between age x and x+1 dQALE[i-x] = QoL_x*0.5*(S_x[i] + S_x[i+1]) # Sum dQALY to obtain QALY_x QALE_x[x] = np.sum(dQALE) # Post-allocate to pd.Series object QALE_x = pd.Series(index=range(len(self.mu_x)), data=QALE_x) QALE_x.index.name = 'x' return QALE_x def compute_QALY_x(self, population='BE', r=0.03, SMR_method='convergent'): """ A function to compute the quality-adjusted life years remaining at age x Parameters ---------- self.mu_x : list or np.array Instantaneous death rage at age x self.SMR_df : pd.Dataframe "Standardized mortality ratio" (SMR) is the ratio of observed deaths in a study group to expected deaths in the general population. An SMR of 1 corresponds to an average life expectancy, an increase in SMR shortens the expected lifespan. self.QoL_df : pd.Dataframe Quality-of-life utility weights, as imported from `~/data/interim/QALYs/QoL_scores_Belgium_2018_v3.csv`. Must contain two columns: "group_limit" and "QoL_score" population : string Choice of QoL scores. Valid options are 'Belgium', 'R' and 'D'. 'Belgium' : Overall QoL scores for the Belgian population by De Wilder et. al and an SMR=1 are applied (this represents average QALY loss) 'R' : QoL scores and SMR for those recovering from COVID-19 in the hospital (most likely higher quality than average) 'D' : QoL scores and SMR for those dying from COVID-19 in the hospital (most likely lower quality than average) r : float Discount rate (default 3%) SMR_method : string Choice of SMR model for remainder of life. Valid options are 'convergent' and 'constant'. 'convergent' : the SMR gradually converges to SMR=1 by the end of the subjects life. If a person is expected to be healthy (SMR<1), this method represents the heuristic that we do not know how healthy this person will be in the future. We just assume his "healthiness" converges back to the population average as time goes by. 'constant' : the SMR used to compute the QALEs remains equal to the expected value for the rest of the subjects life. If a person is expected to be healthy (SMR<1), this method assumes the person will remain equally healthy for his entire life. Returns ------- QALY_x : pd.Series Quality-adjusted life years remaining at age x """ # Pre-allocate results QALY_x = np.zeros(len(self.mu_x)) # Loop over x for x in range(len(self.mu_x)): # Pre-allocate dQALY dQALY = np.zeros([len(self.mu_x)-x-1]) # Set age-dependant utility weights to lowest possible j=0 age_limit=self.QoL_df.index[j].right -1 QoL_x=self.QoL_df[population].values[j] # Calculate the SMR at age x if ((SMR_method == 'convergent')|(SMR_method == 'constant')): k = np.where(self.QoL_df.index.contains(x))[0][-1] age_limit = self.QoL_df.index[k].right - 1 SMR_x = self.SMR_df[population].values[k] # Loop over years remaining after year x for i in range(x,len(self.mu_x)-1): # Find the right age bin j = np.where(self.QoL_df.index.contains(i))[0][-1] age_limit = self.QoL_df.index[j].right - 1 # Choose the right QoL score QoL_x = self.QoL_df[population].values[j] # Choose the right SMR if SMR_method == 'convergent': # SMR gradually converges to one by end of life SMR = 1 + (SMR_x-1)*((len(self.mu_x)-1-i)/(len(self.mu_x)-1-x)) elif SMR_method == 'constant': # SMR is equal to SMR at age x for remainder of life SMR = SMR_x # Compute the survival function S_x = self.survival_function(SMR) # Then compute the quality-adjusted life years lived between age x and x+1 dQALY[i-x] = QoL_x*0.5*(S_x[i] + S_x[i+1])*(1+r)**(x-i) # Sum dQALY to obtain QALY_x QALY_x[x] = np.sum(dQALY) # Post-allocate to pd.Series object QALY_x = pd.Series(index=range(len(self.mu_x)), data=QALY_x) QALY_x.index.name = 'x' return QALY_x def bin_QALY_x(self, QALY_x, model_bins=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): """ A function to bin the vector QALY_x according to the age groups in the COVID-19 SEIQRD Parameters ---------- QALY_x : np.array Quality-adjusted life years remaining at age x model_bins : pd.IntervalIndex Desired age bins Returns ------- QALY_binned: pd.Series Quality-adjusted life years lost upon death for every age bin of the COVID-19 SEIQRD model """ # Pre-allocate results vector QALY_binned = np.zeros(len(model_bins)) # Loop over model bins for i in range(len(model_bins)): # Map QALY_x to model bins QALY_binned[i] = np.mean(QALY_x[model_bins[i].left:model_bins[i].right-1]) # Post-allocate to pd.Series object QALY_binned = pd.Series(index=model_bins, data=QALY_binned) QALY_binned.index.name = 'age_group' return QALY_binned def build_binned_QALY_df(self, r=0.03, SMR_method='convergent', model_bins=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): # Extract names of populations populations = list(self.SMR_df.columns.get_level_values(0).unique()) # Initialize empty dataframe df =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 # In[1]: #This is the works for Udacity Self-driving-car-nd Term1 Project 3. import os, sys, random import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd # In[2]: # Print iterations progress def print_progress(iteration, total): """ Call in a loop to create terminal progress bar Parameters ---------- iteration : Current iteration (Int) total : Total iterations (Int) """ str_format = "{0:.0f}" percents = str_format.format(100 * (iteration / float(total))) filled_length = int(round(100 * iteration / float(total))) bar = '█' * filled_length + '-' * (100 - filled_length) sys.stdout.write('\r |%s| %s%%' % (bar, percents)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() # ### Dataset # In[3]: #Load sample data Folder_path = "./dataset/behavioral-cloning/sample_data/" Img_path = Folder_path + "IMG/" df = pd.read_csv(Folder_path + "driving_log.csv") df['left'] = df['left'].str.replace(' IMG/','./dataset/behavioral-cloning/sample_data/IMG/') df['right'] = df['right'].str.replace(' IMG/','./dataset/behavioral-cloning/sample_data/IMG/') df['center'] = df['center'].str.replace('IMG/','./dataset/behavioral-cloning/sample_data/IMG/') # In[4]: Folder_path = "./dataset/behavioral-cloning/train_data_new/" Img_path = Folder_path + "IMG/" df =
pd.read_csv(Folder_path + "driving_log.csv", names=['center', 'left', 'right', 'steering', 'gas', 'brake', 'speed'])
pandas.read_csv
import itertools import operator from functools import reduce import numpy as np import pandas as pd import regex as re import toolz from pandas.core.groupby import SeriesGroupBy import ibis.expr.operations as ops import ibis.util from ibis.backends.pandas.core import integer_types, scalar_types from ibis.backends.pandas.dispatch import execute_node @execute_node.register(ops.StringLength, pd.Series) def execute_string_length_series(op, data, **kwargs): return data.str.len().astype('int32') @execute_node.register(ops.Substring, pd.Series, integer_types, integer_types) def execute_substring_int_int(op, data, start, length, **kwargs): return data.str[start : start + length] @execute_node.register(ops.Substring, pd.Series, pd.Series, integer_types) def execute_substring_series_int(op, data, start, length, **kwargs): return execute_substring_series_series( op, data, start, pd.Series(np.repeat(length, len(start))), **kwargs ) @execute_node.register(ops.Substring, pd.Series, integer_types, pd.Series) def execute_string_substring_int_series(op, data, start, length, **kwargs): return execute_substring_series_series( op, data, pd.Series(np.repeat(start, len(length))), length, **kwargs ) @execute_node.register(ops.Substring, pd.Series, pd.Series, pd.Series) def execute_substring_series_series(op, data, start, length, **kwargs): end = start + length def iterate(value, start_iter=start.values.flat, end_iter=end.values.flat): begin = next(start_iter) end = next(end_iter) if (begin is not None and pd.isnull(begin)) or ( end is not None and
pd.isnull(end)
pandas.isnull
import functools from threading import Thread from contextlib import contextmanager import signal from scipy.stats._continuous_distns import _distn_names import scipy import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath, utils from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import scipy wqData = waterQuality.DataModelWQ('rbWN5') siteNoLst = wqData.siteNoLst dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) dirWRTDS = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-W', 'All') dirOut = os.path.join(dirWRTDS, 'output') dirPar = os.path.join(dirWRTDS, 'params') # read a temp file saveFile = os.path.join(dirOut, siteNoLst[0]) dfP = pd.read_csv(saveFile, index_col=None).set_index('date') t = dfP.index nt = len(dfP.index) nc = len(usgs.newC) ns = len(siteNoLst) matR = np.ndarray([ns, nt, nc]) matC = np.ndarray([ns, nt, nc]) # calculate residual t0 = time.time() for kk, siteNo in enumerate(siteNoLst): print('{}/{} {:.2f}'.format( kk, len(siteNoLst), time.time()-t0)) saveFile = os.path.join(dirOut, siteNo) dfP = pd.read_csv(saveFile, index_col=None).set_index('date') dfP.index = pd.to_datetime(dfP.index) dfC = waterQuality.readSiteTS(siteNo, varLst=usgs.newC, freq='W') matR[kk, :, :] = dfP.values-dfC.values matC[kk, :, :] = dfC.values def timeout(timeout): def deco(func): @functools.wraps(func) def wrapper(*args, **kwargs): res = [Exception('function [%s] timeout [%s seconds] exceeded!' % ( func.__name__, timeout))] def newFunc(): try: res[0] = func(*args, **kwargs) except Exception as e: res[0] = e t = Thread(target=newFunc) t.daemon = True try: t.start() t.join(timeout) except Exception as je: print('error starting thread') raise je ret = res[0] if isinstance(ret, BaseException): raise ret return ret return wrapper return deco codeLst2 = ['00095', '00400', '00405', '00600', '00605', '00618', '00660', '00665', '00681', '00915', '00925', '00930', '00935', '00940', '00945', '00950', '00955', '70303', '71846', '80154'] distLst = _distn_names # distLst=['laplace'] dfP =
pd.DataFrame(index=distLst, columns=codeLst2)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, empress development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import empress.taxonomy_utils as tax_utils def assert_taxcols_ok(taxcols, exp_num_levels=7): """Checks that a given taxcols list (returned by taxonomy_utils.split_taxonomy()) looks how we expect it to. exp_num_levels is the number of levels in the taxonomy -- it defaults to 7, which is the case for the moving pictures dataset (kingdom, phylum, class, order, family, genus, species). """ expcols = ["Level {}".format(i) for i in range(1, exp_num_levels + 1)] # I guess ideally we'd use self.assertEqual() from within a unittest class, # but just using the vanilla assert here makes it easy to use this function # from multiple unittest classes assert taxcols == expcols class TestTaxonomyUtils(unittest.TestCase): def setUp(self): self.feature_metadata = pd.DataFrame( { "Taxonomy": [ ( "k__Bacteria; p__Bacteroidetes; c__Bacteroidia; " "o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; " "s__" ), ( "k__Bacteria; p__Proteobacteria; " "c__Gammaproteobacteria; o__Pasteurellales; " "f__Pasteurellaceae; g__; s__" ), # add a variable number of whitespace characters to check # these are all successfully removed ( "k__Bacteria;p__Bacteroidetes ; c__Bacteroidia; " "o__Bacteroidales; f__Bacteroidaceae; g__Bacteroides; " "s__uniformis" ), "k__Bacteria; p__Firmicutes; c__Bacilli" ], "Confidence": [0.95, 0.8, 0, 1] }, index=["f1", "f2", "f3", "f4"] ) def _check_basic_case_worked(self, split_fm, taxcols): """Checks that a given DataFrame (and list of split-up taxonomy columns) matches the expected output from running split_taxonomy() on self.feature_metadata. """ # Let's verify that split_fm looks how we expect it to look. # ...First, by checking the columns -- should indicate that the # correct number of taxonomic levels were identified self.assertCountEqual(split_fm.columns, [ "Level 1", "Level 2", "Level 3", "Level 4", "Level 5", "Level 6", "Level 7", "Confidence" ]) # ...Next, check the index -- no features should've been dropped (that # isn't even a thing that split_taxonomy() does, but let's be safe :P) self.assertCountEqual(split_fm.index, ["f1", "f2", "f3", "f4"]) # While we're at it, let's check that taxcols looks good assert_taxcols_ok(taxcols) # Finally, let's check each row individually. This is kinda inelegant. assert_series_equal( split_fm.loc["f1"], pd.Series({ "Level 1": "k__Bacteria", "Level 2": "p__Bacteroidetes", "Level 3": "c__Bacteroidia", "Level 4": "o__Bacteroidales", "Level 5": "f__Bacteroidaceae", "Level 6": "g__Bacteroides", "Level 7": "s__", "Confidence": 0.95 }, name="f1") ) assert_series_equal( split_fm.loc["f2"], pd.Series({ "Level 1": "k__Bacteria", "Level 2": "p__Proteobacteria", "Level 3": "c__Gammaproteobacteria", "Level 4": "o__Pasteurellales", "Level 5": "f__Pasteurellaceae", "Level 6": "g__", "Level 7": "s__", "Confidence": 0.8 }, name="f2") ) assert_series_equal( split_fm.loc["f3"], pd.Series({ "Level 1": "k__Bacteria", "Level 2": "p__Bacteroidetes", "Level 3": "c__Bacteroidia", "Level 4": "o__Bacteroidales", "Level 5": "f__Bacteroidaceae", "Level 6": "g__Bacteroides", "Level 7": "s__uniformis", "Confidence": 0 }, name="f3") ) assert_series_equal( split_fm.loc["f4"], pd.Series({ "Level 1": "k__Bacteria", "Level 2": "p__Firmicutes", "Level 3": "c__Bacilli", "Level 4": "Unspecified", "Level 5": "Unspecified", "Level 6": "Unspecified", "Level 7": "Unspecified", "Confidence": 1 }, name="f4") ) def test_split_taxonomy_no_tax_column(self): fm2 = self.feature_metadata.copy() fm2.columns = ["asdf", "ghjkl"] fm3, taxcols = tax_utils.split_taxonomy(fm2)
assert_frame_equal(fm2, fm3)
pandas.testing.assert_frame_equal
import numpy as np import pandas as pd from matplotlib import pyplot as plt, rcParams """ Utility functions for understanding and visualizing the data """ class DataAnalyzer(): def __init__(self, text_key): self.text_key = text_key self.fig_num = -1 """ Show all plots """ def show_plots(self): plt.show() return """ Plot histogram of classes given a y vector """ def class_hist(self, y, label_indices, label_names, print_hist=False, show_now=False): counts = np.bincount(y) counts = [counts[i] for i in range(len(counts)) if i in label_indices] x = np.arange(len(counts)) ymax = max(counts)*1.1 self.fig_num += 1 plt.figure(self.fig_num, figsize=(12, 10)) plt.bar(x, counts, align='center', width=0.5) plt.ylim(0, ymax) plt.xticks(x, label_names, rotation=45, ha='right') rcParams.update({'figure.autolayout': True, 'font.size': 20}) if print_hist: print(counts) if show_now: plt.show() return """ Plot scores of classes in a bar chart """ def class_scores(self, scores, label_names, show_now=False): if type(scores) is tuple: prec, rec = scores scores = np.array([2/(1/prec[i] + 1/rec[i])\ for i in range(len(prec))]) x = np.arange(len(label_names)) ymax = max(scores)*1.1 self.fig_num += 1 plt.figure(self.fig_num, figsize=(12,10)) plt.bar(x, scores, align='center', width=0.5) plt.ylim(0, ymax) plt.xticks(x, label_names, rotation=45, ha='right') rcParams.update({'figure.autolayout': True, 'font.size': 20}) if show_now: plt.show() return """ Returns mean confidence of each class """ def class_confidence(self, y, conf_scores): df =
pd.DataFrame({'y': y, 'cs': conf_scores})
pandas.DataFrame
# coding: utf-8 # In[37]: import pandas as pd from sklearn import preprocessing import numpy as np import os import h5py import json import h5py # In[17]: distance_data_path = "data.csv" hnsw_result_path = "/home/lab4/code/HNSW/KNN-Evaluate/hnsw_result1111.h5py" test_file_path = "test_image_feature.csv" train_file_path = "vect_itemid130k.h5py" # ### Loading hnsw data # In[18]: f = h5py.File(hnsw_result_path) hnsw_ids_result = np.array(f["itemID"]) # ### Loading testing data and sort() test_ids to match to result_hnsw_ids # # In[19]: df = pd.read_csv(test_file_path, sep="\t", converters={1: json.loads}).reset_index() df.columns = ["item_id", "vect"] test_vects = np.array(df.vect.tolist()) test_ids = np.array(df.item_id.tolist()) test_ids = sorted(test_ids) # ### Load train_id list to make list fit() # In[43]: h5 = h5py.File(train_file_path) train_item_fit = np.array(h5["item"]) # In[44]: len(train_item_fit) # ### Loading KNN distance reference # In[103]: df_distance_data =
pd.read_csv(distance_data_path, iterator=True, chunksize=500000)
pandas.read_csv
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/8 22:08 Desc: 金十数据中心-经济指标-美国 https://datacenter.jin10.com/economic """ import json import time import pandas as pd import demjson import requests from akshare.economic.cons import ( JS_USA_NON_FARM_URL, JS_USA_UNEMPLOYMENT_RATE_URL, JS_USA_EIA_CRUDE_URL, JS_USA_INITIAL_JOBLESS_URL, JS_USA_CORE_PCE_PRICE_URL, JS_USA_CPI_MONTHLY_URL, JS_USA_LMCI_URL, JS_USA_ADP_NONFARM_URL, JS_USA_GDP_MONTHLY_URL, ) # 东方财富-美国-未决房屋销售月率 def macro_usa_phs(): """ 未决房屋销售月率 http://data.eastmoney.com/cjsj/foreign_0_5.html :return: 未决房屋销售月率 :rtype: pandas.DataFrame """ url = "http://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { 'type': 'GJZB', 'sty': 'HKZB', 'js': '({data:[(x)],pages:(pc)})', 'p': '1', 'ps': '2000', 'mkt': '0', 'stat': '5', 'pageNo': '1', 'pageNum': '1', '_': '1625474966006' } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json['data']]) temp_df.columns = [ '时间', '前值', '现值', '发布日期', ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) return temp_df # 金十数据中心-经济指标-美国-经济状况-美国GDP def macro_usa_gdp_monthly(): """ 美国国内生产总值(GDP)报告, 数据区间从20080228-至今 https://datacenter.jin10.com/reportType/dc_usa_gdp :return: pandas.Series 2008-02-28 0.6 2008-03-27 0.6 2008-04-30 0.9 2008-06-26 1 2008-07-31 1.9 ... 2019-06-27 3.1 2019-07-26 2.1 2019-08-29 2 2019-09-26 2 2019-10-30 0 """ t = time.time() res = requests.get( JS_USA_GDP_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国国内生产总值(GDP)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "53", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "gdp" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国CPI月率报告 def macro_usa_cpi_monthly(): """ 美国CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_cpi https://cdn.jin10.com/dc/reports/dc_usa_cpi_all.js?v=1578741110 :return: 美国CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CPI_MONTHLY_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国居民消费价格指数(CPI)(月环比)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "9", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "cpi_monthly" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国核心CPI月率报告 def macro_usa_core_cpi_monthly(): """ 美国核心CPI月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_cpi https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v=1578740570 :return: 美国核心CPI月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_cpi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心CPI月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "6", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_cpi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国个人支出月率报告 def macro_usa_personal_spending(): """ 美国个人支出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_personal_spending https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v=1578741327 :return: 美国个人支出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_personal_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国个人支出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "35", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_personal_spending" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国零售销售月率报告 def macro_usa_retail_sales(): """ 美国零售销售月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_retail_sales https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v=1578741528 :return: 美国零售销售月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_retail_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国零售销售月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "39", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_retail_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国进口物价指数报告 def macro_usa_import_price(): """ 美国进口物价指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_import_price https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v=1578741716 :return: 美国进口物价指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_import_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国进口物价指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "18", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_import_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-物价水平-美国出口价格指数报告 def macro_usa_export_price(): """ 美国出口价格指数报告, 数据区间从19890201-至今 https://datacenter.jin10.com/reportType/dc_usa_export_price https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v=1578741832 :return: 美国出口价格指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_export_price_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国出口价格指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "79", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_export_price" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-LMCI def macro_usa_lmci(): """ 美联储劳动力市场状况指数报告, 数据区间从20141006-至今 https://datacenter.jin10.com/reportType/dc_usa_lmci https://cdn.jin10.com/dc/reports/dc_usa_lmci_all.js?v=1578742043 :return: 美联储劳动力市场状况指数报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_LMCI_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美联储劳动力市场状况指数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "93", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "lmci" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国失业率报告 def macro_usa_unemployment_rate(): """ 美国失业率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_unemployment_rate https://cdn.jin10.com/dc/reports/dc_usa_unemployment_rate_all.js?v=1578821511 :return: 获取美国失业率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_UNEMPLOYMENT_RATE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国失业率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "47", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "unemployment_rate" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-失业率-美国挑战者企业裁员人数报告 def macro_usa_job_cuts(): """ 美国挑战者企业裁员人数报告, 数据区间从19940201-至今 https://datacenter.jin10.com/reportType/dc_usa_job_cuts https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v=1578742262 :return: 美国挑战者企业裁员人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_job_cuts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国挑战者企业裁员人数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "78", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_job_cuts" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国非农就业人数报告 def macro_usa_non_farm(): """ 美国非农就业人数报告, 数据区间从19700102-至今 https://datacenter.jin10.com/reportType/dc_nonfarm_payrolls https://cdn.jin10.com/dc/reports/dc_nonfarm_payrolls_all.js?v=1578742490 :return: 美国非农就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_NON_FARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国非农就业人数"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "33", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "non_farm" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-就业人口-美国ADP就业人数报告 def macro_usa_adp_employment(): """ 美国ADP就业人数报告, 数据区间从20010601-至今 https://datacenter.jin10.com/reportType/dc_adp_nonfarm_employment https://cdn.jin10.com/dc/reports/dc_adp_nonfarm_employment_all.js?v=1578742564 :return: 美国ADP就业人数报告-今值(万人) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_ADP_NONFARM_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ADP就业人数(万人)"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万人)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "1", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "adp" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国核心PCE物价指数年率报告 def macro_usa_core_pce_price(): """ 美国核心PCE物价指数年率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_core_pce_price https://cdn.jin10.com/dc/reports/dc_usa_core_pce_price_all.js?v=1578742641 :return: 美国核心PCE物价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( JS_USA_CORE_PCE_PRICE_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心PCE物价指数年率"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "80", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "core_pce_price" return temp_df # 金十数据中心-经济指标-美国-劳动力市场-消费者收入与支出-美国实际个人消费支出季率初值报告 def macro_usa_real_consumer_spending(): """ 美国实际个人消费支出季率初值报告, 数据区间从20131107-至今 https://datacenter.jin10.com/reportType/dc_usa_real_consumer_spending https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v=1578742802 :return: 美国实际个人消费支出季率初值报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_real_consumer_spending_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国实际个人消费支出季率初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "81", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_real_consumer_spending" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国贸易帐报告 def macro_usa_trade_balance(): """ 美国贸易帐报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_trade_balance https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v=1578742911 :return: 美国贸易帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_trade_balance_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国贸易帐报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "42", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_trade_balance" return temp_df # 金十数据中心-经济指标-美国-贸易状况-美国经常帐报告 def macro_usa_current_account(): """ 美国经常帐报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_usa_current_account https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v=1578743012 :return: 美国经常帐报告-今值(亿美元) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_current_account_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国经常账报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(亿美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "category": "ec", "attr_id": "12", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df = temp_df.astype("float") temp_df.name = "usa_current_account" return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-贝克休斯钻井报告 def macro_usa_rig_count(): """ 贝克休斯钻井报告, 数据区间从20080317-至今 https://datacenter.jin10.com/reportType/dc_rig_count_summary https://cdn.jin10.com/dc/reports/dc_rig_count_summary_all.js?v=1578743203 :return: 贝克休斯钻井报告-当周 :rtype: pandas.Series """ t = time.time() params = { "_": t } res = requests.get("https://cdn.jin10.com/data_center/reports/baker.json", params=params) temp_df = pd.DataFrame(res.json().get("values")).T big_df = pd.DataFrame() big_df["钻井总数_钻井数"] = temp_df["钻井总数"].apply(lambda x: x[0]) big_df["钻井总数_变化"] = temp_df["钻井总数"].apply(lambda x: x[1]) big_df["美国石油钻井_钻井数"] = temp_df["美国石油钻井"].apply(lambda x: x[0]) big_df["美国石油钻井_变化"] = temp_df["美国石油钻井"].apply(lambda x: x[1]) big_df["混合钻井_钻井数"] = temp_df["混合钻井"].apply(lambda x: x[0]) big_df["混合钻井_变化"] = temp_df["混合钻井"].apply(lambda x: x[1]) big_df["美国天然气钻井_钻井数"] = temp_df["美国天然气钻井"].apply(lambda x: x[0]) big_df["美国天然气钻井_变化"] = temp_df["美国天然气钻井"].apply(lambda x: x[1]) big_df = big_df.astype("float") return big_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国个人支出月率报告 # 金十数据中心-经济指标-美国-产业指标-制造业-美国生产者物价指数(PPI)报告 def macro_usa_ppi(): """ 美国生产者物价指数(PPI)报告, 数据区间从20080226-至今 https://datacenter.jin10.com/reportType/dc_usa_ppi https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v=1578743628 :return: 美国生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "37", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国核心生产者物价指数(PPI)报告 def macro_usa_core_ppi(): """ 美国核心生产者物价指数(PPI)报告, 数据区间从20080318-至今 https://datacenter.jin10.com/reportType/dc_usa_core_ppi https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v=1578743709 :return: 美国核心生产者物价指数(PPI)报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_core_ppi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国核心生产者物价指数(PPI)报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "7", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_core_ppi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国API原油库存报告 def macro_usa_api_crude_stock(): """ 美国API原油库存报告, 数据区间从20120328-至今 https://datacenter.jin10.com/reportType/dc_usa_api_crude_stock https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v=1578743859 :return: 美国API原油库存报告-今值(万桶) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_api_crude_stock_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国API原油库存报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万桶)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "69", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_api_crude_stock" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国Markit制造业PMI初值报告 def macro_usa_pmi(): """ 美国Markit制造业PMI初值报告, 数据区间从20120601-至今 https://datacenter.jin10.com/reportType/dc_usa_pmi https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v=1578743969 :return: 美国Markit制造业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "74", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-制造业-美国ISM制造业PMI报告 def macro_usa_ism_pmi(): """ 美国ISM制造业PMI报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v=1578744071 :return: 美国ISM制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "28", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工业产出月率报告 def macro_usa_industrial_production(): """ 美国工业产出月率报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_industrial_production https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v=1578744188 :return: 美国工业产出月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_industrial_production_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工业产出月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "20", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_industrial_production" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国耐用品订单月率报告 def macro_usa_durable_goods_orders(): """ 美国耐用品订单月率报告, 数据区间从20080227-至今 https://datacenter.jin10.com/reportType/dc_usa_durable_goods_orders https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v=1578744295 :return: 美国耐用品订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_durable_goods_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国耐用品订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "13", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_durable_goods_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-工业-美国工厂订单月率报告 def macro_usa_factory_orders(): """ 美国工厂订单月率报告, 数据区间从19920401-至今 https://datacenter.jin10.com/reportType/dc_usa_factory_orders https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v=1578744385 :return: 美国工厂订单月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_factory_orders_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国工厂订单月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "16", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_factory_orders" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国Markit服务业PMI初值报告 def macro_usa_services_pmi(): """ 美国Markit服务业PMI初值报告, 数据区间从20120701-至今 https://datacenter.jin10.com/reportType/dc_usa_services_pmi https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v=1578744503 :return: 美国Markit服务业PMI初值报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_services_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国Markit服务业PMI初值报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "89", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_services_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国商业库存月率报告 def macro_usa_business_inventories(): """ 美国商业库存月率报告, 数据区间从19920301-至今 https://datacenter.jin10.com/reportType/dc_usa_business_inventories https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v=1578744618 :return: 美国商业库存月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_business_inventories_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国商业库存月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "4", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_business_inventories" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-服务业-美国ISM非制造业PMI报告 def macro_usa_ism_non_pmi(): """ 美国ISM非制造业PMI报告, 数据区间从19970801-至今 https://datacenter.jin10.com/reportType/dc_usa_ism_non_pmi https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v=1578744693 :return: 美国ISM非制造业PMI报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "29", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_non_pmi" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国NAHB房产市场指数报告 def macro_usa_nahb_house_market_index(): """ 美国NAHB房产市场指数报告, 数据区间从19850201-至今 https://datacenter.jin10.com/reportType/dc_usa_nahb_house_market_index https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v=1578744817 :return: 美国NAHB房产市场指数报告-今值 :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_nahb_house_market_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国NAHB房产市场指数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "31", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_nahb_house_market_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋开工总数年化报告 def macro_usa_house_starts(): """ 美国新屋开工总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_house_starts https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v=1578747388 :return: 美国新屋开工总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_starts_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋开工总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "17", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_starts" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国新屋销售总数年化报告 def macro_usa_new_home_sales(): """ 美国新屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_new_home_sales https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v=1578747501 :return: 美国新屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_new_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国新屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "32", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_new_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国营建许可总数报告 def macro_usa_building_permits(): """ 美国营建许可总数报告, 数据区间从20080220-至今 https://datacenter.jin10.com/reportType/dc_usa_building_permits https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v=1578747599 :return: 美国营建许可总数报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_building_permits_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国营建许可总数报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "3", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_building_permits" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋销售总数年化报告 def macro_usa_exist_home_sales(): """ 美国成屋销售总数年化报告, 数据区间从19700101-至今 https://datacenter.jin10.com/reportType/dc_usa_exist_home_sales https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v=1578747703 :return: 美国成屋销售总数年化报告-今值(万户) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_exist_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋销售总数年化报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(万户)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "15", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_exist_home_sales" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国FHFA房价指数月率报告 def macro_usa_house_price_index(): """ 美国FHFA房价指数月率报告, 数据区间从19910301-至今 https://datacenter.jin10.com/reportType/dc_usa_house_price_index https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v=1578747781 :return: 美国FHFA房价指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_house_price_index_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国FHFA房价指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "51", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_house_price_index" temp_df = temp_df.astype("float") return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国S&P/CS20座大城市房价指数年率报告 def macro_usa_spcs20(): """ 美国S&P/CS20座大城市房价指数年率报告, 数据区间从20010201-至今 https://datacenter.jin10.com/reportType/dc_usa_spcs20 https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v=1578747873 :return: 美国S&P/CS20座大城市房价指数年率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_spcs20_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国S&P/CS20座大城市房价指数年率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "52", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_spcs20" temp_df = temp_df.astype(float) return temp_df # 金十数据中心-经济指标-美国-产业指标-房地产-美国成屋签约销售指数月率报告 def macro_usa_pending_home_sales(): """ 美国成屋签约销售指数月率报告, 数据区间从20010301-至今 https://datacenter.jin10.com/reportType/dc_usa_pending_home_sales https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v=1578747959 :return: 美国成屋签约销售指数月率报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_pending_home_sales_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国成屋签约销售指数月率报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "34", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index =
pd.to_datetime(temp_se.iloc[:, 0])
pandas.to_datetime
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result =
MultiIndex.from_arrays(arrays, names=self.index.names)
pandas.MultiIndex.from_arrays
# -*- coding: utf-8 -*- """ Created on Mon Mar 29 13:15:30 2021 @author: haoli """ import sys sys.path.append("../") import const_common as constA # import downloadUpdateData as mydownPy import Const_LME_A as constLME_a # import requests from os import makedirs import os.path as myPath # import os import pandas as pd # from urllib.request import urlopen, Request # import pyautogui, time #Set up a 2.5 second pause after each PyAutoGUI call: # pyautogui.PAUSE = 2.5 # from selenium import webdriver from datetime import datetime # import ntpath from pathlib import Path import pyodbc import numpy as np # from urllib.request import urlopen, Request #---------------------------------- errorFileTargetDir = '../' _dateSearchBy_ClassName_nonFerrous_gold_silver = "delayed-date.left" _dateSearchKeyword = "Data valid for" _waitTime_loadWebsite_LME = 3 _columnName_goldSilver = ['Date', 'Volume', 'Open Interest'] import key as pconst _server = pconst.RYAN_SQL['server'] _database = pconst.RYAN_SQL['database'] _username = pconst.RYAN_SQL['username'] _password = pconst.RYAN_SQL['password'] _sqlTable_LME_baseMetal_stock = 'LME_baseMetal_stock' _sqlTable_LME_baseMetal_price = 'LME_baseMetal_price' _sqlTable_LME_precious_price = 'LME_precious_price' _sqlTable_LME_precious_VolOpenInterest = 'LME_precious_VolOpenInterest' _sqlTable_LME_TraderReport_CA = 'LME_weeklyTraderReport_CA' _sqlTable_LME_TraderReport_AL = 'LME_weeklyTraderReport_AL' _sqlTable_LME_TraderReport_gold = 'LME_weeklyTraderReport_Gold' _sqlTable_LME_TraderReport_silver = 'LME_weeklyTraderReport_Silver' _sqlTable_LME_daily_Volume = 'LME_Daily_Volume' _sqlTable_LME_daily_OpenInterest_option = 'LME_Daily_OpenInterest_Option_E' _sqlTable_LME_daily_OpenInterest_future = 'LME_Daily_OpenInterest_Future_E' _REPORT_DATE_col = 'REPORT_DATE' _FORWARD_DATE_col = 'FORWARD_DATE' _FORWARD_MONTH_col = 'FORWARD_MONTH' # mydownPy.logError("my test message") #logError(errorFileTargetDir, msg) # mydownPy.logError(errorFileTargetDir, "my test message") #------- --------- def makeTodayDataDir(newDir): # if not myPath.lexists(newDir): #lexists if not myPath.exists(newDir): makedirs(newDir) def convertDDMM_date(df): for i in range(len(df)): d = df.iloc[i][0] d2 = d.strip() yy = datetime.strptime(d2, '%Y%m%d').strftime('%Y-%m-%d') df.iat[i, 0] = yy return df #-------------------------------- def sql_openInterest_daily_Option(df, dbName): # --- SQL ---- df = df.replace({np.NAN: None}) df[df.columns[2]] = df[df.columns[2]].str.slice(0,17) cnxn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER='+_server+';DATABASE='+_database+';UID='+_username+';PWD='+_password) cursor = cnxn.cursor() #delete today data before enter dateStr = df.iloc[1,0] # productStr = row[1] # descriptionStr = row[2] query = """DELETE FROM %s where Date = '%s';""" % (dbName, dateStr) cursor.execute(query) for index, row in df.iterrows(): params = tuple(row) query = """INSERT INTO %s VALUES (?,?,?,?, ?,?,?,?);""" %(dbName) cursor.execute(query, params) cnxn.commit() cursor.close() cnxn.close() def sql_openInterest_daily_Future(df, dbName): df = df.replace({np.NAN: None}) df[df.columns[2]] = df[df.columns[2]].str.slice(0,17) cnxn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER='+_server+';DATABASE='+_database+';UID='+_username+';PWD='+_password) cursor = cnxn.cursor() for index, row in df.iterrows(): #delete today data before enter #Date UNDERLYING ContractType ForwardDate OpenInterest Turnover #--------disable this when load large files------------------------ query = """DELETE FROM %s where Date = '%s' and [Underlying] = '%s' and [ContractType] = '%s' and [ForwardDate] ='%s';""" \ % (dbName, row[0], row[1], row[2],row[3]) cursor.execute(query) #--------------------------------------- params = tuple(row) query = """INSERT INTO %s VALUES (?,?,?,?, ?,? );""" %(dbName) cursor.execute(query, params) cnxn.commit() cursor.close() cnxn.close() def extract_OpenInterestData_Preciou_sql(fileFullPath, dbNameFuture): # df.astype(str) # df = pd.read_csv(fileFullPath, dtype=str) df = pd.read_csv(fileFullPath) df1 = df.dropna(how='all') df_data = df1.dropna(axis = 1, how='all') # df2 = df1.dropna(axis = 1, how='all') #-- convert integer to datatime format df_data[_REPORT_DATE_col] = (pd.to_datetime(df_data[_REPORT_DATE_col], format = '%Y%m%d')) df_data[_FORWARD_DATE_col] = (pd.to_datetime(df_data[_FORWARD_DATE_col], format = '%Y%m%d')) #--------aggrate the data df_future = df_data.groupby([_REPORT_DATE_col,'UNDERLYING','CONTRACT_TYPE',
pd.Grouper(key=_FORWARD_DATE_col,freq='M')
pandas.Grouper
""" This module provides an abstract base class for a callback and a default implementation. If you want to store the data in a way that is different from the functionality provided by the default callback, you can write your own extension of callback. For example, you can easily implement a callback that stores the data in e.g. a NoSQL file. The only method to implement is the __call__ magic method. To use logging of progress, always call super. """ import abc import csv import os import shutil import numpy as np import pandas as pd from .parameters import (CategoricalParameter, IntegerParameter, BooleanParameter) from ..util import ema_exceptions, get_module_logger # # Created on 22 Jan 2013 # # .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> # __all__ = ['AbstractCallback', 'DefaultCallback', 'FileBasedCallback'] _logger = get_module_logger(__name__) class AbstractCallback(object): """ Abstract base class from which different call back classes can be derived. Callback is responsible for storing the results of the runs. Parameters ---------- uncs : list a list of the parameters over which the experiments are being run. outcomes : list a list of outcomes nr_experiments : int the total number of experiments to be executed reporting_interval : int, optional the interval at which to provide progress information via logging. reporting_frequency: int, optional the total number of progress logs Attributes ---------- i : int a counter that keeps track of how many experiments have been saved reporting_interval : int, the interval between progress logs """ __metaclass__ = abc.ABCMeta i = 0 def __init__(self, uncertainties, outcomes, levers, nr_experiments, reporting_interval=None, reporting_frequency=10): if reporting_interval is None: reporting_interval = max( 1, int(round(nr_experiments / reporting_frequency))) self.reporting_interval = reporting_interval @abc.abstractmethod def __call__(self, experiment, outcomes): """ Method responsible for storing results. The implementation in this class only keeps track of how many runs have been completed and logging this. Any extension of AbstractCallback needs to implement this method. If one want to use the logging provided here, call it via super. Parameters ---------- experiment: Experiment instance outcomes: dict the outcomes dict """ # # TODO:: https://github.com/alexanderkuk/log-progress # can we detect whether we are running within Jupyter? # yes: # https://stackoverflow.com/questions/15411967/how-can-i-check-if-code-is-executed-in-the-ipython-notebook self.i += 1 _logger.debug(str(self.i) + " cases completed") if self.i % self.reporting_interval == 0: _logger.info(str(self.i) + " cases completed") @abc.abstractmethod def get_results(self): """ method for retrieving the results. Called after all experiments have been completed. Any extension of AbstractCallback needs to implement this method. """ class DefaultCallback(AbstractCallback): """ default callback system callback can be used in perform_experiments as a means for specifying the way in which the results should be handled. If no callback is specified, this default implementation is used. This one can be overwritten or replaced with a callback of your own design. For example if you prefer to store the result in a database or write them to a text file """ i = 0 cases = None results = {} shape_error_msg = "can only save up to 2d arrays, this array is {}d" constraint_error_msg = ('can only save 1d arrays for constraint, ' 'this array is {}d') def __init__(self, uncs, levers, outcomes, nr_experiments, reporting_interval=100, reporting_frequency=10): """ Parameters ---------- uncs : list a list of the parameters over which the experiments are being run. outcomes : list a list of outcomes nr_experiments : int the total number of experiments to be executed reporting_interval : int, optional the interval between progress logs reporting_frequency: int, optional the total number of progress logs """ super(DefaultCallback, self).__init__(uncs, levers, outcomes, nr_experiments, reporting_interval, reporting_frequency) self.i = 0 self.cases = None self.results = {} self.outcomes = [outcome.name for outcome in outcomes] # determine data types of parameters columns = [] dtypes = [] self.parameters = [] for parameter in uncs + levers: name = parameter.name self.parameters.append(name) dataType = 'float' if isinstance(parameter, CategoricalParameter): dataType = 'object' elif isinstance(parameter, BooleanParameter): dataType = 'bool' elif isinstance(parameter, IntegerParameter): dataType = 'int' columns.append(name) dtypes.append(dataType) for name in ['scenario', 'policy', 'model']: columns.append(name) dtypes.append('object') df = pd.DataFrame(index=np.arange(nr_experiments)) for name, dtype in zip(columns, dtypes): df[name] =
pd.Series(dtype=dtype)
pandas.Series
""" model training. To be executed directly within this directory. Input data for the model must be specified via `path`. Among the other parameters, only do_train needs to be adjusted if the model should be retrained. """ from sklearn import ensemble as en from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import r2_score, mean_squared_error from sklearn.svm import SVR import lightgbm as lgb import numpy as np import pandas as pd import os import joblib as jl #import matplotlib.pyplot as plt from sentinel import timer #plt.rcParams["figure.figsize"] = (30,12) #plt.rcParams["font.size"] = 20 # global params as I'm too lazy to build a CLI path = 'data/vegetation_index_features_aggregated_all.parquet' # 'data/features_three_months_full.parquet' # 'data/features_three_months_improved.parquet' # 'data/vegetation_index_features_aggregated.parquet' # "data/df_empty_dummy.csv" # np.random.seed(42) w_dir = '.' # '/home/dario/_py/tree-cover' # model_name = "model_sentinel_logtrans_stratified_mae_allveg_lgbm_depth8_5000.joblib" # "model_sentinel_logtrans_stratified_huber_3months_2000_60leaves.joblib" # do_train = False do_transform = True # logarithmic transform of y do_stratify = True # only take an approximately equal amount for each tree-cover level into account use_lgbm = True # faster than sklearn target= 'tree_cover' # 'land_use_category' # do_gridsearch = False do_scale_X = False # use a MinMaxScaler to bring the data into a range bewteen -1 and 1 -> no need. do_weight = False # assign a weight to each feature s.t. those occuring less frequent will have higher weights method = 'boost' # 'svr' # kernel = 'rbf' # for svr # params for lgb: objective= 'huber' # 'mean_absolute_error' # cols to be dropped from the training data. Aridity Zone can be kept. bastin_cols = ['longitude','latitude','dryland_assessment_region','land_use_category','tree_cover'] # 'Aridity_zone' def load_data(path, cols=None): if path.endswith('.csv'): df =
pd.read_csv(path, sep=",")
pandas.read_csv
from __future__ import division, unicode_literals, print_function import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" import warnings warnings.filterwarnings('ignore') import gc import spacy import plac import time import ujson as json import numpy as np import pandas as pd import en_core_web_md from tqdm import tqdm from pathlib import Path from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping, ModelCheckpoint from sklearn.model_selection import train_test_split, StratifiedKFold from sklearn.metrics import log_loss try: import cPickle as pickle except ImportError: import pickle from spacy_hook import get_embeddings, get_word_ids from spacy_hook import create_similarity_pipeline from keras_decomposable_attention import build_model def attention_foldrun(X, X2, y, name, Xte = None, Xte2 = None, start_fold = 0): skf = StratifiedKFold(n_splits = 10, random_state = 111, shuffle = True) if isinstance(X, pd.core.frame.DataFrame): X = X.values if isinstance(y, pd.core.frame.DataFrame): y = y.is_duplicate.values if isinstance(y, pd.core.frame.Series): y = y.values print('Running Decomposable Attention model with parameters:', settings) i = 1 losses = [] train_splits = [] val_splits = [] for tr_index, val_index in skf.split(X, y): train_splits.append(tr_index) val_splits.append(val_index) for i in range(start_fold, start_fold + 2): X_trq1, X_valq1 = X[train_splits[i]], X[val_splits[i]] X_trq2, X_valq2 = X2[train_splits[i]], X2[val_splits[i]] y_tr, y_val = y[train_splits[i]], y[val_splits[i]] y_tr = to_categorical(y_tr) y_val = to_categorical(y_val) t = time.time() print('Start training on fold: {}'.format(i)) callbacks = [ModelCheckpoint('checks/decomposable_{}_10SKF_fold{}.h5'.format(i, name), monitor='val_loss', verbose = 0, save_best_only = True), EarlyStopping(monitor='val_loss', patience = 4, verbose = 1)] model = build_model(get_embeddings(nlp.vocab), shape, settings) model.fit([X_trq1, X_trq2], y_tr, validation_data=([X_valq1, X_valq2], y_val), nb_epoch=settings['nr_epoch'], batch_size=settings['batch_size'], callbacks = callbacks) val_pred = model.predict([X_valq1, X_valq2], batch_size = 64) score = log_loss(y_val, val_pred) losses.append(score) print('Predicting training set.') val_pred = pd.DataFrame(val_pred, index = val_splits[i]) val_pred.columns = ['attention_feat1', 'attention_feat2'] val_pred.to_pickle('OOF_preds/train_attentionpreds_fold{}.pkl'.format(i)) print(val_pred.head()) if Xte is not None: print('Predicting test set.') test_preds = model.predict([Xte, Xte2], batch_size = 64) test_preds = pd.DataFrame(test_preds) test_preds.columns = ['attention_feat1', 'attention_feat2'] test_preds.to_pickle('OOF_preds/test_attentionpreds_fold{}.pkl'.format(i)) del test_preds gc.collect() print('Final score for fold {} :'.format(i), score, '\n', 'Time it took to train and predict on fold:', time.time() - t, '\n') del X_trq1, X_valq1, X_trq2, X_valq2, y_tr, y_val, val_pred gc.collect() i += 1 print('Mean logloss for model in 10-folds SKF:', np.array(losses).mean(axis = 0)) return # In[ ]: qsrc = '/media/w/1c392724-ecf3-4615-8f3c-79368ec36380/DS Projects/Kaggle/Quora/data/features/lemmatized_fullclean/' qsrc2 = '/media/w/1c392724-ecf3-4615-8f3c-79368ec36380/DS Projects/Kaggle/Quora/data/features/NER/' feats_src = '/media/w/1c392724-ecf3-4615-8f3c-79368ec36380/DS Projects/Kaggle/Quora/data/features/uncleaned/' xgb_feats =
pd.read_csv(feats_src + '/the_1owl/owl_train.csv')
pandas.read_csv
import os import math import numbers import time import numpy as np import scipy as sp from scipy.sparse import csr_matrix import pandas as pd import torch from torch.nn import functional as F from abc import ABC, abstractmethod from bisect import bisect from collections import Counter from collections import deque try: import torchsso TORCH_SSO_FOUND = True except: TORCH_SSO_FOUND = False from src.naqs.network.nade import MaxBatchSizeExceededError import src.naqs.network.torch_utils as torch_utils import src.utils.complex as cplx from src.utils.sparse_math import sparse_dense_mv from src.utils.system import mk_dir from src.optimizer.hamiltonian import PauliHamiltonian from src.optimizer.utils import LogKey, KFACOptimizer def to_sparse_vector(data, idxs, size=None): if size is None: size = len(idxs) vec = csr_matrix((data, (idxs, [0]*len(idxs))), shape=(size,1)) return vec def median_(val, freq): ord = np.argsort(val) cdf = np.cumsum(freq[ord]) return val[ord][np.searchsorted(cdf, cdf[-1] // 2)] class OptimizerBase(ABC): ''' Base class for optimizing the energy a wavefunction anzatz. ''' def __init__(self, wavefunction, qubit_hamiltonian, pre_compute_H=True, n_electrons=None, n_alpha_electrons=None, n_beta_electrons=None, n_fixed_electrons=None, n_excitations_max=None, reweight_samples_by_psi=False, normalise_psi=False, normalize_grads=False, grad_clip_factor=3, grad_clip_memory_length=50, optimizer=torch.optim.Adam, optimizer_args={'lr': 1e-3}, scheduler=None, scheduler_args=None, save_loc='./', pauli_hamiltonian_fname=None, overwrite_pauli_hamiltonian=False, pauli_hamiltonian_dtype=np.float32, verbose=False): self.wavefunction = wavefunction self.hilbert = self.wavefunction.hilbert self.qubit_hamiltonian = qubit_hamiltonian self.device = "cpu" self.reweight_samples_by_psi = reweight_samples_by_psi self.normalise_psi = normalise_psi self.n_electrons = n_electrons self.n_alpha_electrons = n_alpha_electrons self.n_beta_electrons = n_beta_electrons self.n_fixed_electrons = n_fixed_electrons self.n_excitations_max = n_excitations_max self.subspace_args = {"N_up": self.n_electrons, "N_alpha": self.n_alpha_electrons, "N_beta": self.n_beta_electrons, "N_occ": self.n_fixed_electrons, "N_exc_max": self.n_excitations_max} self.optimizer_callable = optimizer self.optimizer_args = optimizer_args self.scheduler_callable = scheduler self.scheduler_args = scheduler_args self.grad_clip_factor = grad_clip_factor self.grad_clip_memory_length = grad_clip_memory_length self.normalize_grads = normalize_grads self.save_loc = save_loc self.verbose = verbose self.pauli_hamiltonian_fname = pauli_hamiltonian_fname self.overwrite_pauli_hamiltonian = overwrite_pauli_hamiltonian restricted_idxs = self.hilbert.get_subspace(ret_states=False, ret_idxs=True, **self.subspace_args) self.pauli_hamiltonian = PauliHamiltonian.get(self.hilbert, qubit_hamiltonian, hamiltonian_fname=self.pauli_hamiltonian_fname, restricted_idxs=restricted_idxs, verbose=self.verbose, n_excitations_max=self.n_excitations_max, dtype=pauli_hamiltonian_dtype) if pre_compute_H and not self.pauli_hamiltonian.is_frozen(): print("Pre-computing Hamiltonian.") # for idxs in torch.split(restricted_idxs, 1000000): # self.pauli_hamiltonian.update_H(idxs, check_unseen=False, assume_unique=True) self.pauli_hamiltonian.update_H(restricted_idxs, check_unseen=False, assume_unique=True) self.pauli_hamiltonian.freeze_H() if self.overwrite_pauli_hamiltonian: self.pauli_hamiltonian.save_H(self.pauli_hamiltonian_fname) self.sampled_idxs = Counter() self.reset_log() self.reset_optimizer() def reset_log(self): '''Reset the logging tools. Resets the log to a dictionary of empty lists. Resets the total number of steps and run time. ''' self.log = {LogKey.E: [], LogKey.E_LOC: [], LogKey.E_LOC_VAR: [], LogKey.N_UNIQUE_SAMP: [], LogKey.TIME: []} self.last_samples = [] self.n_steps = 0 self.n_epochs = 0 self.run_time = 0 def reset_optimizer(self, cond_idx=None): '''Reset the optimization tools. Reset the optimizer and the tracked list of gradient norms used for gradient clipping. ''' print("Resetting optimizer", end="...") if TORCH_SSO_FOUND: opt_list = [KFACOptimizer, torchsso.optim.SecondOrderOptimizer] else: opt_list = [KFACOptimizer] if self.optimizer_callable in opt_list: self.optimizer = self.optimizer_callable(self.wavefunction.model, **self.optimizer_args) else: if type(self.optimizer_args) is not dict: args = [] for idx, args_i in enumerate(self.optimizer_args): args_i['params'] = self.wavefunction.parameters(idx) args.append(args_i) self.optimizer = self.optimizer_callable(args) else: # self.optimizer = self.optimizer_callable(self.wavefunction.parameters(), **self.optimizer_args) print(f"subnetwork {cond_idx}", end="...") self.optimizer = self.optimizer_callable(self.wavefunction.conditional_parameters(cond_idx), **self.optimizer_args) print("done.") if self.scheduler_callable is not None: print("Resetting scheduler", end="...") self.scheduler = self.scheduler_callable(self.optimizer, **self.scheduler_args) print("done.") else: self.scheduler = None self.__grad_norms = [deque([], self.grad_clip_memory_length) for _ in range(len(self.optimizer.param_groups))] @torch.no_grad() def calculate_energy(self, normalise_psi=None): '''Calculate the 'true' energy of the current wavefunction using the entire physically valid Hilbert space. Note that this might be very slow/intractable for large systems. normalise_psi : Whether the distribution over the physically valid Hilbert space provided by the wavefunction should be renormalised (it may have total probabilty < 1). ''' states, states_idx = self.hilbert.get_subspace(ret_states=True, ret_idxs=True, use_restricted_idxs=False, **self.subspace_args) self.pauli_hamiltonian.update_H(states_idx, check_unseen=True, assume_unique=True) # Here, we are computing all physically valid couplings, so we might as well # freeze the Hamiltonian once its been updated, as no new couplings we add # will be relevant. self.pauli_hamiltonian.freeze_H() psi = self.wavefunction.psi(states, ret_complex=True) if normalise_psi: psi /= np.sum(np.abs(psi) ** 2) ** 0.5 energy = psi.conj().dot( sparse_dense_mv(self.pauli_hamiltonian.get_restricted_H(), psi) ) return energy.real @torch.no_grad() def calculate_local_energy(self, states_idx, psi=None, set_unsampled_states_to_zero=True, ret_complex=False): '''Calculate the local energy for each state. The local energy is given by: E_loc(|s>) = ( 1/|Psi(|s>) ) * sum_{s'} |Psi(|s'>) <s|H|s'> (or E_loc(|s>) = ( 1/|Psi^*(|s>) ) * sum_{s'} |Psi^*(|s'>) <s'|H|s> for conj.) We have a choice to make: namely if we pass a subset of states {|s>}, which couple to a larger subset of states {|s'>}, do we compute psi for all |s'> even if they are not in the origional sample, or do we treat un-sampled amplitudes as zero? states_idx : The states for which we want to calculate the local energies. psi : The complex amplitudes of states_idx (if None these will be computed on-demand). set_unsampled_states_to_zero : Whether to assume all states not in states_idx have zero amplitude. If false, and un-sampled but still coupled states will be computed. ret_complex : Return as compelx numpy array (False) or complex torch array (True default). ''' if psi is None: psi = self.wavefunction.psi(self.hilbert.idx2state(states_idx, use_restricted_idxs=False), ret_complex=True) else: psi = psi.detach() if cplx.is_complex(psi): psi = cplx.torch_to_numpy(psi) self.pauli_hamiltonian.update_H(states_idx, check_unseen=True, assume_unique=True) if set_unsampled_states_to_zero: local_energy = (sparse_dense_mv(self.pauli_hamiltonian.get_H(states_idx), psi) / psi).conj() else: raise NotImplementedError() # Note we are not using cython functions here as they are not optimised yer. # coupled_state_idxs = self.pauli_hamiltonian.get_coupled_state_idxs(states_idx, ret_unqiue=True) # coupled_state_idxs = np.sort(coupled_state_idxs) # coupled_psi = self.wavefunction.psi(self.hilbert.idx2state(coupled_state_idxs), ret_complex=True) # # coupled_psi_sparse = to_sparse_vector(coupled_psi, coupled_state_idxs, H.shape[0]) # local_energy = np.squeeze(H.dot(coupled_psi_sparse)[states_idx].toarray()) / psi if not ret_complex: local_energy = cplx.np_to_torch(local_energy) return local_energy @abstractmethod def solve_H(self, states_idx=None): raise NotImplementedError() @abstractmethod def pre_train(self): raise NotImplementedError() def _SGD_step(self, states, states_idx, log_psi=None, sample_weights=None, log_psi_eval=None, regularisation_loss=None, n_samps=None, e_loc_clip_factor=None): '''Take a step of gradient descent for samples states. (0. Downstream sparse calculations are faster if states/states_idxs are sorted by ascending state_idx, so sort first if needed.) 1. Compute log amplitudes of states (with network gradients): log_Psi(|s>). 2. Compute the local energies for each state (no network gradients requried): E_loc(|s>). 3. Compute the expectation << O >> = 2*<< log_Psi(|s>) E_loc(|s>) >>_{|s>~|Psi(|s>)|^2}. 4. Backpropagate << O >> --> << (dlog_Psi(|s>) / dtheta) E_loc(|s>) >>, i.e. the variational gradients. 5. Take step of gradient descent. 6. From the local energies of each state, calculate the overall energy estimation and their varience. states : The sampled states. states_idx : The sampled state_idxs. log_psi : The log amplitudes of the states. ''' # if not assume_sorted: # sort_args = np.argsort(states_idx) # states = states[sort_args] # states_idx = states_idx[sort_args] # log_psi = log_psi[sort_args] if self.verbose: print("Entering _SGD_step(...)") t = time.time() self.sampled_idxs.update(self.hilbert.to_idx_array(states_idx).squeeze()) # 1. Compute log amplitudes of states (with network gradients): log_Psi(|s>). if log_psi is None: log_psi = self.wavefunction.log_psi(states) if self.verbose: print(f"log_psi : {time.time()-t:.4f}s") t = time.time() # 2.Compute the local energies for each state (no network gradients requried): E_loc(|s>). e_loc = self.calculate_local_energy(states_idx.squeeze(), psi=cplx.exp(log_psi.detach())) if self.verbose: print(f"e_loc : {time.time()-t:.4f}s") t = time.time() # 3. Compute the expectation << O >> = 2*<< log_Psi(|s>) E_loc(|s>) >>_{|s>~|Psi(|s>)|^2}. if sample_weights is None: if self.reweight_samples_by_psi: sample_weights = log_psi.detach()[..., 0].exp().pow(2) else: raise NotImplementedError("Re-weighting by the number of samples is not yet implemented.") if self.normalise_psi: sample_weights /= sample_weights.sum() if sample_weights.dim() < 2: sample_weights = sample_weights.unsqueeze(-1) e_loc_corr = e_loc - (sample_weights * e_loc).sum(axis=0).detach() exp_op = 2 * cplx.real(sample_weights * cplx.scalar_mult(log_psi, e_loc_corr)).sum(axis=0) # exp_op -= 2 * cplx.real(cplx.scalar_mult( # (sample_weights * e_loc_corr).sum(axis=0), # (sample_weights * log_psi).sum(axis=0))) if self.verbose: print(f"<<grad>> : {time.time()-t:.4f}s") t = time.time() # 4. Backpropagate << O >> --> << (dlog_Psi(|s>) / dtheta) E_loc(|s>) >>, i.e. the variational gradients. self.optimizer.zero_grad() if self.normalize_grads: exp_op = exp_op / (exp_op.detach()).abs() if regularisation_loss is not None: # print(exp_op) # print(regularisation_loss) exp_op = exp_op + regularisation_loss exp_op.backward() del exp_op # <-- served it's purpose, so free up the memory. self._clip_grads() if self.verbose: print(f"backprop: {time.time()-t:.4f}s") t = time.time() # 5. Take step of gradient descent. self.optimizer.step() self.optimizer.zero_grad() if self.scheduler is not None: self.scheduler.step() if self.verbose: print(f"step : {time.time()-t:.4f}s") t = time.time() if self.verbose: print(f"<<E>>, var(<<E>>) : {time.time() - t:.4f}s") with torch.no_grad(): # 6. From the local energies of each state, calculate the overall energy estimation and their varience. if log_psi_eval is not None: e_loc = self.calculate_local_energy(states_idx.squeeze(), psi=cplx.exp(log_psi_eval.detach())) sample_weights /= sample_weights.sum() local_energy = cplx.real(sample_weights * e_loc).sum() local_energy_variance = ((cplx.real(e_loc) - local_energy).pow(2) * sample_weights.squeeze()).sum() return local_energy.item(), local_energy_variance.item() @abstractmethod def run(self): raise NotImplementedError() def _clip_grads(self): if self.grad_clip_factor is not None: for grad_norms, group in zip(self.__grad_norms, self.optimizer.param_groups): max_norm = self.grad_clip_factor * np.mean(grad_norms).item() if len(grad_norms) > 0 else 1e3 # Will be fixed to work with grads on different devices in 1.5.1: # norm = torch.nn.utils.clip_grad_norm_(group['params'], max_norm, norm_type=2) # Until then, use my custom clipper. norm = torch_utils.clip_grad_norm_(group['params'], max_norm, norm_type=2) try: norm = norm.item() except: pass grad_norms.append(min(max_norm, norm)) def __format_checkpoint_fname(self, fname): '''Formats a checkpoint file location as an absolute path with a '.pth' file extension. If a relative path is passed, this returns the absolute path relative to self.save_loc. ''' if os.path.splitext(fname)[-1] != '.pth': fname += '.pth' if not os.path.isabs(fname): fname = os.path.join(self.save_loc, fname) return fname def save(self, fname="energy_optimizer", quiet=False): '''Save the current optimizer and all information required to load and restart optimisation. The energy optimisation needs to save the following attributes: - The network optimizer. - The log. - The number of steps taken / number of epochs / total running time. Additionally, the wavefunction itself must be saved, but this is handled internally in the object. ''' fname = self.__format_checkpoint_fname(fname) if not quiet: print(f"Saving checkpoint {fname}.", end="...") dir = os.path.dirname(fname) if dir != '': mk_dir(dir, quiet) wavefunction_fname = os.path.splitext(fname)[0] + '_naqs' wavefunction_fname = self.wavefunction.save(wavefunction_fname, quiet) checkpoint = { 'optimizer:state_dict': self.optimizer.state_dict(), 'run_time': self.run_time, 'n_steps': self.n_steps, 'n_epochs': self.n_epochs, 'log': self.log, 'sampled_idxs': self.sampled_idxs, 'wavefunction:fname':wavefunction_fname, 'hamiltonian_fname':self.pauli_hamiltonian_fname } torch.save(checkpoint, fname) if not quiet: print("done.") if self.overwrite_pauli_hamiltonian: self.pauli_hamiltonian.save(self.pauli_hamiltonian_fname) def load(self, fname="energy_optimizer", quiet=False): '''Load a saved optimizer checkpoint. The energy optimisation needs to load the following attributes: - The network optimizer. - The log. - The number of steps taken / number of epochs / total running time. Additionally, the wavefunction itself must be loaded, but this is handled internally in the object. Here, we will try to load the wavefunction from the specified file path, but will not raise an exception if it is not found. Instead we raise a warning and assume the user will locate and load the wavefunction manually. ''' fname = self.__format_checkpoint_fname(fname) if not quiet: print("Loading checkpoint {}.".format(fname), end="...") try: checkpoint = torch.load(fname, map_location=self.device) except: checkpoint = torch.jit.load(fname, map_location=self.device) try: self.wavefunction.load(checkpoint['wavefunction:fname']) except: print(f"\twavefunction not found (expected at {checkpoint['wavefunction:fname']})") try: self.optimizer.load_state_dict(checkpoint['optimizer:state_dict']) except: print("\tOptimizer could not be loaded.") self.log = checkpoint['log'] self.n_steps = checkpoint['n_steps'] self.n_epochs = checkpoint['n_epochs'] self.run_time = checkpoint['run_time'] self.sampled_idxs = checkpoint['sampled_idxs'] if not quiet: print("done.") def save_psi(self, fname, subspace_args={}, quiet=False): '''Save the wavefunction amplitudes to file.''' fname = os.path.join(self.save_loc, fname) if not quiet: print("Saving psi to {}.".format(fname), end="...") dir = os.path.dirname(fname) if dir != '': mk_dir(dir, quiet) if subspace_args == {}: subspace_args = { "N_up": self.n_electrons, "N_alpha": self.n_alpha_electrons, "N_beta": self.n_beta_electrons, "N_occ": self.n_fixed_electrons} self.wavefunction.save_psi(fname, subspace_args) print("done.") def save_log(self, fname="log", quiet=False): '''Save the optimizer's log to file. ''' fname = os.path.join(self.save_loc, fname) dir = os.path.dirname(fname) if dir != '': mk_dir(dir, quiet) path, ext = os.path.splitext(fname) if ext != ".pkl": fname = path + ".pkl" ITERS = "Iteration" df = None for key, value in self.log.items(): df_key = pd.DataFrame(value, columns=[ITERS, key]) if df is not None: df =
pd.merge(df, df_key, how="outer", on=ITERS)
pandas.merge
# -*- coding: utf-8 -*- import os import click import logging import pandas as pd import glob from dotenv import find_dotenv, load_dotenv @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info('Combining data set from raw data') files = glob.glob(os.path.join(input_filepath, '**')) parking_violations = [f for f in files if 'parking_violations' in f] ### Combine all csvs into one data frame logger.info('starting merge') list_ = [] for file_ in parking_violations[:]: df = pd.read_csv(file_,index_col=None, header=0) filename = file_[len(input_filepath):] df['filename'] = filename list_.append(df) frame =
pd.concat(list_)
pandas.concat
""" Plotting of behavioral metrics during the full task (biased blocks) per lab <NAME> 6 May 2020 """ import seaborn as sns import numpy as np from os.path import join import matplotlib.pyplot as plt from scipy import stats import scikit_posthocs as sp from paper_behavior_functions import (figpath, seaborn_style, group_colors, institution_map, load_csv, FIGURE_WIDTH, FIGURE_HEIGHT, QUERY, fit_psychfunc, dj2pandas) import pandas as pd from statsmodels.stats.multitest import multipletests # Initialize seaborn_style() figpath = figpath() pal = group_colors() institution_map, col_names = institution_map() col_names = col_names[:-1] # %% Process data if QUERY is True: # query sessions from paper_behavior_functions import query_sessions_around_criterion from ibl_pipeline import reference, subject, behavior use_sessions, _ = query_sessions_around_criterion(criterion='biased', days_from_criterion=[-1, 3]) use_sessions = use_sessions & 'task_protocol LIKE "%biased%"' # only get biased sessions b = (use_sessions * subject.Subject * subject.SubjectLab * reference.Lab * behavior.TrialSet.Trial) b2 = b.proj('institution_short', 'subject_nickname', 'task_protocol', 'session_uuid', 'trial_stim_contrast_left', 'trial_stim_contrast_right', 'trial_response_choice', 'task_protocol', 'trial_stim_prob_left', 'trial_feedback_type', 'trial_response_time', 'trial_stim_on_time') bdat = b2.fetch(order_by='institution_short, subject_nickname, session_start_time, trial_id', format='frame').reset_index() behav = dj2pandas(bdat) behav['institution_code'] = behav.institution_short.map(institution_map) else: behav = load_csv('Fig4.csv') biased_fits = pd.DataFrame() for i, nickname in enumerate(behav['subject_nickname'].unique()): if np.mod(i+1, 10) == 0: print('Processing data of subject %d of %d' % (i+1, len(behav['subject_nickname'].unique()))) # Get lab and subject uuid lab = behav.loc[behav['subject_nickname'] == nickname, 'institution_code'].unique()[0] uuid = behav.loc[behav['subject_nickname'] == nickname, 'subject_uuid'].unique()[0] # Fit psychometric curve left_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname) & (behav['probabilityLeft'] == 80)]) right_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname) & (behav['probabilityLeft'] == 20)]) neutral_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname) & (behav['probabilityLeft'] == 50)]) perf_easy = (behav.loc[behav['subject_nickname'] == nickname, 'correct_easy'].mean()) * 100 fits = pd.DataFrame(data={'perf_easy': perf_easy, 'threshold_l': left_fit['threshold'], 'threshold_r': right_fit['threshold'], 'threshold_n': neutral_fit['threshold'], 'bias_l': left_fit['bias'], 'bias_r': right_fit['bias'], 'bias_n': neutral_fit['bias'], 'nickname': nickname, 'lab': lab, 'subject_uuid': uuid}) biased_fits = biased_fits.append(fits, sort=False) # %% Statistics stats_tests =
pd.DataFrame(columns=['variable', 'test_type', 'p_value'])
pandas.DataFrame
from itertools import product import numpy as np from numpy.linalg import lstsq from numpy.testing import assert_allclose import pandas as pd import pytest from linearmodels.panel.data import PanelData from linearmodels.panel.model import FamaMacBeth from linearmodels.shared.exceptions import ( InferenceUnavailableWarning, MissingValueWarning, ) from linearmodels.tests.panel._utility import ( access_attributes, assert_frame_similar, datatypes, generate_data, ) pytestmark = pytest.mark.filterwarnings( "ignore::linearmodels.shared.exceptions.MissingValueWarning" ) missing = [0.0, 0.20] has_const = [True, False] perms = list(product(missing, datatypes, has_const)) ids = ["-".join(str(param) for param in perms) for perm in perms] @pytest.fixture(params=perms, ids=ids) def data(request): missing, datatype, const = request.param return generate_data( missing, datatype, const=const, other_effects=1, ntk=(25, 200, 5) ) def test_fama_macbeth(data): res = FamaMacBeth(data.y, data.x).fit(debiased=True) y = PanelData(data.y) x = PanelData(data.x) missing = y.isnull | x.isnull y.drop(missing) x.drop(missing) y = y.dataframe x = x.dataframe times = y.index.levels[1] params = [] for t in times: _y = y.xs(t, level=1) _x = x.xs(t, level=1) if _x.shape[0] < _x.shape[1]: continue _x = _x.loc[_y.index] params.append(lstsq(_x.values, _y.values, rcond=None)[0]) params = np.array(params).squeeze() all_params = params params = params.mean(0) assert_allclose(params.squeeze(), res.params) assert_allclose(all_params, res.all_params.dropna(how="all")) e_params = all_params - params[None, :] ntime = e_params.shape[0] cov = e_params.T @ e_params / ntime / (ntime - 1) assert_allclose(cov, np.asarray(res.cov)) access_attributes(res) def test_unknown_cov_type(data): with pytest.raises(ValueError): FamaMacBeth(data.y, data.x).fit(cov_type="unknown") @pytest.mark.smoke def test_fama_macbeth_kernel_smoke(data): FamaMacBeth(data.y, data.x).fit(cov_type="kernel") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="bartlett") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="newey-west") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="parzen") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="qs") FamaMacBeth(data.y, data.x).fit(cov_type="kernel", bandwidth=3) res = FamaMacBeth(data.y, data.x).fit(cov_type="kernel", kernel="andrews") access_attributes(res) def test_fitted_effects_residuals(data): mod = FamaMacBeth(data.y, data.x) res = mod.fit() expected = mod.exog.values2d @ res.params.values expected = pd.DataFrame(expected, index=mod.exog.index, columns=["fitted_values"]) assert_allclose(res.fitted_values, expected) assert_frame_similar(res.fitted_values, expected) expected.iloc[:, 0] = mod.dependent.values2d - expected.values expected.columns = ["idiosyncratic"] assert_allclose(res.idiosyncratic, expected) assert_frame_similar(res.idiosyncratic, expected) expected.iloc[:, 0] = np.nan expected.columns = ["estimated_effects"] assert_allclose(res.estimated_effects, expected) assert_frame_similar(res.estimated_effects, expected) @pytest.mark.filterwarnings( "always::linearmodels.shared.exceptions.MissingValueWarning" ) def test_block_size_warnings(): y = np.arange(12.0)[:, None] x = np.ones((12, 3)) x[:, 1] = np.arange(12.0) x[:, 2] = np.arange(12.0) ** 2 idx = pd.MultiIndex.from_product( [["a", "b", "c"], pd.date_range("2000-1-1", periods=4)] ) y = pd.DataFrame(y, index=idx, columns=["y"]) x = pd.DataFrame(x, index=idx, columns=["x1", "x2", "x3"]) with pytest.warns(MissingValueWarning): FamaMacBeth(y.iloc[:11], x.iloc[:11]) with pytest.warns(InferenceUnavailableWarning): FamaMacBeth(y.iloc[::4], x.iloc[::4]) def test_block_size_error(): y = np.arange(12.0)[:, None] x = np.ones((12, 2)) x[1::4, 1] = 2 x[2::4, 1] = 3 idx = pd.MultiIndex.from_product( [["a", "b", "c"], pd.date_range("2000-1-1", periods=4)] ) y =
pd.DataFrame(y, index=idx, columns=["y"])
pandas.DataFrame
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with
tm.assert_produces_warning(PerformanceWarning)
pandas._testing.assert_produces_warning
