prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import time import pandas as pd import numpy as np CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } months = ['january', 'february', 'march', 'april', 'may', 'june','all'] days_of_week = ['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','All'] def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # user input for city (chicago, new york city, washington). citylist = list(CITY_DATA.keys()) print("would you like to see data for",citylist) while True: city = input().lower() if city not in CITY_DATA: print("please try again") continue else: break # user input for month (all, january, february, ... , june) print("which month?",months) while True: month = input().lower() if month not in months: print("please try again") continue else: break # user input for day of week (all, monday, tuesday, ... sunday) print("which day?",days_of_week) while True: day = input().title() if day not in days_of_week: print("please try again") continue else: break print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - Pandas DataFrame containing city data filtered by month and day """ df = pd.read_csv(CITY_DATA[city]) # convert the Start Time column to datetime df['Start Time'] = pd.to_datetime(df['Start Time']) # extract month and day of week from Start Time to create new columns df['month'] = df['Start Time'].dt.month df['day_of_week'] = df['Start Time'].dt.weekday_name # filter by month if applicable if month != 'all': # use the index of the months list to get the corresponding int month = months.index(month) + 1 # filter by month to create the new dataframe df = df[df['month'] == month] # filter by day of week if applicable if day != 'All': # filter by day of week to create the new dataframe df = df[df['day_of_week'] == day.title()] return df def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # the most common month popular_month = df['month'].mode()[0] # the most common day of week popular_day = df['day_of_week'].mode()[0] # the most common start hour # convert the Start Time column to datetime df['Start Time'] =
pd.to_datetime(df['Start Time'])
pandas.to_datetime
## Basics import os import sys import random import numpy as np import pandas as pd import scipy.stats as stats import matplotlib.pyplot as plt ## To save a trained ML Models import pickle from sklearn.cluster import KMeans ## To calculate possible combinations of a histograms from scipy.special import comb ## To round a vector without changing its sum import iteround ## Our Library #sys.path.append("../") from bandipy import environment from bandipy import experiment from bandipy import prior from bandipy import policy from bandipy import plotter from bandipy import datasets ## To reduce categorical product features into a unique id. from category_encoders.hashing import HashingEncoder ## To encode pairs of integers as single integer values using the Cantor pairing algorithm import pairing as pf ## For synthetic data generation import keras from keras.models import Sequential from keras.layers import Dense import tensorflow as tf from keras import backend as K ## Class instances plotter = plotter.Plotter() mldata = datasets.MultiLabelDatasets() criteodata = datasets.CriteoDatasets() ## To show where exactly a warning has happend # import warnings # warnings.filterwarnings('error') ## For the sake of reproducibility random.seed(0) np.random.seed(0) # tf.set_random_seed(0) # session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) tf.random.set_seed(0) os.environ['PYTHONHASHSEED']=str(0) class Simulation(): def __init__(self, data_type, bandit_algorithm, privacy_model, sim_sig): self.data_type = data_type self.bandit_algorithm = bandit_algorithm self.privacy_model = privacy_model self.sim_sig = sim_sig def run_a_simulation(self, users, n_samples, n_actions, context_size, contexts, responses, rec_policy, alpha, given_agent, cb_sampling_rate, cb_neg_rew_sam_rate): print("\n___________________________________________________\n") history = dict() shared_data = dict() for u in users: if u%500 == 0: print((int)(((u-users[0])/len(users))*100), end=" - ") if u%5000 == 0: print("*") env = environment.ContextualBanditEnv(context_s=contexts[u], context_ns=None, rewards=responses[u], #rnd_seed=np.random.randint(len(users)), rand_gen=np.random) if rec_policy == "LinUCB": agent = policy.LinUCB(n_actions, context_size) elif rec_policy == "given": agent = given_agent exp = experiment.ExperimentWithSampling(env, agent) exp.run_bandit(n_samples, alpha, cb_sampling_rate, cb_neg_rew_sam_rate) history[u] = np.array(exp.con_act_rew_hist) shared_data[u] = exp.shared_data return history, shared_data def update_on_data(self, shared_contexts, shared_actions, shared_responses, n_actions, context_size, rec_policy): contexts = np.zeros((1, context_size)) responses = np.zeros((1, n_actions)) env = environment.ContextualBanditEnv(context_s = contexts, context_ns = None, rewards = responses, rand_gen = np.random) if rec_policy == "LinUCB": agent = policy.LinUCB(n_actions, context_size) exp = experiment.ExperimentWithSampling(env, agent) exp.run_bandit_on_data(shared_contexts, shared_actions, shared_responses) shared_model= agent.get_model() return shared_model def prepare_shared_data(self, shared_data, context_size, n_actions): shared_contexts = np.zeros((0, context_size)) shared_actions = np.zeros(0) shared_responses = np.zeros(0) for d in shared_data: tmp = np.array(shared_data[d]) if len(tmp)!=0: s, e = 0, context_size shared_contexts = np.append(shared_contexts, tmp[:, s:e], axis=0) shared_actions = np.append(shared_actions, tmp[:, -2], axis=0) shared_responses = np.append(shared_responses, tmp[:, -1], axis=0) return shared_contexts, shared_actions ,shared_responses def thresholding(self, shared_data, priv_sc_threshold, bin_size, n_actions): freqs_contexts = np.zeros(2**bin_size) th_shared_data = {k: v for k, v in shared_data.items() if len(v)!=0} for u in th_shared_data: for d in th_shared_data[u]: freqs_contexts[int(d[0])] +=1 n_removed = 0 for u in th_shared_data: for i, d in enumerate(th_shared_data[u]): if freqs_contexts[int(d[0])] < priv_sc_threshold: th_shared_data[u].pop(i) n_removed+=1 print("Number of Removed on Shuffler: ", n_removed) return th_shared_data def normalize_and_bound(self, data, dec_digits=1): data = data.copy() for i in range(len(data)): nd = None if data[i].sum() != 0: nd = data[i]/data[i].sum() else: nd = np.array([1/len(data[i])]*len(data[i])) data[i] = iteround.saferound(nd, dec_digits) return data """ data_type: - 'syn' for synthetic data, - 'mlc' for multi-labe classification data, - 'ads' for ad recommendations data. """ def run_simulation(self, n_users, early_frac, n_samples, n_actions, context_size, with_data=False, **kwargs): if with_data == False: if self.data_type == 'syn': ctr_scaling_factor = kwargs['ctr_scaling_factor'] resp_noise_level = kwargs['resp_noise_level'] mapping_function = kwargs['mapping_function'] data_builder = datasets.Synthetic(mapping_function) contexts , responses = data_builder.generate_data(n_users, n_samples, n_actions, context_size, ctr_scaling_factor, resp_noise_level) elif self.data_type == 'mlc': if kwargs['mlc_dataset'] == "mediamill": if n_samples*n_users > 43000: print("This dataset does not include that much data. Pelase choose 'n_samples'*'n_users' < 43000") return None if n_actions > 40 or context_size > 40: print("Please choose 'n_actions' and 'context_size' <= 40! (Or contribute by modifying the code :))") return None contexts_mm1, contexts_mm2, responses = mldata.splitted_mediamill(N=n_users, red_K= n_actions, shuffle=False, verbose=False, focus="context") contexts = list() for u in range(len(contexts_mm1)): if context_size > 10: contexts.append(np.concatenate((contexts_mm1[u], contexts_mm2[u][:,:context_size-10]), axis=1)) else: contexts.append(np.array(contexts_mm1[u][:,:context_size])) for i in range(len(contexts)): contexts[i] = self.normalize_and_bound(contexts[i]) elif kwargs['mlc_dataset'] == "tmc": if n_samples*n_users > 28000: print("This dataset does not include that much data. Pelase choose 'n_samples'*'n_users' < 28000") return None if n_actions > 22: print("Please choose 'n_actions' <= 22 (The dataset does not support more than this)") return None contexts, _, responses = mldata.splitted_tmc(N=n_users, Km= context_size, Ksm=1, shuffle=False, verbose=False, focus="context") if n_actions < 22: for u in range(len(responses)): responses[u] = responses[u][:,:n_actions] for i in range(len(contexts)): contexts[i] = self.normalize_and_bound(contexts[i]) elif self.data_type == 'ads': if kwargs['ads_dataset'] == "criteo_kaggle": if context_size != 10: print("For this dataset you can only have 'context_size'==10.") return None cr_f_name = kwargs['ads_f_name'] if kwargs['ads_build'] == True: prc = n_actions data_file =
pd.read_csv("Criteo/"+cr_f_name+".csv")
pandas.read_csv
#! /usr/bin/python3 import sys import argparse from os import listdir import string import pandas as pd from xml.dom.minidom import parse class Scratcher(): def __init__(self): args = self.parse_arguments() self.datadir = args["datadir"] self.outfile_name = args["outfile"] self.f = open(self.outfile_name, "w+") print("Starting the process of directory " + self.datadir + " saved in " + self.outfile_name) def parse_arguments(self): # construct the argument parser parser = argparse.ArgumentParser() parser.add_argument('-datadir', '--datadir', type=str, default="data/train/", help='Directory with XML files to process') parser.add_argument('-outfile', '--outfile', type=str, default="info.out", help='Name for the output file') args = vars(parser.parse_args()) return args def createMap(self, token, type): return {'name': token[0], 'offset': str(token[1])+"-" +str(token[2]), 'type': type} def scratchInfo(self): self.info = [] # process each file in directory for f in listdir(self.datadir): # parse XML file , obtaining a DOM tree tree = parse(self.datadir + "/" + f) # process each sentence in the file sentences = tree.getElementsByTagName("sentence") for s in sentences: info = s.getElementsByTagName("entity") for i in info: sid = i.attributes["id"].value # get sentence id stext = i.attributes["text"].value # get sentence text itype = i.attributes["type"].value self.info.append( {'name': stext, 'type': itype}) # print sentence entities in format requested for evaluation print(sid + "|" + stext + "|" + itype, file = self.f) self.f.close() # create statistics self.searchSuffixes() def searchSuffixes(self): self.suffixes = {} for info in self.info: if info["type"] not in self.suffixes: self.suffixes[info["type"]] = {} if info["name"][-3:] not in self.suffixes[info["type"]]: self.suffixes[info["type"]][info["name"][-3:]] = 0 self.suffixes[info["type"]][info["name"][-3:]] +=1 a =
pd.DataFrame.from_dict(self.suffixes)
pandas.DataFrame.from_dict
from datetime import datetime import numpy as np from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.index import DatetimeIndex, Int64Index from pandas.tseries.tools import parse_time_string import pandas.tseries.frequencies as _freq_mod import pandas.core.common as com import pandas.core.datetools as datetools from pandas._tseries import Timestamp import pandas._tseries as lib #--------------- # Period logic def to_period(arg, freq=None): """ Attempts to convert arg to timestamp """ if arg is None: return arg if type(arg) == float: raise TypeError("Cannot convert a float to period") return Period(arg, freq=freq) class Period(object): def __init__(self, value=None, freq=None, year=None, month=1, quarter=None, day=1, hour=0, minute=0, second=0): """ Represents an period of time Parameters ---------- value : Period or basestring, default None The time period represented (e.g., '4Q2005') freq : str, default None e.g., 'B' for businessday, ('T', 5) or '5T' for 5 minutes year : int, default None month : int, default 1 quarter : int, default None day : int, default 1 hour : int, default 0 minute : int, default 0 second : int, default 0 """ # freq points to a tuple (base, mult); base is one of the defined # periods such as A, Q, etc. Every five minutes would be, e.g., # ('T', 5) but may be passed in as a string like '5T' self.freq = None # ordinal is the period offset from the gregorian proleptic epoch self.ordinal = None if value is None: if freq is None: raise ValueError("If value is None, freq cannot be None") if year is None: raise ValueError("If value is None, year cannot be None") if quarter is not None: month = (quarter - 1) * 3 + 1 base, mult = _gfc(freq) self.ordinal = lib.period_ordinal(year, month, day, hour, minute, second, base, mult) elif isinstance(value, Period): other = value if freq is None or _gfc(freq) == _gfc(other.freq): self.ordinal = other.ordinal freq = other.freq else: converted = other.asfreq(freq) self.ordinal = converted.ordinal elif isinstance(value, basestring): value = value.upper() dt, parsed, reso = parse_time_string(value) if freq is None: if reso == 'year': freq = 'A' elif reso == 'quarter': freq = 'Q' elif reso == 'month': freq = 'M' elif reso == 'day': freq = 'D' elif reso == 'hour': freq = 'H' elif reso == 'minute': freq = 'T' elif reso == 'second': freq = 'S' else: raise ValueError("Could not infer frequency for period") elif isinstance(value, datetime): dt = value if freq is None: raise ValueError('Must supply freq for datetime value') elif isinstance(value, (int, long)): if value <= 0: raise ValueError("Value must be positive") self.ordinal = value if freq is None: raise ValueError('Must supply freq for ordinal value') else: msg = "Value must be Period, string, integer, or datetime" raise ValueError(msg) base, mult = _gfc(freq) if self.ordinal is None: self.ordinal = lib.period_ordinal(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, base, mult) self.freq = _freq_mod._get_freq_str(base, mult) def __eq__(self, other): if isinstance(other, Period): return (self.ordinal == other.ordinal and _gfc(self.freq) == _gfc(other.freq)) return False def __add__(self, other): if isinstance(other, (int, long)): return Period(self.ordinal + other, self.freq) raise ValueError("Cannot add with non-integer value") def __sub__(self, other): if isinstance(other, (int, long)): return Period(self.ordinal - other, self.freq) if isinstance(other, Period): if other.freq != self.freq: raise ValueError("Cannot do arithmetic with " "non-conforming periods") return self.ordinal - other.ordinal raise ValueError("Cannot sub with non-integer value") def asfreq(self, freq=None, how='E'): """ Parameters ---------- freq : how : Returns ------- resampled : Period """ how = _validate_end_alias(how) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) new_ordinal = lib.period_asfreq(self.ordinal, base1, mult1, base2, mult2, how) return Period(new_ordinal, (base2, mult2)) def start_time(self): return self.to_timestamp(which_end='S') def end_time(self): return self.to_timestamp(which_end='E') def to_timestamp(self, which_end='S'): """ Return the Timestamp at the start/end of the period Parameters ---------- which_end: str, default 'S' (start) 'S', 'E'. Can be aliased as case insensitive 'Start', 'Finish', 'Begin', 'End' Returns ------- Timestamp """ which_end = _validate_end_alias(which_end) new_val = self.asfreq('S', which_end) base, mult = _gfc(new_val.freq) return Timestamp(lib.period_ordinal_to_dt64(new_val.ordinal, base, mult)) @property def year(self): base, mult = _gfc(self.freq) return lib.get_period_year(self.ordinal, base, mult) @property def month(self): base, mult = _gfc(self.freq) return lib.get_period_month(self.ordinal, base, mult) @property def qyear(self): base, mult = _gfc(self.freq) return lib.get_period_qyear(self.ordinal, base, mult) @property def quarter(self): base, mult = _gfc(self.freq) return lib.get_period_quarter(self.ordinal, base, mult) @property def day(self): base, mult = _gfc(self.freq) return lib.get_period_day(self.ordinal, base, mult) @property def week(self): base, mult = _gfc(self.freq) return lib.get_period_week(self.ordinal, base, mult) @property def weekday(self): base, mult = _gfc(self.freq) return lib.get_period_weekday(self.ordinal, base, mult) @property def day_of_week(self): base, mult = _gfc(self.freq) return lib.get_period_dow(self.ordinal, base, mult) @property def day_of_year(self): base, mult = _gfc(self.freq) return lib.get_period_doy(self.ordinal, base, mult) @property def hour(self): base, mult = _gfc(self.freq) return lib.get_period_hour(self.ordinal, base, mult) @property def minute(self): base, mult = _gfc(self.freq) return lib.get_period_minute(self.ordinal, base, mult) @property def second(self): base, mult = _gfc(self.freq) return lib.get_period_second(self.ordinal, base, mult) @classmethod def now(cls, freq=None): return Period(datetime.now(), freq=freq) def __repr__(self): base, mult = _gfc(self.freq) formatted = lib.period_ordinal_to_string(self.ordinal, base, mult) freqstr = _freq_mod._reverse_period_code_map[base] if mult == 1: return "Period('%s', '%s')" % (formatted, freqstr) return ("Period('%s', '%d%s')" % (formatted, mult, freqstr)) def __str__(self): base, mult = _gfc(self.freq) formatted = lib.period_ordinal_to_string(self.ordinal, base, mult) return ("%s" % formatted) def strftime(self, fmt): """ Returns the string representation of the :class:`Period`, depending on the selected :keyword:`format`. :keyword:`format` must be a string containing one or several directives. The method recognizes the same directives as the :func:`time.strftime` function of the standard Python distribution, as well as the specific additional directives ``%f``, ``%F``, ``%q``. (formatting & docs originally from scikits.timeries) +-----------+--------------------------------+-------+ | Directive | Meaning | Notes | +===========+================================+=======+ | ``%a`` | Locale's abbreviated weekday | | | | name. | | +-----------+--------------------------------+-------+ | ``%A`` | Locale's full weekday name. | | +-----------+--------------------------------+-------+ | ``%b`` | Locale's abbreviated month | | | | name. | | +-----------+--------------------------------+-------+ | ``%B`` | Locale's full month name. | | +-----------+--------------------------------+-------+ | ``%c`` | Locale's appropriate date and | | | | time representation. | | +-----------+--------------------------------+-------+ | ``%d`` | Day of the month as a decimal | | | | number [01,31]. | | +-----------+--------------------------------+-------+ | ``%f`` | 'Fiscal' year without a | \(1) | | | century as a decimal number | | | | [00,99] | | +-----------+--------------------------------+-------+ | ``%F`` | 'Fiscal' year with a century | \(2) | | | as a decimal number | | +-----------+--------------------------------+-------+ | ``%H`` | Hour (24-hour clock) as a | | | | decimal number [00,23]. | | +-----------+--------------------------------+-------+ | ``%I`` | Hour (12-hour clock) as a | | | | decimal number [01,12]. | | +-----------+--------------------------------+-------+ | ``%j`` | Day of the year as a decimal | | | | number [001,366]. | | +-----------+--------------------------------+-------+ | ``%m`` | Month as a decimal number | | | | [01,12]. | | +-----------+--------------------------------+-------+ | ``%M`` | Minute as a decimal number | | | | [00,59]. | | +-----------+--------------------------------+-------+ | ``%p`` | Locale's equivalent of either | \(3) | | | AM or PM. | | +-----------+--------------------------------+-------+ | ``%q`` | Quarter as a decimal number | | | | [01,04] | | +-----------+--------------------------------+-------+ | ``%S`` | Second as a decimal number | \(4) | | | [00,61]. | | +-----------+--------------------------------+-------+ | ``%U`` | Week number of the year | \(5) | | | (Sunday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Sunday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%w`` | Weekday as a decimal number | | | | [0(Sunday),6]. | | +-----------+--------------------------------+-------+ | ``%W`` | Week number of the year | \(5) | | | (Monday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Monday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%x`` | Locale's appropriate date | | | | representation. | | +-----------+--------------------------------+-------+ | ``%X`` | Locale's appropriate time | | | | representation. | | +-----------+--------------------------------+-------+ | ``%y`` | Year without century as a | | | | decimal number [00,99]. | | +-----------+--------------------------------+-------+ | ``%Y`` | Year with century as a decimal | | | | number. | | +-----------+--------------------------------+-------+ | ``%Z`` | Time zone name (no characters | | | | if no time zone exists). | | +-----------+--------------------------------+-------+ | ``%%`` | A literal ``'%'`` character. | | +-----------+--------------------------------+-------+ .. note:: (1) The ``%f`` directive is the same as ``%y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (2) The ``%F`` directive is the same as ``%Y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (3) The ``%p`` directive only affects the output hour field if the ``%I`` directive is used to parse the hour. (4) The range really is ``0`` to ``61``; this accounts for leap seconds and the (very rare) double leap seconds. (5) The ``%U`` and ``%W`` directives are only used in calculations when the day of the week and the year are specified. .. rubric:: Examples >>> a = Period(freq='Q@JUL', year=2006, quarter=1) >>> a.strftime('%F-Q%q') '2006-Q1' >>> # Output the last month in the quarter of this date >>> a.strftime('%b-%Y') 'Oct-2005' >>> >>> a = Period(freq='D', year=2001, month=1, day=1) >>> a.strftime('%d-%b-%Y') '01-Jan-2006' >>> a.strftime('%b. %d, %Y was a %A') 'Jan. 01, 2001 was a Monday' """ base, mult = _gfc(self.freq) if fmt is not None: return lib.period_strftime(self.ordinal, base, mult, fmt) else: return lib.period_ordinal_to_string(self.ordinal, base, mult) def _period_unbox(key, check=None): ''' Period-like => int64 ''' if not isinstance(key, Period): key = Period(key, freq=check) elif check is not None: if key.freq != check: raise ValueError("%s is wrong freq" % key) return np.int64(key.ordinal) def _period_unbox_array(arr, check=None): if arr is None: return arr unboxer = np.frompyfunc(lambda x: _period_unbox(x, check=check), 1, 1) return unboxer(arr) def _period_box(val, freq): return Period(val, freq=freq) def _period_box_array(arr, freq): if arr is None: return arr if not isinstance(arr, np.ndarray): return arr boxfunc = lambda x: _period_box(x, freq) boxer = np.frompyfunc(boxfunc, 1, 1) return boxer(arr) def dt64arr_to_periodarr(data, freq): if data is None: return data if isinstance(freq, basestring): base, mult = _gfc(freq) else: base, mult = freq return lib.dt64arr_to_periodarr(data.view('i8'), base, mult) # --- Period index sketch class PeriodIndex(Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. A value of 1 is the period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00. This ordinal representation is from the scikits.timeseries project. For instance, # construct period for day 1/1/1 and get the first second i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S') i.ordinal ===> 1 Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with dtype : NumPy dtype (default: i8) copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument """ def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None): if isinstance(freq, Period): freq = freq.freq else: freq = datetools.get_standard_freq(freq) if data is None: if start is None and end is None: raise ValueError('Must specify start, end, or data') start = to_period(start, freq) end = to_period(end, freq) is_start_intv = isinstance(start, Period) is_end_intv = isinstance(end, Period) if (start is not None and not is_start_intv): raise ValueError('Failed to convert %s to period' % start) if (end is not None and not is_end_intv): raise ValueError('Failed to convert %s to period' % end) if is_start_intv and is_end_intv and (start.freq != end.freq): raise ValueError('Start and end must have same freq') if freq is None: if is_start_intv: freq = start.freq elif is_end_intv: freq = end.freq else: raise ValueError('Could not infer freq from start/end') if periods is not None: if start is None: data = np.arange(end.ordinal - periods + 1, end.ordinal + 1, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, dtype=np.int64) else: if start is None or end is None: msg = 'Must specify both start and end if periods is None' raise ValueError(msg) data = np.arange(start.ordinal, end.ordinal+1, dtype=np.int64) subarr = data.view(cls) subarr.name = name subarr.freq = freq return subarr if not isinstance(data, np.ndarray): if np.isscalar(data): raise ValueError('PeriodIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) if isinstance(data, Period): data = [data] # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) try: data = np.array(data, dtype='i8') except: data = np.array(data, dtype='O') if freq is None: raise ValueError('freq cannot be none') data = _period_unbox_array(data, check=freq) else: if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: freq = data.freq data = data.values else: base1, mult1 = _gfc(data.freq) base2, mult2 = _gfc(freq) data = lib.period_asfreq_arr(data.values, base1, mult1, base2, mult2, 'E') else: if freq is None: raise ValueError('freq cannot be none') if data.dtype == np.datetime64: data = dt64arr_to_periodarr(data, freq) elif data.dtype == np.int64: pass else: data = data.astype('i8') data = np.array(data, dtype=np.int64, copy=False) if (data <= 0).any(): raise ValueError("Found illegal (<= 0) values in data") subarr = data.view(cls) subarr.name = name subarr.freq = freq return subarr @property def is_all_dates(self): return True def asfreq(self, freq=None, how='E'): how = _validate_end_alias(how) base1, mult1 = _gfc(self.freq) if isinstance(freq, basestring): base2, mult2 = _gfc(freq) else: base2, mult2 = freq new_data = lib.period_asfreq_arr(self.values, base1, mult1, base2, mult2, how) return PeriodIndex(new_data, freq=freq) @property def year(self): base, mult = _gfc(self.freq) return lib.get_period_year_arr(self.values, base, mult) @property def month(self): base, mult = _gfc(self.freq) return
lib.get_period_month_arr(self.values, base, mult)
pandas._tseries.get_period_month_arr