# @Time : 2020/6/28 # @Author : <NAME> # @Email : <EMAIL> # UPDATE: # @Time : 2020/10/28 2020/10/13, 2020/11/10 # @Author : <NAME>, <NAME>, <NAME> # @Email : <EMAIL>, <EMAIL>, <EMAIL> """ recbole.data.dataset ########################## """ import copy import pickle import os from collections import Counter from logging import getLogger import numpy as np import pandas as pd import torch import torch.nn.utils.rnn as rnn_utils from scipy.sparse import coo_matrix from recbole.data.interaction import Interaction from recbole.data.utils import dlapi from recbole.utils import FeatureSource, FeatureType, get_local_time from recbole.utils.utils import set_color class Dataset(object): """:class:`Dataset` stores the original dataset in memory. It provides many useful functions for data preprocessing, such as k-core data filtering and missing value imputation. Features are stored as :class:`pandas.DataFrame` inside :class:`~recbole.data.dataset.dataset.Dataset`. General and Context-aware Models can use this class. By calling method :meth:`~recbole.data.dataset.dataset.Dataset.build()`, it will processing dataset into DataLoaders, according to :class:`~recbole.config.eval_setting.EvalSetting`. Args: config (Config): Global configuration object. Attributes: dataset_name (str): Name of this dataset. dataset_path (str): Local file path of this dataset. field2type (dict): Dict mapping feature name (str) to its type (:class:`~recbole.utils.enum_type.FeatureType`). field2source (dict): Dict mapping feature name (str) to its source (:class:`~recbole.utils.enum_type.FeatureSource`). Specially, if feature is loaded from Arg ``additional_feat_suffix``, its source has type str, which is the suffix of its local file (also the suffix written in Arg ``additional_feat_suffix``). field2id_token (dict): Dict mapping feature name (str) to a :class:`np.ndarray`, which stores the original token of this feature. For example, if ``test`` is token-like feature, ``token_a`` is remapped to 1, ``token_b`` is remapped to 2. Then ``field2id_token['test'] = ['[PAD]', 'token_a', 'token_b']``. (Note that 0 is always PADDING for token-like features.) field2token_id (dict): Dict mapping feature name (str) to a dict, which stores the token remap table of this feature. For example, if ``test`` is token-like feature, ``token_a`` is remapped to 1, ``token_b`` is remapped to 2. Then ``field2token_id['test'] = {'[PAD]': 0, 'token_a': 1, 'token_b': 2}``. (Note that 0 is always PADDING for token-like features.) field2seqlen (dict): Dict mapping feature name (str) to its sequence length (int). For sequence features, their length can be either set in config, or set to the max sequence length of this feature. For token and float features, their length is 1. uid_field (str or None): The same as ``config['USER_ID_FIELD']``. iid_field (str or None): The same as ``config['ITEM_ID_FIELD']``. label_field (str or None): The same as ``config['LABEL_FIELD']``. time_field (str or None): The same as ``config['TIME_FIELD']``. inter_feat (:class:`Interaction`): Internal data structure stores the interaction features. It's loaded from file ``.inter``. user_feat (:class:`Interaction` or None): Internal data structure stores the user features. It's loaded from file ``.user`` if existed. item_feat (:class:`Interaction` or None): Internal data structure stores the item features. It's loaded from file ``.item`` if existed. feat_name_list (list): A list contains all the features' name (:class:`str`), including additional features. """ def __init__(self, config): self.config = config self.dataset_name = config['dataset'] self.logger = getLogger() self._dataloader_apis = {'field2type', 'field2source', 'field2id_token'} self._dataloader_apis.update(dlapi.dataloader_apis) self._from_scratch() def _from_scratch(self): """Load dataset from scratch. Initialize attributes firstly, then load data from atomic files, pre-process the dataset lastly. """ self.logger.debug(set_color(f'Loading {self.__class__} from scratch.', 'green')) self._get_preset() self._get_field_from_config() self._load_data(self.dataset_name, self.dataset_path) self._data_processing() def _get_preset(self): """Initialization useful inside attributes. """ self.dataset_path = self.config['data_path'] self.field2type = {} self.field2source = {} self.field2id_token = {} self.field2token_id = {} self.field2seqlen = self.config['seq_len'] or {} self._preloaded_weight = {} self.benchmark_filename_list = self.config['benchmark_filename'] def _get_field_from_config(self): """Initialization common field names. """ self.uid_field = self.config['USER_ID_FIELD'] self.iid_field = self.config['ITEM_ID_FIELD'] self.label_field = self.config['LABEL_FIELD'] self.time_field = self.config['TIME_FIELD'] if (self.uid_field is None) ^ (self.iid_field is None): raise ValueError( 'USER_ID_FIELD and ITEM_ID_FIELD need to be set at the same time or not set at the same time.' ) self.logger.debug(set_color('uid_field', 'blue') + f': {self.uid_field}') self.logger.debug(set_color('iid_field', 'blue') + f': {self.iid_field}') def _data_processing(self): """Data preprocessing, including: - Data filtering - Remap ID - Missing value imputation - Normalization - Preloading weights initialization """ self.feat_name_list = self._build_feat_name_list() if self.benchmark_filename_list is None: self._data_filtering() self._remap_ID_all() self._user_item_feat_preparation() self._fill_nan() self._set_label_by_threshold() self._normalize() self._preload_weight_matrix() def _data_filtering(self): """Data filtering - Filter missing user_id or item_id - Remove duplicated user-item interaction - Value-based data filtering - Remove interaction by user or item - K-core data filtering Note: After filtering, feats(``DataFrame``) has non-continuous index, thus :meth:`~recbole.data.dataset.dataset.Dataset._reset_index` will reset the index of feats. """ self._filter_nan_user_or_item() self._remove_duplication() self._filter_by_field_value() self._filter_inter_by_user_or_item() self._filter_by_inter_num() self._reset_index() def _build_feat_name_list(self): """Feat list building. Any feat loaded by Dataset can be found in ``feat_name_list`` Returns: built feature name list. Note: Subclasses can inherit this method to add new feat. """ feat_name_list = [ feat_name for feat_name in ['inter_feat', 'user_feat', 'item_feat'] if getattr(self, feat_name, None) is not None ] if self.config['additional_feat_suffix'] is not None: for suf in self.config['additional_feat_suffix']: if getattr(self, f'{suf}_feat', None) is not None: feat_name_list.append(f'{suf}_feat') return feat_name_list def _load_data(self, token, dataset_path): """Load features. Firstly load interaction features, then user/item features optionally, finally load additional features if ``config['additional_feat_suffix']`` is set. Args: token (str): dataset name. dataset_path (str): path of dataset dir. """ self._load_inter_feat(token, dataset_path) self.user_feat = self._load_user_or_item_feat(token, dataset_path, FeatureSource.USER, 'uid_field') self.item_feat = self._load_user_or_item_feat(token, dataset_path, FeatureSource.ITEM, 'iid_field') self._load_additional_feat(token, dataset_path) def _load_inter_feat(self, token, dataset_path): """Load interaction features. If ``config['benchmark_filename']`` is not set, load interaction features from ``.inter``. Otherwise, load interaction features from a file list, named ``dataset_name.xxx.inter``, where ``xxx`` if from ``config['benchmark_filename']``. After loading, ``self.file_size_list`` stores the length of each interaction file. Args: token (str): dataset name. dataset_path (str): path of dataset dir. """ if self.benchmark_filename_list is None: inter_feat_path = os.path.join(dataset_path, f'{token}.inter') if not os.path.isfile(inter_feat_path): raise ValueError(f'File {inter_feat_path} not exist.') inter_feat = self._load_feat(inter_feat_path, FeatureSource.INTERACTION) self.logger.debug(f'Interaction feature loaded successfully from [{inter_feat_path}].') self.inter_feat = inter_feat else: sub_inter_lens = [] sub_inter_feats = [] for filename in self.benchmark_filename_list: file_path = os.path.join(dataset_path, f'{token}.{filename}.inter') if os.path.isfile(file_path): temp = self._load_feat(file_path, FeatureSource.INTERACTION) sub_inter_feats.append(temp) sub_inter_lens.append(len(temp)) else: raise ValueError(f'File {file_path} not exist.') inter_feat = pd.concat(sub_inter_feats) self.inter_feat, self.file_size_list = inter_feat, sub_inter_lens def _load_user_or_item_feat(self, token, dataset_path, source, field_name): """Load user/item features. Args: token (str): dataset name. dataset_path (str): path of dataset dir. source (FeatureSource): source of user/item feature. field_name (str): ``uid_field`` or ``iid_field`` Returns: pandas.DataFrame: Loaded feature Note: ``user_id`` and ``item_id`` has source :obj:`~recbole.utils.enum_type.FeatureSource.USER_ID` and :obj:`~recbole.utils.enum_type.FeatureSource.ITEM_ID` """ feat_path = os.path.join(dataset_path, f'{token}.{source.value}') if os.path.isfile(feat_path): feat = self._load_feat(feat_path, source) self.logger.debug(f'[{source.value}] feature loaded successfully from [{feat_path}].') else: feat = None self.logger.debug(f'[{feat_path}] not found, [{source.value}] features are not loaded.') field = getattr(self, field_name, None) if feat is not None and field is None: raise ValueError(f'{field_name} must be exist if {source.value}_feat exist.') if feat is not None and field not in feat: raise ValueError(f'{field_name} must be loaded if {source.value}_feat is loaded.') if field in self.field2source: self.field2source[field] = FeatureSource(source.value + '_id') return feat def _load_additional_feat(self, token, dataset_path): """Load additional features. For those additional features, e.g. pretrained entity embedding, user can set them as ``config['additional_feat_suffix']``, then they will be loaded and stored in :attr:`feat_name_list`. See :doc:`../user_guide/data/data_args` for details. Args: token (str): dataset name. dataset_path (str): path of dataset dir. """ if self.config['additional_feat_suffix'] is None: return for suf in self.config['additional_feat_suffix']: if hasattr(self, f'{suf}_feat'): raise ValueError(f'{suf}_feat already exist.') feat_path = os.path.join(dataset_path, f'{token}.{suf}') if os.path.isfile(feat_path): feat = self._load_feat(feat_path, suf) else: raise ValueError(f'Additional feature file [{feat_path}] not found.') setattr(self, f'{suf}_feat', feat) def _get_load_and_unload_col(self, source): """Parsing ``config['load_col']`` and ``config['unload_col']`` according to source. See :doc:`../user_guide/data/data_args` for detail arg setting. Args: source (FeatureSource): source of input file. Returns: tuple: tuple of parsed ``load_col`` and ``unload_col``, see :doc:`../user_guide/data/data_args` for details. """ if isinstance(source, FeatureSource): source = source.value if self.config['load_col'] is None: load_col = None elif source not in self.config['load_col']: load_col = set() elif self.config['load_col'][source] == '*': load_col = None else: load_col = set(self.config['load_col'][source]) if self.config['unload_col'] is not None and source in self.config['unload_col']: unload_col = set(self.config['unload_col'][source]) else: unload_col = None if load_col and unload_col: raise ValueError(f'load_col [{load_col}] and unload_col [{unload_col}] can not be set the same time.') self.logger.debug(set_color(f'[{source}]: ', 'pink')) self.logger.debug(set_color('\t load_col', 'blue') + f': [{load_col}]') self.logger.debug(set_color('\t unload_col', 'blue') + f': [{unload_col}]') return load_col, unload_col def _load_feat(self, filepath, source): """Load features according to source into :class:`pandas.DataFrame`. Set features' properties, e.g. type, source and length. Args: filepath (str): path of input file. source (FeatureSource or str): source of input file. Returns: pandas.DataFrame: Loaded feature Note: For sequence features, ``seqlen`` will be loaded, but data in DataFrame will not be cut off. Their length is limited only after calling :meth:`~_dict_to_interaction` or :meth:`~_dataframe_to_interaction` """ self.logger.debug(set_color(f'Loading feature from [{filepath}] (source: [{source}]).', 'green')) load_col, unload_col = self._get_load_and_unload_col(source) if load_col == set(): return None field_separator = self.config['field_separator'] columns = [] usecols = [] dtype = {} with open(filepath, 'r') as f: head = f.readline()[:-1] for field_type in head.split(field_separator): field, ftype = field_type.split(':') try: ftype = FeatureType(ftype) except ValueError: raise ValueError(f'Type {ftype} from field {field} is not supported.') if load_col is not None and field not in load_col: continue if unload_col is not None and field in unload_col: continue if isinstance(source, FeatureSource) or source != 'link': self.field2source[field] = source self.field2type[field] = ftype if not ftype.value.endswith('seq'): self.field2seqlen[field] = 1 columns.append(field) usecols.append(field_type) dtype[field_type] = np.float64 if ftype == FeatureType.FLOAT else str if len(columns) == 0: self.logger.warning(f'No columns has been loaded from [{source}]') return None df =
pd.read_csv(filepath, delimiter=self.config['field_separator'], usecols=usecols, dtype=dtype)
pandas.read_csv
""" Assignment 2 Part 2 - Classification """ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.model_selection import validation_curve from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from adspy_shared_utilities import plot_decision_tree from adspy_shared_utilities import plot_feature_importances import matplotlib.pyplot as plt mush_df = pd.read_csv('data/mushrooms.csv') mush_df2 = pd.get_dummies(mush_df) X_mush = mush_df2.iloc[:,2:] y_mush = mush_df2.iloc[:,1] # use the variables X_train2, y_train2 for Question 5 X_train2, X_test2, y_train2, y_test2 = train_test_split(X_mush, y_mush, random_state=0) # For performance reasons in Questions 6 and 7, we will create a smaller version of the # entire mushroom dataset for use in those questions. For simplicity we'll just re-use # the 25% test split created above as the representative subset. # # Use the variables X_subset, y_subset for Questions 6 and 7. X_subset = X_test2 y_subset = y_test2 def answer_five(): clf = DecisionTreeClassifier(random_state=0).fit(X_train2, y_train2) #show_dectree_info(clf) # List of labeled feature importance fi =
pd.DataFrame(data=clf.feature_importances_, index=X_train2.columns, columns=['feature importance'])
pandas.DataFrame
from src.BandC.Parser import Parser import arff import pandas as pd from pandas.core.frame import DataFrame class Arff(Parser): """ An Arff Parser that can automatically detect the correct format. """ def parse_file(self): column_names = [attribute[0] for attribute in self.attributes] return pd.DataFrame.from_records(self.data, columns=column_names) def parse_content(self): column_names = [attribute[0] for attribute in self.attributes] return
pd.DataFrame.from_records(self.data, columns=column_names)
pandas.DataFrame.from_records
#%% Loading irish data import pandas as pd data1 = pd.read_fwf('bible.txt', header=None) data2 = pd.read_fwf('blogs.txt', header=None) data3 = pd.read_fwf('legal.txt', header=None) data4 = pd.read_fwf('news.txt', header=None) data5 =
pd.read_fwf('wiki.txt', header=None)
pandas.read_fwf
from models import NominalACM import numpy as np import pandas as pd import matplotlib.pyplot as plt # ===== Custom Functions ===== def get_excess_returns(df): excess_returns =
pd.DataFrame(index=df.index, columns=df.columns)
pandas.DataFrame
''' This set of functions creates, loads, encodes, and saves DataFrames of each sequence. Pos: H(6), K(8), R(14) Neg: D(2), E(3) ''' import numpy as np import pandas as pd from sklearn import preprocessing import plot_functions def ordinal_decode(seq): 'ordinal to amino acid sequence' AAlist=np.array(list("ACDEFGHIKLMNPQRSTVWY")) enc_OH=preprocessing.OrdinalEncoder().fit(AAlist.reshape(-1,1)) AAlist=enc_OH.inverse_transform(seq.reshape(-1, 1)).flatten() AA_sequence_list=''.join(AAlist) return AA_sequence_list def get_charge(seq): 'return # pos and # neg AA in seq' seq=np.array(seq) n_pos=sum(np.where((seq==6)|(seq==8)|(seq==14),1,0)) n_neg=sum(np.where((seq==2)|(seq==3),1,0)) return n_pos, n_neg def make_datasets(n_samples=1000,seq_len=10): 'Pos: 0-19 stay, 20-29: H, 30-39:K, 40-49:R' pos_data=np.random.randint(low=0,high=49,size=[n_samples,seq_len]) pos_list=[[]]*len(pos_data) for i, seq in enumerate(pos_data): seq_adj=np.where(((seq>=20)&(seq<30)),6,seq) seq_adj=np.where(((seq_adj>=30)&(seq_adj<40)),8,seq_adj) seq_adj=np.where(((seq_adj>=40)&(seq_adj<50)),14,seq_adj) AA_seq=ordinal_decode(seq_adj) n_pos,n_neg=get_charge(seq_adj) pos_list[i]=[list(seq_adj),AA_seq,n_pos,n_neg] pos_df=pd.DataFrame(pos_list) pos_df.columns=['Ordinal','AA','N_Pos','N_Neg'] pos_df['Class']='Positive' 'Neg: 0-19 stay, 20-29:D, 30-39:E' neg_data=np.random.randint(low=0,high=39,size=[n_samples,seq_len]) neg_list=[[]]*len(neg_data) for i, seq in enumerate(neg_data): seq_adj=np.where(((seq>=20)&(seq<30)),2,seq) seq_adj=np.where(((seq_adj>=30)&(seq_adj<40)),3,seq_adj) AA_seq=ordinal_decode(seq_adj) n_pos,n_neg=get_charge(seq_adj) neg_list[i]=[list(seq_adj),AA_seq,n_pos,n_neg] neg_df=
pd.DataFrame(neg_list)
pandas.DataFrame
import math import gc import os import pickle from math import pi import numpy as np import pandas as pd import pytorch_lightning as pl from omegaconf import DictConfig from scipy.fft import fft from scipy.signal import blackman from scipy.signal import hilbert from sklearn.model_selection import GroupKFold from sklearn.preprocessing import RobustScaler from torch.utils.data import DataLoader from src.utils.technical_utils import load_obj class VentilatorDataModule(pl.LightningDataModule): def __init__(self, cfg: DictConfig): super().__init__() self.cfg = cfg def prepare_data(self): pass def make_features(self, data): if "pressure" not in data.columns: data['pressure'] = 0 data['RC_sum'] = data['R'] + data['C'] data['RC_div'] = data['R'] / data['C'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['RC'] = data['R'] + data['C'] data = pd.get_dummies(data) data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() # data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(1) data['time_step_lag'] = data.groupby('breath_id')['time_step'].shift(2) data['u_in_lag'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag'] = data.groupby('u_out')['u_in'].shift(1) return data.fillna(0) def make_features1(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data.drop(['id', 'breath_id'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data def make_features2(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data def make_features3(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index(level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0) def make_features32(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0) def make_features4(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['time_delta'] = data['time_step'].diff() data['time_delta'].fillna(0, inplace=True) data['time_delta'].mask(data['time_delta'] < 0, 0, inplace=True) data['tmp'] = data['time_delta'] * data['u_in'] data['area_true'] = data.groupby('breath_id')['tmp'].cumsum() # u_in_max_dict = data.groupby('breath_id')['u_in'].max().to_dict() # data['u_in_max'] = data['breath_id'].map(u_in_max_dict) # u_in_min_dict = data.groupby('breath_id')['u_in'].min().to_dict() # data['u_in_min'] = data['breath_id'].map(u_in_min_dict) u_in_mean_dict = data.groupby('breath_id')['u_in'].mean().to_dict() data['u_in_mean'] = data['breath_id'].map(u_in_mean_dict) del u_in_mean_dict u_in_std_dict = data.groupby('breath_id')['u_in'].std().to_dict() data['u_in_std'] = data['breath_id'].map(u_in_std_dict) del u_in_std_dict # u_in_half is time:0 - time point of u_out:1 rise (almost 1.0s) data['tmp'] = data['u_out'] * (-1) + 1 # inversion of u_out data['u_in_half'] = data['tmp'] * data['u_in'] # u_in_half: max, min, mean, std u_in_half_max_dict = data.groupby('breath_id')['u_in_half'].max().to_dict() data['u_in_half_max'] = data['breath_id'].map(u_in_half_max_dict) del u_in_half_max_dict u_in_half_min_dict = data.groupby('breath_id')['u_in_half'].min().to_dict() data['u_in_half_min'] = data['breath_id'].map(u_in_half_min_dict) del u_in_half_min_dict u_in_half_mean_dict = data.groupby('breath_id')['u_in_half'].mean().to_dict() data['u_in_half_mean'] = data['breath_id'].map(u_in_half_mean_dict) del u_in_half_mean_dict u_in_half_std_dict = data.groupby('breath_id')['u_in_half'].std().to_dict() data['u_in_half_std'] = data['breath_id'].map(u_in_half_std_dict) del u_in_half_std_dict gc.collect() # All entries are first point of each breath_id first_data = data.loc[0::80, :] # All entries are first point of each breath_id last_data = data.loc[79::80, :] # The Main mode DataFrame and flag main_data = last_data[(last_data['u_in'] > 4.8) & (last_data['u_in'] < 5.1)] main_mode_dict = dict(zip(main_data['breath_id'], [1] * len(main_data))) data['main_mode'] = data['breath_id'].map(main_mode_dict) data['main_mode'].fillna(0, inplace=True) del main_data del main_mode_dict # u_in: first point, last point u_in_first_dict = dict(zip(first_data['breath_id'], first_data['u_in'])) data['u_in_first'] = data['breath_id'].map(u_in_first_dict) del u_in_first_dict u_in_last_dict = dict(zip(first_data['breath_id'], last_data['u_in'])) data['u_in_last'] = data['breath_id'].map(u_in_last_dict) del u_in_last_dict # time(sec) of end point time_end_dict = dict(zip(last_data['breath_id'], last_data['time_step'])) data['time_end'] = data['breath_id'].map(time_end_dict) del time_end_dict del last_data # u_out1_timing flag and DataFrame: speed up # 高速版 uout1_data 作成 data['u_out_diff'] = data['u_out'].diff() data['u_out_diff'].fillna(0, inplace=True) data['u_out_diff'].replace(-1, 0, inplace=True) uout1_data = data[data['u_out_diff'] == 1] gc.collect() # main_uout1 = uout1_data[uout1_data['main_mode']==1] # nomain_uout1 = uout1_data[uout1_data['main_mode']==1] # Register Area when u_out becomes 1 uout1_area_dict = dict(zip(first_data['breath_id'], first_data['u_in'])) data['area_uout1'] = data['breath_id'].map(uout1_area_dict) del uout1_area_dict # time(sec) when u_out becomes 1 uout1_dict = dict(zip(uout1_data['breath_id'], uout1_data['time_step'])) data['time_uout1'] = data['breath_id'].map(uout1_dict) del uout1_dict # u_in when u_out becomes1 u_in_uout1_dict = dict(zip(uout1_data['breath_id'], uout1_data['u_in'])) data['u_in_uout1'] = data['breath_id'].map(u_in_uout1_dict) del u_in_uout1_dict # Dict that puts 0 at the beginning of the 80row cycle first_0_dict = dict(zip(first_data['id'], [0] * len(uout1_data))) del first_data del uout1_data gc.collect() # Faster version u_in_diff creation, faster than groupby data['u_in_diff'] = data['u_in'].diff() data['tmp'] = data['id'].map(first_0_dict) # put 0, the 80row cycle data.iloc[0::80, data.columns.get_loc('u_in_diff')] = data.iloc[0::80, data.columns.get_loc('tmp')] # Create u_in vibration data['diff_sign'] = np.sign(data['u_in_diff']) data['sign_diff'] = data['diff_sign'].diff() data['tmp'] = data['id'].map(first_0_dict) # put 0, the 80row cycle data.iloc[0::80, data.columns.get_loc('sign_diff')] = data.iloc[0::80, data.columns.get_loc('tmp')] del first_0_dict # Count the number of inversions, so take the absolute value and sum data['sign_diff'] = abs(data['sign_diff']) sign_diff_dict = data.groupby('breath_id')['sign_diff'].sum().to_dict() data['diff_vib'] = data['breath_id'].map(sign_diff_dict) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features5(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) data['time_delta'] = data['time_step'].diff() data['time_delta'].fillna(0, inplace=True) data['time_delta'].mask(data['time_delta'] < 0, 0, inplace=True) data['tmp'] = data['time_delta'] * data['u_in'] data['area_true'] = data.groupby('breath_id')['tmp'].cumsum() # u_in_max_dict = data.groupby('breath_id')['u_in'].max().to_dict() # data['u_in_max'] = data['breath_id'].map(u_in_max_dict) # u_in_min_dict = data.groupby('breath_id')['u_in'].min().to_dict() # data['u_in_min'] = data['breath_id'].map(u_in_min_dict) u_in_mean_dict = data.groupby('breath_id')['u_in'].mean().to_dict() data['u_in_mean'] = data['breath_id'].map(u_in_mean_dict) del u_in_mean_dict u_in_std_dict = data.groupby('breath_id')['u_in'].std().to_dict() data['u_in_std'] = data['breath_id'].map(u_in_std_dict) del u_in_std_dict # u_in_half is time:0 - time point of u_out:1 rise (almost 1.0s) data['tmp'] = data['u_out'] * (-1) + 1 # inversion of u_out data['u_in_half'] = data['tmp'] * data['u_in'] # u_in_half: max, min, mean, std u_in_half_max_dict = data.groupby('breath_id')['u_in_half'].max().to_dict() data['u_in_half_max'] = data['breath_id'].map(u_in_half_max_dict) del u_in_half_max_dict u_in_half_min_dict = data.groupby('breath_id')['u_in_half'].min().to_dict() data['u_in_half_min'] = data['breath_id'].map(u_in_half_min_dict) del u_in_half_min_dict u_in_half_mean_dict = data.groupby('breath_id')['u_in_half'].mean().to_dict() data['u_in_half_mean'] = data['breath_id'].map(u_in_half_mean_dict) del u_in_half_mean_dict u_in_half_std_dict = data.groupby('breath_id')['u_in_half'].std().to_dict() data['u_in_half_std'] = data['breath_id'].map(u_in_half_std_dict) del u_in_half_std_dict gc.collect() # All entries are first point of each breath_id first_data = data.loc[0::80, :] # All entries are first point of each breath_id last_data = data.loc[79::80, :] # The Main mode DataFrame and flag main_data = last_data[(last_data['u_in'] > 4.8) & (last_data['u_in'] < 5.1)] main_mode_dict = dict(zip(main_data['breath_id'], [1] * len(main_data))) data['main_mode'] = data['breath_id'].map(main_mode_dict) data['main_mode'].fillna(0, inplace=True) del main_data del main_mode_dict # u_in: first point, last point u_in_first_dict = dict(zip(first_data['breath_id'], first_data['u_in'])) data['u_in_first'] = data['breath_id'].map(u_in_first_dict) del u_in_first_dict u_in_last_dict = dict(zip(first_data['breath_id'], last_data['u_in'])) data['u_in_last'] = data['breath_id'].map(u_in_last_dict) del u_in_last_dict # time(sec) of end point time_end_dict = dict(zip(last_data['breath_id'], last_data['time_step'])) data['time_end'] = data['breath_id'].map(time_end_dict) del time_end_dict del last_data # u_out1_timing flag and DataFrame: speed up # 高速版 uout1_data 作成 data['u_out_diff'] = data['u_out'].diff() data['u_out_diff'].fillna(0, inplace=True) data['u_out_diff'].replace(-1, 0, inplace=True) uout1_data = data[data['u_out_diff'] == 1] gc.collect() # main_uout1 = uout1_data[uout1_data['main_mode']==1] # nomain_uout1 = uout1_data[uout1_data['main_mode']==1] # Register Area when u_out becomes 1 uout1_area_dict = dict(zip(first_data['breath_id'], first_data['u_in'])) data['area_uout1'] = data['breath_id'].map(uout1_area_dict) del uout1_area_dict # time(sec) when u_out becomes 1 uout1_dict = dict(zip(uout1_data['breath_id'], uout1_data['time_step'])) data['time_uout1'] = data['breath_id'].map(uout1_dict) del uout1_dict # u_in when u_out becomes1 u_in_uout1_dict = dict(zip(uout1_data['breath_id'], uout1_data['u_in'])) data['u_in_uout1'] = data['breath_id'].map(u_in_uout1_dict) del u_in_uout1_dict # Dict that puts 0 at the beginning of the 80row cycle first_0_dict = dict(zip(first_data['id'], [0] * len(uout1_data))) del first_data del uout1_data gc.collect() # Faster version u_in_diff creation, faster than groupby data['u_in_diff'] = data['u_in'].diff() data['tmp'] = data['id'].map(first_0_dict) # put 0, the 80row cycle data.iloc[0::80, data.columns.get_loc('u_in_diff')] = data.iloc[0::80, data.columns.get_loc('tmp')] # Create u_in vibration data['diff_sign'] = np.sign(data['u_in_diff']) data['sign_diff'] = data['diff_sign'].diff() data['tmp'] = data['id'].map(first_0_dict) # put 0, the 80row cycle data.iloc[0::80, data.columns.get_loc('sign_diff')] = data.iloc[0::80, data.columns.get_loc('tmp')] del first_0_dict # Count the number of inversions, so take the absolute value and sum data['sign_diff'] = abs(data['sign_diff']) sign_diff_dict = data.groupby('breath_id')['sign_diff'].sum().to_dict() data['diff_vib'] = data['breath_id'].map(sign_diff_dict) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features6(self, data): # CATE_FEATURES = ['R_cate', 'C_cate', 'RC_dot', 'RC_sum'] CONT_FEATURES = ['u_in', 'u_out', 'time_step'] + ['u_in_cumsum', 'u_in_cummean', 'area', 'cross', 'cross2'] + [ 'R_cate', 'C_cate'] LAG_FEATURES = ['breath_time'] LAG_FEATURES += [f'u_in_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_lag_{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_in_time{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_time{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_out_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_out_lag_{i}_back' for i in range(1, USE_LAG+1)] # ALL_FEATURES = CATE_FEATURES + CONT_FEATURES + LAG_FEATURES ALL_FEATURES = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: ALL_FEATURES.append(col) data['time_delta'] = data.groupby('breath_id')['time_step'].diff().fillna(0) data['delta'] = data['time_delta'] * data['u_in'] data['area'] = data.groupby('breath_id')['delta'].cumsum() data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data = data.drop(['count', 'one'], axis=1) for lag in range(1, self.cfg.datamodule.use_lag + 1): data[f'breath_id_lag{lag}'] = data['breath_id'].shift(lag).fillna(0) data[f'breath_id_lag{lag}same'] = np.select([data[f'breath_id_lag{lag}'] == data['breath_id']], [1], 0) # u_in data[f'u_in_lag_{lag}'] = data['u_in'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_in_lag_{lag}_back'] = data['u_in'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] data[f'u_in_time{lag}'] = data['u_in'] - data[f'u_in_lag_{lag}'] # data[f'u_in_time{lag}_back'] = data['u_in'] - data[f'u_in_lag_{lag}_back'] data[f'u_out_lag_{lag}'] = data['u_out'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_out_lag_{lag}_back'] = data['u_out'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] # breath_time data['time_step_lag'] = data['time_step'].shift(1).fillna(0) * data[f'breath_id_lag{lag}same'] data['breath_time'] = data['time_step'] - data['time_step_lag'] drop_columns = ['time_step_lag'] drop_columns += [f'breath_id_lag{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] drop_columns += [f'breath_id_lag{i}same' for i in range(1, self.cfg.datamodule.use_lag + 1)] data = data.drop(drop_columns, axis=1) # fill na by zero data = data.fillna(0) c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) norm_features = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: norm_features.append(col) if 'fold' in data.columns: norm_features.append('fold') norm_features = list(set(norm_features)) ALL_FEATURES = list(set(ALL_FEATURES)) print('data.columns', data.columns) print('ALL_FEATURES', ALL_FEATURES) # assert norm_features == ALL_FEATURES, 'something went wrong' return data[ALL_FEATURES].fillna(0) def make_features62(self, data): # CATE_FEATURES = ['R_cate', 'C_cate', 'RC_dot', 'RC_sum'] CONT_FEATURES = ['u_in', 'u_out', 'time_step'] + ['u_in_cumsum', 'u_in_cummean', 'area', 'cross', 'cross2'] + [ 'R_cate', 'C_cate'] LAG_FEATURES = ['breath_time'] LAG_FEATURES += [f'u_in_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_lag_{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_in_time{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_time{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_out_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_out_lag_{i}_back' for i in range(1, USE_LAG+1)] # ALL_FEATURES = CATE_FEATURES + CONT_FEATURES + LAG_FEATURES ALL_FEATURES = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: ALL_FEATURES.append(col) data['time_delta'] = data.groupby('breath_id')['time_step'].diff().fillna(0) data['delta'] = data['time_delta'] * data['u_in'] data['area'] = data.groupby('breath_id')['delta'].cumsum() data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data = data.drop(['count', 'one'], axis=1) for lag in range(1, self.cfg.datamodule.use_lag + 1): data[f'breath_id_lag{lag}'] = data['breath_id'].shift(lag).fillna(0) data[f'breath_id_lag{lag}same'] = np.select([data[f'breath_id_lag{lag}'] == data['breath_id']], [1], 0) # u_in data[f'u_in_lag_{lag}'] = data['u_in'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_in_lag_{lag}_back'] = data['u_in'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] data[f'u_in_time{lag}'] = data['u_in'] - data[f'u_in_lag_{lag}'] # data[f'u_in_time{lag}_back'] = data['u_in'] - data[f'u_in_lag_{lag}_back'] data[f'u_out_lag_{lag}'] = data['u_out'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_out_lag_{lag}_back'] = data['u_out'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] # breath_time data['time_step_lag'] = data['time_step'].shift(1).fillna(0) * data[f'breath_id_lag{lag}same'] data['breath_time'] = data['time_step'] - data['time_step_lag'] drop_columns = ['time_step_lag'] drop_columns += [f'breath_id_lag{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] drop_columns += [f'breath_id_lag{i}same' for i in range(1, self.cfg.datamodule.use_lag + 1)] data = data.drop(drop_columns, axis=1) # fill na by zero data = data.fillna(0) c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data = pd.get_dummies(data) norm_features = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: norm_features.append(col) if 'fold' in data.columns: norm_features.append('fold') norm_features = list(set(norm_features)) ALL_FEATURES = list(set(ALL_FEATURES)) print('data.columns', data.columns) print('ALL_FEATURES', ALL_FEATURES) # assert norm_features == ALL_FEATURES, 'something went wrong' return data[ALL_FEATURES + ['clusterIDeu_0.0', 'clusterIDeu_1.0', 'clusterIDeu_2.0', 'clusterIDeu_3.0', 'clusterIDeu_4.0', 'clusterIDeu_5.0', 'clusterIDeu_6.0', 'clusterIDeu_7.0', 'clusterIDeu_8.0', 'clusterIDeu_9.0', 'clusterIDdtw_0.0', 'clusterIDdtw_1.0', 'clusterIDdtw_2.0', 'clusterIDdtw_3.0', 'clusterIDdtw_4.0', 'clusterIDdtw_5.0', 'clusterIDdtw_6.0', 'clusterIDdtw_7.0', 'clusterIDdtw_8.0', 'clusterIDdtw_9.0']].fillna(0) def make_features7(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features8(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0) def make_features82(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0) def make_features9(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0) def make_features10(self, data): data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() lags = [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for lag in lags: data[f'u_in_lag{lag}'] = data.groupby('breath_id')['u_in'].shift(lag) data[f'u_out_lag{lag}'] = data.groupby('breath_id')['u_out'].shift(lag) data[f'u_in_diff{lag}'] = data['u_in'] - data[f'u_in_lag{lag}'] data[f'u_out_diff{lag}'] = data['u_out'] - data[f'u_out_lag{lag}'] data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['breath_id__u_in__diffmax'] = data['breath_id__u_in__max'] - data['u_in'] data['breath_id__u_in__diffmean'] = data['breath_id__u_out__max'] - data['u_in'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) # data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ # .groupby('breath_id')['u_out'] \ # .rolling(window=15, min_periods=1) \ # .agg({"15_out_sum": "sum", # "15_out_min": "min", # "15_out_max": "max", # "15_out_mean": "mean", # "15_out_std": "std" # }).reset_index(level=0, drop=True)) for window in [2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) data[[f"{window}_out_sum", f"{window}_out_min", f"{window}_out_max", f"{window}_out_mean", f"{window}_out_std"]] = (data.groupby('breath_id')['u_out'].rolling(window=window, min_periods=1) \ .agg({f"{window}_out_sum": "sum", f"{window}_out_min": "min", f"{window}_out_max": "max", f"{window}_out_mean": "mean", f"{window}_out_std": "std" }).reset_index(level=0, drop=True)) for halflife in [2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 45]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) # data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', # 'breath_id_lag2same'], axis=1, inplace=True) # # if 'pressure' in data.columns: # data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features11(self, data): """ make_features 8 + public Args: data: Returns: """ w = blackman(80 + 1) data['Ruin'] = data['R'].astype(float) * data['u_in'].astype(float) data['Cuin'] = data['C'].astype(float) * data['u_in'].astype(float) ffta = lambda x: np.abs(fft(np.append(x.values, x.values[0]))[:80]) ffta.__name__ = 'ffta' fftw = lambda x: np.abs(fft(np.append(x.values, x.values[0]) * w)[:80]) fftw.__name__ = 'fftw' data['fft_u_in'] = data.groupby('breath_id')['u_in'].transform(ffta) data['fft_u_in_w'] = data.groupby('breath_id')['u_in'].transform(fftw) data['analytical'] = data.groupby('breath_id')['u_in'].transform(hilbert) data['envelope'] = np.abs(data['analytical']) data['phase'] = np.angle(data['analytical']) data['unwrapped_phase'] = data.groupby('breath_id')['phase'].transform(np.unwrap) data['phase_shift1'] = data.groupby('breath_id')['unwrapped_phase'].shift(1).astype(np.float32) data['IF'] = data['unwrapped_phase'] - data['phase_shift1'].astype(np.float32) data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'analytical'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features12(self, data): """ from 8 and add teammate features Args: data: Returns: """ if "pressure" not in data.columns: data['pressure'] = 0 # data = data.merge( # data.groupby(['R', 'C', 'time_step']).pressure.std().reset_index().rename(columns={'pressure': 'p_std'}), # on=['R', 'C', 'time_step'], how='left') # data = data.merge(data.groupby(['R', 'C', 'time_step']).pressure.median().reset_index().rename( # columns={'pressure': 'p_mean'}), on=['R', 'C', 'time_step'], how='left') # data.sort_values(by='id', inplace=True) # data.reset_index(drop=True, inplace=True) tmp = data.to_numpy().reshape(-1, 80, data.shape[-1]) tmp = tmp[:, :35, :] tmp[:, :, 4] = np.tile(np.arange(35).astype(int), (tmp.shape[0], 1)) tmp = tmp.reshape(-1, data.shape[-1]) data_small = pd.DataFrame(tmp, columns=data.columns) data = data.merge( data_small.groupby(['R', 'C', 'time_step']).pressure.std().reset_index().rename(columns={'pressure': 'p_envelope_std'}), on=['R', 'C', 'time_step'], how='left') data = data.merge(data_small.groupby(['R', 'C', 'time_step']).pressure.median().reset_index().rename( columns={'pressure': 'p_envelope_mean'}), on=['R', 'C', 'time_step'], how='left') data.sort_values(by='id', inplace=True) data.reset_index(drop=True, inplace=True) del tmp, data_small gc.collect() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data.drop(['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same'], axis=1, inplace=True) if 'pressure' in data.columns: data.drop('pressure', axis=1, inplace=True) return data.fillna(0) def make_features13(self, data): """ huge. based on 3, 8, 10 Args: data: Returns: """ data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) # data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ # .groupby('breath_id')['u_out'] \ # .rolling(window=15, min_periods=1) \ # .agg({"15_out_sum": "sum", # "15_out_min": "min", # "15_out_max": "max", # "15_out_mean": "mean", # "15_out_std": "std" # }).reset_index(level=0, drop=True)) for window in [2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) data[[f"{window}_out_sum", f"{window}_out_min", f"{window}_out_max", f"{window}_out_mean", f"{window}_out_std"]] = ( data.groupby('breath_id')['u_out'].rolling(window=window, min_periods=1) \ .agg({f"{window}_out_sum": "sum", f"{window}_out_min": "min", f"{window}_out_max": "max", f"{window}_out_mean": "mean", f"{window}_out_std": "std" }).reset_index(level=0, drop=True)) for halflife in [2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 45]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm( halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm( halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm( halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) best_cols = ['10_in_max', '10_in_mean', '10_in_mean', '10_in_min', '10_in_min', '10_in_std', '10_in_std', '10_in_sum', '10_in_sum', '10_out_std', '15_in_max', '15_in_max', '15_in_mean', '15_in_mean', '15_in_mean', '15_in_min', '15_in_min', '15_in_min', '15_in_std', '15_in_sum', '15_in_sum', '15_in_sum', '15_out_max', '15_out_mean', '15_out_std', '15_out_std', '15_out_std', '20_in_max', '20_in_mean', '20_in_mean', '20_in_min', '20_in_min', '20_in_std', '20_in_sum', '20_in_sum', '20_out_std', '2_in_max', '2_in_max', '2_in_mean', '2_in_mean', '2_in_min', '2_in_min', '2_in_std', '2_in_std', '2_in_sum', '2_in_sum', '30_in_max', '30_in_mean', '30_in_mean', '30_in_min', '30_in_min', '30_in_std', '30_in_sum', '30_in_sum', '3_in_max', '3_in_mean', '3_in_min', '3_in_std', '3_in_sum', '3_out_std', '40_in_mean', '40_in_min', '40_in_sum', '45_in_max', '45_in_max', '45_in_mean', '45_in_mean', '45_in_mean', '45_in_min', '45_in_min', '45_in_min', '45_in_std', '45_in_sum', '45_in_sum', '45_in_sum', '45_out_std', '4_in_max', '4_in_max', '4_in_mean', '4_in_mean', '4_in_min', '4_in_min', '4_in_std', '4_in_std', '4_in_sum', '4_in_sum', '4_out_std', '5_in_max', '5_in_max', '5_in_mean', '5_in_mean', '5_in_min', '5_in_min', '5_in_std', '5_in_std', '5_in_sum', '5_in_sum', '7_in_max', '7_in_mean', '7_in_min', '7_in_std', '7_in_sum', '7_out_std', 'C_10', 'C_10', 'C_10', 'C_20', 'C_20', 'C_50', 'C_50', 'C_50', 'C_cate', 'C_cate', 'RC_dot', 'RC_dot', 'RC_sum', 'RC_sum', 'R_20', 'R_20', 'R_5', 'R_5', 'R_50', 'R_50', 'R__C_20__10', 'R__C_20__10', 'R__C_20__20', 'R__C_20__20', 'R__C_20__50', 'R__C_20__50', 'R__C_20__50', 'R__C_50__10', 'R__C_50__10', 'R__C_50__10', 'R__C_50__20', 'R__C_50__20', 'R__C_50__50', 'R__C_50__50', 'R__C_5__10', 'R__C_5__10', 'R__C_5__20', 'R__C_5__20', 'R__C_5__50', 'R__C_5__50', 'R__C_5__50', 'R_cate', 'R_cate', 'R_mult_c_100', 'R_mult_c_100', 'R_mult_c_1000', 'R_mult_c_1000', 'R_mult_c_200', 'R_mult_c_200', 'R_mult_c_250', 'R_mult_c_250', 'R_mult_c_250', 'R_mult_c_2500', 'R_mult_c_2500', 'R_mult_c_400', 'R_mult_c_400', 'R_mult_c_50', 'R_mult_c_50', 'R_mult_c_500', 'R_mult_c_500', 'R_mult_c_500', 'R_sum_c_100', 'R_sum_c_100', 'R_sum_c_15', 'R_sum_c_15', 'R_sum_c_25', 'R_sum_c_25', 'R_sum_c_30', 'R_sum_c_30', 'R_sum_c_40', 'R_sum_c_40', 'R_sum_c_55', 'R_sum_c_55', 'R_sum_c_55', 'R_sum_c_60', 'R_sum_c_60', 'R_sum_c_60', 'R_sum_c_70', 'R_sum_c_70', 'area', 'area', 'area', 'breath_id__u_in__diffmax', 'breath_id__u_in__diffmax', 'breath_id__u_in__diffmean', 'breath_id__u_in__diffmean', 'breath_id__u_in__diffmean', 'breath_id__u_in__max', 'breath_id__u_in__max', 'breath_id__u_in_lag', 'breath_id__u_in_lag', 'breath_id__u_in_lag', 'breath_id__u_in_lag2', 'breath_id__u_in_lag2', 'breath_id__u_in_lag2', 'cross', 'cross', 'cross2', 'ewm_u_in_corr', 'ewm_u_in_corr_15', 'ewm_u_in_corr_20', 'ewm_u_in_corr_5', 'ewm_u_in_corr_9', 'ewm_u_in_mean', 'ewm_u_in_mean_10', 'ewm_u_in_mean_10', 'ewm_u_in_mean_15', 'ewm_u_in_mean_15', 'ewm_u_in_mean_2', 'ewm_u_in_mean_20', 'ewm_u_in_mean_20', 'ewm_u_in_mean_3', 'ewm_u_in_mean_30', 'ewm_u_in_mean_4', 'ewm_u_in_mean_40', 'ewm_u_in_mean_45', 'ewm_u_in_mean_5', 'ewm_u_in_mean_5', 'ewm_u_in_mean_7', 'ewm_u_in_mean_9', 'ewm_u_in_std', 'ewm_u_in_std_10', 'ewm_u_in_std_15', 'ewm_u_in_std_2', 'ewm_u_in_std_20', 'ewm_u_in_std_5', 'ewm_u_in_std_9', 'expand_max', 'expand_max', 'expand_mean', 'expand_mean', 'expand_mean', 'expand_std', 'expand_std', 'rolling_10_max', 'rolling_10_mean', 'rolling_10_std', 'time_step', 'time_step', 'time_step_diff', 'time_step_diff', 'time_step_diff', 'u_in', 'u_in', 'u_in', 'u_in_cummean', 'u_in_cummean', 'u_in_cummean', 'u_in_cumsum', 'u_in_cumsum', 'u_in_cumsum', 'u_in_diff-1', 'u_in_diff-10', 'u_in_diff-2', 'u_in_diff-3', 'u_in_diff-4', 'u_in_diff-5', 'u_in_diff-6', 'u_in_diff-7', 'u_in_diff-8', 'u_in_diff-9', 'u_in_diff1', 'u_in_diff1', 'u_in_diff1', 'u_in_diff10', 'u_in_diff2', 'u_in_diff2', 'u_in_diff2', 'u_in_diff3', 'u_in_diff3', 'u_in_diff3', 'u_in_diff4', 'u_in_diff4', 'u_in_diff4', 'u_in_diff5', 'u_in_diff6', 'u_in_diff7', 'u_in_diff8', 'u_in_diff9', 'u_in_lag-1', 'u_in_lag-10', 'u_in_lag-2', 'u_in_lag-3', 'u_in_lag-4', 'u_in_lag-5', 'u_in_lag-6', 'u_in_lag-7', 'u_in_lag-8', 'u_in_lag-9', 'u_in_lag1', 'u_in_lag1', 'u_in_lag1', 'u_in_lag10', 'u_in_lag2', 'u_in_lag2', 'u_in_lag2', 'u_in_lag3', 'u_in_lag3', 'u_in_lag3', 'u_in_lag4', 'u_in_lag4', 'u_in_lag4', 'u_in_lag5', 'u_in_lag6', 'u_in_lag7', 'u_in_lag8', 'u_in_lag9', 'u_in_lag_back1', 'u_in_lag_back1', 'u_in_lag_back10', 'u_in_lag_back10', 'u_in_lag_back2', 'u_in_lag_back2', 'u_in_lag_back3', 'u_in_lag_back3', 'u_in_lag_back4', 'u_in_lag_back4', 'u_in_lagback_diff1', 'u_in_lagback_diff1', 'u_in_lagback_diff10', 'u_in_lagback_diff2', 'u_in_lagback_diff2', 'u_in_lagback_diff3', 'u_in_lagback_diff4', 'u_in_rolling_max10', 'u_in_rolling_max2', 'u_in_rolling_max4', 'u_in_rolling_mean10', 'u_in_rolling_mean2', 'u_in_rolling_mean4', 'u_in_rolling_min10', 'u_in_rolling_min2', 'u_in_rolling_min4', 'u_in_rolling_std10', 'u_in_rolling_std2', 'u_in_rolling_std4', 'u_out', 'u_out', 'u_out_diff1', 'u_out_diff2', 'u_out_diff3', 'u_out_diff3', 'u_out_diff4', 'u_out_diff4', 'u_out_lag1', 'u_out_lag2', 'u_out_lag3', 'u_out_lag4', 'u_out_lag_back1', 'u_out_lag_back10', 'u_out_lag_back10', 'u_out_lag_back2', 'u_out_lag_back3', 'u_out_lag_back3', 'u_out_lag_back4', 'u_out_lag_back4', 'u_out_lagback_diff1', 'u_out_lagback_diff1', 'u_out_lagback_diff10', 'u_out_lagback_diff2', 'u_out_lagback_diff2', 'u_out_lagback_diff3', 'u_out_lagback_diff4'] + ['fold'] + ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure'] best_cols = [col for col in best_cols if col in data.columns] data = data[best_cols] return data.fillna(0) def make_features14(self, data): """ 8 and several more Args: data: Returns: """ data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift(1).fillna(0) data['u_in_rate'] = (data['u_in'] - data.groupby('breath_id')['u_in'].shift(1).fillna(0)) / data['time_step_diff'] data['area_gap'] = data['u_in'] * data['time_step_diff'] data['area_gap'] = data.groupby('breath_id')['area_gap'].cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0).replace(np.inf, 0) def make_features15(self, data): """ 8 and new Args: data: Returns: """ data['RCT'] = data['R'] * data['time_step'] / data['C'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step']) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['max_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].max() data['max_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].max() data['last_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].last() data['last_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].last() data['count_till_max_u_in'] = data['count'] - data.groupby(['breath_id'])['u_in'].idxmax() data['count_till_max_u_in_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax() data['count_till_last_u_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['count'].last() data['time_step_till_max_u_in'] = data['time_step'] - data.loc[data.groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_max_u_in_out_0'] = data['time_step'] - data.loc[data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_last_u_out_0'] = data['time_step'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['time_step'].last() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_RC_diff'] = data['u_in_diff1'] - data.groupby(['R__C', 'count'])['u_in_diff1'].transform('mean') data['u_in_RC_diff_v2'] = data['u_in_diff1'] - data.groupby(['R__C'])['u_in_diff1'].transform('mean') data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0) def make_features81(self, data): data['u_in'] = 2 * data.u_in * (np.exp(-0.1 * data.C / data.R)) data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0) def make_features61(self, data): data['u_in'] = 2 * data.u_in * (np.exp(-0.1 * data.C / data.R)) # CATE_FEATURES = ['R_cate', 'C_cate', 'RC_dot', 'RC_sum'] CONT_FEATURES = ['u_in', 'u_out', 'time_step'] + ['u_in_cumsum', 'u_in_cummean', 'area', 'cross', 'cross2'] + [ 'R_cate', 'C_cate'] LAG_FEATURES = ['breath_time'] LAG_FEATURES += [f'u_in_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_lag_{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_in_time{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_time{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_out_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_out_lag_{i}_back' for i in range(1, USE_LAG+1)] # ALL_FEATURES = CATE_FEATURES + CONT_FEATURES + LAG_FEATURES ALL_FEATURES = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: ALL_FEATURES.append(col) data['time_delta'] = data.groupby('breath_id')['time_step'].diff().fillna(0) data['delta'] = data['time_delta'] * data['u_in'] data['area'] = data.groupby('breath_id')['delta'].cumsum() data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data = data.drop(['count', 'one'], axis=1) for lag in range(1, self.cfg.datamodule.use_lag + 1): data[f'breath_id_lag{lag}'] = data['breath_id'].shift(lag).fillna(0) data[f'breath_id_lag{lag}same'] = np.select([data[f'breath_id_lag{lag}'] == data['breath_id']], [1], 0) # u_in data[f'u_in_lag_{lag}'] = data['u_in'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_in_lag_{lag}_back'] = data['u_in'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] data[f'u_in_time{lag}'] = data['u_in'] - data[f'u_in_lag_{lag}'] # data[f'u_in_time{lag}_back'] = data['u_in'] - data[f'u_in_lag_{lag}_back'] data[f'u_out_lag_{lag}'] = data['u_out'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_out_lag_{lag}_back'] = data['u_out'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] # breath_time data['time_step_lag'] = data['time_step'].shift(1).fillna(0) * data[f'breath_id_lag{lag}same'] data['breath_time'] = data['time_step'] - data['time_step_lag'] drop_columns = ['time_step_lag'] drop_columns += [f'breath_id_lag{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] drop_columns += [f'breath_id_lag{i}same' for i in range(1, self.cfg.datamodule.use_lag + 1)] data = data.drop(drop_columns, axis=1) # fill na by zero data = data.fillna(0) c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) norm_features = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: norm_features.append(col) if 'fold' in data.columns: norm_features.append('fold') norm_features = list(set(norm_features)) ALL_FEATURES = list(set(ALL_FEATURES)) print('data.columns', data.columns) print('ALL_FEATURES', ALL_FEATURES) # assert norm_features == ALL_FEATURES, 'something went wrong' return data[ALL_FEATURES].fillna(0) def make_features31(self, data): data['u_in'] = 2 * data.u_in * (np.exp(-0.1 * data.C / data.R)) data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0) def make_features16(self, data): """ 8 and new Args: data: Returns: """ data['RCT'] = data['R'] * data['time_step'] / data['C'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step']) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['rt'] = (3 * data['v'] / (4 * pi)) ** (1 / 3) data['pt'] = ((1 - (data['rt'] / 30) ** 6) / (data['rt'] * (30 ** 2))) data['max_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].max() data['max_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].max() data['last_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].last() data['last_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].last() data['count_till_max_u_in'] = data['count'] - data.groupby(['breath_id'])['u_in'].idxmax() data['count_till_max_u_in_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax() data['count_till_last_u_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['count'].last() data['time_step_till_max_u_in'] = data['time_step'] - data.loc[data.groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_max_u_in_out_0'] = data['time_step'] - data.loc[data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_last_u_out_0'] = data['time_step'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['time_step'].last() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_RC_diff'] = data['u_in_diff1'] - data.groupby(['R__C', 'count'])['u_in_diff1'].transform('mean') data['u_in_RC_diff_v2'] = data['u_in_diff1'] - data.groupby(['R__C'])['u_in_diff1'].transform('mean') data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.replace((np.inf, -np.inf, np.nan), 0) def make_features17(self, data): """ 8 and new Args: data: Returns: """ data['RCT'] = data['R'] * data['time_step'] / data['C'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) data['max_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].max() data['max_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].max() data['last_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].last() data['last_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].last() data['count_till_max_u_in'] = data['count'] - data.groupby(['breath_id'])['u_in'].idxmax() data['count_till_max_u_in_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax() data['count_till_last_u_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['count'].last() data['time_step_till_max_u_in'] = data['time_step'] - data.loc[data.groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_max_u_in_out_0'] = data['time_step'] - data.loc[data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_last_u_out_0'] = data['time_step'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['time_step'].last() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_RC_diff'] = data['u_in_diff1'] - data.groupby(['R__C', 'count'])['u_in_diff1'].transform('mean') data['u_in_RC_diff_v2'] = data['u_in_diff1'] - data.groupby(['R__C'])['u_in_diff1'].transform('mean') data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0).replace((np.inf, -np.inf, np.nan), 0) def make_features171(self, data): """ 8 and new. no rct Args: data: Returns: """ data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) data['max_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].max() data['max_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].max() data['last_u_in_diff'] = data['u_in'] - data.groupby(['breath_id'])['u_in'].last() data['last_u_in_diff_u_out_0'] = data['u_in'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].last() data['count_till_max_u_in'] = data['count'] - data.groupby(['breath_id'])['u_in'].idxmax() data['count_till_max_u_in_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax() data['count_till_last_u_out_0'] = data['count'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['count'].last() data['time_step_till_max_u_in'] = data['time_step'] - data.loc[data.groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_max_u_in_out_0'] = data['time_step'] - data.loc[data.loc[data['u_out'] == 0].groupby(['breath_id'])['u_in'].idxmax(), 'time_step'] data['time_step_till_last_u_out_0'] = data['time_step'] - data.loc[data['u_out'] == 0].groupby(['breath_id'])['time_step'].last() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_RC_diff'] = data['u_in_diff1'] - data.groupby(['R__C', 'count'])['u_in_diff1'].transform('mean') data['u_in_RC_diff_v2'] = data['u_in_diff1'] - data.groupby(['R__C'])['u_in_diff1'].transform('mean') data = pd.get_dummies(data) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['u_in_lagback_diff3'] = data['u_in'] - data['u_in_lag_back3'] data['u_out_lagback_diff3'] = data['u_out'] - data['u_out_lag_back3'] data['u_in_lagback_diff4'] = data['u_in'] - data['u_in_lag_back4'] data['u_out_lagback_diff4'] = data['u_out'] - data['u_out_lag_back4'] ###### data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['u_in_lagback_diff10'] = data['u_in'] - data['u_in_lag_back10'] data['u_out_lagback_diff10'] = data['u_out'] - data['u_out_lag_back10'] data['time_step_diff'] = data['time_step'] - data.groupby('breath_id')['time_step'].shift().fillna(0) data[["15_out_sum", "15_out_min", "15_out_max", "15_out_mean", "15_out_std"]] = (data \ .groupby('breath_id')['u_out'] \ .rolling(window=15, min_periods=1) \ .agg({"15_out_sum": "sum", "15_out_min": "min", "15_out_max": "max", "15_out_mean": "mean", "15_out_std": "std" }).reset_index(level=0, drop=True)) for window in [2, 4, 5, 10, 15, 20, 30, 45]: data[[f"{window}_in_sum", f"{window}_in_min", f"{window}_in_max", f"{window}_in_mean", f"{window}_in_std"]] = (data.groupby('breath_id')['u_in'].rolling(window=window, min_periods=1) \ .agg({f"{window}_in_sum": "sum", f"{window}_in_min": "min", f"{window}_in_max": "max", f"{window}_in_mean": "mean", f"{window}_in_std": "std" }).reset_index(level=0, drop=True)) for halflife in [5, 9, 10, 15, 20]: data[f'ewm_u_in_mean_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).mean().reset_index(level=0, drop=True) data[f'ewm_u_in_std_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).std().reset_index(level=0, drop=True) data[f'ewm_u_in_corr_{halflife}'] = data.groupby('breath_id')['u_in'].ewm(halflife=halflife).corr().reset_index(level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) return data.fillna(0).fillna(0).replace((np.inf, -np.inf, np.nan), 0) def make_features18(self, data): """ 3 and volume Args: data: Returns: """ data['RCT'] = data['R'] * data['time_step'] / data['C'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0).replace((np.inf, -np.inf, np.nan), 0) def make_features181(self, data): """ 3 and volume. no rct Args: data: Returns: """ data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) data['u_in_lag1'] = data.groupby('breath_id')['u_in'].shift(1) data['u_out_lag1'] = data.groupby('breath_id')['u_out'].shift(1) data['u_in_lag_back1'] = data.groupby('breath_id')['u_in'].shift(-1) data['u_out_lag_back1'] = data.groupby('breath_id')['u_out'].shift(-1) data['u_in_lag2'] = data.groupby('breath_id')['u_in'].shift(2) data['u_out_lag2'] = data.groupby('breath_id')['u_out'].shift(2) data['u_in_lag_back2'] = data.groupby('breath_id')['u_in'].shift(-2) data['u_out_lag_back2'] = data.groupby('breath_id')['u_out'].shift(-2) data['u_in_lag3'] = data.groupby('breath_id')['u_in'].shift(3) data['u_out_lag3'] = data.groupby('breath_id')['u_out'].shift(3) data['u_in_lag_back3'] = data.groupby('breath_id')['u_in'].shift(-3) data['u_out_lag_back3'] = data.groupby('breath_id')['u_out'].shift(-3) data['u_in_lag4'] = data.groupby('breath_id')['u_in'].shift(4) data['u_out_lag4'] = data.groupby('breath_id')['u_out'].shift(4) data['u_in_lag_back4'] = data.groupby('breath_id')['u_in'].shift(-4) data['u_out_lag_back4'] = data.groupby('breath_id')['u_out'].shift(-4) data = data.fillna(0) data['breath_id__u_in__max'] = data.groupby(['breath_id'])['u_in'].transform('max') data['breath_id__u_out__max'] = data.groupby(['breath_id'])['u_out'].transform('max') data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['breath_id__u_in__diffmax'] = data.groupby(['breath_id'])['u_in'].transform('max') - data['u_in'] data['breath_id__u_in__diffmean'] = data.groupby(['breath_id'])['u_in'].transform('mean') - data['u_in'] data['u_in_diff1'] = data['u_in'] - data['u_in_lag1'] data['u_out_diff1'] = data['u_out'] - data['u_out_lag1'] data['u_in_diff2'] = data['u_in'] - data['u_in_lag2'] data['u_out_diff2'] = data['u_out'] - data['u_out_lag2'] data['u_in_diff3'] = data['u_in'] - data['u_in_lag3'] data['u_out_diff3'] = data['u_out'] - data['u_out_lag3'] data['u_in_diff4'] = data['u_in'] - data['u_in_lag4'] data['u_out_diff4'] = data['u_out'] - data['u_out_lag4'] data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] data['breath_id_lag'] = data['breath_id'].shift(1).fillna(0) data['breath_id_lag2'] = data['breath_id'].shift(2).fillna(0) data['breath_id_lagsame'] = np.select([data['breath_id_lag'] == data['breath_id']], [1], 0) data['breath_id_lag2same'] = np.select([data['breath_id_lag2'] == data['breath_id']], [1], 0) data['breath_id__u_in_lag'] = data['u_in'].shift(1).fillna(0) data['breath_id__u_in_lag'] = data['breath_id__u_in_lag'] * data['breath_id_lagsame'] data['breath_id__u_in_lag2'] = data['u_in'].shift(2).fillna(0) data['breath_id__u_in_lag2'] = data['breath_id__u_in_lag2'] * data['breath_id_lag2same'] data['R_sum_c'] = (data['R'] + data['C']).astype(str) data['R_mult_c'] = (data['R'] * data['C']).astype(str) data['R'] = data['R'].astype(str) data['C'] = data['C'].astype(str) data['R__C'] = data["R"].astype(str) + '__' + data["C"].astype(str) data = pd.get_dummies(data) data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean"]] = (data \ .groupby('breath_id')['u_in'] \ .rolling(window=15, min_periods=1) \ .agg({"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean" # "15_in_std":"std" }) \ .reset_index(level=0, drop=True)) data['u_in_lagback_diff1'] = data['u_in'] - data['u_in_lag_back1'] data['u_out_lagback_diff1'] = data['u_out'] - data['u_out_lag_back1'] data['u_in_lagback_diff2'] = data['u_in'] - data['u_in_lag_back2'] data['u_out_lagback_diff2'] = data['u_out'] - data['u_out_lag_back2'] data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).corr().reset_index(level=0, drop=True) data['rolling_10_mean'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).mean().reset_index( level=0, drop=True) data['rolling_10_max'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).max().reset_index( level=0, drop=True) data['rolling_10_std'] = data.groupby('breath_id')['u_in'].rolling(window=10, min_periods=1).std().reset_index( level=0, drop=True) data['expand_mean'] = data.groupby('breath_id')['u_in'].expanding(2).mean().reset_index(level=0, drop=True) data['expand_max'] = data.groupby('breath_id')['u_in'].expanding(2).max().reset_index(level=0, drop=True) data['expand_std'] = data.groupby('breath_id')['u_in'].expanding(2).std().reset_index(level=0, drop=True) data["u_in_rolling_mean2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_mean10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).mean()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_max10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).max()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_min10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).min()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std2"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(2).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std4"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(4).std()[ "u_in"].reset_index(drop=True) data["u_in_rolling_std10"] = data[["breath_id", "u_in"]].groupby("breath_id").rolling(10).std()[ "u_in"].reset_index(drop=True) g = data.groupby('breath_id')['u_in'] data['ewm_u_in_mean'] = g.ewm(halflife=10).mean() \ .reset_index(level=0, drop=True) data['ewm_u_in_std'] = g.ewm(halflife=10).std() \ .reset_index(level=0, drop=True) data['ewm_u_in_corr'] = g.ewm(halflife=10).corr() \ .reset_index(level=0, drop=True) data['rolling_10_mean'] = g.rolling(window=10, min_periods=1).mean() \ .reset_index(level=0, drop=True) data['rolling_10_max'] = g.rolling(window=10, min_periods=1).max() \ .reset_index(level=0, drop=True) data['rolling_10_std'] = g.rolling(window=10, min_periods=1).std() \ .reset_index(level=0, drop=True) data['expand_mean'] = g.expanding(2).mean() \ .reset_index(level=0, drop=True) data['expand_max'] = g.expanding(2).max() \ .reset_index(level=0, drop=True) data['expand_std'] = g.expanding(2).std() \ .reset_index(level=0, drop=True) data['u_in_lag_back10'] = data.groupby('breath_id')['u_in'].shift(-10) data['u_out_lag_back10'] = data.groupby('breath_id')['u_out'].shift(-10) data['time_step_diff'] = data.groupby('breath_id')['time_step'].diff().fillna(0) ### rolling window ts feats data['ewm_u_in_mean'] = data.groupby('breath_id')['u_in'].ewm(halflife=9).mean().reset_index(level=0, drop=True) data['ewm_u_in_std'] = data.groupby('breath_id')['u_in'].ewm(halflife=10).std().reset_index(level=0, drop=True) ## could add covar? data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=15).corr().reset_index(level=0, drop=True) # self umin corr # data['ewm_u_in_corr'] = data.groupby('breath_id')['u_in'].ewm(halflife=6).corr(data.groupby('breath_id')["u_out"]).reset_index(level=0,drop=True) # corr with u_out # error ## rolling window of 15 periods data[["15_in_sum", "15_in_min", "15_in_max", "15_in_mean", "15_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=15, min_periods=1).agg( {"15_in_sum": "sum", "15_in_min": "min", "15_in_max": "max", "15_in_mean": "mean", "15_in_std": "std"}).reset_index(level=0, drop=True) # data[["45_in_sum","45_in_min","45_in_max","45_in_mean","45_out_std"]] = data.groupby('breath_id')['u_in'].rolling(window=45,min_periods=1).agg({"45_in_sum":"sum","45_in_min":"min","45_in_max":"max","45_in_mean":"mean","45_in_std":"std"}).reset_index(level=0,drop=True) data[["45_in_sum", "45_in_min", "45_in_max", "45_in_mean", "45_out_std"]] = data.groupby('breath_id')[ 'u_in'].rolling(window=45, min_periods=1).agg( {"45_in_sum": "sum", "45_in_min": "min", "45_in_max": "max", "45_in_mean": "mean", "45_in_std": "std"}).reset_index(level=0, drop=True) data[["15_out_mean"]] = data.groupby('breath_id')['u_out'].rolling(window=15, min_periods=1).agg( {"15_out_mean": "mean"}).reset_index(level=0, drop=True) return data.fillna(0).replace((np.inf, -np.inf, np.nan), 0) def make_features19(self, data): """ 6 and volume Args: data: Returns: """ data['RCT'] = data['R'] * data['time_step'] / data['C'] data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) # CATE_FEATURES = ['R_cate', 'C_cate', 'RC_dot', 'RC_sum'] CONT_FEATURES = ['u_in', 'u_out', 'time_step'] + ['u_in_cumsum', 'u_in_cummean', 'area', 'cross', 'cross2'] + [ 'R_cate', 'C_cate'] LAG_FEATURES = ['breath_time'] LAG_FEATURES += [f'u_in_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_lag_{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_in_time{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_time{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_out_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_out_lag_{i}_back' for i in range(1, USE_LAG+1)] # ALL_FEATURES = CATE_FEATURES + CONT_FEATURES + LAG_FEATURES ALL_FEATURES = CONT_FEATURES + LAG_FEATURES + ['RCT', 'pt'] for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: ALL_FEATURES.append(col) data['time_delta'] = data.groupby('breath_id')['time_step'].diff().fillna(0) data['delta'] = data['time_delta'] * data['u_in'] data['area'] = data.groupby('breath_id')['delta'].cumsum() data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] # data = data.drop(['count', 'one'], axis=1) for lag in range(1, self.cfg.datamodule.use_lag + 1): data[f'breath_id_lag{lag}'] = data['breath_id'].shift(lag).fillna(0) data[f'breath_id_lag{lag}same'] = np.select([data[f'breath_id_lag{lag}'] == data['breath_id']], [1], 0) # u_in data[f'u_in_lag_{lag}'] = data['u_in'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_in_lag_{lag}_back'] = data['u_in'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] data[f'u_in_time{lag}'] = data['u_in'] - data[f'u_in_lag_{lag}'] # data[f'u_in_time{lag}_back'] = data['u_in'] - data[f'u_in_lag_{lag}_back'] data[f'u_out_lag_{lag}'] = data['u_out'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_out_lag_{lag}_back'] = data['u_out'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] # breath_time data['time_step_lag'] = data['time_step'].shift(1).fillna(0) * data[f'breath_id_lag{lag}same'] data['breath_time'] = data['time_step'] - data['time_step_lag'] drop_columns = ['time_step_lag'] drop_columns += [f'breath_id_lag{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] drop_columns += [f'breath_id_lag{i}same' for i in range(1, self.cfg.datamodule.use_lag + 1)] data = data.drop(drop_columns, axis=1) # fill na by zero data = data.fillna(0) c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) norm_features = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: norm_features.append(col) if 'fold' in data.columns: norm_features.append('fold') norm_features = list(set(norm_features)) ALL_FEATURES = list(set(ALL_FEATURES)) print('data.columns', data.columns) print('ALL_FEATURES', ALL_FEATURES) # assert norm_features == ALL_FEATURES, 'something went wrong' return data[ALL_FEATURES].fillna(0).replace((np.inf, -np.inf, np.nan), 0) def make_features191(self, data): """ 6 and volume Args: data: Returns: """ data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['area'] = data['time_step'] * data['u_in'] data['area'] = data.groupby('breath_id')['area'].cumsum() data['time_step_cumsum'] = data.groupby(['breath_id'])['time_step'].cumsum() data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['exponent'] = (-1.0 * data['time_step'] * 1000) / (data['R'] * data['C']) data['factor'] = np.exp(data['exponent']) data['vf'] = (data['u_in_cumsum'] * data['R']) / data['factor'] data['vt'] = 0 data.loc[data['time_step'] != 0, 'vt'] = data['area'] / ( data['C'] * (-1.0 * data['factor'] + 1.0)) data['v'] = data['vf'] + data['vt'] data['v0'] = data.groupby(['breath_id'])['v'].transform('first') data['pt'] = (1 - (data['v'] / data['v0']) ** 2) * (1 / (3 * (data['v'] / (4 * math.pi)) ** (1 / 3))) * ( 3 * data['v0'] / (4 * math.pi)) ** (2 / 3) data = data.drop(['exponent', 'factor', 'vf', 'vt', 'v', 'v0'], axis=1) # CATE_FEATURES = ['R_cate', 'C_cate', 'RC_dot', 'RC_sum'] CONT_FEATURES = ['u_in', 'u_out', 'time_step'] + ['u_in_cumsum', 'u_in_cummean', 'area', 'cross', 'cross2'] + [ 'R_cate', 'C_cate'] LAG_FEATURES = ['breath_time'] LAG_FEATURES += [f'u_in_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_lag_{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_in_time{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_in_time{i}_back' for i in range(1, USE_LAG+1)] LAG_FEATURES += [f'u_out_lag_{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] # LAG_FEATURES += [f'u_out_lag_{i}_back' for i in range(1, USE_LAG+1)] # ALL_FEATURES = CATE_FEATURES + CONT_FEATURES + LAG_FEATURES ALL_FEATURES = CONT_FEATURES + LAG_FEATURES + ['pt'] for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: ALL_FEATURES.append(col) data['time_delta'] = data.groupby('breath_id')['time_step'].diff().fillna(0) data['delta'] = data['time_delta'] * data['u_in'] data['area'] = data.groupby('breath_id')['delta'].cumsum() data['cross'] = data['u_in'] * data['u_out'] data['cross2'] = data['time_step'] * data['u_out'] data['u_in_cumsum'] = (data['u_in']).groupby(data['breath_id']).cumsum() data['one'] = 1 data['count'] = (data['one']).groupby(data['breath_id']).cumsum() data['u_in_cummean'] = data['u_in_cumsum'] / data['count'] # data = data.drop(['count', 'one'], axis=1) for lag in range(1, self.cfg.datamodule.use_lag + 1): data[f'breath_id_lag{lag}'] = data['breath_id'].shift(lag).fillna(0) data[f'breath_id_lag{lag}same'] = np.select([data[f'breath_id_lag{lag}'] == data['breath_id']], [1], 0) # u_in data[f'u_in_lag_{lag}'] = data['u_in'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_in_lag_{lag}_back'] = data['u_in'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] data[f'u_in_time{lag}'] = data['u_in'] - data[f'u_in_lag_{lag}'] # data[f'u_in_time{lag}_back'] = data['u_in'] - data[f'u_in_lag_{lag}_back'] data[f'u_out_lag_{lag}'] = data['u_out'].shift(lag).fillna(0) * data[f'breath_id_lag{lag}same'] # data[f'u_out_lag_{lag}_back'] = data['u_out'].shift(-lag).fillna(0) * data[f'breath_id_lag{lag}same'] # breath_time data['time_step_lag'] = data['time_step'].shift(1).fillna(0) * data[f'breath_id_lag{lag}same'] data['breath_time'] = data['time_step'] - data['time_step_lag'] drop_columns = ['time_step_lag'] drop_columns += [f'breath_id_lag{i}' for i in range(1, self.cfg.datamodule.use_lag + 1)] drop_columns += [f'breath_id_lag{i}same' for i in range(1, self.cfg.datamodule.use_lag + 1)] data = data.drop(drop_columns, axis=1) # fill na by zero data = data.fillna(0) c_dic = {10: 0, 20: 1, 50: 2} r_dic = {5: 0, 20: 1, 50: 2} rc_sum_dic = {v: i for i, v in enumerate([15, 25, 30, 40, 55, 60, 70, 100])} rc_dot_dic = {v: i for i, v in enumerate([50, 100, 200, 250, 400, 500, 2500, 1000])} data['C_cate'] = data['C'].map(c_dic) data['R_cate'] = data['R'].map(r_dic) data['RC_sum'] = (data['R'] + data['C']).map(rc_sum_dic) data['RC_dot'] = (data['R'] * data['C']).map(rc_dot_dic) norm_features = CONT_FEATURES + LAG_FEATURES for col in ['id', 'breath_id', 'one', 'count', 'breath_id_lag', 'breath_id_lag2', 'breath_id_lagsame', 'breath_id_lag2same', 'pressure', 'fold']: if col in data.columns: norm_features.append(col) if 'fold' in data.columns: norm_features.append('fold') norm_features = list(set(norm_features)) ALL_FEATURES = list(set(ALL_FEATURES)) print('data.columns', data.columns) print('ALL_FEATURES', ALL_FEATURES) # assert norm_features == ALL_FEATURES, 'something went wrong' return data[ALL_FEATURES].fillna(0).replace((np.inf, -np.inf, np.nan), 0) def setup(self, stage=None): if os.path.exists(os.path.join(self.cfg.datamodule.path, f'train_{self.cfg.datamodule.make_features_style}.csv')): print('Reading features') train = pd.read_csv(os.path.join(self.cfg.datamodule.path, f'train_{self.cfg.datamodule.make_features_style}.csv')) test = pd.read_csv(os.path.join(self.cfg.datamodule.path, f'test_{self.cfg.datamodule.make_features_style}.csv')) gkf = GroupKFold(n_splits=self.cfg.datamodule.n_folds).split(train, train.pressure, groups=train.breath_id) for fold, (_, valid_idx) in enumerate(gkf): train.loc[valid_idx, 'fold'] = fold train_targets = train.loc[train['fold'] != self.cfg.datamodule.fold_n, 'pressure'].copy().values.reshape(-1, 80) valid_targets = train.loc[train['fold'] == self.cfg.datamodule.fold_n, 'pressure'].copy().values.reshape(-1, 80) train_u_out_ = train.loc[train['fold'] != self.cfg.datamodule.fold_n, 'u_out'].copy().values.reshape(-1, 80) valid_u_out_ = train.loc[train['fold'] == self.cfg.datamodule.fold_n, 'u_out'].copy().values.reshape(-1, 80) test_targets = np.zeros(len(test)).reshape(-1, 80) else: if self.cfg.training.debug: train = pd.read_csv(os.path.join(self.cfg.datamodule.path, 'train.csv'), nrows=196000) test = pd.read_csv(os.path.join(self.cfg.datamodule.path, 'test.csv'), nrows=80000) else: train = pd.read_csv(os.path.join(self.cfg.datamodule.path, 'train.csv')) test = pd.read_csv(os.path.join(self.cfg.datamodule.path, 'test.csv')) gkf = GroupKFold(n_splits=self.cfg.datamodule.n_folds).split(train, train.pressure, groups=train.breath_id) for fold, (_, valid_idx) in enumerate(gkf): train.loc[valid_idx, 'fold'] = fold train_targets = train.loc[train['fold'] != self.cfg.datamodule.fold_n, 'pressure'].copy().values.reshape(-1, 80) valid_targets = train.loc[train['fold'] == self.cfg.datamodule.fold_n, 'pressure'].copy().values.reshape(-1, 80) train_u_out_ = train.loc[train['fold'] != self.cfg.datamodule.fold_n, 'u_out'].copy().values.reshape(-1, 80) valid_u_out_ = train.loc[train['fold'] == self.cfg.datamodule.fold_n, 'u_out'].copy().values.reshape(-1, 80) test_targets = np.zeros(len(test)).reshape(-1, 80) print('Making features') if self.cfg.datamodule.make_features_style == 0: train = self.make_features(train) test = self.make_features(test) elif self.cfg.datamodule.make_features_style == 1: train = self.make_features1(train) test = self.make_features1(test) elif self.cfg.datamodule.make_features_style == 2: train = self.make_features2(train) test = self.make_features2(test) elif self.cfg.datamodule.make_features_style == 3: train = self.make_features3(train) test = self.make_features3(test) elif self.cfg.datamodule.make_features_style == 31: train = self.make_features31(train) test = self.make_features31(test) elif self.cfg.datamodule.make_features_style == 32: with open(os.path.join(self.cfg.datamodule.path, 'train_data_feats.pkl'), 'rb') as f: d = pickle.load(f) tmp = d.to_numpy().reshape(-1, 35, d.shape[-1]) tmp1 = np.zeros((tmp.shape[0], 80, tmp.shape[2])) tmp1[:, :35, :] = tmp tmp1 = tmp1.reshape(-1, d.shape[1]) d = pd.DataFrame(tmp1, columns=d.columns) if self.cfg.training.debug: d = d[:196000] train['clusterIDeu'] = d['clusterIDeu'].values.astype(str).copy() train['clusterIDdtw'] = d['clusterIDdtw'].values.astype(str).copy() with open(os.path.join(self.cfg.datamodule.path, 'test_data_feats.pkl'), 'rb') as f: d = pickle.load(f) tmp = d.to_numpy().reshape(-1, 35, d.shape[-1]) tmp1 = np.zeros((tmp.shape[0], 80, tmp.shape[2])) tmp1[:, :35, :] = tmp tmp1 = tmp1.reshape(-1, d.shape[1]) d =
pd.DataFrame(tmp1, columns=d.columns)
pandas.DataFrame