import rba import copy import pandas import time import numpy import seaborn import matplotlib.pyplot as plt from .rba_Session import RBA_Session from sklearn.linear_model import LinearRegression # import matplotlib.pyplot as plt def find_ribosomal_proteins(rba_session, model_processes=['TranslationC', 'TranslationM'], external_annotations=None): out = [] for i in model_processes: out += [rba_session.ModelStructure.ProteinInfo.Elements[j]['ProtoID'] for j in list(rba_session.ModelStructure.ProcessInfo.Elements[i]['Composition'].keys()) if j in rba_session.ModelStructure.ProteinInfo.Elements.keys()] if external_annotations is not None: out += list(external_annotations['ID']) return(list(set(out))) def build_model_compartment_map(rba_session): out = {rba_session.ModelStructure.ProteinInfo.Elements[i]['ProtoID']: rba_session.ModelStructure.ProteinInfo.Elements[i]['Compartment'] for i in list( rba_session.ModelStructure.ProteinInfo.Elements.keys())} return(out) def build_compartment_annotations(Compartment_Annotations_external, model_protein_compartment_map): for i in Compartment_Annotations_external.index: if Compartment_Annotations_external.loc[i, 'ID'] in list(model_protein_compartment_map.keys()): Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 1 else: Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 0 Compartment_Annotations_internal = pandas.DataFrame() Compartment_Annotations_internal['ID'] = list(model_protein_compartment_map.keys()) Compartment_Annotations_internal['ModelComp'] = list(model_protein_compartment_map.values()) Compartment_Annotations = pandas.concat( [Compartment_Annotations_internal, Compartment_Annotations_external.loc[Compartment_Annotations_external['modelproteinannotation'] == 0, ['ID', 'ModelComp']]], axis=0) return(Compartment_Annotations) def build_dataset_annotations(input, ID_column, Uniprot, Compartment_Annotations, model_protein_compartment_map, ribosomal_proteins): print('riboprots-----------------') print(ribosomal_proteins) out = pandas.DataFrame() for g in list(input[ID_column]): out.loc[g, 'ID'] = g matches = [i for i in list(Uniprot.loc[pandas.isna( Uniprot['Gene names']) == False, 'Gene names']) if g in i] mass_prot = numpy.nan if len(matches) > 0: mass_prot = len(Uniprot.loc[Uniprot['Gene names'] == matches[0], 'Sequence'].values[0]) out.loc[g, 'AA_residues'] = mass_prot if g in list(Compartment_Annotations['ID']): out.loc[g, 'Location'] = Compartment_Annotations.loc[Compartment_Annotations['ID'] == g, 'ModelComp'].values[0] in_model = 0 if g in model_protein_compartment_map.keys(): in_model = 1 is_ribosomal = 0 if g in ribosomal_proteins: is_ribosomal = 1 out.loc[g, 'InModel'] = in_model out.loc[g, 'IsRibosomal'] = is_ribosomal return(out) def build_full_annotations_from_dataset_annotations(annotations_list): out = pandas.concat(annotations_list, axis=0) index = out.index is_duplicate = index.duplicated(keep="first") not_duplicate = ~is_duplicate out = out[not_duplicate] return(out) def infer_copy_numbers_from_reference_copy_numbers(fold_changes, absolute_data, matching_column_in_fold_change_data, matching_column_in_absolute_data, conditions_in_fold_change_data_to_restore): out = pandas.DataFrame() for i in list(absolute_data['Gene']): if i in list(fold_changes['Gene']): FoldChange_match = fold_changes.loc[fold_changes['Gene'] == i, matching_column_in_fold_change_data].values[0] CopyNumber_match = absolute_data.loc[absolute_data['Gene'] == i, matching_column_in_absolute_data].values[0] if not pandas.isna(FoldChange_match): if not pandas.isna(CopyNumber_match): out.loc[i, 'ID'] = i out.loc[i, 'Absolute_Reference'] = CopyNumber_match/(2**FoldChange_match) for gene in list(out['ID']): Abs_Ref = out.loc[gene, 'Absolute_Reference'] for condition in conditions_in_fold_change_data_to_restore: out.loc[gene, condition] = Abs_Ref * \ (2**fold_changes.loc[fold_changes['Gene'] == gene, condition].values[0]) return(out) def add_annotations_to_proteome(input, ID_column, annotations): for i in input.index: if input.loc[i, ID_column] in annotations.index: input.loc[i, 'AA_residues'] = annotations.loc[input.loc[i, ID_column], 'AA_residues'] input.loc[i, 'Location'] = annotations.loc[input.loc[i, ID_column], 'Location'] input.loc[i, 'InModel'] = annotations.loc[input.loc[i, ID_column], 'InModel'] input.loc[i, 'IsRibosomal'] = annotations.loc[input.loc[i, ID_column], 'IsRibosomal'] return(input) def determine_compartment_occupation(Data, Condition, mass_col='AA_residues', only_in_model=False, compartments_to_ignore=['DEF'], compartments_no_original_PG=[], ribosomal_proteins_as_extra_compartment=True): for i in compartments_to_ignore: Data = Data.loc[Data['Location'] != i] for i in compartments_no_original_PG: Data = Data.loc[(Data['Location'] != i) | (Data['InModel'] == 1)] if only_in_model: Data = Data.loc[Data['InModel'] >= 1] if ribosomal_proteins_as_extra_compartment: Data_R = Data.loc[Data['IsRibosomal'] == 1].copy() Data = Data.loc[Data['IsRibosomal'] == 0] Data_R_df = Data_R.loc[:, [Condition, mass_col, 'Location']] Data_R_df[Condition] = Data_R_df[Condition]*Data_R_df[mass_col] Ribosomal_sum = Data_R_df[Condition].sum() df = Data.loc[:, [Condition, mass_col, 'Location']] df[Condition] = df[Condition]*df[mass_col] out = pandas.DataFrame(df.groupby('Location').sum()) if ribosomal_proteins_as_extra_compartment: out.loc['Ribosomes', Condition] = Ribosomal_sum out.loc['Total', Condition] = out[Condition].sum() out.loc[:, 'original_protein_fraction'] = out[Condition]/out.loc['Total', Condition] out.rename(columns={Condition: 'original_amino_acid_occupation'}, inplace=True) out.drop(columns=['AA_residues'], inplace=True) return(out) def build_proteome_overview(input, condition, compartments_to_ignore=['DEF', 'DEFA', 'Def'], compartments_no_original_PG=['n', 'Secreted'], ribosomal_proteins_as_extra_compartment=True): out = determine_compartment_occupation(Data=input, Condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=ribosomal_proteins_as_extra_compartment, only_in_model=False) out_in_model = determine_compartment_occupation(Data=input, Condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=ribosomal_proteins_as_extra_compartment, only_in_model=True) out['original_PG_fraction'] = 1-out_in_model['original_amino_acid_occupation'] / \ out['original_amino_acid_occupation'] return(out) def determine_correction_factor_A(fractions_entirely_replaced_with_expected_value): expected_fraction_sum = 0 for i in fractions_entirely_replaced_with_expected_value.keys(): expected_fraction_sum += fractions_entirely_replaced_with_expected_value[i] factor = 1/(1-expected_fraction_sum) return(factor) def determine_correction_factor_B(imposed_compartment_fractions): expected_fractions = 0 for i in imposed_compartment_fractions.keys(): expected_fractions += imposed_compartment_fractions[i] factor = 1-expected_fractions return(factor) def determine_correction_factor_C(input, condition, reference_condition): return(input.loc[input['ID'] == 'Total_protein', condition].values[0]/input.loc[input['ID'] == 'Total_protein', reference_condition].values[0]) def correct_protein_fractions(input, factors, directly_corrected_compartments, imposed_compartment_fractions): out = input.copy() for c in out.index: if c in directly_corrected_compartments: out.loc[c, 'new_protein_fraction'] = out.loc[c, 'original_protein_fraction']*factors['A']*factors['B'] elif c in imposed_compartment_fractions.keys(): out.loc[c, 'new_protein_fraction'] = imposed_compartment_fractions[c] return(out) def correct_PG_fraction(input, factors, compartments_no_original_PG, merged_compartments): out = input.copy() for c in out.index: if c == 'Total': continue else: if c in compartments_no_original_PG: original_fraction = out.loc[c, 'original_protein_fraction'] out.loc[c, 'new_PG_fraction'] = 1 - ((factors['A']*factors['B']*original_fraction) / out.loc[c, 'new_protein_fraction']) elif c in merged_compartments.keys(): out.loc[c, 'new_PG_fraction'] = out.loc[c, 'original_PG_fraction']*out.loc[c, 'original_protein_fraction']/( out.loc[c, 'original_protein_fraction']+out.loc[merged_compartments[c], 'original_protein_fraction']) else: out.loc[c, 'new_PG_fraction'] = out.loc[c, 'original_PG_fraction'] return(out) def merge_compartments(input, merged_compartments): out = input.copy() for c in merged_compartments.keys(): out.loc[c, 'new_protein_fraction'] = out.loc[c, 'new_protein_fraction'] + \ out.loc[merged_compartments[c], 'new_protein_fraction'] return(out) def calculate_new_total_PG_fraction(input): out = input.copy() fraction = 0 for c in out.index: if c not in ['Total', 'Ribosomes']: fraction += out.loc[c, 'new_protein_fraction']*out.loc[c, 'new_PG_fraction'] out.loc['Total', 'new_PG_fraction'] = fraction out.loc['Total', 'new_protein_fraction'] = 1 return(out) def determine_apparent_process_efficiencies(growth_rate, input, rba_session, proteome_summary, protein_data, condition, gene_id_col): process_efficiencies = pandas.DataFrame() for i in input.index: process_ID = input.loc[i, 'Process_ID'] process_name = input.loc[i, 'Process_Name'] process_client_compartments = input.loc[i, 'Client_Compartments'].split(' , ') constituting_proteins = {rba_session.ModelStructure.ProteinInfo.Elements[i]['ProtoID']: rba_session.ModelStructure.ProteinInfo.Elements[ i]['AAnumber'] for i in rba_session.ModelStructure.ProcessInfo.Elements[process_name]['Composition'].keys()} Total_client_fraction = sum([proteome_summary.loc[i, 'new_protein_fraction'] for i in process_client_compartments]) n_AAs_in_machinery = 0 machinery_size = 0 for i in constituting_proteins.keys(): if i in protein_data['ID']: protein_data.loc[protein_data['ID'] == i, ] n_AAs_in_machinery += protein_data.loc[protein_data['ID'] == i, condition].values[0] * \ protein_data.loc[protein_data['ID'] == i, 'AA_residues'].values[0] machinery_size += constituting_proteins[i] # right reference amounth? if n_AAs_in_machinery > 0: relative_Protein_fraction_of_machinery = n_AAs_in_machinery / \ proteome_summary.loc['Total', 'original_amino_acid_occupation'] specific_capacity = growth_rate*Total_client_fraction/relative_Protein_fraction_of_machinery apparent_capacity = specific_capacity*machinery_size # process_ID[process_name] = apparent_capacity process_efficiencies.loc[process_name, 'Process'] = process_ID process_efficiencies.loc[process_name, 'Parameter'] = str( process_ID+'_apparent_efficiency') process_efficiencies.loc[process_name, 'Value'] = apparent_capacity return(process_efficiencies) def correction_pipeline(input, condition, compartments_to_ignore, compartments_no_original_PG, fractions_entirely_replaced_with_expected_value, imposed_compartment_fractions, directly_corrected_compartments, merged_compartments): out = build_proteome_overview(input=input, condition=condition, compartments_to_ignore=compartments_to_ignore, compartments_no_original_PG=compartments_no_original_PG, ribosomal_proteins_as_extra_compartment=True) factor_A = determine_correction_factor_A(fractions_entirely_replaced_with_expected_value={ i: imposed_compartment_fractions[i] for i in fractions_entirely_replaced_with_expected_value}) factor_B = determine_correction_factor_B( imposed_compartment_fractions=imposed_compartment_fractions) out = correct_protein_fractions(input=out, factors={ 'A': factor_A, 'B': factor_B}, directly_corrected_compartments=directly_corrected_compartments, imposed_compartment_fractions=imposed_compartment_fractions) out = correct_PG_fraction(input=out, factors={ 'A': factor_A, 'B': factor_B}, compartments_no_original_PG=compartments_no_original_PG, merged_compartments=merged_compartments) out = merge_compartments(input=out, merged_compartments=merged_compartments) out = calculate_new_total_PG_fraction(input=out) out.to_csv(str('Correction_overview_'+condition+'.csv')) return({'Summary': out, 'Correction_factors': {'A': factor_A, 'B': factor_B}}) def build_input_for_default_kapp_estimation(input): out = pandas.DataFrame(columns=['Compartment_ID', 'Density', 'PG_fraction']) for i in input['Summary'].index: if i not in ['Total', 'Ribosomes']: out.loc[i, 'Compartment_ID'] = i out.loc[i, 'Density'] = input['Summary'].loc[i, 'new_protein_fraction'] out.loc[i, 'PG_fraction'] = input['Summary'].loc[i, 'new_PG_fraction'] return(out) def flux_bounds_from_input(input, condition, specific_exchanges=None): flux_mean_df = input.loc[input['Type'] == 'ExchangeFlux_Mean', :] flux_mean_SE = input.loc[input['Type'] == 'ExchangeFlux_StandardError', :] out = pandas.DataFrame(columns=['Reaction_ID', 'LB', 'UB']) if specific_exchanges is None: exchanges_to_set = list(flux_mean_df['ID']) else: exchanges_to_set = specific_exchanges for rx in exchanges_to_set: mean_val = flux_mean_df.loc[flux_mean_df['ID'] == rx, condition].values[0] if not pandas.isna(mean_val): SE_val = flux_mean_SE.loc[flux_mean_SE['ID'] == str(rx+'_SE'), condition].values[0] out.loc[rx, 'Reaction_ID'] = rx if not pandas.isna(SE_val): lb = mean_val-SE_val ub = mean_val+SE_val if mean_val < 0: out.loc[rx, 'LB'] = lb if ub > 0: out.loc[rx, 'UB'] = 0 else: out.loc[rx, 'UB'] = ub elif mean_val > 0: out.loc[rx, 'UB'] = ub if lb < 0: out.loc[rx, 'LB'] = 0 else: out.loc[rx, 'LB'] = lb else: out.loc[rx, 'LB'] = lb out.loc[rx, 'UB'] = ub else: out.loc[rx, 'LB'] = mean_val out.loc[rx, 'UB'] = mean_val flux_dir_df = input.loc[input['Type'] == 'Flux_Direction', :] if specific_exchanges is None: exchanges_to_set = list(flux_dir_df['ID']) else: exchanges_to_set = specific_exchanges for rx in exchanges_to_set: out.loc[rx, 'Reaction_ID'] = rx if flux_dir_df.loc[flux_dir_df['ID'] == rx, condition].values[0] == 1: out.loc[rx, 'LB'] = 0 elif flux_dir_df.loc[flux_dir_df['ID'] == rx, condition].values[0] == -1: out.loc[rx, 'UB'] = 0 elif flux_dir_df.loc[flux_dir_df['ID'] == rx, condition].values[0] == 0: out.loc[rx, 'LB'] = 0 out.loc[rx, 'UB'] = 0 flux_upper_df = input.loc[input['Type'] == 'Flux_Upper_Bound', :] for rx in list(flux_upper_df['ID']): out.loc[rx, 'Reaction_ID'] = rx out.loc[rx, 'UB'] = flux_upper_df.loc[flux_upper_df['ID'] == rx, condition].values[0] flux_lower_df = input.loc[input['Type'] == 'Flux_Lower_Bound', :] for rx in list(flux_lower_df['ID']): out.loc[rx, 'Reaction_ID'] = rx out.loc[rx, 'LB'] = flux_lower_df.loc[flux_lower_df['ID'] == rx, condition].values[0] return(out) def growth_Rate_from_input(input, condition): return(input.loc[input['Type'] == 'Growth_Rate', condition].values[0]) def proteome_fractions_from_input(input, condition): df = input.loc[input['Type'] == 'Expected_ProteomeFraction', :] return(dict(zip(list(df['ID']), list(df[condition])))) def medium_concentrations_from_input(input, condition): df = input.loc[input['Type'] == 'Medium_Concentration', :] return(dict(zip(list(df['ID']), list(df[condition])))) def build_input_proteome_for_specific_kapp_estimation(proteomics_data, condition): out = pandas.DataFrame() out['ID'] = proteomics_data['ID'] out['copy_number'] = proteomics_data[condition] return(out) def inject_estimated_efficiencies_into_model(rba_session, specific_kapps=None, default_kapps=None, process_efficiencies=None, round_to_digits=0): """ Parameters ---------- specific_kapps : pandas.DataFrame(columns=['Enzyme_ID','Kapp']) default_kapps : {'default_kapp':value,'default_transporter_kapp':value} process_efficiencies : pandas.DataFrame(columns=['Process','Parameter','Value']) """ if specific_kapps is not None: parameterized = [] for enz in list(specific_kapps['Enzyme_ID']): if not pandas.isna(specific_kapps.loc[specific_kapps['Enzyme_ID'] == enz, 'Kapp'].values[0]): if enz not in parameterized: all_enzs = rba_session.ModelStructure.EnzymeInfo.Elements[enz]['Isozymes'] all_enzs.append(enz) parameterized += all_enzs if len(all_enzs) == 1: proto_enz = all_enzs[0] else: proto_enz = [i for i in all_enzs if not '_duplicate_' in i][0] val = round(specific_kapps.loc[specific_kapps['Enzyme_ID'] == enz, 'Kapp'].values[0], round_to_digits) const = rba.xml.parameters.Function( str(proto_enz + '_kapp__constant'), 'constant', parameters={'CONSTANT': val}, variable=None) if str(proto_enz + '_kapp__constant') not in rba_session.model.parameters.functions._elements_by_id.keys(): rba_session.model.parameters.functions.append(const) else: rba_session.model.parameters.functions._elements_by_id[const.id] = const count = 0 for e in rba_session.model.enzymes.enzymes: if e.id in all_enzs: count += 1 e.forward_efficiency = str(proto_enz + '_kapp__constant') e.backward_efficiency = str(proto_enz + '_kapp__constant') if count == len(all_enzs): break if default_kapps is not None: if type(default_kapps) is dict: rba_session.model.parameters.functions._elements_by_id[ 'default_efficiency'].parameters._elements_by_id['CONSTANT'].value = default_kapps['default_kapp'] rba_session.model.parameters.functions._elements_by_id['default_transporter_efficiency'].parameters._elements_by_id[ 'CONSTANT'].value = default_kapps['default_transporter_kapp'] if process_efficiencies is not None: for i in process_efficiencies.index: if process_efficiencies.loc[i, 'Process'] in rba_session.model.processes.processes._elements_by_id.keys(): if not pandas.isna(process_efficiencies.loc[i, 'Value']): rba_session.model.processes.processes._elements_by_id[process_efficiencies.loc[i, 'Process']].machinery.capacity.value = process_efficiencies.loc[i, 'Parameter'] const = rba.xml.parameters.Function(process_efficiencies.loc[i, 'Parameter'], 'constant', parameters={ 'CONSTANT': process_efficiencies.loc[i, 'Value']}, variable=None) if process_efficiencies.loc[i, 'Parameter'] not in rba_session.model.parameters.functions._elements_by_id.keys(): rba_session.model.parameters.functions.append(const) else: rba_session.model.parameters.functions._elements_by_id[const.id] = const rba_session.rebuild_from_model() def calibration_workflow(proteome, condition, reference_condition, gene_ID_column, definition_file, rba_session, process_efficiency_estimation_input=None, default_kapps_provided=None): t0 = time.time() correction_results = correction_pipeline(input=proteome, condition=condition, compartments_to_ignore=['DEF', 'DEFA', 'Def'], compartments_no_original_PG=['n', 'Secreted'], fractions_entirely_replaced_with_expected_value=[ 'Ribosomes'], imposed_compartment_fractions=proteome_fractions_from_input( input=definition_file, condition=condition), directly_corrected_compartments=[ 'c', 'cM', 'erM', 'gM', 'm', 'mIM', 'mIMS', 'mOM', 'vM', 'x'], merged_compartments={'c': 'Ribosomes'}) # mumax0 = rba_session.findMaxGrowthRate() rba_session.setMedium(medium_concentrations_from_input( input=definition_file, condition=condition)) # mumax1 = rba_session.findMaxGrowthRate() if process_efficiency_estimation_input is not None: process_efficiencies = determine_apparent_process_efficiencies(growth_rate=growth_Rate_from_input( input=definition_file, condition=condition), input=process_efficiency_estimation_input, rba_session=rba_session, protein_data=proteome, proteome_summary=correction_results['Summary'], condition=condition, gene_id_col=gene_ID_column) inject_estimated_efficiencies_into_model( rba_session, specific_kapps=None, default_kapps=None, process_efficiencies=process_efficiencies) else: process_efficiencies = None protein_scaling_coefficient = 1000 * determine_correction_factor_C(input=definition_file, condition=condition, reference_condition=reference_condition) * \ correction_results['Correction_factors']['A'] * \ correction_results['Correction_factors']['B']/6.022e23 # protein_scaling_coefficient = 1000 * correction_results['Correction_factors']['A'] * correction_results['Correction_factors']['B']/6.022e23 proteome[condition] *= protein_scaling_coefficient Specific_Kapps = rba_session.estimate_specific_Kapps(proteomicsData=build_input_proteome_for_specific_kapp_estimation(proteome, condition), flux_bounds=flux_bounds_from_input( input=definition_file, condition=condition, specific_exchanges=None), mu=growth_Rate_from_input( input=definition_file, condition=condition), biomass_function=None, target_biomass_function=True) # Specific_Kapps.loc[(Specific_Kapps['Kapp'] <= 1000000) & # (Specific_Kapps['Kapp'] >= 1), 'Kapp'].hist() # plt.show() # mumax2 = rba_session.findMaxGrowthRate() if default_kapps_provided is None: Default_Kapps = rba_session.estimate_default_Kapps(target_mu=growth_Rate_from_input(input=definition_file, condition=condition), compartment_densities_and_PGs=build_input_for_default_kapp_estimation( correction_results), flux_bounds=flux_bounds_from_input(input=definition_file, condition=condition, specific_exchanges=None), mu_approximation_precision=0.01) inject_estimated_efficiencies_into_model(rba_session, specific_kapps=None, default_kapps={ 'default_kapp': Default_Kapps.iloc[-1, 2], 'default_transporter_kapp': Default_Kapps.iloc[-1, 3]}, process_efficiencies=None) else: inject_estimated_efficiencies_into_model( rba_session, specific_kapps=None, default_kapps=default_kapps_provided, process_efficiencies=None) Default_Kapps = default_kapps_provided inject_estimated_efficiencies_into_model( rba_session, specific_kapps=Specific_Kapps, default_kapps=None, process_efficiencies=None) # mumax3 = rba_session.findMaxGrowthRate() compartment_densities_and_PGs = build_input_for_default_kapp_estimation(correction_results) for comp in list(compartment_densities_and_PGs['Compartment_ID']): rba_session.model.parameters.functions._elements_by_id[str( 'fraction_protein_'+comp)].parameters._elements_by_id['CONSTANT'].value = compartment_densities_and_PGs.loc[compartment_densities_and_PGs['Compartment_ID'] == comp, 'Density'] rba_session.model.parameters.functions._elements_by_id[str( 'fraction_non_enzymatic_protein_'+comp)].parameters._elements_by_id['CONSTANT'].value = compartment_densities_and_PGs.loc[compartment_densities_and_PGs['Compartment_ID'] == comp, 'PG_fraction'] rba_session.rebuild_from_model() rba_session.addExchangeReactions() rba_session.setMedium(medium_concentrations_from_input( input=definition_file, condition=condition)) # FBs = flux_bounds_from_input( # input=definition_file, condition=condition, specific_exchanges=None) #rba_session.Problem.setLB(dict(zip(list(FBs['Reaction_ID']), list(FBs['LB'])))) # rba_session.Problem.setLB({FBs.loc[i, 'Reaction_ID']: FBs.loc[i, 'LB'] # for i in FBs.index if not pandas.isna(FBs.loc[i, 'LB'])}) # rba_session.Problem.setLB({FBs.loc[i, 'Reaction_ID']: FBs.loc[i, 'UB'] # for i in FBs.index if not pandas.isna(FBs.loc[i, 'UB'])}) #rba_session.Problem.setUB(dict(zip(list(FBs['Reaction_ID']), list(FBs['UB'])))) rba_session.Problem.setLB({'R_EX_cys__L_e': 0, 'R_EX_met__L_e': 0}) rba_session.Problem.setUB({'R_EX_cys__L_e': 0, 'R_EX_met__L_e': 0}) mumax4 = rba_session.findMaxGrowthRate() rba_session.recordResults('Prokaryotic') prok_results = copy.deepcopy(rba_session.Results) rba_session2 = copy.copy(rba_session) rba_session2.eukaryoticDensities4(CompartmentRelationships=False) mumax5 = rba_session2.findMaxGrowthRate() rba_session2.recordResults('Eukaryotic') # print([Default_Kapps.iloc[-1, 2], Default_Kapps.iloc[-1, 3]]) # print([growth_Rate_from_input(input=definition_file, # condition=condition), mumax0, mumax1, mumax2, mumax3, mumax4, mumax5]) print(time.time() - t0) return({'Simulation_Results': prok_results, 'Simulation_Results_Euk': copy.deepcopy(rba_session2.Results), 'Proteome': build_input_proteome_for_specific_kapp_estimation(proteome, condition), 'Correction_Results': correction_results, 'Default_Kapps': Default_Kapps, 'Specific_Kapps': Specific_Kapps, 'Process_Efficiencies': process_efficiencies}) # seaborn.violinplot(x=Specific_Kapps.loc[Specific_Kapps['Kapp'] <= 400000, 'Kapp']) # Specific_Kapps.loc[(Specific_Kapps['Kapp'] <= 1000000) & # (Specific_Kapps['Kapp'] >= 1), 'Kapp']).hist() # plt.show() # Test predictions # Given medium predict Mu, Exchanges and Proteome # Prokaryotic # Eukaryotic # 1. import model and uniprot-file and compartment-annotation ## external_annotations for ribosomal-proteins!!! ## ## process-efficiency estimation input ## ## parse input-data properly and add Lahtvee information ## print('---------------------START----------------------') Input_Data = pandas.read_csv( 'DataSetsYeastRBACalibration/Calibration_InputDefinition.csv', sep=';', decimal=',', index_col=0) Process_Efficiency_Estimation_Input = pandas.read_csv( 'DataSetsYeastRBACalibration/Process_Efficiency_Estimation_Input.csv', sep=';', decimal=',') Simulation = RBA_Session('Yeast_iMM904_RBA_model') Uniprot = pandas.read_csv('Yeast_iMM904_RBA_model/uniprot.csv', sep='\t') Compartment_Annotations_external = pandas.read_csv( 'DataSetsYeastRBACalibration/Manually_curated_Protein_Locations_for_Calibration.csv', index_col=None, sep=';') Ribosomal_Proteins_Uniprot = pandas.read_csv( 'DataSetsYeastRBACalibration/uniprot_ribosomal_proteins.csv', index_col=None, sep=';') Hackett_Clim_FCs = pandas.read_csv('DataSetsYeastRBACalibration/Hacket_Clim_ProteinFCs.csv') Lahtvee_REF = pandas.read_csv('DataSetsYeastRBACalibration/LahtveeRefProteomicsData.csv') picogram_togram_coefficient = 1e12 Lahtvee_REF['Lahtvee_REF'] *= picogram_togram_coefficient Lahtvee_REF = Lahtvee_REF.loc[pandas.isna(Lahtvee_REF['Lahtvee_REF']) == False] ribosomal_proteins = find_ribosomal_proteins(rba_session=Simulation, model_processes=[ 'TranslationC', 'TranslationM'], external_annotations=Ribosomal_Proteins_Uniprot) model_protein_compartment_map = build_model_compartment_map(rba_session=Simulation) Compartment_Annotations = build_compartment_annotations( Compartment_Annotations_external=Compartment_Annotations_external, model_protein_compartment_map=model_protein_compartment_map) print('Annotations to data') annotations_Lahtvee = build_dataset_annotations(input=Lahtvee_REF, ID_column='Gene', Uniprot=Uniprot, Compartment_Annotations=Compartment_Annotations, model_protein_compartment_map=model_protein_compartment_map, ribosomal_proteins=ribosomal_proteins) annotations_Hackett = build_dataset_annotations(input=Hackett_Clim_FCs, ID_column='Gene', Uniprot=Uniprot, Compartment_Annotations=Compartment_Annotations, model_protein_compartment_map=model_protein_compartment_map, ribosomal_proteins=ribosomal_proteins) full_annotations = build_full_annotations_from_dataset_annotations( annotations_list=[annotations_Lahtvee, annotations_Hackett]) ####### Bootstrapping-loop starts here ####### restored_Hackett_Data = infer_copy_numbers_from_reference_copy_numbers(fold_changes=Hackett_Clim_FCs, absolute_data=Lahtvee_REF, matching_column_in_fold_change_data='Hackett_C01', matching_column_in_absolute_data='Lahtvee_REF', conditions_in_fold_change_data_to_restore=['Hackett_C005', 'Hackett_C01', 'Hackett_C016', 'Hackett_C022', 'Hackett_C03']) restored_Hackett_Data = add_annotations_to_proteome( input=restored_Hackett_Data, ID_column='ID', annotations=full_annotations) Lahtvee_REF = add_annotations_to_proteome( input=Lahtvee_REF, ID_column='Gene', annotations=full_annotations) # default_kapps_provided={'default_kapp':39673 , 'default_transporter_kapp':396730 } # default_kapps_provided={'default_kapp':85449 , 'default_transporter_kapp':854490 } # default_kapps_provided={'default_kapp':128174 , 'default_transporter_kapp':1281740 } # default_kapps_provided={'default_kapp':280762 , 'default_transporter_kapp':2807620 } # default_kapps_provided = {'default_kapp': 268555, 'default_transporter_kapp': 2685550} Simulation = RBA_Session('Yeast_iMM904_RBA_model') Calibration_Hackett_C005 = calibration_workflow(proteome=restored_Hackett_Data, condition='Hackett_C005', reference_condition='Lahtvee_REF', gene_ID_column='Gene', definition_file=Input_Data, rba_session=Simulation, process_efficiency_estimation_input=Process_Efficiency_Estimation_Input, default_kapps_provided={'default_kapp': 39673, 'default_transporter_kapp': 396730}) print('0.05') print('') print('') print('') print('') Simulation = RBA_Session('Yeast_iMM904_RBA_model') Calibration_Hackett_C01 = calibration_workflow(proteome=restored_Hackett_Data, condition='Hackett_C01', reference_condition='Lahtvee_REF', gene_ID_column='Gene', definition_file=Input_Data, rba_session=Simulation, process_efficiency_estimation_input=Process_Efficiency_Estimation_Input, default_kapps_provided={'default_kapp': 85449, 'default_transporter_kapp': 854490}) print('0.1') print('') print('') print('') print('') Simulation = RBA_Session('Yeast_iMM904_RBA_model') Calibration_Hackett_C016 = calibration_workflow(proteome=restored_Hackett_Data, condition='Hackett_C016', reference_condition='Lahtvee_REF', gene_ID_column='Gene', definition_file=Input_Data, rba_session=Simulation, process_efficiency_estimation_input=Process_Efficiency_Estimation_Input, default_kapps_provided={'default_kapp': 128174, 'default_transporter_kapp': 1281740}) print('0.16') print('') print('') print('') print('') Simulation = RBA_Session('Yeast_iMM904_RBA_model') Calibration_Hackett_C022 = calibration_workflow(proteome=restored_Hackett_Data, condition='Hackett_C022', reference_condition='Lahtvee_REF', gene_ID_column='Gene', definition_file=Input_Data, rba_session=Simulation, process_efficiency_estimation_input=Process_Efficiency_Estimation_Input, default_kapps_provided={'default_kapp': 280762, 'default_transporter_kapp': 2807620}) print('0.22') print('') print('') print('') print('') Simulation = RBA_Session('Yeast_iMM904_RBA_model') Calibration_Hackett_C03 = calibration_workflow(proteome=restored_Hackett_Data, condition='Hackett_C03', reference_condition='Lahtvee_REF', gene_ID_column='Gene', definition_file=Input_Data, rba_session=Simulation, process_efficiency_estimation_input=Process_Efficiency_Estimation_Input, default_kapps_provided={'default_kapp': 280762, 'default_transporter_kapp': 2807620}) print('0.3') specKapps_005 = pandas.DataFrame(index=list( Calibration_Hackett_C005['Specific_Kapps']['Enzyme_ID'])) specKapps_005['Hackett_C005'] = list(Calibration_Hackett_C005['Specific_Kapps']['Kapp']) specKapps_01 = pandas.DataFrame(index=list(Calibration_Hackett_C01['Specific_Kapps']['Enzyme_ID'])) specKapps_01['Hackett_C01'] = list(Calibration_Hackett_C01['Specific_Kapps']['Kapp']) specKapps_016 = pandas.DataFrame(index=list( Calibration_Hackett_C016['Specific_Kapps']['Enzyme_ID'])) specKapps_016['Hackett_C016'] = list(Calibration_Hackett_C016['Specific_Kapps']['Kapp']) specKapps_022 = pandas.DataFrame(index=list( Calibration_Hackett_C022['Specific_Kapps']['Enzyme_ID'])) specKapps_022['Hackett_C022'] = list(Calibration_Hackett_C022['Specific_Kapps']['Kapp']) specKapps_03 = pandas.DataFrame(index=list(Calibration_Hackett_C03['Specific_Kapps']['Enzyme_ID'])) specKapps_03['Hackett_C03'] = list(Calibration_Hackett_C03['Specific_Kapps']['Kapp']) all_spec_Kapps = pandas.concat( [specKapps_005, specKapps_01, specKapps_016, specKapps_022, specKapps_03], axis=1) all_spec_Kapps['ID'] = all_spec_Kapps.index all_spec_Kapps.to_csv('Specific_Kapps_out.csv', sep=';', decimal=',') process_efficiencies_005 = pandas.DataFrame(index=list( Calibration_Hackett_C005['Process_Efficiencies']['Process'])) process_efficiencies_005['Hackett_C005'] = list( Calibration_Hackett_C005['Process_Efficiencies']['Value']) process_efficiencies_01 = pandas.DataFrame(index=list( Calibration_Hackett_C01['Process_Efficiencies']['Process'])) process_efficiencies_01['Hackett_C01'] = list( Calibration_Hackett_C01['Process_Efficiencies']['Value']) process_efficiencies_016 = pandas.DataFrame(index=list( Calibration_Hackett_C016['Process_Efficiencies']['Process'])) process_efficiencies_016['Hackett_C016'] = list( Calibration_Hackett_C016['Process_Efficiencies']['Value']) process_efficiencies_022 = pandas.DataFrame(index=list( Calibration_Hackett_C022['Process_Efficiencies']['Process'])) process_efficiencies_022['Hackett_C022'] = list( Calibration_Hackett_C022['Process_Efficiencies']['Value']) process_efficiencies_03 = pandas.DataFrame(index=list( Calibration_Hackett_C03['Process_Efficiencies']['Process'])) process_efficiencies_03['Hackett_C03'] = list( Calibration_Hackett_C03['Process_Efficiencies']['Value']) all_process_efficiencies = pandas.concat( [process_efficiencies_005, process_efficiencies_01, process_efficiencies_016, process_efficiencies_022, process_efficiencies_03], axis=1) all_process_efficiencies['ID'] = all_process_efficiencies.index all_process_efficiencies.to_csv('Process_efficiencies_out.csv', sep=';', decimal=',') ######## ######## Mus_o2 = [0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.28, 0.3, 0.35, 0.4] O2_J = [0.8, 1.3, 2.5, 3.9, 5.3, 7, 7.4, 6.1, 5.1, 3.7] Glc_J = [0.3, 0.6, 1.1, 1.7, 2.3, 2.8, 3.4, 4.5, 8.6, 11.1] CO2_J = [0.8, 1.4, 2.7, 4.2, 5.7, 7.5, 8, 8.8, 14.9, 18.9] EtOH_J = [0, 0, 0, 0, 0, 0, 0.11, 2.3, 9.5, 13.9] Ac_J = [0, 0, 0, 0, 0, 0, 0.08, 0.41, 0.62, 0.6] Glyc_J = [0, 0, 0, 0, 0, 0, 0, 0, 0.05, 0.15] ## Hackett# Mu_Hackett = [0.0498630244, 0.1054314572, 0.154377453333333, 0.2126503108, 0.293841410333333] Glc_Hackett = [0.7367, 1.5462, 2.1722, 5.1571, 9.5962] EtOH_Hackett = [0.0127, 0.0529, 0.1084, 4.6066, 14.0672] Ac_Hackett = [0.0017, 0.0031, 0.0052, 0.4433, 0.8851] Glyc_Hackett = [0.0035, 0.0077, 0.0065, 0.0579, 0.1699] conditions = ['Hackett_C005', 'Hackett_C01', 'Hackett_C016', 'Hackett_C022', 'Hackett_C03'] Mus_predicted = [Calibration_Hackett_C005['Simulation_Results']['Mu'].loc['Mu', 'Prokaryotic'], Calibration_Hackett_C01['Simulation_Results']['Mu'].loc['Mu', 'Prokaryotic'], Calibration_Hackett_C016['Simulation_Results']['Mu'].loc['Mu', 'Prokaryotic'], Calibration_Hackett_C022['Simulation_Results']['Mu'].loc['Mu', 'Prokaryotic'], Calibration_Hackett_C03['Simulation_Results']['Mu'].loc['Mu', 'Prokaryotic']] Mus_predicted_euk = [Calibration_Hackett_C005['Simulation_Results_Euk']['Mu'].loc['Mu', 'Eukaryotic'], Calibration_Hackett_C01['Simulation_Results_Euk']['Mu'].loc['Mu', 'Eukaryotic'], Calibration_Hackett_C016['Simulation_Results_Euk']['Mu'].loc['Mu', 'Eukaryotic'], Calibration_Hackett_C022['Simulation_Results_Euk']['Mu'].loc['Mu', 'Eukaryotic'], Calibration_Hackett_C03['Simulation_Results_Euk']['Mu'].loc['Mu', 'Eukaryotic']] Glc_Exchange_predicted = [abs(Calibration_Hackett_C005['Simulation_Results']['ExchangeFluxes'].loc['M_glc__D', 'Prokaryotic']), abs(Calibration_Hackett_C01['Simulation_Results'] ['ExchangeFluxes'].loc['M_glc__D', 'Prokaryotic']), abs(Calibration_Hackett_C016['Simulation_Results'] ['ExchangeFluxes'].loc['M_glc__D', 'Prokaryotic']), abs(Calibration_Hackett_C022['Simulation_Results'] ['ExchangeFluxes'].loc['M_glc__D', 'Prokaryotic']), abs(Calibration_Hackett_C03['Simulation_Results']['ExchangeFluxes'].loc['M_glc__D', 'Prokaryotic'])] EtOH_Exchange_predicted = [abs(Calibration_Hackett_C005['Simulation_Results']['ExchangeFluxes'].loc['M_etoh', 'Prokaryotic']), abs(Calibration_Hackett_C01['Simulation_Results'] ['ExchangeFluxes'].loc['M_etoh', 'Prokaryotic']), abs(Calibration_Hackett_C016['Simulation_Results'] ['ExchangeFluxes'].loc['M_etoh', 'Prokaryotic']), abs(Calibration_Hackett_C022['Simulation_Results'] ['ExchangeFluxes'].loc['M_etoh', 'Prokaryotic']), abs(Calibration_Hackett_C03['Simulation_Results']['ExchangeFluxes'].loc['M_etoh', 'Prokaryotic'])] Ac_Exchange_predicted = [abs(Calibration_Hackett_C005['Simulation_Results']['ExchangeFluxes'].loc['M_ac', 'Prokaryotic']), abs(Calibration_Hackett_C01['Simulation_Results'] ['ExchangeFluxes'].loc['M_ac', 'Prokaryotic']), abs(Calibration_Hackett_C016['Simulation_Results'] ['ExchangeFluxes'].loc['M_ac', 'Prokaryotic']), abs(Calibration_Hackett_C022['Simulation_Results'] ['ExchangeFluxes'].loc['M_ac', 'Prokaryotic']), abs(Calibration_Hackett_C03['Simulation_Results']['ExchangeFluxes'].loc['M_ac', 'Prokaryotic'])] O2_Exchange_predicted = [abs(Calibration_Hackett_C005['Simulation_Results']['ExchangeFluxes'].loc['M_o2', 'Prokaryotic']), abs(Calibration_Hackett_C01['Simulation_Results'] ['ExchangeFluxes'].loc['M_o2', 'Prokaryotic']), abs(Calibration_Hackett_C016['Simulation_Results'] ['ExchangeFluxes'].loc['M_o2', 'Prokaryotic']), abs(Calibration_Hackett_C022['Simulation_Results'] ['ExchangeFluxes'].loc['M_o2', 'Prokaryotic']), abs(Calibration_Hackett_C03['Simulation_Results']['ExchangeFluxes'].loc['M_o2', 'Prokaryotic'])] Glycerol_Exchange_predicted = [abs(Calibration_Hackett_C005['Simulation_Results']['ExchangeFluxes'].loc['M_glyc', 'Prokaryotic']), abs(Calibration_Hackett_C01['Simulation_Results'] ['ExchangeFluxes'].loc['M_glyc', 'Prokaryotic']), abs(Calibration_Hackett_C016['Simulation_Results'] ['ExchangeFluxes'].loc['M_glyc', 'Prokaryotic']), abs(Calibration_Hackett_C022['Simulation_Results'] ['ExchangeFluxes'].loc['M_glyc', 'Prokaryotic']), abs(Calibration_Hackett_C03['Simulation_Results']['ExchangeFluxes'].loc['M_glyc', 'Prokaryotic'])] ### Glc_Exchange_predicted_euk = [abs(Calibration_Hackett_C005['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_glc__D', 'Eukaryotic']), abs(Calibration_Hackett_C01['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glc__D', 'Eukaryotic']), abs(Calibration_Hackett_C016['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glc__D', 'Eukaryotic']), abs(Calibration_Hackett_C022['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glc__D', 'Eukaryotic']), abs(Calibration_Hackett_C03['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_glc__D', 'Eukaryotic'])] EtOH_Exchange_predicted_euk = [abs(Calibration_Hackett_C005['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_etoh', 'Eukaryotic']), abs(Calibration_Hackett_C01['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_etoh', 'Eukaryotic']), abs(Calibration_Hackett_C016['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_etoh', 'Eukaryotic']), abs(Calibration_Hackett_C022['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_etoh', 'Eukaryotic']), abs(Calibration_Hackett_C03['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_etoh', 'Eukaryotic'])] Ac_Exchange_predicted_euk = [abs(Calibration_Hackett_C005['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_ac', 'Eukaryotic']), abs(Calibration_Hackett_C01['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_ac', 'Eukaryotic']), abs(Calibration_Hackett_C016['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_ac', 'Eukaryotic']), abs(Calibration_Hackett_C022['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_ac', 'Eukaryotic']), abs(Calibration_Hackett_C03['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_ac', 'Eukaryotic'])] O2_Exchange_predicted_euk = [abs(Calibration_Hackett_C005['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_o2', 'Eukaryotic']), abs(Calibration_Hackett_C01['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_o2', 'Eukaryotic']), abs(Calibration_Hackett_C016['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_o2', 'Eukaryotic']), abs(Calibration_Hackett_C022['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_o2', 'Eukaryotic']), abs(Calibration_Hackett_C03['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_o2', 'Eukaryotic'])] Glycerol_Exchange_predicted_euk = [abs(Calibration_Hackett_C005['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_glyc', 'Eukaryotic']), abs(Calibration_Hackett_C01['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glyc', 'Eukaryotic']), abs(Calibration_Hackett_C016['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glyc', 'Eukaryotic']), abs(Calibration_Hackett_C022['Simulation_Results_Euk'] ['ExchangeFluxes'].loc['M_glyc', 'Eukaryotic']), abs(Calibration_Hackett_C03['Simulation_Results_Euk']['ExchangeFluxes'].loc['M_glyc', 'Eukaryotic'])] ### fig, axs = plt.subplots(2, 3, figsize=(28, 7), sharex=True) # plt.figure() axs[0, 0].plot(Mu_Hackett, Mu_Hackett, color='lightgreen') axs[0, 0].scatter(Mu_Hackett, Mus_predicted, color='black') axs[0, 0].scatter(Mu_Hackett, Mus_predicted_euk, color='red') axs[0, 0].legend(['Hackett', 'Prok.', 'Euk.']) axs[0, 0].set_title('Predicted vs measured growth-rate') axs[0, 0].set_ylabel('$\mu$ [$h^{-1}$]') axs[0, 0].set_xlabel('$\mu$ [$h^{-1}$]') # plt.show() # plt.savefig(pp, format='pdf') # plt.figure() axs[0, 1].plot(Mus_o2, Glc_J, color='lightblue') axs[0, 1].plot(Mu_Hackett, Glc_Hackett, color='lightgreen') axs[0, 1].scatter(Mus_predicted, Glc_Exchange_predicted, color='black', alpha=0.8) axs[0, 1].scatter(Mus_predicted, Glc_Exchange_predicted_euk, color='red', alpha=0.8) # plt.scatter(Mus_Euk,[abs(i) for i in FluxFile_Euk.loc['M_glc__D',conditions].values.tolist()],color='red',alpha=0.8) # plt.scatter(Mus_testcase,[abs(i) for i in FluxFile_testcase.loc['M_glc__D',conditions].values.tolist()],color='orange',alpha=0.8) # Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast# axs[0, 1].legend(['<NAME>', 'Hackett', 'Prok.', 'Euk.']) axs[0, 1].set_title('Glucose-uptake rate') axs[0, 1].set_xlabel('$\mu$ [$h^{-1}$]') axs[0, 1].set_ylabel('$J^{Ex}$ [$mmol * g^{-1}_{DW} * h^{-1}$]') # plt.show() # plt.savefig(pp, format='pdf') # plt.figure() axs[0, 2].plot(Mus_o2, O2_J, color='lightblue') # plt.plot(Mu_Hackett,Glc_Hackett,color='lightgreen') axs[0, 2].scatter(Mus_predicted, O2_Exchange_predicted, color='black', alpha=0.8) axs[0, 2].scatter(Mus_predicted, O2_Exchange_predicted_euk, color='red', alpha=0.8) # plt.scatter(Mus_Euk,[abs(i) for i in FluxFile_Euk.loc['M_glc__D',conditions].values.tolist()],color='red',alpha=0.8) # plt.scatter(Mus_testcase,[abs(i) for i in FluxFile_testcase.loc['M_glc__D',conditions].values.tolist()],color='orange',alpha=0.8) # Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast# axs[0, 2].legend(['<NAME>', 'Prok.', 'Euk.']) axs[0, 2].set_title('Oxygen-uptake rate') axs[0, 2].set_xlabel('$\mu$ [$h^{-1}$]') axs[0, 2].set_ylabel('$J^{Ex}$ [$mmol * g^{-1}_{DW} * h^{-1}$]') # plt.show() # plt.savefig(pp, format='pdf') # plt.figure() axs[1, 0].plot(Mus_o2, EtOH_J, color='lightblue') axs[1, 0].plot(Mu_Hackett, EtOH_Hackett, color='lightgreen') axs[1, 0].scatter(Mus_predicted, EtOH_Exchange_predicted, color='black', alpha=0.8) axs[1, 0].scatter(Mus_predicted, EtOH_Exchange_predicted_euk, color='red', alpha=0.8) # plt.scatter(Mus_Euk,[abs(i) for i in FluxFile_Euk.loc['M_glc__D',conditions].values.tolist()],color='red',alpha=0.8) # plt.scatter(Mus_testcase,[abs(i) for