""" # # DATE : 12,September 2017 # # AUTHOR : <EMAIL> # # DESCRIPTION : This script is used to create Final_KPI_Report.xlsx inside ./Report Directory, # # And uses all bundle*.csv files present inside ./Referral_Data Directory. """ from string import whitespace from openpyxl import load_workbook import pandas as pd import os.path import sys import csv import time import logging import fnmatch from Combine_Configs_Script import CreateCombineConfigs from Constants import Constants from Formats import Formats from Formulas import Formulas from Utils import Utils class FinalKPIReport: __Const = None CONFIG_HEADER = [u'Test Case No.', u'Test Category', u'Test Case ID', u'Test Type', u'Configurations'] ReadTemplateFlag = True DF_Template = None DF_Bundles_List = [] bundleFiles_list = [] def __init__(self): self.__Const = Constants() # logging.basicConfig(format=self.__Const.LOGGING_FORMAT, level=logging.DEBUG) logging.debug("constructor is called...") Utils.ChangeDirPath(self.__Const.REFERRAL_DATA_PATH) self.bundleFiles_list = list( reversed(fnmatch.filter(os.listdir(os.getcwd()), self.__Const.WILDCARD_BUNDLE_FILE))) logging.debug(self.bundleFiles_list) if self.bundleFiles_list != []: logging.debug( "List of files present inside " + self.__Const.REFERRAL_DATA_PATH + ":" + str(self.bundleFiles_list)) else: logging.error( self.__Const.REFERRAL_DATA_PATH + " Directory should contains 'Bundle*.csv files'. Script is aborted...!!") if os.path.isdir("..\\" + self.__Const.REPORT_PATH): pass else: logging.error( self.__Const.REPORT_PATH + " Directory is need to be created to Generate Report. Script is aborted...!!") sys.exit(0) if len(self.bundleFiles_list) <= 1: sys.exit("Script is aborted...Cannot Generate Report for Single Bundle.") self.ReadBundles(self.bundleFiles_list) def ReadBundles(self, list_bundleFiles): for files in list_bundleFiles: if os.path.isfile(os.path.realpath(files)): logging.debug(files + " File is present") if self.ReadTemplateFlag: self.DF_Template = Utils.ReadCSV(self.__Const.CONFIG_TEMPLATE_FILE) self.ReadTemplateFlag = False self.DF_Bundles_List.append(Utils.ReadCSV(files)) else: logging.error(files + " File not present") logging.error( self.__Const.WILDCARD_BUNDLE_FILE + " File is needed to create Final Report. Script is aborted...!!") sys.exit(0) def CreateSheets(self,Max_RunCount): df_template = self.DF_Template AppsDict, AppNames = Utils.MakeApplicationDictionary(df_template) AppCount = 0 Utils.ChangeDirPath(Constants.REPORT_PATH) writer = pd.ExcelWriter(Constants.FINAL_REPORT_FILE, engine='xlsxwriter') workbook = writer.book # # # Create Summary Tabs self.Create_Summary_Tab(workbook, AppNames) # # # # Create Module Details BUNDLE_MD Tabs self.Create_Summary_MD_Tab(workbook, Constants.SUMMARY_BUNDLE_MD_TAB_NAME) # # # # Create Module Details CONFIG_MD Tabs self.Create_Summary_MD_Tab(workbook, Constants.SUMMARY_CONFIG_MD_TAB_NAME) # # # Create Module Details Tabs self.Create_ModuleDetail_Tab(workbook, AppNames) # # Create Module Details _MD Tabs self.Create_ModuleDetail_MD_Tab(workbook, AppNames) # # # Create All Application and Application_MD Tabs self.Create_ApplicationMD_Tab(workbook, AppNames, AppsDict, df_template,Max_RunCount) workbook.close() def Create_Summary_MD_Tab(self, workbook, TabName): Row_Index = 0 Col_Index = 0 if TabName == Constants.SUMMARY_BUNDLE_MD_TAB_NAME: worksheet = workbook.add_worksheet(Constants.SUMMARY_BUNDLE_MD_TAB_NAME) PerformanceList = [Constants.NUMBER_OF_TESTS] + Constants.PERFORMANCE_STATUS_HEADER Color = Constants.COLOR_LIGHT_BLUE else: worksheet = workbook.add_worksheet(Constants.SUMMARY_CONFIG_MD_TAB_NAME) PerformanceList = [Constants.NUMBER_OF_TESTS] + Constants.PERFORMANCE_STATUS_RESULT_HEADER Color = Constants.COLOR_GOLD worksheet.set_column("D:AAA", Constants.CELL_WIDTH) worksheet.set_column("A:B", Constants.REPORT_DESCRIPTION_WIDTH) worksheet.merge_range(Row_Index, Col_Index, Row_Index, Col_Index + 1, Constants.CONFIGURATIONS_DETAIL_TITLE, Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)) worksheet.write(Row_Index + 1, Col_Index, Constants.CONFIGURATIONS_NAME_HEADER, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) worksheet.write(Row_Index + 1, Col_Index + 1, Constants.CONFIGURATIONS_DESCRIPTION_HEADER, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) # # # Average Response Time_Table if TabName == Constants.SUMMARY_BUNDLE_MD_TAB_NAME: self.AverageResponseTime_Table(worksheet,workbook,Row_Index,Col_Index,PerformanceList) for i in range(Constants.CONFIGURATIONS_COUNT): for j in range(2): if j == 0: worksheet.write(Row_Index + 2 + i, Col_Index + j, Constants.CONFIGURATIONS_LIST[i], Formats.Format_Cell(workbook)) else: worksheet.write(Row_Index + 2 + i, Col_Index + j, Constants.CONFIGURATIONS_DESCRIPTION_LIST[i], Formats.Format_Cell(workbook)) worksheet.merge_range(Row_Index + 1, Col_Index + 3, Row_Index + 1, Col_Index + (2 * len(PerformanceList)) + 3, Constants.SUMMARY_MD_TAB_TITLE, Formats.Format_Hyperlink(workbook)) worksheet.merge_range(Row_Index + 2, Col_Index + 3, Row_Index + 2, Col_Index + (2 * len(PerformanceList)) + 3, "Improvement Count", Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) row = Row_Index + 12 col = Col_Index + 3 for i in range(len(Constants.SUMMARY_MD_TAB_HEADER)): if i == 0: worksheet.merge_range(row, col, row + 1, col, Constants.CONFIGURATIONS_NAME_HEADER, Formats.Format_First_MD_Header(workbook, Color)) else: worksheet.merge_range(row, col + 1, row, col + len(PerformanceList), Constants.SUMMARY_MD_TAB_HEADER[i], Formats.Format_First_MD_Header(workbook, Color)) for j in range(len(PerformanceList)): worksheet.write(row + 1, col + 1 + j, PerformanceList[j], Formats.Format_First_MD_Header(workbook, Color)) col += len(PerformanceList) row = Row_Index + 14 col = Col_Index + 3 for i in range(Constants.CONFIGURATIONS_COUNT + 1): if i < Constants.CONFIGURATIONS_COUNT: for j in range(len(PerformanceList) * 2 + 1): if j == 0: worksheet.write(row + i, col + j, Constants.CONFIGURATIONS_LIST[i], Formats.Format_Cell(workbook)) elif j == 1: start_cell = Utils.GetColumnName(col + 1 + j)+ str(row + 1 + i) end_cell = Utils.GetColumnName(col + len(PerformanceList) - 1 + j) + str(row + 1 + i) formula_str = '=SUM({0}:{1})'.format(start_cell,end_cell) worksheet.write(row + i, col + j, formula_str, Formats.Format_Cell(workbook)) elif j <= len(PerformanceList): if TabName==Constants.SUMMARY_CONFIG_MD_TAB_NAME: p_col = Col_Index - 1 + j + len(PerformanceList) else: p_col = Col_Index - 1 + j formula_str = '={0}!{1}{2}'.format(Constants.MODULE_DETAILS_MD_TAB_NAME, Utils.GetColumnName(p_col), Constants.PERFORMANCE_ROW_INDEX_REFERENCE_TABLE + 1 + i) worksheet.write(row + i, col + j, formula_str, Formats.Format_Cell(workbook)) else: worksheet.write(row + i, col + j, "", Formats.Format_Cell(workbook)) else: for j in range(len(PerformanceList) * 2 + 1): if j == 0: worksheet.write(row + i, col + j, "TOTAL", Formats.Format_Cell(workbook)) else: formula_str = "=SUM({0}15:{0}18)".format(Utils.GetColumnName(col + j)) worksheet.write(row + i, col + j, formula_str, Formats.Format_Cell(workbook)) #### Create Current release PIE CHART formula_format = '${0}${1}' f_row = row f_col = col start_cat_cell =formula_format.format(Utils.GetColumnName(f_col+2),f_row) end_cat_cell =formula_format.format(Utils.GetColumnName(f_col+len(PerformanceList)),f_row) f_row+=Constants.CONFIGURATIONS_COUNT + 1 start_val_cell =formula_format.format(Utils.GetColumnName(f_col+2),f_row) end_val_cell =formula_format.format(Utils.GetColumnName(f_col+len(PerformanceList)),f_row) f_col += len(PerformanceList) # print start_cat_cell,end_cat_cell,start_val_cell,end_val_cell chartPie = workbook.add_chart( {'type': 'pie'}) # Configure the series. Note the use of the list syntax to define ranges: chartPie.add_series({ 'name': 'Pie data', 'data_labels': {'percentage': True}, 'categories': '=' + TabName + '!{0}:{1}'.format(start_cat_cell,end_cat_cell), 'values': '=' + TabName + '!{0}:{1}'.format(start_val_cell,end_val_cell), }) chartPie.set_size({'width': 400, 'height': 150}) # Add a title. chartPie.set_title({'name': Constants.CURRENT_RELEASE_HEADER}) # Set an Excel chart style. Colors with white outline and shadow. chartPie.set_style(10) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('F4', chartPie) #### Create Previous release PIE CHART s_row = row s_col = f_col start_cat_cell =formula_format.format(Utils.GetColumnName(s_col+2),s_row) end_cat_cell =formula_format.format(Utils.GetColumnName(s_col+len(PerformanceList)),s_row) s_row+=Constants.CONFIGURATIONS_COUNT + 1 start_val_cell =formula_format.format(Utils.GetColumnName(s_col+2),s_row) end_val_cell =formula_format.format(Utils.GetColumnName(s_col+len(PerformanceList)),s_row) # print start_cat_cell,end_cat_cell,start_val_cell,end_val_cell chartPie = workbook.add_chart( {'type': 'pie'}) # Configure the series. Note the use of the list syntax to define ranges: chartPie.add_series({ 'name': 'Pie data', 'data_labels': {'percentage': True}, 'categories': '=' + TabName+ '!{0}:{1}'.format(start_cat_cell,end_cat_cell), 'values': '=' + TabName + '!{0}:{1}'.format(start_val_cell,end_val_cell), }) chartPie.set_size({'width': 400, 'height': 150}) # Add a title. chartPie.set_title({'name': Constants.PREVIOUS_RELEASE_HEADER}) # Set an Excel chart style. Colors with white outline and shadow. chartPie.set_style(10) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('K4', chartPie) def Create_Summary_Tab(self, workbook, AppNames): Row_Index = 0 Col_Index = 0 worksheet = workbook.add_worksheet(Constants.SUMMARY_TAB_NAME) worksheet.set_column("E:AAA", Constants.CELL_WIDTH) worksheet.set_column("A:B", Constants.REPORT_DESCRIPTION_WIDTH) worksheet.set_column("D:D", Constants.REPORT_DESCRIPTION_WIDTH) # # TEST_REPORT_DESCRIPTION_TITLE worksheet.merge_range(Row_Index, Col_Index, Row_Index + 3, Col_Index + 1, Constants.TEST_REPORT_DESCRIPTION_TITLE, Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)) for i in range(len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST)): worksheet.write(Row_Index + 4 + i, Col_Index, Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST[i], Formats.Format_Cell(workbook)) worksheet.write(Row_Index + 4 + i, Col_Index + 1, "", Formats.Format_Cell(workbook)) # # Module Detail Table col = Col_Index for i in range(len(Constants.SUMMARY_TAB_HEADER)): if i == 0: worksheet.merge_range(Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST), col + 3, Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST) + 1, Col_Index + 3, Constants.SUMMARY_TAB_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) else: worksheet.merge_range(Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST), col, Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST), col + len(Constants.SUMMARY_TAB_SUB_HEADER) - 1, Constants.SUMMARY_TAB_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) for j in range(len(Constants.SUMMARY_TAB_SUB_HEADER)): worksheet.write(Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST) + 1, col + j, Constants.SUMMARY_TAB_SUB_HEADER[j], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) col += len(Constants.SUMMARY_TAB_SUB_HEADER) Write_Col = Col_Index + len(Constants.SUMMARY_TAB_SUB_HEADER) - 1 Write_Row = Row_Index + len(Constants.TEST_REPORT_DESCRIPTION_INDEX_LIST) + 2 col = Write_Col row = Write_Row for i in range(len(AppNames) + 1): Reference_SheetName = Constants.MODULE_DETAILS_TAB_NAME if i < len(AppNames): for j in range(2 * len(Constants.SUMMARY_TAB_SUB_HEADER) + 1): if j == 0: worksheet.write(Write_Row + i, Write_Col + j, AppNames[i], Formats.Format_Cell(workbook)) elif j <= len(Constants.SUMMARY_TAB_SUB_HEADER): # print Write_Row+i,Write_Col+j # =SUM(Module_Details!H3:H5) formula_str = '=SUM({0}!{1}{2}:{1}{3})'.format(Reference_SheetName, Utils.GetColumnName(3 + j), col, col + 2) worksheet.write(Write_Row + i, Write_Col + j, formula_str, Formats.Format_Cell(workbook)) # print formula_str else: worksheet.write(Write_Row + i, Write_Col + j, "", Formats.Format_Cell(workbook)) col += 3 else: for j in range(2 * len(Constants.SUMMARY_TAB_SUB_HEADER) + 1): if j == 0: worksheet.write(Write_Row + i, Write_Col + j, "TOTAL", Formats.Format_Cell(workbook)) else: formula_str = "=SUM({}{}:{}{})".format(Utils.GetColumnName(Write_Col + j), Write_Row + i - len(AppNames) + 1, Utils.GetColumnName(Write_Col + j), Write_Row + i) # print formula_str worksheet.write(Write_Row + i, Write_Col + j, formula_str, Formats.Format_Cell(workbook)) row = Write_Row + i #### Create Current release PIE CHART chartPie = workbook.add_chart({'type': 'pie'}) # Configure the series. Note the use of the list syntax to define ranges: chartPie.add_series({ 'name': 'Pie data', 'data_labels': {'percentage': True}, 'categories': '=' + Constants.SUMMARY_TAB_NAME + '!$F$14:$H$14', 'values': '=' + Constants.SUMMARY_TAB_NAME + '!$F$' + str(row + 1) + ':$H$' + str(row + 1), }) chartPie.set_size({'width': 420, 'height': 220}) # Add a title. chartPie.set_title({'name': Constants.CURRENT_RELEASE_HEADER}) # Set an Excel chart style. Colors with white outline and shadow. chartPie.set_style(10) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('F1', chartPie, {'x_offset': 1, 'y_offset': 10}) #### Create Previous release PIE CHART chartPie = workbook.add_chart({'type': 'pie'}) # Configure the series. Note the use of the list syntax to define ranges: chartPie.add_series({ 'name': 'Pie data', 'data_labels': {'percentage': True}, 'categories': '=' + Constants.SUMMARY_TAB_NAME + '!$J$14:$L$14', 'values': '=' + Constants.SUMMARY_TAB_NAME + '!$J$' + str(row + 1) + ':$L$' + str(row + 1), }) chartPie.set_size({'width': 420, 'height': 220}) # Add a title. chartPie.set_title({'name': Constants.PREVIOUS_RELEASE_HEADER}) # Set an Excel chart style. Colors with white outline and shadow. chartPie.set_style(10) # Insert the chart into the worksheet (with an offset). worksheet.insert_chart('J1', chartPie, {'x_offset': 1, 'y_offset': 10}) def Create_ModuleDetail_MD_Tab(self, workbook, AppNames): # print AppNames Row_Index = 0 Col_Index = 0 BundleName_list = Utils.GetBundlesList(self.bundleFiles_list) CurrentBundleName = BundleName_list[0] worksheet = workbook.add_worksheet(Constants.MODULE_DETAILS_MD_TAB_NAME) worksheet.set_column("A:AAA", Constants.CELL_WIDTH) Header_Col_Index = Col_Index # Application Name Header worksheet.merge_range(Row_Index, Header_Col_Index, Row_Index + 1, Header_Col_Index, Constants.APPLICATION_NAME_HEADER, Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) # Configuration Header Header_Col_Index += 1 worksheet.merge_range(Row_Index, Header_Col_Index, Row_Index + 1, Header_Col_Index, Constants.CONFIGURATIONS_HEADER, Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) # Bundle to Bundle Performance Result Comparison for Current Bundle Header Header_Col_Index += 1 worksheet.merge_range(Row_Index, Header_Col_Index, Row_Index, Header_Col_Index + len(Constants.PERFORMANCE_STATUS_HEADER) - 1, Constants.BUNDLE_TO_BUNDLE_COMPARISON_HEADER.format(CurrentBundleName), Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) for i in range(len(Constants.PERFORMANCE_STATUS_HEADER)): worksheet.write(Row_Index + 1, Header_Col_Index + i, Constants.PERFORMANCE_STATUS_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) Header_Col_Index += len(Constants.PERFORMANCE_STATUS_HEADER) # Config to Config Comparison Performance Result for Current Bundle Header worksheet.merge_range(Row_Index, Header_Col_Index, Row_Index, Header_Col_Index + len(Constants.PERFORMANCE_STATUS_RESULT_HEADER) - 1, Constants.CONFIG_TO_CONFIG_COMPARISON_HEADER.format(CurrentBundleName), Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) for i in range(len(Constants.PERFORMANCE_STATUS_RESULT_HEADER)): worksheet.write(Row_Index + 1, Header_Col_Index + i, Constants.PERFORMANCE_STATUS_RESULT_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) Header_Col_Index += len(Constants.PERFORMANCE_STATUS_RESULT_HEADER) # Bundle Performance header worksheet.merge_range(Row_Index, Header_Col_Index, Row_Index, Header_Col_Index + 1, Constants.BUNDLES_PERFORMANCE_TITLE, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_ORANGE)) for i in range(len(Constants.BUNDLES_PERFORMANCE_HEADER)): worksheet.write(Row_Index + 1, Header_Col_Index + i, Constants.BUNDLES_PERFORMANCE_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_ORANGE)) Header_Col_Index += i # Average Response Time self.BundleAverageResTimeHeader_Col(worksheet, workbook, Row_Index, Header_Col_Index + 1, (Constants.AVERAGE_RESULTS_HEADER + BundleName_list)) Write_Row_Index = Row_Index + 2 Write_Col_Index = Col_Index row = Write_Row_Index col = Write_Col_Index AppCount = 0 p_row = row + 1 p_col = 2 + len(Constants.PERFORMANCE_STATUS_HEADER) \ + len(Constants.PERFORMANCE_STATUS_RESULT_HEADER)\ + len(Constants.BUNDLES_PERFORMANCE_HEADER)\ +len(Constants.AVERAGE_RESULTS_HEADER) bundle_count = len(BundleName_list) Count = 0 for appName in AppNames: Updated_AppName = Utils.SupportedSheetName(appName, 11) AppCount += 1 SheetName_MD = Utils.SheetNameFormator(AppCount, Updated_AppName, "_MD") formula_str = Constants.HYPERLINK_FORMULA_STRING_FORMAT.format(SheetName_MD + "!A1", appName) worksheet.merge_range(row, col, row + Constants.CONFIGURATIONS_COUNT - 1, col, formula_str, Formats.Format_Hyperlink(workbook)) for i in range(len(Constants.CONFIGURATIONS_LIST)): # CONFIG worksheet.write(row + i, col + 1, Constants.CONFIGURATIONS_LIST[i], Formats.Format_Cell(workbook)) for j in range(len(Constants.PERFORMANCE_STATUS_HEADER) + len( Constants.PERFORMANCE_STATUS_RESULT_HEADER) + len(Constants.BUNDLES_PERFORMANCE_HEADER) + len( Constants.AVERAGE_RESULTS_HEADER + BundleName_list)): if j < len(Constants.PERFORMANCE_STATUS_HEADER + Constants.PERFORMANCE_STATUS_RESULT_HEADER): formula_str = '={}!{}{}'.format(SheetName_MD, Utils.GetColumnName(col + j + 2), (Constants.PERFORMANCE_ROW_INDEX_REFERENCE_TABLE + 1 + i)) elif j == len(Constants.PERFORMANCE_STATUS_HEADER + Constants.PERFORMANCE_STATUS_RESULT_HEADER): formula_str = Formulas.Formula_PerformanceComparedToAllReleases(p_row+Count,p_col,bundle_count,Constants.CONFIGURATIONS_COUNT,False)[0] elif j == len(Constants.PERFORMANCE_STATUS_HEADER + Constants.PERFORMANCE_STATUS_RESULT_HEADER) + 1: formula_str = Formulas.Formula_PerformanceComparedToLastRelease(p_row+Count,p_col) Count+=1 else: formula_str = '={}!{}{}'.format(SheetName_MD, Utils.GetColumnName(col + j), (Constants.PERFORMANCE_ROW_INDEX_REFERENCE_TABLE + 1 + i)) worksheet.write(row + i, col + j + 2, formula_str, Formats.Format_Cell(workbook)) row += Constants.CONFIGURATIONS_COUNT # # Performance Count Reference Table Col_Index_Refer = 0 Row_Index_Refer = Constants.PERFORMANCE_ROW_INDEX_REFERENCE_TABLE Read_Row_Index = 3 for i in range(Constants.CONFIGURATIONS_COUNT): worksheet.write(Row_Index_Refer + i, Col_Index_Refer, Constants.CONFIGURATIONS_LIST[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) Col_Index_Refer += 1 # BUNDLE_TO_BUNDLE_COMPARISON_HEADER worksheet.merge_range(Row_Index_Refer - 2, Col_Index_Refer, Row_Index_Refer - 2, Col_Index_Refer + len(Constants.PERFORMANCE_STATUS_HEADER) - 1, Constants.BUNDLE_TO_BUNDLE_COMPARISON_HEADER.format(Utils.GetBundlesList(self.bundleFiles_list)[0]), Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) for i in range(len(Constants.PERFORMANCE_STATUS_HEADER)): worksheet.write(Row_Index_Refer - 1, Col_Index_Refer + i, Constants.PERFORMANCE_STATUS_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) Col_Index_Refer += len(Constants.PERFORMANCE_STATUS_HEADER) # CONFIG_TO_CONFIG_COMPARISON_HEADER worksheet.merge_range(Row_Index_Refer - 2, Col_Index_Refer, Row_Index_Refer - 2, Col_Index_Refer + len(Constants.PERFORMANCE_STATUS_HEADER) - 2, Constants.CONFIG_TO_CONFIG_COMPARISON_HEADER.format(Utils.GetBundlesList(self.bundleFiles_list)[0]), Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) for i in range(len(Constants.PERFORMANCE_STATUS_RESULT_HEADER)): worksheet.write(Row_Index_Refer - 1, Col_Index_Refer + i, Constants.PERFORMANCE_STATUS_RESULT_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) Col_Index_Refer += len(Constants.PERFORMANCE_STATUS_RESULT_HEADER) # Average Response Time for All Bundles worksheet.merge_range(Row_Index_Refer - 2, Col_Index_Refer, Row_Index_Refer - 2, Col_Index_Refer + len(BundleName_list)+len(Constants.AVERAGE_RESULTS_HEADER) - 1, Constants.BUNDLES_AVERAGE_RESPONSE_TIME, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) bundles_results_list = Constants.AVERAGE_RESULTS_HEADER+BundleName_list for i in range(len(bundles_results_list)): worksheet.write(Row_Index_Refer - 1, Col_Index_Refer + i, bundles_results_list[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) data_len = len(Constants.PERFORMANCE_STATUS_HEADER) + len(Constants.PERFORMANCE_STATUS_RESULT_HEADER) + len( bundles_results_list) Col_Index_Refer = 1 # print data_len for i in range(Constants.CONFIGURATIONS_COUNT): for j in range(data_len): if j < data_len-len(bundles_results_list): formula_str = Formulas.Formula_BundleWiseAverage(Utils.GetColumnName(Col_Index_Refer + j + 1), Read_Row_Index + i, len(AppNames), Constants.CONFIGURATIONS_COUNT, Constants.SUM_KEY) worksheet.write(Row_Index_Refer + i, Col_Index_Refer + j, formula_str, Formats.Format_Cell(workbook)) elif j >= data_len-len(bundles_results_list) and j < data_len-len(bundles_results_list)+2: formula_str = Formulas.Formula_BundleWiseAverage(Utils.GetColumnName(Col_Index_Refer + j + 3), Read_Row_Index + i, len(AppNames), Constants.CONFIGURATIONS_COUNT, Constants.SUM_KEY) worksheet.write(Row_Index_Refer + i, Col_Index_Refer + j, formula_str, Formats.Format_Cell(workbook)) else: formula_str = Formulas.Formula_BundleWiseAverage(Utils.GetColumnName(Col_Index_Refer + j + 3), Read_Row_Index + i, len(AppNames), Constants.CONFIGURATIONS_COUNT, Constants.AVERAGE_KEY) worksheet.write(Row_Index_Refer + i, Col_Index_Refer + j, formula_str, Formats.Format_Cell(workbook)) def Create_ApplicationMD_Tab(self, workbook, AppNames, AppsDict, df_template,Max_RunCount): AppCount = 0 for appName in AppNames: # for appName, tc_count in AppsDict.items(): tc_count = AppsDict.get(appName) AppCount += 1 Updated_AppName = Utils.SupportedSheetName(appName, 11) df_sorted = df_template.loc[[appName], :] df_app_list = self.RearrangeDataFrame(appName,Max_RunCount) run_count = Max_RunCount # print df_app_list SheetName_MD = Utils.SheetNameFormator(AppCount, Updated_AppName, "_MD") SheetName_APP = Utils.SheetNameFormator(AppCount, Updated_AppName) # # APP TAB CREATION self.Create_TAB(workbook, tc_count, df_sorted, df_app_list, run_count, Constants.TEST_CASE_DESCRIPTION_COUNT, SheetName_APP, Constants.TEST_CASE_DESCRIPTION_LIST, Constants.APP_TAB_HEADER, Constants.TC_DESCRIPTION_WIDTH) # # MD TAB CREATION self.Create_TAB(workbook, tc_count, df_sorted, df_app_list, run_count, Constants.CONFIGURATIONS_COUNT, SheetName_MD, Constants.CONFIGURATIONS_LIST, Constants.MD_TAB_HEADER) # break def Create_ModuleDetail_Tab(self, workbook, AppNames): col_index = 0 row_index = 0 ref_col_index = col_index ref_row_index = row_index worksheet = workbook.add_worksheet(Constants.MODULE_DETAILS_TAB_NAME) worksheet.set_column("A:AAA", Constants.CELL_WIDTH) len_ModuleDetailTabHeader = len(Constants.MODULE_DETAILS_TAB_HEADER) for i in range(len_ModuleDetailTabHeader - 1): worksheet.merge_range(row_index, ref_col_index, row_index + 1, ref_col_index, Constants.MODULE_DETAILS_TAB_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)) ref_col_index += 1 worksheet.merge_range(row_index, ref_col_index, row_index, ref_col_index + 2, Constants.MODULE_DETAILS_TAB_HEADER[-1], Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)) result_index_list = Constants.TEST_LEVEL_INDEX_LIST[1:-1] for i in range(len(result_index_list)): worksheet.write(row_index + 1, ref_col_index + i, result_index_list[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)) write_row_index = row_index + 2 for i in range(len(AppNames)): SheetName_APP = Utils.SheetNameFormator(i + 1, Utils.SupportedSheetName(AppNames[i], 11)) col_name = 9 for j in range(len(Constants.TEST_LEVEL_HEADER_LIST)): worksheet.write(write_row_index + j, col_index + 1, Constants.TEST_LEVEL_HEADER_LIST[j], Formats.Format_Cell(workbook)) worksheet.write(write_row_index + j, col_index + 2, "", Formats.Format_Cell(workbook)) worksheet.write(write_row_index + j, col_index + 3, "", Formats.Format_Cell(workbook)) # TOTAL formula_str = "={}!{}7".format(SheetName_APP, Utils.GetColumnName(col_name + j)) worksheet.write(write_row_index + j, col_index + 4, formula_str, Formats.Format_Cell(workbook)) # PASS formula_str = "={}!{}4".format(SheetName_APP, Utils.GetColumnName(col_name + j)) worksheet.write(write_row_index + j, col_index + 5, formula_str, Formats.Format_Cell(workbook)) # FAIL formula_str = "={}!{}5".format(SheetName_APP, Utils.GetColumnName(col_name + j)) worksheet.write(write_row_index + j, col_index + 6, formula_str, Formats.Format_Cell(workbook)) # OPEN formula_str = "={}!{}6".format(SheetName_APP, Utils.GetColumnName(col_name + j)) worksheet.write(write_row_index + j, col_index + 7, formula_str, Formats.Format_Cell(workbook)) # HYPERLINK FOR APPNAME formula_str = Constants.HYPERLINK_FORMULA_STRING_FORMAT.format(SheetName_APP + "!A1", AppNames[i]) worksheet.merge_range(write_row_index, col_index, write_row_index + 2, col_index, formula_str, Formats.Format_Hyperlink(workbook)) write_row_index += 3 def RearrangeDataFrame(self, appName,Max_RunCount): first_time_flag = True df_FinalFrames_list = [] current_run_count = 0 for df in self.DF_Bundles_List: df_sorted = df.loc[[appName], :] if first_time_flag: current_run_count = Utils.CalculateRunCount(df_sorted) dataframe_list = [] for i in range(len(df_sorted)): row = list(df_sorted.iloc[i, :])[Constants.BUNDLE_FIXED_HEADER_COUNT:] # print appName,len(row) split_list_count = Constants.ISSUE_HEADER_COUNT + Max_RunCount temp = [row[i:i + split_list_count] for i in xrange(0, len(row), split_list_count)] if first_time_flag: dataframe_list.append(pd.DataFrame(zip(*temp)).transpose()) else: # pd.DataFrame(zip(*temp)).transpose() dataframe_list.append(pd.DataFrame(zip(*temp)).transpose().iloc[:, [-3]]) # dataframe_list.append(pd.DataFrame(zip(*temp)).transpose()) first_time_flag = False finalFrame = pd.concat(dataframe_list, ignore_index=False) df_FinalFrames_list.append(finalFrame) return df_FinalFrames_list def Create_TAB(self, workbook, tc_count, df_sorted, df_app_list, run_count, ConfigPerTC_Count, SheetName, Test_Decription_list, header, DescWidth=Constants.CELL_WIDTH): worksheet = workbook.add_worksheet(SheetName) worksheet.set_column("A:AAA", Constants.CELL_WIDTH) worksheet.set_column("E:E", DescWidth) worksheet.set_column("G:G", DescWidth) Col_Index = 0 Row_Index = 0 Row_Index_Write = 2 self.Header_MD(worksheet, workbook, header, Row_Index, Col_Index) # r = 0; c = 0; self.TestCaseNumber_Col(worksheet, workbook, tc_count, ConfigPerTC_Count, Row_Index_Write, Col_Index) # r = 2; c = 0 Col_Index += 1 self.TestCategory_Col(worksheet, workbook, df_sorted.iloc[:, 1], ConfigPerTC_Count, Row_Index_Write, Col_Index) # r = 2; c = 1 Col_Index += 1 self.TestCaseID_Col(worksheet, workbook, df_sorted.iloc[:, 0], ConfigPerTC_Count, Row_Index_Write, Col_Index) # r = 2;c = 2 Col_Index += 1 self.TestType_Col(worksheet, workbook, df_sorted.iloc[:, 2], ConfigPerTC_Count, Row_Index_Write, Col_Index) # r = 2;c = 3 Col_Index += 1 self.Config_Col(worksheet, workbook, tc_count, Test_Decription_list, Row_Index_Write, Col_Index) # r = 2;c = 4 Col_Index += 1 # print "df_app_list",len(df_app_list) # print i,Utils.GetColumnName(i) bundles_List = Utils.GetBundlesList(self.bundleFiles_list) BundleCount = len(bundles_List) currentBundle_Name = bundles_List[0] df_currentBundle = df_app_list[0] if "_MD" in SheetName: Col_Index = self.PerformanceHeader_Col(worksheet, workbook, Row_Index, Col_Index, currentBundle_Name, tc_count, run_count, BundleCount, df_currentBundle) self.MeasurementsAndAvgResponseTime(worksheet, workbook, Row_Index_Write, Col_Index, df_app_list, run_count) Col_Index = self.MeasurementHeader_Col(worksheet, workbook, Row_Index, Col_Index, currentBundle_Name, run_count) Col_Index = self.BundleAverageResTimeHeader_Col(worksheet, workbook, Row_Index, Col_Index, bundles_List) self.PerformanceCountReferenceTable(worksheet, workbook, Row_Index_Write, Col_Index, tc_count, bundles_List,run_count) else: result_list = self.TCResult_list(Row_Index_Write, SheetName, tc_count) # print len(result_list) start_cell = (Utils.GetColumnName(Col_Index)+str(Row_Index_Write + 1)) end_cell = (Utils.GetColumnName(Col_Index)+str(Row_Index_Write + 1+len(result_list))) cell_range = "{0}:{1}".format(start_cell,end_cell) # print cell_range for i in range(len(result_list)): worksheet.write(Row_Index_Write + i, Col_Index, result_list[i], Formats.Format_Cell(workbook)) worksheet.write(Row_Index_Write + i, Col_Index + 1, " ", Formats.Format_Cell(workbook)) worksheet.conditional_format(cell_range, {'type': 'cell', 'criteria': 'equal to', 'value': 'FAIL', 'format': Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_ORANGE)}) worksheet.conditional_format(cell_range, {'type': 'cell', 'criteria': 'equal to', 'value': 'PASS', 'format': Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)}) worksheet.conditional_format(cell_range, {'type': 'cell', 'criteria': 'equal to', 'value': 'OPEN', 'format': Formats.Format_First_MD_Header(workbook, Constants.COLOR_NAVY_BLUE)}) TestType_Dict = Utils.AppsNameWithTestCount(list(df_sorted.iloc[:, 1])) self.ResultReferenceTable(worksheet, workbook, Row_Index_Write, Col_Index, TestType_Dict) def ResultReferenceTable(self, worksheet, workbook, Row_Index_Write, Col_Index, TestType_Dict): Read_Col_Index = Col_Index Read_Row_Index = Row_Index_Write write_col_index = Col_Index + 3 for i in range(len(Constants.TEST_LEVEL_INDEX_LIST)): worksheet.write(Row_Index_Write + i, write_col_index, Constants.TEST_LEVEL_INDEX_LIST[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) write_col_index += 1 for i in range(len(Constants.TEST_LEVEL_HEADER_LIST)): worksheet.write(Row_Index_Write, write_col_index + i, Constants.TEST_LEVEL_HEADER_LIST[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) for i in range(len(Constants.TEST_LEVEL_HEADER_LIST)): Read_Col_Name = Utils.GetColumnName(Read_Col_Index) # print Read_Row_Index TC_count = 0 result = Constants.TEST_LEVEL_INDEX_LIST[1:-1] for j in range(len(result)): status = result[j] row = Row_Index_Write + 1 + j col = write_col_index + i if Constants.TEST_LEVEL_HEADER_LIST[i] in TestType_Dict.viewkeys(): # print Constants.TEST_LEVEL_HEADER_LIST[i] TC_count = TestType_Dict[Constants.TEST_LEVEL_HEADER_LIST[i]] RowCount = TC_count * Constants.TEST_CASE_DESCRIPTION_COUNT startRow = Read_Col_Name + str(Read_Row_Index + 1) endRow = Read_Col_Name + str(Read_Row_Index + RowCount) # print startRow,endRow formula_str = '=COUNTIF({0}:{1}, "{2}")'.format(startRow, endRow, status) # print row,col worksheet.write(row, col, formula_str, Formats.Format_Cell(workbook)) # print formula_str else: TC_count = 0 # print TC_count # print row, col worksheet.write(row, col, TC_count, Formats.Format_Cell(workbook)) formula_str = '=SUM({0}4:{0}6)'.format(Utils.GetColumnName(write_col_index + i)) worksheet.write(row + 1, write_col_index + i, formula_str, Formats.Format_Cell(workbook)) # break def PerformanceCountReferenceTable(self, worksheet, workbook, Row_Index_Write, Col_Index, tc_count, bundles_List,run_count): Col_Index_Refer = 0 Row_Index_Refer = Constants.PERFORMANCE_ROW_INDEX_REFERENCE_TABLE d_col = Col_Index - 12 g_col = Col_Index - 11 c_col = Col_Index - 3 BundleCount = len(bundles_List) for i in range(Constants.CONFIGURATIONS_COUNT): worksheet.write(Row_Index_Refer + i, Col_Index_Refer, Constants.CONFIGURATIONS_LIST[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) Col_Index_Refer += 1 worksheet.merge_range(Row_Index_Refer - 2, Col_Index_Refer, Row_Index_Refer - 1, Col_Index_Refer, Constants.TOTAL_TEST_CASES, Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) for i in range(Constants.CONFIGURATIONS_COUNT): worksheet.write(Row_Index_Refer + i, Col_Index_Refer, tc_count, Formats.Format_Cell(workbook)) Col_Index_Refer += 1 worksheet.merge_range(Row_Index_Refer - 2, Col_Index_Refer, Row_Index_Refer - 2, Col_Index_Refer + len(Constants.PERFORMANCE_STATUS_HEADER) - 1, Constants.BUNDLE_TO_BUNDLE_COMPARISON_HEADER.format( Utils.GetBundlesList(self.bundleFiles_list)[0]), Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) e_col = Col_Index_Refer + len(Constants.PERFORMANCE_STATUS_HEADER) worksheet.merge_range(Row_Index_Refer - 2, e_col, Row_Index_Refer - 2, e_col + len(Constants.PERFORMANCE_STATUS_RESULT_HEADER) - 1, Constants.CONFIG_TO_CONFIG_COMPARISON_HEADER.format( Utils.GetBundlesList(self.bundleFiles_list)[0]), Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) for i in range(len(Constants.PERFORMANCE_STATUS_RESULT_HEADER)): worksheet.write(Row_Index_Refer - 1, e_col + i, Constants.PERFORMANCE_STATUS_RESULT_HEADER[i] + " Count", Formats.Format_First_MD_Header(workbook, Constants.COLOR_GOLD)) last_Col_index = 0 c2c_col = Constants.MD_TAB_HEADER_COUNT+1 for j in range(len(Constants.PERFORMANCE_STATUS_RESULT_HEADER)): for i in range(Constants.CONFIGURATIONS_COUNT): formula_str = Formulas.Formula_PerformanceWiseCount(Row_Index_Write + 1 + i, Utils.GetColumnName(c2c_col), tc_count, Constants.CONFIGURATIONS_COUNT, Constants.PERFORMANCE_STATUS_RESULT_HEADER_DICT.get( Constants.PERFORMANCE_STATUS_RESULT_HEADER[j])) worksheet.write(Row_Index_Refer + i, e_col + j, formula_str, Formats.Format_Cell(workbook)) last_Col_index = e_col + j worksheet.write(Constants.NA_ROW_INDEX_REFERENCE-1, 0, "NA", Formats.Format_Cell(workbook)) e_col = Col_Index_Refer + len(Constants.PERFORMANCE_STATUS_HEADER) + len( Constants.PERFORMANCE_STATUS_RESULT_HEADER) worksheet.merge_range(Row_Index_Refer - 2, e_col, Row_Index_Refer - 2, e_col + len(self.bundleFiles_list) + len(Constants.AVERAGE_RESULTS_HEADER) - 1, Constants.BUNDLES_AVERAGE_RESPONSE_TIME, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) last_Col_index = 0 b2b_col = Constants.MD_TAB_HEADER_COUNT for j in range(len(Constants.PERFORMANCE_STATUS_HEADER)): for i in range(Constants.CONFIGURATIONS_COUNT): formula_str = Formulas.Formula_PerformanceWiseCount(Row_Index_Write + 1 + i, Utils.GetColumnName(b2b_col), tc_count, Constants.CONFIGURATIONS_COUNT, Constants.PERFORMANCE_STATUS_HEADER_DICT.get( Constants.PERFORMANCE_STATUS_HEADER[j])) worksheet.write(Row_Index_Refer + i, Col_Index_Refer + j, formula_str, Formats.Format_Cell(workbook)) last_Col_index = Col_Index_Refer + j for i in range(len(Constants.PERFORMANCE_STATUS_HEADER)): worksheet.write(Row_Index_Refer - 1, Col_Index_Refer + i, Constants.PERFORMANCE_STATUS_HEADER[i] + " Count", Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) Col_Index_Refer += len(Constants.PERFORMANCE_STATUS_HEADER) for i in range(len(Constants.AVERAGE_RESULTS_HEADER)): worksheet.write(Row_Index_Refer - 1, e_col + i, Constants.AVERAGE_RESULTS_HEADER[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) a_col = Constants.PERFORMANCE_HEADER_COUNT + Constants.MD_TAB_HEADER_COUNT + run_count for i in range(Constants.CONFIGURATIONS_COUNT): formula_str = Formulas.Formula_TestCasesComparedForAverageResults(Row_Index_Write + 1 + i, a_col, BundleCount, Constants.CONFIGURATIONS_COUNT, tc_count) worksheet.write(Row_Index_Refer + i, e_col, formula_str, Formats.Format_Cell(workbook)) # print formula_str formula_str = "={}-{}".format(tc_count, Utils.GetColumnName(e_col) + str(Row_Index_Refer + 1 + i)) worksheet.write(Row_Index_Refer + i, e_col + 1, formula_str, Formats.Format_Cell(workbook)) e_col = e_col + len(Constants.AVERAGE_RESULTS_HEADER) for i in range(BundleCount): worksheet.write(Row_Index_Refer - 1, e_col + i, bundles_List[i], Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) c_col = Constants.PERFORMANCE_HEADER_COUNT + Constants.MD_TAB_HEADER_COUNT + run_count for i in range(Constants.CONFIGURATIONS_COUNT): for j in range(BundleCount): formula_str = Formulas.Formula_Average(Row_Index_Write + 1 + i, c_col, c_col + j, BundleCount, Constants.CONFIGURATIONS_COUNT, tc_count) worksheet.write(Row_Index_Refer + i, e_col + j, formula_str, Formats.Format_Cell(workbook)) def TCResult_list(self, Row_Index_Write, SheetName, tc_count): SheetName = SheetName + "_MD" result_list = [] for i in range(tc_count): result_list += Formulas.Formula_TestCaseResult(Row_Index_Write+1, SheetName) Row_Index_Write += Constants.CONFIGURATIONS_COUNT return result_list def MeasurementsAndAvgResponseTime(self, worksheet, workbook, Row_Index_Write, Col_Index, df_app_list, run_count): first = True c = 0 all_data_list = [] for df in df_app_list: list_df = df.iloc[:, :run_count].fillna("NA").values.tolist() if first: first = False for i in range(len(list_df)): for j in range(len(list_df[i])): worksheet.write(Row_Index_Write + i, Col_Index + j, list_df[i][j], Formats.Format_Cell(workbook)) df = df.iloc[:, [run_count]].fillna("NA") list_df = df.iloc[:, :].fillna("NA").values.tolist() all_data_list.append(list_df) for i in range(len(list_df)): for j in range(len(list_df[i])): worksheet.write(Row_Index_Write + i, Col_Index + run_count + c, list_df[i][j], Formats.Format_Cell(workbook)) c += 1 def AppFreezeAndFirstMeasurement_list(self, df_CurrentBundle): return df_CurrentBundle.iloc[:, -2:].fillna("NA").values.tolist() def PerformanceComparedBetweenAllConfiguration_list(self, Row_Index_Write, Col_Index, RunCount, TC_Count): Row_Index_Write += 1 str_list = [] for i in range(TC_Count): str_list += Formulas.Formula_PerformanceComparedBetweenAllConfiguration( Utils.GetColumnName(Col_Index + Constants.PERFORMANCE_HEADER_COUNT + RunCount), Row_Index_Write, Constants.CONFIGURATIONS_COUNT) Row_Index_Write += Constants.CONFIGURATIONS_COUNT # print str_list return str_list def performanceCompareToAllReleases_list(self, Row_index, Col_index, TC_Count, RunCount, BundleCount): PCR_List = [] Row_index += 1 Col_index = Col_index + Constants.PERFORMANCE_HEADER_COUNT + RunCount for i in range(TC_Count): PCR_List += Formulas.Formula_PerformanceComparedToAllReleases(Row_index, Col_index, BundleCount, Constants.CONFIGURATIONS_COUNT) Row_index += Constants.CONFIGURATIONS_COUNT return PCR_List def BundleAverageResTimeHeader_Col(self, worksheet, workbook, Row_Index, Col_Index, bundles_List): worksheet.merge_range(Row_Index, Col_Index, Row_Index, Col_Index + len(bundles_List) - 1, Constants.BUNDLES_AVERAGE_RESPONSE_TIME, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) for bundle in bundles_List: worksheet.write(Row_Index + 1, Col_Index, bundle, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_GREEN)) Col_Index += 1 return Col_Index def MeasurementHeader_Col(self, worksheet, workbook, Row_Index, Col_Index, currentBundle_Name, run_count): worksheet.merge_range(Row_Index, Col_Index, Row_Index, Col_Index + run_count - 1, currentBundle_Name, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_ORANGE)) for i in range(run_count): worksheet.write(Row_Index + 1, Col_Index, Constants.MEASUREMENT_STRING_FORMAT % (i + 1), Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_ORANGE)) Col_Index += 1 return Col_Index def PerformanceHeader_Col(self, worksheet, workbook, Row_Index, Col_Index, currentBundle_Name, tc_count, RunCount, BundleCount, DF_CurrentBundle): Reference_Index = Col_Index # print "Reference_Index",Reference_Index Row_Index_Write = Row_Index + 2 ###### PerformanceComparedToAllReleases PCR_list = self.performanceCompareToAllReleases_list(Row_Index_Write, Col_Index, tc_count, RunCount, BundleCount) # print PCR_list ######## PerformanceComparedBetweenAllConfiguration PCC_list = self.PerformanceComparedBetweenAllConfiguration_list(Row_Index_Write, Col_Index, RunCount, tc_count) ######## AppFreezeAndFirstMeasurement AFFM_list = self.AppFreezeAndFirstMeasurement_list(DF_CurrentBundle) dummyList = zip(PCR_list, PCC_list) for i in range(len(dummyList)): for j in range(len(dummyList[i])): worksheet.write(Row_Index_Write + i, Reference_Index + j, dummyList[i][j], Formats.Format_Cell(workbook)) Reference_Index += 2 for i in range(len(AFFM_list)): for j in range(len(AFFM_list[i])+1): if j < 2: worksheet.write(Row_Index_Write + i, Reference_Index + j, AFFM_list[i][j], Formats.Format_Cell(workbook)) else: e_col = len(Constants.PERFORMANCE_HEADER_LIST) + RunCount + Col_Index formula_str = Formulas.Formula_ImprovementPercentageComparedToCurrentRelease(Row_Index_Write+1+i,e_col) worksheet.write(Row_Index_Write + i, Reference_Index + j,formula_str , Formats.Format_Percentage(workbook)) worksheet.merge_range(Row_Index, Col_Index, Row_Index, Col_Index + Constants.PERFORMANCE_HEADER_COUNT - 1, currentBundle_Name, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) for performanceTitle in Constants.PERFORMANCE_HEADER_LIST: worksheet.write(Row_Index + 1, Col_Index, performanceTitle, Formats.Format_First_MD_Header(workbook, Constants.COLOR_LIGHT_BLUE)) Col_Index += 1 return Col_Index def Header_MD(self, worksheet, workbook, header_list, r, c): for v in range(len(header_list)): worksheet.merge_range(0, c, 1, c, header_list[v], Formats.Format_First_MD_Header(workbook, Constants.COLOR_GREY)) c += 1 def TestCaseNumber_Col(self, worksheet, workbook, tc_count, count, r, c): for v in range(tc_count * count): worksheet.write(r, 0, v + 1, Formats.Format_Cell(workbook)) r += 1 def TestCategory_Col(self, worksheet, workbook, category_list, ConfigPerTC_Count, r, c): # 0 1 2 3 # "Test Case ID" "Test Case Level" "Test Case Category" "Test Case Description" # r = 2; c = 1 for k, v in Utils.AppsNameWithTestCount(category_list).items(): # print k, v worksheet.merge_range(r, c, r + (v * ConfigPerTC_Count) - 1, c, k, Formats.Format_Cell(workbook)) r = r + (v * ConfigPerTC_Count) def TestCaseID_Col(self, worksheet, workbook, TestcaseId_list, ConfigPerTC_Count, r, c): # df_sorted.iloc[:, 0] # r = 2;c = 2 for v in TestcaseId_list: # print v worksheet.merge_range(r, c, r + (1 * ConfigPerTC_Count) - 1, c, v, Formats.Format_Cell(workbook)) r = r + (1 * ConfigPerTC_Count) def TestType_Col(self, worksheet, workbook, testType_list, ConfigPerTC_Count, r, c): for v in testType_list: # print v worksheet.merge_range(r, c, r + ConfigPerTC_Count - 1, c, v, Formats.Format_Cell(workbook)) r = r + ConfigPerTC_Count def Config_Col(self, worksheet, workbook, tc_count, Config_list, r, c): for v in range(tc_count): for config in Config_list: worksheet.write(r, c, config, Formats.Format_Cell(workbook)) r += 1 def list_to_merge_cells(self, worksheet, targetList, TargetColumn, TestCaseId_List=[]): if TestCaseId_List: set_list = set(TestCaseId_List[1:]) for item in set_list: first_index = TestCaseId_List.index(item) last_index = len(TestCaseId_List) - 1 - TestCaseId_List[::-1].index(item) worksheet.merge_range(TargetColumn + str(first_index + 2) + ':' + TargetColumn + str(last_index + 2), targetList[first_index]) else: set_list = set(targetList[1:]) for item in set_list: first_index = targetList.index(item) last_index = len(targetList) - 1 - targetList[::-1].index(item) worksheet.merge_range(TargetColumn + str(first_index + 2) + ':' + TargetColumn + str(last_index + 2), targetList[first_index]) # logging.debug( first_index, last_index) def CreateApplicationMDTab(self): logging.debug("Creating Application MD tabs for Final KPI Report") # self.__Utils.ChangeDirPath(self.REPORT_PATH) filePath = os.path.abspath(self.__Const.FINAL_REOPRT_FILE) logging.debug(filePath) writer =
pd.ExcelWriter(filePath, engine='xlsxwriter')
pandas.ExcelWriter
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'chengzhi' """ tqsdk.ta 模块包含了一批常用的技术指标计算函数 """ import numpy as np import pandas as pd import numba from tqsdk import ta_func def ATR(df, n): """平均真实波幅""" new_df = pd.DataFrame() pre_close = df["close"].shift(1) new_df["tr"] = np.where(df["high"] - df["low"] > np.absolute(pre_close - df["high"]), np.where(df["high"] - df["low"] > np.absolute(pre_close - df["low"]), df["high"] - df["low"], np.absolute(pre_close - df["low"])), np.where(np.absolute(pre_close - df["high"]) > np.absolute(pre_close - df["low"]), np.absolute(pre_close - df["high"]), np.absolute(pre_close - df["low"]))) new_df["atr"] = ta_func.ma(new_df["tr"], n) return new_df def BIAS(df, n): """乖离率""" ma1 = ta_func.ma(df["close"], n) new_df = pd.DataFrame(data=list((df["close"] - ma1) / ma1 * 100), columns=["bias"]) return new_df def BOLL(df, n, p): """布林线""" new_df = pd.DataFrame() mid = ta_func.ma(df["close"], n) std = df["close"].rolling(n).std() new_df["mid"] = mid new_df["top"] = mid + p * std new_df["bottom"] = mid - p * std return new_df def DMI(df, n, m): """动向指标""" new_df = pd.DataFrame() new_df["atr"] = ATR(df, n)["atr"] pre_high = df["high"].shift(1) pre_low = df["low"].shift(1) hd = df["high"] - pre_high ld = pre_low - df["low"] admp = ta_func.ma(pd.Series(np.where((hd > 0) & (hd > ld), hd, 0)), n) admm = ta_func.ma(pd.Series(np.where((ld > 0) & (ld > hd), ld, 0)), n) new_df["pdi"] = pd.Series(np.where(new_df["atr"] > 0, admp / new_df["atr"] * 100, np.NaN)).ffill() new_df["mdi"] = pd.Series(np.where(new_df["atr"] > 0, admm / new_df["atr"] * 100, np.NaN)).ffill() ad = pd.Series(np.absolute(new_df["mdi"] - new_df["pdi"]) / (new_df["mdi"] + new_df["pdi"]) * 100) new_df["adx"] = ta_func.ma(ad, m) new_df["adxr"] = (new_df["adx"] + new_df["adx"].shift(m)) / 2 return new_df def KDJ(df, n, m1, m2): """随机指标""" new_df = pd.DataFrame() hv = df["high"].rolling(n).max() lv = df["low"].rolling(n).min() rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - lv) / (hv - lv) * 100)) new_df["k"] = ta_func.sma(rsv, m1, 1) new_df["d"] = ta_func.sma(new_df["k"], m2, 1) new_df["j"] = 3 * new_df["k"] - 2 * new_df["d"] return new_df def MACD(df, short, long, m): """异同移动平均线""" new_df = pd.DataFrame() eshort = ta_func.ema(df["close"], short) elong = ta_func.ema(df["close"], long) new_df["diff"] = eshort - elong new_df["dea"] = ta_func.ema(new_df["diff"], m) new_df["bar"] = 2 * (new_df["diff"] - new_df["dea"]) return new_df @numba.njit def _sar(open, high, low, close, range_high, range_low, n, step, maximum): sar = np.empty_like(close) sar[:n] = np.NAN af = 0 ep = 0 trend = 1 if (close[n] - open[n]) > 0 else -1 if trend == 1: sar[n] = min(range_low[n - 2], low[n - 1]) else: sar[n] = max(range_high[n - 2], high[n - 1]) for i in range(n, len(sar)): if i != n: if abs(trend) > 1: sar[i] = sar[i - 1] + af * (ep - sar[i - 1]) elif trend == 1: sar[i] = min(range_low[i - 2], low[i - 1]) elif trend == -1: sar[i] = max(range_high[i - 2], high[i - 1]) if trend > 0: if sar[i - 1] > low[i]: ep = low[i] af = step trend = -1 else: ep = high[i] af = min(af + step, maximum) if ep > range_high[i - 1] else af trend += 1 else: if sar[i - 1] < high[i]: ep = high[i] af = step trend = 1 else: ep = low[i] af = min(af + step, maximum) if ep < range_low[i - 1] else af trend -= 1 return sar def SAR(df, n, step, max): """抛物转向""" range_high = df["high"].rolling(n - 1).max() range_low = df["low"].rolling(n - 1).min() sar = _sar(df["open"].values, df["high"].values, df["low"].values, df["close"].values, range_high.values, range_low.values, n, step, max) new_df = pd.DataFrame(data=sar, columns=["sar"]) return new_df def WR(df, n): """威廉指标""" hn = df["high"].rolling(n).max() ln = df["low"].rolling(n).min() new_df = pd.DataFrame(data=list((hn - df["close"]) / (hn - ln) * (-100)), columns=["wr"]) return new_df def RSI(df, n): """相对强弱指标""" lc = df["close"].shift(1) rsi = ta_func.sma(pd.Series(np.where(df["close"] - lc > 0, df["close"] - lc, 0)), n, 1) / \ ta_func.sma(np.absolute(df["close"] - lc), n, 1) * 100 new_df = pd.DataFrame(data=rsi, columns=["rsi"]) return new_df def ASI(df): """振动升降指标""" lc = df["close"].shift(1) # 上一交易日的收盘价 aa = np.absolute(df["high"] - lc) bb = np.absolute(df["low"] - lc) cc = np.absolute(df["high"] - df["low"].shift(1)) dd = np.absolute(lc - df["open"].shift(1)) r = np.where((aa > bb) & (aa > cc), aa + bb / 2 + dd / 4, np.where((bb > cc) & (bb > aa), bb + aa / 2 + dd / 4, cc + dd / 4)) x = df["close"] - lc + (df["close"] - df["open"]) / 2 + lc - df["open"].shift(1) si = np.where(r == 0, 0, 16 * x / r * np.where(aa > bb, aa, bb)) new_df = pd.DataFrame(data=list(pd.Series(si).cumsum()), columns=["asi"]) return new_df def VR(df, n): """VR 容量比率""" lc = df["close"].shift(1) vr = pd.Series(np.where(df["close"] > lc, df["volume"], 0)).rolling(n).sum() / pd.Series( np.where(df["close"] <= lc, df["volume"], 0)).rolling(n).sum() * 100 new_df = pd.DataFrame(data=list(vr), columns=["vr"]) return new_df def ARBR(df, n): """人气意愿指标""" new_df =
pd.DataFrame()
pandas.DataFrame
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Tests for PySMO's family of SurrogateTrainer (PysmoPolyTrainer, PysmoRBFTrainer and PysmoKrigingTrainer) """ import pytest import numpy as np import pandas as pd import io import os from math import sin, cos, log, exp from pathlib import Path from io import StringIO import re import pyomo as pyo from pyomo.environ import ConcreteModel, Var, Constraint from pyomo.common.tempfiles import TempfileManager from idaes.core.surrogate.pysmo import ( polynomial_regression as pr, radial_basis_function as rbf, kriging as krg, ) from idaes.core.surrogate.pysmo_surrogate import ( PysmoTrainer, PysmoPolyTrainer, PysmoRBFTrainer, PysmoKrigingTrainer, PysmoSurrogate, PysmoSurrogateTrainingResult, PysmoTrainedSurrogate, ) from idaes.core.surrogate.surrogate_block import SurrogateBlock from idaes.core.util.exceptions import ConfigurationError from idaes.core.surrogate.metrics import compute_fit_metrics dirpath = Path(__file__).parent.resolve() # String representation of json output for testing jstring_poly_1 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-75.26111111111476], [-8.815277777775934], [18.81527777777826], [-2.2556956302821618e-13]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 3.772981926886132e-13, "MSE": 1.5772926701095834e-25, "R2": 1.0, "Adjusted R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "poly"}' ) jstring_poly_2 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-75.26111111111476], [-8.815277777775934], [18.81527777777826], [-2.2556956302821618e-13]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 3.772981926886132e-13, "MSE": 1.5772926701095834e-25, "R2": 1.0, "Adjusted R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 1, "additional_term_expressions": [], ' '"optimal_weights_array": [[-3.0033074724377813], [0.2491731318906352], [1.7508268681094337], [-6.786238238021269e-15]], ' '"final_polynomial_order": 1, "errors": {"MAE": 1.1901590823981678e-14, "MSE": 1.5225015470765528e-28, "R2": 1.0, "Adjusted R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_poly_3 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["log(IndexedParam[x1])", "sin(IndexedParam[x2])"], ' '"optimal_weights_array": [[-14.290243902439855], [6.4274390243899795], [3.572560975609962], [1.9753643165643098e-13], [-4.4048098502003086e-14]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 1.4210854715202004e-14, "MSE": 2.8188629679897487e-28, "R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["log(IndexedParam[x1])", "sin(IndexedParam[x2])"], ' '"optimal_weights_array": [[5.704971042443143], [2.4262427606248815], [-0.42624276060821653], [-5.968545102597034e-11], [6.481176706429892e-12]], ' '"final_polynomial_order": 1, "errors": {"MAE": 3.869645344896829e-12, "MSE": 7.189162598662876e-23, "R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "list", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_poly_4 = ( '{"model_encoding": ' '{"z1": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["IndexedParam[x1]/IndexedParam[x2]"], ' '"optimal_weights_array": [[-110.15000000001504], [-17.53750000000189], [27.537500000006148], [-5.3967136315336006e-11]], ' '"final_polynomial_order": 1, ' '"errors": {"MAE": 1.0317080523236656e-12, "MSE": 2.126880072091303e-24, "R2": 1.0},' ' "extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "other", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}, ' '"z2": {"attr": {"regression_data_columns": ["x1", "x2"], ' '"multinomials": 0, "additional_term_expressions": ["IndexedParam[x1]/IndexedParam[x2]"], ' '"optimal_weights_array": [[-12.523574144487087], [-2.1308935361219556], [4.1308935361216435], [3.6347869158959156e-12]], ' '"final_polynomial_order": 1, "errors": {"MAE": 7.762679388179095e-14, "MSE": 6.506051429719772e-27, "R2": 1.0}, ' '"extra_terms_feature_vector": ["IndexedParam[x1]", "IndexedParam[x2]"]}, ' '"map": {"regression_data_columns": "list", "multinomials": "str", ' '"additional_term_expressions": "other", "optimal_weights_array": "numpy", ' '"final_polynomial_order": "str", "errors": "str", "extra_terms_feature_vector": "other"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": null, ' '"surrogate_type": "poly"}' ) jstring_rbf = ( '{"model_encoding": ' '{"z1": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"centres": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"basis_function": "gaussian", ' '"weights": [[-69.10791015625], [-319807.1317138672], [959336.2551269531], [-959973.7440185547], [320514.66677856445]], ' '"sigma": 0.05, "regularization_parameter": 0.0, ' '"rmse": 0.0005986693684275349, "R2": 0.9999971327598984, ' '"x_data_min": [[1, 5]], "x_data_max": [[5, 9]], "y_data_min": [10], "y_data_max": [50]}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "centres": "numpy", ' '"basis_function": "str", "weights": "numpy", "sigma": "str", "regularization_parameter": "str", ' '"rmse": "str", "R2": "str", "x_data_min": "numpy", "x_data_max": "numpy", "y_data_min": "numpy", ' '"y_data_max": "numpy"}}, ' '"z2": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"centres": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"basis_function": "gaussian", "weights": [[-69.10791015625], [-319807.1317138672], [959336.2551269531], [-959973.7440185547], [320514.66677856445]], ' '"sigma": 0.05, "regularization_parameter": 0.0, ' '"rmse": 0.0005986693684275349, "R2": 0.9999971327598984, ' '"x_data_min": [[1, 5]], "x_data_max": [[5, 9]], "y_data_min": [6], "y_data_max": [14]}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "centres": "numpy", ' '"basis_function": "str", "weights": "numpy", "sigma": "str", "regularization_parameter": "str", ' '"rmse": "str", "R2": "str", "x_data_min": "numpy", "x_data_max": "numpy", "y_data_min": "numpy", ' '"y_data_max": "numpy"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "rbf"}' ) jstring_krg = ( '{"model_encoding": ' '{"z1": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[1, 5], [2, 6], [3, 7], [4, 8], [5, 9]], "x_data_min": [[1, 5]], "x_data_max": [[5, 9]], ' '"x_data_scaled": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"optimal_weights": [0.027452451845611077, 0.0010443446337808024], ' '"optimal_p": 2, "optimal_mean": [[30.00000000077694]], "optimal_variance": [[6503.3113222215325]], ' '"regularization_parameter": 1.000000000001e-06, ' '"optimal_covariance_matrix": [[1.000001, 0.9982205353479938, 0.9929011178300284, 0.9840983398813247, 0.971905407660152], ' "[0.9982205353479938, 1.000001, 0.9982205353479938, 0.9929011178300284, 0.9840983398813247], " "[0.9929011178300284, 0.9982205353479938, 1.000001, 0.9982205353479938, 0.9929011178300284], " "[0.9840983398813247, 0.9929011178300284, 0.9982205353479938, 1.000001, 0.9982205353479938], " "[0.971905407660152, 0.9840983398813247, 0.9929011178300284, 0.9982205353479938, 1.000001]], " '"covariance_matrix_inverse": [[108728.9916945844, -240226.85108007095, 82932.18571364644, 121970.72026795016, -73364.51387189297], ' "[-240226.85108202277, 589985.9891969847, -341158.67300272395, -130592.8567227173, 121970.72027126199], " "[82932.18571952915, -341158.67301448685, 516416.75018761755, -341158.6729826693, 82932.18570353556], " "[121970.72026201998, -130592.85670691582, -341158.6729945546, 589985.9891699858, -240226.8510697507], " "[-73364.51386989365, 121970.72026527137, 82932.18570954115, -240226.85107176506, 108728.99169106234]], " '"optimal_y_mu": [[-20.00000000077694], [-10.00000000077694], [-7.769394017032027e-10], [9.99999999922306], [19.99999999922306]], ' '"training_R2": 0.9999962956016578, "training_rmse": 0.02721910484270722}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "x_data_min": "numpy", "x_data_max": "numpy", ' '"x_data_scaled": "numpy", "optimal_weights": "numpy", "optimal_p": "str", "optimal_mean": "numpy", ' '"optimal_variance": "numpy", "regularization_parameter": "str", "optimal_covariance_matrix": "numpy", ' '"covariance_matrix_inverse": "numpy", "optimal_y_mu": "numpy", "training_R2": "str", "training_rmse": "str"}}, ' '"z2": {"attr": {"x_data_columns": ["x1", "x2"], ' '"x_data": [[1, 5], [2, 6], [3, 7], [4, 8], [5, 9]], "x_data_min": [[1, 5]], "x_data_max": [[5, 9]], ' '"x_data_scaled": [[0.0, 0.0], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1.0, 1.0]], ' '"optimal_weights": [0.02749666901085125, 0.001000000000000049], ' '"optimal_p": 2, "optimal_mean": [[9.999999999902883]], "optimal_variance": [[260.13320726701056]], ' '"regularization_parameter": 1e-06, ' '"optimal_covariance_matrix": [[1.000001, 0.998220543300601, 0.9929011494709431, 0.9840984104422155, 0.9719055315475238], ' "[0.998220543300601, 1.000001, 0.998220543300601, 0.9929011494709431, 0.9840984104422155], " "[0.9929011494709431, 0.998220543300601, 1.000001, 0.998220543300601, 0.9929011494709431], " "[0.9840984104422155, 0.9929011494709431, 0.998220543300601, 1.000001, 0.998220543300601], " "[0.9719055315475238, 0.9840984104422155, 0.9929011494709431, 0.998220543300601, 1.000001]], " '"covariance_matrix_inverse": [[108729.13455237681, -240227.09704128528, 82932.15558036882, 121970.94143487987, -73364.601633614], ' "[-240227.0970392892, 589986.4681472526, -341158.6596781079, -130593.32427863385, 121970.94144222786], " "[82932.15557448889, -341158.6596663887, 516416.7835787105, -341158.659633822, 82932.15555811858], " "[121970.94144067129, -130593.32429416949, -341158.6596220617, 589986.4680877628, -240227.09701875152], " "[-73364.60163552182, 121970.94144804058, 82932.15555219717, -240227.09701673465, 108729.13454474375]], " '"optimal_y_mu": [[-3.999999999902883], [-1.999999999902883], [9.711698112369049e-11], [2.000000000097117], [4.000000000097117]], ' '"training_R2": 0.9999962956250228, "training_rmse": 0.005443803800474329}, ' '"map": {"x_data_columns": "list", "x_data": "numpy", "x_data_min": "numpy", "x_data_max": "numpy", ' '"x_data_scaled": "numpy", "optimal_weights": "numpy", "optimal_p": "str", "optimal_mean": "numpy", ' '"optimal_variance": "numpy", "regularization_parameter": "str", "optimal_covariance_matrix": "numpy", ' '"covariance_matrix_inverse": "numpy", "optimal_y_mu": "numpy", "training_R2": "str", "training_rmse": "str"}}}, ' '"input_labels": ["x1", "x2"], ' '"output_labels": ["z1", "z2"], ' '"input_bounds": {"x1": [0, 5], "x2": [0, 10]}, ' '"surrogate_type": "kriging"}' ) class TestSurrogateTrainingResult: @pytest.fixture def pysmo_output_pr(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_pr = pr.PolynomialRegression( data, data, maximum_polynomial_order=1, overwrite=True, multinomials=True ) vars = init_pr.get_feature_vector() init_pr.training() return init_pr, vars @pytest.fixture def pysmo_output_rbf(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_rbf = rbf.RadialBasisFunctions( data, basis_function="linear", overwrite=True ) vars = init_rbf.get_feature_vector() init_rbf.training() return init_rbf, vars @pytest.fixture def pysmo_output_krg(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_krg = krg.KrigingModel(data, numerical_gradients=True, overwrite=True) vars = init_krg.get_feature_vector() init_krg.training() return init_krg, vars @pytest.mark.unit def test_init(self): init_func = PysmoSurrogateTrainingResult() assert init_func.metrics == {} assert init_func._model == None assert init_func.expression_str == "" @pytest.mark.unit def test_model_poly(self, pysmo_output_pr): out1, vars = pysmo_output_pr init_func_poly = PysmoSurrogateTrainingResult() init_func_poly.model = out1 assert init_func_poly.expression_str == str( out1.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_poly._model is not None assert isinstance(init_func_poly._model, pr.PolynomialRegression) assert init_func_poly._model == out1 @pytest.mark.unit def test_model_rbf(self, pysmo_output_rbf): out2, vars = pysmo_output_rbf init_func_rbf = PysmoSurrogateTrainingResult() init_func_rbf.model = out2 assert init_func_rbf.expression_str == str( out2.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_rbf._model is not None assert isinstance(init_func_rbf._model, rbf.RadialBasisFunctions) assert init_func_rbf._model == out2 @pytest.mark.unit def test_model_krg(self, pysmo_output_krg): out3, vars = pysmo_output_krg init_func_krg = PysmoSurrogateTrainingResult() init_func_krg.model = out3 assert init_func_krg.expression_str == str( out3.generate_expression([vars[i] for i in vars.keys()]) ) assert init_func_krg._model is not None assert isinstance(init_func_krg._model, krg.KrigingModel) assert init_func_krg._model == out3 class TestTrainedSurrogate: @pytest.fixture def pysmo_outputs(self): data = { "x1": [1, 2, 3, 4, 5], "x2": [5, 6, 7, 8, 9], "z1": [10, 20, 30, 40, 50], } data = pd.DataFrame(data) init_pr = pr.PolynomialRegression( data, data, maximum_polynomial_order=1, overwrite=True, multinomials=True ) vars = init_pr.get_feature_vector() init_pr.training() init_rbf = rbf.RadialBasisFunctions( data, basis_function="linear", overwrite=True ) init_rbf.get_feature_vector() init_rbf.training() init_krg = krg.KrigingModel(data, numerical_gradients=True, overwrite=True) init_krg.get_feature_vector() init_krg.training() return init_pr, init_rbf, init_krg, vars @pytest.mark.unit def test_init(self): init_func = PysmoTrainedSurrogate() assert init_func._data == {} assert init_func.model_type == "" assert init_func.num_outputs == 0 assert init_func.output_labels == [] assert init_func.input_labels == None assert init_func.input_bounds == None init_func1 = PysmoTrainedSurrogate(model_type="poly") assert init_func1._data == {} assert init_func1.model_type == "poly" assert init_func1.num_outputs == 0 assert init_func1.output_labels == [] assert init_func1.input_labels == None assert init_func1.input_bounds == None @pytest.mark.unit def test_add_result(self, pysmo_outputs): # These need to be tested this way to made sure ``add_result`` builds out model object propoerly. out1, out2, out3, vars = pysmo_outputs init_func = PysmoTrainedSurrogate() outvar = "z1" init_func.add_result(outvar, out1) assert init_func.output_labels == ["z1"] assert init_func._data[outvar] == out1 outvar = "z2" init_func.add_result(outvar, out2) assert init_func.output_labels == ["z1", "z2"] assert init_func._data[outvar] == out2 outvar = "z3" init_func.add_result(outvar, out3) assert init_func.output_labels == ["z1", "z2", "z3"] assert init_func._data[outvar] == out3 @pytest.mark.unit def test_get_result(self, pysmo_outputs): out1, out2, out3, vars = pysmo_outputs init_func = PysmoTrainedSurrogate() outvar = "z1" init_func.add_result(outvar, out1) outvar = "z2" init_func.add_result(outvar, out2) outvar = "z3" init_func.add_result(outvar, out3) for i in range(len(init_func.output_labels)): assert init_func.get_result(init_func.output_labels[i]) == pysmo_outputs[i] class TestPysmoPolyTrainer: @pytest.fixture def pysmo_poly_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} poly_trainer = PysmoPolyTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return poly_trainer @pytest.mark.unit def test_defaults(self, pysmo_poly_trainer): # Check all defaults assert pysmo_poly_trainer.model_type == "poly" assert pysmo_poly_trainer.config.maximum_polynomial_order == None assert pysmo_poly_trainer.config.multinomials == False assert pysmo_poly_trainer.config.number_of_crossvalidations == 3 assert pysmo_poly_trainer.config.training_split == 0.8 assert pysmo_poly_trainer.config.solution_method == None assert pysmo_poly_trainer.config.extra_features == None @pytest.mark.unit def test_set_polynomial_order_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.maximum_polynomial_order = 3 assert pysmo_poly_trainer.config.maximum_polynomial_order == 3 @pytest.mark.unit def test_set_polynomial_order_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'maximum_polynomial_order'", ): pysmo_poly_trainer.config.maximum_polynomial_order = 3.1 @pytest.mark.unit def test_set_polynomial_order_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'maximum_polynomial_order'", ): pysmo_poly_trainer.config.maximum_polynomial_order = 0 @pytest.mark.unit def test_set_number_of_crossvalidations_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.number_of_crossvalidations = 5 assert pysmo_poly_trainer.config.number_of_crossvalidations == 5 @pytest.mark.unit def test_set_number_of_crossvalidations_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'number_of_crossvalidations'", ): pysmo_poly_trainer.config.number_of_crossvalidations = 3.1 @pytest.mark.unit def test_set_number_of_crossvalidations_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'number_of_crossvalidations'", ): pysmo_poly_trainer.config.number_of_crossvalidations = 0 @pytest.mark.unit def test_set_training_split_righttype(self, pysmo_poly_trainer): pysmo_poly_trainer.config.training_split = 0.5 assert pysmo_poly_trainer.config.training_split == 0.5 @pytest.mark.unit def test_set_training_split_wrongbounds(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'training_split'" ): pysmo_poly_trainer.config.training_split = -0.5 @pytest.mark.unit def test_set_solution_method_righttype_1(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "mle" assert pysmo_poly_trainer.config.solution_method == "mle" @pytest.mark.unit def test_set_solution_method_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "pyomo" assert pysmo_poly_trainer.config.solution_method == "pyomo" @pytest.mark.unit def test_set_solution_method_righttype_3(self, pysmo_poly_trainer): pysmo_poly_trainer.config.solution_method = "bfgs" assert pysmo_poly_trainer.config.solution_method == "bfgs" @pytest.mark.unit def test_set_solution_method_wrongtype(self, pysmo_poly_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'solution_method'" ): pysmo_poly_trainer.config.solution_method = "bfgh" @pytest.mark.unit def test_set_multinomials_righttype_1(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = True assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = False assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_righttype_3(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = "False" assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_righttype_4(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = "True" assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_5(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 1 assert pysmo_poly_trainer.config.multinomials == True @pytest.mark.unit def test_set_multinomials_righttype_6(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 0 assert pysmo_poly_trainer.config.multinomials == False @pytest.mark.unit def test_set_multinomials_wrongtype(self, pysmo_poly_trainer): with pytest.raises(ValueError): pysmo_poly_trainer.config.multinomials = 2 @pytest.mark.unit def test_set_extra_features_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.extra_features = ["x1 / x2"] assert pysmo_poly_trainer.config.extra_features == ["x1 / x2"] @pytest.mark.unit def test_set_extra_features_righttype_2(self, pysmo_poly_trainer): pysmo_poly_trainer.config.extra_features = ["x1 / x2", "sin(x1)"] assert pysmo_poly_trainer.config.extra_features == ["x1 / x2", "sin(x1)"] @pytest.mark.unit def test_set_extra_features_wrongtype(self, pysmo_poly_trainer): with pytest.raises(NameError): pysmo_poly_trainer.config.extra_features = x1 / x2 @pytest.mark.unit def test_set_extra_features_wrongtype(self, pysmo_poly_trainer): with pytest.raises(ValueError): pysmo_poly_trainer.config.extra_features = 10 @pytest.mark.unit def test_create_model_no_extra_features(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 1 pysmo_poly_trainer.config.maximum_polynomial_order = 1 pysmo_poly_trainer.config.solution_method = "mle" pysmo_poly_trainer.config.number_of_crossvalidations = 2 pysmo_poly_trainer.config.training_split = 0.9 output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_poly_trainer._create_model(data, output_label) assert ( model.max_polynomial_order == pysmo_poly_trainer.config.maximum_polynomial_order ) assert model.overwrite == True assert model.multinomials == pysmo_poly_trainer.config.multinomials assert model.solution_method == "mle" assert ( model.number_of_crossvalidations == pysmo_poly_trainer.config.number_of_crossvalidations ) assert model.fraction_training == 0.9 assert model.filename == "solution.pickle" assert model.number_of_x_vars == data.shape[1] - 1 assert model.additional_term_expressions == [] assert model.extra_terms_feature_vector == None np.testing.assert_array_equal(model.original_data, data.values) np.testing.assert_array_equal(model.regression_data, data.values) assert model.regression_data_columns == data.columns.tolist()[:-1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_with_extra_features(self, pysmo_poly_trainer): pysmo_poly_trainer.config.multinomials = 0 pysmo_poly_trainer.config.maximum_polynomial_order = 2 pysmo_poly_trainer.config.solution_method = "mle" pysmo_poly_trainer.config.number_of_crossvalidations = 2 pysmo_poly_trainer.config.training_split = 0.9 pysmo_poly_trainer.config.extra_features = [ "sin(x1)/cos(x2)", "log(x1)*sin(x2)", "x1/x2", ] output_label = "z1" data = { "x1": [1, 2, 3, 4, 5, 6, 7, 8], "x2": [5, 6, 7, 8, 9, 10, 11, 12], "z1": [10, 20, 30, 40, 50, 60, 70, 80], } data = pd.DataFrame(data) model = pysmo_poly_trainer._create_model(data, output_label) assert model.overwrite == True assert model.multinomials == pysmo_poly_trainer.config.multinomials assert model.solution_method == "mle" assert ( model.number_of_crossvalidations == pysmo_poly_trainer.config.number_of_crossvalidations ) assert ( model.max_polynomial_order == pysmo_poly_trainer.config.maximum_polynomial_order ) assert model.fraction_training == 0.9 assert model.filename == "solution.pickle" assert model.number_of_x_vars == data.shape[1] - 1 np.testing.assert_array_equal(model.original_data, data.values) np.testing.assert_array_equal(model.regression_data, data.values) assert model.regression_data_columns == data.columns.tolist()[:-1] assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] assert len(model.additional_term_expressions) == 3 assert isinstance(model.additional_term_expressions, list) assert isinstance( model.additional_term_expressions[0], pyo.core.expr.numeric_expr.NPV_DivisionExpression, ) assert isinstance( model.additional_term_expressions[1], pyo.core.expr.numeric_expr.ProductExpression, ) assert isinstance( model.additional_term_expressions[2], pyo.core.expr.numeric_expr.NPV_DivisionExpression, ) assert ( str(model.additional_term_expressions[0]) == "sin(IndexedParam[x1])/cos(IndexedParam[x2])" ) assert ( str(model.additional_term_expressions[1]) == "log(IndexedParam[x1])*sin(IndexedParam[x2])" ) assert ( str(model.additional_term_expressions[2]) == "IndexedParam[x1]/IndexedParam[x2]" ) assert model.extra_terms_feature_vector == None class TestPysmoRBFTrainer: @pytest.fixture def pysmo_rbf_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} rbf_trainer = PysmoRBFTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return rbf_trainer @pytest.mark.unit def test_defaults(self, pysmo_rbf_trainer): # Check all defaults assert pysmo_rbf_trainer.model_type == "None rbf" assert pysmo_rbf_trainer.config.basis_function == None assert pysmo_rbf_trainer.config.regularization == None assert pysmo_rbf_trainer.config.solution_method == None @pytest.mark.unit def test_set_basis_function_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "linear" assert pysmo_rbf_trainer.config.basis_function == "linear" @pytest.mark.unit def test_set_basis_function_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "cubic" assert pysmo_rbf_trainer.config.basis_function == "cubic" @pytest.mark.unit def test_set_basis_function_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "imq" assert pysmo_rbf_trainer.config.basis_function == "imq" @pytest.mark.unit def test_set_basis_function_righttype_4(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "mq" assert pysmo_rbf_trainer.config.basis_function == "mq" @pytest.mark.unit def test_set_basis_function_righttype_5(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "gaussian" assert pysmo_rbf_trainer.config.basis_function == "gaussian" @pytest.mark.unit def test_set_basis_function_righttype_6(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "spline" assert pysmo_rbf_trainer.config.basis_function == "spline" @pytest.mark.unit def test_set_basis_function_outdomain(self, pysmo_rbf_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'basis_function'" ): pysmo_rbf_trainer.config.basis_function = "mqimq" @pytest.mark.unit def test_set_solution_method_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "algebraic" assert pysmo_rbf_trainer.config.solution_method == "algebraic" @pytest.mark.unit def test_set_solution_method_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "pyomo" assert pysmo_rbf_trainer.config.solution_method == "pyomo" @pytest.mark.unit def test_set_solution_method_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.solution_method = "bfgs" assert pysmo_rbf_trainer.config.solution_method == "bfgs" @pytest.mark.unit def test_set_solution_method_wrongtype(self, pysmo_rbf_trainer): with pytest.raises( ValueError, match="invalid value for configuration 'solution_method'" ): pysmo_rbf_trainer.config.solution_method = "mle" @pytest.mark.unit def test_set_regularization_righttype_1(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = True assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_2(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = False assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_3(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = "False" assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_4(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = "True" assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_5(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = 1 assert pysmo_rbf_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_6(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.regularization = 0 assert pysmo_rbf_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_wrongtype(self, pysmo_rbf_trainer): with pytest.raises(ValueError): pysmo_rbf_trainer.config.regularization = 2 @pytest.mark.unit def test_create_model_defaults(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = None pysmo_rbf_trainer.config.regularization = "True" pysmo_rbf_trainer.config.solution_method = None output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "gaussian" assert model.regularization == True assert model.solution_method == "algebraic" # assert model.filename == 'pysmo_Nonerbf_z5.pickle' assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_cubic(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "cubic" pysmo_rbf_trainer.config.regularization = "False" pysmo_rbf_trainer.config.solution_method = "pyomo" output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "cubic" assert model.regularization == False assert model.solution_method == "pyomo" assert model.filename == "solution.pickle" assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] @pytest.mark.unit def test_create_model_imq(self, pysmo_rbf_trainer): pysmo_rbf_trainer.config.basis_function = "imq" pysmo_rbf_trainer.config.regularization = True pysmo_rbf_trainer.config.solution_method = "bfgs" output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) model = pysmo_rbf_trainer._create_model(data, output_label) assert model.x_data_columns == ["x1", "x2"] np.testing.assert_array_equal(model.x_data_unscaled, data.values[:, :-1]) np.testing.assert_array_equal(model.y_data_unscaled[:, 0], data.values[:, -1]) assert model.overwrite == True assert model.basis_function == "imq" assert model.regularization == True assert model.solution_method == "bfgs" # assert model.filename == 'pysmo_Nonerbf_z5.pickle' assert list(model.feature_list._data.keys()) == data.columns.tolist()[:-1] class TestPysmoKrigingTrainer: @pytest.fixture def pysmo_krg_trainer(self): data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data = pd.DataFrame(data) input_labels = ["x1", "x2"] output_labels = ["z1"] bnds = {"x1": (0, 5), "x2": (0, 10)} krg_trainer = PysmoKrigingTrainer( input_labels=input_labels, output_labels=output_labels, input_bounds=bnds, training_dataframe=data, ) return krg_trainer @pytest.mark.unit def test_defaults(self, pysmo_krg_trainer): # Check all defaults assert pysmo_krg_trainer.model_type == "kriging" assert pysmo_krg_trainer.config.numerical_gradients == True assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_1(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = True assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_2(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = False assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_3(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = "False" assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_righttype_4(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = "True" assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_5(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = 1 assert pysmo_krg_trainer.config.regularization == True @pytest.mark.unit def test_set_regularization_righttype_6(self, pysmo_krg_trainer): pysmo_krg_trainer.config.regularization = 0 assert pysmo_krg_trainer.config.regularization == False @pytest.mark.unit def test_set_regularization_wrongtype(self, pysmo_krg_trainer): with pytest.raises(ValueError): pysmo_krg_trainer.config.regularization = 2 @pytest.mark.unit def test_set_numerical_gradients_righttype_1(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = True assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_2(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = False assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_righttype_3(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = "False" assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_righttype_4(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = "True" assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_5(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = 1 assert pysmo_krg_trainer.config.numerical_gradients == True @pytest.mark.unit def test_set_numerical_gradients_righttype_6(self, pysmo_krg_trainer): pysmo_krg_trainer.config.numerical_gradients = 0 assert pysmo_krg_trainer.config.numerical_gradients == False @pytest.mark.unit def test_set_numerical_gradients_wrongtype(self, pysmo_krg_trainer): with pytest.raises(ValueError): pysmo_krg_trainer.config.numerical_gradients = 2 @pytest.mark.unit def test_create_model_defaults(self, pysmo_krg_trainer): output_label = "z5" data = {"x1": [1, 2, 3, 4], "x2": [5, 6, 7, 8], "z1": [10, 20, 30, 40]} data =
pd.DataFrame(data)
pandas.DataFrame