i in FluxFile_testcase.loc['M_glc__D',conditions].values.tolist()],color='orange',alpha=0.8) # Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast# axs[1, 0].legend(['van Hoek', 'Hackett', 'Prok.', 'Euk.']) axs[1, 0].set_title('Ethanol-excretion rate') axs[1, 0].set_xlabel('$\mu$ [$h^{-1}$]') axs[1, 0].set_ylabel('$J^{Ex}$ [$mmol * g^{-1}_{DW} * h^{-1}$]') # plt.show() # plt.savefig(pp, format='pdf') # plt.figure() axs[1, 1].plot(Mus_o2, Ac_J, color='lightblue') axs[1, 1].plot(Mu_Hackett, Ac_Hackett, color='lightgreen') axs[1, 1].scatter(Mus_predicted, Ac_Exchange_predicted, color='black', alpha=0.8) axs[1, 1].scatter(Mus_predicted, Ac_Exchange_predicted_euk, color='red', alpha=0.8) # plt.scatter(Mus_Euk,[abs(i) for i in FluxFile_Euk.loc['M_ac',conditions].values.tolist()],color='red',alpha=0.8) # plt.scatter(Mus_testcase,[abs(i) for i in FluxFile_testcase.loc['M_ac',conditions].values.tolist()],color='orange',alpha=0.8) # Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast# axs[1, 1].legend(['<NAME>', 'Hackett', 'Prok.', 'Euk.']) axs[1, 1].set_title('Acetate-excretion rate') axs[1, 1].set_xlabel('$\mu$ [$h^{-1}$]') axs[1, 1].set_ylabel('$J^{Ex}$ [$mmol * g^{-1}_{DW} * h^{-1}$]') # plt.show() # plt.savefig(pp, format='pdf') axs[1, 2].plot(Mus_o2, Glyc_J, color='lightblue') axs[1, 2].plot(Mu_Hackett, Glyc_Hackett, color='lightgreen') axs[1, 2].scatter(Mus_predicted, Glycerol_Exchange_predicted, color='black', alpha=0.8) axs[1, 2].scatter(Mus_predicted, Glycerol_Exchange_predicted_euk, color='red', alpha=0.8) # plt.scatter(Mus_Euk,[abs(i) for i in FluxFile_Euk.loc['M_ac',conditions].values.tolist()],color='red',alpha=0.8) # plt.scatter(Mus_testcase,[abs(i) for i in FluxFile_testcase.loc['M_ac',conditions].values.tolist()],color='orange',alpha=0.8) # Effect of Specific Growth Rate on Fermentative Capacity of Baker’s Yeast# axs[1, 2].legend(['<NAME>', 'Hackett', 'Prok.', 'Euk.']) axs[1, 2].set_title('Glycerol-excretion rate') axs[1, 2].set_xlabel('$\mu$ [$h^{-1}$]') axs[1, 2].set_ylabel('$J^{Ex}$ [$mmol * g^{-1}_{DW} * h^{-1}$]') plt.show() protein_comparison_005 = pandas.DataFrame() for i in list(set(list(Calibration_Hackett_C005['Simulation_Results']['ProtoProteins'].index)+list(Calibration_Hackett_C005['Proteome']['ID']))): protein_comparison_005.loc[i, 'ID'] = i if i in list(Calibration_Hackett_C005['Simulation_Results']['ProtoProteins'].index): protein_comparison_005.loc[i, 'Predicted'] = 6.023e20 * \ Calibration_Hackett_C005['Simulation_Results']['ProtoProteins'].loc[i].values[0] if i in list(Calibration_Hackett_C005['Proteome']['ID']): protein_comparison_005.loc[i, 'Measured'] = 6.023e20 * \ Calibration_Hackett_C005['Proteome'].loc[Calibration_Hackett_C005['Proteome'] ['ID'] == i, 'copy_number'].values[0] protein_comparison_01 =
pandas.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import os import numpy as np import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import numpy.testing as npt from numpy.linalg import norm, lstsq from numpy.random import randn from flaky import flaky from lifelines import CoxPHFitter, WeibullAFTFitter, KaplanMeierFitter, ExponentialFitter from lifelines.datasets import load_regression_dataset, load_larynx, load_waltons, load_rossi from lifelines import utils from lifelines import exceptions from lifelines.utils.sklearn_adapter import sklearn_adapter from lifelines.utils.safe_exp import safe_exp def test_format_p_values(): assert utils.format_p_value(2)(0.004) == "<0.005" assert utils.format_p_value(3)(0.004) == "0.004" assert utils.format_p_value(3)(0.000) == "<0.0005" assert utils.format_p_value(3)(0.005) == "0.005" assert utils.format_p_value(3)(0.2111) == "0.211" assert utils.format_p_value(3)(0.2119) == "0.212" def test_ridge_regression_with_penalty_is_less_than_without_penalty(): X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1=2.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) assert norm(utils.ridge_regression(X, Y, c1=1.0, c2=1.0)[0]) <= norm(utils.ridge_regression(X, Y)[0]) def test_ridge_regression_with_extreme_c1_penalty_equals_close_to_zero_vector(): c1 = 10e8 c2 = 0.0 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0]) < 10e-4 def test_ridge_regression_with_extreme_c2_penalty_equals_close_to_offset(): c1 = 0.0 c2 = 10e8 offset = np.ones(2) X = randn(2, 2) Y = randn(2) assert norm(utils.ridge_regression(X, Y, c1, c2, offset)[0] - offset) < 10e-4 def test_lstsq_returns_similar_values_to_ridge_regression(): X = randn(2, 2) Y = randn(2) expected = lstsq(X, Y, rcond=None)[0] assert norm(utils.ridge_regression(X, Y)[0] - expected) < 10e-4 def test_lstsq_returns_correct_values(): X = np.array([[-1.0, -1.0], [-1.0, 0], [-0.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] beta, V = utils.ridge_regression(X, y) expected_beta = [-0.98684211, -0.07894737] expected_v = [ [-0.03289474, -0.49342105, 0.06578947, 0.03289474, 0.49342105], [-0.30263158, 0.46052632, -0.39473684, 0.30263158, -0.46052632], ] assert norm(beta - expected_beta) < 10e-4 for V_row, e_v_row in zip(V, expected_v): assert norm(V_row - e_v_row) < 1e-4 def test_unnormalize(): df = load_larynx() m = df.mean(0) s = df.std(0) ndf = utils.normalize(df) npt.assert_almost_equal(df.values, utils.unnormalize(ndf, m, s).values) def test_normalize(): df = load_larynx() n, d = df.shape npt.assert_almost_equal(utils.normalize(df).mean(0).values, np.zeros(d)) npt.assert_almost_equal(utils.normalize(df).std(0).values, np.ones(d)) def test_median(): sv = pd.DataFrame(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_median_accepts_series(): sv = pd.Series(1 - np.linspace(0, 1, 1000)) assert utils.median_survival_times(sv) == 500 def test_qth_survival_times_with_varying_datatype_inputs(): sf_list = [1.0, 0.75, 0.5, 0.25, 0.0] sf_array = np.array([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_no_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_series_no_index = pd.Series([1.0, 0.75, 0.5, 0.25, 0.0]) q = 0.5 assert utils.qth_survival_times(q, sf_list) == 2 assert utils.qth_survival_times(q, sf_array) == 2 assert utils.qth_survival_times(q, sf_df_no_index) == 2 assert utils.qth_survival_times(q, sf_df_index) == 30 assert utils.qth_survival_times(q, sf_series_index) == 30 assert utils.qth_survival_times(q, sf_series_no_index) == 2 def test_qth_survival_times_multi_dim_input(): sf = np.linspace(1, 0, 50) sf_multi_df = pd.DataFrame({"sf": sf, "sf**2": sf ** 2}) medians = utils.qth_survival_times(0.5, sf_multi_df) assert medians["sf"].loc[0.5] == 25 assert medians["sf**2"].loc[0.5] == 15 def test_qth_survival_time_returns_inf(): sf = pd.Series([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.5, sf) == np.inf def test_qth_survival_time_accepts_a_model(): kmf = KaplanMeierFitter().fit([1.0, 0.7, 0.6]) assert utils.qth_survival_time(0.8, kmf) > 0 def test_qth_survival_time_with_dataframe(): sf_df_no_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0]) sf_df_index = pd.DataFrame([1.0, 0.75, 0.5, 0.25, 0.0], index=[10, 20, 30, 40, 50]) sf_df_too_many_columns = pd.DataFrame([[1, 2], [3, 4]]) assert utils.qth_survival_time(0.5, sf_df_no_index) == 2 assert utils.qth_survival_time(0.5, sf_df_index) == 30 with pytest.raises(ValueError): utils.qth_survival_time(0.5, sf_df_too_many_columns) def test_qth_survival_times_with_multivariate_q(): sf = np.linspace(1, 0, 50) sf_multi_df = pd.DataFrame({"sf": sf, "sf**2": sf ** 2}) assert_frame_equal( utils.qth_survival_times([0.2, 0.5], sf_multi_df), pd.DataFrame([[40, 28], [25, 15]], index=[0.2, 0.5], columns=["sf", "sf**2"]), ) assert_frame_equal( utils.qth_survival_times([0.2, 0.5], sf_multi_df["sf"]), pd.DataFrame([40, 25], index=[0.2, 0.5], columns=["sf"]) ) assert_frame_equal(utils.qth_survival_times(0.5, sf_multi_df), pd.DataFrame([[25, 15]], index=[0.5], columns=["sf", "sf**2"])) assert utils.qth_survival_times(0.5, sf_multi_df["sf"]) == 25 def test_qth_survival_times_with_duplicate_q_returns_valid_index_and_shape(): sf = pd.DataFrame(np.linspace(1, 0, 50)) q = pd.Series([0.5, 0.5, 0.2, 0.0, 0.0]) actual = utils.qth_survival_times(q, sf) assert actual.shape[0] == len(q) assert actual.index[0] == actual.index[1] assert_series_equal(actual.iloc[0], actual.iloc[1]) npt.assert_almost_equal(actual.index.values, q.values) def test_datetimes_to_durations_with_different_frequencies(): # days start_date = ["2013-10-10 0:00:00", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "2013-10-10 0:00:00", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date) npt.assert_almost_equal(T, np.array([3, 1, 5 + 365])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) # years start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "2013-10-10", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y") npt.assert_almost_equal(T, np.array([0, 0, 1])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) # hours start_date = ["2013-10-10 17:00:00", "2013-10-09 0:00:00", "2013-10-10 23:00:00"] end_date = ["2013-10-10 18:00:00", "2013-10-10 0:00:00", "2013-10-11 2:00:00"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="h") npt.assert_almost_equal(T, np.array([1, 24, 3])) npt.assert_almost_equal(C, np.array([1, 1, 1], dtype=bool)) def test_datetimes_to_durations_will_handle_dates_above_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", "2013-10-12", "2013-10-15"] T, C = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date="2013-10-12") npt.assert_almost_equal(C, np.array([1, 1, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 2])) def test_datetimes_to_durations_will_handle_dates_above_multi_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", None, None] last_observation = ["2013-10-10", "2013-10-12", "2013-10-14"] T, E = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date=last_observation) npt.assert_almost_equal(E, np.array([1, 0, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 4])) def test_datetimes_to_durations_will_handle_dates_above_multi_fill_date(): start_date = ["2013-10-08", "2013-10-09", "2013-10-10"] end_date = ["2013-10-10", None, "2013-10-20"] last_observation = ["2013-10-10", "2013-10-12", "2013-10-14"] T, E = utils.datetimes_to_durations(start_date, end_date, freq="D", fill_date=last_observation) npt.assert_almost_equal(E, np.array([1, 0, 0], dtype=bool)) npt.assert_almost_equal(T, np.array([2, 3, 4])) def test_datetimes_to_durations_censor(): start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", None, ""] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y") npt.assert_almost_equal(C, np.array([1, 0, 0], dtype=bool)) def test_datetimes_to_durations_custom_censor(): start_date = ["2013-10-10", "2013-10-09", "2012-10-10"] end_date = ["2013-10-13", "NaT", ""] T, C = utils.datetimes_to_durations(start_date, end_date, freq="Y", na_values=["NaT", ""]) npt.assert_almost_equal(C, np.array([1, 0, 0], dtype=bool)) def test_survival_events_from_table_no_ties(): T, C = np.array([1, 2, 3, 4, 4, 5]), np.array([1, 0, 1, 1, 0, 1]) d = utils.survival_table_from_events(T, C) T_, C_, W_ = utils.survival_events_from_table(d[["censored", "observed"]]) npt.assert_array_equal(T, T_) npt.assert_array_equal(C, C_) npt.assert_array_equal(W_, np.ones_like(T)) def test_survival_events_from_table_with_ties(): T, C = np.array([1, 2, 3, 4, 4, 5]), np.array([1, 0, 1, 1, 1, 1]) d = utils.survival_table_from_events(T, C) T_, C_, W_ = utils.survival_events_from_table(d[["censored", "observed"]]) npt.assert_array_equal([1, 2, 3, 4, 5], T_) npt.assert_array_equal([1, 0, 1, 1, 1], C_) npt.assert_array_equal([1, 1, 1, 2, 1], W_) def test_survival_table_from_events_with_non_trivial_censorship_column(): T = np.random.exponential(5, size=50) malformed_C = np.random.binomial(2, p=0.8) # set to 2 on purpose! proper_C = malformed_C > 0 # (proper "boolean" array) table1 = utils.survival_table_from_events(T, malformed_C, np.zeros_like(T)) table2 = utils.survival_table_from_events(T, proper_C, np.zeros_like(T)) assert_frame_equal(table1, table2) def test_group_survival_table_from_events_on_waltons_data(): df = load_waltons() g, removed, observed, censored = utils.group_survival_table_from_events(df["group"], df["T"], df["E"]) assert len(g) == 2 assert all(removed.columns == ["removed:miR-137", "removed:control"]) assert all(removed.index == observed.index) assert all(removed.index == censored.index) def test_group_survival_table_with_weights(): df = load_waltons() dfw = df.groupby(["T", "E", "group"]).size().reset_index().rename(columns={0: "weights"}) gw, removedw, observedw, censoredw = utils.group_survival_table_from_events( dfw["group"], dfw["T"], dfw["E"], weights=dfw["weights"] ) assert len(gw) == 2 assert all(removedw.columns == ["removed:miR-137", "removed:control"]) assert all(removedw.index == observedw.index) assert all(removedw.index == censoredw.index) g, removed, observed, censored = utils.group_survival_table_from_events(df["group"], df["T"], df["E"]) assert_frame_equal(removedw, removed) assert_frame_equal(observedw, observed) assert_frame_equal(censoredw, censored) def test_survival_table_from_events_binned_with_empty_bin(): df = load_waltons() ix = df["group"] == "miR-137" event_table = utils.survival_table_from_events(df.loc[ix]["T"], df.loc[ix]["E"], intervals=[0, 10, 20, 30, 40, 50]) assert not pd.isnull(event_table).any().any() def test_survival_table_from_events_at_risk_column(): df = load_waltons() # from R expected = [ 163.0, 162.0, 160.0, 157.0, 154.0, 152.0, 151.0, 148.0, 144.0, 139.0, 134.0, 133.0, 130.0, 128.0, 126.0, 119.0, 118.0, 108.0, 107.0, 99.0, 96.0, 89.0, 87.0, 69.0, 65.0, 49.0, 38.0, 36.0, 27.0, 24.0, 14.0, 1.0, ] df = utils.survival_table_from_events(df["T"], df["E"]) assert