import seaborn as sb from matplotlib import pyplot as plt import pandas as pd class MultipleResults: index_keys = ['round', 'trial'] def __init__(self, model_name, **initial_state): self.model_name = model_name self.state_vars = initial_state for k, v in initial_state.items(): vars(self)[k] = list() def add_state(self, trial=None, **update_state): for k in self.state_vars.keys(): vars(self)[k].extend([{'round':i, 'trial':trial, k:j} for i, j in enumerate(update_state[k])]) def add_results(self, **results): for k in self.state_vars.keys(): vars(self)[k].extend(results[k]) @property def get_state(self): return {k: vars(self)[k] for k in self.state_vars} @staticmethod def lineplot(data, x, y, **kwargs): return sb.lineplot(data=data, x=x, y=y, legend='brief', **kwargs) @staticmethod def histplot(data, x, y, **kwargs): return sb.histplot(data=data, x=y, stat="probability", legend=True, **kwargs) def save_state(self, path): data_keys = self.get_state.keys() data =
pd.DataFrame(columns=MultipleResults.index_keys)
pandas.DataFrame
import json import logging import os import sys from pathlib import Path from typing import Union import fire import pandas as pd from sklearn.model_selection import StratifiedKFold from smart_open import open from tqdm import tqdm from cord19.preprocessing.negative_sampling import get_cocitations from cord19.utils import get_sorted_pair, to_label from cord19.preprocessing.cord19_reader import get_papers_and_citations_from_cord19, merge_cord19_and_s2_papers from cord19.preprocessing.negative_sampling import get_negative_pairs from cord19.utils import normalize_section, resolve_and_sect_titles, get_text_from_doi logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def save_dataset(input_dir: Union[str, Path], output_dir: Union[str, Path], cv_folds: int = 4): """ Run with: $ python -m cord19.dataset save_dataset <input_dir> <output_dir> input_dir = '/home/mostendorff/datasets/cord-19/' output_dir = '/home/mostendorff/datasets/cord-19/dataset/' cv_folds = 4 input_dir/metadata.csv input_dir/doi2paper.json.gz input_dir/<subsets> = ['biorxiv_medrxiv', 'comm_use_subset', 'custom_license', 'noncomm_use_subset'] output_dir/docs.jsonl output_dir/folds/1/train.csv output_dir/folds/1/test.csv tar -cvzf cord19_docrel.tar.gz docs.jsonl folds/ curl --upload-file cord19_docrel.tar.gz ftp://$FTP_LOGIN:[email protected]/cloud.ostendorff.org/static/ :param input_dir: Path to directory with input files :param output_dir: Output files are written to this dir :param cv_folds: Number of folds in k-fold cross validation """ label_col = 'label' negative_label = 'none' min_text_length = 50 negative_sampling_ratio = 0.5 doc_a_col = 'from_doi' doc_b_col = 'to_doi' labels = [ 'discussion', 'introduction', 'conclusion', 'results', 'methods', 'background', 'materials', 'virus', 'future work' ] # input_dir = os.path.join(env['datasets_dir'], 'cord-19') # Convert dirs to Path if is string if isinstance(output_dir, str): output_dir = Path(output_dir) if isinstance(input_dir, str): input_dir = Path(input_dir) # Read meta data meta_df =
pd.read_csv(input_dir / 'metadata.csv', dtype={'doi': str, 'journal': str})
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Project 5: NLP on Financial Statements # ## Instructions # Each problem consists of a function to implement and instructions on how to implement the function. The parts of the function that need to be implemented are marked with a `# TODO` comment. After implementing the function, run the cell to test it against the unit tests we've provided. For each problem, we provide one or more unit tests from our `project_tests` package. These unit tests won't tell you if your answer is correct, but will warn you of any major errors. Your code will be checked for the correct solution when you submit it to Udacity. # # ## Packages # When you implement the functions, you'll only need to you use the packages you've used in the classroom, like [Pandas](https://pandas.pydata.org/) and [Numpy](http://www.numpy.org/). These packages will be imported for you. We recommend you don't add any import statements, otherwise the grader might not be able to run your code. # # The other packages that we're importing are `project_helper` and `project_tests`. These are custom packages built to help you solve the problems. The `project_helper` module contains utility functions and graph functions. The `project_tests` contains the unit tests for all the problems. # # ### Install Packages # In[1]: import sys get_ipython().system('{sys.executable} -m pip install -r requirements.txt') # ### Load Packages # In[2]: import nltk import numpy as np import pandas as pd import pickle import pprint import project_helper import project_tests from tqdm import tqdm # ### Download NLP Corpora # You'll need two corpora to run this project: the stopwords corpus for removing stopwords and wordnet for lemmatizing. # In[3]: nltk.download('stopwords') nltk.download('wordnet') # ## Get 10ks # We'll be running NLP analysis on 10-k documents. To do that, we first need to download the documents. For this project, we'll download 10-ks for a few companies. To lookup documents for these companies, we'll use their CIK. If you would like to run this against other stocks, we've provided the dict `additional_cik` for more stocks. However, the more stocks you try, the long it will take to run. # In[4]: cik_lookup = { 'AMZN': '0001018724', 'BMY': '0000014272', 'CNP': '0001130310', 'CVX': '0000093410', 'FL': '0000850209', 'FRT': '0000034903', 'HON': '0000773840'} additional_cik = { 'AEP': '0000004904', 'AXP': '0000004962', 'BA': '0000012927', 'BK': '0001390777', 'CAT': '0000018230', 'DE': '0000315189', 'DIS': '0001001039', 'DTE': '0000936340', 'ED': '0001047862', 'EMR': '0000032604', 'ETN': '0001551182', 'GE': '0000040545', 'IBM': '0000051143', 'IP': '0000051434', 'JNJ': '0000200406', 'KO': '0000021344', 'LLY': '0000059478', 'MCD': '0000063908', 'MO': '0000764180', 'MRK': '0000310158', 'MRO': '0000101778', 'PCG': '0001004980', 'PEP': '0000077476', 'PFE': '0000078003', 'PG': '0000080424', 'PNR': '0000077360', 'SYY': '0000096021', 'TXN': '0000097476', 'UTX': '0000101829', 'WFC': '0000072971', 'WMT': '0000104169', 'WY': '0000106535', 'XOM': '0000034088'} # ### Get list of 10-ks # The SEC has a limit on the number of calls you can make to the website per second. In order to avoid hiding that limit, we've created the `SecAPI` class. This will cache data from the SEC and prevent you from going over the limit. # In[5]: sec_api = project_helper.SecAPI() # With the class constructed, let's pull a list of filled 10-ks from the SEC for each company. # In[6]: from bs4 import BeautifulSoup def get_sec_data(cik, doc_type, start=0, count=60): newest_pricing_data = pd.to_datetime('2018-01-01') rss_url = 'https://www.sec.gov/cgi-bin/browse-edgar?action=getcompany' '&CIK={}&type={}&start={}&count={}&owner=exclude&output=atom' .format(cik, doc_type, start, count) sec_data = sec_api.get(rss_url) feed = BeautifulSoup(sec_data.encode('ascii'), 'xml').feed entries = [ ( entry.content.find('filing-href').getText(), entry.content.find('filing-type').getText(), entry.content.find('filing-date').getText()) for entry in feed.find_all('entry', recursive=False) if pd.to_datetime(entry.content.find('filing-date').getText()) <= newest_pricing_data] return entries # Let's pull the list using the `get_sec_data` function, then display some of the results. For displaying some of the data, we'll use Amazon as an example. # In[7]: example_ticker = 'AMZN' sec_data = {} for ticker, cik in cik_lookup.items(): sec_data[ticker] = get_sec_data(cik, '10-K') pprint.pprint(sec_data[example_ticker][:5]) # ### Download 10-ks # As you see, this is a list of urls. These urls point to a file that contains metadata related to each filling. Since we don't care about the metadata, we'll pull the filling by replacing the url with the filling url. # In[8]: raw_fillings_by_ticker = {} for ticker, data in sec_data.items(): raw_fillings_by_ticker[ticker] = {} for index_url, file_type, file_date in tqdm(data, desc='Downloading {} Fillings'.format(ticker), unit='filling'): if (file_type == '10-K'): file_url = index_url.replace('-index.htm', '.txt').replace('.txtl', '.txt') raw_fillings_by_ticker[ticker][file_date] = sec_api.get(file_url) print('Example Document:\n\n{}...'.format(next(iter(raw_fillings_by_ticker[example_ticker].values()))[:1000])) # ### Get Documents # With theses fillings downloaded, we want to break them into their associated documents. These documents are sectioned off in the fillings with the tags `<DOCUMENT>` for the start of each document and `</DOCUMENT>` for the end of each document. There's no overlap with these documents, so each `</DOCUMENT>` tag should come after the `<DOCUMENT>` with no `<DOCUMENT>` tag in between. # # Implement `get_documents` to return a list of these documents from a filling. Make sure not to include the tag in the returned document text. # In[9]: import re def get_documents(text): """ Extract the documents from the text Parameters ---------- text : str The text with the document strings inside Returns ------- extracted_docs : list of str The document strings found in `text` """ # TODO: Implement document_start= re.compile(r'<DOCUMENT>') document_end= re.compile(r'</DOCUMENT>') document_start_is = [x.end() for x in document_start.finditer(text)] document_end_is = [x.start() for x in document_end.finditer(text)] text_=[] for document_start_i, document_end_i in zip(document_start_is, document_end_is): text_.append(text[document_start_i:document_end_i]) return text_ project_tests.test_get_documents(get_documents) # With the `get_documents` function implemented, let's extract all the documents. # In[10]: filling_documents_by_ticker = {} for ticker, raw_fillings in raw_fillings_by_ticker.items(): filling_documents_by_ticker[ticker] = {} for file_date, filling in tqdm(raw_fillings.items(), desc='Getting Documents from {} Fillings'.format(ticker), unit='filling'): filling_documents_by_ticker[ticker][file_date] = get_documents(filling) print('\n\n'.join([ 'Document {} Filed on {}:\n{}...'.format(doc_i, file_date, doc[:200]) for file_date, docs in filling_documents_by_ticker[example_ticker].items() for doc_i, doc in enumerate(docs)][:3])) # ### Get Document Types # Now that we have all the documents, we want to find the 10-k form in this 10-k filing. Implement the `get_document_type` function to return the type of document given. The document type is located on a line with the `<TYPE>` tag. For example, a form of type "TEST" would have the line `<TYPE>TEST`. Make sure to return the type as lowercase, so this example would be returned as "test". # In[11]: def get_document_type(doc): """ Return the document type lowercased Parameters ---------- doc : str The document string Returns ------- doc_type : str The document type lowercased """ type_pattern=re.compile(r'<TYPE>[^\n]+') type_i=[x[len('<TYPE>'):] for x in type_pattern.findall(doc) ] # TODO: Implement return type_i[0].lower() project_tests.test_get_document_type(get_document_type) # With the `get_document_type` function, we'll filter out all non 10-k documents. # In[12]: ten_ks_by_ticker = {} for ticker, filling_documents in filling_documents_by_ticker.items(): ten_ks_by_ticker[ticker] = [] for file_date, documents in filling_documents.items(): for document in documents: if get_document_type(document) == '10-k': ten_ks_by_ticker[ticker].append({ 'cik': cik_lookup[ticker], 'file': document, 'file_date': file_date}) project_helper.print_ten_k_data(ten_ks_by_ticker[example_ticker][:5], ['cik', 'file', 'file_date']) # ## Preprocess the Data # ### Clean Up # As you can see, the text for the documents are very messy. To clean this up, we'll remove the html and lowercase all the text. # In[13]: def remove_html_tags(text): text = BeautifulSoup(text, 'html.parser').get_text() return text def clean_text(text): text = text.lower() text = remove_html_tags(text) return text # Using the `clean_text` function, we'll clean up all the documents. # In[14]: for ticker, ten_ks in ten_ks_by_ticker.items(): for ten_k in tqdm(ten_ks, desc='Cleaning {} 10-Ks'.format(ticker), unit='10-K'): ten_k['file_clean'] = clean_text(ten_k['file']) project_helper.print_ten_k_data(ten_ks_by_ticker[example_ticker][:5], ['file_clean']) # ### Lemmatize # With the text cleaned up, it's time to distill the verbs down. Implement the `lemmatize_words` function to lemmatize verbs in the list of words provided. # In[15]: from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet def lemmatize_words(words): """ Lemmatize words Parameters ---------- words : list of str List of words Returns ------- lemmatized_words : list of str List of lemmatized words """ return [WordNetLemmatizer().lemmatize(x, wordnet.VERB) for x in words] project_tests.test_lemmatize_words(lemmatize_words) # With the `lemmatize_words` function implemented, let's lemmatize all the data. # In[16]: word_pattern = re.compile('\w+') for ticker, ten_ks in ten_ks_by_ticker.items(): for ten_k in tqdm(ten_ks, desc='Lemmatize {} 10-Ks'.format(ticker), unit='10-K'): ten_k['file_lemma'] = lemmatize_words(word_pattern.findall(ten_k['file_clean'])) project_helper.print_ten_k_data(ten_ks_by_ticker[example_ticker][:5], ['file_lemma']) # ### Remove Stopwords # In[17]: from nltk.corpus import stopwords lemma_english_stopwords = lemmatize_words(stopwords.words('english')) for ticker, ten_ks in ten_ks_by_ticker.items(): for ten_k in tqdm(ten_ks, desc='Remove Stop Words for {} 10-Ks'.format(ticker), unit='10-K'): ten_k['file_lemma'] = [word for word in ten_k['file_lemma'] if word not in lemma_english_stopwords] print('Stop Words Removed') # ## Analysis on 10ks # ### Loughran McDonald Sentiment Word Lists # We'll be using the Loughran and McDonald sentiment word lists. These word lists cover the following sentiment: # - Negative # - Positive # - Uncertainty # - Litigious # - Constraining # - Superfluous # - Modal # # This will allow us to do the sentiment analysis on the 10-ks. Let's first load these word lists. We'll be looking into a few of these sentiments. # In[18]: import os sentiments = ['negative', 'positive', 'uncertainty', 'litigious', 'constraining', 'interesting'] sentiment_df = pd.read_csv(os.path.join('..', '..', 'data', 'project_5_loughran_mcdonald', 'loughran_mcdonald_master_dic_2016.csv')) sentiment_df.columns = [column.lower() for column in sentiment_df.columns] # Lowercase the columns for ease of use # Remove unused information sentiment_df = sentiment_df[sentiments + ['word']] sentiment_df[sentiments] = sentiment_df[sentiments].astype(bool) sentiment_df = sentiment_df[(sentiment_df[sentiments]).any(1)] # Apply the same preprocessing to these words as the 10-k words sentiment_df['word'] = lemmatize_words(sentiment_df['word'].str.lower()) sentiment_df = sentiment_df.drop_duplicates('word') sentiment_df.head() # ### Bag of Words # using the sentiment word lists, let's generate sentiment bag of words from the 10-k documents. Implement `get_bag_of_words` to generate a bag of words that counts the number of sentiment words in each doc. You can ignore words that are not in `sentiment_words`. # In[56]: from collections import defaultdict, Counter from sklearn.feature_extraction.text import CountVectorizer def get_bag_of_words(sentiment_words, docs): """ Generate a bag of words from documents for a certain sentiment Parameters ---------- sentiment_words: Pandas Series Words that signify a certain sentiment docs : list of str List of documents used to generate bag of words Returns ------- bag_of_words : 2-d Numpy Ndarray of int Bag of words sentiment for each document The first dimension is the document. The second dimension is the word. """ # TODO: Implement v = CountVectorizer() v.fit(sentiment_words) return v.transform(docs).toarray() project_tests.test_get_bag_of_words(get_bag_of_words) # Using the `get_bag_of_words` function, we'll generate a bag of words for all the documents. # In[57]: sentiment_bow_ten_ks = {} for ticker, ten_ks in ten_ks_by_ticker.items(): lemma_docs = [' '.join(ten_k['file_lemma']) for ten_k in ten_ks] sentiment_bow_ten_ks[ticker] = { sentiment: get_bag_of_words(sentiment_df[sentiment_df[sentiment]]['word'], lemma_docs) for sentiment in sentiments} project_helper.print_ten_k_data([sentiment_bow_ten_ks[example_ticker]], sentiments) # ### Jaccard Similarity # Using the bag of words, let's calculate the jaccard similarity on the bag of words and plot it over time. Implement `get_jaccard_similarity` to return the jaccard similarities between each tick in time. Since the input, `bag_of_words_matrix`, is a bag of words for each time period in order, you just need to compute the jaccard similarities for each neighboring bag of words. Make sure to turn the bag of words into a boolean array when calculating the jaccard similarity. # In[59]: from sklearn.metrics import jaccard_similarity_score def get_jaccard_similarity(bag_of_words_matrix): """ Get jaccard similarities for neighboring documents Parameters ---------- bag_of_words : 2-d Numpy Ndarray of int Bag of words sentiment for each document The first dimension is the document. The second dimension is the word. Returns ------- jaccard_similarities : list of float Jaccard similarities for neighboring documents """ # TODO: Implement j_s=[] for i in range(bag_of_words_matrix.shape[0]-1): score_=jaccard_similarity_score(bag_of_words_matrix.astype('bool')[i],bag_of_words_matrix.astype('bool')[i+1]) j_s.append(score_) return j_s project_tests.test_get_jaccard_similarity(get_jaccard_similarity) # Using the `get_jaccard_similarity` function, let's plot the similarities over time. # In[60]: # Get dates for the universe file_dates = { ticker: [ten_k['file_date'] for ten_k in ten_ks] for ticker, ten_ks in ten_ks_by_ticker.items()} jaccard_similarities = { ticker: { sentiment_name: get_jaccard_similarity(sentiment_values) for sentiment_name, sentiment_values in ten_k_sentiments.items()} for ticker, ten_k_sentiments in sentiment_bow_ten_ks.items()} project_helper.plot_similarities( [jaccard_similarities[example_ticker][sentiment] for sentiment in sentiments], file_dates[example_ticker][1:], 'Jaccard Similarities for {} Sentiment'.format(example_ticker), sentiments) # ### TFIDF # using the sentiment word lists, let's generate sentiment TFIDF from the 10-k documents. Implement `get_tfidf` to generate TFIDF from each document, using sentiment words as the terms. You can ignore words that are not in `sentiment_words`. # In[63]: from sklearn.feature_extraction.text import TfidfVectorizer def get_tfidf(sentiment_words, docs): """ Generate TFIDF values from documents for a certain sentiment Parameters ---------- sentiment_words: Pandas Series Words that signify a certain sentiment docs : list of str List of documents used to generate bag of words Returns ------- tfidf : 2-d Numpy Ndarray of float TFIDF sentiment for each document The first dimension is the document. The second dimension is the word. """ # TODO: Implement tf = TfidfVectorizer() tf.fit(sentiment_words) return tf.transform(docs).toarray() project_tests.test_get_tfidf(get_tfidf) # Using the `get_tfidf` function, let's generate the TFIDF values for all the documents. # In[64]: sentiment_tfidf_ten_ks = {} for ticker, ten_ks in ten_ks_by_ticker.items(): lemma_docs = [' '.join(ten_k['file_lemma']) for ten_k in ten_ks] sentiment_tfidf_ten_ks[ticker] = { sentiment: get_tfidf(sentiment_df[sentiment_df[sentiment]]['word'], lemma_docs) for sentiment in sentiments} project_helper.print_ten_k_data([sentiment_tfidf_ten_ks[example_ticker]], sentiments) # ### Cosine Similarity # Using the TFIDF values, we'll calculate the cosine similarity and plot it over time. Implement `get_cosine_similarity` to return the cosine similarities between each tick in time. Since the input, `tfidf_matrix`, is a TFIDF vector for each time period in order, you just need to computer the cosine similarities for each neighboring vector. # In[68]: from sklearn.metrics.pairwise import cosine_similarity def get_cosine_similarity(tfidf_matrix): """ Get cosine similarities for each neighboring TFIDF vector/document Parameters ---------- tfidf : 2-d Numpy Ndarray of float TFIDF sentiment for each document The first dimension is the document. The second dimension is the word. Returns ------- cosine_similarities : list of float Cosine similarities for neighboring documents """ # TODO: Implement count=0 cosine_similarities=[] x= tfidf_matrix[0:] y= tfidf_matrix[1:] return cosine_similarity(x,y)[0].tolist() project_tests.test_get_cosine_similarity(get_cosine_similarity) # Let's plot the cosine similarities over time. # In[69]: cosine_similarities = { ticker: { sentiment_name: get_cosine_similarity(sentiment_values) for sentiment_name, sentiment_values in ten_k_sentiments.items()} for ticker, ten_k_sentiments in sentiment_tfidf_ten_ks.items()} project_helper.plot_similarities( [cosine_similarities[example_ticker][sentiment] for sentiment in sentiments], file_dates[example_ticker][1:], 'Cosine Similarities for {} Sentiment'.format(example_ticker), sentiments) # # ## Evaluate Alpha Factors # Just like we did in project 4, let's evaluate the alpha factors. For this section, we'll just be looking at the cosine similarities, but it can be applied to the jaccard similarities as well. # ### Price Data # Let's get yearly pricing to run the factor against, since 10-Ks are produced annually. # In[70]: pricing = pd.read_csv('../../data/project_5_yr/yr-quotemedia.csv', parse_dates=['date']) pricing = pricing.pivot(index='date', columns='ticker', values='adj_close') pricing # ### Dict to DataFrame # The alphalens library uses dataframes, so we we'll need to turn our dictionary into a dataframe. # In[71]: cosine_similarities_df_dict = {'date': [], 'ticker': [], 'sentiment': [], 'value': []} for ticker, ten_k_sentiments in cosine_similarities.items(): for sentiment_name, sentiment_values in ten_k_sentiments.items(): for sentiment_values, sentiment_value in enumerate(sentiment_values): cosine_similarities_df_dict['ticker'].append(ticker) cosine_similarities_df_dict['sentiment'].append(sentiment_name) cosine_similarities_df_dict['value'].append(sentiment_value) cosine_similarities_df_dict['date'].append(file_dates[ticker][1:][sentiment_values]) cosine_similarities_df =
pd.DataFrame(cosine_similarities_df_dict)
pandas.DataFrame
from torchtools import * from collections import OrderedDict import math import os import numpy as np import pandas as pd # encoder for imagenet dataset class EmbeddingImagenet(nn.Module): def __init__(self, emb_size): super(EmbeddingImagenet, self).__init__() # set size self.hidden = 64 self.last_hidden = self.hidden * 25 self.emb_size = emb_size # set layers self.conv_1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=self.hidden, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(num_features=self.hidden), nn.MaxPool2d(kernel_size=2), nn.LeakyReLU(negative_slope=0.2, inplace=True)) self.conv_2 = nn.Sequential(nn.Conv2d(in_channels=self.hidden, out_channels=int(self.hidden*1.5), kernel_size=3, bias=False), nn.BatchNorm2d(num_features=int(self.hidden*1.5)), nn.MaxPool2d(kernel_size=2), nn.LeakyReLU(negative_slope=0.2, inplace=True)) self.conv_3 = nn.Sequential(nn.Conv2d(in_channels=int(self.hidden*1.5), out_channels=self.hidden*2, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(num_features=self.hidden * 2), nn.MaxPool2d(kernel_size=2), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Dropout2d(0.4)) self.conv_4 = nn.Sequential(nn.Conv2d(in_channels=self.hidden*2, out_channels=self.hidden*4, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(num_features=self.hidden * 4), nn.MaxPool2d(kernel_size=2), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Dropout2d(0.5)) self.layer_last = nn.Sequential(nn.Linear(in_features=self.last_hidden * 4, out_features=self.emb_size, bias=True), nn.BatchNorm1d(self.emb_size)) def forward(self, input_data): output_data = self.conv_4(self.conv_3(self.conv_2(self.conv_1(input_data)))) return self.layer_last(output_data.view(output_data.size(0), -1)) class GraphUnpool(nn.Module): def __init__(self): super(GraphUnpool, self).__init__() def forward(self, A, X, idx_batch): # optimized by Gai batch = X.shape[0] new_X = torch.zeros(batch, A.shape[1], X.shape[-1]).to(tt.arg.device) new_X[torch.arange(idx_batch.shape[0]).unsqueeze(-1), idx_batch] = X # return A, new_X class GraphPool(nn.Module): def __init__(self, k, in_dim, num_classes, num_queries): super(GraphPool, self).__init__() self.k = k self.num_queries = num_queries self.num_classes = num_classes self.proj = nn.Linear(in_dim, 1).to(tt.arg.device) self.sigmoid = nn.Sigmoid() def forward(self, A, X): batch = X.shape[0] idx_batch = [] new_X_batch = [] new_A_batch = [] if tt.arg.visual == True: if tt.arg.pool_count == None: tt.arg.pool_count = 0 # for each batch for i in range(batch): num_nodes = A[i, 0].shape[0] scores = self.proj(X[i]) scores = torch.squeeze(scores) scores = self.sigmoid(scores / 100) #visual scores if tt.arg.visual == True: np_scores = scores.detach().cpu().numpy() if tt.arg.pool_count == 0: np_idx = np.arange(scores.size(0)) data = [['idx_%d' % tt.arg.pool_count]+list(np_idx), ['pool_%d_scores' % tt.arg.pool_count] + list(np_scores)] else: data = [['pool_%d_scores' % tt.arg.pool_count] + list(np_scores)] df = pd.DataFrame(data) if tt.arg.pool_count == 0: if os.path.exists('visual_%s/%03d/pool_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + i)): os.remove('visual_%s/%03d/pool_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + i)) df.to_csv('visual_%s/%03d/pool_record.csv' % (tt.arg.exp_name, tt.arg.iter*batch + i),header=False,index=False,mode='a') if tt.arg.pool_mode == 'way': num_spports = int((num_nodes - self.num_queries) / self.num_classes) idx = [] values = [] # pooling by each way for j in range(self.num_classes): way_values, way_idx = torch.topk(scores[j * num_spports:(j + 1) * num_spports], int(self.k * num_spports)) way_idx = way_idx + j * num_spports idx.append(way_idx) values.append(way_values) query_values = scores[num_nodes - self.num_queries:] query_idx = torch.arange(num_nodes - self.num_queries, num_nodes).long().to(tt.arg.device) values = torch.cat(values + [query_values], dim=0) idx = torch.cat(idx + [query_idx], dim=0) elif tt.arg.pool_mode == 'support': num_supports = num_nodes - self.num_queries support_values, support_idx = torch.topk(scores[:num_supports], int(self.k * num_supports), largest=True) query_values = scores[num_supports:] query_idx = torch.arange(num_nodes - self.num_queries, num_nodes).long().to(tt.arg.device) values = torch.cat([support_values, query_values], dim=0) idx = torch.cat([support_idx, query_idx], dim=0) elif tt.arg.pool_mode == 'way&kn': num_supports = int((num_nodes - self.num_queries) / self.num_classes) idx = [] values = [] # pooling by each way for j in range(self.num_classes): way_scores = scores[j * num_supports:(j + 1) * num_supports] intra_scores = way_scores - way_scores.mean() _, way_idx = torch.topk(intra_scores, int(self.k * num_supports), largest=False) way_values = way_scores[way_idx] way_idx = way_idx + j * num_supports idx.append(way_idx) values.append(way_values) query_values = scores[num_nodes - self.num_queries:] query_idx = torch.arange(num_nodes - self.num_queries, num_nodes).long().to(tt.arg.device) values = torch.cat(values + [query_values], dim=0) idx = torch.cat(idx + [query_idx], dim=0) elif tt.arg.pool_mode == 'kn': num_supports = num_nodes - self.num_queries support_scores = scores[:num_supports] intra_scores = support_scores - support_scores.mean() _, support_idx = torch.topk(intra_scores, int(self.k * num_supports), largest=False) support_values = support_scores[support_idx] query_values = scores[num_nodes - self.num_queries:] query_idx = torch.arange(num_nodes - self.num_queries, num_nodes).long().to(tt.arg.device) values = torch.cat([support_values, query_values], dim=0) idx = torch.cat([support_idx, query_idx], dim=0) else: print('wrong pool_mode setting!!!') raise NameError('wrong pool_mode setting!!!') new_X = X[i, idx, :] values = torch.unsqueeze(values, -1) new_X = torch.mul(new_X, values) new_A = A[i, idx, :] new_A = new_A[:, idx] idx_batch.append(idx) new_X_batch.append(new_X) new_A_batch.append(new_A) A = torch.stack(new_A_batch, dim=0).to(tt.arg.device) new_X = torch.stack(new_X_batch, dim=0).to(tt.arg.device) idx_batch = torch.stack(idx_batch, dim=0).to(tt.arg.device) # visual pool idx result if tt.arg.visual == True: for i in range(batch): old_idx = pd.read_csv('visual_%s/%03d/pool_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + i), skiprows=tt.arg.pool_count*2,nrows=1,header=None).to_numpy(copy=True).reshape(-1)[1:].astype(np.int32) np_idx = old_idx[idx_batch[i].cpu().numpy()] data = [['idx_%d' % (tt.arg.pool_count+1)] + list(np_idx)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/pool_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + i), header=False, index=False, mode='a') tt.arg.pool_count = tt.arg.pool_count + 1 return A, new_X, idx_batch class Unet(nn.Module): def __init__(self, ks, in_dim, num_classes, num_queries): super(Unet, self).__init__() l_n = len(ks) self.l_n = l_n start_mlp = MLP(in_dim=in_dim) start_gcn = GCN(in_dim=in_dim, out_dim=in_dim) self.add_module('start_mlp', start_mlp) self.add_module('start_gcn', start_gcn) for l in range(l_n): down_mlp = MLP(in_dim=in_dim) down_gcn = GCN(in_dim=in_dim, out_dim=in_dim) up_mlp = MLP(in_dim=in_dim) up_gcn = GCN(in_dim=in_dim, out_dim=in_dim) pool = GraphPool(ks[l], in_dim=in_dim, num_classes=num_classes, num_queries=num_queries) unpool = GraphUnpool() self.add_module('down_mlp_{}'.format(l), down_mlp) self.add_module('down_gcn_{}'.format(l), down_gcn) self.add_module('up_mlp_{}'.format(l), up_mlp) self.add_module('up_gcn_{}'.format(l), up_gcn) self.add_module('pool_{}'.format(l), pool) self.add_module('unpool_{}'.format(l), unpool) bottom_mlp = MLP(in_dim=in_dim) bottom_gcn = GCN(in_dim=in_dim, out_dim=in_dim) self.add_module('bottom_mlp', bottom_mlp) self.add_module('bottom_gcn', bottom_gcn) out_mlp = MLP(in_dim=in_dim * 2) out_gcn = GCN(in_dim=in_dim * 2, out_dim=num_classes) self.add_module('out_mlp', out_mlp) self.add_module('out_gcn', out_gcn) def forward(self, A_init, X): adj_ms = [] indices_list = [] down_outs = [] A_old = A_init # visual_X(1) if tt.arg.visual == True: batch = X.size(0) for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['Input_feature'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') A_new = self._modules['start_mlp'](X) X = self._modules['start_gcn'](A_new, A_old, X) org_X = X # visual_X(2) if tt.arg.visual == True: for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['start_gcn'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') for i in range(self.l_n): A_old = A_new A_new = self._modules['down_mlp_{}'.format(i)](X) X = self._modules['down_gcn_{}'.format(i)](A_new, A_old, X) adj_ms.append(A_new) down_outs.append(X) # visual_X(3.1) if tt.arg.visual == True: batch = X.size(0) for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['down_mlp_pool_before_{}'.format(i)] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') A_new, X, idx_batch = self._modules['pool_{}'.format(i)](A_new, X) indices_list.append(idx_batch) # visual_X(3.2) if tt.arg.visual == True: batch = X.size(0) for j in range(batch): if i == 0: old_idx = pd.read_csv( 'visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), skiprows=0, nrows=1, header=None).to_numpy( copy=True).reshape(-1)[1:].astype(np.int32) else: old_idx = pd.read_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), skiprows=4 + (i-1) * 3, nrows=1, header=None).to_numpy( copy=True).reshape(-1)[1:].astype(np.int32) np_idx = old_idx[idx_batch[j].cpu().numpy()] np_X = X[j].detach().cpu().numpy() data = [['label'] + list(np_idx), ['down_mlp_pool_after_{}'.format(i)] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') A_old = A_new A_new = self._modules['bottom_mlp'](X) X = self._modules['bottom_gcn'](A_new, A_old, X) # visual_X(4) if tt.arg.visual == True: for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['bottom_mlp'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') for i in range(self.l_n): up_idx = self.l_n - i - 1 A_old, idx_batch = adj_ms[up_idx], indices_list[up_idx] A_old, X = self._modules['unpool_{}'.format(i)](A_old, X, idx_batch) X = X.add(down_outs[up_idx]) A_new = self._modules['up_mlp_{}'.format(up_idx)](X) X = self._modules['up_gcn_{}'.format(up_idx)](A_new, A_old, X) # visual_X(5) if tt.arg.visual == True: for j in range(batch): if up_idx == 0: np_idx = pd.read_csv( 'visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), skiprows=0, nrows=1, header=None).to_numpy( copy=True).reshape(-1)[1:].astype(np.int32) else: np_idx = pd.read_csv( 'visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), skiprows=1 + up_idx * 3, nrows=1, header=None).to_numpy( copy=True).reshape(-1)[1:].astype(np.int32) np_X = X[j].detach().cpu().numpy() data = [['label'] + list(np_idx), ['unpool_{}'.format(i)] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') X = torch.cat([X, org_X], -1) # visual_X(6) if tt.arg.visual == True: for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['skip_connection'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') A_old = A_new A_new = self._modules['out_mlp'](X) X = self._modules['out_gcn'](A_new, A_old, X) # visual_X(7) if tt.arg.visual == True: for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['out'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') out = F.log_softmax(X,dim=-1) return out class MLP(nn.Module): def __init__(self,in_dim,hidden=96,ratio=[2,2,1,1]): super(MLP, self).__init__() # set layers self.conv_1 = nn.Sequential(nn.Conv2d(in_channels=in_dim, out_channels=hidden*ratio[0], kernel_size=1, bias=False), nn.BatchNorm2d(num_features=hidden*ratio[0]), nn.LeakyReLU()) self.conv_2 = nn.Sequential(nn.Conv2d(in_channels=hidden*ratio[0], out_channels=hidden*ratio[1], kernel_size=1, bias=False), nn.BatchNorm2d(num_features=hidden*ratio[1]), nn.LeakyReLU()) self.conv_3 = nn.Sequential(nn.Conv2d(in_channels=hidden * ratio[1], out_channels=hidden * ratio[2], kernel_size=1, bias=False), nn.BatchNorm2d(num_features=hidden * ratio[2]), nn.LeakyReLU()) self.conv_4 = nn.Sequential(nn.Conv2d(in_channels=hidden * ratio[2], out_channels=hidden * ratio[3], kernel_size=1, bias=False), nn.BatchNorm2d(num_features=hidden * ratio[3]), nn.LeakyReLU()) self.conv_last = nn.Conv2d(in_channels=hidden * ratio[3], out_channels=1, kernel_size=1) def forward(self,X): # compute abs(x_i, x_j) x_i = X.unsqueeze(2) x_j = torch.transpose(x_i, 1, 2) x_ij = torch.abs(x_i - x_j) # parrallel x_ij = torch.transpose(x_ij, 1, 3).to(self.conv_last.weight.device) # A_new = self.conv_last(self.conv_4(self.conv_3(self.conv_2(self.conv_1(x_ij))))).squeeze(1) A_new = F.softmax(A_new, dim=-1) return A_new class GCN(nn.Module): def __init__(self, in_dim, out_dim=133,dropout=0.0): super(GCN, self).__init__() if tt.arg.unet_mode == 'addold': self.proj = nn.Linear(in_dim * 2, out_dim) else: self.proj = nn.Linear(in_dim, out_dim) self.drop = nn.Dropout(p=dropout) def forward(self,A_new, A_old, X): # parrallel X = X.to(self.proj.weight.device) A_new = A_new.to(X.device) A_old = A_old.to(X.device) # X = self.drop(X) if tt.arg.unet_mode == 'addold': X1 = torch.bmm(A_new, X) X2 = torch.bmm(A_old, X) X = torch.cat([X1, X2], dim=-1) else: X = torch.bmm(A_new, X) X = self.proj(X) return X class Unet2(nn.Module): def __init__(self, ks_1,ks_2,mode_1,mode_2, in_dim, num_classes, num_queries): super(Unet2, self).__init__() l_n_1 = len(ks_1) l_n_2 = len(ks_2) l_n = l_n_1 + l_n_2 self.l_n_1 = l_n_1 self.l_n_2 = l_n_2 self.l_n = l_n self.mode_1 = mode_1 self.mode_2 = mode_2 start_mlp = MLP(in_dim=in_dim) start_gcn = GCN(in_dim=in_dim, out_dim=in_dim) self.add_module('start_mlp', start_mlp) self.add_module('start_gcn', start_gcn) for l in range(l_n): down_mlp = MLP(in_dim=in_dim) down_gcn = GCN(in_dim=in_dim, out_dim=in_dim) up_mlp = MLP(in_dim=in_dim) up_gcn = GCN(in_dim=in_dim, out_dim=in_dim) if l < l_n_1: pool = GraphPool(ks_1[l], in_dim=in_dim, num_classes=num_classes, num_queries=num_queries) else: pool = GraphPool(ks_2[l - l_n_1], in_dim=in_dim, num_classes=num_classes, num_queries=num_queries) unpool = GraphUnpool() self.add_module('down_mlp_{}'.format(l), down_mlp) self.add_module('down_gcn_{}'.format(l), down_gcn) self.add_module('up_mlp_{}'.format(l), up_mlp) self.add_module('up_gcn_{}'.format(l), up_gcn) self.add_module('pool_{}'.format(l), pool) self.add_module('unpool_{}'.format(l), unpool) bottom_mlp = MLP(in_dim=in_dim) bottom_gcn = GCN(in_dim=in_dim, out_dim=in_dim) self.add_module('bottom_mlp', bottom_mlp) self.add_module('bottom_gcn', bottom_gcn) out_mlp = MLP(in_dim=in_dim * 2) out_gcn = GCN(in_dim=in_dim * 2, out_dim=num_classes) self.add_module('out_mlp', out_mlp) self.add_module('out_gcn', out_gcn) def forward(self, A_init, X): adj_ms = [] indices_list = [] down_outs = [] A_old = A_init # visual_X(1) if tt.arg.visual == True: batch = X.size(0) for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['Input_feature'] + list(np_X)] df = pd.DataFrame(data) df.to_csv('visual_%s/%03d/feature_record.csv' % (tt.arg.exp_name, tt.arg.iter * batch + j), header=False, index=False, mode='a') A_new = self._modules['start_mlp'](X) X = self._modules['start_gcn'](A_new, A_old, X) org_X = X # visual_X(2) if tt.arg.visual == True: for j in range(batch): np_X = X[j].detach().cpu().numpy() data = [['start_gcn'] + list(np_X)] df =
pd.DataFrame(data)
pandas.DataFrame
""" 30 May 2020 Author: <NAME> After we have cleaned all the datasets, we will now combine everything into a single dataframe. Saving it as csv for the moment as we are still trying to figure out how we can best share this data. """ import pandas as pd #Simple calling of all the cleaned csv files with the file path censored df1 = pd.read_csv(r"file_path\API_2005_2013_cleaned.csv") df2 = pd.read_csv(r"file_path\API_2013_2014_cleaned.csv") df3 = pd.read_csv(r"file_path\API_2014_2015_cleaned.csv") df4 = pd.read_csv(r"file_path\API_2015_cleaned.csv") df5 = pd.read_csv(r"file_path\API_2016_cleaned.csv") df6 = pd.read_csv(r"file_path\API_Johor_2017_cleaned.csv") df7 = pd.read_csv(r"file_path\API_Johor_2018_cleaned.csv") df8 = pd.read_csv(r"file_path\API_Johor_2019_cleaned.csv") df9 = pd.read_csv(r"file_path\API_Kedah_2017_cleaned.csv") df10 = pd.read_csv(r"file_path\API_Kedah_2018_cleaned.csv") df11 = pd.read_csv(r"file_path\API_Kedah_2019_cleaned.csv") df12 = pd.read_csv(r"file_path\API_Kelantan_2017_cleaned.csv") df13 = pd.read_csv(r"file_path\API_Kelantan_2018_cleaned.csv") df14 = pd.read_csv(r"file_path\API_Kelantan_2019_cleaned.csv") df15 = pd.read_csv(r"file_path\API_KL_2017_cleaned.csv") df16 = pd.read_csv(r"file_path\API_Melaka_2017_cleaned.csv") df17 = pd.read_csv(r"file_path\API_Melaka_2018_cleaned.csv") df18 = pd.read_csv(r"file_path\API_NS_2017_cleaned.csv") df19 = pd.read_csv(r"file_path\API_NS_2018_cleaned.csv") df20 = pd.read_csv(r"file_path\API_Pahang_2017_cleaned.csv") df21 = pd.read_csv(r"file_path\API_Pahang_2018_cleaned.csv") df22 = pd.read_csv(r"file_path\API_Penang_2017_cleaned.csv") df23 = pd.read_csv(r"file_path\API_Penang_2018_cleaned.csv") df24 = pd.read_csv(r"file_path\API_Perak_2017_cleaned.csv") df25 = pd.read_csv(r"file_path\API_Perak_2018_cleaned.csv") df26 = pd.read_csv(r"file_path\API_Perlis_2017_cleaned.csv") df27 =
pd.read_csv(r"file_path\API_Perlis_2018_cleaned.csv")
pandas.read_csv
import json from unittest.mock import patch import numpy as np import pandas as pd import pytest from evalml.model_understanding import find_confusion_matrix_per_thresholds from evalml.model_understanding.decision_boundary import ( _accuracy, _balanced_accuracy, _f1, _find_confusion_matrix_objective_threshold, _find_data_between_ranges, _precision, _recall, ) from evalml.objectives import AccuracyBinary @pytest.mark.parametrize( "val_list,expected_val", [ ([0, 0, 100, 100], 0.0), ([100, 0, 0, 100], 0.5), ([50, 50, 50, 50], 0.5), ([40, 20, 10, 30], 0.6), ], ) def test_accuracy(val_list, expected_val): val = _accuracy(val_list) assert val == expected_val @pytest.mark.parametrize( "val_list,expected_val", [ ([0, 0, 100, 100], 0.0), ([100, 0, 0, 100], 0.25), ([50, 50, 50, 50], 0.5), ([40, 20, 10, 30], 13 / 21), ], ) def test_balanced_accuracy(val_list, expected_val): val = _balanced_accuracy(val_list) assert val == expected_val @pytest.mark.parametrize( "val_list,expected_val", [ ([0, 0, 100, 100], 0.0), ([100, 0, 0, 100], 0.5), ([50, 50, 50, 50], 0.5), ([40, 20, 10, 30], 4 / 7), ], ) def test_recall(val_list, expected_val): val = _recall(val_list) assert val == expected_val @pytest.mark.parametrize( "val_list,expected_val", [ ([0, 0, 100, 100], 0.0), ([100, 0, 0, 100], 1.0), ([50, 50, 50, 50], 0.5), ([40, 20, 10, 30], 0.8), ], ) def test_precision(val_list, expected_val): val = _precision(val_list) assert val == expected_val @pytest.mark.parametrize( "val_list,expected_val", [ ([0, 0, 100, 100], 0.0), ([100, 0, 0, 100], 2 / 3), ([50, 50, 50, 50], 0.5), ([40, 20, 10, 30], 2 / 3), ], ) def test_f1(val_list, expected_val): val = _f1(val_list) assert val == expected_val def test_find_confusion_matrix_per_threshold_errors( dummy_binary_pipeline, dummy_multiclass_pipeline ): X = pd.DataFrame() y = pd.Series() with pytest.raises( ValueError, match="Expected a fitted binary classification pipeline" ): find_confusion_matrix_per_thresholds(dummy_binary_pipeline, X, y) with pytest.raises( ValueError, match="Expected a fitted binary classification pipeline" ): find_confusion_matrix_per_thresholds(dummy_multiclass_pipeline, X, y) dummy_multiclass_pipeline._is_fitted = True with pytest.raises( ValueError, match="Expected a fitted binary classification pipeline" ): find_confusion_matrix_per_thresholds(dummy_multiclass_pipeline, X, y) @patch("evalml.pipelines.BinaryClassificationPipeline.fit") @patch("evalml.pipelines.BinaryClassificationPipeline.predict_proba") @patch( "evalml.model_understanding.decision_boundary._find_confusion_matrix_objective_threshold" ) @patch("evalml.model_understanding.decision_boundary._find_data_between_ranges") def test_find_confusion_matrix_per_threshold_args_pass_through( mock_ranges, mock_threshold, mock_pred_proba, mock_fit, dummy_binary_pipeline ): n_bins = 100 X = pd.DataFrame() y = pd.Series([0] * 500 + [1] * 500) dummy_binary_pipeline._is_fitted = True # set return predicted proba preds = [0.1] * 250 + [0.8] * 500 + [0.6] * 250 pred_proba = pd.DataFrame({0: [1 - v for v in preds], 1: preds}) mock_pred_proba.return_value = pred_proba # set the output for the thresholding private method obj_dict = { "accuracy": [{"objective score": 0.5, "threshold value": 0.5}, "some function"], "balanced_accuracy": [ {"objective score": 0.5, "threshold value": 0.25}, "some function", ], } conf_matrix = np.array([[0, 100, 280, 0] for i in range(n_bins)]) mock_threshold.return_value = (conf_matrix, obj_dict) # set the output for data between ranges range_result = [[range(5)] for i in range(n_bins)] mock_ranges.return_value = range_result # calculate the expected output results bins = [i / n_bins for i in range(n_bins + 1)] expected_pos_skew, pos_range = np.histogram(pred_proba.iloc[:, -1][500:], bins=bins) expected_neg_skew, _ = np.histogram(pred_proba.iloc[:, -1][:500], bins=bins) expected_result_df = pd.DataFrame( { "true_pos_count": expected_pos_skew, "true_neg_count": expected_neg_skew, "true_positives": conf_matrix[:, 0].tolist(), "true_negatives": conf_matrix[:, 1].tolist(), "false_positives": conf_matrix[:, 2].tolist(), "false_negatives": conf_matrix[:, 3].tolist(), "data_in_bins": range_result, }, index=pos_range[1:], ) final_obj_dict = { "accuracy": {"objective score": 0.5, "threshold value": 0.5}, "balanced_accuracy": {"objective score": 0.5, "threshold value": 0.25}, } returned_result = find_confusion_matrix_per_thresholds( dummy_binary_pipeline, X, y, n_bins ) call_args = mock_threshold.call_args assert all(call_args[0][0] == expected_pos_skew) assert all(call_args[0][1] == expected_neg_skew) assert all(call_args[0][2] == pos_range) assert isinstance(returned_result, tuple) pd.testing.assert_frame_equal(returned_result[0], expected_result_df) assert returned_result[1] == final_obj_dict @patch("evalml.pipelines.BinaryClassificationPipeline.fit") @patch("evalml.pipelines.BinaryClassificationPipeline.predict_proba") @pytest.mark.parametrize("n_bins", [100, 10, None]) def test_find_confusion_matrix_per_threshold_n_bins( mock_pred_proba, mock_fit, n_bins, dummy_binary_pipeline ): X = pd.DataFrame() y = pd.Series([0] * 1200 + [1] * 800) dummy_binary_pipeline._is_fitted = True top_k = 5 # set return predicted proba preds = [0.1] * 400 + [0.8] * 400 + [0.6] * 400 + [0.4] * 400 + [0.5] * 400 pred_proba = pd.DataFrame({0: [1 - v for v in preds], 1: preds}) mock_pred_proba.return_value = pred_proba # calculate the expected output results returned_result = find_confusion_matrix_per_thresholds( dummy_binary_pipeline, X, y, n_bins, top_k=top_k ) assert isinstance(returned_result, tuple) if n_bins is not None: assert len(returned_result[0]) == n_bins assert returned_result[0].columns.tolist() == [ "true_pos_count", "true_neg_count", "true_positives", "true_negatives", "false_positives", "false_negatives", "data_in_bins", ] assert sum(returned_result[0]["true_pos_count"]) == 800 assert sum(returned_result[0]["true_neg_count"]) == 1200 assert all([len(v) <= top_k for v in returned_result[0]["data_in_bins"]]) assert isinstance(returned_result[1], dict) assert set(returned_result[1].keys()) == { "accuracy", "balanced_accuracy", "precision", "f1", } @patch("evalml.pipelines.BinaryClassificationPipeline.fit") @patch("evalml.pipelines.BinaryClassificationPipeline.predict_proba") @pytest.mark.parametrize("top_k", [-1, 4]) @pytest.mark.parametrize("n_bins", [100, None]) def test_find_confusion_matrix_per_threshold_k_( mock_pred_proba, mock_fit, n_bins, top_k, dummy_binary_pipeline ): X = pd.DataFrame() y =
pd.Series([0] * 1200 + [1] * 800)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 16:14:12 2019 @author: <NAME> """ import pandas as pd import numpy as np import matplotlib.pyplot as plt #import graphviz import os import seaborn as sns from scipy.stats import chi2_contingency os.chdir("E:\PYTHON NOTES\projects\cab fare prediction") dataset_train=pd.read_csv("train_cab.csv") dataset_test=pd.read_csv("test.csv") dataset_train.describe() # dimension of data # dimension of data dataset_train.shape # Number of rows dataset_train.shape[0] # number of columns dataset_train.shape[1] # name of columns list(dataset_train) # data detailat dataset_train.info() dataset_train.isnull().sum() dataset_test.isnull().sum() sns.heatmap(dataset_train.isnull(),yticklabels=False,cbar=False, cmap='coolwarm') #datetime change into reqired format data=[dataset_train,dataset_test] for i in data: i["pickup_datetime"]=pd.to_datetime(i["pickup_datetime"],errors="coerce") dataset_train.info() dataset_test.info() dataset_train.isnull().sum() dataset_test.isna().sum() dataset_train=dataset_train.dropna(subset=["pickup_datetime"],how="all") dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) np.where(dataset_train["fare_amount"]=="430-") dataset_train["fare_amount"].loc[1123]=430 dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) #we will convery passanger count in to catogorical varibale ,cause passangor caount is not contineous varibale dataset_obj=["passenger_count"] dataset_int=["fare_amount","pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] # data visulization import seaborn as sns import matplotlib.pyplot as plt #$stting up the sns for plots sns.set(style="darkgrid",palette="Set1") #some histogram plot from seaborn lib plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.distplot(dataset_train["fare_amount"],bins=50) plt.subplot(322) _=sns.distplot(dataset_train["pickup_longitude"],bins=50) plt.subplot(323) _=sns.distplot(dataset_train["pickup_latitude"],bins=50) plt.subplot(324) _ = sns.distplot(dataset_train['dropoff_longitude'],bins=50) plt.subplot(325) _ = sns.distplot(dataset_train['dropoff_latitude'],bins=50) plt.show() plt.savefig('hist.png') import scipy.stats as stats #Some Bee Swarmplots # plt.title('Cab Fare w.r.t passenger_count') plt.figure(figsize=(25,25)) #_=sns.swarmplot(x="passenger_count",y="fare_amount",data=dataset_train) #Jointplots for Bivariate Analysis. #Here Scatter plot has regression line between 2 variables along with separate Bar plots of both variables. #Also its annotated with pearson correlation coefficient and p value. _=sns.jointplot(x="fare_amount",y="pickup_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) #plt.savefig("jointfplo.png") plt.show() _=sns.jointplot(x="fare_amount",y="pickup_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) # some violineplots to see spread d variable plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.violinplot(y="fare_amount",data=dataset_train) plt.subplot(322) _=sns.violinplot(y="pickup_longitude",data=dataset_train) plt.subplot(323) _ = sns.violinplot(y='pickup_latitude',data=dataset_train) plt.subplot(324) _ = sns.violinplot(y='dropoff_longitude',data=dataset_train) plt.subplot(325) _ = sns.violinplot(y='dropoff_latitude',data=dataset_train) plt.savefig("violine.png") plt.show() #pairplot for all numeric varibale _=sns.pairplot(dataset_train.loc[:,dataset_int],kind="scatter",dropna=True) _.fig.suptitle("pairwise plot all numeric varibale") #plt.savefig("pairwise.png") plt.show() #removing values which are not within the desired range outlier depanding upon basic understanding of dataset #1.Fare amount has a negative value, which doesn't make sense. A price amount cannot be -ve and also cannot be 0. So we will remove these fields. sum(dataset_train["fare_amount"]<1) dataset_train[dataset_train["fare_amount"]<1] dataset_train=dataset_train.drop(dataset_train[dataset_train["fare_amount"]<1].index,axis=0) #dataset_train.loc[dataset_train["fare_amount"]<1,"fare_amount"]=np.nan #2. passanger count varibale /// passanger count cound not increse more than 6 sum(dataset_train["passenger_count"]>6) for i in range (4,11): print("passanger_count_above"+ str(i)+ "={}".format(sum(dataset_train["passenger_count"]>i))) # so 20 observations of passenger_count is consistenly above from 6,7,8,9,10 passenger_counts, let's check them. dataset_train[dataset_train["passenger_count"]>6] #Also we need to see if there are any passenger_count<1 dataset_train[dataset_train["passenger_count"]<1] len(dataset_train[dataset_train["passenger_count"]<1]) dataset_test["passenger_count"].unique() # We will remove 20 observation which are above 6 value because a cab cannot hold these number of passengers. dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]<1].index,axis=0) dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]>6].index,axis=0) #dataset_train.loc[dataset_train["passenger_count"]<1,"passenger_count"]=np.nan #dataset_train.loc[dataset_train["passenger_count"]>6,"passenger_count"]=np.nan sum(dataset_train["passenger_count"]<1) #3.Latitudes range from -90 to 90.Longitudes range from -180 to 180. Removing which does not satisfy these ranges print("pickup_longitude above 180 ={}".format(sum(dataset_train["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_train["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_train["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_train["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_train['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_train['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_train['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_train['dropoff_latitude']>90))) #for test data print("pickup_longitude above 180 ={}".format(sum(dataset_test["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_test["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_test["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_test["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_test['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_test['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_test['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_test['dropoff_latitude']>90))) #There's only one outlier which is in variable pickup_latitude.So we will remove it with nan. #Also we will see if there are any values equal to 0. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_train[i]==0))) #for test data for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_test[i]==0))) #there are values which are equal to 0. we will remove them. # There's only one outlier which is in variable pickup_latitude.So we will remove it with nan dataset_train=dataset_train.drop(dataset_train[dataset_train["pickup_latitude"]>90].index,axis=0) #there are values which are equal to 0. we will remove them. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: dataset_train=dataset_train.drop(dataset_train[dataset_train[i]==0].index,axis=0) # for i in ['pickup_longitude','pickup_latitude','dropoff_longitude','dropoff_latitude']: # train.loc[train[i]==0,i] = np.nan # train.loc[train['pickup_latitude']>90,'pickup_latitude'] = np.nan dataset_train.shape #Missing Value Analysis missing_value=dataset_train.isnull().sum() missing_value = missing_value.reset_index() missing_value = missing_value.rename(columns = {'index': 'Variables', 0: 'Missing_percentage'}) missing_value #find out percentage of null value missing_value['Missing_percentage'] = (missing_value['Missing_percentage']/len(dataset_train))*100 missing_value = missing_value.sort_values('Missing_percentage', ascending = False).reset_index(drop = True) dataset_train.info() dataset_train["fare_amount"]=dataset_train["fare_amount"].fillna(dataset_train["fare_amount"].median()) dataset_train["passenger_count"]=dataset_train["passenger_count"].fillna(dataset_train["passenger_count"].mode()[0]) dataset_train.isnull().sum() dataset_train["passenger_count"]=dataset_train["passenger_count"].round().astype(object) dataset_train["passenger_count"].unique() #outliers analysis by box plot plt.figure(figsize=(20,5)) plt.xlim(0,100) sns.boxplot(x=dataset_train["fare_amount"],data=dataset_train,orient="h") # sum(dataset_train['fare_amount']<22.5)/len(dataset_train['fare_amount'])*100 #Bivariate Boxplots: Boxplot for Numerical Variable Vs Categorical Variable. plt.figure(figsize=(20,10)) plt.xlim(0,100) _=sns.boxplot(x=dataset_train["fare_amount"],y=dataset_train["passenger_count"],data=dataset_train,orient="h") def outlier_detect(df): for i in df.describe().columns: q1=df.describe().at["25%",i] q3=df.describe().at["75%",i] IQR=(q3-q1) ltv=(q1-1.5*IQR) utv=(q3+1.5*IQR) x=np.array(df[i]) p=[] for j in x: if j<ltv: p.append(ltv) elif j>utv: p.append(utv) else: p.append(j) df[i]=p return (df) dataset_int1=outlier_detect(dataset_train.loc[:,dataset_int]) dataset_test_obj=["passenger_count"] dataset_test_int=["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] dataset_test1=outlier_detect(dataset_test.loc[:,dataset_test_int]) dataset_test1=pd.concat([dataset_test1,dataset_test["passenger_count"]],axis=1) dataset_test=pd.concat([dataset_test1,dataset_test["pickup_datetime"]],axis=1) #determine corr corr=dataset_int1.corr() f,ax=plt.subplots(figsize=(7,5)) sns.heatmap(corr,mask=np.zeros_like(corr,dtype=np.bool),cmap=sns.diverging_palette(220,10,as_cmap=True),square=True,ax=ax) # """feature engineering""" #1.we will derive new features from pickup_datetime variable #new features will be year,month,day_of_week,hour dataset_train1=pd.concat([dataset_int1,dataset_train["passenger_count"]],axis=1) dataset_train2=pd.concat([dataset_train1,dataset_train["pickup_datetime"]],axis=1) #dataset_train2.isna().sum() data=[dataset_train2,dataset_test] for i in data: i["year"]=i["pickup_datetime"].apply(lambda row:row.year) i["month"]=i["pickup_datetime"].apply(lambda row:row.month) i["day_of_week"] = i["pickup_datetime"].apply(lambda row: row.dayofweek) i["hour"] = i["pickup_datetime"].apply(lambda row: row.hour) # train2_nodummies=dataset_train2.copy() # dataset_train2=train2_nodummies.copy() plt.figure(figsize=(20,10)) sns.countplot(dataset_train2["year"]) # plt.savefig('year.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['month']) # plt.savefig('month.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['day_of_week']) # plt.savefig('day_of_week.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['hour']) # plt.savefig('hour.png') plt.show #Now we will use month,day_of_week,hour to derive new features like sessions in a day,seasons in a year,week:weekend/weekday # for sessions in a day using hour columns def f(x): if(x>=5) and (x<=11): return "morning" elif (x>=12) and (x<=16): return "afternoon" elif (x>=17) and (x<=20): return "evening" elif (x>=21) and (x<=23): return "night pm" elif (x>=0) and (x<=4): return "night am" dataset_train2["sessions"]=dataset_train2["hour"].apply(f) dataset_test['session'] = dataset_test['hour'].apply(f) #for seasons in a year using month column def g(x): if (x>=3) and (x<=5): return "spring" elif (x>=6) and (x<=8): return "summer" elif (x>=9) and (x<=11): return "fall" else : return "winter" dataset_train2['seasons'] = dataset_train2['month'].apply(g) dataset_test['seasons'] = dataset_test['month'].apply(g) #for week / weekend in a day of week columns def h(x): if (x>=0) and (x<=4): return "weekday" elif (x>=5) and (x<=6): return "weekend" dataset_train2['week'] = dataset_train2['day_of_week'].apply(h) dataset_test['week'] = dataset_test['day_of_week'].apply(h) dataset_train2['passenger_count'].describe() dataset_train2.isnull().sum() dataset_test.isna().sum() #creating dummy varibale temp=pd.get_dummies(dataset_train2["passenger_count"],prefix="passenger_count") dataset_train2=dataset_train2.join(temp) temp = pd.get_dummies(dataset_test['passenger_count'], prefix = 'passenger_count') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_test['seasons'], prefix = 'seasons') dataset_test = dataset_test.join(temp) temp=pd.get_dummies(dataset_train2["seasons"],prefix = "season" ) dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_train2['week'], prefix = 'week') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['week'], prefix = 'week') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_train2['sessions'], prefix = 'sessions') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['session'], prefix = 'session') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_train2['year'], prefix = 'year') dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_test['year'], prefix = 'year') dataset_test = dataset_test.join(temp) #we will drop one column from each one-hot-encoded variables dataset_train2.columns dataset_test.columns dataset_train2.info() dataset_train2=dataset_train2.drop(['passenger_count_1.0','season_fall','week_weekday','sessions_afternoon','year_2009'],axis=1) dataset_test=dataset_test.drop(['passenger_count_1','seasons_fall','week_weekday','session_afternoon','year_2009'],axis=1) #3.Feature Engineering for latitude and longitude variable #As we have latitude and longitude data for pickup and dropoff, we will find the distance the cab travelled from pickup and dropoff location. #def haversine(coord1,coord2): # data=[dataset_train2,dataset_test] # for i in data: # lon1,lat1=coord1 # lon2,lat2=coord2 # r=6371000 #randius of earth in meters # phi_1=np.radians(i[lat1]) # phi_2=np.radians(i[lat2]) # delta_phi=np.radians(i[lat2]-i[lat1]) # delta_lambda=np.radians(i[lon2]-i[lon1]) # a=np.sin(delta_phi/2.0)**2+np.cos(phi_1)*np.cos(phi_2)*np.sin(delta_lambda/2.0)**2 # c=2*np.arctan2(np.sqrt(a),np.sqrt(1-a)) # meters=c*r #output distance in meter # km=meters/1000.0 # miles=round(km,3)/1.609344 # i["distance"]=miles # print(f"distance:{miles} miles") # return miles # #haversine(['pickup_longitude','pickup_latitude'],['dropoff_longitude','dropoff_latitude']) #As Vincenty is more accurate than haversine. Also vincenty is prefered for short distances. #Therefore we will drop great_circle. we will drop them together with other variables which were used to feature engineer. from geopy.distance import geodesic from geopy.distance import great_circle #from sklearn.externals import joblib data=[dataset_train2,dataset_test] for i in data: i["great_circle"]=i.apply(lambda x : great_circle((x["pickup_latitude"],x["pickup_longitude"]),(x["dropoff_latitude"],x["dropoff_longitude"])).miles,axis=1) i["geodesic"]=i.apply(lambda x: geodesic((x["pickup_latitude"],x["pickup_longitude"]),(x["dropoff_latitude"],x["dropoff_longitude"])).miles,axis=1) #We will remove the variables which were used to feature engineer new variable dataset_train2=dataset_train2.drop(['pickup_datetime','pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day_of_week', 'hour', 'sessions', 'seasons', 'week','great_circle'],axis=1) dataset_test=dataset_test.drop(['pickup_datetime','pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'year', 'month', 'day_of_week', 'hour', 'session', 'seasons', 'week','great_circle'],axis=1) plt.figure(figsize=(20,5)) sns.boxplot(x=dataset_train2["geodesic"],data=dataset_train2,orient="h") plt.figure(figsize=(20,5)) plt.xlim(0,100) sns.boxplot(x=dataset_train2['geodesic'],data=dataset_train2,orient='h') plt.title('Boxplot of geodesic ') # plt.savefig('bp geodesic.png') plt.show() dataset_train2.isnull().sum() #outlier in geodesic def outlier_detect(df): for i in df.describe().columns: q1=df.describe().at["25%",i] q3=df.describe().at["75%",i] IQR=(q3-q1) ltv=(q1-1.5*IQR) utv=(q3+1.5*IQR) x=np.array(df[i]) p=[] for j in x: if j<ltv: p.append(ltv) elif j>utv: p.append(utv) else: p.append(j) df[i]=p return (df) dataset_train11=pd.DataFrame(dataset_train2["geodesic"]) dataset_11=outlier_detect(dataset_train11) dataset_train2=dataset_train2.drop(["geodesic"],axis=1) dataset_train2=pd.concat([dataset_train2,dataset_11],axis=1) dataset_train2.info() #***************************************************** #for test data dataset_test1=
pd.DataFrame(dataset_test["geodesic"])
pandas.DataFrame
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations import mock import numpy as np import pandas as pd from pandas import testing import unittest class MetricTest(unittest.TestCase): """Tests general features of Metric.""" df = pd.DataFrame({'X': [0, 1, 2, 3], 'Y': [0, 1, 1, 2]}) def test_precompute(self): metric = metrics.Metric( 'foo', precompute=lambda df, split_by: df[split_by], compute=lambda x: x.sum().values[0]) output = metric.compute_on(self.df, 'Y') expected = pd.DataFrame({'foo': [0, 2, 2]}, index=range(3)) expected.index.name = 'Y' testing.assert_frame_equal(output, expected) def test_compute(self): metric = metrics.Metric('foo', compute=lambda x: x['X'].sum()) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_postcompute(self): def postcompute(values, split_by): del split_by return values / values.sum() output = metrics.Sum('X', postcompute=postcompute).compute_on(self.df, 'Y') expected = operations.Distribution('Y', metrics.Sum('X')).compute_on(self.df) expected.columns = ['sum(X)'] testing.assert_frame_equal(output.astype(float), expected) def test_compute_slices(self): def _sum(df, split_by): if split_by: df = df.groupby(split_by) return df['X'].sum() metric = metrics.Metric('foo', compute_slices=_sum) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_final_compute(self): metric = metrics.Metric( 'foo', compute=lambda x: x, final_compute=lambda *_: 2) output = metric.compute_on(None) self.assertEqual(output, 2) def test_pipeline_operator(self): m = metrics.Count('X') testing.assert_frame_equal( m.compute_on(self.df), m | metrics.compute_on(self.df)) class SimpleMetricTest(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 3, 4], 'Y': [3, 1, 1, 4, 4, 3, 5], 'grp': ['A'] * 3 + ['B'] * 4 }) def test_list_where(self): metric = metrics.Mean('X', where=['grp == "A"']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_single_list_where(self): metric = metrics.Mean('X', where=['grp == "A"', 'Y < 2']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A" and Y < 2')['X'].mean() self.assertEqual(output, expected) def test_count_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 7) def test_count_split_by_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].count() expected.name = 'count(X)' testing.assert_series_equal(output, expected) def test_count_where(self): metric = metrics.Count('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 3) def test_count_with_nan(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3, 4]}) metric = metrics.Count('X') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 6) def test_count_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'count(X)': [7]}) testing.assert_frame_equal(output, expected) def test_count_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [7]}, index=['count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_count_split_by_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'count(X)': [3, 4]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_count_split_by_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 4], 'grp': ['A', 'B'] }, index=['count(X)', 'count(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_count_distinct(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3]}) metric = metrics.Count('X', distinct=True) output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 3) def test_sum_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 14) def test_sum_split_by_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].sum() expected.name = 'sum(X)' testing.assert_series_equal(output, expected) def test_sum_where(self): metric = metrics.Sum('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].sum() self.assertEqual(output, expected) def test_sum_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X)': [14]}) testing.assert_frame_equal(output, expected) def test_sum_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [14]}, index=['sum(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_sum_split_by_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X)': [3, 11]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_sum_split_by_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 11], 'grp': ['A', 'B'] }, index=['sum(X)', 'sum(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_dot_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, sum(self.df.X * self.df.Y)) def test_dot_split_by_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) self.df['X * Y'] = self.df.X * self.df.Y expected = self.df.groupby('grp')['X * Y'].sum() expected.name = 'sum(X * Y)' testing.assert_series_equal(output, expected) def test_dot_where(self): metric = metrics.Dot('X', 'Y', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) d = self.df.query('grp == "A"') self.assertEqual(output, sum(d.X * d.Y)) def test_dot_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X * Y)': [sum(self.df.X * self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_dot_normalized(self): metric = metrics.Dot('X', 'Y', True) output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X * Y)': [(self.df.X * self.df.Y).mean()]}) testing.assert_frame_equal(output, expected) def test_dot_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [sum(self.df.X * self.df.Y)]}, index=['sum(X * Y)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_dot_split_by_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X * Y)': [5, 45]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_dot_split_by_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [5, 45], 'grp': ['A', 'B'] }, index=['sum(X * Y)', 'sum(X * Y)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_mean_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_mean_split_by_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].mean() expected.name = 'mean(X)' testing.assert_series_equal(output, expected) def test_mean_where(self): metric = metrics.Mean('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_mean_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X)': [2.]}) testing.assert_frame_equal(output, expected) def test_mean_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_mean_split_by_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'mean(X)': [1, 2.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_mean_split_by_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.75], 'grp': ['A', 'B'] }, index=['mean(X)', 'mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_max(self): metric = metrics.Max('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'max(X)': [4]}) testing.assert_frame_equal(output, expected) def test_min(self): metric = metrics.Min('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'min(X)': [1]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_mean_split_by_not_df(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((1.25, 3.), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted mean(X)' testing.assert_series_equal(output, expected) def test_weighted_mean_unmelted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted mean(X)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_melted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.25]}, index=['Y-weighted mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_unmelted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted mean(X)': [1.25, 3.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_melted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [1.25, 3.], 'grp': ['A', 'B'] }, index=['Y-weighted mean(X)', 'Y-weighted mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', 2) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_multiple_quantiles_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', [0.1, 2]) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_quantile_where(self): metric = metrics.Quantile('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2.5) def test_quantile_interpolation(self): metric = metrics.Quantile('X', 0.5, interpolation='lower') output = metric.compute_on( pd.DataFrame({'X': [1, 2]}), return_dataframe=False) self.assertEqual(output, 1) def test_quantile_split_by_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].quantile(0.5) expected.name = 'quantile(X, 0.5)' testing.assert_series_equal(output, expected) def test_quantile_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df) expected = pd.DataFrame({'quantile(X, 0.5)': [2.]}) testing.assert_frame_equal(output, expected) def test_quantile_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['quantile(X, 0.5)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_quantile_split_by_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'quantile(X, 0.5)': [1, 2.5]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_quantile_split_by_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.5], 'grp': ['A', 'B'] }, index=['quantile(X, 0.5)'] * 2) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df) expected = pd.DataFrame( [[0.1, 0.5, 2]], columns=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles_melted(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df, melted=True) expected = pd.DataFrame( {'Value': [0.1, 0.5, 2]}, index=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_quantile_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_quantile_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted quantile(X, 0.5)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame( { 'Y-weighted quantile(X, 0.25)': [1.25, 0.5], 'Y-weighted quantile(X, 0.5)': [2., 1.25], 'sum(X)': [6, 3] }, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level=['Metric', 'grp'], inplace=True) # For Py2 expected = pd.DataFrame({'Value': [1.25, 0.5, 2., 1.25, 6., 3.]}, index=pd.MultiIndex.from_product( ([ 'Y-weighted quantile(X, 0.25)', 'Y-weighted quantile(X, 0.5)', 'sum(X)' ], ['A', 'B']), names=['Metric', 'grp'])) testing.assert_frame_equal(output, expected) def test_variance_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var()) def test_variance_biased(self): metric = metrics.Variance('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var(ddof=0)) def test_variance_split_by_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].var() expected.name = 'var(X)' testing.assert_series_equal(output, expected) def test_variance_where(self): metric = metrics.Variance('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].var() self.assertEqual(output, expected) def test_variance_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'var(X)': [self.df.X.var()]}) testing.assert_frame_equal(output, expected) def test_variance_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.var()]}, index=['var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_variance_split_by_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'var(X)': self.df.groupby('grp')['X'].var()}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_variance_split_by_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( { 'Value': self.df.groupby('grp')['X'].var().values, 'grp': ['A', 'B'] }, index=['var(X)', 'var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_weighted_variance_not_df(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1) def test_weighted_variance_not_df_biased(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', False, 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 0.75) def test_weighted_variance_split_by_not_df(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((2., 1), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted var(X)' testing.assert_series_equal(output, expected) def test_weighted_variance_unmelted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted var(X)': [1.]}) testing.assert_frame_equal(output, expected) def test_weighted_variance_melted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.]}, index=['Y-weighted var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_unmelted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted var(X)': [2., 1]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [2., 1], 'grp': ['A', 'B'] }, index=['Y-weighted var(X)', 'Y-weighted var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_standard_deviation_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std()) def test_standard_deviation_biased(self): metric = metrics.StandardDeviation('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std(ddof=0)) def test_standard_deviation_split_by_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].std() expected.name = 'sd(X)' testing.assert_series_equal(output, expected) def test_standard_deviation_where(self): metric = metrics.StandardDeviation('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].std() self.assertEqual(output, expected) def test_standard_deviation_unmelted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sd(X)': [self.df.X.std()]}) testing.assert_frame_equal(output, expected) def test_standard_deviation_melted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.std()]}, index=['sd(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_standard_deviation_split_by_unmelted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sd(X)': self.df.groupby('grp')['X'].std()}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_standard_deviation_split_by_melted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( { 'Value': self.df.groupby('grp')['X'].std().values, 'grp': ['A', 'B'] }, index=['sd(X)', 'sd(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_not_df(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1) def test_weighted_standard_deviation_not_df_biased(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', False, 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, np.sqrt(0.75)) def test_weighted_standard_deviation_split_by_not_df(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((np.sqrt(2), 1), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted sd(X)' testing.assert_series_equal(output, expected) def test_weighted_standard_deviation_unmelted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted sd(X)': [1.]}) testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_melted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.]}, index=['Y-weighted sd(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_split_by_unmelted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted sd(X)': [np.sqrt(2), 1]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [np.sqrt(2), 1], 'grp': ['A', 'B'] }, index=['Y-weighted sd(X)', 'Y-weighted sd(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_cv_not_df(self): metric = metrics.CV('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.sqrt(1 / 3.)) def test_cv_biased(self): metric = metrics.CV('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std(ddof=0) / np.mean(self.df.X)) def test_cv_split_by_not_df(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].std() / [1, 2.75] expected.name = 'cv(X)' testing.assert_series_equal(output, expected) def test_cv_where(self): metric = metrics.CV('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].std() / 2.75 self.assertEqual(output, expected) def test_cv_unmelted(self): metric = metrics.CV('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'cv(X)': [np.sqrt(1 / 3.)]}) testing.assert_frame_equal(output, expected) def test_cv_melted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [np.sqrt(1 / 3.)]}, index=['cv(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_cv_split_by_unmelted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'cv(X)': [0, np.sqrt(1 / 8.25)]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cv_split_by_melted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( data={ 'Value': [0, np.sqrt(1 / 8.25)], 'grp': ['A', 'B'] }, index=['cv(X)', 'cv(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_correlation(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.corrcoef(self.df.X, self.df.Y)[0, 1]) self.assertEqual(output, self.df.X.corr(self.df.Y)) def test_weighted_correlation(self): metric = metrics.Correlation('X', 'Y', weight='Y') output = metric.compute_on(self.df) cov = np.cov(self.df.X, self.df.Y, aweights=self.df.Y) expected = pd.DataFrame( {'Y-weighted corr(X, Y)': [cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])]}) testing.assert_frame_equal(output, expected) def test_correlation_method(self): metric = metrics.Correlation('X', 'Y', method='kendall') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.corr(self.df.Y, method='kendall')) def test_correlation_kwargs(self): metric = metrics.Correlation('X', 'Y', min_periods=10) output = metric.compute_on(self.df, return_dataframe=False) self.assertTrue(pd.isnull(output)) def test_correlation_split_by_not_df(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) corr_a = metric.compute_on( self.df[self.df.grp == 'A'], return_dataframe=False) corr_b = metric.compute_on( self.df[self.df.grp == 'B'], return_dataframe=False) expected = pd.Series([corr_a, corr_b], index=['A', 'B']) expected.index.name = 'grp' expected.name = 'corr(X, Y)' testing.assert_series_equal(output, expected) def test_correlation_where(self): metric = metrics.Correlation('X', 'Y', where='grp == "B"') metric_no_filter = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'B']) testing.assert_frame_equal(output, expected) def test_correlation_df(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'corr(X, Y)': [self.df.X.corr(self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_correlation_split_by_df(self): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 2, 3, 4], 'Y': [3, 1, 1, 3, 4, 4, 3, 5], 'grp': ['A'] * 4 + ['B'] * 4 }) metric = metrics.Correlation('X', 'Y') output = metric.compute_on(df, 'grp') corr_a = metric.compute_on(df[df.grp == 'A'], return_dataframe=False) corr_b = metric.compute_on(df[df.grp == 'B'], return_dataframe=False) expected = pd.DataFrame({'corr(X, Y)': [corr_a, corr_b]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cov(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.cov(self.df.X, self.df.Y)[0, 1]) self.assertEqual(output, self.df.X.cov(self.df.Y)) def test_cov_bias(self): metric = metrics.Cov('X', 'Y', bias=True) output = metric.compute_on(self.df, return_dataframe=False) expected = np.mean( (self.df.X - self.df.X.mean()) * (self.df.Y - self.df.Y.mean())) self.assertEqual(output, expected) def test_cov_ddof(self): metric = metrics.Cov('X', 'Y', ddof=0) output = metric.compute_on(self.df, return_dataframe=False) expected = np.mean( (self.df.X - self.df.X.mean()) * (self.df.Y - self.df.Y.mean())) self.assertEqual(output, expected) def test_cov_kwargs(self): metric = metrics.Cov('X', 'Y', fweights=self.df.Y) output = metric.compute_on(self.df) expected = np.cov(self.df.X, self.df.Y, fweights=self.df.Y)[0, 1] expected = pd.DataFrame({'cov(X, Y)': [expected]}) testing.assert_frame_equal(output, expected) def test_weighted_cov(self): metric = metrics.Cov('X', 'Y', weight='Y') output = metric.compute_on(self.df) expected = np.cov(self.df.X, self.df.Y, aweights=self.df.Y)[0, 1] expected = pd.DataFrame({'Y-weighted cov(X, Y)': [expected]}) testing.assert_frame_equal(output, expected) def test_cov_split_by_not_df(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 cov_a = metric.compute_on( self.df[self.df.grp == 'A'], return_dataframe=False) cov_b = metric.compute_on( self.df[self.df.grp == 'B'], return_dataframe=False) expected = pd.Series([cov_a, cov_b], index=['A', 'B']) expected.index.name = 'grp' expected.name = 'cov(X, Y)' testing.assert_series_equal(output, expected) def test_cov_where(self): metric = metrics.Cov('X', 'Y', where='grp == "B"') metric_no_filter = metrics.Cov('X', 'Y') output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'B']) testing.assert_frame_equal(output, expected) def test_cov_df(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'cov(X, Y)': [self.df.X.cov(self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_cov_split_by_df(self): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 2, 3, 4], 'Y': [3, 1, 1, 3, 4, 4, 3, 5], 'grp': ['A'] * 4 + ['B'] * 4 }) metric = metrics.Cov('X', 'Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 cov_a = metric.compute_on(df[df.grp == 'A'], return_dataframe=False) cov_b = metric.compute_on(df[df.grp == 'B'], return_dataframe=False) expected = pd.DataFrame({'cov(X, Y)': [cov_a, cov_b]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) class CompositeMetric(unittest.TestCase): """Tests for composition of two metrics.""" df = pd.DataFrame({'X': [0, 1, 2, 3], 'Y': [0, 1, 1, 2]}) def test_add(self): df = pd.DataFrame({'X': [1, 2, 3], 'Y': ['a', 'b', 'c']}) sumx = metrics.Sum('X') metric = sumx + sumx output = metric.compute_on(df, 'Y', return_dataframe=False) expected = pd.Series([2, 4, 6], index=['a', 'b', 'c']) expected.name = 'sum(X) + sum(X)' expected.index.name = 'Y' testing.assert_series_equal(output, expected) def test_sub(self): sumx = metrics.Sum('X') sumy = metrics.Sum('Y') metric = sumx - sumy output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_mul(self): metric = 2. * metrics.Sum('X') * metrics.Sum('Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 48) self.assertEqual(metric.name, '2.0 * sum(X) * sum(Y)') def test_div(self): metric = 6. / metrics.Sum('X') / metrics.Sum('Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 0.25) self.assertEqual(metric.name, '6.0 / sum(X) / sum(Y)') def test_neg(self): base = metrics.MetricList((metrics.Sum('X'), metrics.Sum('Y'))) metric = -base output = metric.compute_on(self.df) expected = -base.compute_on(self.df) expected.columns = ['-sum(X)', '-sum(Y)'] testing.assert_frame_equal(output, expected) def test_pow(self): metric = metrics.Sum('X')**metrics.Sum('Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 1296) self.assertEqual(metric.name, 'sum(X) ^ sum(Y)') def test_pow_with_scalar(self): metric = metrics.Sum('X')**2 output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 36) self.assertEqual(metric.name, 'sum(X) ^ 2') def test_sqrt(self): metric = metrics.Sum('Y')**0.5 output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) self.assertEqual(metric.name, 'sqrt(sum(Y))') def test_rpow(self): metric = 2**metrics.Sum('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 64) self.assertEqual(metric.name, '2 ^ sum(X)') def test_ratio(self): metric = metrics.Ratio('X', 'Y') output = metric.compute_on(self.df) expected = metrics.Sum('X') / metrics.Sum('Y') expected = expected.compute_on(self.df) testing.assert_frame_equal(output, expected) def test_to_dataframe(self): metric = 5 + metrics.Sum('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'5 + sum(X)': [11]}) testing.assert_frame_equal(output, expected) def test_where(self): metric = metrics.Count('X', 'f', 'Y == 1') * metrics.Sum('X', 'b', 'Y == 2') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 6) def test_between_operations(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) suma = metrics.Sum('X', where='grp == "A"') sumb = metrics.Sum('X', where='grp == "B"') pct = operations.PercentChange('Condition', 0) output = (pct(suma) - pct(sumb)).compute_on(df) expected = pct(suma).compute_on(df) - pct(sumb).compute_on(df) expected.columns = ['%s - %s' % (c, c) for c in expected.columns] testing.assert_frame_equal(output, expected) def test_between_operations_where(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) sumx = metrics.Sum('X') pcta = operations.PercentChange('Condition', 0, sumx, where='grp == "A"') pctb = operations.PercentChange('Condition', 0, sumx, where='grp == "B"') output = (pcta - pctb).compute_on(df) expected = pcta.compute_on(df) - pctb.compute_on(df) expected.columns = ['%s - %s' % (c, c) for c in expected.columns] testing.assert_frame_equal(output, expected) def test_between_stderr_operations_where(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6] * 2, 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] * 2, 'cookie': [1, 2, 3] * 4 }) np.random.seed(42) sumx = metrics.Sum('X') pcta = operations.PercentChange('Condition', 0, sumx, where='grp == "A"') pctb = operations.PercentChange('Condition', 0, sumx) jk = operations.Jackknife('cookie', pcta) bst = operations.Bootstrap(None, pctb, 20, where='grp != "C"') m = (jk / bst).rename_columns( pd.MultiIndex.from_product((('sum(X)',), ('Value', 'SE')))) output = m.compute_on(df) np.random.seed(42) expected = jk.compute_on(df).values / bst.compute_on(df).values expected = pd.DataFrame( expected, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_rename_columns(self): df =
pd.DataFrame({'X': [1, 2], 'Y': [3, 1]})
pandas.DataFrame
from sklearn.decomposition import PCA import tensorflow as tf import pandas as pd import matplotlib.pyplot as plt def pad_sentences(sentences, max_len): """ Pad sentences to the maximal length @sentences: 2d array of sentence pairs @max_len: Maximal length of a sentence in all datasets @return: 2d array of padded sentence pairs """ for i in [0, 1]: for j in range(len(sentences[i])): s = sentences[i][j] diff = max_len - len(s) offset_left = int(diff / 2) if diff % 2 == 0: offset_right = offset_left else: offset_right = offset_left + 1 s = [""]* offset_left + s + [""]*offset_right sentences[i][j] = s return sentences def transform(vocab_in_word2vec, train_unknown_words, dev_and_test_unknown_words, embds): """ Transform embeddings to a dataframe with labels @vocab_in_word2vec: All words that are representable by Google word2vec @train_unknown_words: Words in training set that are not representable by Google word2vec @dev_and_test_unknown_words: Words in development or test set that are not representable by Google word2vec @embds: Embeddings of all words @return: Transformed embeddings with labels """ init = [tf.global_variables_initializer(), tf.tables_initializer()] with tf.Session() as session: session.run(init) y = [] for i in range(len(vocab_in_word2vec)): y.append(0) for i in range(len(train_unknown_words)): y.append(1) for i in range(len(dev_and_test_unknown_words)): y.append(2) for i in range(1): y.append(3) X = embds.eval() pca = PCA(n_components=2) transformed = pd.DataFrame(pca.fit_transform(X)) transformed['y'] =
pd.Series(y, index=transformed.index)
pandas.Series
"""Plotting functions for decoders.""" import copy import matplotlib.animation as animation import matplotlib.lines as mlines import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import os import pandas as pd import pickle from behavenet import make_dir_if_not_exists from behavenet.fitting.eval import get_reconstruction from behavenet.fitting.utils import get_best_model_and_data from behavenet.data.utils import get_region_list from behavenet.fitting.utils import get_expt_dir from behavenet.fitting.utils import get_session_dir from behavenet.fitting.utils import get_subdirs from behavenet.plotting import concat, save_movie # to ignore imports for sphix-autoapidoc __all__ = [ 'get_r2s_by_trial', 'get_best_models', 'get_r2s_across_trials', 'make_neural_reconstruction_movie_wrapper', 'make_neural_reconstruction_movie', 'plot_neural_reconstruction_traces_wrapper', 'plot_neural_reconstruction_traces'] def _get_dataset_str(hparams): return os.path.join(hparams['expt'], hparams['animal'], hparams['session']) def get_r2s_by_trial(hparams, model_types): """For a given session, load R^2 metrics from all decoders defined by hparams. Parameters ---------- hparams : :obj:`dict` needs to contain enough information to specify decoders model_types : :obj:`list` of :obj:`strs` 'mlp' | 'mlp-mv' | 'lstm' Returns ------- :obj:`pd.DataFrame` pandas dataframe of decoder validation metrics """ dataset = _get_dataset_str(hparams) region_names = get_region_list(hparams) metrics = [] model_idx = 0 model_counter = 0 for region in region_names: hparams['region'] = region for model_type in model_types: hparams['session_dir'], _ = get_session_dir( hparams, session_source=hparams.get('all_source', 'save')) expt_dir = get_expt_dir( hparams, model_type=model_type, model_class=hparams['model_class'], expt_name=hparams['experiment_name']) # gather all versions try: versions = get_subdirs(expt_dir) except Exception: print('No models in %s; skipping' % expt_dir) # load csv files with model metrics (saved out from test tube) for i, version in enumerate(versions): # read metrics csv file model_dir = os.path.join(expt_dir, version) try: metric = pd.read_csv(os.path.join(model_dir, 'metrics.csv')) model_counter += 1 except FileNotFoundError: continue with open(os.path.join(model_dir, 'meta_tags.pkl'), 'rb') as f: hparams = pickle.load(f) # append model info to metrics () version_num = version[8:] metric['version'] = str('version_%i' % model_idx + version_num) metric['region'] = region metric['dataset'] = dataset metric['model_type'] = model_type for key, val in hparams.items(): if isinstance(val, (str, int, float)): metric[key] = val metrics.append(metric) model_idx += 10000 # assumes no more than 10k model versions/expt # put everything in pandas dataframe metrics_df = pd.concat(metrics, sort=False) return metrics_df def get_best_models(metrics_df): """Find best decoder over l2 regularization and learning rate. Returns a dataframe with test R^2s for each batch, for the best decoder in each category (defined by dataset, region, n_lags, and n_hid_layers). Parameters ---------- metrics_df : :obj:`pd.DataFrame` output of :func:`get_r2s_by_trial` Returns ------- :obj:`pd.DataFrame` test R^2s for each batch """ # for each version, only keep rows where test_loss is not nan data_queried = metrics_df[
pd.notna(metrics_df.test_loss)
pandas.notna
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Biota Technology. # www.biota.com # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import division import numpy as np from skbio.stats import subsample_counts import pandas as pd from functools import partial def validate_gibbs_input(sources, sinks=None): '''Validate `gibbs` inputs and coerce/round to type `np.int32`. Summary ------- Checks if data contains `nan` or `null` values, and returns data as type `np.int32`. If both `sources` and `sinks` are passed, columns must match exactly (including order). Parameters ---------- sources : pd.DataFrame A dataframe containing count data. Must be castable to `np.int32`. sinks : optional, pd.DataFrame or None If not `None` a dataframe containing count data that is castable to `np.int32`. Returns ------- pd.Dataframe(s) Raises ------ ValueError If `nan` or `null` values found in inputs. ValueError If any values are smaller than 0. ValueError If any columns of an input dataframe are non-numeric. ValueError If `sources` and `sinks` passed and columns are not identical. ''' if sinks is not None: dfs = [sources, sinks] else: dfs = [sources] for df in dfs: # Because of this bug (https://github.com/numpy/numpy/issues/6114) # we can't use e.g. np.isreal(df.dtypes).all(). Instead we use # applymap. Based on: # http://stackoverflow.com/questions/21771133/finding-non-numeric-rows-in-dataframe-in-pandas if not df.applymap(np.isreal).values.all(): raise ValueError('A dataframe contains one or more values which ' 'are not numeric. Data must be exclusively ' 'positive integers.') if np.isnan(df.values).any(): raise ValueError('A dataframe has `nan` or `null` values. Data ' 'must be exclusively positive integers.') if (df.values < 0).any(): raise ValueError('A dataframe has a negative count. Data ' 'must be exclusively positive integers.') if sinks is not None: if not (sinks.columns == sources.columns).all(): raise ValueError('Dataframes do not contain identical (and ' 'identically ordered) columns. Columns must ' 'match exactly.') return (sources.astype(np.int32, copy=False), sinks.astype(np.int32, copy=False)) else: return sources.astype(np.int32, copy=False) def validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay): '''Return `True` if params numerically acceptable. See `gibbs` for docs.''' real_vals = [alpha1, alpha2, beta] int_vals = [restarts, draws_per_restart, burnin, delay] # Check everything is real. if all(np.isreal(val) for val in real_vals + int_vals): # Check that integer values are some type of int. int_check = all(isinstance(val, (int, np.int32, np.int64)) for val in int_vals) # All integer values must be > 0. pos_int = all(val > 0 for val in int_vals) # All real values must be non-negative. non_neg = all(val >= 0 for val in real_vals) return int_check and pos_int and non_neg and real_vals else: # Failed to be all numeric values. False def intersect_and_sort_samples(sample_metadata, feature_table): '''Return input tables retaining only shared samples, row order equivalent. Parameters ---------- sample_metadata : pd.DataFrame Contingency table with rows, columns = samples, metadata. feature_table : pd.DataFrame Contingency table with rows, columns = samples, features. Returns ------- sample_metadata, feature_table : pd.DataFrame, pd.DataFrame Input tables with unshared samples removed and ordered equivalently. Raises ------ ValueError If no shared samples are found. ''' shared_samples = np.intersect1d(sample_metadata.index, feature_table.index) if shared_samples.size == 0: raise ValueError('There are no shared samples between the feature ' 'table and the sample metadata. Ensure that you have ' 'passed the correct files.') elif (shared_samples.size == sample_metadata.shape[0] == feature_table.shape[0]): s_metadata = sample_metadata.copy() s_features = feature_table.copy() else: s_metadata = sample_metadata.loc[np.in1d(sample_metadata.index, shared_samples), :].copy() s_features = feature_table.loc[np.in1d(feature_table.index, shared_samples), :].copy() return s_metadata, s_features.loc[s_metadata.index, :] def get_samples(sample_metadata, col, value): '''Return samples which have `value` under `col`.''' return sample_metadata.index[sample_metadata[col] == value].copy() def collapse_source_data(sample_metadata, feature_table, source_samples, category, method): '''Collapse each set of source samples into an aggregate source. Parameters ---------- sample_metadata : pd.DataFrame Contingency table where rows are features and columns are metadata. feature_table : pd.DataFrame Contingency table where rows are features and columns are samples. source_samples : iterable Samples which should be considered for collapsing (i.e. are sources). category : str Column in `sample_metadata` which should be used to group samples. method : str One of the available aggregation methods in pd.DataFrame.agg (mean, median, prod, sum, std, var). Returns ------- pd.DataFrame Collapsed sample data. Notes ----- This function calls `validate_gibbs_input` before returning the collapsed source table to ensure aggregation has not introduced non-integer values. The order of the collapsed sources is determined by the sort order of their names. For instance, in the example below, .4 comes before 3.0 so the collapsed sources will have the 0th row as .4. Examples -------- >>> samples = ['sample1', 'sample2', 'sample3', 'sample4'] >>> category = 'pH' >>> values = [3.0, 0.4, 3.0, 3.0] >>> stable = pd.DataFrame(values, index=samples, columns = [category]) >>> stable pH sample1 3.0 sample2 0.4 sample3 3.0 sample4 3.0 >>> fdata = np.array([[ 10, 50, 10, 70], [ 0, 25, 10, 5], [ 0, 25, 10, 5], [100, 0, 10, 5]]) >>> ftable = pd.DataFrame(fdata, index = stable.index) >>> ftable 0 1 2 3 sample1 10 50 10 70 sample2 0 25 10 5 sample3 0 25 10 5 sample4 100 0 10 5 >>> source_samples = ['sample1', 'sample2', 'sample3'] >>> method = 'sum' >>> csources = collapse_source_data(stable, ftable, source_samples, category, method) >>> csources 0 1 2 3 collapse_col 0.4 0 25 10 5 3.0 10 75 20 75 ''' sources = sample_metadata.loc[source_samples, :] table = feature_table.loc[sources.index, :].copy() table['collapse_col'] = sources[category] return validate_gibbs_input(table.groupby('collapse_col').agg(method)) def subsample_dataframe(df, depth, replace=False): '''Subsample (rarify) input dataframe without replacement. Parameters ---------- df : pd.DataFrame Feature table where rows are features and columns are samples. depth : int Number of sequences to choose per sample. replace : bool, optional If ``True``, subsample with replacement. If ``False`` (the default), subsample without replacement. Returns ------- pd.DataFrame Subsampled dataframe. ''' def subsample(x): return pd.Series(subsample_counts(x.values, n=depth, replace=replace), index=x.index) return df.apply(subsample, axis=1) def generate_environment_assignments(n, num_sources): '''Randomly assign `n` counts to one of `num_sources` environments. Parameters ---------- n : int Number of environment assignments to generate. num_sources : int Number of possible environment states (this includes the 'Unknown'). Returns ------- seq_env_assignments : np.array 1D vector of length `n`. The ith entry is the environment assignment of the ith feature. envcounts : np.array 1D vector of length `num_sources`. The ith entry is the total number of entries in `seq_env_assignments` which are equal to i. ''' seq_env_assignments = np.random.choice(np.arange(num_sources), size=n, replace=True) envcounts = np.bincount(seq_env_assignments, minlength=num_sources) return seq_env_assignments, envcounts class ConditionalProbability(object): def __init__(self, alpha1, alpha2, beta, source_data): r"""Set properties used for calculating the conditional probability. Paramaters ---------- alpha1 : float Prior counts of each feature in the training environments. alpha2 : float Prior counts of each feature in the Unknown environment. Higher values make the Unknown environment smoother and less prone to overfitting given a training sample. beta : float Number of prior counts of test sequences from each feature in each environment source_data : np.array Columns are features, rows are collapsed samples. The [i,j] entry is the sum of the counts of features j in all samples which were considered part of source i. Attributes ---------- m_xivs : np.array This is an exact copy of the source_data passed when the function is initialized. It is referenced as m_xivs because m_xiv is the [v, xi] entry of the source data. In other words, the count of the xith feature in the vth environment. m_vs : np.array The row sums of self.m_xivs. This is referenced as m_v in [1]_. V : int Number of environments (includes both known sources and the 'unknown' source). tau : int Number of features. joint_probability : np.array The joint conditional distribution. Until the `precalculate` method is called, this will be uniformly zero. n : int Number of sequences in the sink. known_p_tv : np.array An array giving the precomputable parts of the probability of finding the xith taxon in the vth environment given the known sources, aka p_tv in the R implementation. Rows are (known) sources, columns are features, shape is (V-1, tau). denominator_p_v : float The denominator of the calculation for finding the probability of a sequence being in the vth environment given the training data (source data). known_source_cp : np.array All precomputable portions of the conditional probability array. Dimensions are the same as self.known_p_tv. Notes ----- This class exists to calculate the conditional probability given in reference [1]_ (with modifications based on communications with the author). Since the calculation of the conditional probability must occur during each pass of the Gibbs sampler, reducing the number of computations is of paramount importance. This class precomputes everything that is static throughout a run of the sampler to reduce the innermost for-loop computations. The formula used to calculate the conditional joint probability is described in the project readme file. The variables are named in the class, as well as its methods, in accordance with the variable names used in [1]_. Examples -------- The class is written so that it will be created before being passed to the function which handles the loops of the Gibbs sampling. >>> cp = ConditionalProbability(alpha1 = .5, alpha2 = .001, beta = 10, ... np.array([[0, 0, 0, 100, 100, 100], ... [100, 100, 100, 0, 0, 0]])) Once it is passed to the Gibbs sampling function, the number of sequences in the sink becomes known, and we can update the object with this information to allow final precomputation. >>> cp.set_n(367) >>> cp.precompute() Now we can compute the 'slice' of the conditional probability depending on the current state of the test sequences (the ones randomly assigned and then iteratively reassigned) and which feature (the slice) the sequence we have removed was from. >>> xi = 2 Count of the training sequences (that are feature xi) currently assigned to the unknown environment. >>> m_xiV = 38 Sum of the training sequences currently assigned to the unknown environment (over all features). >>> m_V = 158 Counts of the test sequences in each environment at the current iteration of the sampler. >>> n_vnoti = np.array([10, 500, 6]) Calculating the probability slice. >>> cp.calculate_cp_slice(xi, m_xiV, m_V, n_vnoti) array([8.55007781e-05, 4.38234238e-01, 9.92823532e-03]) References ---------- .. [1] Knights et al. "Bayesian community-wide culture-independent source tracking", Nature Methods 2011. """ self.alpha1 = alpha1 self.alpha2 = alpha2 self.beta = beta self.m_xivs = source_data.astype(np.float64) self.m_vs = np.expand_dims(source_data.sum(1), axis=1).astype(np.float64) self.V = source_data.shape[0] + 1 self.tau = source_data.shape[1] # Create the joint probability vector which will be overwritten each # time self.calculate_cp_slice is called. self.joint_probability = np.zeros(self.V, dtype=np.float64) def set_n(self, n): """Set the sum of the sink.""" self.n = n def precalculate(self): """Precompute all static quantities of the probability matrix.""" # Known source. self.known_p_tv = (self.m_xivs + self.alpha1) / \ (self.m_vs + self.tau * self.alpha1) self.denominator_p_v = self.n - 1 + (self.beta * self.V) # We are going to be accessing columns of this array in the innermost # loop of the Gibbs sampler. By forcing this array into 'F' order - # 'Fortran-contiguous' - we've set it so that accessing column slices # is faster. Tests indicate about 2X speed up in this operation from # 'F' order as opposed to the default 'C' order. self.known_source_cp = np.array(self.known_p_tv / self.denominator_p_v, order='F', dtype=np.float64) self.alpha2_n = self.alpha2 * self.n self.alpha2_n_tau = self.alpha2_n * self.tau def calculate_cp_slice(self, xi, m_xiV, m_V, n_vnoti): """Calculate slice of the conditional probability matrix. Parameters ---------- xi : int Index of the column (taxon) of the conditional probability matrix that should be calculated. m_xiV : float Count of the training sequences (that are taxon xi) currently assigned to the unknown environment. m_V : float Sum of the training sequences currently assigned to the unknown environment (over all taxa). n_vnoti : np.array Counts of the test sequences in each environment at the current iteration of the sampler. Returns ------- self.joint_probability : np.array The joint conditional probability distribution for the the current taxon based on the current state of the sampler. """ # Components for known sources, i.e. indices {0,1...V-2}. self.joint_probability[:-1] = \ self.known_source_cp[:, xi] * (n_vnoti[:-1] + self.beta) # Component for unknown source, i.e. index V-1. self.joint_probability[-1] = \ ((m_xiV + self.alpha2_n) * (n_vnoti[-1] + self.beta)) / \ ((m_V + self.alpha2_n_tau) * self.denominator_p_v) return self.joint_probability def gibbs_sampler(sink, cp, restarts, draws_per_restart, burnin, delay): """Run Gibbs Sampler to estimate feature contributions from a sink sample. Parameters ---------- sink : np.array A one dimentional array containing counts of features whose sources are to be estimated. cp : ConditionalProbability object Instantiation of the class handling probability calculations. restarts : int Number of independent Markov chains to grow. `draws_per_restart` * `restarts` gives the number of samplings of the mixing proportions that will be generated. draws_per_restart : int Number of times to sample the state of the Markov chain for each independent chain grown. burnin : int Number of passes (withdrawal and reassignment of every sequence in the sink) that will be made before a sample (draw) will be taken. Higher values allow more convergence towards the true distribution before draws are taken. delay : int >= 1 Number passes between each sampling (draw) of the Markov chain. Once the burnin passes have been made, a sample will be taken, and additional samples will be drawn every `delay` number of passes. This is also known as 'thinning'. Thinning helps reduce the impact of correlation between adjacent states of the Markov chain. Returns ------- final_envcounts : np.array 2D array of ints. Rows are draws, columns are sources. The [i, j] entry is the number of sequences from draw i that where assigned to have come from environment j. final_env_assignments : np.array 2D array of ints. Rows are draws, columns are conserved but arbitrary ordering. The [i, j] entry is the index of feature j in draw i. These orderings are identical for each draw. final_taxon_assignments : np.array 2D array of ints. Rows are draws, columns are conserved but arbitrary ordering (same ordering as `final_env_assignments`). The [i, j] entry is the environment that the taxon `final_env_assignments[i, j]` is determined to have come from in draw i (j is the environment). """ # Basic bookkeeping information we will use throughout the function. num_sources = cp.V num_features = cp.tau sink = sink.astype(np.int32) sink_sum = sink.sum() # Calculate the number of passes that need to be conducted. total_draws = restarts * draws_per_restart total_passes = burnin + (draws_per_restart - 1) * delay + 1 # Results containers. final_envcounts = np.zeros((total_draws, num_sources), dtype=np.int32) final_env_assignments = np.zeros((total_draws, sink_sum), dtype=np.int32) final_taxon_assignments = np.zeros((total_draws, sink_sum), dtype=np.int32) # Sequences from the sink will be randomly assigned a source environment # and then reassigned based on an increasingly accurate set of # probabilities. The order in which the sequences are selected for # reassignment must be random to avoid a systematic bias where the # sequences occuring later in the taxon_sequence book-keeping vector # receive more accurate reassignments by virtue of more updates to the # probability model. 'order' will be shuffled each pass, but can be # instantiated here to avoid unnecessary duplication. order = np.arange(sink_sum, dtype=np.int32) # Create a bookkeeping vector that keeps track of each sequence in the # sink. Each one will be randomly assigned an environment, and then # reassigned based on the increasinly accurate distribution. sink[i] i's # will be placed in the `taxon_sequence` vector to allow each individual # count to be removed and reassigned. taxon_sequence = np.repeat(np.arange(num_features), sink).astype(np.int32) # Update the conditional probability class now that we have the sink sum. cp.set_n(sink_sum) cp.precalculate() # Several bookkeeping variables that are used within the for loops. drawcount = 0 unknown_idx = num_sources - 1 for restart in range(restarts): # Generate random source assignments for each sequence in the sink # using a uniform distribution. seq_env_assignments, envcounts = \ generate_environment_assignments(sink_sum, num_sources) # Initially, the count of each taxon in the 'unknown' source should be # 0. unknown_vector = np.zeros(num_features, dtype=np.int32) unknown_sum = 0 # If a sequence's random environmental assignment is to the 'unknown' # environment we alter the training data to include those sequences # in the 'unknown' source. for e, t in zip(seq_env_assignments, taxon_sequence): if e == unknown_idx: unknown_vector[t] += 1 unknown_sum += 1 for rep in range(1, total_passes + 1): # Iterate through sequences in a random order so that no # systematic bias is introduced based on position in the taxon # vector (i.e. taxa appearing at the end of the vector getting # better estimates of the probability). np.random.shuffle(order) for seq_index in order: e = seq_env_assignments[seq_index] t = taxon_sequence[seq_index] # Remove the ith sequence and update the probability # associated with that environment. envcounts[e] -= 1 if e == unknown_idx: unknown_vector[t] -= 1 unknown_sum -= 1 # Calculate the new joint probability vector based on the # removal of the ith sequence. Reassign the sequence to a new # source environment and update counts for each environment and # the unknown source if necessary. # This is the fastest way I've currently found to draw from # `jp`. By stacking (cumsum) the probability of `jp`, we can # draw x from uniform variable in [0, total sum), and then find # which interval that value lies in with searchsorted. Visual # representation below # e1 e2 e3 e4 e5 unk # jp: | | | | | | | # x: x # new_e_idx == 4 (zero indexed) # This is in contrast to the more intuitive, but much slower # call it replaced: # np.random.choice(num_sources, jp/jp.sum()) jp = cp.calculate_cp_slice(t, unknown_vector[t], unknown_sum, envcounts) cs = jp.cumsum() new_e_idx = np.searchsorted(cs, np.random.uniform(0, cs[-1])) seq_env_assignments[seq_index] = new_e_idx envcounts[new_e_idx] += 1 if new_e_idx == unknown_idx: unknown_vector[t] += 1 unknown_sum += 1 if rep > burnin and ((rep - (burnin + 1)) % delay) == 0: # Update envcounts array with the assigned envs. final_envcounts[drawcount] = envcounts # Assign vectors necessary for feature table reconstruction. final_env_assignments[drawcount] = seq_env_assignments final_taxon_assignments[drawcount] = taxon_sequence # We've made a draw, update this index so that the next # iteration will be placed in the correct index of results. drawcount += 1 return (final_envcounts, final_env_assignments, final_taxon_assignments) def gibbs(sources, sinks=None, alpha1=.001, alpha2=.1, beta=10, restarts=10, draws_per_restart=1, burnin=100, delay=1, cluster=None, create_feature_tables=True): '''Gibb's sampling API. Notes ----- This function exists to allow API calls to source/sink prediction and leave-one-out (LOO) source prediction. Input validation is done on the sources and sinks (if not None). They must be dataframes with integerial data (or castable to such). If both sources and sinks are provided, their columns must agree exactly. Input validation is done on the Gibb's parameters, to make sure they are numerically acceptable (all must be non-negative, some must be positive integers - see below). Warnings -------- This function does _not_ perform rarefaction, the user should perform rarefaction prior to calling this function. This function does not collapse sources or sinks, it expects each row of the `sources` dataframe to represent a unique source, and each row of the `sinks` dataframe to represent a unique sink. Parameters ---------- sources : DataFrame A dataframe containing source data (rows are sources, columns are features). The index must be the names of the sources. sinks : DataFrame or None A dataframe containing sink data (rows are sinks, columns are features). The index must be the names of the sinks. If `None`, leave-one-out (LOO) prediction will be done. alpha1 : float Prior counts of each feature in the training environments. Higher values decrease the trust in the training environments, and make the source environment distributions over taxa smoother. A value of 0.001 indicates reasonably high trust in all source environments, even those with few training sequences. A more conservative value would be 0.01. alpha2 : float Prior counts of each feature in the Unknown environment. Higher values make the Unknown environment smoother and less prone to overfitting given a training sample. beta : int Number of prior counts of test sequences from each feature in each environment. restarts : int Number of independent Markov chains to grow. `draws_per_restart` * `restarts` gives the number of samplings of the mixing proportions that will be generated. draws_per_restart : int Number of times to sample the state of the Markov chain for each independent chain grown. burnin : int Number of passes (withdarawal and reassignment of every sequence in the sink) that will be made before a sample (draw) will be taken. Higher values allow more convergence towards the true distribtion before draws are taken. delay : int >= 1 Number passes between each sampling (draw) of the Markov chain. Once the burnin passes have been made, a sample will be taken, and additional samples will be drawn every `delay` number of passes. This is also known as 'thinning'. Thinning helps reduce the impact of correlation between adjacent states of the Markov chain. cluster : ipyparallel.client.client.Client or None An ipyparallel Client object, e.g. a started cluster. create_feature_tables : boolean If `True` create a feature table for each sink. The feature table records the average count of each feature from each source for this sink. This option can consume large amounts of memory if there are many source, sinks, and features. If `False`, feature tables are not created. Returns ------- mpm : DataFrame Mixing proportion means. A dataframe containing the mixing proportions (rows are sinks, columns are sources). mps : DataFrame Mixing proportion standard deviations. A dataframe containing the mixing proportions standard deviations (rows are sinks, columns are sources). fas : list ith item is a pd.DataFrame of the average feature assignments from each source for the ith sink (in the same order as rows of `mpm` and `mps`). Examples -------- # An example of using the normal prediction. >>> import pandas as pd >>> import numpy as np >>> from ipyparallel import Client >>> import subprocess >>> import time >>> from sourcetracker import gibbs # Prepare some source data. >>> otus = np.array(['o%s' % i for i in range(50)]) >>> source1 = np.random.randint(0, 1000, size=50) >>> source2 = np.random.randint(0, 1000, size=50) >>> source3 = np.random.randint(0, 1000, size=50) >>> source_df = pd.DataFrame([source1, source2, source3], index=['source1', 'source2', 'source3'], columns=otus, dtype=np.int32) # Prepare some sink data. >>> sink1 = np.ceil(.5*source1+.5*source2) >>> sink2 = np.ceil(.5*source2+.5*source3) >>> sink3 = np.ceil(.5*source1+.5*source3) >>> sink4 = source1 >>> sink5 = source2 >>> sink6 = np.random.randint(0, 1000, size=50) >>> sink_df = pd.DataFrame([sink1, sink2, sink3, sink4, sink5, sink6], index=np.array(['sink%s' % i for i in range(1,7)]), columns=otus, dtype=np.int32) # Set paramaters >>> alpha1 = .01 >>> alpha2 = .001 >>> beta = 10 >>> restarts = 5 >>> draws_per_restart = 1 >>> burnin = 2 >>> delay = 2 # Call without a cluster >>> mpm, mps, fas = gibbs(source_df, sink_df, alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay, cluster=None, create_feature_tables=True) # Start a cluster and call the function >>> jobs = 4 >>> subprocess.Popen('ipcluster start -n %s --quiet' % jobs, shell=True) >>> time.sleep(25) >>> c = Client() >>> mpm, mps, fas = gibbs(source_df, sink_df, alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay, cluster=c, create_feature_tables=True) # LOO prediction. >>> mpm, mps, fas = gibbs(source_df, sinks=None, alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay, cluster=c, create_feature_tables=True) ''' if not validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay): raise ValueError('The supplied Gibbs parameters are not acceptable. ' 'Please review the `gibbs` doc string or call the ' 'help function in the CLI.') # Validate the input source and sink data. Error if the data do not meet # the critical assumptions or cannot be cast to the proper type. if sinks is not None: sources, sinks = validate_gibbs_input(sources, sinks) else: sources = validate_gibbs_input(sources) # Run LOO predictions on `sources`. if sinks is None: def f(cp_and_sink): # The import is here to ensure that the engines of the cluster can # access the gibbs_sampler function. from sourcetracker._sourcetracker import gibbs_sampler return gibbs_sampler(cp_and_sink[1], cp_and_sink[0], restarts, draws_per_restart, burnin, delay) cps_and_sinks = [] for source in sources.index: _sources = sources.select(lambda x: x != source) cp = ConditionalProbability(alpha1, alpha2, beta, _sources.values) sink = sources.loc[source, :].values cps_and_sinks.append((cp, sink)) if cluster is not None: results = cluster[:].map(f, cps_and_sinks, block=True) else: results = list(map(f, cps_and_sinks)) mpm, mps, fas = collate_gibbs_results([i[0] for i in results], [i[1] for i in results], [i[2] for i in results], sources.index, sources.index, sources.columns, create_feature_tables, loo=True) return mpm, mps, fas # Run normal prediction on `sinks`. else: cp = ConditionalProbability(alpha1, alpha2, beta, sources.values) f = partial(gibbs_sampler, cp=cp, restarts=restarts, draws_per_restart=draws_per_restart, burnin=burnin, delay=delay) if cluster is not None: results = cluster[:].map(f, sinks.values, block=True) else: results = list(map(f, sinks.values)) mpm, mps, fas = collate_gibbs_results([i[0] for i in results], [i[1] for i in results], [i[2] for i in results], sinks.index, sources.index, sources.columns, create_feature_tables, loo=False) return mpm, mps, fas def cumulative_proportions(all_envcounts, sink_ids, source_ids): '''Calculate contributions of each source for each sink in `sink_ids`. Parameters ---------- all_envcounts : list Each entry is 2D array of ints. The ith entry must correspond to the ith sink ID. The [j, k] entry of the ith table is the count of sequences assigned to the sink from kth environment during the jth draw. sink_ids : np.array ID's of the sinks. Must be in the same order as data in `all_envcounts`. source_ids : np.array ID's of the sources. Must be in the same order as the columns of the tables in `all_envcounts`. Returns ------- proportions : pd.DataFrame A dataframe of floats, containing the mixing proportions of each source in each sink. The [i, j] entry is the contribution from the jth source to the ith sink. proportions_std : pd.DataFrame A dataframe of floats, identical to `proportions` except the entries are the standard deviation of each entry in `proportions`. Notes ----- This script is designed to be used by `collate_gibbs_results` after completion of multiple `gibbs_sampler` calls (for different sinks). This function does _not_ check that the assumptions of ordering described above are met. It is the user's responsibility to check these if using this function independently. ''' num_sinks = len(sink_ids) num_sources = len(source_ids) + 1 proportions = np.zeros((num_sinks, num_sources), dtype=np.float64) proportions_std = np.zeros((num_sinks, num_sources), dtype=np.float64) for i, envcounts in enumerate(all_envcounts): proportions[i] = envcounts.sum(0) / envcounts.sum() proportions_std[i] = (envcounts / envcounts.sum()).std(0) cols = list(source_ids) + ['Unknown'] return (
pd.DataFrame(proportions, index=sink_ids, columns=cols)
pandas.DataFrame
from django.shortcuts import render from django.http import HttpResponse from datetime import datetime import psycopg2 import math import pandas as pd from openpyxl import Workbook import csv import random def psql_pdc(query): #credenciales PostgreSQL produccion connP_P = { 'host' : '10.150.1.74', 'port' : '5432', 'user':'postgres', 'password':'<PASSWORD>', 'database' : 'postgres'} #conexion a PostgreSQL produccion conexionP_P = psycopg2.connect(**connP_P) #print('\nConexión con el servidor PostgreSQL produccion establecida!') cursorP_P = conexionP_P.cursor () #ejecucion query telefonos PostgreSQL cursorP_P.execute(query) anwr = cursorP_P.fetchall() cursorP_P.close() conexionP_P.close() return anwr def to_horiz(anwr_P,name,_id): #vertical horizontal anwr_P1 = anwr_P.pivot(index=0,columns=1) anwr_P1[_id] = anwr_P1.index col1 = [] i=0 for i in range(anwr_P1.shape[1]-1): col1.append(name+str(i+1)) col1.append(_id) anwr_P1.columns = col1 return anwr_P1 def csv_o(fn,name): response = HttpResponse(content_type = "text/csv") content = "attachment; filename = %s"%name response["Content-Disposition"] = content # for j in range(fn.shape[1]): # try: # fn.iloc[:,j] = fn.iloc[:,j].str.decode(encoding='utf-8-sig') # fn.iloc[:,j] = fn.iloc[:,j].str.encode(encoding='utf_16_le') # except: # pass fn2 = [tuple(x) for x in fn.values] writer = csv.writer(response,delimiter ='|') writer.writerow(fn.columns) writer.writerows(fn2) return response def excel(fn,name): wb = Workbook() ws = wb.active k = 0 a = pd.DataFrame(fn.columns) for k in range(a.shape[0]): ws.cell(row = 1, column = k+1).value = a.iloc[k,0] i=0 j=0 for i in range(fn.shape[0]): for j in range(0,fn.shape[1]): try: ws.cell(row = i+2, column = j+1).value = fn.iloc[i,j] except: pass response = HttpResponse(content_type = "application/ms-excel") content = "attachment; filename = %s"%name response["Content-Disposition"] = content wb.save(response) return response def excel_CV_COL(request): today = datetime.now() tablename = "CV_Col"+today.strftime("%Y%m%d%H") + ".xlsx" with open("./hello/Plantillas/Colp/QueryTel_COL.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Colp/QueryCor_COL.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Colp/QueryDir_COL.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Colp/QueryCV_COL.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Colp/QueryCiu_COL.txt","r") as f6: queryP_Ciu = f6.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") df = df.rename(columns={0:'rownumber', 1:'obligacion_id', 2:'deudor_id', 3:'unico', 4:'estado', 5:'tipo_cliente', 6:'nombre', 7:'producto', 8:'initial_bucket', 9:'ciudad', 10:'sucursal', 11:'tipo_prod', 12:'dias_mora_inicial', 13:'dias_mora_actual', 14:'rango_mora_inicial', 15:'rango_mora_final', 16:'rango', 17:'suma_pareto', 18:'rango_pareto', 19:'fcast', 20:'fdesem', 21:'vrdesem', 22:'saldo_total_inicial', 23:'saldo_total_actual', 24:'saldo_capital_inicial', 25:'saldo_capital_actual', 26:'saldo_vencido_inicial', 27:'saldo_vencido_actual', 28:'pagomin', 29:'fultpago', 30:'vrultpago', 31:'agencia', 32:'tasainter', 33:'feultref', 34:'ultcond', 35:'fasigna', 36:'eqasicampana', 37:'diferencia_pago', 38:'pago_preliminar', 39:'pago_cliente', 40:'min', 41:'tarifa', 42:'honorarios', 43:'perfil_mes_4', 44:'perfil_mes_3', 45:'perfil_mes_2', 46:'perfil_mes_1', 47:'fecha_primer_gestion', 48:'fecha_ultima_gestion', 49:'perfil_mes_actual', 50:'contactabilidad', 51:'ultimo_alo', 52:'descod1', 53:'descod2', 54:'asesor', 55:'fecha_gestion', 56:'telefono_mejor_gestion', 57:'mejorgestionhoy', 58:'asesor_indicador_hoy', 59:'repeticion', 60:'llamadas', 61:'sms', 62:'correos', 63:'gescall', 64:'visitas', 65:'whatsapp', 66:'no_contacto', 67:'total_gestiones', 68:'telefono_positivo', 69:'marcaciones_telefono_positivo', 70:'ultima_marcacion_telefono_positivo', 71:'fec_creacion_ult_compromiso', 72:'fec_pactada_ult_compromiso', 73:'valor_acordado_ult_compromiso', 74:'asesor_ult_compromiso', 75:'cantidad_acuerdos_mes', 76:'estado_acuerdo',}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) return excel(fn,tablename) def csv_CV_Claro(request): today = datetime.now() tablename = "CV_Claro" + today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Claro/QueryTel_Claro.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Claro/QueryCor_Claro.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Claro/QueryCV_Claro.txt","r") as f4: queryP_cons = f4.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) yanwr = psql_pdc(queryP_cons) #dataframes anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) df = pd.DataFrame(yanwr) anwr_P1 = to_horiz(anwr_P,'phone','deudor_id') #renombrar campos correos anwr_C = anwr_C.rename(columns={ 0:'deudor_id', 1:'mail0', 2:'mail1'}) anwr_C1 = anwr_C.drop_duplicates(subset=['deudor_id']) #renombrar campos CV df = df.rename(columns={0:'rownumber', 1:'deudor_id', 2:'obligacion_id', 3:'nombredelcliente', 4:'estado', 5:'tipo_cliente', 6:'unico', 7:'crmorigen', 8:'potencialmark', 9:'prepotencialmark', 10:'writeoffmark', 11:'dias_mora', 12:'segmento_bpo', 13:'rango_bpo', 14:'tipo', 15:'fecha_de_vencimiento', 16:'min_cliente', 17:'valorscoring', 18:'numeroreferenciadepago', 19:'monto_inicial', 20:'monto_ini_cuenta', 21:'porcentaje_descuento', 22:'valor_descuento', 23:'valor_a_pagar', 24:'deuda_real', 25:'valor_pago', 26:'saldo_pendiente', 27:'fecha_pago', 28:'fecha_compromiso', 29:'fecha_pago_compromiso', 30:'valor_compromiso', 31:'estado_acuerdo', 32:'ind_m4', 33:'ind_m3', 34:'ind_m2', 35:'ind_m1', 36:'fecha_primer_gestion', 37:'fecha_ultima_gestion', 38:'indicador', 39:'phone', 40:'asesor', 41:'fecha_gestion', 42:'contactabilidad', 43:'indicador_hoy', 44:'repeticion', 45:'llamadas', 46:'sms', 47:'correos', 48:'gescall', 49:'whatsapp', 50:'visitas', 51:'no_contacto', 52:'total_gestiones', 53:'telefono_positivo', 54:'fec_ultima_marcacion'}) #a = fn[fn.obligacion_id == '9876510000211227'] #i=0 #lin = ['no_contacto_mes_actual','gescall_mes_actual','tel_mes_actual','tel_positivo'] #for i in lin: # df[i].fillna(0,inplace=True) # df[i] = df[i].apply(lambda x: round(x)) # df[i] = df[i].astype('str') fn = pd.merge(df,anwr_P1,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,anwr_C1,on = ["deudor_id"]\ ,how = "left",indicator = False) return csv_o(fn,tablename) def csv_CV_CarP(request): today = datetime.now() tablename = "CV_CarP" + today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/CarP/QueryTel_CarP.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/CarP/QueryCor_CarP.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/CarP/QueryDir_CarP.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/CarP/QueryCV_CarP.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/CarP/QueryCiu_CarP.txt","r") as f5: queryP_Ciu = f5.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") #renombrar campos CV df = df.rename(columns={0:'deudor_id', 1:'unico', 2:'nombre', 3:'obligacion', 4:'obligacion_17', 5:'tipo_cliente', 6:'sucursal_final', 7:'zona', 8:'ano_castigo', 9:'saldo_k_pareto_mes_vigente', 10:'intereses', 11:'honorarios_20', 12:'saldo_total_mes_vigente', 13:'saldo_total_pareto_mes_vigente_', 14:'saldokpareto', 15:'rango_k_pareto', 16:'interesespareto', 17:'honorariospareto', 18:'porcentaje_k_del_total', 19:'porcentaje_intereses_del_total', 20:'porcentaje_honorarios_del_total', 21:'rango_k_porcentaje', 22:'capital_20_porciento', 23:'dias_mora_acumulado', 24:'marca_juridica_cliente', 25:'focos', 26:'valor_pago', 27:'ultima_fecha_pago', 28:'estado_cliente_mes_anterior', 29:'valor_compromiso', 30:'fecha_compromiso', 31:'fecha_pactada_compromiso', 32:'asesor_compromiso', 33:'ind_m4', 34:'ind_m3', 35:'ind_m2', 36:'ind_m1', 37:'fecha_primer_gestion', 38:'fecha_ultima_gestion', 39:'indicador', 40:'telefono_mejor_gestion', 41:'asesor_mejor_gestion', 42:'fecha_gestion', 43:'contactabilidad', 44:'indicador_hoy', 45:'repeticion', 46:'llamadas', 47:'sms', 48:'correos', 49:'gescall', 50:'whatsapp', 51:'visitas', 52:'no_contacto', 53:'total_gestiones', 54:'telefono_positivo', 55:'fec_ultima_marcacion', 56:'investigacion_de_bienes'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) return csv_o(fn,tablename) def csv_CV_FalaJ(request): today = datetime.now() tablename = "CV_FalJ"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Fala/QueryTel_Fal.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Fala/QueryCor_Fal.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Fala/QueryDir_Fal.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Fala/QueryCV_FalJ.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Fala/QueryPa_Fal.txt","r") as f5: queryP_Pa = f5.read() with open("./hello/Plantillas/Fala/QueryRe_Fal.txt","r") as f6: queryP_PR = f6.read() with open("./hello/Plantillas/Fala/QueryCiu_Fal.txt","r") as f7: queryP_Ciu = f7.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrPa = psql_pdc(queryP_Pa) anwrR = psql_pdc(queryP_PR) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Pa = pd.DataFrame(anwrPa) anwr_R = pd.DataFrame(anwrR) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infR = to_horiz(anwr_R,'referencia',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") try: infP = to_horiz(anwr_Pa,'pago','obligacion_id') if infP.shape[1] > 4: tipos = infP.dtypes.to_frame() tipos['index'] = range(len(tipos)) tipos = tipos.set_index('index') su = [] for n in range(len(tipos)): if str(tipos.iloc[n,0]) == 'float64': su.append(n) else: pass infP1 = infP[['pago1','pago2']] infP1['pago3'] = infP.iloc[:,2:max(su)+1].sum(axis = 1) infP1['obligacion_id'] = infP.index infP = infP1 i=0 lin = ['pago1','pago2','pago3'] for i in lin: infP[i].fillna(0,inplace=True) infP[i] = infP[i].apply(lambda x: round(x)) infP[i] = '$' + infP[i].astype('str') except: pass #renombrar campos CV df = df.rename(columns={0:'idcbpo', 1:'tipo_producto_asignacion', 2:'grupo', 3:'cartera', 4:'tipo_cliente', 5:'unico', 6:'unico_pro', 7:'obligacion_id', 8:'deudor_id', 9:'nombre', 10:'producto', 11:'saldototal', 12:'saldo_pareto', 13:'segmentacion', 14:'peso', 15:'alturamora_hoy', 16:'rango', 17:'dias_mora', 18:'vencto', 19:'indicador_mejor_gestion', 20:'total_gestiones', 21:'fecha_ultima_gestion', 22:'asesor_mejor_gestion', 23:'fecha_compromiso', 24:'fecha_pago_compromiso', 25:'valor_compromiso', 26:'asesor', 27:'estado_acuerdo', 28:'dias_mora_pagos', 29:'valor_pago', 30:'fecha_pago', 31:'pendiente', 32:'pago_total', 33:'nvo_status', 34:'status_refresque', 35:'nvo_status_refresque', 36:'dias_mora_refresque', 37:'pendiente_mas_gastos', 38:'vencida_mas_gastos', 39:'gastos_mora', 40:'gastos_cv', 41:'porcentaje_gasto', 42:'valor_a_mantener_sin_gxc', 43:'cv8', 44:'cv9', 45:'cv10', 46:'cv11', 47:'cv12', 48:'restructuracion', 49:'valor_restruc', 50:'pagominimo_actual', 51:'pagominimo_anterior', 52:'periodo_actual', 53:'periodo_anterior', 54:'cuota36', 55:'cuota48', 56:'cuota60', 57:'cuota72', 58:'proyectada_cargue', 59:'aplica_ajuste', 60:'fecha', 61:'diferencia', 62:'porcentaje_saldo_total', 63:'x', 64:'valor', 65:'porcentaje_participacion', 66:'ind_m4', 67:'ind_m3', 68:'ind_m2', 69:'ind_m1', 70:'fecha_primer_gestion', 71:'telefono_mejor_gestion', 72:'fecha_gestion', 73:'contactabilidad', 74:'indicador_hoy', 75:'repeticion', 76:'llamadas', 77:'sms', 78:'correos', 79:'gescall', 80:'whatsapp', 81:'visitas', 82:'no_contacto', 83:'telefono_positivo', 84:'fec_ultima_marcacion', 85:'lista_robinson'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infR,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) if 'infP' in locals(): # Cruce pagos fn = pd.merge(fn,infP,on = ["obligacion_id"]\ ,how = "left",indicator = False) # ordenamiento lt = fn.columns.tolist() lt = lt[:29] + lt[(infP.shape[1]-1)*-1:] + lt[29:fn.shape[1]-(infP.shape[1]-1)] fn = fn[lt] return csv_o(fn,tablename) def csv_CV_FalaC(request): today = datetime.now() tablename = "CV_FalC"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Fala/QueryTel_Fal.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Fala/QueryCor_Fal.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Fala/QueryDir_Fal.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Fala/QueryCV_FalC.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Fala/QueryPa_Fal.txt","r") as f5: queryP_Pa = f5.read() with open("./hello/Plantillas/Fala/QueryRe_Fal.txt","r") as f6: queryP_PR = f6.read() with open("./hello/Plantillas/Fala/QueryCiu_Fal.txt","r") as f7: queryP_Ciu = f7.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrPa = psql_pdc(queryP_Pa) anwrR = psql_pdc(queryP_PR) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Pa = pd.DataFrame(anwrPa) anwr_R = pd.DataFrame(anwrR) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infR = to_horiz(anwr_R,'referencia',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") try: infP = to_horiz(anwr_Pa,'pago','obligacion_id') if infP.shape[1] > 4: tipos = infP.dtypes.to_frame() tipos['index'] = range(len(tipos)) tipos = tipos.set_index('index') su = [] for n in range(len(tipos)): if str(tipos.iloc[n,0]) == 'float64': su.append(n) else: pass infP1 = infP[['pago1','pago2']] infP1['pago3'] = infP.iloc[:,2:max(su)+1].sum(axis = 1) infP1['obligacion_id'] = infP.index infP = infP1 i=0 lin = ['pago1','pago2','pago3'] for i in lin: infP[i].fillna(0,inplace=True) infP[i] = infP[i].apply(lambda x: round(x)) infP[i] = '$' + infP[i].astype('str') except: pass #renombrar campos CV df = df.rename(columns={0:'idcbpo', 1:'tipo_producto_asignacion', 2:'grupo', 3:'cartera', 4:'tipo_cliente', 5:'unico', 6:'unico_pro', 7:'obligacion_id', 8:'deudor_id', 9:'nombre', 10:'producto', 11:'saldototal', 12:'saldo_pareto', 13:'segmentacion', 14:'peso', 15:'alturamora_hoy', 16:'rango', 17:'dias_mora', 18:'vencto', 19:'indicador_mejor_gestion', 20:'total_gestiones', 21:'fecha_ultima_gestion', 22:'asesor_mejor_gestion', 23:'fecha_compromiso', 24:'fecha_pago_compromiso', 25:'valor_compromiso', 26:'asesor', 27:'estado_acuerdo', 28:'dias_mora_pagos', 29:'valor_pago', 30:'fecha_pago', 31:'pendiente', 32:'pago_total', 33:'nvo_status', 34:'status_refresque', 35:'nvo_status_refresque', 36:'dias_mora_refresque', 37:'pendiente_mas_gastos', 38:'vencida_mas_gastos', 39:'gastos_mora', 40:'gastos_cv', 41:'porcentaje_gasto', 42:'valor_a_mantener_sin_gxc', 43:'cv1', 44:'cv2', 45:'cv3', 46:'cv4', 47:'cv5', 48:'cv6', 49:'cv7', 50:'cv8', 51:'cv9', 52:'cv10', 53:'cv11', 54:'cv12', 55:'restructuracion', 56:'valor_restruc', 57:'pagominimo_actual', 58:'pagominimo_anterior', 59:'periodo_actual', 60:'periodo_anterior', 61:'cuota36', 62:'cuota48', 63:'cuota60', 64:'cuota72', 65:'proyectada_cargue', 66:'aplica_ajuste', 67:'fecha', 68:'diferencia', 69:'porcentaje_saldo_total', 70:'x', 71:'valor', 72:'porcentaje_participacion', 73:'ind_m4', 74:'ind_m3', 75:'ind_m2', 76:'ind_m1', 77:'fecha_primer_gestion', 78:'telefono_mejor_gestion', 79:'fecha_gestion', 80:'contactabilidad', 81:'indicador_hoy', 82:'repeticion', 83:'llamadas', 84:'sms', 85:'correos', 86:'gescall', 87:'whatsapp', 88:'visitas', 89:'no_contacto', 90:'telefono_positivo', 91:'fec_ultima_marcacion', 92:'lista_robinson'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infR,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) if 'infP' in locals(): # Cruce pagos fn = pd.merge(fn,infP,on = ["obligacion_id"]\ ,how = "left",indicator = False) # ordenamiento lt = fn.columns.tolist() lt = lt[:27] + lt[(infP.shape[1]-1)*-1:] + lt[27:fn.shape[1]-(infP.shape[1]-1)] fn = fn[lt] return csv_o(fn,tablename) def csv_CV_Sant(request): today = datetime.now() tablename = "CV_San"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Sant/QueryTel_San.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Sant/QueryCor_San.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Sant/QueryDir_San.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Sant/QueryCV_San.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Sant/QueryCiu_San.txt","r") as f5: queryP_Ciu = f5.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") #renombrar campos CV df = df.rename(columns={0:'gestor', 1:'entidad', 2:'abogado', 3:'fecha_desembolso', 4:'fecha_corte', 5:'solicitud', 6:'obligacion_id', 7:'deudor_id', 8:'unico', 9:'nombre', 10:'capital', 11:'dias_mora', 12:'rango_mora', 13:'saldo_capital_pareto', 14:'rango_pareto', 15:'tomo_encuesta', 16:'aplica_alivio', 17:'fecha_proximo_pago_alivio', 18:'debitos', 19:'rango_cierre_m4', 20:'rango_cierre_m3', 21:'rango_cierre_m2', 22:'rango_cierre_m1', 23:'repeticion', 24:'llamadas', 25:'sms', 26:'correos', 27:'gescall', 28:'whatsapp', 29:'visitas', 30:'no_contacto', 31:'total_gestiones', 32:'fecha_primer_gestion', 33:'fecha_ultima_gestion', 34:'ultimo_alo', 35:'ind_m4', 36:'ind_m3', 37:'ind_m2', 38:'ind_m1', 39:'ind_mes_actual', 40:'fec_ind_mes_actual', 41:'tel_ind_mes_actual', 42:'asesor_ind_mes_actual', 43:'contactabilidad', 44:'asesor_ind_hoy', 45:'ind_hoy', 46:'ultima_marcacion_tel_pos', 47:'telefono_positivo', 48:'fecha_compromiso', 49:'fecha_pago_compromiso', 50:'valor_compromiso', 51:'calificacion', 52:'fechas_probables_pago', 53:'id_protocolo', 54:'canal_protocolo', 55:'texto_protocolo'}) fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) lt = fn.columns.tolist() lt = lt[:53] + lt[-(inf.shape[1] + infC.shape[1] + infD.shape[1] -1):] + lt[53:56] fn = fn[lt] return csv_o(fn,tablename) def csv_CV_Pop(request): today = datetime.now() tablename = "CV_Pop" + today.strftime("%Y%m%d%H") + '.csv' with open("./hello/Plantillas/Pop/QueryTel_Pop.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Pop/QueryCor_Pop.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Pop/QueryDir_Pop.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Pop/QueryCV_Pop.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Pop/QueryPa_Pop.txt","r") as f5: queryP_Pa = f5.read() with open("./hello/Plantillas/Pop/QueryCiu_Pop.txt","r") as f6: queryP_Ciu = f6.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrPa = psql_pdc(queryP_Pa) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Pa = pd.DataFrame(anwrPa) anwr_Ci = pd.DataFrame(anwrCi) df = pd.DataFrame(yanwr) inf = to_horiz(anwr_P,'phone',"deudor_id") infC = to_horiz(anwr_C,'mail',"deudor_id") infD = to_horiz(anwr_D,'address',"deudor_id") infCi = to_horiz(anwr_Ci,'town',"deudor_id") try: infP = to_horiz(anwr_Pa,'pago','llave') except: pass #renombrar campos CV df = df.rename(columns={0:'tipo_bpo', 1:'llave', 2:'entidad', 3:'unico', 4:'nombre_prod', 5:'lin_descripcion', 6:'deudor_id', 7:'nombre_cliente', 8:'tipo_cliente', 9:'estado_actual_cartera', 10:'obligacion_id', 11:'inicio_corte', 12:'fecha_desembolso', 13:'ciclo', 14:'dias_en_mora_inicial', 15:'dias_en_mora_final', 16:'valor_compromiso', 17:'fecha_creacion_compromiso', 18:'fecha_pago_compromiso', 19:'asesor_compromiso', 20:'pagos_acumulados', 21:'cantidad_pagos', 22:'rango_mora_inicial', 23:'rango_mora_final', 24:'estado', 25:'valmora', 26:'valmora_pareto', 27:'capital_inicial', 28:'saltotalpareto', 29:'pago_minimo', 30:'saldo_capital_vencido', 31:'seguros', 32:'intereses_mora', 34:'rango_saltotal', 35:'asignacion_inicial', 36:'wasis_banco', 37:'fecha_de_retiro', 38:'tipo_cliente', 39:'ind_m4', 40:'ind_m3', 41:'ind_m2', 42:'ind_m1', 43:'ind_mejor_gestion', 44:'fec_mejor_gestion', 45:'tel_mejor_gestion', 46:'asesor_mejor_gestion', 47:'contactability', 48:'ind_mejor_gestion_hoy', 49:'asesor_mejor_gestion_hoy', 50:'fecha_primer_gestion', 51:'fecha_ultima_gestion', 52:'repeticion', 53:'llamadas', 54:'sms', 55:'correos', 56:'gescall', 57:'whatsapp', 58:'visitas', 59:'no_contacto', 60:'total_gestiones', 61:'primer_alo', 62:'ultimo_alo', 63:'fec_ult_marc_tel_pos', 64:'tel_positivo', 65:'casa_inicial', 66:'casa_actual', 67:'fecha_retiro_casa'}) # inf["deudor_id"] = "1" + inf["deudor_id"] # infC["deudor_id"] = "1" + infC["deudor_id"] # infD["deudor_id"] = "1" + infD["deudor_id"] # infCi["deudor_id"] = "1" + infCi["deudor_id"] fn = pd.merge(df,inf,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infC,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infD,on = ["deudor_id"]\ ,how = "left",indicator = False) fn = pd.merge(fn,infCi,on = ["deudor_id"]\ ,how = "left",indicator = False) if 'infP' in locals(): # Cruce pagos fn = pd.merge(fn,infP,on = ["llave"]\ ,how = "left",indicator = False) # ordenamiento lt = fn.columns.tolist() lt = lt[:20] + lt[(infP.shape[1]-1)*-1:] + lt[20:fn.shape[1]-(infP.shape[1]-1)] fn = fn[lt] return csv_o(fn,tablename) def csv_CV_Dav(request): today = datetime.now() tablename = "CV_Dav"+today.strftime("%Y%m%d%H") + ".csv" with open("./hello/Plantillas/Davi/QueryTel_Dav.txt","r") as f1: queryP_PT = f1.read() with open("./hello/Plantillas/Davi/QueryCor_Dav.txt","r") as f2: queryP_PC = f2.read() with open("./hello/Plantillas/Davi/QueryDir_Dav.txt","r") as f3: queryP_PD = f3.read() with open("./hello/Plantillas/Davi/QueryCV_Dav.txt","r") as f4: queryP_cons = f4.read() with open("./hello/Plantillas/Davi/QueryCiu_Dav.txt","r") as f5: queryP_Ciu = f5.read() anwr = psql_pdc(queryP_PT) anwrC = psql_pdc(queryP_PC) anwrD = psql_pdc(queryP_PD) anwrCi = psql_pdc(queryP_Ciu) yanwr = psql_pdc(queryP_cons) anwr_P = pd.DataFrame(anwr) anwr_C = pd.DataFrame(anwrC) anwr_D = pd.DataFrame(anwrD) anwr_Ci = pd.DataFrame(anwrCi) df =
pd.DataFrame(yanwr)
pandas.DataFrame
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result =
Timestamp('2011-01-01')
pandas.Timestamp
import os from glob import glob import pandas as pd import numpy as np import requests as req import matplotlib.pyplot as plt from bs4 import BeautifulSoup as bs import matplotlib matplotlib.rcParams.update({'font.size': 30}) def convert_process(x): """ Converts process column in wikipedia transistor count table to numeric. """ # NANs are floats if isinstance(x, float): return x else: return x.replace('nm', '').replace(',', '').strip() def convert_area(x): """ Converts area column in wikipedia transistor count table to numeric. """ # NANs are floats if isinstance(x, float): x = x else: x = x.replace('mm²', '').replace(',', '').replace('\xa0mm2','').strip() return x def update_transistor_data(): """ Retrieves GPU transistor count table from wikipedia and writes to disk as a csv. """ res = req.get('https://en.wikipedia.org/wiki/Transistor_count') soup = bs(res.content, 'lxml') tables = soup.find_all('table', {'class': 'wikitable'}) # find the table with GPU data for t in tables: if 'ARTC HD63484' in t.text: break # bs4 object has to be converted to a string # read_html returns a list for some reason df = pd.read_html(str(t))[0] # some data cleaning/type conversions df['Date of introduction'] =
pd.to_datetime(df['Date of introduction'])
pandas.to_datetime
import os import sys import random import pandas as pd from tqdm import tqdm import pydicom import numpy as np import copy from pneumonia import InferenceConfig, InferenceConfig2 from functions import get_image_fps, box_locations, iou, create_submission, testing_augment DATA_DIR = '../input/' TRAIN_DIR = os.path.join(DATA_DIR, 'stage_1_train_images') TEST_DIR = os.path.join(DATA_DIR, 'stage_1_test_images') MODEL_DIR = '../model/Mask_RCNN' ORIG_SIZE = 1024 # Import Mask RCNN sys.path.append(os.path.join(MODEL_DIR)) # To find local version of the library import mrcnn.model as modellib from mrcnn import utils from mrcnn import visualize from mrcnn.model import log image_fps_val = pd.read_csv('image_fps_val.csv').image_fps_val.tolist() # Phase 1 config inference_config = InferenceConfig() inference_config.display() assert inference_config.NUM_CLASSES == 2 # Select phase 1 model model_path = '../model/Mask_RCNN/pneumonia/model_weight.h5' # Load phase 1 trained model model = modellib.MaskRCNN(mode='inference', config=inference_config, model_dir=MODEL_DIR) assert model_path != "", "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) # Phase 1 def predict(image_fps, min_conf=0.95, augment=False): RESIZE_FACTOR = ORIG_SIZE / inference_config.IMAGE_SHAPE[0] prediction={} for image_id in tqdm(image_fps): ds = pydicom.read_file(image_id) image = ds.pixel_array # If grayscale. Convert to RGB for consistency. if len(image.shape) != 3 or image.shape[2] != 3: image = np.stack((image,) * 3, -1) image, window, scale, padding, crop = utils.resize_image( image, min_dim=inference_config.IMAGE_MIN_DIM, min_scale=inference_config.IMAGE_MIN_SCALE, max_dim=inference_config.IMAGE_MAX_DIM, mode=inference_config.IMAGE_RESIZE_MODE) patient_id = os.path.splitext(os.path.basename(image_id))[0] r = model.detect([image]) r = r[0] if augment: r2 = model.detect([np.fliplr(image)]) r2 = r2[0] r = testing_augment(r, r2, min_conf, inference_config) if len(r['rois'])==0: prediction[patient_id]=[] else: prediction[patient_id]=[] for i in range(len(r['rois'])): if r['scores'][i] > min_conf: score = r['scores'][i] x = r['rois'][i][1] y = r['rois'][i][0] if x>0 and y>0: width = r['rois'][i][3] - x height = r['rois'][i][2] - y x*=RESIZE_FACTOR y*=RESIZE_FACTOR width*=RESIZE_FACTOR height*=RESIZE_FACTOR prediction[patient_id].append([score, x, y, width, height]) return prediction truth = box_locations() prediction = predict(image_fps_val, min_conf=0.96, augment=True) iou_all_mean,tp,fp,tn,fn = iou(truth, prediction) print(iou_all_mean,tp,fp,tn,fn) # Predict on all training data for training phase 2 model if False: image_fps_train = get_image_fps(TRAIN_DIR) prediction = predict(image_fps_train, min_conf=0.96, augment=True) # Convert prediction to training labels train_labels_2 = pd.DataFrame(columns=['patientId', 'x', 'y', 'width', 'height', 'Target', 'class']) i=0 for patient_id in list(prediction.keys()): if len(truth[patient_id])>0: for box in truth[patient_id]: train_labels_2.loc[i] = [patient_id, int(box[0]), int(box[1]), int(box[2]), int(box[3]), 1, 1] i+=1 else: if len(prediction[patient_id])>0: for box in prediction[patient_id]: train_labels_2.loc[i] = [patient_id, int(box[1]), int(box[2]), int(box[3]), int(box[4]), 0, 2] i+=1 else: train_labels_2.loc[i] = [patient_id, np.nan, np.nan, np.nan, np.nan, 0, 0] i+=1 train_labels_2.sort_values(by='patientId', inplace=True) train_labels_2.to_csv(os.path.join(DATA_DIR, 'train_labels_2.csv'), index=False) print(len(train_labels_2)) # Phase 2 inference_config_2 = InferenceConfig2() inference_config_2.display() assert inference_config_2.NUM_CLASSES == 3 # Select phase 2 model model_2_path = '../model/Mask_RCNN/pneumonia/model_weight.h5' model_2 = modellib.MaskRCNN(mode='inference', config=inference_config_2, model_dir=MODEL_DIR) assert model_2_path != "", "Provide path to trained weights" print("Loading weights from ", model_2_path) model_2.load_weights(model_2_path, by_name=True) # Phase 2 def predict2(image_fps, min_conf=0.90, augment=False): RESIZE_FACTOR = ORIG_SIZE / inference_config_2.IMAGE_SHAPE[0] prediction={} for image_id in tqdm(image_fps): ds = pydicom.read_file(image_id) image = ds.pixel_array # If grayscale. Convert to RGB for consistency. if len(image.shape) != 3 or image.shape[2] != 3: image = np.stack((image,) * 3, -1) image, window, scale, padding, crop = utils.resize_image( image, min_dim=inference_config.IMAGE_MIN_DIM, min_scale=inference_config.IMAGE_MIN_SCALE, max_dim=inference_config.IMAGE_MAX_DIM, mode=inference_config.IMAGE_RESIZE_MODE) patient_id = os.path.splitext(os.path.basename(image_id))[0] r = model_2.detect([image]) r = r[0] if augment: r2 = model_2.detect([np.fliplr(image)]) r2 = r2[0] r = testing_augment(r, r2, min_conf, inference_config) if len(r['rois'])==0: prediction[patient_id]=[] else: prediction[patient_id]=[] for i in range(len(r['rois'])): if r['class_ids'][i]==2 and r['scores'][i] > min_conf: score = r['scores'][i] x = r['rois'][i][1] y = r['rois'][i][0] if x>0 and y>0: width = r['rois'][i][3] - x height = r['rois'][i][2] - y x*=RESIZE_FACTOR y*=RESIZE_FACTOR width*=RESIZE_FACTOR height*=RESIZE_FACTOR prediction[patient_id].append([score, x, y, width, height]) return prediction prediction_2 = predict2(image_fps_val, min_conf=0.92, augment=False) #Merge def merge_predictions(prediction, prediction_2): prediction_3 = copy.deepcopy(prediction) for patient_id in list(prediction_2.keys()): if len(prediction_2[patient_id])>0: prediction_3[patient_id] = [] return prediction_3 prediction_3 = merge_predictions(prediction, prediction_2) iou_all_mean,tp,fp,tn,fn = iou(truth, prediction_3) # Predict on testing data if True: image_fps_test = get_image_fps(TEST_DIR) image_fps_test.sort() prediction_test = predict(image_fps_test, min_conf=0.96, augment=True) prediction_test_2 = predict2(image_fps_test, min_conf=0.92, augment=False) prediction_test_3 = merge_predictions(prediction_test, prediction_test_2) create_submission(prediction_test_3) #submission submission =
pd.read_csv('submission.csv')
pandas.read_csv
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_rabbitmq(self, t, path_nwp, nwp_model, project, variables): x = dict() x_3d = dict() nwps = project['nwp'] p_dates = pd.date_range(t, t + pd.DateOffset(days=3) - pd.DateOffset(hours=1), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_rabbitmq(date, nwp, nwp_prev, nwp_next, project['static_data']['type']) x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.strftime('%d%m%y%H%M') nwp = nwps[date_nwp] date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps_online(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='15min') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') return x, x_3d, t.strftime('%d%m%y%H%M') def get_lats_longs(self): lats = dict() longs = dict() nwp_found = False for t in self.dates: # Try to load at least one file ?? file_name = os.path.join(self.path_nwp, f"{self.nwp_model}_{t.strftime('%d%m%y')}.pickle") p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=48), freq='H').strftime( '%d%m%y%H%M') if os.path.exists(file_name): nwps = joblib.load(file_name) for date in p_dates: if date in nwps: nwp = nwps[date] nwp_found = True break if nwp_found: break print(nwp_found) if len(nwp['lat'].shape) == 1: nwp['lat'] = nwp['lat'][:, np.newaxis] if len(nwp['long'].shape) == 1: nwp['long'] = nwp['long'][np.newaxis, :] if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for project in self.projects: areas = project['static_data']['areas'] # The final area is a 5x5 grid project_id = project['_id'] lat, long = nwp['lat'], nwp['long'] if isinstance(areas, list): # Is this guaranteed to be 5x5 ? I think yes, because of the resolution. TODO: VERIFY lats[project_id] = np.where((lat[:, 0] >= areas[0][0]) & (lat[:, 0] <= areas[1][0]))[0] longs[project_id] = np.where((long[0, :] >= areas[0][1]) & (long[0, :] <= areas[1][1]))[0] else: lats[project_id] = dict() longs[project_id] = dict() for area in sorted(areas.keys()): lats[project_id][area] = np.where((lat[:, 0] >= areas[0][0]) & (lat[:, 0] <= areas[1][0]))[0] longs[project_id][area] = np.where((long[0, :] >= areas[0][1]) & (long[0, :] <= areas[1][1]))[0] return lats, longs def make_dataset_res_short_term(self): lats, longs = self.get_lats_longs() predictions = dict() for project in self.projects: predictions[project['_id']] = joblib.load(os.path.join(project['static_data']['path_data'] , 'predictions_short_term.pickle')) nwp = self.stack_by_sample(self.data.index[20], self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, predictions) nwp_samples = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_by_sample)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables, predictions) for t in self.data.index[20:]) x = dict() y = dict() x_3d = dict() for project in self.projects: x[project['_id']] = pd.DataFrame() y[project['_id']] = pd.DataFrame() x_3d[project['_id']] = np.array([]) for nwp in nwp_samples: for project in self.projects: if project['_id'] in nwp[2].keys(): if nwp[2][project['_id']].shape[0] != 0: x[project['_id']] = pd.concat([x[project['_id']], nwp[0][project['_id']]]) y[project['_id']] = pd.concat([y[project['_id']], nwp[1][project['_id']]]) x_3d[project['_id']] = stack_3d(x_3d[project['_id']], nwp[2][project['_id']]) self.logger.info('All Inputs stacked') dataset_x_csv = 'dataset_X_test.csv' dataset_y_csv = 'dataset_y_test.csv' dataset_cnn_pickle = 'dataset_cnn_test.pickle' for project in self.projects: project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x[project_id] dataset_y = y[project_id] if dataset_y.isna().any().values[0]: dataset_x = dataset_x.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if len(x_3d.shape) > 1: x_3d = np.delete(x_3d, np.where(dataset_y.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) if dataset_x.isna().any().values[0]: dataset_y = dataset_y.drop(dataset_x.index[np.where(dataset_x.isna())[0]]) if len(x_3d.shape) > 1: x_3d = np.delete(x_3d, np.where(dataset_x.isna())[0], axis=0) dataset_y = dataset_y.drop(dataset_y.index[np.where(dataset_y.isna())[0]]) index = [d for d in dataset_x.index if d in dataset_y.index] dataset_x = dataset_x.loc[index] dataset_y = dataset_y.loc[index] ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] dataset_x.to_csv(os.path.join(data_path, dataset_x_csv)) dataset_y.to_csv(os.path.join(data_path, dataset_y_csv)) joblib.dump(x_3d[project_id], os.path.join(data_path, dataset_cnn_pickle)) self.logger.info('Datasets saved for project %s', project['_id']) def make_dataset_res_rabbitmq(self): project = self.projects[0] nwp_daily = self.stack_daily_nwps_rabbitmq(self.dates[0], self.path_nwp, self.nwp_model, project, self.variables) x = nwp_daily[0][project['_id']] x_3d = nwp_daily[1][project['_id']] project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x if os.path.exists(os.path.join(data_path, 'dataset_columns_order.pickle')): ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] return dataset_x, x_3d def make_dataset_res_online(self): project = self.projects[0] lats, longs = self.get_lats_longs() nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_daily_nwps_online)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) for t in self.dates) x = pd.DataFrame() y = pd.DataFrame() x_3d = np.array([]) for nwp in nwp_daily: if nwp[1][project['_id']].shape[0] != 0: x = pd.concat([x, nwp[0][project['_id']]]) x_3d = stack_3d(x_3d, nwp[2][project['_id']]) project_id = project['_id'] data_path = project['static_data']['path_data'] dataset_x = x ind = joblib.load(os.path.join(data_path, 'dataset_columns_order.pickle')) columns = dataset_x.columns[ind] dataset_x = dataset_x[columns] return dataset_x, x_3d def make_dataset_res(self): lats, longs = self.get_lats_longs() nwp = self.stack_daily_nwps(self.dates[4], self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) nwp_daily = Parallel(n_jobs=self.n_jobs)( delayed(self.stack_daily_nwps)(t, self.data, lats, longs, self.path_nwp, self.nwp_model, self.projects, self.variables) for t in self.dates) x = dict() y = dict() x_3d = dict() for project in self.projects: x[project['_id']] = pd.DataFrame() y[project['_id']] = pd.DataFrame() x_3d[project['_id']] = np.array([]) for nwp in nwp_daily: for project in self.projects: if project['_id'] in nwp[2].keys(): if nwp[2][project['_id']].shape[0] != 0: x[project['_id']] =
pd.concat([x[project['_id']], nwp[0][project['_id']]])
pandas.concat
import unittest import numpy as np import pandas as pd from minotor.data_managers.data_types import DataType class TestDataType(unittest.TestCase): def test_numpy_float2data_type(self): arr = np.array([[1.0, 1.2]]) dtype = arr.dtype self.assertEqual(DataType.type2value(dtype), DataType.FLOAT) def test_numpy_int2data_type(self): arr = np.array([[1, 1]]) dtype = arr.dtype self.assertEqual(DataType.type2value(dtype), DataType.INT) def test_numpy_bool2data_type(self): arr = np.array([[True, False]]) dtype = arr.dtype self.assertEqual(DataType.type2value(dtype), DataType.BOOL) def test_pandas_int2data_type(self): s = pd.Series([1, 2]) self.assertEqual(DataType.type2value(s.dtype), DataType.INT) def test_pandas_float2data_type(self): s = pd.Series([1.0, 2.0]) self.assertEqual(DataType.type2value(s.dtype), DataType.FLOAT) def test_pandas_cat2data_type(self): s = pd.Series(["cat1", "cat2"], dtype="category") self.assertEqual(DataType.type2value(s.dtype), DataType.CATEGORY) def test_pandas_bool2data_type(self): s =
pd.Series([True, False])
pandas.Series
import pandas as pd from business_rules.operators import (DataframeType, StringType, NumericType, BooleanType, SelectType, SelectMultipleType, GenericType) from . import TestCase from decimal import Decimal import sys import pandas class StringOperatorTests(TestCase): def test_operator_decorator(self): self.assertTrue(StringType("foo").equal_to.is_operator) def test_string_equal_to(self): self.assertTrue(StringType("foo").equal_to("foo")) self.assertFalse(StringType("foo").equal_to("Foo")) def test_string_not_equal_to(self): self.assertTrue(StringType("foo").not_equal_to("Foo")) self.assertTrue(StringType("foo").not_equal_to("boo")) self.assertFalse(StringType("foo").not_equal_to("foo")) def test_string_equal_to_case_insensitive(self): self.assertTrue(StringType("foo").equal_to_case_insensitive("FOo")) self.assertTrue(StringType("foo").equal_to_case_insensitive("foo")) self.assertFalse(StringType("foo").equal_to_case_insensitive("blah")) def test_string_starts_with(self): self.assertTrue(StringType("hello").starts_with("he")) self.assertFalse(StringType("hello").starts_with("hey")) self.assertFalse(StringType("hello").starts_with("He")) def test_string_ends_with(self): self.assertTrue(StringType("hello").ends_with("lo")) self.assertFalse(StringType("hello").ends_with("boom")) self.assertFalse(StringType("hello").ends_with("Lo")) def test_string_contains(self): self.assertTrue(StringType("hello").contains("ell")) self.assertTrue(StringType("hello").contains("he")) self.assertTrue(StringType("hello").contains("lo")) self.assertFalse(StringType("hello").contains("asdf")) self.assertFalse(StringType("hello").contains("ElL")) def test_string_matches_regex(self): self.assertTrue(StringType("hello").matches_regex(r"^h")) self.assertFalse(StringType("hello").matches_regex(r"^sh")) def test_non_empty(self): self.assertTrue(StringType("hello").non_empty()) self.assertFalse(StringType("").non_empty()) self.assertFalse(StringType(None).non_empty()) class NumericOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, err_string): NumericType("foo") def test_numeric_type_validates_and_casts_decimal(self): ten_dec = Decimal(10) ten_int = 10 ten_float = 10.0 if sys.version_info[0] == 2: ten_long = long(10) else: ten_long = int(10) # long and int are same in python3 ten_var_dec = NumericType(ten_dec) # this should not throw an exception ten_var_int = NumericType(ten_int) ten_var_float = NumericType(ten_float) ten_var_long = NumericType(ten_long) self.assertTrue(isinstance(ten_var_dec.value, Decimal)) self.assertTrue(isinstance(ten_var_int.value, Decimal)) self.assertTrue(isinstance(ten_var_float.value, Decimal)) self.assertTrue(isinstance(ten_var_long.value, Decimal)) def test_numeric_equal_to(self): self.assertTrue(NumericType(10).equal_to(10)) self.assertTrue(NumericType(10).equal_to(10.0)) self.assertTrue(NumericType(10).equal_to(10.000001)) self.assertTrue(NumericType(10.000001).equal_to(10)) self.assertTrue(NumericType(Decimal('10.0')).equal_to(10)) self.assertTrue(NumericType(10).equal_to(Decimal('10.0'))) self.assertFalse(NumericType(10).equal_to(10.00001)) self.assertFalse(NumericType(10).equal_to(11)) def test_numeric_not_equal_to(self): self.assertTrue(NumericType(10).not_equal_to(10.00001)) self.assertTrue(NumericType(10).not_equal_to(11)) self.assertTrue(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.1'))) self.assertFalse(NumericType(10).not_equal_to(10)) self.assertFalse(NumericType(10).not_equal_to(10.0)) self.assertFalse(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.0'))) def test_other_value_not_numeric(self): error_string = "10 is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, error_string): NumericType(10).equal_to("10") def test_numeric_greater_than(self): self.assertTrue(NumericType(10).greater_than(1)) self.assertFalse(NumericType(10).greater_than(11)) self.assertTrue(NumericType(10.1).greater_than(10)) self.assertFalse(NumericType(10.000001).greater_than(10)) self.assertTrue(NumericType(10.000002).greater_than(10)) def test_numeric_greater_than_or_equal_to(self): self.assertTrue(NumericType(10).greater_than_or_equal_to(1)) self.assertFalse(NumericType(10).greater_than_or_equal_to(11)) self.assertTrue(NumericType(10.1).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000001).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000002).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10).greater_than_or_equal_to(10)) def test_numeric_less_than(self): self.assertTrue(NumericType(1).less_than(10)) self.assertFalse(NumericType(11).less_than(10)) self.assertTrue(NumericType(10).less_than(10.1)) self.assertFalse(NumericType(10).less_than(10.000001)) self.assertTrue(NumericType(10).less_than(10.000002)) def test_numeric_less_than_or_equal_to(self): self.assertTrue(NumericType(1).less_than_or_equal_to(10)) self.assertFalse(NumericType(11).less_than_or_equal_to(10)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.1)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000001)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000002)) self.assertTrue(NumericType(10).less_than_or_equal_to(10)) class BooleanOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType("foo") err_string = "None is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType(None) def test_boolean_is_true_and_is_false(self): self.assertTrue(BooleanType(True).is_true()) self.assertFalse(BooleanType(True).is_false()) self.assertFalse(BooleanType(False).is_true()) self.assertTrue(BooleanType(False).is_false()) class SelectOperatorTests(TestCase): def test_contains(self): self.assertTrue(SelectType([1, 2]).contains(2)) self.assertFalse(SelectType([1, 2]).contains(3)) self.assertTrue(SelectType([1, 2, "a"]).contains("A")) def test_does_not_contain(self): self.assertTrue(SelectType([1, 2]).does_not_contain(3)) self.assertFalse(SelectType([1, 2]).does_not_contain(2)) self.assertFalse(SelectType([1, 2, "a"]).does_not_contain("A")) class SelectMultipleOperatorTests(TestCase): def test_contains_all(self): self.assertTrue(SelectMultipleType([1, 2]). contains_all([2, 1])) self.assertFalse(SelectMultipleType([1, 2]). contains_all([2, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). contains_all([2, 1, "A"])) def test_is_contained_by(self): self.assertTrue(SelectMultipleType([1, 2]). is_contained_by([2, 1, 3])) self.assertFalse(SelectMultipleType([1, 2]). is_contained_by([2, 3, 4])) self.assertTrue(SelectMultipleType([1, 2, "a"]). is_contained_by([2, 1, "A"])) def test_shares_at_least_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_at_least_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_at_least_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_at_least_one_element_with([4, "A"])) def test_shares_exactly_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_exactly_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_exactly_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_exactly_one_element_with([4, "A"])) self.assertFalse(SelectMultipleType([1, 2, 3]). shares_exactly_one_element_with([2, 3, "a"])) def test_shares_no_elements_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_no_elements_with([4, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_no_elements_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2, "a"]). shares_no_elements_with([4, "A"])) class DataframeOperatorTests(TestCase): def test_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ], }) result: pd.Series = DataframeType({"value": df}).exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_not_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ] }) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, "", 7, ], "var2": [3, 5, 6, "", 2, ], "var3": [1, 3, 8, "", 7, ], "var4": ["test", "issue", "one", "", "two", ] }) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to({ "target": "--r1", "comparator": "--r3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 20 }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var4", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False, False, ]))) def test_not_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": 20 }).equals(pandas.Series([True, True, True]))) def test_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "", "new", "val"], "var2": ["WORD", "", "test", "VAL"], "var3": ["LET", "", "GO", "read"] }) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "NEW" }).equals(pandas.Series([False, False, True, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False]))) def test_not_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "new", "val"], "var2": ["WORD", "test", "VAL"], "var3": ["LET", "GO", "read"], "var4": ["WORD", "NEW", "VAL"] }) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) def test_less_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than({ "target": "--r1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": 3 }).equals(pandas.Series([True, True, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than_or_equal_to({ "target": "--r1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([False, False, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 5, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than_or_equal_to({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_greater_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": 5000 }).equals(pandas.Series([False, False, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than_or_equal_to({ "target": "var1", "comparator": "--r4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([True, True, False]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 3, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than_or_equal_to({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_contains(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([True, False, False]))) def test_does_not_contain(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": 5 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).does_not_contain({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([False, True, True]))) def test_contains_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["pikachu", "charmander", "squirtle"], "var2": ["PIKACHU", "CHARIZARD", "BULBASAUR"], "var3": ["POKEMON", "CHARIZARD", "BULBASAUR"], "var4": [ ["pikachu", "charizard", "bulbasaur"], ["chikorita", "cyndaquil", "totodile"], ["chikorita", "cyndaquil", "totodile"] ] }) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "PIKACHU" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var3", "comparator": "var3" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var3", "comparator": "var3", "value_is_literal": True }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var4", "comparator": "var2" }).equals(pandas.Series([True, False, False]))) def test_does_not_contain_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["pikachu", "charmander", "squirtle"], "var2": ["PIKACHU", "CHARIZARD", "BULBASAUR"], "var3": ["pikachu", "charizard", "bulbasaur"], "var4": [ ["pikachu", "charizard", "bulbasaur"], ["chikorita", "cyndaquil", "totodile"], ["chikorita", "cyndaquil", "totodile"] ] }) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var1", "comparator": "IVYSAUR" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var3", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var4", "comparator": "var2" }).equals(pandas.Series([False, True, True]))) def test_is_contained_by(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "var5": [[1,2,3], [1,2], [17]] }) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": [4,5,6] }).equals(pandas.Series([False, False, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_contained_by({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": [9, 10, 11] }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var5" }).equals(pandas.Series([True, True, False]))) def test_is_not_contained_by(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "var5": [[1,2,3], [1,2], [17]] }) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_not_contained_by({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": [9, 10, 11] }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var5" }).equals(pandas.Series([False, False, True]))) def test_is_contained_by_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"], "var4": [set(["word"]), set(["test"])] }) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": ["word", "TEST"] }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var1" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var3", "comparator": "var4" }).equals(pandas.Series([False, False]))) def test_is_not_contained_by_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"], "var4": [set(["word"]), set(["test"])] }) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": ["word", "TEST"] }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var3", "comparator": "var4" }).equals(pandas.Series([True, True]))) def test_prefix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).prefix_matches_regex({ "target": "--r2", "comparator": "w.*", "prefix": 2 }).equals(pandas.Series([True, False]))) self.assertTrue(DataframeType({"value": df}).prefix_matches_regex({ "target": "var2", "comparator": "[0-9].*", "prefix": 2 }).equals(pandas.Series([False, False]))) def test_suffix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).suffix_matches_regex({ "target": "--r1", "comparator": "es.*", "suffix": 3 }).equals(pandas.Series([False, True]))) self.assertTrue(DataframeType({"value": df}).suffix_matches_regex({ "target": "var1", "comparator": "[0-9].*", "suffix": 3 }).equals(pandas.Series([False, False]))) def test_not_prefix_matches_suffix(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_prefix_matches_regex({ "target": "--r1", "comparator": ".*", "prefix": 2 }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).not_prefix_matches_regex({ "target": "var2", "comparator": "[0-9].*", "prefix": 2 }).equals(pandas.Series([True, True]))) def test_not_suffix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df}).not_suffix_matches_regex({ "target": "var1", "comparator": ".*", "suffix": 3 }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_suffix_matches_regex({ "target": "--r1", "comparator": "[0-9].*", "suffix": 3 }).equals(pandas.Series([True, True]))) def test_matches_suffix(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).matches_regex({ "target": "--r1", "comparator": ".*", }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).matches_regex({ "target": "var2", "comparator": "[0-9].*", }).equals(pandas.Series([False, False]))) def test_not_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df}).not_matches_regex({ "target": "var1", "comparator": ".*", }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_matches_regex({ "target": "--r1", "comparator": "[0-9].*", }).equals(pandas.Series([True, True]))) def test_starts_with(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).starts_with({ "target": "--r1", "comparator": "WO", }).equals(pandas.Series([True, False]))) self.assertTrue(DataframeType({"value": df}).starts_with({ "target": "var2", "comparator": "ABC", }).equals(pandas.Series([False, False]))) def test_ends_with(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).ends_with({ "target": "--r1", "comparator": "abc", }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).ends_with({ "target": "var1", "comparator": "est", }).equals(pandas.Series([False, True]))) def test_has_equal_length(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) result = df_operator.has_equal_length({"target": "--r_1", "comparator": 4}) self.assertTrue(result.equals(pandas.Series([True, False]))) def test_has_not_equal_length(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) result = df_operator.has_not_equal_length({"target": "--r_1", "comparator": 4}) self.assertTrue(result.equals(pandas.Series([False, True]))) def test_longer_than(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.longer_than({"target": "--r_1", "comparator": 3}).equals(pandas.Series([True, True]))) def test_longer_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'alex'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.longer_than_or_equal_to({"target": "--r_1", "comparator": 3}).equals(pandas.Series([True, True]))) self.assertTrue(df_operator.longer_than_or_equal_to({"target": "var_1", "comparator": 4}).equals(pandas.Series([True, True]))) def test_shorter_than(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'val'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.shorter_than({"target": "--r_1", "comparator": 5}).equals(pandas.Series([True, True]))) def test_shorter_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'alex'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.shorter_than_or_equal_to({"target": "--r_1", "comparator": 5}).equals(pandas.Series([True, True]))) self.assertTrue(df_operator.shorter_than_or_equal_to({"target": "var_1", "comparator": 4}).equals(pandas.Series([True, True]))) def test_contains_all(self): df = pandas.DataFrame.from_dict( { "var1": ['test', 'value', 'word'], "var2": ["test", "value", "test"] } ) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var1", "comparator": "var2", })) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains_all({ "target": "--r1", "comparator": "--r2", })) self.assertFalse(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": "var1", })) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": ["test", "value"], })) def test_not_contains_all(self): df = pandas.DataFrame.from_dict( { "var1": ['test', 'value', 'word'], "var2": ["test", "value", "test"] } ) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var1", "comparator": "var2", })) self.assertFalse(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": "var1", })) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": ["test", "value"], })) def test_invalid_date(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2099'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).invalid_date({"target": "--r1"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).invalid_date({"target": "var3"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).invalid_date({"target": "var2"}) .equals(pandas.Series([False, False, False, True, True]))) def test_date_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var1", "comparator": '2021'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "1997-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([False, False, True, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).date_equal_to({"target": "--r3", "comparator": "--r4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "hour"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "minute"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "second"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "microsecond"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var6", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var6", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_not_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var6", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_less_than(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var6", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_greater_than(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "1996-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var1", "comparator": '2023'}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "1996-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([True, True, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_is_incomplete_date(self): df = pandas.DataFrame.from_dict( { "var1": [ '2021', '2021', '2099'], "var2": [ "1997-07-16", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df}).is_incomplete_date({"target" : "var1"}) .equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_incomplete_date({"target" : "var2"}) .equals(pandas.Series([False, False, False]))) def test_is_complete_date(self): df = pandas.DataFrame.from_dict( { "var1": ["2021", "2021", "2099"], "var2": ["1997-07-16", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df}).is_complete_date({"target": "var1"}) .equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_complete_date({"target": "var2"}) .equals(pandas.Series([True, True, True]))) def test_is_unique_set(self): df = pandas.DataFrame.from_dict( {"ARM": ["PLACEBO", "PLACEBO", "A", "A"], "TAE": [1,1,1,2], "LAE": [1,2,1,2], "ARF": [1,2,3,4]}) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": "LAE"}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": ["LAE"]}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": ["TAE"]}) .equals(pandas.Series([False, False, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": "TAE"}) .equals(pandas.Series([False, False, True, True]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_unique_set({"target" : "--M", "comparator": "--F"}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_unique_set({"target" : "--M", "comparator": ["--F"]}) .equals(pandas.Series([True, True, True, True]))) def test_is_not_unique_set(self): df = pandas.DataFrame.from_dict( {"ARM": ["PLACEBO", "PLACEBO", "A", "A"], "TAE": [1,1,1,2], "LAE": [1,2,1,2], "ARF": [1,2,3,4]}) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": "LAE"}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": ["LAE"]}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": ["TAE"]}) .equals(pandas.Series([True, True, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": "TAE"}) .equals(pandas.Series([True, True, False, False]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_not_unique_set({"target" : "--M", "comparator": "--F"}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_not_unique_set({"target" : "--M", "comparator": ["--F"]}) .equals(pandas.Series([False, False, False, False]))) def test_is_ordered_set(self): df = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [1,1,2,2] }) self.assertTrue(DataframeType({"value": df}).is_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "SE"}}).is_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) df2 = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [3,1,2,2] }) self.assertFalse(DataframeType({"value": df2}).is_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertFalse(DataframeType({"value":df2, "column_prefix_map": {"--": "SE"}}).is_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) def test_is_not_ordered_set(self): df = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [3,1,2,2] }) self.assertTrue(DataframeType({"value": df}).is_not_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "SE"}}).is_not_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) df2 = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [1,1,2,2] }) self.assertFalse(DataframeType({"value": df2}).is_not_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertFalse(DataframeType({"value":df2, "column_prefix_map": {"--": "SE"}}).is_not_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) def test_is_unique_relationship(self): """ Test validates one-to-one relationship against a dataset. One-to-one means that a pair of columns can be duplicated but its integrity should not be violated. """ one_to_one_related_df = pandas.DataFrame.from_dict( { "STUDYID": [1, 2, 3, 1, 2], "USUBJID": ["TEST", "TEST-1", "TEST-2", "TEST-3", "TEST-4", ], "STUDYDESC": ["Russia", "USA", "China", "Russia", "USA", ], } ) self.assertTrue( DataframeType({"value": one_to_one_related_df}).is_unique_relationship( {"target": "STUDYID", "comparator": "STUDYDESC"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df}).is_unique_relationship( {"target": "STUDYDESC", "comparator": "STUDYID"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df, "column_prefix_map":{"--": "STUDY"}}).is_unique_relationship( {"target": "--ID", "comparator": "--DESC"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df, "column_prefix_map":{"--": "STUDY"}}).is_unique_relationship( {"target": "--DESC", "comparator": "--ID"} ).equals(pandas.Series([True, True, True, True, True])) ) df_violates_one_to_one = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "TESTID": [1, 2, 1, 3], "TESTNAME": ["Functional", "Stress", "Functional", "Stress", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_unique_relationship( {"target": "TESTID", "comparator": "TESTNAME"}).equals(pandas.Series([True, False, True, False])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_unique_relationship( {"target": "TESTNAME", "comparator": "TESTID"}).equals(pandas.Series([True, False, True, False])) ) def test_is_not_unique_relationship(self): """ Test validates one-to-one relationship against a dataset. One-to-one means that a pair of columns can be duplicated but its integrity should not be violated. """ valid_df = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISITNUM": [1, 2, 1, 3], "VISIT": ["Consulting", "Surgery", "Consulting", "Treatment", ], } ) self.assertTrue(DataframeType({"value": valid_df}).is_not_unique_relationship( {"target": "VISITNUM", "comparator": "VISIT"}).equals(pandas.Series([False, False, False, False])) ) self.assertTrue(DataframeType({"value": valid_df}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITNUM"}).equals(pandas.Series([False, False, False, False])) ) valid_df_1 = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISIT": ["Consulting", "Surgery", "Consulting", "Treatment", ], "VISITDESC": [ "Doctor Consultation", "Heart Surgery", "Doctor Consultation", "Long Lasting Treatment", ], } ) self.assertTrue(DataframeType({"value": valid_df_1}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITDESC"}).equals(pandas.Series([False, False, False, False])) ) self.assertTrue(DataframeType({"value": valid_df_1}).is_not_unique_relationship( {"target": "VISITDESC", "comparator": "VISIT"}).equals(pandas.Series([False, False, False, False])) ) df_violates_one_to_one = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISITNUM": [1, 2, 1, 3], "VISIT": ["Consulting", "Surgery", "Consulting", "Consulting", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_not_unique_relationship( {"target": "VISITNUM", "comparator": "VISIT"}).equals(pandas.Series([True, False, True, True])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITNUM"}).equals(pandas.Series([True, False, True, True])) ) df_violates_one_to_one_1 = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", "TEST-4", ], "VISIT": ["Consulting", "Consulting", "Surgery", "Consulting", "Treatment", ], "VISITDESC": ["Doctor Consultation", "Doctor Consultation", "Heart Surgery", "Heart Surgery", "Long Lasting Treatment", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one_1}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITDESC"}).equals(pandas.Series([True, True, True, True, False])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one_1}).is_not_unique_relationship( {"target": "VISITDESC", "comparator": "VISIT"}).equals(pandas.Series([True, True, True, True, False])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one_1, "column_prefix_map": {"--": "VI"}}).is_not_unique_relationship( {"target": "--SIT", "comparator": "--SITDESC"}).equals(pandas.Series([True, True, True, True, False])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one_1, "column_prefix_map": {"--": "VI"}}).is_not_unique_relationship( {"target": "--SITDESC", "comparator": "--SIT"}).equals(pandas.Series([True, True, True, True, False])) ) def test_empty_within_except_last_row(self): df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2], "valid": ["2020-10-10", "2020-10-10", "2020-10-10", "2021", "2021", "2021", ], "invalid": ["2020-10-10", None, None, "2020", "2020", None, ], } ) self.assertFalse( DataframeType({"value": df}).empty_within_except_last_row({"target": "valid", "comparator": "USUBJID"}) ) self.assertTrue( DataframeType({"value": df}).empty_within_except_last_row({"target": "invalid", "comparator": "USUBJID"}) ) def test_non_empty_within_except_last_row(self): df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2], "valid": ["2020-10-10", "2020-10-10", "2020-10-10", "2021", "2021", "2021", ], "invalid": ["2020-10-10", None, None, "2020", "2020", None, ], } ) self.assertTrue( DataframeType({"value": df}).non_empty_within_except_last_row({"target": "valid", "comparator": "USUBJID"}) ) self.assertFalse( DataframeType({"value": df}).non_empty_within_except_last_row({"target": "invalid", "comparator": "USUBJID"}) ) def test_is_valid_reference(self): reference_data = { "LB": { "TEST": [], "DATA": [1,2,3] }, "AE": { "AETERM": [1,2,3] } } df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "DATA", "AETERM"], "IDVAR2": ["TEST", "AETERM", "AETERM"] } ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_valid_reference({"target": "IDVAR1", "context": "RDOMAIN"}) .equals(pandas.Series([True, True, True])) ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_valid_reference({"target": "IDVAR2", "context": "RDOMAIN"}) .equals(pandas.Series([True, False, True])) ) def test_not_valid_reference(self): reference_data = { "LB": { "TEST": [], "DATA": [1,2,3] }, "AE": { "AETERM": [1,2,3] } } df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "DATA", "AETERM"], "IDVAR2": ["TEST", "AETERM", "AETERM"] } ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_not_valid_reference({"target": "IDVAR1", "context": "RDOMAIN"}) .equals(pandas.Series([False, False, False])) ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_not_valid_reference({"target": "IDVAR2", "context": "RDOMAIN"}) .equals(pandas.Series([False, True, False])) ) def test_is_valid_relationship(self): reference_data = { "LB": { "TEST": pandas.Series([4,5,6]).values, "DATA": pandas.Series([1,2,3]).values }, "AE": { "AETERM": pandas.Series([31, 323, 33]).values } } df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "DATA", "AETERM"], "IDVAR2": ["TEST", "DATA", "AETERM"], "IDVARVAL1": [4, 1, 31], "IDVARVAL2": [5, 1, 35] } ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_valid_relationship({"target": "IDVAR1", "comparator": "IDVARVAL1", "context": "RDOMAIN"}) .equals(pandas.Series([True, True, True])) ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_valid_relationship({"target": "IDVAR2", "comparator": "IDVARVAL2", "context": "RDOMAIN"}) .equals(pandas.Series([True, True, False])) ) def test_not_valid_relationship(self): reference_data = { "LB": { "TEST": pandas.Series([4,5,6]).values, "DATA": pandas.Series([1,2,3]).values }, "AE": { "AETERM": pandas.Series([31, 323, 33]).values } } df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "DATA", "AETERM"], "IDVAR2": ["TEST", "DATA", "AETERM"], "IDVARVAL1": [4, 1, 31], "IDVARVAL2": [5, 1, 35] } ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_not_valid_relationship({"target": "IDVAR1", "comparator": "IDVARVAL1", "context": "RDOMAIN"}) .equals(pandas.Series([False, False, False])) ) self.assertTrue( DataframeType({"value": df, "relationship_data": reference_data}).is_not_valid_relationship({"target": "IDVAR2", "comparator": "IDVARVAL2", "context": "RDOMAIN"}) .equals(pandas.Series([False, False, True])) ) def test_non_conformant_value_length(self): def filter_func(row): return row["IDVAR1"] == "TEST" def length_check(row): return len(row["IDVAR2"]) <= 4 df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "TEST", "AETERM"], "IDVAR2": ["TEST", "TOOLONG", "AETERM"], } ) vlm = [ { "filter": filter_func, "length_check": length_check } ] result = DataframeType({"value": df, "value_level_metadata": vlm }).non_conformant_value_length({}) self.assertTrue(result.equals(pandas.Series([False, True, False]))) def test_non_conformant_value_data_type(self): def filter_func(row): return row["IDVAR1"] == "TEST" def type_check(row): return isinstance(row["IDVAR2"], str) df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "TEST", "AETERM"], "IDVAR2": ["TEST", 1, "AETERM"], } ) vlm = [ { "filter": filter_func, "type_check": type_check } ] result = DataframeType({"value": df, "value_level_metadata": vlm }).non_conformant_value_data_type({}) self.assertTrue(result.equals(pandas.Series([False, True, False]))) def test_conformant_value_length(self): def filter_func(row): return row["IDVAR1"] == "TEST" def length_check(row): return len(row["IDVAR2"]) <= 4 df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "TEST", "AETERM"], "IDVAR2": ["TEST", "TOOLONG", "AETERM"], } ) vlm = [ { "filter": filter_func, "length_check": length_check } ] result = DataframeType({"value": df, "value_level_metadata": vlm }).conformant_value_length({}) self.assertTrue(result.equals(pandas.Series([True, False, False]))) def test_conformant_value_data_type(self): def filter_func(row): return row["IDVAR1"] == "TEST" def type_check(row): return isinstance(row["IDVAR2"], str) df = pandas.DataFrame.from_dict( { "RDOMAIN": ["LB", "LB", "AE"], "IDVAR1": ["TEST", "TEST", "AETERM"], "IDVAR2": ["TEST", 1, "AETERM"], } ) vlm = [ { "filter": filter_func, "type_check": type_check } ] result = DataframeType({"value": df, "value_level_metadata": vlm }).conformant_value_data_type({}) self.assertTrue(result.equals(pandas.Series([True, False, False]))) def test_has_next_corresponding_record(self): """ Test for has_next_corresponding_record operator. """ valid_df = pandas.DataFrame.from_dict( { "USUBJID": [789, 789, 789, 789, 790, 790, 790, 790, ], "SESEQ": [1, 2, 3, 4, 5, 6, 7, 8, ], "SEENDTC": ["2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-17", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17", "2006-06-17"], "SESTDTC": ["2006-06-01", "2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-01", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17"], } ) other_value: dict = {"target": "SEENDTC", "comparator": "SESTDTC", "within": "USUBJID", "ordering": "SESEQ"} result = DataframeType({"value": valid_df}).has_next_corresponding_record(other_value) self.assertTrue(result.equals(pandas.Series([True, True, True, pandas.NA, True, True, True, pandas.NA]))) invalid_df = pandas.DataFrame.from_dict( { "USUBJID": [789, 789, 789, 789, 790, 790, 790, 790, ], "SESEQ": [1, 2, 3, 4, 5, 6, 7, 8, ], "SEENDTC": ["2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-17", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17", "2006-06-17"], "SESTDTC": ["2006-06-01", "2010-08-03", "2008-08", "2006-06-17T10:20", "2006-06-01", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17"], } ) other_value: dict = {"target": "SEENDTC", "comparator": "SESTDTC", "within": "USUBJID", "ordering": "SESEQ"} result = DataframeType({"value": invalid_df}).has_next_corresponding_record(other_value) self.assertTrue(result.equals(pandas.Series([False, False, False, pandas.NA, True, True, True, pandas.NA]))) def test_does_not_have_next_corresponding_record(self): """ Test for does_not_have_next_corresponding_record operator. """ valid_df = pandas.DataFrame.from_dict( { "USUBJID": [789, 789, 789, 789, 790, 790, 790, 790, ], "SESEQ": [1, 2, 3, 4, 5, 6, 7, 8, ], "SEENDTC": ["2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-17", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17", "2006-06-17"], "SESTDTC": ["2006-06-01", "2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-01", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17"], } ) other_value: dict = {"target": "SEENDTC", "comparator": "SESTDTC", "within": "USUBJID", "ordering": "SESEQ"} result = DataframeType({"value": valid_df}).does_not_have_next_corresponding_record(other_value) self.assertTrue(result.equals(pandas.Series([False, False, False, pandas.NA, False, False, False, pandas.NA]))) invalid_df = pandas.DataFrame.from_dict( { "USUBJID": [789, 789, 789, 789, 790, 790, 790, 790, ], "SESEQ": [1, 2, 3, 4, 5, 6, 7, 8, ], "SEENDTC": ["2006-06-03T10:32", "2006-06-10T09:47", "2006-06-17", "2006-06-17", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17", "2006-06-17"], "SESTDTC": ["2006-06-01", "2010-08-03", "2008-08", "2006-06-17T10:20", "2006-06-01", "2006-06-03T10:14", "2006-06-10T10:32", "2006-06-17"], } ) other_value: dict = {"target": "SEENDTC", "comparator": "SESTDTC", "within": "USUBJID", "ordering": "SESEQ"} result = DataframeType({"value": invalid_df}).does_not_have_next_corresponding_record(other_value) self.assertTrue(result.equals(pandas.Series([True, True, True, pandas.NA, False, False, False, pandas.NA]))) def test_present_on_multiple_rows_within(self): """ Unit test for present_on_multiple_rows_within operator. """ valid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2, ], "SEQ": [1, 2, 3, 4, 5, 6], "RELID": ["AEHOSP1", "AEHOSP1", "AEHOSP1", "AEHOSP2", "AEHOSP2", "AEHOSP2"] } ) result = DataframeType({"value": valid_df}).present_on_multiple_rows_within( {"target": "RELID", "within": "USUBJID", "comparator": 1} ) self.assertTrue(result.equals(pandas.Series([True, True, True, True, True, True]))) valid_df_1 = pandas.DataFrame.from_dict( { "USUBJID": [5, 5, 5, 7, 7, 7, ], "SEQ": [1, 2, 3, 4, 5, 6], "RELID": ["AEHOSP1", "AEHOSP1", "AEHOSP1", "AEHOSP2", "AEHOSP2", "AEHOSP2"] } ) result = DataframeType({"value": valid_df_1}).present_on_multiple_rows_within( {"target": "RELID", "within": "USUBJID", "comparator": 2} ) self.assertTrue(result.equals(pandas.Series([True, True, True, True, True, True]))) invalid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2, 3], "SEQ": [1, 2, 3, 4, 5, 6, 7], "RELID": ["AEHOSP1", "AEHOSP1", "AEHOSP1", "AEHOSP2", "AEHOSP2", "AEHOSP2", "AEHOSP3"] } ) result = DataframeType({"value": invalid_df}).present_on_multiple_rows_within( {"target": "RELID", "within": "USUBJID", "comparator": 1} ) self.assertTrue(result.equals(pandas.Series([True, True, True, True, True, True, False]))) def test_not_present_on_multiple_rows_within(self): """ Unit test for not_present_on_multiple_rows_within operator. """ valid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2, ], "SEQ": [1, 2, 3, 4, 5, 6], "RELID": ["AEHOSP1", "AEHOSP1", "AEHOSP1", "AEHOSP2", "AEHOSP2", "AEHOSP2"] } ) result = DataframeType({"value": valid_df}).not_present_on_multiple_rows_within( {"target": "RELID", "within": "USUBJID", "comparator": 1} ) self.assertTrue(result.equals(pandas.Series([False, False, False, False, False, False]))) invalid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 2, 2, 2, 3], "SEQ": [1, 2, 3, 4, 5, 6, 7], "RELID": ["AEHOSP1", "AEHOSP1", "AEHOSP1", "AEHOSP2", "AEHOSP2", "AEHOSP2", "AEHOSP3"] } ) result = DataframeType({"value": invalid_df}).not_present_on_multiple_rows_within( {"target": "RELID", "within": "USUBJID", "comparator": 1} ) self.assertTrue(result.equals(pandas.Series([False, False, False, False, False, False, True]))) def test_additional_columns_empty(self): """ Unit test for additional_columns_empty operator. """ valid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 1, ], "TSVAL": [None, None, "another value", None], # original column may be empty "TSVAL1": ["value", "value", "value", None], # valid since TSVAL2 is also null in the same row "TSVAL2": [None, "value 2", "value 2", None], } ) result = DataframeType({"value": valid_df, }).additional_columns_empty({"target": "TSVAL", }) self.assertTrue(result.equals(pandas.Series([False, False, False, False, ]))) invalid_df = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 1, ], "TSVAL": ["value", None, "another value", None], # original column may be empty "TSVAL1": ["value", None, "value", "value"], # invalid column "TSVAL2": ["value 2", "value 2", "value 2", None], "TSVAL3": ["value 3", "value 3", None, "value 3"], } ) result = DataframeType({"value": invalid_df, }).additional_columns_empty({"target": "TSVAL", }) self.assertTrue(result.equals(pandas.Series([False, True, False, True, ]))) def test_additional_columns_not_empty(self): """ Unit test for additional_columns_not_empty operator. """ df_with_empty_rows = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 1, ], "TSVAL": ["value", None, "another value", None], # original column may be empty "TSVAL1": ["value", None, "value", "value"], "TSVAL2": ["value 2", "value 2", "value 2", "value 2"], } ) result = DataframeType({"value": df_with_empty_rows, }).additional_columns_not_empty({"target": "TSVAL", }) self.assertTrue(result.equals(pandas.Series([True, False, True, True, ]))) df_without_empty_rows = pandas.DataFrame.from_dict( { "USUBJID": [1, 1, 1, 1, ], "TSVAL": ["value", None, "another value", None], # original column may be empty "TSVAL1": ["value", "value", "value", "value"], "TSVAL2": ["value 2", "value 2", "value 2", "value 2"], } ) result = DataframeType({"value": df_without_empty_rows, }).additional_columns_not_empty({"target": "TSVAL", }) self.assertTrue(result.equals(pandas.Series([True, True, True, True, ]))) def test_references_valid_codelist(self): df = pandas.DataFrame.from_dict( { "define_variable_name": ["TEST", "COOLVAR", "ANOTHERVAR" ], "define_variable_controlled_terms": ["C123", "C456", "C789"], "define_variable_invalid_terms": ["C123", "C456", "C786"] } ) column_codelist_map = { "TEST": ["C123", "C456"], "COOLVAR": ["C123", "C456"], "ANOTHERVAR": ["C789"] } dft = DataframeType({ "value": df, "column_codelist_map": column_codelist_map }) result = dft.references_correct_codelist({"target": "define_variable_name", "comparator": "define_variable_controlled_terms"}) self.assertTrue(result.equals(pandas.Series([True, True, True ]))) bad_result = dft.references_correct_codelist({"target": "define_variable_name", "comparator": "define_variable_invalid_terms"}) self.assertTrue(bad_result.equals(pandas.Series([True, True, False]))) def test_does_not_reference_valid_codelist(self): df = pandas.DataFrame.from_dict( { "define_variable_name": ["TEST", "COOLVAR", "ANOTHERVAR" ], "define_variable_controlled_terms": ["C123", "C456", "C789"], "define_variable_invalid_terms": ["C123", "C456", "C786"] } ) column_codelist_map = { "TEST": ["C123", "C456"], "--OLVAR": ["C123", "C456"], "ANOTHERVAR": ["C789"] } dft = DataframeType({ "value": df, "column_codelist_map": column_codelist_map, "column_prefix_map": { "--": "CO" } }) result = dft.does_not_reference_correct_codelist({"target": "define_variable_name", "comparator": "define_variable_controlled_terms"}) self.assertTrue(result.equals(pandas.Series([False, False, False ]))) bad_result = dft.does_not_reference_correct_codelist({"target": "define_variable_name", "comparator": "define_variable_invalid_terms"}) self.assertTrue(bad_result.equals(
pandas.Series([False, False, True])
pandas.Series
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index
tm.assert_equal(result, expected)
pandas.util.testing.assert_equal
import os import zipfile as zp import pandas as pd import numpy as np import core import requests class Labels: init_cols = [ 'station_id', 'station_name', 'riv_or_lake', 'hydroy', 'hydrom', 'day', 'lvl', 'flow', 'temp', 'month'] trans_cols = [ 'date', 'year', 'month', 'day', 'hydroy', 'hydrom', 'station_id', 'station_name', 'riv_or_lake', 'riv_or_lake_id', 'lvl', 'flow', 'temp'] def transform(trans_df): trans_df = trans_df.reset_index().drop('index', axis=1) dfc = trans_df.copy() lstrip = 'AĄBCĆDEĘFGHIJKLŁMNŃOÓPQRSŚTUVWXYZŹŻaąbcćdeęfghijklłmnńoópqrsśtuvwxyzźż( ' rivlakeid = dfc['riv_or_lake'].map(lambda x: x.lstrip(lstrip).rstrip(')')) trans_df['riv_or_lake'] = trans_df['riv_or_lake'].map(lambda x: x.rstrip(' ()1234567890 ')) trans_df['riv_or_lake_id'] = rivlakeid trans_df['month'] = trans_df['month'].fillna(method='ffill').astype(int) trans_df['day'] = trans_df['day'].fillna(method='ffill').astype(int) trans_df['year'] = trans_df['hydroy'] trans_df.loc[(trans_df['month'] == 11) | (trans_df['month'] == 12), 'year'] = trans_df['year'].astype(int) - 1 trans_df['date'] = pd.to_datetime(trans_df[['year', 'month', 'day']]) trans_df = trans_df[Labels.trans_cols] trans_df.loc[trans_df['lvl'] == 9999, 'lvl'] = np.nan trans_df.loc[trans_df['flow'] == 99999.999, 'flow'] = np.nan trans_df.loc[trans_df['temp'] == 99.9, 'temp'] = np.nan return trans_df def getframe(year: int, month: int, stationid=None, station=None): core.makedir(dirname='temp') zipname = f'codz_{year}_{core.strnumb(month)}.zip' csvname = f'codz_{year}_{core.strnumb(month)}.csv' url = f'https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/dane_hydrologiczne/dobowe/{year}/{zipname}' r = requests.get(url) with open(f'temp/{zipname}', 'wb') as file: file.write(r.content) with zp.ZipFile(f'temp/{zipname}', 'r') as zip_ref: zip_ref.extractall(path='temp') df =
pd.read_csv(f'temp/{csvname}', encoding='windows-1250', header=None)
pandas.read_csv
""" Purpose: Import the federal funds future data, and the effective federal funds and adjust the current month for the day of the month on which the meeting taked place. Then, it allows for the plot of the federal funds future curve around the meeting days. Status: Final -- 06/26/2019 @author: olivergiesecke """ ############################################################################### ### Import packages import pandas as pd import re import os import numpy as np import matplotlib.pyplot as plt from calendar import monthrange ############################################################################### ### Read the effective federal funds future data # ============================================================================= # # this is only needed for the raw data from the Fed NY # ffr_raw=pd.read_excel("../data/NYF_effective_federal_funds_data.xls",skiprows=4) # ffr=ffr_raw[['EFFR\n(PERCENT)','DATE']] # ffr.rename(columns={'EFFR\n(PERCENT)':'effr','DATE':'date'},inplace=True ) # ffr=ffr[ffr.index<4648] # # def tranform_date(date): # return re.search('(\d{4}\-\d{2}\-\d{2})([\[r\]]*)',date,re.IGNORECASE).group(1) # ffr.loc[:,'date']=ffr.loc[:,'date'].apply(tranform_date) # ============================================================================= def main(): data=construct_dataset() data=define_adjusted_future(data) rates=reshape_data(data) rates.to_csv("../output/federal_funds_futures.csv",index=False) def construct_dataset(): ffr=pd.read_excel("../../../collection/python/data/FRED_DFF.xls",skiprows=10) ffr.rename(columns={"observation_date":"date","DFF":"effr"},inplace=True) ffr['date'] = pd.to_datetime(ffr['date']) ### Merge with the futures data data=pd.read_excel("../../../collection/python//data/FFF_1m3m_extract.xlsx") data['date'] =
pd.to_datetime(data['date'])
pandas.to_datetime
import itertools import json import logging from collections import OrderedDict, defaultdict from typing import Iterable import pandas as pd from celery.result import AsyncResult from django.conf import settings from django.contrib import messages from django.contrib.auth.models import User, Group from django.core.exceptions import PermissionDenied, ImproperlyConfigured from django.db.utils import IntegrityError from django.forms.models import inlineformset_factory, ALL_FIELDS from django.forms.widgets import TextInput from django.http.response import HttpResponse, HttpResponseRedirect, HttpResponseServerError, JsonResponse from django.shortcuts import get_object_or_404, render, redirect from django.urls.base import reverse from django.views.decorators.cache import cache_page from django.views.decorators.http import require_POST from django.views.decorators.vary import vary_on_cookie from django_messages.models import Message from global_login_required import login_not_required from guardian.shortcuts import get_objects_for_group, get_objects_for_user from termsandconditions.decorators import terms_required from analysis.analysis_templates import get_sample_analysis from analysis.forms import AnalysisOutputNodeChoiceForm from analysis.models import AnalysisTemplate, SampleStats, SampleStatsPassingFilter from annotation.forms import GeneCountTypeChoiceForm from annotation.manual_variant_entry import create_manual_variants, can_create_variants from annotation.models import AnnotationVersion from annotation.models.models import ManualVariantEntryCollection, VariantAnnotationVersion from annotation.models.models_gene_counts import GeneValueCountCollection, \ GeneCountType, SampleAnnotationVersionVariantSource, CohortGeneCounts from classification.classification_stats import get_grouped_classification_counts from classification.models.clinvar_export_sync import clinvar_export_sync from classification.views.classification_datatables import ClassificationColumns from genes.custom_text_gene_list import create_custom_text_gene_list from genes.forms import CustomGeneListForm, UserGeneListForm, GeneAndTranscriptForm from genes.models import GeneListCategory, CustomTextGeneList, GeneList from library.constants import WEEK_SECS, HOUR_SECS from library.django_utils import add_save_message, get_model_fields, set_form_read_only from library.guardian_utils import assign_permission_to_user_and_groups, DjangoPermission from library.keycloak import Keycloak from library.utils import full_class_name, import_class, rgb_invert from ontology.models import OntologyTerm from patients.forms import PatientForm from patients.models import Patient, Clinician from patients.views import get_patient_upload_csv from snpdb import forms from snpdb.bam_file_path import get_example_replacements from snpdb.forms import SampleChoiceForm, VCFChoiceForm, \ UserSettingsOverrideForm, UserForm, UserContactForm, SampleForm, TagForm, SettingsInitialGroupPermissionForm, \ OrganizationForm, LabForm, LabUserSettingsOverrideForm, OrganizationUserSettingsOverrideForm from snpdb.graphs import graphcache from snpdb.graphs.allele_frequency_graph import AlleleFrequencyHistogramGraph from snpdb.graphs.chromosome_density_graph import SampleChromosomeDensityGraph from snpdb.graphs.chromosome_intervals_graph import ChromosomeIntervalsGraph from snpdb.graphs.homozygosity_percent_graph import HomozygosityPercentGraph from snpdb.import_status import set_vcf_and_samples_import_status from snpdb.models import CachedGeneratedFile, VariantGridColumn, UserSettings, \ VCF, UserTagColors, CustomColumnsCollection, CustomColumn, Cohort, \ CohortSample, GenomicIntervalsCollection, Sample, UserDataPrefix, UserGridConfig, \ get_igv_data, SampleLocusCount, UserContact, Tag, Wiki, Organization, GenomeBuild, \ Trio, AbstractNodeCountSettings, CohortGenotypeCollection, UserSettingsOverride, NodeCountSettingsCollection, Lab, \ LabUserSettingsOverride, OrganizationUserSettingsOverride, LabHead, SomalierRelatePairs, \ VariantZygosityCountCollection, VariantZygosityCountForVCF, ClinVarKey, AvatarDetails from snpdb.models.models_enums import ProcessingStatus, ImportStatus, BuiltInFilters from snpdb.tasks.soft_delete_tasks import soft_delete_vcfs from snpdb.utils import LabNotificationBuilder from upload.uploaded_file_type import retry_upload_pipeline @terms_required def index(request): if Clinician.user_is_clinician(request.user): return redirect('clinician_login') return render(request, 'index.html') def data(request): return render(request, 'snpdb/data/data.html') def maps(request): return render(request, 'maps.html') def get_writable_class_object(user, class_name, primary_key): klass = import_class(class_name) name = klass.__name__ obj = klass.objects.get(pk=primary_key) if not obj.can_write(user): write_perm = DjangoPermission.perm(obj, DjangoPermission.WRITE) msg = f"You do not have permission {write_perm} needed to modify {name}" raise PermissionDenied(msg) return obj, name def get_writable_class_objects(user, class_name): klass = import_class(class_name) name = klass.__name__ write_perm = DjangoPermission.perm(klass, DjangoPermission.WRITE) qs = get_objects_for_user(user, write_perm, klass=klass, accept_global_perms=False) return qs, name def group_permissions(request, class_name, primary_key): obj, name = get_writable_class_object(request.user, class_name, primary_key) try: # If object has "get_permission_object" it can delegate it. permission_obj = obj.get_permission_object() perm_obj_name = permission_obj.__class__.__name__ except AttributeError: # Default is use itself permission_obj = obj perm_obj_name = name permission_forms = get_group_permission_forms(request, permission_obj) if request.method == 'POST': valid = all([pf.is_valid() for pf in permission_forms]) if valid: for pf in permission_forms: pf.save() add_save_message(request, valid, f"{perm_obj_name} group permissions") get_listing_url = getattr(obj, "get_listing_url", None) if get_listing_url: delete_redirect_url = get_listing_url() else: delete_redirect_url = "/" context = {'permission_forms': permission_forms, 'class_name': class_name, 'name': name, 'perm_obj_name': perm_obj_name, 'permission_obj': permission_obj, 'instance': obj, 'delete_redirect_url': delete_redirect_url} return render(request, 'snpdb/data/group_permissions.html', context) @require_POST def group_permissions_object_delete(request, class_name, primary_key): if class_name == 'snpdb.models.VCF': # TODO: Hack? Make some class object? soft_delete_vcfs(request.user, primary_key) else: obj, _ = get_writable_class_object(request.user, class_name, primary_key) try: obj.delete() except IntegrityError as ie: pks = ", ".join(str(o.pk) for o in ie.args[1]) error_message = f"{ie.args[0]}: {pks}" return HttpResponseServerError(content=error_message) return HttpResponse() def bulk_group_permissions(request, class_name): qs, name = get_writable_class_objects(request.user, class_name) groups = list(request.user.groups.all().order_by("name")) objects_and_forms = [] for obj in qs: permission_forms = get_group_permission_forms(request, obj, groups=groups) objects_and_forms.append((obj, permission_forms)) if request.method == 'POST': all_forms = [] for _, permission_forms in objects_and_forms: all_forms.extend(permission_forms) valid = all([pf.is_valid() for pf in all_forms]) if valid: for pf in all_forms: pf.save() add_save_message(request, valid, f"{name} group permissions") context = {"name": name, "groups": groups, "objects_and_forms": objects_and_forms} return render(request, 'snpdb/data/bulk_group_permissions.html', context) def _get_vcf_sample_stats(vcf, klass): """ Count is het + hom """ ss_fields = ("sample_id", "sample__name", "variant_count", "ref_count", "het_count", "hom_count", "unk_count") ss_values_qs = klass.objects.filter(sample__vcf=vcf).order_by("sample").values(*ss_fields) sample_stats_het_hom_count = {} sample_names = [] sample_zygosities = defaultdict(list) for value_dict in ss_values_qs: sample_id = value_dict.pop("sample_id") sample_names.append(value_dict.pop("sample__name")) value_dict.pop("variant_count") sample_stats_het_hom_count[sample_id] = value_dict["het_count"] + value_dict["hom_count"] for k, v in value_dict.items(): sample_zygosities[k].append(v) return sample_stats_het_hom_count, sample_names, tuple(sample_zygosities.items()) def view_vcf(request, vcf_id): vcf = VCF.get_for_user(request.user, vcf_id) # I couldn't get prefetch_related_objects([vcf], "sample_set__samplestats") to work - so storing in a dict sample_stats_het_hom_count, sample_names, sample_zygosities = _get_vcf_sample_stats(vcf, SampleStats) sample_stats_pass_het_hom_count, _, sample_zygosities_pass = _get_vcf_sample_stats(vcf, SampleStatsPassingFilter) VCFSampleFormSet = inlineformset_factory(VCF, Sample, extra=0, can_delete=False, fields=["vcf_sample_name", "name", "patient", "specimen", "bam_file_path"], widgets=SampleForm.Meta.widgets) post = request.POST or None vcf_form = forms.VCFForm(post, instance=vcf) samples_form = VCFSampleFormSet(post, instance=vcf) for form in samples_form.forms: form.fields["vcf_sample_name"].disabled = True requires_user_input = vcf.import_status == ImportStatus.REQUIRES_USER_INPUT reload_vcf = False if request.method == 'POST': valid = all(f.is_valid() for f in [vcf_form, samples_form]) if valid: vcf = vcf_form.save() reload_vcf = requires_user_input and vcf.genome_build samples_form.save() add_save_message(request, valid, "VCF") try: # Some legacy data was too hard to fix and relies on being re-imported _ = vcf.cohort _ = vcf.cohort.cohort_genotype_collection except (Cohort.DoesNotExist, CohortGenotypeCollection.DoesNotExist): messages.add_message(request, messages.ERROR, "This legacy VCF is missing data and needs to be reloaded.") if reload_vcf: set_vcf_and_samples_import_status(vcf, ImportStatus.IMPORTING) retry_upload_pipeline(vcf.uploadedvcf.uploaded_file.uploadpipeline) vcf_form = forms.VCFForm(post, instance=vcf) # Reload as import status has changed messages.add_message(request, messages.INFO, "Reloading VCF") for warning, _ in vcf.get_warnings(): messages.add_message(request, messages.WARNING, warning, extra_tags='import-message') has_write_permission = vcf.can_write(request.user) if not has_write_permission: messages.add_message(request, messages.WARNING, "You can view but not modify this data.") variant_zygosity_count_collections = {} for vzcc in VariantZygosityCountCollection.objects.all(): vzc_vcf = VariantZygosityCountForVCF.objects.filter(vcf=vcf, collection=vzcc).first() variant_zygosity_count_collections[vzcc] = vzc_vcf context = { 'vcf': vcf, 'sample_stats_het_hom_count': sample_stats_het_hom_count, 'sample_stats_pass_het_hom_count': sample_stats_pass_het_hom_count, 'sample_names': sample_names, 'sample_zygosities': sample_zygosities, 'vcf_form': vcf_form, 'samples_form': samples_form, 'patient_form': PatientForm(user=request.user), # blank 'has_write_permission': has_write_permission, 'can_download_vcf': (not settings.VCF_DOWNLOAD_ADMIN_ONLY) or request.user.is_superuser, "variant_zygosity_count_collections": variant_zygosity_count_collections, } return render(request, 'snpdb/data/view_vcf.html', context) def get_patient_upload_csv_for_vcf(request, pk): vcf = VCF.get_for_user(request.user, pk) sample_qs = vcf.sample_set.all() filename = f"vcf_{pk}_patient_upload" return get_patient_upload_csv(filename, sample_qs) def view_sample(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) has_write_permission = sample.can_write(request.user) form = forms.SampleForm(request.POST or None, instance=sample) if not has_write_permission: set_form_read_only(form) messages.add_message(request, messages.WARNING, "You can view but not modify this data.") if request.method == 'POST': if not has_write_permission: raise PermissionDenied("Can't modify public data") valid = form.is_valid() if valid: form.save() add_save_message(request, valid, "Sample") sample_locus_count = list(SampleLocusCount.objects.filter(sample=sample).order_by("locus_count")) igv_data = get_igv_data(request.user, genome_build=sample.genome_build) patient_form = PatientForm(user=request.user) # blank related_samples = None if settings.SOMALIER.get("enabled"): related_samples = SomalierRelatePairs.get_for_sample(sample).order_by("relate") context = {'sample': sample, 'samples': [sample], 'sample_locus_count': sample_locus_count, 'form': form, 'patient_form': patient_form, 'cohorts': cohorts, 'has_write_permission': has_write_permission, 'igv_data': igv_data, "related_samples": related_samples} return render(request, 'snpdb/data/view_sample.html', context) def sample_variants_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) analysis = None error_message = None if settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE: try: analysis_template = AnalysisTemplate.objects.get(name=settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE) analysis = get_sample_analysis(sample, analysis_template) except AnalysisTemplate.DoesNotExist: error_message = f"Analysis Template '{settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE}' does not exist!" else: error_message = "settings.ANALYSIS_TEMPLATES_AUTO_SAMPLE not set. Talk to your administrator" if error_message: messages.add_message(request, messages.ERROR, error_message) context = { 'sample': sample, "analysis": analysis, 'output_node_form': AnalysisOutputNodeChoiceForm(analysis=analysis) } return render(request, 'snpdb/data/sample_variants_tab.html', context) def sample_variants_gene_detail(request, sample_id, gene_symbol): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample, 'sample_ids': [sample.pk], 'gene_symbol': gene_symbol, "datatable_config": ClassificationColumns(request)} return render(request, 'snpdb/data/sample_variants_gene_detail.html', context) def sample_graphs_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample} return render(request, 'snpdb/data/sample_graphs_tab.html', context) def get_group_permission_forms(request, obj, groups=None): if groups is None: groups = request.user.groups.all().order_by("name") return [forms.GroupPermissionForm(request.POST or None, obj=obj, group=group) for group in groups] def sample_permissions_tab(request, sample_id): sample = Sample.get_for_user(request.user, sample_id) context = {'sample': sample, 'class_name': full_class_name(Sample)} return render(request, 'snpdb/data/sample_permissions_tab.html', context) def view_genomic_intervals(request, genomic_intervals_collection_id): gic = get_object_or_404(GenomicIntervalsCollection, pk=genomic_intervals_collection_id) if not request.user.has_perm('view_genomicintervalscollection', gic): raise PermissionDenied() form = forms.GenomicIntervalsCollectionForm(request.POST or None, instance=gic) if request.method == "POST": valid = form.is_valid() if valid: gic = form.save() add_save_message(request, valid, "Genomic Intervals") if gic.genome_build is None: msg = "Unable to automatically set build, please select manually." messages.add_message(request, messages.WARNING, msg, extra_tags='import-message') context = {'gic': gic, 'form': form, "has_write_permission": gic.can_write(request.user)} return render(request, 'snpdb/data/view_genomic_intervals.html', context) @require_POST def cached_generated_file_delete(request): cgf_id = request.POST["cgf_id"] cgf = get_object_or_404(CachedGeneratedFile, pk=cgf_id) cgf.delete() return HttpResponse() def vcfs(request): context = { "form": VCFChoiceForm(), } return render(request, 'snpdb/data/vcfs.html', context=context) def samples(request): groups = request.user.groups.values_list("name", flat=True) groups_str = ', '.join(groups) num_groups = len(groups) if num_groups > 1: group_info = f"(or owned by one of your groups: {groups_str})" elif num_groups: group_info = f"(or owned by your group: {groups_str})" else: group_info = '' context = { "form": SampleChoiceForm(), "group_info": group_info, } return render(request, 'snpdb/data/samples.html', context=context) def bed_files(request): return render(request, 'snpdb/data/bed_files.html') @require_POST def messages_bulk_delete(request): messages_str = request.POST['message_ids'] message_ids = json.loads(messages_str) user_messages_qs = Message.objects.filter(recipient=request.user) user_messages_qs.filter(pk__in=message_ids).delete() return HttpResponse() def manual_variant_entry(request): if can_create_variants(request.user): form = forms.ManualVariantEntryForm(request.POST or None, user=request.user) if request.method == 'POST': valid = form.is_valid() if valid: variants_text = form.cleaned_data['variants_text'] genome_build_pk = form.cleaned_data['genome_build'] genome_build = GenomeBuild.objects.get(pk=genome_build_pk) create_manual_variants(request.user, genome_build, variants_text) form = forms.ManualVariantEntryForm(None, user=request.user) # Reset form add_save_message(request, valid, "Manually entered variants") else: form = None messages.add_message(request, messages.INFO, "Manual variant entry has been disabled by an admin.") mvec_qs = ManualVariantEntryCollection.objects.order_by("-id") context = {"form": form, "mvec_qs": mvec_qs} return render(request, 'snpdb/data/manual_variant_entry.html', context=context) @require_POST def set_user_row_config(request): """ This is set from jqgrid.html setRowChangeCallbacks when changing grid rows """ grid_name = request.POST["grid_name"] grid_rows = int(request.POST["grid_rows"]) UserGridConfig.objects.update_or_create(user=request.user, grid_name=grid_name, defaults={"rows": grid_rows}) return HttpResponse() @require_POST def set_user_data_grid_config(request): """ This is set from user_data_grid_filter.html, should contain either filter_level+checked or filter_name """ grid_name = request.POST["grid_name"] user_grid_config = UserGridConfig.get(request.user, grid_name) filter_level = request.POST.get("filter_level") if filter_level: checked = json.loads(request.POST["checked"]) if filter_level == 'groups': user_grid_config.show_group_data = checked elif filter_level == 'incomplete': user_grid_config.show_incomplete_data = checked elif filter_level == 'hidden': user_grid_config.show_hidden_data = checked else: msg = f"Unknown value for filter_level: '{filter_level}'" raise ValueError(msg) else: user_grid_config.filter_name = request.POST["filter_name"] user_grid_config.save() return HttpResponse() def view_user_settings(request): user = request.user user_contact = UserContact.get_for_user(user) action = request.POST.get('action') if request.POST else None post = request.POST or None if not action else None user_form = UserForm(post, instance=user) user_contact_form = UserContactForm(post, instance=user_contact) user_settings = UserSettings.get_for_user(user) override_source, override_values = user_settings.get_override_source_and_values_before_user() user_settings_override = UserSettingsOverride.objects.get(user=user) user_settings_override_form = UserSettingsOverrideForm(post, instance=user_settings_override) labs_by_group_name = {l.group_name: l for l in Lab.valid_labs_qs(user)} group_initial_perm_forms = {} if settings.USER_SETTINGS_SHOW_GROUPS: read_groups, write_groups = user_settings.initial_perm_read_and_write_groups for group in user.groups.all().order_by('name'): initial = {"read": group in read_groups, "write": group in write_groups} group_initial_perm_forms[group] = SettingsInitialGroupPermissionForm(request.POST or None, initial=initial, settings_override=user_settings_override, group=group) if request.method == "POST": all_valid = True action = request.POST.get('action') if action == 'password-reset': keycloak = Keycloak() keycloak.change_password(user) messages.add_message(request, level=messages.INFO, message='Password reset email sent', extra_tags='save-message') else: if not settings.USE_OIDC: if user_form.is_valid(): user = user_form.save() else: all_valid = False for form in itertools.chain([user_contact_form, user_settings_override_form], group_initial_perm_forms.values()): if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "User Settings") context = { 'user': user, 'user_form': user_form, 'user_contact_form': user_contact_form, 'user_settings_form': user_settings_override_form, 'group_initial_perm_forms': group_initial_perm_forms, 'accounts_email': settings.ACCOUNTS_EMAIL, 'account_manage_url': settings.OIDC_USER_SERVICES, 'override_source': override_source, 'override_values': override_values, 'labs_by_group_name': labs_by_group_name, 'avatar_details': AvatarDetails.avatar_for(user) } return render(request, 'snpdb/settings/view_user_settings.html', context) def user_settings_node_counts_tab(request): user_settings_override = UserSettingsOverride.objects.get_or_create(user=request.user)[0] return _settings_override_node_counts_tab(request, user_settings_override) def lab_settings_node_counts_tab(request, pk): lab = get_object_or_404(Lab, pk=pk) has_write_permission = lab.can_write(request.user) if has_write_permission is False: _add_read_only_settings_message(request, [lab]) lab_settings_override = LabUserSettingsOverride.objects.get_or_create(lab=lab)[0] return _settings_override_node_counts_tab(request, lab_settings_override, has_write_permission=has_write_permission) def organization_settings_node_counts_tab(request, pk): organization = get_object_or_404(Organization, pk=pk) has_write_permission = organization.can_write(request.user) if has_write_permission is False: _add_read_only_settings_message(request, organization.lab_set.all()) org_settings_override = OrganizationUserSettingsOverride.objects.get_or_create(organization=organization)[0] return _settings_override_node_counts_tab(request, org_settings_override, has_write_permission=has_write_permission) def _settings_override_node_counts_tab(request, settings_override, has_write_permission=True): # This calls _analysis_settings_node_counts_tab with a FakeAnalysis object that # handles loading/saving a global one against User settings objects instead of analysis class FakeAnalysis: def set_node_count_types(self, node_counts_array): collection, _ = NodeCountSettingsCollection.objects.get_or_create(settings=settings_override) AbstractNodeCountSettings.save_count_configs_from_array(collection.nodecountsettings_set, node_counts_array) def get_node_count_types(self): try: node_count_config = settings_override.nodecountsettingscollection node_count_filters = node_count_config.get_node_count_filters() except: node_count_filters = BuiltInFilters.DEFAULT_NODE_COUNT_FILTERS return AbstractNodeCountSettings.get_types_from_labels(node_count_filters) fake_analysis = FakeAnalysis() from analysis.views.views import _analysis_settings_node_counts_tab # Circular import return _analysis_settings_node_counts_tab(request, fake_analysis, pass_analysis_settings=False, has_write_permission=has_write_permission) def view_user(request, pk): user = get_object_or_404(User, pk=pk) user_contact = UserContact.get_for_user(user) context = {"user": user, 'user_contact': user_contact} return render(request, 'snpdb/settings/view_user.html', context) def _add_read_only_settings_message(request, lab_list: Iterable[Lab]): """ lab_list: labs where lab heads can modify settings """ lab_heads_qs = LabHead.objects.filter(lab__in=lab_list).distinct() lab_head_names = ", ".join([str(lh.user) for lh in lab_heads_qs]) if lab_head_names: lab_head_msg = f" or lab heads: {lab_head_names}" else: lab_head_msg = "" read_only_message = f"Only administrators{lab_head_msg} can modify these settings" messages.add_message(request, messages.INFO, read_only_message) def view_lab(request, pk): lab = get_object_or_404(Lab, pk=pk) lab_form = LabForm(request.POST or None, instance=lab) lab_settings_override = LabUserSettingsOverride.objects.get_or_create(lab=lab)[0] override_fields = set(get_model_fields(LabUserSettingsOverride)) - {"id", "settingsoverride_ptr", "lab"} parent_overrides = UserSettings.get_settings_overrides(organization=lab.organization) override_source, override_values = UserSettings.get_override_source_and_values(override_fields, parent_overrides) settings_overrides = parent_overrides + [lab_settings_override] read_groups, write_groups = UserSettings.get_initial_perm_read_and_write_groups([lab.group], settings_overrides) initial = {"read": lab.group in read_groups, "write": lab.group in write_groups} group_initial_perm_form = None if settings.USER_SETTINGS_SHOW_GROUPS: group_initial_perm_form = SettingsInitialGroupPermissionForm(request.POST or None, initial=initial, settings_override=lab_settings_override, group=lab.group) lab_settings_override_form = LabUserSettingsOverrideForm(request.POST or None, instance=lab_settings_override) has_write_permission = lab.can_write(request.user) all_forms = [form for form in [lab_form, group_initial_perm_form, lab_settings_override_form] if form] if request.method == "POST": lab.check_can_write(request.user) if debug_method := request.POST.get("debug_method"): if "Test Slack" == debug_method: if not lab.slack_webhook: messages.add_message(request, messages.ERROR, "Slack URL not configured correctly") else: #try: notification_builder = LabNotificationBuilder(lab=lab, message="Testing Slack Integration", notification_type=LabNotificationBuilder.NotificationType.SLACK_ONLY) notification_builder.add_header(f"{settings.SITE_NAME} -> Slack Integration Test") notification_builder.add_markdown("If you can see this, then integration has worked! :smile:") notification_builder.send() messages.add_message(request, messages.SUCCESS, "Message sent, check your Slack to confirm") #except: # report_exc_info() # messages.add_message(request, messages.ERROR, "Unable to send test notification") return redirect(reverse('view_lab', kwargs={"pk":pk})) else: raise ValueError(f"Un-supported debug method {debug_method}") else: all_valid = True for form in all_forms: if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "Lab Settings") if has_write_permission is False: for form in all_forms: set_form_read_only(form) # we just hide the form now # _add_read_only_settings_message(request, [lab]) if settings.VARIANT_CLASSIFICATION_STATS_USE_SHARED: visibility = "Shared" else: visibility = f"Created" context = { "lab": lab, "visibility": visibility, "is_member": lab.is_member(request.user) or request.user.is_superuser, "lab_form": lab_form, 'settings_override_form': lab_settings_override_form, 'group_initial_perm_form': group_initial_perm_form, 'override_source': override_source, 'override_values': override_values, 'has_write_permission': has_write_permission, 'clinvar_export_enabled': clinvar_export_sync.is_enabled } return render(request, 'snpdb/settings/view_lab.html', context) def view_clinvar_key(request, pk: str): clinvar_key = get_object_or_404(ClinVarKey, pk=pk) clinvar_key.check_user_can_access(request.user) return render(request, 'snpdb/settings/clinvar_key.html', { 'clinvar_key': clinvar_key, 'labs': Lab.objects.filter(clinvar_key=clinvar_key).order_by('name') }) def view_organization(request, pk): organization = get_object_or_404(Organization, pk=pk) organization_form = OrganizationForm(request.POST or None, instance=organization) org_settings_override = OrganizationUserSettingsOverride.objects.get_or_create(organization=organization)[0] override_fields = set(get_model_fields(OrganizationUserSettingsOverride)) - {"id", "settingsoverride_ptr", "organization"} parent_overrides = UserSettings.get_settings_overrides() override_source, override_values = UserSettings.get_override_source_and_values(override_fields, parent_overrides) org_settings_override_form = OrganizationUserSettingsOverrideForm(request.POST or None, instance=org_settings_override) all_forms = [organization_form, org_settings_override_form] if request.method == "POST": organization.check_can_write(request.user) all_valid = True for form in all_forms: if form.is_valid(): form.save() else: all_valid = False add_save_message(request, all_valid, "Organization Settings") has_write_permission = organization.can_write(request.user) if has_write_permission is False: for form in all_forms: set_form_read_only(form) # put on individual tabs now # _add_read_only_settings_message(request, organization.lab_set.all()) context = { "organization": organization, "is_member": organization.is_member(request.user) or request.user.is_superuser, "organization_form": organization_form, 'settings_override_form': org_settings_override_form, 'override_source': override_source, 'override_values': override_values, 'has_write_permission': has_write_permission, } return render(request, 'snpdb/settings/view_organization.html', context) def custom_columns(request): context = {} form = forms.CustomColumnsCollectionForm(request.POST or None, user=request.user) if request.method == "POST": if form.is_valid(): ccc = form.save() return HttpResponseRedirect(reverse("view_custom_columns", kwargs={"custom_columns_collection_id": ccc.pk})) add_save_message(request, False, "Columns", created=True) context["form"] = form return render(request, 'snpdb/settings/custom_columns.html', context) # Based on code from http://j-syk.com/weblog/2012/10/18/jquery-sortables-ajax-django/ def view_custom_columns(request, custom_columns_collection_id): ccc = CustomColumnsCollection.get_for_user(request.user, custom_columns_collection_id) custom_columns_qs = VariantGridColumn.objects.filter(customcolumn__custom_columns_collection=ccc) my_columns = list(custom_columns_qs.order_by("customcolumn__sort_order")) available_columns = list(VariantGridColumn.objects.exclude(grid_column_name__in=my_columns)) variant_grid_columns = {} for vgc in VariantGridColumn.objects.all(): variant_grid_columns[vgc.pk] = vgc has_write_permission = ccc.can_write(request.user) if not has_write_permission: msg = "You do not have permission to edit these columns. " \ "If you wish to customise them, click 'clone' and modify the copy" messages.add_message(request, messages.WARNING, msg) if request.method == "POST": ccc.check_can_write(request.user) if name := request.POST.get("name"): ccc.name = name ccc.save() elif my_columns_str := request.POST.get("columns"): def update_user_columns(id_list, active): for i, col in enumerate(id_list): column = variant_grid_columns[col] CustomColumn.objects.update_or_create(custom_columns_collection=ccc, column=column, defaults={"sort_order": i}) # Delete any not in id_list CustomColumn.objects.filter(custom_columns_collection=ccc).exclude(column__in=id_list).delete() my_columns_list = my_columns_str.split(',') if my_columns_str else [] active = 'my_columns' in request.POST update_user_columns(my_columns_list, active) return HttpResponse() # Nobody ever looks at this context_dict = { 'available_columns_list': available_columns, 'my_columns_list': my_columns, 'custom_columns': ccc, 'has_write_permission': has_write_permission, } return render(request, 'snpdb/settings/view_custom_columns.html', context_dict) def tag_settings(request): form = forms.CreateTagForm(request.POST or None) if request.method == "POST": valid = form.is_valid() if valid: tag_name = form.cleaned_data['tag'] name = f"Tag {tag_name}" try: Tag.objects.create(pk=tag_name) except: valid = False else: name = "Tag" add_save_message(request, valid, name, created=True) user_tag_styles, user_tag_colors = UserTagColors.get_tag_styles_and_colors(request.user) context_dict = {'form': form, 'user_tag_styles': user_tag_styles, 'user_tag_colors': user_tag_colors} return render(request, 'snpdb/settings/tag_settings.html', context_dict) @require_POST def set_user_tag_color(request): tag = request.POST['tag'] rgb = request.POST['rgb'] (utc, _) = UserTagColors.objects.get_or_create(user=request.user, tag_id=tag) utc.rgb = rgb utc.save() logging.info("saved %s", utc) return HttpResponse() def igv_integration(request): widgets = {"prefix": TextInput(attrs={'placeholder': 'from...'}), "replacement": TextInput(attrs={'placeholder': 'to...'})} UserDataPrefixFormSet = inlineformset_factory(User, UserDataPrefix, can_delete=True, fields=ALL_FIELDS, widgets=widgets, max_num=10, extra=3, ) formset = UserDataPrefixFormSet(request.POST or None, instance=request.user) if request.method == "POST": valid = formset.is_valid() if valid: formset.save() add_save_message(request, valid, "IGV Integration") context_dict = {'user': request.user, 'formset': formset, 'example_replacements': get_example_replacements(request.user)} return render(request, 'snpdb/settings/igv_integration.html', context_dict) def cohorts(request): user_settings = UserSettings.get_for_user(request.user) initial = {'genome_build': user_settings.default_genome_build} form = forms.CreateCohortForm(request.POST or None, initial=initial) if request.method == "POST": valid = form.is_valid() if valid: cohort = form.save() assign_permission_to_user_and_groups(request.user, cohort) return HttpResponseRedirect(reverse('view_cohort', kwargs={'cohort_id': cohort.pk})) else: add_save_message(request, valid, "Cohort", created=True) context = {"form": form} return render(request, 'snpdb/patients/cohorts.html', context) def view_cohort_details_tab(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) context = {"cohort": cohort, "has_write_permission": cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_cohort_details_tab.html', context) def view_cohort(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) if cohort.vcf: return redirect('view_vcf', vcf_id=cohort.vcf.pk) try: cohort_genotype_collection = cohort.cohort_genotype_collection except CohortGenotypeCollection.DoesNotExist: cohort_genotype_collection = None form = forms.CohortForm(request.POST or None, instance=cohort) if request.method == "POST": if valid := form.is_valid(): cohort = form.save() add_save_message(request, valid, "Cohort") sample_form = SampleChoiceForm(genome_build=cohort.genome_build) sample_form.fields['sample'].required = False context = {"form": form, "sample_form": sample_form, "cohort": cohort, "cohort_genotype_collection": cohort_genotype_collection, "has_write_permission": cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_cohort.html', context) def cohort_sample_edit(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) if request.method == "POST": cohort_op = request.POST['cohort_op'] sample_ids_str = request.POST['sample_ids'] sample_ids = json.loads(sample_ids_str) if cohort_op == 'add': for sample_id in sample_ids: cohort.add_sample(sample_id) elif cohort_op == 'remove': for sample_id in sample_ids: try: cohort_sample = CohortSample.objects.get(cohort=cohort, sample_id=sample_id) cohort_sample.delete() logging.info("Removed: %s", sample_id) except CohortSample.DoesNotExist: pass else: raise ValueError(f"Unknown cohort_op '{cohort_op}'") return HttpResponse() def cohort_hotspot(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) form = GeneAndTranscriptForm(genome_build=cohort.genome_build) try: cohort_genotype_collection = cohort.cohort_genotype_collection except Exception as e: cohort_genotype_collection = None logging.error(e) context = {"cohort": cohort, "cohort_genotype_collection": cohort_genotype_collection, "form": form} return render(request, 'snpdb/patients/cohort_hotspot.html', context) def cohort_gene_counts(request, cohort_id): cohort = Cohort.get_for_user(request.user, cohort_id) COHORT_CUSTOM_GENE_LIST = f"__QC_COVERAGE_CUSTOM_GENE_LIST__{request.user}" # We only want to keep 1 per user custom_text_gene_list, _ = CustomTextGeneList.objects.get_or_create(name=COHORT_CUSTOM_GENE_LIST) custom_gene_list_form = CustomGeneListForm(request.POST or None, initial={"custom_gene_list_text": custom_text_gene_list.text}) if custom_gene_list_form.is_valid(): custom_text_gene_list.text = custom_gene_list_form.cleaned_data['custom_gene_list_text'] custom_text_gene_list.save() create_custom_text_gene_list(custom_text_gene_list, request.user, GeneListCategory.QC_COVERAGE_CUSTOM_TEXT, hidden=True) gene_list_id = custom_text_gene_list.gene_list.pk else: gene_list_id = None context = {"cohort": cohort, 'gene_list_id': gene_list_id, 'gene_list_form': UserGeneListForm(), 'custom_gene_list_form': custom_gene_list_form, 'gene_count_type_choice_form': GeneCountTypeChoiceForm()} return render(request, 'snpdb/patients/cohort_gene_counts.html', context) def cohort_gene_counts_matrix(request, cohort_id, gene_count_type_id, gene_list_id): cohort = Cohort.get_for_user(request.user, cohort_id) gene_count_type = GeneCountType.objects.get(pk=gene_count_type_id) gene_list = GeneList.get_for_user(request.user, gene_list_id) samples = list(cohort.get_samples()) annotation_version = AnnotationVersion.latest(cohort.genome_build) variant_annotation_version = annotation_version.variant_annotation_version cgc, created = CohortGeneCounts.objects.get_or_create(variant_annotation_version=variant_annotation_version, gene_count_type=gene_count_type, cohort=cohort, cohort_version=cohort.version) graph_kwargs = {"cohort_id": cohort_id, "gene_count_type_id": gene_count_type_id, "gene_list_id": gene_list_id} redirect_url = reverse("cohort_gene_counts_matrix", kwargs=graph_kwargs) if created or (cgc.processing_status not in ProcessingStatus.FINISHED_STATES): celery_task = cgc.launch_task() wait_for_task_kwargs = {"celery_task": celery_task, "sleep_ms": 2000, "redirect_url": redirect_url} wait_url = reverse("wait_for_task", kwargs=wait_for_task_kwargs) return HttpResponseRedirect(wait_url) else: if cgc.processing_status == ProcessingStatus.SUCCESS: return sample_gene_matrix(request, variant_annotation_version, samples, gene_list, gene_count_type) else: raise ValueError(f"{cgc} had ProcessingStatus: {cgc.processing_status}") def trios(request): context = {} return render(request, 'snpdb/patients/trios.html', context) def view_trio(request, pk): trio = Trio.get_for_user(request.user, pk) context = {"trio": trio, "has_write_permission": trio.cohort.can_write(request.user)} return render(request, 'snpdb/patients/view_trio.html', context) @login_not_required def sample_gene_matrix(request, variant_annotation_version, samples, gene_list, gene_count_type, highlight_gene_symbols=None): """ highlight_gene_symbols - put these genes 1st """ # 19/07/18 - Plotly can't display a categorical color map. See: https://github.com/plotly/plotly.js/issues/1747 # So just doing as HTML table if gene_list: genes = gene_list.get_genes(variant_annotation_version.gene_annotation_release) gene_symbols = set(gene_list.get_gene_names()) else: # This was originally designed around a gene list, but now we need to support no gene list (only when uses # variant classifications) genes = [] gene_symbols = [] qs = gene_count_type.get_variant_queryset(variant_annotation_version) GS_PATH = "variantannotation__transcript_version__gene_version__gene_symbol" qs = qs.filter(**{GS_PATH + "__isnull": False}) for gene, gene_symbol in qs.values_list("variantannotation__gene", GS_PATH).distinct(): genes.append(gene) gene_symbols.append(gene_symbol) gene_values = list(gene_count_type.genevalue_set.all().order_by("id")) default_color = "#d9d9d9" default_text = "" empty_gene_value = list(filter(lambda x: x.use_as_empty_value, gene_values)) if len(empty_gene_value) == 1: default_color = empty_gene_value[0].rgb phenotypes = ["Age", "HPO", "OMIM"] highlight_gene_labels = [] other_gene_labels = [] gene_links_lookup = OrderedDict() for gene_symbol in sorted(gene_symbols): gene_classes_list = ["gene-label", gene_symbol] highlight = highlight_gene_symbols and gene_symbol in highlight_gene_symbols if highlight: gene_classes_list.append("highlight-gene") gene_classes = ' '.join(gene_classes_list) if request.user.is_authenticated: # Only display links to logged in users url = reverse('view_gene_symbol', kwargs={"gene_symbol": gene_symbol}) gene_symbol_text = f'<a class="{gene_classes}" href="{url}">{gene_symbol}</a>' else: gene_symbol_text = f"<span class='{gene_classes}'>{gene_symbol}</span>" if highlight: highlight_gene_labels.append(gene_symbol_text) else: other_gene_labels.append(gene_symbol_text) gene_links_lookup[gene_symbol] = gene_symbol_text matrix_rows = phenotypes + highlight_gene_labels + other_gene_labels color_df =
pd.DataFrame(index=matrix_rows, dtype='O')
pandas.DataFrame
#!/usr/bin/env python ''' <NAME> October 2018 Scripts for looking at and evaluating input data files for dvmdostem. Generally data has been prepared by M. Lindgren of SNAP for the IEM project and consists of directories of well labled .tif images, with one image for each timestep. This script has (or will have) a variety of routines for summarizing the data and displaying plots that will let us look for problems, missing data, or anomolies. ''' import os import sys import subprocess import glob import pickle import multiprocessing import datetime as dt from osgeo import gdal import numpy as np import pandas as pd import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as ticker TMP_DATA = 'climatology-intermediate-data' def timeseries_summary_stats_and_plots(base_path, secondary_path_list): ''' ''' # Decades for projected, truncated first fx_periods = [ (2006,2010),(2010,2020),(2020,2030),(2030,2040),(2040,2050), (2050,2060),(2060,2070),(2070,2080),(2080,2090),(2090,2100) ] # Decades for historic, truncated at end hist_periods = [ (1901,1911),(1911,1921),(1921,1931),(1931,1941),(1941,1951), (1951,1961),(1961,1971),(1971,1981),(1981,1991),(1991,2001), (2001,2011),(2011,2015) ] procs = [] for i in secondary_path_list: if 'pr_total' in i.lower(): units = 'mm month-1' elif 'tas_mean' in i.lower(): units = 'degrees C' elif 'vap_mean' in i.lower(): units = 'hPa' elif 'rsds_mean' in i.lower(): units = 'MJ-m2-d1' elif 'hurs_mean' in i.lower(): units = 'percent' else: print("ERROR! hmmm can't find variable in {}".format(i)) if '_cru' in i.lower(): periods = hist_periods elif '_mri' in i.lower(): periods = fx_periods elif '_ncar' in i.lower(): periods = fx_periods secondary_path = i print("MAIN PROCESS! [{}] Starting worker...".format(os.getpid())) p = multiprocessing.Process(target=worker_func, args=(base_path, secondary_path, units, periods)) procs.append(p) p.start() print("Done starting processes. Looping to set join on each process...") for p in procs: p.join() print("DONE! Plots should be saved...") def worker_func(base_path, secondary_path, units, periods): ''' ''' print("worker function! pid:{}".format(os.getpid())) print(" [{}] {}".format(os.getpid(), base_path)) print(" [{}] {}".format(os.getpid(), secondary_path)) print(" [{}] {}".format(os.getpid(), units)) monthlies_figure = get_monthlies_figure( base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', save_intermediates=False, madata=None ) overveiw_figure, period_averages = get_overview_figure( periods, base_path, secondary_path, title='\n'.join((base_path, secondary_path)), units=units, src='fresh', # can be: fresh, pickle, or passed save_intermediates=False, padata=None ) individual_figs, _ = get_period_avg_figures( periods, base_path, secondary_path, title=os.path.dirname(secondary_path), units=units, src='passed', padata=period_averages ) # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_{}.pdf".format(secondary_path.split("/")[0]) print("Building PDF with many images: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) pdf.savefig(monthlies_figure) pdf.savefig(overveiw_figure) for f in individual_figs: pdf.savefig(f) pdf.close() print("Done saving pdf: {}".format(ofname)) def create_vrt(filelist, ofname): ''' Creates a GDAL vrt (virtual file format) for a series of input files. Expects the each of the files in the filelist to be a single band GeoTiff. The files will be combined into a single .vrt file with one Band for each of the input files. The single VRT file may then be further manipulated with GDAL (i.e take the average over all the bands). Parameters ---------- filelist : list of strings (paths) to files that will be combined ofname : string for a filename that will be written Returns ------- None Use Cases, Examples ------------------- - Create a monthly or decadal summary file for a set of images representing a timeseries (e.g. tifs that will be pre-processed and turned to netcdf files for dvmdostem runs). ''' basename = os.path.basename(ofname) basename_noext, ext = os.path.splitext(basename) temporary_filelist_file = os.path.join("/tmp/", "filelist-pid-{}-{}.txt".format(os.getpid(), basename_noext)) with open(temporary_filelist_file, 'w') as f: f.write("\n".join(filelist)) result = subprocess.check_call([ 'gdalbuildvrt', '-overwrite', '-separate', ofname, '-input_file_list', temporary_filelist_file ]) os.remove(temporary_filelist_file) def average_over_bands(ifname, bands='all'): ''' Given an input file (`ifname`), this function computes the average over all the bands and returns the result. Assumes the bands are named Band1, Band2, etc. Parameters ---------- ifname : str A multi-band file that can be opened and read with GDAL. Expects that all bands have data and are the same spatial extents. Ignored data less than -9999. bands : str One of 'all', 'first10', or 'first3'. Selects a subset of bands for faster processing for testing and development. Returns ------- avg : numpy masked array Returned array is the same shape as an individual band in the input file, and with each pixel being the average of the pixel values in all of the input file's bands. ''' ds = gdal.Open(ifname) print(" [ DESCRIPTION ]: ", ds.GetDescription()) print(" [ RASTER BAND COUNT ]: ", ds.RasterCount) print(" [ RASTER Y SIZE ]: ", ds.RasterYSize) print(" [ RASTER X SIZE ]: ", ds.RasterXSize) if bands == 'all': band_range = list(range(1, ds.RasterCount+1)) elif bands == 'first10': band_range = list(range(1, 10+1)) elif bands == 'first3': band_range = list(range(1, 3+1)) print(" [ AVERAGE OVER BANDS ]: {}".format(len(band_range))) print(" [ START BAND ]: {}".format(band_range[0])) print(" [ END BAND ]: {}".format(band_range[-1])) # allocate a storage location running_sum = np.ma.masked_less_equal(np.zeros((ds.RasterYSize, ds.RasterXSize)), -9999) for band in band_range: dsb = ds.GetRasterBand(band) if dsb is None: print("huh??") # continue (? as per example here: https://pcjericks.github.io/py-gdalogr-cookbook/raster_layers.html) masked_data = np.ma.masked_less_equal(dsb.ReadAsArray(), -9999) running_sum += masked_data print("adding band: {} band min/max: {}/{} running_sum min/max: {}/{}".format( band, masked_data.min(), masked_data.max(), running_sum.min(), running_sum.max() )) # Compute average avg = running_sum / float(len(band_range)+1) # Close gdal file ds = None return avg def read_period_averages(periods): ''' Reads pickled period average data from the TMP_DATA directory. Expects files to be in a further sub-directory, period-averages, and have names like: "pa-{start}-{end}.pickle". Parameters ---------- periods : list of tuples Each tuple should have values (start, end) that are used to define the period. Returns ------- period_averages : list A list of (masked) numpy arrays that have been un-pickled from the TMP_DATA directory. The pickles are expected to be the period averages built using other routines in this script. ''' print("Reading period average pickles into list...") period_averages = [] for i, (start, end) in enumerate(periods): path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), 'pa-{}-{}.pickle'.format(start, end)) pa = pickle.load(file(path)) period_averages.append(pa) print("Done reading period average pickles into list.") return period_averages def read_monthly_pickles(months=list(range(1,13))): print("reading monthly pickle files for months {}...".format(months)) mavgs = [] for m in months: path = os.path.join( TMP_DATA, 'month-averages-pid{}'.format(os.getpid()), 'month-{:02d}.pickle'.format(m) ) ma = pickle.load(file(path)) mavgs.append(ma) print("Returning monthly averages list..") return mavgs def calculate_period_averages(periods, base_path, secondary_path, save_intermediates=False): '''Given a stack of tif files, one file for each month, this routine will calculate the averages for the supplied periods. Periods are expected to be selections of years, i.e. 1901 to 1911. Parameters ---------- periods : list of tuples each tuple has a start and end year for the period base_path : str path on the file system where files are located secondary_path : str remainder of path on file system where files will be found. The secondary path string is expected to be somethign like this: "ar5_MRI-CGCM3_rcp85_{month:}_{year:}.tif" with the one set of braces for the month one set of braces for the year. This function will fill the braces to match any month and the years specified in the periods tuples save_intermediates : bool when true, period average array will be pickled for each period. Will be saved like so 'climatology/period-averages/pa-{}-{}.pickle' Returns ------- list of 2D masked numpy arrays ''' # Ensure there is a place to put the vrt files path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise # Make the VRTs for the periods for i, (start, end) in enumerate(periods): print("[ period {} ] Making vrt for period {} to {} (range {})".format(i, start, end, list(range(start, end)))) filelist = [] for year in range(start, end): final_secondary_path = secondary_path.format(month="*", year="{:04d}") #print os.path.join(base_path, final_secondary_path.format(year)) single_year_filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path.format(year)))) #print "Length of single year filelist {}".format(len(single_year_filelist)) filelist += single_year_filelist print("Length of full filelist: {} ".format(len(filelist))) vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) create_vrt(filelist, vrtp) # Calculate the period averages from the VRT files period_averages = [] for i, (start, end) in enumerate(periods): # Find the average over the selected range vrtp = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid()), "period-{}-{}.vrt".format(start, end)) pa = average_over_bands(vrtp, bands='all') period_averages.append(pa) if save_intermediates: # Make sure there is a place to put our pickles path = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise print("Dumping pickle for period {} to {}".format(start, end)) pickle.dump(pa, file(os.path.join(path, "pa-{}-{}.pickle".format(start, end)), 'wb')) # Clean up any intermediate files. if not save_intermediates: papath = os.path.join(TMP_DATA, 'period-averages-pid{}'.format(os.getpid())) for f in os.listdir(papath): os.remove(os.path.join(papath, f)) os.rmdir(papath) print("Returning period averages list...") return period_averages def calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=False): ''' ''' # Make sure there is a place to put our pickles and vrt files intermediates_path = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) try: os.makedirs(intermediates_path) except OSError: if not os.path.isdir(intermediates_path): raise # Build the vrt files print("Creating monthly VRT files...") for im, MONTH in enumerate(months[:]): final_secondary_path = secondary_path.format(month="{:02d}", year="*").format(im+1) filelist = sorted(glob.glob(os.path.join(base_path, final_secondary_path))) if len(filelist) < 1: print("ERROR! No files found in {}".format( os.path.join(base_path, final_secondary_path) )) vrt_path = os.path.join(intermediates_path,"month-{:02d}.vrt".format(im+1)) create_vrt(filelist, vrt_path) print("Computing monthly averages from monthly VRT files...") # make list of expected input vrt paths ivp_list = [os.path.join(intermediates_path,"month-{:02d}.vrt".format(im)) for im in range(1, len(months)+1)] monthly_averages = [average_over_bands(ivp, bands='all') for ivp in ivp_list] if save_intermediates: print("Saving pickles...") for im, ma in enumerate(monthly_averages): pp = os.path.join(intermediates_path, "month-{:02d}.pickle".format(im+1)) pickle.dump(ma, file(pp, 'wb')) print("Done saving pickles...") # Clean up any intermediate files. if not save_intermediates: mapath = os.path.join(TMP_DATA, 'month-averages-pid{}'.format(os.getpid())) for f in os.listdir(mapath): os.remove(os.path.join(mapath, f)) os.rmdir(mapath) print("Returning monthly_averages list...") return monthly_averages def get_monthlies_figure(base_path, secondary_path, title, units, src='fresh', save_intermediates=True, madata=None ): ''' Creates a single figure with 12 subplots, each showing the average for that month across the timeseries. ''' months = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] if src == 'fresh': monthly_averages = calculate_monthly_averages(months, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': monthly_averages = read_monthly_pickles(months=list(range(1,13))) elif src == 'passed': monthly_averages = madata else: print("Invalid argument for src! '{}'".format(src)) vmax = np.max([avg.max() for avg in monthly_averages]) vmin = np.min([avg.min() for avg in monthly_averages]) print("vmax: {} vmin: {}".format(vmax, vmin)) print("Creating monthlies figure...") fig, axes = plt.subplots(figsize=(11,8.5), nrows=3, ncols=4, sharex=True, sharey=True) imgs = [] for ax, avg, month in zip(axes.flat, monthly_averages, months): im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') imgs.append(im) ax.set_title(month) cbar = fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) fig.suptitle(title) print("Done creating monthlies figure.") return fig def get_overview_figure(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Creates and returns a matplotlib figure that has ?? Parameters ---------- Returns ------- fig : matplotlib figure instance ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) NCOLS = 4 # fixed number of cols, may add more rows NROWS = len(period_averages)/NCOLS if (len(period_averages) % NCOLS) > 0: NROWS += 1 if len(period_averages) < NCOLS: NCOLS = len(period_averages) NROWS = 1 overview_fig, axes = plt.subplots(nrows=NROWS, ncols=NCOLS, sharex=True, sharey=True) overview_fig.set_size_inches((11, 8.5), forward=True) imgs = [] # in case we need to manipulate the images all at once for ax, avg, period in zip(axes.flat, period_averages, periods): print("plotting image for period:", period) # Setting vmax and vmin normalized the colorbars across all images im = ax.imshow(avg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax.set_title('{} to {}'.format(period[0], period[1])) imgs.append(im) # set a colorbar on the first axes cbar = overview_fig.colorbar(imgs[0], ax=axes.ravel().tolist()) cbar.set_label(units) overview_fig.suptitle(title) return overview_fig, period_averages def get_period_avg_figures(periods, base_path, secondary_path, title='', units='', src='fresh', save_intermediates=True, padata=None): ''' Parameters ---------- Returns ------- ''' if src == 'fresh': period_averages = calculate_period_averages(periods, base_path, secondary_path, save_intermediates=save_intermediates) elif src == 'pickle': period_averages = read_period_averages(periods) elif src == 'passed': period_averages = padata else: print("Invalid argument for src! '{}'".format(src)) print("Converting to stacked masked array...") pa2 = np.ma.stack(period_averages) vmax = pa2.max() vmin = pa2.min() print("vmax: {} vmin: {}".format(vmax, vmin)) ind_figures = [] for i, ((start,end), periodavg) in enumerate(zip(periods, pa2)): fig = plt.figure() fig.suptitle(title) #fontsize=8 im = plt.imshow(periodavg, vmin=vmin, vmax=vmax, cmap='gist_ncar') ax = fig.axes[0] ax.set_title('Average, {} to {}'.format(start, end)) cbar = plt.colorbar() cbar.set_label(units) ind_figures.append(fig) return ind_figures, padata def worker_func2(f): if f == 'file3': time.sleep(1) if f == 'file7': time.sleep(5) print("will open, read, average {}".format(f)) return f def worker_func3(in_file_path): ''' ''' # Deduce month and year from file name bname = os.path.basename(in_file_path) n, ext = os.path.splitext(bname) parts = n.split('_') month, year = [int(p) for p in parts[-2:]] date = dt.date(year=year, month=month, day=1) # Open the file, get some stats ds = gdal.Open(in_file_path) ds_array = ds.ReadAsArray() ds_m = np.ma.masked_less_equal(ds_array, -9999) data_dict = dict( fname=bname, date=date, statewide_mean=ds_m.mean(), statewide_min=ds_m.min(), statewide_max=ds_m.max(), statewide_std=ds_m.std() ) return data_dict def generate_spatial_summary_stats(base_path, secondary_path): ''' ''' # This produces a bunch of csv files with statewide averages for sec_path in secondary_path_list[0:]: files = sorted(glob.glob(os.path.join(base_path, sec_path.format(month='*', year='*')))) p = multiprocessing.Pool() results = p.map(worker_func3, files[0:]) p.close() p.join() s_results = sorted(results, key=lambda k: k['date']) stats_path = "SPATIAL_SUMMARY_STATS_{}.csv".format(sec_path.split('/')[0]) import pandas as pd df = pd.DataFrame(s_results) df.to_csv(stats_path) def plot_timeseries_of_spatial_summary_stats(): ''' ''' # Build this automatically: # - look for SPATIAL_SUMMARY_STATS_* ss_file_list = [ 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_hurs_mean_pct_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_pr_total_mm_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_rsds_mean_MJ-m2-d1_iem_CRU-TS40_historical_1901_2015_fix.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_MRI-CGCM3_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_ar5_NCAR-CCSM4_rcp85_2006_2100.csv', 'SPATIAL_SUMMARY_STATS_tas_mean_C_iem_cru_TS40_1901_2015.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_MRI-CGCM3_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_ar5_NCAR-CCSM4_rcp85_2006_2100_fix.csv', 'SPATIAL_SUMMARY_STATS_vap_mean_hPa_iem_CRU-TS40_historical_1901_2015_fix.csv', ] # Create multi-page pdf document import matplotlib.backends.backend_pdf ofname = "climatology_statewide_averages.pdf".format() print("Saving PDF: {}".format(ofname)) pdf = matplotlib.backends.backend_pdf.PdfPages(ofname) var_list = ['tas_mean','pr_total','rsds_mean','vap_mean','hurs_mean'] unit_list = ['celsius', 'mm month-1', 'MJ-m2-d1','hPa', 'percent'] for var, units in zip(var_list, unit_list): # Figure out the right files to work on var_files = [x for x in ss_file_list if var in x.lower()] print(var_files) print() h_file = [x for x in var_files if 'cru' in x.lower()] pmri_file = [x for x in var_files if 'mri' in x.lower()] pncar_file = [x for x in var_files if 'ncar' in x.lower()] # Filtering above should result in single item lists, unpack for convenience. h_file = h_file[0] pmri_file = pmri_file[0] pncar_file = pncar_file[0] print("var: ", var) print("hfile: ", h_file) print("pmri_file: ", pmri_file) print("pncar_file: ", pncar_file) print() # Read data into DataFrames hdf = pd.read_csv( h_file ) hdf.set_index( pd.to_datetime(hdf['date']), inplace=True ) pmri_df = pd.read_csv( pmri_file ) pmri_df.set_index(
pd.to_datetime(pmri_df['date'])
pandas.to_datetime
################################################################################### ## Description: Text analytics of the labelled mse data ### ## Status: WIP ### ################################################################################### import json, time, datetime, sys from nltk.corpus import stopwords from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import numpy as np import operator, string, re # path to data folders pathIn = '../data/build' pathOut = '../data/results' ## choose weighting factor: default or tf-idf # default: term frequency adjusted for document length # tf-idf: statistical measure to evaluate the importance of a word to a document in # a collection, the importance increases proportionally to the number of times # a word appears in the document but is offset by the frequency of the word in the corpus mode = 'tf-idf' #========== reading data with open(pathIn+'/build_test.json', 'r') as read_file: df =
pd.read_json(read_file)
pandas.read_json
import pandas as pd import torch from corai_error import Error_type_setter from corai_estimator import Estimator from corai_util.tools.src.decorator import decorator_delayed_keyboard_interrupt from corai_util.tools.src.function_iterable import is_iterable from corai_util.tools.src.function_json import is_jsonable class Estim_history(Estimator): CORE_COL = {'fold', 'epoch'} def __init__(self, metric_names, validation, df=None, hyper_params={}.copy()): # we require from the df to be either empty, or have columns with the names of metric_names, in the format from # `_generate_all_column_names()`: lossName_training, or lossName_validation. # it is possible to automatically create the right collumn names from a df with: # `Estim_history.deconstruct_column_names(df.columns)` # metric names contain all ["L1","L4"...] but not the loss used for back prop. self.metric_names = metric_names self.validation = validation self.list_best_epoch = [] # list each entry corresponds to a fold self.list_train_times = [] # list of times it takes to train each fold self.hyper_params = hyper_params # dict with serializable objects to be saved into a json. self.best_fold = -1 # negative strictly number means no best_fold found yet. Will be set in # train_kfold_a_fold_after_split if df is not None: super().__init__(df=df) else: df_column_names = self._generate_all_column_names() super().__init__(df=
pd.DataFrame(columns=df_column_names)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import numpy as np import pandas as pd import os import random import warnings from keras.preprocessing.sequence import pad_sequences import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Embedding, Dense, LSTM from keras.layers import Bidirectional import matplotlib.pyplot as plt from keras.layers import Input, Dense, BatchNormalization, Dropout, GaussianNoise, GaussianDropout from keras.models import Model from keras.utils import np_utils from keras.callbacks import CSVLogger, History import keras.backend as backend from tensorflow.python.keras.utils.vis_utils import plot_model from datetime import datetime from tensorflow.keras.callbacks import Callback, TensorBoard from tensorflow.keras.metrics import Precision, Recall from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.keras import layers from keras_multi_head import MultiHead import datetime import pickle # input file c1_train = "{class I MHC train data set path}" c1_val ="{class I MHC validation data set path}" c2_train = "{class II MHC train data set path}" c2_val = "{class II MHC validation data set path}" # pkl file are available from https://github.com/rikenbit/MTL4MHC2/tree/main/dict with open("{Path_to_pkl_file}/monovec.pkl","rb") as f: monovec = pickle.load(f) with open("{Path_to_pkl_file}/trigram_to_idx_MHC.pkl","rb") as f: trigram_to_idx_MHC = pickle.load(f) with open("{Path_to_pkl_file}/monogram_to_idx.pkl","rb") as f: monogram_to_idx = pickle.load(f) with open("{Path_to_pkl_file}/trivec1_MHC.pkl","rb") as f: trivec1_MHC = pickle.load(f) # function # normalization def replace(raw_seq_0): B_aa = 'DN' J_aa = 'IL' Z_aa = 'EQ' X_aa = 'ACDEFGHIKLMNPQRSTVWY' seq = raw_seq_0.str.replace('B', random.choice(B_aa)) seq = seq.str.replace('J', random.choice(J_aa)) seq = seq.str.replace('Z', random.choice(Z_aa)) seq = seq.str.replace('X', random.choice(X_aa)) raw_seq_0 = seq return raw_seq_0 # monogram def monogram(raw_seq_0): feature_0 = [] for i in range(0, len(raw_seq_0)): strain_embedding = [] for j in range(0, len(raw_seq_0[i])): monogram = raw_seq_0[i][j] mono_embedding = monogram_to_idx["".join(monogram)] strain_embedding.append(mono_embedding) feature_0.append(strain_embedding) return feature_0 # trigram def trigram(raw_seq_0): feature_0 = [] for i in range(0, len(raw_seq_0)): strain_embedding = [] for j in range(0, len(raw_seq_0[i]) - 2): trigram = raw_seq_0[i][j:j + 3] tri_embedding = trigram_to_idx_MHC["".join(trigram)] strain_embedding.append(tri_embedding) feature_0.append(strain_embedding) return feature_0 # model def multimodal_bilstm(out_dim, dropoutrate, out_dim2): pep_input = Input(shape=(None,)) mhc_input = Input(shape=(None,)) pep_emb = Embedding(47, 100, weights=[monovec], trainable=False)(pep_input) mhc_emb = Embedding(9419, 100, weights=[trivec1_MHC], trainable=False)(mhc_input) # peptide pep_output1 = Bidirectional(LSTM(out_dim,dropout=dropoutrate), merge_mode='concat')(pep_emb) pep_output2 = Dense(64, activation='relu')(pep_output1) # mhc mhc_output1 = Bidirectional(LSTM(out_dim2,dropout=dropoutrate), merge_mode='concat')(mhc_emb) mhc_output2 = Dense(64, activation='relu')(mhc_output1) conc = layers.concatenate([pep_output2, mhc_output2], axis=-1) out = Dense(2, activation='softmax')(conc) model = Model([pep_input, mhc_input], out) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=['accuracy']) return model # pretreatment d = [0]*100 p = np.array(['-']) lp = np.array(d, dtype=float) lps = np.append(p, lp) lpsd = pd.DataFrame(lps).T # class II raw_seq_al_2 = pd.read_csv(c2_train) raw_seq_al_2 = raw_seq_al_2.sample(frac=1).reset_index(drop=True) raw_seq_2 = raw_seq_al_2["peptide"] raw_seq_2MHC = raw_seq_al_2["mhc_amino_acid"] raw_seq_al_2v = pd.read_csv(c2_val) raw_seq_al_2v = raw_seq_al_2v.sample(frac=1).reset_index(drop=True) raw_seq_2v = raw_seq_al_2v["peptide"] raw_seq_2MHCv = raw_seq_al_2v["mhc_amino_acid"] # Normalization raw_seq_2 = replace(raw_seq_2) raw_seq_2v = replace(raw_seq_2v) raw_seq_2MHC = replace(raw_seq_2MHC) raw_seq_2MHCv = replace(raw_seq_2MHCv) feature_2 = monogram(raw_seq_2) feature_2v = monogram(raw_seq_2v) feature_2MHC = trigram(raw_seq_2MHC) feature_2MHCv = trigram(raw_seq_2MHCv) label_2 = raw_seq_al_2["bind"] label_2v = raw_seq_al_2v["bind"] label_2 = pd.get_dummies(label_2, sparse=True) label_2v =
pd.get_dummies(label_2v, sparse=True)
pandas.get_dummies
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' """ Los productos que salen del reporte diario son: 3 4 5 7 8 9 10 11 12 13 14 17 20 23 24 26 27 30 36 """ import pandas as pd from utils import * from shutil import copyfile from os import listdir from os.path import isfile, join from datetime import datetime import numpy as np def prod4(fte, producto): print('Generando producto 4') now = datetime.now() today = now.strftime("%Y-%m-%d") output = producto + today + '-CasosConfirmados-totalRegional.csv' df = pd.read_csv(fte, quotechar='"', sep=',', thousands=r'.', decimal=",") df.rename(columns={'Unnamed: 0': 'Region'}, inplace=True) if 'Unnamed: 7' in df.columns: df.drop(columns=['Unnamed: 7'], inplace=True) df_obj = df.select_dtypes(['object']) df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip()) regionName(df) df.at[16, 'Region'] = 'Total' # texttract reconoce 0 como o df.replace({'O': 0}, inplace=True) numeric_columns = [x for x in df.columns if x != 'Region'] for i in numeric_columns: df[i] = df[i].astype(str) #df[i] = df[i].replace({r'\.': ''}, regex=True) df[i] = df[i].replace({r'\,': '.'}, regex=True) df.to_csv(output, index=False) def prod5(fte, producto): print('Generando producto 5') # necesito series a nivel nacional por fecha: # Casos nuevos con sintomas # Casos totales # Casos recuperados #ya no se reporta # Fallecidos # Casos activos # Casos nuevos sin sintomas now = datetime.now() timestamp = now.strftime("%Y-%m-%d") timestamp_dia_primero = now.strftime("%d-%m-%Y") a = pd.read_csv(fte + 'CasosConfirmados.csv') a['Fecha'] = timestamp a = a[a['Region'] == 'Total'] print(a.to_string()) #las columnas son : # Casos totales acumulados Casos nuevos totales Casos nuevos con sintomas Casos nuevos sin sintomas* Fallecidos totales % Total Fecha a.rename(columns={'Casos totales acumulados': 'Casos totales', 'Casos nuevos totales': 'Casos nuevos totales', 'Casos nuevos con sintomas': 'Casos nuevos con sintomas', 'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas', 'Fallecidos totales': 'Fallecidos'}, inplace=True) #Faltan casos activos: prod 5 esta ahora en el reporte diario, hay que migrar para alla casos_confirmados_totales = pd.read_csv('../input/ReporteDiario/CasosConfirmadosTotales.csv') today_row = (casos_confirmados_totales[casos_confirmados_totales['Fecha'] == timestamp_dia_primero]) a['Casos activos'] = today_row['Casos activos'].values ## esto es estandar totales = pd.read_csv(producto) #print(totales.columns[1:]) # add Casos nuevos totales = Casos nuevos con sintomas + Casos nuevos sin sintomas for eachColumn in totales.columns[1:]: print('Checking if Casos nuevos totales is fine on ' + eachColumn) #print(totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0]) #print(totales.at[totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0], eachColumn]) rowConSintomas = totales.index[totales['Fecha'] == 'Casos nuevos con sintomas'].values[0] rowSinSintomas = totales.index[totales['Fecha'] == 'Casos nuevos sin sintomas'].values[0] rowCasosNuevosTotales = totales.index[totales['Fecha'] == 'Casos nuevos totales'].values[0] #print('row con ' + str(rowConSintomas)) #print('row sin ' + str(rowSinSintomas)) #print('expected is ' + str(totales.at[rowConSintomas, eachColumn]) + ' + ' + str(totales.at[rowSinSintomas, eachColumn])) #check for NaN if not np.isnan(totales.at[rowConSintomas, eachColumn]) and not np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowConSintomas, eachColumn] + totales.at[rowSinSintomas, eachColumn] elif not np.isnan(totales.at[rowConSintomas, eachColumn]) and np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowConSintomas, eachColumn] elif np.isnan(totales.at[rowConSintomas, eachColumn]) and not np.isnan(totales.at[rowSinSintomas, eachColumn]): expectedTotal = totales.at[rowSinSintomas, eachColumn] registeredTotal = totales.at[rowCasosNuevosTotales, eachColumn] if registeredTotal != expectedTotal: print('Casos nuevos totales debería ser ' + str(expectedTotal) + ' pero es ' + str(registeredTotal)) #print(totales.at[rowCasosNuevosTotales, eachColumn]) totales.at[rowCasosNuevosTotales, eachColumn] = expectedTotal #print(totales.at[rowCasosNuevosTotales, eachColumn]) #print(totales.to_string()) #normalizamos headers #expectedHeaders=['Casos nuevos con sintomas', 'Casos totales', 'Casos recuperados', 'Fallecidos', # 'Casos activos', 'Casos nuevos sin sintomas', 'Casos totales acumulados', 'Casos nuevos totales'] emptyrow = [] * len(totales.columns) if 'Casos nuevos con sintomas' not in totales['Fecha'].values: totales['Fecha'][0] = 'Casos nuevos con sintomas' if 'Casos nuevos sin sintomas' not in totales['Fecha'].values: ax = ['Casos nuevos sin sintomas'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux #totales['Fecha'][len(totales['Fecha']) + 1] = 'Casos nuevos sin sintomas' if 'Casos totales' not in totales['Fecha'].values: print('Casos totales not found') ax = ['Casos totales'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux if 'Casos nuevos totales' not in totales['Fecha'].values: ax = ['Casos nuevos totales'] bx = [''] * (len(totales.columns) - 1) ax.extend(bx) row = pd.DataFrame([ax], columns=totales.columns) aux = pd.concat([totales, row], ignore_index=True) totales = aux #print(totales) #print(totales['Fecha']) #print(str(a['Fecha'].values[0]) + ' is in ' + str(totales.columns)) if (a['Fecha'].values[0]) in totales.columns: print(a['Fecha'] + ' ya esta en el dataframe. No actualizamos') return else: #print(totales.iloc[:, 0]) newColumn=[] #Need to add new rows to totales: for eachValue in totales.iloc[:, 0]: print('each values is ' + eachValue) if eachValue in a.columns: print((a[eachValue].values)) newColumn.append(str(a[eachValue].values[0])) else: #print('appending ""') newColumn.append('') print(newColumn) totales[timestamp] = newColumn totales.to_csv(producto, index=False) totales_t = totales.transpose() totales_t.to_csv(producto.replace('.csv', '_T.csv'), header=False) #print(totales.to_string()) totales.rename(columns={'Fecha': 'Dato'}, inplace=True) identifiers = ['Dato'] variables = [x for x in totales.columns if x not in identifiers] df_std = pd.melt(totales, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv(producto.replace('.csv', '_std.csv'), index=False) def prod3_13_14_26_27(fte): onlyfiles = [f for f in listdir(fte) if isfile(join(fte, f))] cumulativoCasosNuevos = pd.DataFrame({'Region': [], 'Casos nuevos': []}) cumulativoCasosTotales = pd.DataFrame({'Region': [], 'Casos totales': []}) cumulativoFallecidos = pd.DataFrame({'Region': [], 'Fallecidos': []}) casosNuevosConSintomas = pd.DataFrame({'Region': [], 'Fecha': []}) casosNuevosSinSintomas = pd.DataFrame({'Region': [], 'Fecha': []}) onlyfiles.sort() onlyfiles.remove('README.md') for eachfile in onlyfiles: print('processing ' + eachfile) date = eachfile.replace("-CasosConfirmados-totalRegional", "").replace(".csv", "") dataframe = pd.read_csv(fte + eachfile) # sanitize headers #print(eachfile) dataframe.rename(columns={'Región': 'Region'}, inplace=True) dataframe.rename(columns={'Casos nuevos': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={' Casos nuevos': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales ': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos nuevos totales': 'Casos nuevos'}, inplace=True) dataframe.rename(columns={'Casos totales': 'Casos totales'}, inplace=True) dataframe.rename(columns={' Casos totales': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados ': 'Casos totales'}, inplace=True) dataframe.rename(columns={'Casos totales acumulados': 'Casos totales'}, inplace=True) dataframe.rename(columns={' Casos fallecidos': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Fallecidos totales ': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Fallecidos totales': 'Fallecidos'}, inplace=True) dataframe.rename(columns={'Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con síntomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos con sintomas ': 'Casos nuevos con sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin síntomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={' Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas'}, inplace=True) dataframe.rename(columns={'Casos nuevos sin sintomas* ': 'Casos nuevos sin sintomas'}, inplace=True) if cumulativoCasosNuevos['Region'].empty: cumulativoCasosNuevos[['Region', 'Casos nuevos']] = dataframe[['Region', 'Casos nuevos']] cumulativoCasosNuevos.rename(columns={'Casos nuevos': date}, inplace=True) cumulativoCasosTotales[['Region', 'Casos totales']] = dataframe[['Region', 'Casos totales']] cumulativoCasosTotales.rename(columns={'Casos totales': date}, inplace=True) else: print(dataframe.columns) cumulativoCasosNuevos[date] = dataframe['Casos nuevos'] cumulativoCasosTotales[date] = dataframe['Casos totales'] if 'Fallecidos' in dataframe.columns: if cumulativoFallecidos['Region'].empty: cumulativoFallecidos[['Region', 'Fallecidos']] = dataframe[['Region', 'Fallecidos']] cumulativoFallecidos.rename(columns={'Fallecidos': date}, inplace=True) else: cumulativoFallecidos[date] = dataframe['Fallecidos'] if 'Casos nuevos con sintomas' in dataframe.columns: if casosNuevosConSintomas['Region'].empty: casosNuevosConSintomas[['Region', 'Fecha']] = dataframe[['Region', 'Casos nuevos con sintomas']] casosNuevosConSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosConSintomas[date] = dataframe['Casos nuevos con sintomas'] else: date2 = (pd.to_datetime(date)).strftime('%Y-%m-%d') if date2 < '2020-04-29': if casosNuevosConSintomas['Region'].empty: casosNuevosConSintomas[['Region', 'Fecha']] = dataframe[['Region','Casos nuevos']] casosNuevosConSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosConSintomas[date] = dataframe['Casos nuevos'] if 'Casos nuevos sin sintomas' in dataframe.columns: if casosNuevosSinSintomas['Region'].empty: casosNuevosSinSintomas[['Region', 'Fecha']] = dataframe[['Region', 'Casos nuevos sin sintomas']] casosNuevosSinSintomas.rename(columns={'Fecha': date}, inplace=True) else: casosNuevosSinSintomas[date] = dataframe['Casos nuevos sin sintomas'] # estandarizar nombres de regiones regionName(cumulativoCasosNuevos) regionName(cumulativoCasosTotales) regionName(cumulativoFallecidos) regionName(casosNuevosConSintomas) regionName(casosNuevosSinSintomas) cumulativoCasosNuevos_T = cumulativoCasosNuevos.transpose() cumulativoCasosTotales_T = cumulativoCasosTotales.transpose() cumulativoFallecidos_T = cumulativoFallecidos.transpose() casosNuevosConSintomas_T = casosNuevosConSintomas.transpose() casosNuevosSinSintomas_T = casosNuevosSinSintomas.transpose() #### PRODUCTO 3 cumulativoCasosTotales.to_csv('../output/producto3/CasosTotalesCumulativo.csv', index=False) cumulativoCasosTotales_T.to_csv('../output/producto3/CasosTotalesCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoCasosTotales.columns if x not in identifiers] df_std = pd.melt(cumulativoCasosTotales, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto3/CasosTotalesCumulativo_std.csv', index=False) #### PRODUCTO 13 cumulativoCasosNuevos.to_csv('../output/producto13/CasosNuevosCumulativo.csv', index=False) cumulativoCasosNuevos_T.to_csv('../output/producto13/CasosNuevosCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoCasosTotales.columns if x not in identifiers] df_std = pd.melt(cumulativoCasosNuevos, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto13/CasosNuevosCumulativo_std.csv', index=False) #### PRODUCTO 14 cumulativoFallecidos.to_csv('../output/producto14/FallecidosCumulativo.csv', index=False) cumulativoFallecidos_T.to_csv('../output/producto14/FallecidosCumulativo_T.csv', header=False) identifiers = ['Region'] variables = [x for x in cumulativoFallecidos.columns if x not in identifiers] df_std = pd.melt(cumulativoFallecidos, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Total') df_std.to_csv('../output/producto14/FallecidosCumulativo_std.csv', index=False) #### PRODUCTO 26 casosNuevosConSintomas.to_csv('../output/producto26/CasosNuevosConSintomas.csv', index=False) casosNuevosConSintomas_T.to_csv('../output/producto26/CasosNuevosConSintomas_T.csv', header=False) identifiers = ['Region'] variables = [x for x in casosNuevosConSintomas.columns if x not in identifiers] df_std = pd.melt(casosNuevosConSintomas, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Casos confirmados') df_std.to_csv('../output/producto26/CasosNuevosConSintomas_std.csv', index=False) #### PRODUCTO 27 casosNuevosSinSintomas.to_csv('../output/producto27/CasosNuevosSinSintomas.csv', index=False) casosNuevosSinSintomas_T.to_csv('../output/producto27/CasosNuevosSinSintomas_T.csv', header=False) identifiers = ['Region'] variables = [x for x in casosNuevosSinSintomas.columns if x not in identifiers] df_std = pd.melt(casosNuevosSinSintomas, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Casos confirmados') df_std.to_csv('../output/producto27/CasosNuevosSinSintomas_std.csv', index=False) def prod7_8(fte, producto): df = pd.read_csv(fte, dtype={'Codigo region': object}) regionName(df) df = df.replace('-', '', regex=True) df_t = df.T df.to_csv(producto + '.csv', index=False) df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Region', 'Codigo region', 'Poblacion'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='numero') df_std.to_csv(producto + '_std.csv', index=False) def prod9_10(fte, producto): copyfile(fte, producto + '.csv') HospitalizadosUCIEtario_T = transpone_csv(producto + '.csv') HospitalizadosUCIEtario_T.to_csv(producto + '_T.csv', header=False) df = pd.read_csv(fte) identifiers = ['Grupo de edad'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='Casos confirmados') df_std.to_csv(producto + '_std.csv', index=False) def prod17(fte, producto): copyfile(fte, producto + '.csv') df = pd.read_csv(fte) df_t = df.T df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Establecimiento', 'Examenes'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='Numero de PCR') df_std.to_csv(producto + '_std.csv', index=False) def prod20(fte, producto): copyfile(fte, producto + '.csv') df = pd.read_csv(fte) df_t = df.T df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Ventiladores'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='numero') df_std.to_csv(producto + '_std.csv', index=False) def prod23(fte, producto): copyfile(fte, producto + '.csv') df = pd.read_csv(fte) df_t = df.T df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Casos'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='Casos confirmados') df_std.to_csv(producto + '_std.csv', index=False) def prod24(fte, producto): copyfile(fte, producto + '.csv') df = pd.read_csv(fte) df_t = df.T df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Tipo de cama'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='fecha', value_name='Casos confirmados') df_std.to_csv(producto + '_std.csv', index=False) def prod30(fte, producto): copyfile(fte, producto + '.csv') df = pd.read_csv(fte) df_t = df.T df_t.to_csv(producto + '_T.csv', header=False) identifiers = ['Casos'] variables = [x for x in df.columns if x not in identifiers] df_std = pd.melt(df, id_vars=identifiers, value_vars=variables, var_name='Fecha', value_name='Casos confirmados') df_std.to_csv(producto + '_std.csv', index=False) def prod36(fte, producto): copyfile(fte, producto + '.csv') df =
pd.read_csv(fte)
pandas.read_csv
import json import pandas as pd from AnalysisModule.prepare.diagram import BuildingUnit from AnalysisModule.routines.util import read_jsonfile """ 4 ways to deal with strange bus A - exclude bu, keep crystals A' - merge bu, keep crystals B - exclude crystals C - keep all note 2020/11/24: - all A are modified to A' - use bu_0 bu_1 bu_2 to represent bus - if bu_x does not exist, the field is set to -1 buid: 9 len: 9 C - H2PO2, reactants include hypophosphorous acid buid: 18 len: 9 A' - this is tricky: some of them come from PO4 across pbc, some of them are HPO3 without hydrogens - HPO3: (BU0) BEZVIO BEZVOU BEZVUA BEZWAH CASWIE TEXSEV - PO4: (BU1) CUHCIR POVMOC QOBWEJ buid: 19 len: 21 B - some of them are MeOH e.g. coordinated to a metal, some of them are MeO with O acting as a bridge e.g. between metals buid: 21 len: 5 B - ethylene glycol buid: 23 len: 8 B - ethanol buid: 24 len: 9 A (2020/11/24 -> 1 A', BU1) - PFO3 - similar to BU25, HPF6 is used as input buid: 25 len: 2 A (2020/11/24 -> 1 A', BU1) - PF2O2 - HPF6 involved in both synthesis buid: 28 len: 1 A (2020/11/24 -> 1 A', BU5) - octahedral SiO6(2-) buid: 29 len: 1 B - O-C(O)-CH2-O - synthesis uses glycolic acid buid: 31 len: 7 B - O2C-CH2-S-CH2-CO2 - uranyl thiodigycolate is used in synthesis buid: 32 len: 1 A' - KAPSUR, distorted NO3 (BU10) buid: 34 len: 1 A' - SiO3, just broken SiO4 (BU5) by pbc buid: 36 len: 1 A' - WAQVOZ, glitched CO3 (BU15) """ records = pd.read_csv("3_bulist.csv").to_dict("records") curated_records = [] curated_bus = [] for ir in range(len(records)): records[ir]["bus"] = json.loads(records[ir]["bus"]) identifier = records[ir]["identifier"] # merge A' if 18 in records[ir]["bus"]: if identifier in ["BEZVIO", "BEZVOU", "BEZVUA", "BEZWAH", "CASWIE", "TEXSEV", ]: records[ir]["bus"] = [0 if x == 18 else x for x in records[ir]["bus"]] elif identifier in ["CUHCIR", "POVMOC", "QOBWEJ", ]: records[ir]["bus"] = [1 if x == 18 else x for x in records[ir]["bus"]] else: raise NotImplementedError("BU 18 not merged due to unknown identifier: {}".format(identifier)) # aprime_dict = {32: 10, 34: 5, 36: 15} aprime_dict = {32: 10, 34: 5, 36: 15, 24: 1, 25: 1, 28: 5} # 2020/11/24 for buid_aprime in aprime_dict.keys(): if buid_aprime in records[ir]["bus"]: records[ir]["bus"] = [aprime_dict[buid_aprime] if x == buid_aprime else x for x in records[ir]["bus"]] # exclude crystals with B if set(records[ir]["bus"]).intersection({19, 21, 23, 29, 31}): continue # very few crystal has more than 2 bus if len(records[ir]["bus"]) > 2: print("bus len > 2: ", len(records[ir]["bus"]), records[ir]["identifier"]) curated_bus += records[ir]["bus"] curated_records.append(records[ir]) df =
pd.DataFrame.from_records(curated_records)
pandas.DataFrame.from_records
# coding: utf-8 # # Online Retail # # - http://archive.ics.uci.edu/ml/datasets/online+retail# # # # ## Data Set Information: # # This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. # # # ## Attribute Information: # # - InvoiceNo: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation. # - StockCode: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product. # - Description: Product (item) name. Nominal. # - Quantity: The quantities of each product (item) per transaction. Numeric. # - InvoiceDate: Invice Date and time. Numeric, the day and time when each transaction was generated. # - UnitPrice: Unit price. Numeric, Product price per unit in sterling. # - CustomerID: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer. # - Country: Country name. Nominal, the name of the country where each customer resides. # # # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import warnings import itertools import operator import statsmodels.api as sm # In[2]: online_retail =
pd.read_excel('data/Online Retail.xlsx')
pandas.read_excel
# encoding: utf-8 import itertools import random from datetime import date from typing import List, Tuple import pandas as pd class DataFrameMock: @staticmethod def df_generic(sample_size): """ Create a generic DataFrame with ``sample_size`` samples and 2 columns. The 2 columns of the returned DataFrame contain numerical and string values, respectively. Parameters ---------- sample_size: Number of samples in the returned DataFrame. Returns ------- pd.DataFrame Pandas DataFrame instance with ``sample_size`` samples and 2 columns: one with numerical values and the other with string values only. """ return pd.DataFrame( { "metadata_num_col": list(range(sample_size)), "metadata_str_col": [f"value_{i}" for i in range(sample_size)], "exam_num_col_0": list(range(sample_size)), "exam_num_col_1": list(range(sample_size)), "exam_str_col_0": [f"value_{i}" for i in range(sample_size)], } ) @staticmethod def df_many_nans(nan_ratio: float, n_columns: int) -> pd.DataFrame: """ Create pandas DataFrame with ``n_columns`` containing ``nan_ratio`` ratio of NaNs. DataFrame has 100 rows and ``n_columns``+5 columns. The additional 5 columns contain less than ``nan_ratio`` ratio of NaNs. Parameters ---------- nan_ratio : float Ratio of NaNs that will be present in ``n_columns`` of the DataFrame. n_columns : int Number of columns that will contain ``nan_ratio`` ratio of NaNs. Returns ------- pd.DataFrame Pandas DataFrame with ``n_columns`` containing ``nan_ratio`` ratio of NaNs and 5 columns with a lower ratio of NaNs. """ many_nan_dict = {} sample_count = 100 # Create n_columns columns with NaN nan_sample_count = int(sample_count * nan_ratio) for i in range(n_columns): many_nan_dict[f"nan_{i}"] = [pd.NA] * nan_sample_count + [1] * ( sample_count - nan_sample_count ) # Create not_nan_columns with less than nan_ratio ratio of NaNs not_nan_columns = 5 for j in range(not_nan_columns): nan_ratio_per_column = nan_ratio - 0.01 * (j + 1) # If nan_ratio_per_column < 0, set 0 samples to NaN (to avoid negative # sample counts) if nan_ratio_per_column < 0: nan_sample_count = 0 else: nan_sample_count = int(sample_count * nan_ratio_per_column) many_nan_dict[f"not_nan_{j}"] = [pd.NA] * nan_sample_count + [1] * ( sample_count - nan_sample_count ) return pd.DataFrame(many_nan_dict) @staticmethod def df_nans_filled(columns: List[str]) -> pd.DataFrame: """Starting from the df returned by ``.df_many_nans``, set ``columns`` to 1s. Parameters ---------- columns : List[str] Name of the columns to set to 1s Returns ------- pd.DataFrame DataFrame with the ``columns`` set to 1s """ df = DataFrameMock.df_many_nans(nan_ratio=0.5, n_columns=3) for column in columns: df[column] = pd.Series(pd.Series([1] * 100)) return df @staticmethod def df_same_value(n_columns: int) -> pd.DataFrame: """ Create pandas DataFrame with ``n_columns`` containing the same repeated value. DataFrame has 100 rows and ``n_columns``+5 columns. The additional 5 columns contain different valid values (and a variable count of a repeated value). Parameters ---------- n_columns : int Number of columns that will contain the same repeated value. Returns ------- pd.DataFrame Pandas DataFrame with ``n_columns`` containing the same repeated value and 5 columns with some different values. """ random.seed(42) constant_value_dict = {} sample_count = 100 # Create n_columns columns with same repeated value for i in range(n_columns): constant_value_dict[f"same_{i}"] = [4] * sample_count # Create not_constant_columns with repeated values and random values not_constant_columns = 5 for j in range(not_constant_columns): constant_value_sample_count = int(sample_count * (1 - 0.1 * (j + 1))) constant_value_dict[f"not_same_{j}"] = [4] * constant_value_sample_count + [ random.random() for _ in range(sample_count - constant_value_sample_count) ] return
pd.DataFrame(constant_value_dict)
pandas.DataFrame
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import pandas as pd import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_recall_fscore_support from sklearn.metrics import precision_score, f1_score, recall_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) all_sr = ['bpd', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] all_dis = {el:i for i, el in enumerate(all_sr)} disease_values_dict = all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams.update({'font.size': 16}) features_file = "data/features/{}_embdedded_features.pckl".format(etype) results_file = "results/{}_multiclasscm.csv".format(etype) word_emb_len = 300 def sample_all_diseases(df, n=1): if etype == "DL": smallest_disease=all_dis['parkinsons'] else: smallest_disease=all_dis['gastroparesis'] def merge_rows(row): if n == 1: return row res_row = np.zeros(len(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n df = df.sample(frac=1).reset_index(drop=True) dis_size = len(df[df['disease']==smallest_disease]) sample_size = int(dis_size/n)*n print(dis_size, sample_size) df_sample= pd.DataFrame() for disease in all_dis: df_dis = df[df['disease'] == all_dis[disease]] df_dis = df_dis.sample(n=sample_size, random_state=11).reset_index() if n > 1: df_dis = df_dis.groupby(df_dis.index // n).agg(lambda x: list(x)) df_dis['disease'] = all_dis[disease] df_sample = pd.concat([df_dis, df_sample]) if n > 1: df_sample['features'] = df_sample['features'].apply(lambda row: merge_rows(row)) df_sample = df_sample.drop(columns=['index']) return df_sample def prepare_training_data_for_multi_disease(features, n=1): dis_sample = sample_all_diseases(features, n) print("Subsampled all diseases for ", len(dis_sample), " posts") training = dis_sample.copy() training = training.reset_index(drop=True) return training def XGBoost_cross_validate(): features = pd.read_pickle(features_file) features.rename(columns={'vec':'features'}, inplace=True) features = features.drop(columns=['subreddit', 'entities']) disease = features['disease'] print ("Post per subreddit ") print (features.groupby('disease').size()) # print('Distribution before imbalancing: {}'.format(Counter(disease))) training = prepare_training_data_for_multi_disease(features) print(training.tail()) training_labels = training["disease"].astype(int) training_labels.head() training_features = pd.DataFrame(training["features"].tolist()) training_features.head() # XGBoost AUC_results = [] f1_results = [] results = [] cm_all = [] kf = StratifiedKFold(n_splits=10, random_state=11, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=100, n_jobs=11, max_depth=4) # 1000 200 model.fit(X_train, y_train.values.ravel()) predictions = model.predict(X_test) results.append(precision_recall_fscore_support(y_test, predictions)) f1_results.append(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_labels) cm_all.append(cm_cv) print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [
pd.np.mean(f1_results)
pandas.np.mean
import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys import librosa def salvar_csv(x_mean,y_mean,z_mean,x_desv,y_desv,z_desv,nome,tam_frequencia): dfdict = {} dfdict["Mean x"] = x_mean dfdict["Mean y"] = y_mean dfdict["Mean z"] = z_mean dfdict["Desv x"] = x_desv dfdict["Desv y"] = y_desv dfdict["Desv z"] = z_desv # dfdict["MFC y"] = mfcc # dfdict["Classificação 0 desalinhado 1 alinhado"] = classificacao df = pd.DataFrame(dfdict) nome = nome.split('.') nome = nome[0] print(nome) df.to_csv((str(nome) + '_tratado_SUP'+str(tam_frequencia)+'.csv'),index = False, header = True)#, columns=["Media x","Media y","Media z","Desv x","Desv y","Desv z","MFC y", "Classificação 0 desalinhado 1 alinhado"]) ## if __name__ == '__main__': frequencia_de_coleta = 125 velocidade_correia = 0.5 # m/s tamanho_correia = 1 # metros tamanho_coletas = 0.1 # metros # tam_frequencia = int(frequencia_de_coleta*tamanho_correia/velocidade_correia) tam_frequencia = 25 dataset_file =
pd.read_csv(sys.argv[1])
pandas.read_csv
# CPTAC Images Join import pandas as pd import numpy as np imglist = pd.read_csv('../CPTAC-LUAD-HEslide-filename-mapping_Jan2019.csv', header=0) samplelist = pd.read_csv('../CPTAC_LUAD.csv', header=0) imglist = imglist[['Slide_ID', 'FileName']] samplelist = samplelist.join(imglist.set_index('Slide_ID'), how='inner', on='Slide_ID') samplelist = samplelist.dropna(subset=['FileName']) samplelist = samplelist[['Case_ID', 'Slide_ID', 'FileName']] Labelfile =
pd.read_csv('../luad-v2.0-sample-annotation.csv', header=0)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 1 18:25:21 2020 @author: vinnie """ import tweepy from collections import defaultdict import pandas as pd import argparse import os from stats import tweet_analyzer from wordanalysis import WordsAnalysis from keys import ( api_key, api_secret_key, access_token, access_token_secret ) auth = tweepy.OAuthHandler(api_key, api_secret_key) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) class GetTweets: def __init__(self, api, userid, include_rts = False): self.userid = userid self.include_rts = include_rts print('Fetching tweets of: ', self.userid) self.tweets = api.user_timeline(screen_name = self.userid, count = 200, include_rts = self.include_rts, tweet_mode = 'extended') self.tweets_dict = defaultdict(list) self.acc_info = self.tweets[0].user def __check_if_retweet(self, obj): if hasattr(obj, 'retweeted_status'): return True return False def __get_hashtags(self, hashtags): tags_list = [] for tags in hashtags: tags_list.append(tags['text']) return tags_list def __get_account_info(self): twt = self.acc_info print(f'\n \nName:\t {twt.name}') print(f'Description: {twt.description}' ) print(f'Followers: {twt.followers_count}\t Follwing: {twt.friends_count}' ) print(f'Account created on: {twt.created_at}\t Location: {twt.location}\n') with open("data/info" + self.userid, "w") as text_file: text_file.write(f'Name: {twt.name}\n Description: {twt.description}\n \ Followers: {twt.followers_count}\t Follwing: {twt.friends_count}\n \ Account created on: {twt.created_at}\t Location: {twt.location}') def __build_dictionary(self): for status in self.tweets: self.tweets_dict['id'].append(status.id_str) self.tweets_dict['favourite_count'].append(status.favorite_count) self.tweets_dict['created_at'].append(status.created_at) self.tweets_dict['retweet_count'].append(status.retweet_count) self.tweets_dict['tweet'].append(status.full_text) self.tweets_dict['tags'].append(self.__get_hashtags(status.entities.get('hashtags'))) tweet_url = 'https://twitter.com/twitter/status/' + status.id_str self.tweets_dict['tweet_url'].append(tweet_url) if not self.include_rts: self.tweets_dict['is_retweet'].append(self.__check_if_retweet(status)) def fetch_tweets(self): oldest_id = self.tweets[-1].id self.__build_dictionary() n_tweets = len(self.tweets) while True: print('Tweets fetched till now {}'.format(n_tweets)) self.tweets = api.user_timeline(screen_name = self.userid, count = 200, include_rts = False, max_id = oldest_id - 1, tweet_mode = 'extended') n_tweets += len(self.tweets) if len(self.tweets) == 0: break oldest_id = self.tweets[-1].id self.__build_dictionary() self.__get_account_info() return
pd.DataFrame.from_dict(self.tweets_dict)
pandas.DataFrame.from_dict
import pandas as pd import csv import json import sys import numpy class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, numpy.integer): return int(obj) elif isinstance(obj, numpy.floating): return float(obj) elif isinstance(obj, numpy.ndarray): return obj.tolist() else: return super(MyEncoder, self).default(obj) df = pd.read_csv(sys.argv[1], encoding='UTF-8', sep=',', quotechar='"') final_tp = [] def trend_detection(topicid): selectid = df.loc[df['topicId'] == topicid] topic = pd.DataFrame(selectid, columns=['created', 'topicId']) topic.index = range(len(topic)) topic['created'] =
pd.to_datetime(topic['created'])
pandas.to_datetime
# Utility to scrape NASDAQ IPO lists import pandas as pd import datetime from datetime import timedelta from collections import OrderedDict def get_ipo_list(start_date, end_date=datetime.datetime.today().strftime('%Y-%m-%d')): """Scrape NASDAQ IPO lists, returns DataFrame arguments: start_date -- %Y-%m-%d end_date -- %Y-%m-%d """ # make dates range date_range = [start_date, end_date] start, end = [datetime.datetime.strptime(_, "%Y-%m-%d") for _ in date_range] date_dict = OrderedDict(((start + timedelta(_)).strftime(r"%Y-%m"), None) for _ in range((end - start).days)).keys() print('date range:', date_dict) # scrape df_symbols =
pd.DataFrame()
pandas.DataFrame
""" @file process.py @author <NAME> Data pre-processing. """ from src import config import numpy as np import pandas as pd from scipy import stats from scipy.stats import skew class Processor: def __init__(self): self.df = {} self.lmbda = {'austria' : {}, 'belgium': {}, 'germany': {}, 'italy' : {}, 'netherlands': {}} self.numerical_features = {'austria': [], 'belgium': [], 'germany': [], 'italy' : [], 'netherlands': []} self.skewed_features = {'austria': [], 'belgium': [], 'germany': [], 'italy' : [], 'netherlands': []} self.means = {'austria' : {}, 'belgium': {}, 'germany': {}, 'italy' : {}, 'netherlands': {}} self.std_deviations = {'austria' : {}, 'belgium': {}, 'germany': {}, 'italy' : {}, 'netherlands': {}} for country in config.COUNTRIES: # read file file_path = config.cleaned_data_path / (country + '.csv') self.df[country] = pd.read_csv(file_path) def process_vector(self, pageviews, country): data = pd.DataFrame.from_dict(pageviews) data, self.lmbda[country] = self.apply_leo_johnson(data, self.lmbda[country], self.skewed_features[ country]) self.apply_std_normal(data, self.numerical_features[country], self.means[country], self.std_deviations[country]) return data def process_data(self): for country in config.COUNTRIES: self.hot_encode_weeks(country) labels =
pd.Series(self.df[country].incidence)
pandas.Series
import collections import logging import os import subprocess import sys from pathlib import Path from subprocess import check_output, CalledProcessError import numpy as np import pandas as pd from django.db.models import Q from django.db import close_old_connections from emgapi import models as emg_models from emgapianns.management.lib import utils from emgapianns.management.lib.utils import DownloadFileDatabaseHandler class StudySummaryGenerator(object): def __init__(self, accession, pipeline, rootpath, nfs_public_rootpath, database): self.study_accession = accession self.pipeline = pipeline self.rootpath = rootpath self.nfs_public_rootpath = nfs_public_rootpath self.emg_db_name = database self.study = emg_models.Study.objects.using(self.emg_db_name).get(secondary_accession=self.study_accession) self.study_result_dir = os.path.join(self.rootpath, self.study.result_directory) self.summary_dir = None self.MAPSEQ_COLUMN_MAPPER = {'SSU': 'SILVA', 'LSU': 'SILVA', 'unite': 'UNITE', 'itsonedb': 'ITSone'} def run(self): if not os.path.exists(self.study_result_dir): sys.exit( "Study result directory for {} does not exist:\n{}".format(self.study_accession, self.study_result_dir)) jobs = emg_models.AnalysisJob.objects.using(self.emg_db_name) jobs = jobs.filter( Q(study__secondary_accession=self.study_accession) & Q(analysis_status__analysis_status='completed') & Q(pipeline__release_version=self.pipeline)) experiment_types = set() analysis_jobs = {} for job in jobs: job_result_directory = os.path.join(self.rootpath, job.result_directory) job_input_file_name = job.input_file_name analysis_jobs[job_input_file_name] = job_result_directory experiment_types.add(job.experiment_type.experiment_type) self.summary_dir = os.path.join(self.study_result_dir, 'version_{}/project-summary'.format(self.pipeline)) self.create_summary_dir() for rna_types in self.MAPSEQ_COLUMN_MAPPER.keys(): self.generate_taxonomy_phylum_summary(analysis_jobs, self.pipeline, '{}'.format(rna_types), 'phylum_taxonomy_abundances_{}_v{}.tsv'.format(rna_types, self.pipeline)) self.generate_taxonomy_summary(analysis_jobs, '{}'.format(rna_types), 'taxonomy_abundances_{}_v{}.tsv'.format(rna_types, self.pipeline)) if len(experiment_types) == 1 and 'amplicon' in experiment_types: logging.info("AMPLICON datasets only! Skipping the generation of the functional matrix files!") else: self.generate_ipr_summary(analysis_jobs, 'IPR_abundances_v{}.tsv'.format(self.pipeline), self.pipeline) self.generate_go_summary(analysis_jobs, 'slim', self.pipeline) self.generate_go_summary(analysis_jobs, 'full', self.pipeline) self.sync_study_summary_files() logging.info("Program finished successfully.") def sync_study_summary_files(self): logging.info("Syncing project summary files over to NFS public...") _study_result_dir = self.study.result_directory nfs_prod_dest = os.path.join(self.rootpath, _study_result_dir, 'version_{}/{}'.format(self.pipeline, 'project-summary')) nfs_public_dest = os.path.join(self.nfs_public_rootpath, _study_result_dir, 'version_{}/'.format(self.pipeline)) logging.info("From: " + nfs_prod_dest) logging.info("To: " + nfs_public_dest) rsync_options = ['-rtDzv'] more_rsync_options = ['--no-owner', '--no-perms', '--prune-empty-dirs', '--exclude', '*.lsf', '--delete-excluded', '--chmod=Do-w,Fu+x,Fg+x,Fo+r'] rsync_cmd = ["sudo", "-H", "-u", "emg_adm", "rsync"] + rsync_options + more_rsync_options + [nfs_prod_dest, nfs_public_dest] logging.info(rsync_cmd) subprocess.check_call(rsync_cmd) logging.info("Synchronisation is done.") @staticmethod def _get_group_type(rna_type): group = None if rna_type in ['SSU', 'LSU']: group = 'Taxonomic analysis {} rRNA'.format(rna_type) elif rna_type == 'unite': group = 'Taxonomic analysis UNITE' elif rna_type == 'itsonedb': group = 'Taxonomic analysis ITSoneDB' else: logging.warning("RNA type {} not supported!".format(rna_type)) return group @staticmethod def _get_phylum_file_description(rna_type): desc = None if rna_type in ['SSU', 'LSU', 'unite']: desc = 'Phylum level taxonomies {}'.format(rna_type.upper()) elif rna_type == 'itsonedb': desc = 'Phylum level taxonomies ITSoneDB' else: logging.warning("RNA type {} not supported!".format(rna_type)) return desc @staticmethod def _get_abundance_file_description(rna_type): desc = None if rna_type in ['SSU', 'LSU', 'unite']: desc = 'Taxonomic assignments {}'.format(rna_type.upper()) elif rna_type == 'itsonedb': desc = 'Taxonomic assignments ITSoneDB' else: logging.warning("RNA type {} not supported!".format(rna_type)) return desc def generate_taxonomy_phylum_summary(self, analysis_jobs, version, rna_type, filename): study_df = None if version == '4.1': study_df = self.generate_taxonomy_phylum_summary_v4(analysis_jobs, rna_type) elif version == '5.0': study_df = self.generate_taxonomy_phylum_summary_v5(analysis_jobs, rna_type) else: logging.warning("Pipeline version {} not supported yet!".format(version)) pass if not study_df.empty: self.write_results_file(study_df, filename) alias = '{}_phylum_taxonomy_abundances_{}_v{}.tsv'.format(self.study_accession, rna_type, self.pipeline) description = self._get_phylum_file_description(rna_type) group = self._get_group_type(rna_type) self.upload_study_file(filename, alias, description, group) def generate_taxonomy_phylum_summary_v4(self, analysis_result_dirs, su_type): res_files = self.get_kingdom_counts_files(analysis_result_dirs, su_type) study_df = self.merge_dfs(res_files, delimiter='\t', key=['kingdom', 'phylum'], raw_cols=['kingdom', 'phylum', 'count', 'ignored']) return study_df def generate_taxonomy_phylum_summary_v5(self, analysis_jobs, rna_type): job_data_frames = dict() # Iterate over each run for acc, result_directory in analysis_jobs.items(): # Define results files and for each result file perform necessary operations if rna_type in ['unite', 'itsonedb']: sequence_file = self.__get_rna_fasta_file(result_directory, 'ITS_masked.fasta.gz') else: # for SILVA: LSU and SSU sequence_file = self.__get_rna_fasta_file(result_directory, '{}.fasta.gz'.format(rna_type)) if not sequence_file: continue num_rna_seqs = self.__count_number_of_seqs(sequence_file) # mapseq_result_file = self.__get_mapseq_result_file(acc, result_directory, rna_type, '.fasta.mseq.gz') if not mapseq_result_file: continue phylum_count_data = self.__parse_phylum_counts_v5(mapseq_result_file, num_rna_seqs, rna_type) job_df = self.__build_dataframe(phylum_count_data) job_data_frames[acc] = job_df study_df = self.merge_dfs_v5(job_data_frames, key=['superkingdom', 'kingdom', 'phylum']) return study_df def generate_taxonomy_summary(self, analysis_result_dirs, rna_type, filename): res_files = self.get_mapseq_result_files(analysis_result_dirs, rna_type, '.fasta.mseq.tsv') raw_cols = ['OTU', 'count', 'lineage'] if self.pipeline in ['5.0']: raw_cols = ['OTU', 'count', 'lineage', 'taxid'] study_df = self.merge_dfs(res_files, key=['lineage'], delimiter='\t', raw_cols=raw_cols, skip_rows=2) study_df = study_df.rename(columns={'lineage': '#SampleID'}) if len(study_df.index) > 0: self.write_results_file(study_df, filename) alias = '{}_taxonomy_abundances_{}_v{}.tsv'.format(self.study_accession, rna_type, self.pipeline) description = self._get_abundance_file_description(rna_type) group = self._get_group_type(rna_type) self.upload_study_file(filename, alias, description, group) def get_raw_result_files(self, res_file_re): paths = list(Path(self.study_result_dir).glob(res_file_re)) return [str(p.resolve()) for p in paths] def merge_dfs_v5(self, dataframes, key): study_df =
pd.DataFrame(columns=key)
pandas.DataFrame
""" This module contains the class definitions for ``BaseChainLadder``.- """ import functools import pandas as pd import numpy as np class BaseChainLadder: """ From the Casualty Actuarial Society's "Estimating Unpaid Claims Using Basic Techniques" Version 3 (Friedland, Jacqueline - 2010), the development method ('Chain Ladder') consists of seven basic steps: 1. Compile claims data in a development triangle 2. Calculate age-to-age factors 3. Calculate averages of the age-to-age factors 4. Select claim development factors 5. Select tail factor 6. Calculate cumulative claims 7. Project ultimate claims """ def __init__(self, cumtri): """ Generate point estimates for outstanding claim liabilities at ultimate for each origin year and in aggregate. The ``BaseChainLadder`` class exposes no functionality to estimate variability around the point estimates at ultimate. Parameters ---------- cumtri: triangle._CumTriangle A cumulative.CumTriangle instance. """ self.tri = cumtri def __call__(self, sel="all-weighted", tail=1.0): """ Compile a summary of ultimate and reserve estimates resulting from the application of the development technique over a triangle instance. Generated DataFrame is comprised of origin year, maturity of origin year, loss amount at latest evaluation, cumulative loss development factors, projected ultimates and the reserve estimate, by origin year and in aggregate. Parameters ---------- sel: str The ldf average to select from ``triangle._CumTriangle.a2a_avgs``. Defaults to "all-weighted". tail: float Tail factor. Defaults to 1.0. Returns ------- trikit.chainladder.BaseChainLadderResult """ ldfs_ = self._ldfs(sel=sel, tail=tail) cldfs_ = self._cldfs(ldfs=ldfs_) ultimates_ = self._ultimates(cldfs=cldfs_) reserves_ = self._reserves(ultimates=ultimates_) maturity_ = self.tri.maturity.astype(np.str) latest_ = self.tri.latest_by_origin trisqrd_ = self._trisqrd(ldfs=ldfs_) # Compile chain ladder point estimate summary. dfmatur_ = maturity_.to_frame().reset_index(drop=False).rename({"index":"origin"}, axis=1) dfcldfs_ = cldfs_.to_frame().reset_index(drop=False).rename({"index":"maturity"}, axis=1) dfcldfs_["maturity"] = dfcldfs_["maturity"].astype(np.str) dfsumm = dfmatur_.merge(dfcldfs_, on=["maturity"], how="left").set_index("origin") dfsumm.index.name = None dflatest_ = latest_.to_frame().rename({"latest_by_origin":"latest"}, axis=1) dfultimates_, dfreserves_ = ultimates_.to_frame(), reserves_.to_frame() dfsumm = functools.reduce( lambda df1, df2: df1.join(df2), (dflatest_, dfultimates_, dfreserves_), dfsumm ) dfsumm.loc["total"] = dfsumm.sum() dfsumm.loc["total", "maturity"] = "" dfsumm.loc["total", "cldf"] = np.NaN dfsumm = dfsumm.reset_index().rename({"index":"origin"}, axis=1) kwds = {"sel":sel, "tail":tail} # Initialize and return _ChainLadderResult instance. clresult_ = BaseChainLadderResult( summary=dfsumm, tri=self.tri, ldfs=ldfs_, cldfs=cldfs_, latest=latest_, maturity=maturity_, ultimates=ultimates_, reserves=reserves_, trisqrd=trisqrd_, **kwds) return(clresult_) def _ldfs(self, sel="all-weighted", tail=1.0): """ Lookup loss development factors corresponding to ``sel``. Parameters ---------- sel: str The ldf average to select from ``triangle._CumTriangle.a2a_avgs``. Defaults to "all-weighted". tail: float Tail factor. Defaults to 1.0. Returns ------- pd.Series """ try: ldfs_ = self.tri.a2a_avgs.loc[sel] tindx_ = ldfs_.index.max() + 1 ldfs_ = ldfs_.append(pd.Series(data=[tail], index=[tindx_])) except KeyError: print("Invalid age-to-age selection: `{}`".format(sel)) ldfs_ = pd.Series(data=ldfs_, index=ldfs_.index, dtype=np.float_, name="ldf") return(ldfs_.sort_index()) def _cldfs(self, ldfs): """ Calculate cumulative loss development factors by successive multiplication beginning with the tail factor and the oldest age-to-age factor. The cumulative claim development factor projects the total growth over the remaining valuations. Cumulative claim development factors are also known as "Age-to-Ultimate Factors" or "Claim Development Factors to Ultimate". Parameters ---------- ldfs: pd.Series Selected ldfs, typically the output of calling ``self._ldfs``. Returns ------- pd.Series """ cldfs_indx = ldfs.index.values cldfs_ = np.cumprod(ldfs.values[::-1])[::-1] cldfs_ = pd.Series(data=cldfs_, index=ldfs.index.values, name="cldf") return(cldfs_.astype(np.float_).sort_index()) def _ultimates(self, cldfs): """ Ultimate claims are equal to the product of the latest valuation of losses (the amount along latest diagonal of any ``_CumTriangle`` instance) and the appropriate cldf/age-to-ultimate factor. We determine the appropriate age-to-ultimate factor based on the age of each origin year relative to the evaluation date. Parameters ---------- cldfs: pd.Series Cumulative loss development factors, conventionally obtained via BaseChainLadder's ``_cldfs`` method. Returns ------- pd.Series """ ultimates_ = pd.Series( data=self.tri.latest_by_origin.values * cldfs.values[::-1], index=self.tri.index, name="ultimate" ) return(ultimates_.astype(np.float_).sort_index()) def _reserves(self, ultimates): """ Return IBNR/reserve estimates by origin and in aggregate. Represents the difference between ultimate projections for each origin period and the latest cumulative value. Since outstanding claim liabilities can be referred to differently based on the type of losses represented in the triangle ("ibnr" if reported/incurred, "unpaid" if paid losses), we use the general term "reserve" to represent the difference between ultimate projections and latest cumulative value by origin and in total. Parameters ---------- ultimates: pd.Series Estimated ultimate losses, conventionally obtained from BaseChainLadder's ``_ultimates`` method. Returns ------- pd.Series """ reserves_ = pd.Series( data=ultimates - self.tri.latest_by_origin, index=self.tri.index, name='reserve') return(reserves_.astype(np.float_).sort_index()) def _trisqrd(self, ldfs): """ Project claims growth for each future development period. Returns a DataFrame of loss projections for each subsequent development period for each accident year. Populates the triangle's lower-right or southeast portion (i.e., the result of "squaring the triangle"). Returns ------- pd.DataFrame """ trisqrd_ = self.tri.copy(deep=True) rposf = self.tri.index.size clvi = self.tri.clvi["row_offset"] for i in enumerate(trisqrd_.columns[1:], start=1): ii , devp = i[0], i[1] ildf, rposi = ldfs.values[ii - 1], clvi[devp] + 1 trisqrd_.iloc[rposi:rposf, ii] = \ trisqrd_.iloc[rposi:rposf, ii - 1] * ildf # Multiply right-most column by tail factor. max_devp = trisqrd_.columns[-1] trisqrd_["ultimate"] = trisqrd_.loc[:,max_devp].values * ldfs.values[-1] return(trisqrd_.astype(np.float_).sort_index()) class BaseChainLadderResult: """ Summary class consisting of output resulting from invocation of ``BaseChainLadder``'s ``__call__`` method. """ def __init__(self, summary, tri, ldfs, cldfs, latest, maturity, ultimates, reserves, trisqrd, **kwargs): """ Container object for ``BaseChainLadder`` output. Parameters ---------- summary: pd.DataFrame Chain Ladder summary compilation. tri: trikit.triangle._CumTriangle A cumulative triangle instance. ldfs: pd.Series Loss development factors. cldfs: pd.Series Cumulative loss development factors. latest: pd.Series Latest loss amounts by origin. maturity: pd.Series Represents ther maturity of each origin relative to development period. ultimates: pd.Series Represents Chain Ladder ultimate projections. reserves: pd.Series Represents the projected reserve amount. For each origin period, this equates to the ultimate loss projection minus the latest loss amount for the origin period (reserve = ultimate - latest). kwargs: dict Additional keyword arguments passed into ``BaseChainLadder``'s ``run`` method. """ self.ultimates = ultimates self.reserves = reserves self.summary = summary self.trisqrd = trisqrd self.cldfs = cldfs self.ldfs = ldfs self.tri = tri if kwargs is not None: for key_ in kwargs: setattr(self, key_, kwargs[key_]) self._summspecs = { "ultimate":"{:.0f}".format, "reserve":"{:.0f}".format, "latest":"{:.0f}".format, "cldf":"{:.5f}".format, } def _data_transform(self): """ Transform dataset for use in FacetGrid plot by origin exhibting chain ladder ultimate & reserve estimates. Returns ------- pd.DataFrame """ df0 = self.trisqrd.reset_index(drop=False).rename({"index":"origin" }, axis=1) df0 = pd.melt(df0, id_vars=["origin"], var_name="dev", value_name="value") df0 = df0[~np.isnan(df0["value"])].reset_index(drop=True) df1 = self.tri.triind.reset_index(drop=False).rename({"index":"origin"}, axis=1) df1 =
pd.melt(df1, id_vars=["origin"], var_name="dev", value_name="value")
pandas.melt
import pandas as pd from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.formula.api import ols import matplotlib.pyplot as plt import numpy as np import pickle from collections import defaultdict from opencage.geocoder import OpenCageGeocode key = 'dd95342554c14f01a470950c1ae84c92' geocoder = OpenCageGeocode(key) from math import radians, cos, sin, asin, sqrt AVG_EARTH_RADIUS = 6371 # in km c = 299792458 #in m.s* def haversine(point1, point2, miles=False): """ Calculate the great-circle distance between two points on the Earth surface. :input: two 2-tuples, containing the latitude and longitude of each point in decimal degrees. Example: haversine((45.7597, 4.8422), (48.8567, 2.3508)) :output: Returns the distance bewteen the two points. The default unit is kilometers. Miles can be returned if the ``miles`` parameter is set to True. """ # unpack latitude/longitude lat1, lng1 = point1 lat2, lng2 = point2 # convert all latitudes/longitudes from decimal degrees to radians lat1, lng1, lat2, lng2 = map(radians, (lat1, lng1, lat2, lng2)) # calculate haversine lat = lat2 - lat1 lng = lng2 - lng1 d = sin(lat * 0.5) ** 2 + cos(lat1) * cos(lat2) * sin(lng * 0.5) ** 2 h = 2 * AVG_EARTH_RADIUS * asin(sqrt(d)) if miles: return h * 0.621371 # in miles else: return h # in kilometers ### This function allows to do some data cleaning/ no need to go through it! def symmetrize(data): mat = data.values newmat = np.ndarray indexes = data.index columns = data.columns X, Y = mat.shape symDict = {} for key1 in columns: symDict[key1] = {} for key2 in columns: symDict[key1][key2] = np.nan for i in range(X): for j in range(Y): if np.isnan(mat[i, j]): if not np.isnan(symDict[columns[j]][indexes[i]]): symDict[indexes[i]][columns[j]] = symDict[columns[j]][indexes[i]] else: if np.isnan(symDict[columns[j]][indexes[i]]): symDict[indexes[i]][columns[j]] = mat[i, j] symDict[columns[j]][indexes[i]] = mat[i, j] else: symDict[indexes[i]][columns[j]] = min(mat[i, j], symDict[columns[j]][indexes[i]]) symDict[columns[j]][indexes[i]] = symDict[indexes[i]][columns[j]] symData = pd.DataFrame(symDict) return symData #### loading all the observed cities # # df = pd.read_csv('/Users/geode/Work/Research/Geometry-Internet/Cloud/google_cloud/gcp_min_rtt_20201202.csv',index_col = 0) # print(df) # print(df.index) # df = df[df.columns[:-1]] # # print(df[df.columns[:-1]]) # elem = {} # for i in df.index: # val = {} # for s in range(0,len(df.index)): # print(s,[df.columns[2*s:2*s+2]]) # t = df[df.columns[2*s:2*s+2]][df.index==i].values[0] # print(t) # val[df.index[s]] = t[0] # elem[i] = val # df_lat = pd.DataFrame(elem) # print(df_lat) # print(df_lat.index) # dico_cloud = dict(zip(df_lat.index,[0]*len(df_lat.index))) # # dico_cloud = {'Helsinki': '172.16.31.10', 'Frankfurt': '192.168.127.12','Kane': '172.16.31.10','London': '192.168.127.12','Los Angeles': '172.16.31.10', # # 'Montreal':'192.168.3.11','Mumbai': '192.168.127.12', 'Amsterdam': '172.16.31.10','Ashburn': '192.168.3.11','Sao Paulo': '172.16.58.3', # # 'Sydney': '172.16.17.32','Tokyo': '172.16.31.10'} # dico_cloud = {'Belgium': '172.16.17.32','Hong Kong': '192.168.3.11','London': '192.168.127.12','Ashburn': '192.168.3.11','Oregon': '172.16.31.10', # 'Osaka': '192.168.127.12','Sao Paulo': '172.16.58.3','Singapore': '172.16.17.32','Charleston': '192.168.3.11', 'Sydney': '172.16.17.32','Taiwan': '172.16.58.3', # 'Zurich': '192.168.3.11'} # dico_cloud_spe = {} # for s in dico_cloud.keys(): # dico_cloud_spe['Google_'+s] = s # df = pd.read_csv('/Users/Geode/Downloads/azure_minRTT_21-25Dec (1).csv',index_col=0) print(df[df.columns[:-1]]) elem = {} for i in df.index: val = {} for s in range(0,len(df.index)): print(s,[df.columns[2*s:2*s+2]]) t = df[df.columns[2*s:2*s+2]][df.index==i].values[0] print(t) val[df.index[s]] = min(t) elem[i] = val df_lat =
pd.DataFrame(elem)
pandas.DataFrame
# encoding: utf-8 """ Classes defined in py_expression_eval moduel are used to parse string expressions and do corresponding calculations. They are used in DataView. Since expression parsing is error-prone, we do not recommend directly modifying this module . """ # Author: <NAME>. http://axiacore.com # # Based on js-expression-eval, by <NAME> (<EMAIL>, http://silentmatt.com/) # https://github.com/silentmatt/js-expression-eval # # Ported to Python and modified by <NAME> (<EMAIL>, http://vero4ka.info/) # # You are free to use and modify this code in anyway you find useful. Please leave this comment in the code # to acknowledge its original source. If you feel like it, I enjoy hearing about projects that use my code, # but don't feel like you have to let me know or ask permission. # modified by symbol from quantOS.org from __future__ import division from __future__ import print_function import math import numpy as np import pandas as pd from jaqs.data.align import align import jaqs.util.numeric as numeric from jaqs.util import rank_with_mask TNUMBER = 0 TOP1 = 1 TOP2 = 2 TVAR = 3 TFUNCALL = 4 ''' single quarter / TTM + year on year / month on month ''' def cum_to_single_quarter(df, report_date): df = df.copy() is_nan = df.isnull() df = df.fillna(method='ffill').fillna(0.0) year = report_date // 10000 def cum_to_single_within_year(df_): first_row = df_.iloc[0, :].copy() df_ = df_.diff(1, axis=0) df_.iloc[0, :] = first_row return df_ single_quarter = df.groupby(by=year).apply(cum_to_single_within_year) single_quarter[is_nan] = np.nan return single_quarter def calc_ttm(df): return df.rolling(window=4, axis=0).sum() def calc_year_on_year_return(df): return df.pct_change(4, axis=0) def calc_quarter_on_quarter_return(df): return df.pct_change(1, axis=0) class Expression(object): def __init__(self, tokens, ops1, ops2, functions): self.tokens = tokens self.ops1 = ops1 self.ops2 = ops2 self.functions = functions self.ann_dts = None self.trade_dts = None self.index_member = None def simplify(self, values): values = values or {} nstack = [] newexpression = [] L = len(self.tokens) for i in range(0, L): item = self.tokens[i] type_ = item.type_ if type_ == TNUMBER: nstack.append(item) elif type_ == TVAR and item.index_ in values: item = Token(TNUMBER, 0, 0, values[item.index_]) nstack.append(item) elif type_ == TOP2 and len(nstack) > 1: n2 = nstack.pop() n1 = nstack.pop() f = self.ops2[item.index_] item = Token(TNUMBER, 0, 0, f(n1.number_, n2.number_)) nstack.append(item) elif type_ == TOP1 and nstack: n1 = nstack.pop() f = self.ops1[item.index_] item = Token(TNUMBER, 0, 0, f(n1.number_)) nstack.append(item) else: while len(nstack) > 0: newexpression.append(nstack.pop(0)) newexpression.append(item) while nstack: newexpression.add(nstack.pop(0)) return Expression(newexpression, self.ops1, self.ops2, self.functions) def substitute(self, variable, expr): if not isinstance(expr, Expression): pass # expr = Parser().parse(str(expr)) newexpression = [] L = len(self.tokens) for i in range(0, L): item = self.tokens[i] type_ = item.type_ if type_ == TVAR and item.index_ == variable: for j in range(0, len(expr.tokens)): expritem = expr.tokens[j] replitem = Token( expritem.type_, expritem.index_, expritem.prio_, expritem.number_, ) newexpression.append(replitem) else: newexpression.append(item) ret = Expression(newexpression, self.ops1, self.ops2, self.functions) return ret def evaluate(self, values, ann_dts=None, trade_dts=None): self.ann_dts = ann_dts self.trade_dts = trade_dts values = values or {} nstack = [] L = len(self.tokens) for i in range(0, L): item = self.tokens[i] type_ = item.type_ if type_ == TNUMBER: nstack.append(item.number_) elif type_ == TOP2: n2 = nstack.pop() n1 = nstack.pop() f = self.ops2[item.index_] nstack.append(f(n1, n2)) elif type_ == TVAR: if item.index_ in values: nstack.append(values[item.index_]) elif item.index_ in self.functions: nstack.append(self.functions[item.index_]) else: raise Exception('undefined variable: ' + item.index_) elif type_ == TOP1: n1 = nstack.pop() f = self.ops1[item.index_] nstack.append(f(n1)) elif type_ == TFUNCALL: n1 = nstack.pop() f = nstack.pop() if f.apply and f.call: if type(n1) is list: nstack.append(f.apply(None, n1)) else: nstack.append(f.call(None, n1)) else: raise Exception(f + ' is not a function') else: raise Exception('invalid Expression') if len(nstack) > 1: raise Exception('invalid Expression (parity)') return nstack[0] def toString(self, toJS=False): nstack = [] L = len(self.tokens) for i in range(0, L): item = self.tokens[i] type_ = item.type_ if type_ == TNUMBER: nstack.append(item.number_) elif type_ == TOP2: n2 = nstack.pop() n1 = nstack.pop() f = item.index_ if toJS and f == '^': nstack.append('math.pow(' + n1 + ',' + n2 + ')') else: nstack.append('(' + n1 + f + n2 + ')') elif type_ == TVAR: nstack.append(item.index_) elif type_ == TOP1: n1 = nstack.pop() f = item.index_ if f == '-': nstack.append('({0}{1})'.format(f, n1)) else: nstack.append('{0}({1})'.format(f, n1)) elif type_ == TFUNCALL: n1 = nstack.pop() f = nstack.pop() nstack.append(f + '(' + n1 + ')') else: raise Exception('invalid Expression') if len(nstack) > 1: raise Exception('invalid Expression (parity)') return nstack[0] def variables(self): vars = [] for i in range(0, len(self.tokens)): item = self.tokens[i] if item.type_ == TVAR and \ not item.index_ in vars and \ True : #item.index_ not in self.functions: vars.append(item.index_) return vars class Token(object): def __init__(self, type_, index_, prio_, number_): self.type_ = type_ self.index_ = index_ or 0 self.prio_ = prio_ or 0 self.number_ = number_ if number_ != None else 0 def to_str(self): if self.type_ == TNUMBER: return self.number_ if self.type_ == TOP1 or self.type_ == TOP2 or self.type_ == TVAR: return self.index_ elif self.type_ == TFUNCALL: return 'CALL' else: return 'Invalid Token' class Parser(object): def __init__(self): self.success = False self.errormsg = '' self.expression = '' self.pos = 0 self.tokens = None self.tokennumber = 0 self.tokenprio = 0 self.tokenindex = 0 self.tmpprio = 0 self.PRIMARY = 1 self.OPERATOR = 2 self.FUNCTION = 4 self.LPAREN = 8 self.RPAREN = 16 self.COMMA = 32 self.SIGN = 64 self.CALL = 128 self.NULLARY_CALL = 256 # do not need parenthesis self.ops1 = { 'Sin': np.sin, 'Cos': np.cos, 'Tan': np.tan, # 'asin': np.asin, # 'acos': np.acos, # 'atan': np.atan, # 'Mean': np.mean, 'Sqrt': np.sqrt, 'Log': np.log, 'Abs': np.abs, 'Ceil': np.ceil, 'Floor': np.floor, 'Round': np.round, '-': self.neg, '!': self.logicalNot, 'Sign': np.sign, # 'Rank': self.rank, 'exp': np.exp } self.ops2 = { '+': self.add, '-': self.sub, '*': self.mul, '/': self.div, '%': self.mod, '^': np.power, ',': self.append, # '||': self.concat, "==": self.equal, "!=": self.notEqual, ">": self.greaterThan, "<": self.lessThan, ">=": self.greaterThanEqual, "<=": self.lessThanEqual, "&&": self.andOperator, "||": self.orOperator } # need parenthesis self.functions = { # cross section 'Min': np.minimum, 'Max': np.maximum, 'Percentile': self.percentile, 'GroupPercentile': self.group_percentile, 'Quantile': self.to_quantile, 'GroupQuantile': self.group_quantile, 'Rank': self.rank, 'GroupRank': self.group_rank, 'Mask': self.mask, 'ConditionRank': self.cond_rank, 'ConditionPercentile': self.cond_percentile, 'ConditionQuantile': self.cond_quantile, 'Standardize': self.standardize, 'Cutoff': self.cutoff, # 'GroupApply': self.group_apply, # time series 'CumToSingle': self.cum_to_single, 'TTM': self.calc_ttm, 'TTM_jl': self.calc_ttm_jli, 'YOY': calc_year_on_year_return, 'QOQ': calc_quarter_on_quarter_return, 'Ts_Rank': self.ts_rank, 'Ts_Percentile': self.ts_percentile, 'Ts_Quantile': self.ts_quantile, 'Ewma': self.ewma, 'Sma':self.sma, 'Ts_Sum': self.ts_sum, 'Ts_Product': self.ts_product, # rolling product 'CountNans': self.count_nans, # rolling count Nans 'StdDev': self.std_dev, 'Covariance': self.cov, 'Correlation': self.corr, 'Corr': self.corr, 'Delay': self.delay, 'Delta': self.delta, 'Return': self.calc_return, 'Ts_Mean': self.ts_mean, 'Ts_Min': self.ts_min, 'Ts_Max': self.ts_max, 'Ts_Skewness': self.ts_skew, 'Ts_Kurtosis': self.ts_kurt, 'Tail': self.tail, 'Step': self.step, 'Decay_linear': self.decay_linear, 'Decay_exp': self.decay_exp, # inplace 'Pow': np.power, 'SignedPower': self.signed_power, 'IsNan': self.is_nan, # others 'If': self.ifFunction, 'FillNan': self.fill_nan, 'Return_Abs': self.calc_return_abs, 'Return_Fwd': self.calc_return_fwd, # test } self.consts = { 'E': math.e, 'PI': math.pi, } # no use self.values = { 'sin': math.sin, 'cos': math.cos, 'tan': math.tan, 'asin': math.asin, 'acos': math.acos, 'atan': math.atan, 'sqrt': math.sqrt, 'log': math.log, 'abs': abs, 'ceil': math.ceil, 'floor': math.floor, 'round': round, 'random': self.random, 'fac': self.fac, 'exp': math.exp, 'min': min, 'max': max, 'pyt': self.pyt, 'pow': math.pow, 'atan2': math.atan2, 'E': math.e, 'PI': math.pi } self.ann_dts = None self.trade_dts = None # ----------------------------------------------------- # functions def add(self, a, b): (a, b) = self._align_bivariate(a, b) return a + b def sub(self, a, b): (a, b) = self._align_bivariate(a, b) return a - b def mul(self, a, b): (a, b) = self._align_bivariate(a, b) return a * b def div(self, a, b): (a, b) = self._align_bivariate(a, b) res = a / b if isinstance(res, pd.DataFrame): res = res.replace([np.inf, -np.inf], np.nan) return res def mod(self, a, b): (a, b) = self._align_bivariate(a, b) return a % b def pow(self, a, b): return np.power(a, b) def signed_power(self, x, e): signs = np.sign(x) return signs * np.power(np.abs(x), e) def concat(self, a, b, *args): result = u'{0}{1}'.format(a, b) for arg in args: result = u'{0}{1}'.format(result, arg) return result @staticmethod def _to_array(x): if isinstance(x, (pd.DataFrame, pd.Series)): return x.values elif isinstance(x, np.ndarray): return x elif isinstance(x, (int, float, bool, np.integer, np.float, np.bool)): return np.asarray(x) else: print(x) raise ValueError("Cannot convert type {} to numpy array".format(repr(type(x)))) def equal(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr == brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def notEqual(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr != brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def greaterThan(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr > brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def lessThan(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr < brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def greaterThanEqual(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr >= brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def lessThanEqual(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = arr <= brr res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def andOperator(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = np.logical_and(arr, brr) res = res.astype(float) res[mask] = np.nan return pd.DataFrame(index=a.index, columns=a.columns, data=res) def orOperator(self, a, b): (a, b) = self._align_bivariate(a, b) arr, brr = self._to_array(a), self._to_array(b) mask = np.logical_or(np.isnan(arr), np.isnan(brr)) res = np.logical_or(arr, brr) res = res.astype(float) res[mask] = np.nan return
pd.DataFrame(index=a.index, columns=a.columns, data=res)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd import pandas.util.testing as pdt import qiime2 from q2_taxa import collapse, filter_table, filter_seqs class CollapseTests(unittest.TestCase): def assert_index_equal(self, a, b): # this method is derived from scikit-bio 0.5.1 pdt.assert_index_equal(a, b, exact=True, check_names=True, check_exact=True) def assert_data_frame_almost_equal(self, left, right): # this method is derived from scikit-bio 0.5.1 pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) self.assert_index_equal(left.index, right.index) def test_collapse(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;c', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_missing_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;__', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_bad_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) with self.assertRaisesRegex(ValueError, 'of 42 is larger'): collapse(table, taxonomy, 42) with self.assertRaisesRegex(ValueError, 'of 0 is too low'): collapse(table, taxonomy, 0) def test_collapse_missing_table_ids_in_taxonomy(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat3']) with self.assertRaisesRegex(ValueError, 'missing.*feat2'): collapse(table, taxonomy, 1) class FilterTable(unittest.TestCase): def test_filter_no_filters(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_table(table, taxonomy) def test_alt_delimiter(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_table(table, taxonomy, include='<EMAIL>', query_delimiter='@peanut@') pdt.assert_frame_equal(obs, table, check_like=True) # exclude with delimiter obs = filter_table(table, taxonomy, exclude='<EMAIL>', query_delimiter='@peanut@') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_filter_table_unknown_mode(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_table(table, taxonomy, include='bb', mode='not-a-mode') def test_filter_table_include(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, include='cc,ee') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='dd') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut!') def test_filter_table_include_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='bb', mode='exact') def test_filter_table_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='ab') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, exclude='xx') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='dd') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb') def test_filter_table_exclude_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='peanut!', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_table_include_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa', exclude='peanut!') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only - feat2 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - feat2 dropped at inclusion step obs = filter_table(table, taxonomy, include='cc', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at inclusion step obs = filter_table(table, taxonomy, include='ee', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features - all dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='aa', exclude='bb', mode='exact') # keep no features - one dropped at inclusion, one dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='cc', exclude='cc', mode='exact') # keep no features - all dropped at inclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut', exclude='bb', mode='exact') def test_filter_table_underscores_escaped(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep feat1 only - underscore not treated as a wild card obs = filter_table(table, taxonomy, include='cc,d_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - underscore in query matches underscore in # taxonomy annotation taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; c_', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) obs = filter_table(table, taxonomy, include='c_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_all_features_with_frequency_greater_than_zero_get_filtered(self): table = pd.DataFrame([[2.0, 0.0], [1.0, 0.0], [9.0, 0.0], [1.0, 0.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # empty - feat2, which is matched by the include term, has a frequency # of zero in all samples, so all samples end up dropped from the table with self.assertRaisesRegex(ValueError, expected_regex='greater than zero'): filter_table(table, taxonomy, include='dd') def test_extra_taxon_ignored(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee', 'aa; bb; cc'], index=pd.Index(['feat1', 'feat2', 'feat3'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) def test_missing_taxon_errors(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc'], index=pd.Index(['feat1'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, expected_regex='All.*feat2'): filter_table(table, taxonomy, include='bb') class FilterSeqs(unittest.TestCase): def test_filter_no_filters(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_seqs(seqs, taxonomy) def test_alt_delimiter(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_seqs(seqs, taxonomy, include='cc<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # exclude with delimiter obs = filter_seqs(seqs, taxonomy, exclude='ww<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) def test_filter_seqs_unknown_mode(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_seqs(seqs, taxonomy, include='bb', mode='not-a-mode') def test_filter_seqs_include(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='bb') exp =
pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2'])
pandas.Series
import pandas as pd import streamlit as st import numpy as np import pickle from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import MinMaxScaler from PIL import Image # Header header_image = Image.open('Images/ebooks.jpg') st.image(header_image) # Creating sidebar comments st.sidebar.title('Kindle eBook Recommendations') st.sidebar.caption('By [<NAME>](https://www.linkedin.com/in/daniel-burdeno-39a298ab/)') # Load in appropriate DataFrames, user ratings df_user = pd.read_csv('Data/df_user.csv', index_col=0) # Meta data for collabortive filtering df_meta = pd.read_csv('Data/meta5.csv', index_col='asin') df_meta.drop(columns =['Unnamed: 0'], inplace=True) # Meta data for content based df_meta_all =
pd.read_csv('Data/meta_all.csv', index_col='asin')
pandas.read_csv
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan
tm.assert_frame_equal(result, e)
pandas._testing.assert_frame_equal
""" Copyright 2021 Merck & Co., Inc. Kenilworth, NJ, USA. Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import requests import json import pandas as pd import numpy as np from scipy.stats import variation, kurtosis, skew from termcolor import colored from datetime import datetime from pytz import timezone import sys import os from urllib.parse import quote_plus def element_fmt(input): if (str(input).find("/") > 0): return quote_plus(str(input)) else: return str(input) def validate(value, possible_values, value_name): if value == "" or value is None: dataset_error = "Dataset not specified" print(colored( "ERROR! " + value_name + " name [" + str(value) + "] not specified", "red")) return False elif value not in possible_values: dataset_error = "Dataset name not valid" print(colored( "ERROR! " + value_name + " name [" + str(value) + "] not valid", "red")) return False return True def requestResponsePrint(response, total_run_time, verbose): if str(response) == "<Response [200]>": if verbose: print(colored( "\nDownload successful! Request completed in " + str(total_run_time), "green")) elif str(response) == "<Response [401]>": print(colored( "\nERROR! Unauthorized. Your credentials are either invalid or expired.", "red")) elif str(response) == "<Response [404]>": print(colored("\nERROR! You don't have permission to access the resource you're \ trying to. If you believe this is in error, please contact the \ Data Profiler Team.", "red")) elif str(response == "<Response [403]>"): print(colored("\nERROR! The request had an error due to programming errors or \ cluster component downtime. Please try again, and contact the \ Data Profiler Team if the problem persists.", "red")) def map_listtodict(listdict): ''' Takes a list of dictionaries and converts to dictionary [{'value': 'val1', 'count': 23},{'value': 'val2', 'count': 2}, ..] -> {'val1': 23, 'val2': 2} Parameters: listdict (list): list of dictinaries with keys as value and count only Returns: dictionary: dictionary with keys as value and value as count ''' valcnt_dict = {} for valcnt in listdict: valcnt_dict[valcnt['value']] = valcnt['count'] return valcnt_dict class Column(): def __init__(self, environment, dataset_name, table_name, column_name, filters={}): self.column_name = column_name self.table_name = table_name self.dataset_name = dataset_name self.env = environment self.filters = filters validated = self.validateData() self.metadata = self.getColumnMetadata() if self.filters != {}: validate_filter = self.validateFilters() if validate_filter==False: print (colored("ERROR: this is not valid input", "red")) if validated==False: print (colored("ERROR: this is not valid input", "red")) ##### data about the column itself ##### def getColumnMetadata(self): url = self.env.url + '/v1/columns/{}/{}'.format(self.dataset_name, self.table_name) response = requests.get(url, headers=self.env.header) return response.json()[self.column_name] ##### setting filters for listing columns counts ##### def setFilters(self, filters): self.filters = filters self.validateData() ##### retrieving data stored within the column metadata ##### def getColumnDataType(self): return self.metadata['data_type'] def getValueCount(self): return self.metadata['num_values'] def getUniqueValueCount(self): return self.metadata['num_unique_values'] def getVisibility(self): return self.metadata['visibility'] def getUserAccessList(self): url = self.env.url + "/rules_of_use" post_data = json.dumps({ "query":"{usersWithAttribute(value:\""+self.getVisibility()+"\"){username}}" }) response = requests.post(url, headers=self.env.header, data=post_data) if response.status_code == 401 or response.status_code == 403: print (colored("Unauthorized: You are not authorized to perform this request,\ please contact the Data Profiler team", "red")) return None try: usernames = [x["username"] for x in json.loads(response.text)["data"]["usersWithAttribute"]] return usernames except: print (colored("There was a {} error processing your \ request".format(response.status_code), "red")) return None ##### lists a dictionary of column counts with the structures as follows ##### ##### [{'value':'value1', 'count':'count1'},...] ##### def listColumnCounts(self): ## filters do not work for this endpoints post_data = json.dumps({ "dataset": self.dataset_name, "table": self.table_name, "column": self.column_name, "limit": 0, "sort": "CNT_DESC" }) url = self.env.url + '/v1/colCounts' response = requests.post(url, headers=self.env.header, data=post_data) if response.status_code == 401 or response.status_code == 403: print (colored("Unauthorized: You are not authorized to perform this request," + \ " please contact the Data Profiler team", "red")) return None try: text_data = response.text text_data = text_data[:-1] json_data = json.loads(text_data) return json_data except: print (colored(f"There was a {response.status_code}" + " error processing your request", "red")) return None ## get a dictionary of the listed column values and their ## counts that are within the provided range of values ## returns empty list if errors or no values exist ## returns list of dicts: [{"value": "val_1", "count":"count_1"}, ## {"value": "val_2", "count":"count_2"}] def getColumnValuesInRange(self, min_val, max_val): try: range_len = float(max_val) - float(min_val) except: print (colored("Range values must be numbers", "red")) return [] if float(max_val) <= float(min_val): print (colored("Max range value must be greater than the min", "red")) return [] all_value_count = self.listColumnCounts() values_in_range = [] for value in all_value_count: try: if (float(value["value"]) >= float(min_val) and \ float(value["value"]) < float(max_val)): values_in_range.append(value) except: continue return values_in_range def __isint(self, ignore={np.nan, '', ' ', '-', None}, threshold='0.70'): conversion = {'integer','long'} dt = self.getColumnDataType() cnt = 0 icnt = 0 if dt == 'string': all_value_count = self.listColumnCounts() for valdict in all_value_count: if valdict['value'] not in ignore: cnt += valdict['count'] try : int(valdict['value']) icnt += valdict['count'] except: pass try: if icnt/cnt >= float(threshold): return True else: return False except: print (colored("Range values must be numbers", "red")) return None else: if dt in conversion: return True else: return False def __isfloat(self, ignore={np.nan, '', ' ', '-', None}, threshold='0.70'): conversion = {'integer','float','long'} dt = self.getColumnDataType() cnt = 0 fcnt = 0 if dt == 'string': all_value_count = self.listColumnCounts() for valdict in all_value_count: if valdict['value'] not in ignore: cnt += valdict['count'] try : float(valdict['value']) fcnt += valdict['count'] except: pass try: if fcnt/cnt >= float(threshold): return True else: return False except: print (colored("Range values must be numbers", "red")) return None else: if dt in conversion: return True else: return False def __getdatatype(self): if self.isint(): return int elif self.isfloat(): return float elif self.getColumnDataType() == 'string': return str else: return self.getColumnDataType() ##### Lists of valid datasets, tables, and columns ##### def validDatasets(self): return self.env.getDatasetList() def validTables(self): url = self.env.url + '/v1/tables/{}'.format(self.dataset_name) response = requests.get(url, headers=self.env.header) return list(response.json().keys()) def validColumns(self): url = self.env.url + '/v1/columns/{}/{}'.format(self.dataset_name, self.table_name) response = requests.get(url, headers=self.env.header) return list(response.json().keys()) ##### validates the dataset, table, and column specified on initialization ##### def validateData(self): valid_datasets = self.validDatasets() dataset_valid = validate(self.dataset_name, valid_datasets, "Dataset") if dataset_valid: valid_tables = self.validTables() table_valid = validate(self.table_name, valid_tables, "Table") if table_valid: valid_columns = self.validColumns() column_valid = validate(self.column_name, self.validColumns(), "Column") return dataset_valid & table_valid & column_valid ##### validates the filters the user can choose to set ##### def validateFilters(self): if self.filters != {}: filter_keys = [x for x in self.filters] for key in filter_keys: valid_filter = validate(key, self.validColumns(), "Filter Column") if valid_filter==False: return False return True # Check for number of missing/blank values in the column def __getNAscount(self,blank_types = {'',' ','-',None, np.nan}): ''' Find missing values present in selected column Parameters: blank_types (set): what constitutes missing values Returns: int: Returns the number of missing values present ''' ValCount = self.listColumnCounts() cnt_all = 0 for vc in ValCount: if vc['value'] in blank_types: cnt_all += vc['count'] return cnt_all class Table(): def __init__(self, environment, dataset_name, table_name, filters={}): self.table_name = table_name self.dataset_name = dataset_name self.env = environment self.filters = filters validated = self.validateData() if validated==False: print (colored("ERROR: The input data is not valid", "red")) self.table_info = self.getTableInfo() self.metadata = self.getTableMetadata() if self.filters != {}: validated_filters = validateFilters() if validated_filters==False: print (colored("ERROR: The input data is not valid", "red")) #### get specific information about the inside of the table ##### def getTableInfo(self): url = self.env.url + '/v1/columns/{}/{}'.format(self.dataset_name, self.table_name) response = requests.get(url, headers=self.env.header) return response.json() ##### get metadata about the table ##### def getTableMetadata(self): url = self.env.url + '/v1/tables/{}'.format(self.dataset_name) response = requests.get(url, headers=self.env.header) return response.json()[self.table_name] ##### set filters for loading table rows ##### def setFilters(self, filters): self.filters = filters self.validateFilters() ##### get functions to access the information in the table ##### def getColumnList(self): return list(self.table_info.keys()) def getColumnCount(self): return len(self.getColumnList()) ##### get functions to access the table metadata ##### def getUploadDate(self): epoch_time = float(self.metadata['load_time'])/1000 return datetime.fromtimestamp(epoch_time) def getUpdateDate(self): epoch_time = float(self.metadata['update_time'])/1000 return datetime.fromtimestamp(epoch_time) def getVisibility(self): return self.metadata["visibility"] def getTableCount(self): return self.metadata["num_tables"] def getColumnCount(self): return self.metadata["num_columns"] def getValueCount(self): return self.metadata["num_values"] def getPullTimestamp(self): epoch_time = float(self.metadata["timestamp"])/1000 return datetime.fromtimestamp(epoch_time) def getUserAccessList(self): url = self.env.url + "/rules_of_use" post_data = json.dumps({ "query":"{usersWithAttribute(value:\""+self.getVisibility()+"\"){username}}" }) response = requests.post(url, headers=self.env.header, data=post_data) if response.status_code == 401 or response.status_code == 403: print (colored("Unauthorized: You are not authorized to perform this request, \ please contact the Data Profiler team", "red")) return None try: usernames = [x["username"] for x in json.loads(response.text)["data"]["usersWithAttribute"]] return usernames except: print (colored("There was a {} error processing your \ request".format(response.status_code), "red")) return None ##### format data for post requests ##### ## If no sample size is given, then the limit is set to 0 which returns all rows def getPostData(self, sample_size=0): post_data = json.dumps({ "dataset": self.dataset_name, "table": self.table_name, "sort": "CNT_DESC", "filters": self.filters, "limit": sample_size }) return post_data ##### format data for post requests ##### ## If no sample size is given, then the limit is set to 0 which returns all rows def getRowsPostData(self, start_location=None, page_size = 5000): if page_size >= 10000: raise ValueError("Rows Page Size must be less than 10,000") post_data = { "dataset": self.dataset_name, "table": self.table_name, "filters": self.filters, "limit": page_size, "start_location": start_location, "pageSize": page_size } # Remove None values (likely start_location) return json.dumps({k: v for k, v in post_data.items() if v}) ##### load the rows from the table ##### def loadRows(self): if self.filters == {}: print("\nDownloading ALL ROWS: {}, {}...".format(self.dataset_name, self.table_name)) else: print("\nDownloading FILTERED TABLE: {} | {} \nFilter(s) \ applied: {}...".format(self.dataset_name, self.table_name, self.filters)) try: url = self.env.url + '/v2/rows' # Time post request start_time = datetime.now(timezone('US/Eastern')) # Tracking variables start_location = None results = [] # Run the rows endpoint through until we break while True: post_data = self.getRowsPostData(start_location) response = requests.post( url, headers=self.env.header, data=post_data).json() results.extend(response['rows']) # If endLocation is null/None, we have successfully gotten all the rows # This is also where you'd want to check against the limit (if len(results) > limit) if response['endLocation'] is None: break # Update the start location and loop again start_location = response['endLocation'] total_run_time = str(datetime.now( timezone('US/Eastern')) - start_time) requestResponsePrint(response, total_run_time, self.env.verbose) if len(results) == 0: if self.env.verbose: print(colored("Data request empty!", "red")) ## returns an empty dataframe with the column structure of the table itself df = pd.DataFrame(columns=self.getColumnList()) else: df = pd.DataFrame(results) return df except ValueError: # includes simplejson.decoder.JSONDecodeError print( colored("\nError - check response message or text to json parser.", "red")) return None ## loads a subset of the table rows ## it will default to 100 rows, but a user can specfiy a number of rows def loadTableSample(self, sample_size=100): print((colored("Note: This endpoint is experimental - expect longer load times \ for larger datasets", "cyan"))) if self.filters == {}: print("\nDownloading {} ROWS: {}, {}...".format(sample_size, self.dataset_name, self.table_name)) else: print("\nDownloading {} FILTERED ROWS: {} | {} \nFilter(s) \ applied: {} ...".format(sample_size, self.dataset_name, self.table_name, self.filters)) try: url = self.env.url + '/v1/rows' post_data = self.getPostData(sample_size) # Time post request start_time = datetime.now(timezone('US/Eastern')) response = requests.post( url, headers=self.env.header, data=post_data) total_run_time = str(datetime.now( timezone('US/Eastern')) - start_time) requestResponsePrint(response, total_run_time, self.env.verbose) # Convert to text to remove extra "$" character response.encoding = 'utf-8' text_data = response.text text_data = text_data[:-1] if len(text_data) < 2: if self.env.verbose: print(colored("Data request empty!", "red")) ## returns an empty dataframe with the column structure of the table itself df = pd.DataFrame(columns=self.getColumnList()) else: json_data = json.loads(text_data) df =
pd.DataFrame(json_data)
pandas.DataFrame
import io from typing import List import joblib import matplotlib import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.compose import make_column_selector from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder from xautoml.models import Candidate, Ensemble from xautoml.util.datasets import down_sample from xautoml.util.pipeline_utils import DataFrameImputer, InplaceOrdinalEncoder class EnsembleInspection: @staticmethod def member_predictions(candidates: List[Candidate], X: pd.DataFrame, n_jobs=1): def _model_predict(candidate: Candidate, X: pd.DataFrame) -> np.ndarray: return candidate.y_transformer(candidate.model.predict(X.copy())) all_predictions = joblib.Parallel(n_jobs=n_jobs)( joblib.delayed(_model_predict)(candidate=candidate, X=X) for candidate in candidates ) all_predictions = np.array(all_predictions) return all_predictions @staticmethod def ensemble_overview(ensemble: Ensemble, candidates: List[Candidate], X: pd.DataFrame, y_pred: pd.Series, n_jobs=1): all_predictions = EnsembleInspection.member_predictions(candidates, X, n_jobs) mask = np.min(all_predictions, axis=0) == np.max(all_predictions, axis=0) indices = np.where(~mask)[0] ensemble_consensus = (np.tile(y_pred, (all_predictions.shape[0], 1)) == all_predictions).sum() / ( all_predictions.shape[0] * all_predictions.shape[1]) metrics = {'Ensemble': {'consensus': float(ensemble_consensus), 'weight': float(np.sum(ensemble.weights))}} for i in range(all_predictions.shape[0]): metrics[candidates[i].id] = { 'consensus': float(np.sum(all_predictions[i, :] == y_pred) / len(mask)), 'weight': float(ensemble.weight_map[candidates[i].id]) } return metrics, indices @staticmethod def plot_decision_surface(ensemble: Ensemble, candidates: List[Candidate], X: pd.DataFrame, y: pd.Series): # Dimension reduction for plotting cat_columns = make_column_selector(dtype_exclude=np.number)(X) pipeline = Pipeline(steps=[ ('imputation', DataFrameImputer()), ('encoding', InplaceOrdinalEncoder(cat_columns, X.columns)), ('pca', PCA(n_components=2)) ]) X_2d = pipeline.fit_transform(X) label_encoder = LabelEncoder() label_encoder.fit(y) x_min, x_max = X_2d[:, 0].min(), X_2d[:, 0].max() y_min, y_max = X_2d[:, 1].min(), X_2d[:, 1].max() xx, yy = np.meshgrid(np.linspace(x_min, x_max, 50), np.linspace(y_min, y_max, 50)) grid_2d = np.c_[xx.ravel(), yy.ravel()] grid = pipeline.inverse_transform(grid_2d) models = [(ensemble.model, lambda y: y)] + [(c.model, c.y_transformer) for c in candidates] names = ['Ensemble'] + [c.id for c in candidates] contours = {} for (clf, y_trans), cid in zip(models, names): fig, ax = plt.subplots(1, 1, figsize=(10, 10), dpi=10) Z = y_trans(clf.predict(grid)) Z = label_encoder.transform(Z) Z = Z.reshape(xx.shape) norm = matplotlib.colors.Normalize(vmin=0.0, vmax=label_encoder.classes_.shape[0]) ax.contourf(Z, levels=2, alpha=0.75, norm=norm, cmap='viridis') ax.axis('off') ax.set_position([0, 0, 1, 1]) buf = io.BytesIO() plt.savefig(buf, format='svg') buf.seek(0) wrapper = io.TextIOWrapper(buf, encoding='utf-8') svg = ''.join(wrapper.readlines()[18:-1]).replace('\n', ' ') contours[cid] = svg plt.close(fig) X_2d, y = down_sample(
pd.DataFrame(X_2d, columns=['x', 'y'])
pandas.DataFrame
# -*-coding:utf-8 -*- # Kmeans 聚类算法 import pandas as pd from sklearn.cluster import KMeans #导入kmeans聚类算法 outfile = '../subset/classifision_data.xls' filename = '../subset/most_value_data.xls' #filename = '../subset/cleaned_data.xls' # 标准化前数据 data = pd.read_excel(filename) k = 5 # 聚类的类别数 iteration = 500 kmodel = KMeans(n_clusters=k,max_iter=iteration) kmodel.fit(data) # 训练模型 # 属性值标签 与元数据 组合 r3 = pd.Series(kmodel.labels_,index=range(len(data))) cluster_data = pd.concat([data,r3],axis=1) cluster_data.columns = list(data.columns)+[u'聚类类别'] cluster_data.to_excel(outfile) # 标准化以后的数据 与 聚类类别 组合 r1 = pd.Series(kmodel.labels_).value_counts() # value_counts() 统计各个类标记的数目 r2 = pd.DataFrame(kmodel.cluster_centers_) r =
pd.concat([r2,r1],axis=1)
pandas.concat
# -*- coding: utf-8 -*- import pandas as pd news =
pd.read_csv("list.csv")
pandas.read_csv
import nose import pandas from pandas.compat import u from pandas.util.testing import network from pandas.util.testing import assert_frame_equal from numpy.testing.decorators import slow from pandas.io.wb import search, download, get_countries import pandas.util.testing as tm class TestWB(tm.TestCase): @slow @network def test_wdi_search(self): raise nose.SkipTest expected = {u('id'): {2634: u('GDPPCKD'), 4649: u('NY.GDP.PCAP.KD'), 4651: u('NY.GDP.PCAP.KN'), 4653: u('NY.GDP.PCAP.PP.KD')}, u('name'): {2634: u('GDP per Capita, constant US$, ' 'millions'), 4649: u('GDP per capita (constant 2000 US$)'), 4651: u('GDP per capita (constant LCU)'), 4653: u('GDP per capita, PPP (constant 2005 ' 'international $)')}} result = search('gdp.*capita.*constant').ix[:, :2] expected = pandas.DataFrame(expected) expected.index = result.index assert_frame_equal(result, expected) @slow @network def test_wdi_download(self): raise nose.SkipTest expected = {'GDPPCKN': {(u('United States'), u('2003')): u('40800.0735367688'), (u('Canada'), u('2004')): u('37857.1261134552'), (u('United States'), u('2005')): u('42714.8594790102'), (u('Canada'), u('2003')): u('37081.4575704003'), (u('United States'), u('2004')): u('41826.1728310667'), (u('Mexico'), u('2003')): u('72720.0691255285'), (u('Mexico'), u('2004')): u('74751.6003347038'), (u('Mexico'), u('2005')): u('76200.2154469437'), (u('Canada'), u('2005')): u('38617.4563629611')}, 'GDPPCKD': {(u('United States'), u('2003')): u('40800.0735367688'), (u('Canada'), u('2004')): u('34397.055116118'), (u('United States'), u('2005')): u('42714.8594790102'), (u('Canada'), u('2003')): u('33692.2812368928'), (u('United States'), u('2004')): u('41826.1728310667'), (
u('Mexico')
pandas.compat.u
import io import time import json from datetime import datetime import pandas as pd from pathlib import Path import requests drop_cols = [ '3-day average of daily number of positive tests (may count people more than once)', 'daily total tests completed (may count people more than once)', '3-day average of new people who tested positive (counts first positive lab per person)', '3-day average of currently hospitalized', 'daily number of vaccine doses administered beyond the primary series ' ] def save_file(df, file_path, current_date): # save/update file if not Path(file_path).exists(): df.to_csv(file_path, index=False) else: # get prior file date prior = pd.read_csv(file_path, parse_dates=['date']) prior_date = pd.to_datetime(prior['date'].max()).date() if current_date > prior_date: df.to_csv(file_path, mode='a', header=False, index=False) return def scrape_sheet(sheet_id): # load previous raw_data and get prior date raw_general = './data/raw/ri-covid-19.csv' df = pd.read_csv(raw_general, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() # wait till 5:05 then check every 15 mins for update target = datetime.now().replace(hour=17).replace(minute=5) while datetime.now() < target: print(f"[status] waiting for 5pm", end='\r') time.sleep(60) # load data from RI - DOH spreadsheet gen_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}264100583' df = pd.read_csv(gen_url).dropna(axis=1, how='all') date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() if df.shape[0] != 27: print('[ERROR: summary page format changed]') while not prior_date < date: print(f"[status] waiting for update...{time.strftime('%H:%M')}", end='\r') time.sleep(5 * 60) df = pd.read_csv(gen_url) date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() else: print('[status] found new update pausing for 2 mins') time.sleep(2 * 60) ## transform general sheet df['date'] = date df.columns = ['metric', 'count', 'date'] save_file(df, raw_general, date) ## scrape geographic sheet geo_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}901548302' geo_df = pd.read_csv(geo_url) # get grographic date & fix cols geo_date = geo_df.iloc[-1][1] geo_date = pd.to_datetime(geo_date) geo_df['date'] = geo_date cols = [x for x in list(geo_df) if 'Rate' not in x] geo_df = geo_df[cols] geo_df = geo_df.dropna(axis=0) geo_df.columns = ['city_town', 'count', 'hostpialized', 'deaths', 'fully_vaccinated', 'date'] # save file raw_geo = './data/raw/geo-ri-covid-19.csv' save_file(geo_df, raw_geo, geo_date) ## scrape demographics sheet dem_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}31350783' dem_df = pd.read_csv(dem_url) # make sure no columns were added/removed if not dem_df.shape == (31, 9): print('[error] demographics format changed') return else: # get demographics updated date dem_date = dem_df.iloc[-1][1] dem_date = pd.to_datetime(dem_date).tz_localize('EST').date() # drop percentage columns & rename dem_df = dem_df.drop(dem_df.columns[[1, 2, 4, 6, 8]], axis=1) dem_df.columns = ['metric', 'case_count', 'hosptialized', 'deaths'] # get data sex = dem_df[1:4] age = dem_df[5:17] race = dem_df[18:24] dem_df = pd.concat([sex, age, race]) dem_df['date'] = dem_date raw_dem = './data/raw/demographics-covid-19.csv' save_file(dem_df, raw_dem, dem_date) def scrape_revised(sheet_id): # load previous revised_data and get prior date raw_revised = './data/raw/revised-data.csv' df =
pd.read_csv(raw_revised, parse_dates=['date'])
pandas.read_csv
import itertools import logging import numpy as np import tensorflow as tf import time import os import pandas as pd import subprocess def check_dir(cur_dir): if not os.path.exists(cur_dir): return False return True def copy_file(src_dir, tar_dir): cmd = 'cp %s %s' % (src_dir, tar_dir) subprocess.check_call(cmd, shell=True) def find_file(cur_dir, suffix='.ini'): for file in os.listdir(cur_dir): if file.endswith(suffix): return cur_dir + '/' + file logging.error('Cannot find %s file' % suffix) return None def init_dir(base_dir, pathes=['log', 'data', 'model']): if not os.path.exists(base_dir): os.mkdir(base_dir) dirs = {} for path in pathes: cur_dir = base_dir + '/%s/' % path if not os.path.exists(cur_dir): os.mkdir(cur_dir) dirs[path] = cur_dir return dirs def init_log(log_dir): logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s', level=logging.INFO, handlers=[ logging.FileHandler('%s/%d.log' % (log_dir, time.time())), logging.StreamHandler() ]) def init_test_flag(test_mode): if test_mode == 'no_test': return False, False if test_mode == 'in_train_test': return True, False if test_mode == 'after_train_test': return False, True if test_mode == 'all_test': return True, True return False, False def plot_train(data_dirs, labels): pass def plot_evaluation(data_dirs, labels): pass class Counter: def __init__(self, total_step, test_step, log_step,save_step): self.counter = itertools.count(1) self.cur_step = 0 self.cur_test_step = 0 self.total_step = total_step self.test_step = test_step self.log_step = log_step self.save_step = save_step self.stop = False def next(self): self.cur_step = next(self.counter) return self.cur_step def should_test(self): test = False if (self.cur_step - self.cur_test_step) >= self.test_step: test = True self.cur_test_step = self.cur_step return test def should_log(self): return (self.cur_step % self.log_step == 0) def should_stop(self): if self.cur_step >= self.total_step: return True return self.stop def should_save(self): return (self.cur_step%self.save_step==0) class Trainer(): def __init__(self, env, model, global_counter, summary_writer, run_test, output_path=None,save_path=None): self.cur_step = 0 self.global_counter = global_counter self.env = env self.agent = self.env.agent self.model = model self.sess = self.model.sess self.n_step = self.model.n_step self.summary_writer = summary_writer self.run_test = run_test assert self.env.T % self.n_step == 0 self.data = [] self.output_path = output_path self.save_path = save_path if run_test: self.test_num = self.env.test_num logging.info('Testing: total test num: %d' % self.test_num) self._init_summary() def _init_summary(self): self.train_reward = tf.placeholder(tf.float32, []) self.train_summary = tf.summary.scalar('train_reward', self.train_reward) self.test_reward = tf.placeholder(tf.float32, []) self.test_summary = tf.summary.scalar('test_reward', self.test_reward) def _add_summary(self, reward, global_step, is_train=True): if is_train: summ = self.sess.run(self.train_summary, {self.train_reward: reward}) else: summ = self.sess.run(self.test_summary, {self.test_reward: reward}) self.summary_writer.add_summary(summ, global_step=global_step) def explore(self, prev_ob,old_obs,last_out_values): obs = prev_ob rewards = [] for _ in range(self.n_step): actions, cur_values = self.model.forward(obs,old_obs,last_out_values, mode='explore') next_obs, cur_rewards, done = self.env.step(actions) global_step = self.global_counter.next() self.cur_step += 1 self.model.add_transition(obs,old_obs,last_out_values,cur_values,actions,cur_rewards,next_obs,done) if self.global_counter.should_log(): logging.info('''Training: global step %d, episode step %d, ob: %s, a: %s, r: %.2f, train r: %.2f, done: %r''' % (global_step, self.cur_step, str(obs), str(actions), np.sum(cur_rewards), np.mean(cur_rewards), done)) if self.global_counter.should_save(): self.model.save(self.save_path, self.global_counter.cur_step) rewards.append(np.sum(cur_rewards)) if done: break obs,old_obs,last_out_values = next_obs,obs,cur_values return obs,old_obs,last_out_values, done, rewards def perform(self, test_ind): ob = self.env.reset(test_ind=test_ind) old_ob = ob last_out_values = np.zeros([25,5]) rewards = [] i = 0 time_a = time.time() while True: if i%20 == 0 : time_b = time.time() print('steps:',i,'\t\t times:',time_b-time_a) time_a = time_b if self.agent == 'greedy': action = self.model.forward(ob) elif self.agent.endswith('a2c'): policy = self.model.forward(ob, False, 'p') if self.agent == 'ma2c': self.env.update_fingerprint(policy) if self.agent == 'a2c': action = np.argmax(np.array(policy)) else: action = [] for pi in policy: action.append(np.argmax(np.array(pi))) elif self.agent == 'iedqn': action, cur_values = self.model.forward(ob,old_ob,last_out_values) else: action, _ = self.model.forward() next_ob, reward, done = self.env.step(action) rewards.append(np.sum(reward)) i = i+1 if done: break old_ob,ob,last_out_values = ob,next_ob,cur_values mean_reward = np.mean(np.array(rewards)) std_reward = np.std(np.array(rewards)) return mean_reward, std_reward def run(self): cur_episode=0 while not self.global_counter.should_stop(): # test if self.run_test and self.global_counter.should_test(): rewards = [] global_step = self.global_counter.cur_step self.env.train_mode = False for test_ind in range(self.test_num): mean_reward, std_reward = self.perform(test_ind) self.env.terminate() rewards.append(mean_reward) log = {'agent': self.agent, 'step': global_step, 'test_id': test_ind, 'avg_reward': mean_reward, 'std_reward': std_reward} self.data.append(log) avg_reward = np.mean(np.array(rewards)) self._add_summary(avg_reward, global_step, is_train=False) logging.info('Testing: global step %d, avg R: %.2f' % (global_step, avg_reward)) # train self.env.train_mode = True obs = self.env.reset() cur_time = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) print('current time:\t',cur_time,'\tcurrent episode\t',cur_episode) old_obs = obs last_out_values = np.zeros([25,5]) done = False self.cur_step = 0 rewards = [] global_step = self.global_counter.cur_step while True: obs, old_obs, last_out_values,done, n_step_rewards = self.explore(obs,old_obs,last_out_values) rewards += n_step_rewards global_step = self.global_counter.cur_step self.model.backward(self.summary_writer, global_step) if done: self.env.terminate() cur_episode +=1 break rewards = np.array(rewards) mean_reward = np.mean(rewards) std_reward = np.std(rewards) log = {'agent': self.agent, 'step': global_step, 'test_id': -1, 'avg_reward': mean_reward, 'std_reward': std_reward} self.data.append(log) self._add_summary(mean_reward, global_step) self.summary_writer.flush() df =
pd.DataFrame(self.data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import os import shutil import openpyxl import rpy2.robjects as ro from rpy2.robjects import r from rpy2.robjects.packages import importr ro.r['options'](warn=-1) r('as.POSIXct("2015-01-01 00:00:01")+0 ') base = importr('base') cars = importr('car') mvtnorm = importr('mvtnorm') broom = importr('broom') psych = importr('psych') mhtmult = importr('MHTmult') def get_rfo_os_num_rows(root, modality): os.chdir(root) rfo = pd.read_csv(str(modality) + '_reformatted_output.csv') ones = pd.read_csv('ONE_SAMPLE.csv') [num_rows, _] = ones.shape return [rfo, ones, num_rows] def run_stats(ones, rfo, row): group = ones.iloc[row]["GROUP"] seed = ones.iloc[row]["SEED"] rois = ones.iloc[row]["ROIS"] r.assign('rGROUP', group) r.assign('rSEED', seed) r.assign('rROIS', rois) rfo_gs = rfo.loc[rfo['Group'] == group].reset_index(drop=True) rfo_gs_rs = pd.concat([rfo_gs[["Group", "Seed", "Subject_ID"]], rfo_gs[rois]], axis=1) rfo_gs_rs_ss = rfo_gs_rs.loc[rfo_gs_rs['Seed'] == seed].reset_index(drop=True) osd = pd.DataFrame(rfo_gs_rs_ss[rois]) osd.to_csv('osd.csv', index=False) ro.globalenv['osd'] = "osd.csv" r('osd<-read.csv(osd)') r('ttest <- t.test(osd, mu = 0)') roisdf = pd.DataFrame([rois]) roisdf.columns = ["ROI"] seeddf = pd.DataFrame([seed]) seeddf.columns = ["Seed"] groupdf = pd.DataFrame([group]) groupdf.columns = ["Group"] name =
pd.concat([groupdf, seeddf, roisdf], axis=1)
pandas.concat
import logging import os import re import pandas as pd import numpy as np from pandas import DataFrame from tqdm import tqdm from joblib import dump, load from nltk.tokenize import word_tokenize from nltk import pos_tag from ..MyMertrics import * from pprint import pformat from util.file_manager import remake_dir def feature_filter(features_list): res = [] for feature in features_list: if len(feature) < 2: res.append(feature) return res def merge_similar_feature(data, features): column = data[features].sum(axis=1) df = pd.DataFrame(data=column, columns=[features[0]]) data = data.drop(columns=features) data.insert(2, features[0], df) return data def merge(f_path): """ :param f_path: file path :return: results path """ if not os.path.exists("myData"): remake_dir("myData") logging.info("[*] Merging %s " % f_path) data = pd.read_csv(f_path) # features = feature_filter(data.columns[2:-1]) # data = data.drop(columns=features) data_features = data.columns[2:-1] features = [[], [], [], []] for feature in data_features: if 'aha' in feature: features[0].append(feature) if 'lmao' in feature: features[1].append(feature) if 'lmf' in feature or "fao" in feature: features[2].append(feature) if 'jus' in feature: features[3].append(feature) features.append(["huh", "hun"]) features.append(["taco", "tacos"]) features.append(["icheated", "icheatedbecause"]) features.append(["lt", "ltlt", "ltreply"]) features.append(["mad", "madd"]) features.append(["b", "be"]) features.append(["n", "and"]) features.append(["u", "you"]) features.append(["flex", "flexin"]) features.append(["dam", "damn", 'da']) features.append(["kno", "know", 'knw']) features.append(["dat", "dats"]) features.append(["gon", "gone"]) features.append(["iono", "ion"]) features.append(["factaboutme", "factsaboutme"]) features.append(["bt", "btwn"]) features.append(["loll", "lolss", "lolsz"]) features.append(["cali", "california"]) for f in features: data = merge_similar_feature(data, f) data['class'] = data['class'].map(MAP) _columns = data.columns users = set(data['user-id']) new_df =
DataFrame(columns=data.columns[2:])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Dec 20 16:11:49 2019 @author: Nate """ import pandas as pd import numpy as np from difflib import SequenceMatcher from tqdm import tqdm from langdetect import detect import swifter from sklearn.utils import shuffle # read in data and drop duplicate content R = pd.read_csv('R.csv', index_col='Unnamed: 0').drop_duplicates(subset='content') RC = pd.read_csv('RC.csv', index_col='Unnamed: 0').drop_duplicates(subset='content') C = pd.read_csv('C.csv', index_col='Unnamed: 0').drop_duplicates(subset='content') LC = pd.read_csv('LC.csv', index_col='Unnamed: 0').drop_duplicates(subset='content') L = pd.read_csv('L.csv', index_col='Unnamed: 0').drop_duplicates(subset='content') # exception safe function for language detection def try_me(text): try: return detect(text) except: print(text) return 'xx' # remove non english articles pbar = tqdm(total=5) R = R[R['content'].swifter.allow_dask_on_strings().apply(try_me) == 'en'] pbar.update(1) RC = RC[RC['content'].swifter.allow_dask_on_strings().apply(try_me) == 'en'] pbar.update(1) C = C[C['content'].swifter.allow_dask_on_strings().apply(try_me) == 'en'] pbar.update(1) LC = LC[LC['content'].swifter.allow_dask_on_strings().apply(try_me) == 'en'] pbar.update(1) L = L[L['content'].swifter.allow_dask_on_strings().apply(try_me) == 'en'] pbar.update(1) pbar.close() """ # character length 'len' and word length 'count' analysis R['len'] = R['content'].apply(len) RC['len'] = RC['content'].apply(len) C['len'] = C['content'].apply(len) LC['len'] = LC['content'].apply(len) L['len'] = L['content'].apply(len) R['count'] = R['content'].apply(lambda x: len(x.split(' '))) RC['count'] = RC['content'].apply(lambda x: len(x.split(' '))) C['count'] = C['content'].apply(lambda x: len(x.split(' '))) L['count'] = L['content'].apply(lambda x: len(x.split(' '))) LC['count'] = LC['content'].apply(lambda x: len(x.split(' '))) """ # shuffle L = shuffle(L) LC = shuffle(LC) C = shuffle(C) RC = shuffle(RC) R = shuffle(R) # add labels L['label'] = 'L' LC['label'] = 'LC' C['label'] = 'C' RC['label'] = 'RC' R['label'] = 'R' # under sampling low = min(map(len, [R, RC, C, LC, L])) R = R[:low] RC = RC[:low] C = C[:low] LC = LC[:low] L = L[:low] size = 344 # train and test datasets train =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ @file @brief Various function to download data about population """ import gzip import os import numpy import pandas from pyquickhelper.loghelper import noLOG from pyensae.datasource import download_data from .data_exceptions import DataFormatException def population_france_year(url="https://www.insee.fr/fr/statistiques/fichier/1892086/pop-totale-france.xls", sheet_name=0, year=2020): """ Downloads the data for the French population from INSEE website @param url url @param sheet_name sheet index @param year last year to find @return DataFrame The sheet index is 0 for the all France, 1 for metropolitean France. The last row aggregates multiple ages ``1914 ou avant``, they will remain aggregated but the label will be changed to 1914. ``100 ou plus`` is replaced by 100. By default, the data is coming from `INSEE, Bilan Démographique <https://www.insee.fr/fr/statistiques/1892086?sommaire=1912926>`_. **2017/01**: pandas does not seem to be able to read the format (old format). You should convert the file in txt with Excel. """ try: df = pandas.read_excel(url, sheet_name=sheet_name) skiprows = 5 except Exception as e: # pragma: no cover # we try to find a local version this = os.path.dirname(__file__) name = os.path.join(this, "data_population", url.split( "/")[-1].replace(".xls", ".xlsx")) if not os.path.exists(name): raise FileNotFoundError( "Unable to find a replacement for '{0}' as '{1}'".format(url, name)) from e df = pandas.read_excel(name, sheet_name=sheet_name) url = name skiprows = 0 col = df.columns[0] if len(col) == 0: raise DataFormatException( # pragma: no cover "Unable to find {0} (year) in table at url '{1}'".format(year, url)) if skiprows > 0 and str(year) not in col: raise DataFormatException( # pragma: no cover "Unable to find {0} (year) in first column name '{1}' at url " "'{2}'".format(year, col, url)) table = pandas.read_excel(url, sheet_name=sheet_name, skiprows=skiprows) table.columns = ["naissance", "age", "hommes", "femmes", "ensemble"] table = table[(table.naissance != 'Champ : France y c. Mayotte.') & table.naissance.apply(lambda s: "Source" not in str(s))].copy() table["naissance"] = table.apply(lambda r: r["naissance"] if isinstance(r["naissance"], (int, float)) else r["naissance"].replace(" ou avant", ""), axis=1) table["age"] = table.apply(lambda r: r["age"] if isinstance(r["age"], (int, float)) else r["age"].replace(" ou plus", "") if isinstance( r["age"], str) else r["age"], axis=1) table = table.dropna(axis=0) for c in table.columns: table[c] = table[c].astype(int) return table def table_mortalite_france_00_02(homme=None, femme=None): """ Download mortality table for France assuming they are available in Excel format. @param homme table for men @param femme table for women @return DataFrame The final DataFrame merges both sheets. The data is coming from `Institut des Actuaires: Reférences de mortalité <http://www.institutdesactuaires.com/gene/main.php?base=2127>`_ or `Références techniques <http://www.ressources-actuarielles.net/EXT/ISFA/fp-isfa.nsf/ 34a14c286dfb0903c1256ffd00502d73/d62719e329025b94c12577c100545bb7?OpenDocument>`_. """ this = os.path.join(os.path.abspath( os.path.dirname(__file__)), "data_population") if homme is None: homme = os.path.join(this, "TH00-02_D.xls") sheeth = "Table" else: sheeth = 0 if femme is None: femme = os.path.join(this, "TF00-02_D.xls") sheetf = "Table" else: sheetf = 0 isexch = os.path.splitext(homme)[-1] in (".xls", ".xlsx") dfh = pandas.read_excel( homme, sheet_name=sheeth) if isexch else pandas.read_csv(homme, sep=";") if dfh.shape[1] > 2: dfh = dfh[dfh.columns[:2]] isexcf = os.path.splitext(femme)[-1] in (".xls", ".xlsx") dff = pandas.read_excel( femme, sheet_name=sheetf) if isexcf else pandas.read_csv(femme, sep=";") if dff.shape[1] > 2: dff = dff[dff.columns[:2]] df = dfh.merge(dff, on="Age") df.columns = ["Age", "Homme", "Femme"] return df.dropna().reset_index(drop=True) def fecondite_france(url=None): """ download fecondity table for France (Excel format) @param url source (url or file) @return DataFrame By default, the data is coming from a local file which is a copy of `INSEE: Fécondité selon l'âge détaillé de la mère <https://www.insee.fr/fr/statistiques/2045366?sommaire=2045470&q=fecondite>`_. The original file cannot be read by pandas so we convert it first. See also `INSEE Bilan Démographique 2016 <https://www.insee.fr/fr/statistiques/1892259?sommaire=1912926>`_. """ if url is None: this = os.path.abspath(os.path.dirname(__file__)) url = os.path.join(this, "data_population", "irsocsd2014_G10.xlsx") df =
pandas.read_excel(url)
pandas.read_excel
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191:
pd.Timestamp("2012-11-09 00:00:00")
pandas.Timestamp
from tqdm import tqdm import pandas as pd def balanced_sampling(df, num_instances=500): L = [] counter = 1 categories = df['category'].unique() for category in tqdm(categories): sample = df[df.category==category] try: sample_reliable = sample[sample.label_quality=='reliable'].sample(num_instances,replace=True) L.append(sample_reliable) except: x=1 sample_unreliable = sample[sample.label_quality=='unreliable'].sample(num_instances,replace=True) L.append(sample_unreliable) counter+=1 return
pd.concat(L)
pandas.concat
""" This module merges temperature, humidity, and influenza data together """ import pandas as pd import ast __author__ = '<NAME>' __license__ = 'MIT' __status__ = 'release' __url__ = 'https://github.com/caominhduy/TH-Flu-Modulation' __version__ = '1.0.0' def merge_flu(path='data/epidemiology/processed_CDC_2008_2021.csv'): df = pd.read_csv(path, low_memory=False) df['week'] = df['week'].astype('int') df['year'] = df['year'].astype('int') cols = ['state', 'week', 'year', 'level'] df = df.reindex(columns=cols) return df def merge_weather(): with open('data/geodata/state_abbr.txt', 'r') as f: contents = f.read() state_abbr_dict = ast.literal_eval(contents) states = list(state_abbr_dict.values()) df_temp = pd.DataFrame(columns=['week', 'temp', 'state', 'year']) df_humid = pd.DataFrame(columns=['week', 'humid', 'state', 'year']) for year in list(range(2008, 2020)): y = str(year) df = pd.read_csv('data/weather/' + y + '-temp.csv') temps = df[states[0]] weeks = df['week'] snames = pd.Series(states) snames = snames.repeat(len(weeks)).reset_index(drop=True) for s in states[1:]: temps = temps.append(df[s]).reset_index(drop=True) weeks = weeks.append(df['week']).reset_index(drop=True) frames = {'week': weeks, 'temp': temps, 'state': snames} df2 = pd.DataFrame(frames) df2['year'] = y df_temp = df_temp.append(df2) for year in list(range(2008, 2020)): y = str(year) df = pd.read_csv('data/weather/' + y + '-humid.csv') humids = df[states[0]] weeks = df['week'] snames =
pd.Series(states)
pandas.Series
import logging import os import ast import pandas as pd from pandas.io.json import json_normalize import sys as sys import json import numpy as np def main(argv=None): """ Utilize Pandas library to read in both UNSD M49 country and area .csv file (tab delimited) as well as the UNESCO heritage site .csv file (tab delimited). Extract regions, sub-regions, intermediate regions, country and areas, and other column data. Filter out duplicate values and NaN values and sort the series in alphabetical order. Write out each series to a .csv file for inspection. """ if argv is None: argv = sys.argv msg = [ 'Source file read {0}', 'UNSD M49 regions written to file {0}', 'UNSD M49 sub-regions written to file {0}', 'UNSD M49 intermediate regions written to file {0}', 'UNSD M49 countries and areas written to file {0}', 'UNSD M49 development status written to file {0}', 'UNESCO heritage site countries/areas written to file {0}', 'UNESCO heritage site categories written to file {0}', 'UNESCO heritage site regions written to file {0}', 'UNESCO heritage site transboundary values written to file {0}' ] # Creating small sample of data: business_json = './input/json/yelp_academic_dataset_business.json' business_df = pd.read_json(business_json, lines=True, encoding='utf8') ## Creating full clean business csv attributes_df = business_df[['business_id','attributes']] attire = [] noise = [] for val in attributes_df['attributes']: try: attire.append(val['RestaurantsAttire']) except: attire.append("") try: noise.append(val['NoiseLevel']) except: noise.append("") attributes_df['Attire'] = pd.Series(attire) attributes_df['Noise'] =
pd.Series(noise)
pandas.Series
import pandas as pd from sodapy import Socrata import datetime import definitions # global variables for main data: hhs_data, test_data, nyt_data_us, nyt_data_state, max_hosp_date = [],[],[],[],[] """ get_data() Fetches data from API, filters, cleans, and combines with provisional. After running, global variables are filled for use in subsequent functions """ def get_data(): global nyt_data_us global nyt_data_state global test_data global hhs_data global max_hosp_date nyt_data_us = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us.csv") nyt_data_state = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us-states.csv") client = Socrata("healthdata.gov", None) results = client.get("g62h-syeh", limit=2000000) test_results = client.get("j8mb-icvb", limit=2000000) print("LOG: Fetched all raw data") # Filter data to get columns of interest hhs_data = pd.DataFrame.from_records(results)[['state', 'date', 'inpatient_beds_used_covid']] hhs_data.inpatient_beds_used_covid = hhs_data.inpatient_beds_used_covid.fillna(0) hhs_data = hhs_data.astype({'inpatient_beds_used_covid': 'int32'}) test_data = pd.DataFrame.from_records(test_results)[['state', 'date', 'overall_outcome', 'new_results_reported']] test_data.new_results_reported = test_data.new_results_reported.fillna(0) test_data = test_data.astype({'new_results_reported': 'int32'}) print("LOG: Filtered Data") # For provisional data, gets days since most recent update of HHS time series max_date = hhs_data.date.max() max_hosp_date = max_date provisional = client.get("4cnb-m4rz", limit=2000000, where=f"update_date > '{max_date}'") hhs_provisional = pd.DataFrame.from_records(provisional)[['update_date', 'archive_link']] hhs_provisional.update_date = hhs_provisional.update_date.apply(lambda x: x[:10]) hhs_provisional.update_date =
pd.to_datetime(hhs_provisional.update_date)
pandas.to_datetime