list(df["at_risk"][1:]) == expected # skip the first event as that is the birth time, 0. def test_survival_table_to_events_casts_to_float(): T, C = (np.array([1, 2, 3, 4, 4, 5]), np.array([True, False, True, True, True, True])) d = utils.survival_table_from_events(T, C, np.zeros_like(T)) npt.assert_array_equal(d["censored"].values, np.array([0.0, 0.0, 1.0, 0.0, 0.0, 0.0])) npt.assert_array_equal(d["removed"].values, np.array([0.0, 1.0, 1.0, 1.0, 2.0, 1.0])) def test_group_survival_table_from_events_works_with_series(): df = pd.DataFrame([[1, True, 3], [1, True, 3], [4, False, 2]], columns=["duration", "E", "G"]) ug, _, _, _ = utils.group_survival_table_from_events(df.G, df.duration, df.E, np.array([[0, 0, 0]])) npt.assert_array_equal(ug, np.array([3, 2])) def test_survival_table_from_events_will_collapse_if_asked(): T, C = np.array([1, 3, 4, 5]), np.array([True, True, True, True]) table = utils.survival_table_from_events(T, C, collapse=True) assert table.index.tolist() == [ pd.Interval(-0.001, 3.5089999999999999, closed="right"), pd.Interval(3.5089999999999999, 7.0179999999999998, closed="right"), ] def test_survival_table_from_events_will_collapse_to_desired_bins(): T, C = np.array([1, 3, 4, 5]), np.array([True, True, True, True]) table = utils.survival_table_from_events(T, C, collapse=True, intervals=[0, 4, 8]) assert table.index.tolist() == [pd.Interval(-0.001, 4, closed="right"), pd.Interval(4, 8, closed="right")] def test_cross_validator_returns_k_results(): cf = CoxPHFitter() results = utils.k_fold_cross_validation(cf, load_regression_dataset(), duration_col="T", event_col="E", k=3) assert len(results) == 3 results = utils.k_fold_cross_validation(cf, load_regression_dataset(), duration_col="T", event_col="E", k=5) assert len(results) == 5 def test_cross_validator_returns_fitters_k_results(): cf = CoxPHFitter() fitters = [cf, cf] results = utils.k_fold_cross_validation(fitters, load_regression_dataset(), duration_col="T", event_col="E", k=3) assert len(results) == 2 assert len(results[0]) == len(results[1]) == 3 results = utils.k_fold_cross_validation(fitters, load_regression_dataset(), duration_col="T", event_col="E", k=5) assert len(results) == 2 assert len(results[0]) == len(results[1]) == 5 def test_cross_validator_with_predictor(): cf = CoxPHFitter() results = utils.k_fold_cross_validation(cf, load_regression_dataset(), duration_col="T", event_col="E", k=3) assert len(results) == 3 def test_cross_validator_with_stratified_cox_model(): cf = CoxPHFitter(strata=["race"]) utils.k_fold_cross_validation(cf, load_rossi(), duration_col="week", event_col="arrest") def test_cross_validator_with_specific_loss_function(): cf = CoxPHFitter() results_sq = utils.k_fold_cross_validation( cf, load_regression_dataset(), scoring_method="concordance_index", duration_col="T", event_col="E" ) def test_concordance_index(): size = 1000 T = np.random.normal(size=size) P = np.random.normal(size=size) C = np.random.choice([0, 1], size=size) Z = np.zeros_like(T) # Zeros is exactly random assert utils.concordance_index(T, Z) == 0.5 assert utils.concordance_index(T, Z, C) == 0.5 # Itself is 1 assert utils.concordance_index(T, T) == 1.0 assert utils.concordance_index(T, T, C) == 1.0 # Random is close to 0.5 assert abs(utils.concordance_index(T, P) - 0.5) < 0.05 assert abs(utils.concordance_index(T, P, C) - 0.5) < 0.05 def test_survival_table_from_events_with_non_negative_T_and_no_lagged_births(): n = 10 T = np.arange(n) C = [True] * n min_obs = [0] * n df = utils.survival_table_from_events(T, C, min_obs) assert df.iloc[0]["entrance"] == n assert df.index[0] == T.min() assert df.index[-1] == T.max() def test_survival_table_from_events_with_negative_T_and_no_lagged_births(): n = 10 T = np.arange(-n / 2, n / 2) C = [True] * n min_obs = None df = utils.survival_table_from_events(T, C, min_obs) assert df.iloc[0]["entrance"] == n assert df.index[0] == T.min() assert df.index[-1] == T.max() def test_survival_table_from_events_with_non_negative_T_and_lagged_births(): n = 10 T = np.arange(n) C = [True] * n min_obs = np.linspace(0, 2, n) df = utils.survival_table_from_events(T, C, min_obs) assert df.iloc[0]["entrance"] == 1 assert df.index[0] == T.min() assert df.index[-1] == T.max() def test_survival_table_from_events_with_negative_T_and_lagged_births(): n = 10 T = np.arange(-n / 2, n / 2) C = [True] * n min_obs = np.linspace(-n / 2, 2, n) df = utils.survival_table_from_events(T, C, min_obs) assert df.iloc[0]["entrance"] == 1 assert df.index[0] == T.min() assert df.index[-1] == T.max() def test_survival_table_from_events_raises_value_error_if_too_early_births(): n = 10 T = np.arange(0, n) C = [True] * n min_obs = T.copy() min_obs[1] = min_obs[1] + 10 with pytest.raises(ValueError): utils.survival_table_from_events(T, C, min_obs) class TestLongDataFrameUtils(object): @pytest.fixture def seed_df(self): df = pd.DataFrame.from_records([{"id": 1, "var1": 0.1, "T": 10, "E": 1}, {"id": 2, "var1": 0.5, "T": 12, "E": 0}]) return utils.to_long_format(df, "T") @pytest.fixture def cv1(self): return pd.DataFrame.from_records( [ {"id": 1, "t": 0, "var2": 1.4}, {"id": 1, "t": 4, "var2": 1.2}, {"id": 1, "t": 8, "var2": 1.5}, {"id": 2, "t": 0, "var2": 1.6}, ] ) @pytest.fixture def cv2(self): return pd.DataFrame.from_records( [{"id": 1, "t": 0, "var3": 0}, {"id": 1, "t": 6, "var3": 1}, {"id": 2, "t": 0, "var3": 0}] ) def test_order_of_adding_covariates_doesnt_matter(self, seed_df, cv1, cv2): df12 = seed_df.pipe(utils.add_covariate_to_timeline, cv1, "id", "t", "E").pipe( utils.add_covariate_to_timeline, cv2, "id", "t", "E" ) df21 = seed_df.pipe(utils.add_covariate_to_timeline, cv2, "id", "t", "E").pipe( utils.add_covariate_to_timeline, cv1, "id", "t", "E" ) assert_frame_equal(df21, df12, check_like=True) def test_order_of_adding_covariates_doesnt_matter_in_cumulative_sum(self, seed_df, cv1, cv2): df12 = seed_df.pipe(utils.add_covariate_to_timeline, cv1, "id", "t", "E", cumulative_sum=True).pipe( utils.add_covariate_to_timeline, cv2, "id", "t", "E", cumulative_sum=True ) df21 = seed_df.pipe(utils.add_covariate_to_timeline, cv2, "id", "t", "E", cumulative_sum=True).pipe( utils.add_covariate_to_timeline, cv1, "id", "t", "E", cumulative_sum=True ) assert_frame_equal(df21, df12, check_like=True) def test_adding_cvs_with_the_same_column_name_will_insert_appropriately(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] cv = pd.DataFrame.from_records([{"id": 1, "t": 1, "var1": 1.0}, {"id": 1, "t": 2, "var1": 2.0}]) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E") expected = pd.DataFrame.from_records( [ {"E": False, "id": 1, "stop": 1.0, "start": 0, "var1": 0.1}, {"E": False, "id": 1, "stop": 2.0, "start": 1, "var1": 1.0}, {"E": True, "id": 1, "stop": 10.0, "start": 2, "var1": 2.0}, ] ) assert_frame_equal(df, expected, check_like=True) def test_adding_cvs_with_the_same_column_name_will_sum_update_appropriately(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] new_value_at_time_0 = 1.0 old_value_at_time_0 = seed_df["var1"].iloc[0] cv = pd.DataFrame.from_records([{"id": 1, "t": 0, "var1": new_value_at_time_0, "var2": 2.0}]) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E", overwrite=False) expected = pd.DataFrame.from_records( [{"E": True, "id": 1, "stop": 10.0, "start": 0, "var1": new_value_at_time_0 + old_value_at_time_0, "var2": 2.0}] ) assert_frame_equal(df, expected, check_like=True) def test_adding_cvs_with_the_same_column_name_will_overwrite_update_appropriately(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] new_value_at_time_0 = 1.0 cv = pd.DataFrame.from_records([{"id": 1, "t": 0, "var1": new_value_at_time_0}]) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E", overwrite=True) expected = pd.DataFrame.from_records([{"E": True, "id": 1, "stop": 10.0, "start": 0, "var1": new_value_at_time_0}]) assert_frame_equal(df, expected, check_like=True) def test_enum_flag(self, seed_df, cv1, cv2): df = seed_df.pipe(utils.add_covariate_to_timeline, cv1, "id", "t", "E", add_enum=True).pipe( utils.add_covariate_to_timeline, cv2, "id", "t", "E", add_enum=True ) idx = df["id"] == 1 n = idx.sum() try: assert_series_equal(df["enum"].loc[idx], pd.Series(np.arange(1, n + 1)), check_names=False) except AssertionError as e: # Windows Numpy and Pandas sometimes have int32 or int64 as default dtype if os.name == "nt" and "int32" in str(e) and "int64" in str(e): assert_series_equal( df["enum"].loc[idx], pd.Series(np.arange(1, n + 1), dtype=df["enum"].loc[idx].dtypes), check_names=False ) else: raise e def test_event_col_is_properly_inserted(self, seed_df, cv2): df = seed_df.pipe(utils.add_covariate_to_timeline, cv2, "id", "t", "E") assert df.groupby("id").last()["E"].tolist() == [1, 0] def test_redundant_cv_columns_are_dropped(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] cv = pd.DataFrame.from_records( [ {"id": 1, "t": 0, "var3": 0, "var4": 1}, {"id": 1, "t": 1, "var3": 0, "var4": 1}, # redundant, as nothing changed during the interval {"id": 1, "t": 3, "var3": 0, "var4": 1}, # redundant, as nothing changed during the interval {"id": 1, "t": 6, "var3": 1, "var4": 1}, {"id": 1, "t": 9, "var3": 1, "var4": 1}, # redundant, as nothing changed during the interval ] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E") assert df.shape[0] == 2 def test_will_convert_event_column_to_bools(self, seed_df, cv1): seed_df["E"] = seed_df["E"].astype(int) df = seed_df.pipe(utils.add_covariate_to_timeline, cv1, "id", "t", "E") assert df.dtypes["E"] == bool def test_if_cvs_include_a_start_time_after_the_final_time_it_is_excluded(self, seed_df): max_T = seed_df["stop"].max() cv = pd.DataFrame.from_records( [ {"id": 1, "t": 0, "var3": 0}, {"id": 1, "t": max_T + 10, "var3": 1}, # will be excluded {"id": 2, "t": 0, "var3": 0}, ] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E") assert df.shape[0] == 2 def test_if_cvs_include_a_start_time_before_it_is_included(self, seed_df): min_T = seed_df["start"].min() cv = pd.DataFrame.from_records( [{"id": 1, "t": 0, "var3": 0}, {"id": 1, "t": min_T - 1, "var3": 1}, {"id": 2, "t": 0, "var3": 0}] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E") assert df.shape[0] == 3 def test_cvs_with_null_values_are_dropped(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] cv = pd.DataFrame.from_records( [{"id": None, "t": 0, "var3": 0}, {"id": 1, "t": None, "var3": 1}, {"id": 2, "t": 0, "var3": None}] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E") assert df.shape[0] == 1 def test_a_new_row_is_not_created_if_start_times_are_the_same(self, seed_df): seed_df = seed_df[seed_df["id"] == 1] cv1 = pd.DataFrame.from_records([{"id": 1, "t": 0, "var3": 0}, {"id": 1, "t": 5, "var3": 1}]) cv2 = pd.DataFrame.from_records( [{"id": 1, "t": 0, "var4": 0}, {"id": 1, "t": 5, "var4": 1.5}, {"id": 1, "t": 6, "var4": 1.7}] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv1, "id", "t", "E").pipe( utils.add_covariate_to_timeline, cv2, "id", "t", "E" ) assert df.shape[0] == 3 def test_error_is_raised_if_columns_are_missing_in_seed_df(self, seed_df, cv1): del seed_df["start"] with pytest.raises(IndexError): utils.add_covariate_to_timeline(seed_df, cv1, "id", "t", "E") def test_cumulative_sum(self): seed_df = pd.DataFrame.from_records([{"id": 1, "start": 0, "stop": 5, "E": 1}]) cv = pd.DataFrame.from_records([{"id": 1, "t": 0, "var4": 1}, {"id": 1, "t": 1, "var4": 1}, {"id": 1, "t": 3, "var4": 1}]) df = seed_df.pipe(utils.add_covariate_to_timeline, cv, "id", "t", "E", cumulative_sum=True) expected = pd.DataFrame.from_records( [ {"id": 1, "start": 0, "stop": 1.0, "cumsum_var4": 1, "E": False}, {"id": 1, "start": 1, "stop": 3.0, "cumsum_var4": 2, "E": False}, {"id": 1, "start": 3, "stop": 5.0, "cumsum_var4": 3, "E": True}, ] ) assert_frame_equal(expected, df, check_like=True) def test_delay(self, cv2): seed_df = pd.DataFrame.from_records([{"id": 1, "start": 0, "stop": 50, "E": 1}]) cv3 = pd.DataFrame.from_records( [{"id": 1, "t": 0, "varA": 2}, {"id": 1, "t": 10, "varA": 4}, {"id": 1, "t": 20, "varA": 6}] ) df = seed_df.pipe(utils.add_covariate_to_timeline, cv3, "id", "t", "E", delay=2).fillna(0) expected = pd.DataFrame.from_records( [ {"start": 0, "stop": 2.0, "varA": 0.0, "id": 1, "E": False}, {"start": 2, "stop": 12.0, "varA": 2.0, "id": 1, "E": False}, {"start": 12, "stop": 22.0, "varA": 4.0, "id": 1, "E": False}, {"start": 22, "stop": 50.0, "varA": 6.0, "id": 1, "E": True}, ] ) assert_frame_equal(expected, df, check_like=True) def test_covariates_from_event_matrix_with_simple_addition(self): base_df = pd.DataFrame([[1, 0, 5, 1], [2, 0, 4, 1], [3, 0, 8, 1], [4, 0, 4, 1]], columns=["id", "start", "stop", "e"]) event_df = pd.DataFrame([[1, 1], [2, 2], [3, 3], [4, None]], columns=["id", "poison"]) cv = utils.covariates_from_event_matrix(event_df, "id") ldf = utils.add_covariate_to_timeline(base_df, cv, "id", "duration", "e", cumulative_sum=True) assert pd.notnull(ldf).all().all() expected = pd.DataFrame( [ (0.0, 0.0, 1.0, 1, False), (1.0, 1.0, 5.0, 1, True), (0.0, 0.0, 2.0, 2, False), (2.0, 1.0, 4.0, 2, True), (0.0, 0.0, 3.0, 3, False), (3.0, 1.0, 8.0, 3, True), (0.0, 0.0, 4.0, 4, True), ], columns=["start", "cumsum_poison", "stop", "id", "e"], ) assert_frame_equal(expected, ldf, check_dtype=False, check_like=True) def test_covariates_from_event_matrix(self): base_df = pd.DataFrame([[1, 0, 5, 1], [2, 0, 4, 1], [3, 0, 8, 1], [4, 0, 4, 1]], columns=["id", "start", "stop", "e"]) event_df = pd.DataFrame( [[1, 1, None, 2], [2, None, 5, None], [3, 3, 3, 7]], columns=["id", "promotion", "movement", "raise"] ) cv = utils.covariates_from_event_matrix(event_df, "id") ldf = utils.add_covariate_to_timeline(base_df, cv, "id", "duration", "e", cumulative_sum=True) expected = pd.DataFrame.from_records( [ { "cumsum_movement": 0.0, "cumsum_promotion": 0.0, "cumsum_raise": 0.0, "e": 0.0, "id": 1.0, "start": 0.0, "stop": 1.0, }, { "cumsum_movement": 0.0, "cumsum_promotion": 1.0, "cumsum_raise": 0.0, "e": 0.0, "id": 1.0, "start": 1.0, "stop": 2.0, }, { "cumsum_movement": 0.0, "cumsum_promotion": 1.0, "cumsum_raise": 1.0, "e": 1.0, "id": 1.0, "start": 2.0, "stop": 5.0, }, { "cumsum_movement": 0.0, "cumsum_promotion": 0.0, "cumsum_raise": 0.0, "e": 1.0, "id": 2.0, "start": 0.0, "stop": 4.0, }, { "cumsum_movement": 0.0, "cumsum_promotion": 0.0, "cumsum_raise": 0.0, "e": 0.0, "id": 3.0, "start": 0.0, "stop": 3.0, }, { "cumsum_movement": 1.0, "cumsum_promotion": 1.0, "cumsum_raise": 0.0, "e": 0.0, "id": 3.0, "start": 3.0, "stop": 7.0, }, { "cumsum_movement": 1.0, "cumsum_promotion": 1.0, "cumsum_raise": 1.0, "e": 1.0, "id": 3.0, "start": 7.0, "stop": 8.0, }, { "cumsum_movement": None, "cumsum_promotion": None, "cumsum_raise": None, "e": 1.0, "id": 4.0, "start": 0.0, "stop": 4.0, }, ] ) assert_frame_equal(expected, ldf, check_dtype=False, check_like=True) def test_to_episodic_format_with_long_time_gap_is_identical(self): rossi = load_rossi() rossi["id"] = np.arange(rossi.shape[0]) long_rossi = utils.to_episodic_format(rossi, duration_col="week", event_col="arrest", id_col="id", time_gaps=1000.0) # using astype(int) would fail on Windows because int32 and int64 are used as dtype long_rossi["week"] = long_rossi["stop"].astype(rossi["week"].dtype) del long_rossi["start"] del long_rossi["stop"] assert_frame_equal(long_rossi, rossi, check_like=True) def test_to_episodic_format_preserves_outcome(self): E = [1, 1, 0, 0] df = pd.DataFrame({"T": [1, 3, 1, 3], "E": E, "id": [1, 2, 3, 4]}) long_df = utils.to_episodic_format(df, "T", "E", id_col="id").sort_values(["id", "stop"]) assert long_df.shape[0] == 1 + 3 + 1 + 3 assert long_df.groupby("id").last()["E"].tolist() == E def test_to_episodic_format_handles_floating_durations(self): df = pd.DataFrame({"T": [0.1, 3.5], "E": [1, 1], "id": [1, 2]}) long_df = utils.to_episodic_format(df, "T", "E", id_col="id").sort_values(["id", "stop"]) assert long_df.shape[0] == 1 + 4 assert long_df["stop"].tolist() == [0.1, 1, 2, 3, 3.5] def test_to_episodic_format_handles_floating_durations_with_time_gaps(self): df = pd.DataFrame({"T": [0.1, 3.5], "E": [1, 1], "id": [1, 2]}) long_df = utils.to_episodic_format(df, "T", "E", id_col="id", time_gaps=2.0).sort_values(["id", "stop"]) assert long_df["stop"].tolist() == [0.1, 2, 3.5] def test_to_episodic_format_handles_floating_durations_and_preserves_events(self): df =
pd.DataFrame({"T": [0.1, 3.5], "E": [1, 0], "id": [1, 2]})
pandas.DataFrame
from http.server import BaseHTTPRequestHandler, HTTPServer import socketserver import pickle import urllib.request import json from pprint import pprint from pandas.io.json import json_normalize import pandas as pd from sklearn import preprocessing from sklearn.preprocessing import PolynomialFeatures from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale from sklearn.preprocessing import PolynomialFeatures import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error from sklearn.linear_model import Ridge from math import sqrt import os import errno from pymongo import MongoClient import urllib.parse as urlparse from influxdb import InfluxDBClient from pymongo import MongoClient import pandas as pd from pandas.io.json import json_normalize from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline from sklearn.linear_model import TheilSenRegressor from sklearn.datasets import make_regression class Terminus(BaseHTTPRequestHandler): def getAllNodeNames(self,client): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY=nodename;") nodeNames_temp = list(queryResult.get_points()) dfnodeNames = pd.DataFrame(nodeNames_temp) allNodeNames = dfnodeNames[:]["value"] return allNodeNames def getNamespaceNames(self,client,node): nsQuery = client.query("SHOW TAG VALUES FROM uptime WITH KEY=namespace_name WHERE nodename = '"+node+"';") nsQuery_temp = list(nsQuery.get_points()) dfnsNames = pd.DataFrame(nsQuery_temp) allnsNames = dfnsNames[:]["value"] return allnsNames def getAllPodNames(self,client,node,ns_name): queryResult = client.query("SHOW TAG VALUES FROM uptime WITH KEY = pod_name WHERE namespace_name = '"+ns_name+"' AND nodename = '"+node+"';") podNames_temp = list(queryResult.get_points()) dfpodNames = pd.DataFrame(podNames_temp) if dfpodNames.empty: return dfpodNames else: allpodNames = dfpodNames[:]["value"] return allpodNames def getCPUUtilizationNode(self,client, node): queryResult = client.query('SELECT * FROM "cpu/node_utilization" where nodename = \''+node+'\' AND type=\'node\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/node_utilization']) return dfcpuUtilization def getCPUUtilizationPod(self,client, node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "cpu/usage_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/usage_rate']) return dfcpuUtilization def getCPUUtilizationPodContainer(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "cpu/usage_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod_container\';') dfcpuUtilization = pd.DataFrame(queryResult['cpu/usage_rate']) return dfcpuUtilization def prepareCpuUtilization(self,client,node,ns_name, pod_name): cpuUtilization = self.getCPUUtilizationNode(client,node) podCpuUtilization = self.getCPUUtilizationPod(client,node,ns_name, pod_name) containercpuUtilization = self.getCPUUtilizationPodContainer(client,node,ns_name, pod_name) plt.plot(cpuUtilization.index, cpuUtilization['value'] *1000, 'r', label="node") # plotting t, a separately plt.plot(podCpuUtilization.index, podCpuUtilization['value'], 'b', label="pod") # plotting t, b separately plt.plot(containercpuUtilization.index, containercpuUtilization['value'], 'g', label="container") # plotting t, c separately plt.legend(loc='upper left') plt.show() def getMemoryUtilizationNode(self,client,node): queryResult = client.query('SELECT * FROM "memory/node_utilization" where nodename = \''+node+'\' AND type=\'node\';') dfmemUtilization = pd.DataFrame(queryResult['memory/node_utilization']) return dfmemUtilization def getMemoryUtilizationPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "memory/usage" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['memory/usage']) return dfmemUtilization def getMemoryUtilizationPodContainer(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "memory/usage" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod_container\';') dfmemUtilization = pd.DataFrame(queryResult['memory/usage']) return dfmemUtilization def prepareMemoryUtilization(self,client,node,ns_name, pod_name): memoryUtilization = self.getMemoryUtilizationNode(client,node) podMemoryUtilization = self.getMemoryUtilizationPod(client,node,ns_name, pod_name) containerMemoryUtilization = self.getMemoryUtilizationPodContainer(client,node,ns_name, pod_name) plt.plot(memoryUtilization.index, memoryUtilization['value'], 'r', label="node") # plotting t, a separately plt.plot(podMemoryUtilization.index, podMemoryUtilization['value'], 'b', label="pod") # plotting t, b separately plt.plot(containerMemoryUtilization.index, containerMemoryUtilization['value'], 'g', label="container") # plotting t, c separately plt.legend(loc='upper left') plt.show() def getNetworkTxRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_rate']) return dfmemUtilization def getNetworkTxPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx']) return dfmemUtilization def getNetworkTxErrorsPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_errors" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_errors']) return dfmemUtilization def getNetworkTxErrorsRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/tx_errors_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/tx_errors_rate']) return dfmemUtilization def prepareNetworkTxRateUtilization(self,client,node,ns_name, pod_name): podNetworTxRate = self.getNetworkTxRatePod(client,node,ns_name, pod_name) podNetworTx = self.getNetworkTxPod(client,node,ns_name, pod_name) podNetworkError = self.getNetworkTxErrorsPod(client,node,ns_name, pod_name) podNetworkErrorRate = self.getNetworkTxErrorsRatePod(client,node,ns_name, pod_name) plt.plot(podNetworTxRate.index, podNetworTxRate['value'], 'b') # plotting t, b separately #plt.plot(podNetworTx.index, podNetworTx['value'], 'g') # plotting t, b separately #plt.plot(podNetworkError.index, podNetworkError['value'], 'y') # plotting t, b separately plt.plot(podNetworkErrorRate.index, podNetworkErrorRate['value'], 'r') # plotting t, b separately plt.show() def getNetworkRxRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_rate']) return dfmemUtilization def getNetworkRxPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx']) return dfmemUtilization def getNetworkRxErrorsPod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_errors" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_errors']) return dfmemUtilization def getNetworkRxErrorsRatePod(self,client,node,ns_name, pod_name): queryResult = client.query('SELECT * FROM "network/rx_errors_rate" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\';') dfmemUtilization = pd.DataFrame(queryResult['network/rx_errors_rate']) return dfmemUtilization def prepareNetworkRxRateUtilization(self,client,node,ns_name, pod_name): podNetworRxRate = self.getNetworkRxRatePod(client,node,ns_name, pod_name) podNetworRx = self.getNetworkRxPod(client,node,ns_name, pod_name) podNetworkError = self.getNetworkRxErrorsPod(client,node,ns_name, pod_name) podNetworkErrorRate = self.getNetworkRxErrorsRatePod(client,node,ns_name, pod_name) plt.plot(podNetworRxRate.index, podNetworRxRate['value'], 'b') # plotting t, b separately #plt.plot(podNetworRx.index, podNetworRx['value'], 'g') # plotting t, b separately #plt.plot(podNetworkError.index, podNetworkError['value'], 'y') # plotting t, b separately plt.plot(podNetworkErrorRate.index, podNetworkErrorRate['value'], 'r') # plotting t, b separately plt.show() def getRelevantNodeName(self,client,ns_name): allNodeNames = self.getAllNodeNames(client) #nsNames = getNamespaceNames(allNodeNames[0]) relevantNodes = [] for node in allNodeNames: allPodNamesNode = self.getAllPodNames(client,node,'default') if(not allPodNamesNode.empty): relevantNodes.append(node) return relevantNodes def getNodeResourceUtilizationDf(self,client, nodeName): Result_node_CPU = client.query("SELECT value from \"cpu/node_utilization\" where nodename = '"+nodeName+"' AND type = 'node' ") Result_node_MEM = client.query("SELECT value from \"memory/node_utilization\" where nodename = '"+nodeName+"' AND type = 'node' ") Result_node_CPU_Cores = client.query("SELECT mean(\"value\") FROM \"cpu/node_capacity\" where nodename = '"+nodeName+ "' AND type = 'node' GROUP BY time(1m)") Result_node_mem_node = client.query("SELECT mean(\"value\")FROM \"memory/node_capacity\" where nodename = '"+ nodeName+"' AND type = 'node' GROUP BY time(1m)") cpu_points = pd.DataFrame(Result_node_CPU.get_points()) cpu_points['time'] = pd.to_datetime(cpu_points['time']) cpu_points = cpu_points.set_index('time') cpu_points.columns = ['node_cpu_util'] mem_points = pd.DataFrame(Result_node_MEM.get_points()) mem_points['time'] = pd.to_datetime(mem_points['time']) mem_points = mem_points.set_index('time') mem_points.columns = ['node_mem_util'] cores_points = pd.DataFrame(Result_node_CPU_Cores.get_points()) cores_points['time'] = pd.to_datetime(cores_points['time']) cores_points = cores_points.set_index('time') cores_points.columns = ['node_cores'] mem_node_points = pd.DataFrame(Result_node_mem_node.get_points()) mem_node_points['time'] = pd.to_datetime(mem_node_points['time']) mem_node_points = mem_node_points.set_index('time') mem_node_points.columns = ['node_mem'] df_node =pd.concat([cpu_points, mem_points,cores_points,mem_node_points], axis=1) return df_node def getPodResourceUtilizationDf(self,client, node, ns_name, pod_name): Result_Pod_CPU_usage = client.query('SELECT value FROM "cpu/usage_rate" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\';') Result_Pod_MEM_usage = client.query('SELECT value from \"memory/usage\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\';') Result_Pod_CPU_limit = client.query('SELECT mean(\"value\") FROM "cpu/limit" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\' group by time(1m);') Result_Pod_MEM_limit = client.query('SELECT mean(\"value\") from \"memory/limit\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\' group by time(1m);') Result_Pod_CPU_requests = client.query('SELECT mean(\"value\") FROM "cpu/request" where nodename = \''+node+'\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+'\' AND type=\'pod\' group by time(1m);') Result_Pod_MEM_requests = client.query('SELECT mean(\"value\") from \"memory/request\" where nodename = \''+node+ '\' AND pod_name = \''+pod_name+'\' AND namespace_name = \''+ns_name+ '\' AND type=\'pod\' group by time(1m);') cpu_points_usage = pd.DataFrame(Result_Pod_CPU_usage.get_points()) cpu_points_usage['time'] = pd.to_datetime(cpu_points_usage['time']) cpu_points_usage = cpu_points_usage.set_index('time') cpu_points_usage.columns = ['pod_cpu_usage'] mem_points_usage = pd.DataFrame(Result_Pod_MEM_usage.get_points()) mem_points_usage['time'] = pd.to_datetime(mem_points_usage['time']) mem_points_usage = mem_points_usage.set_index('time') mem_points_usage.columns = ['pod_mem_usage'] cpu_points_limits = pd.DataFrame(Result_Pod_CPU_limit.get_points()) cpu_points_limits['time'] = pd.to_datetime(cpu_points_limits['time']) cpu_points_limits = cpu_points_limits.set_index('time') cpu_points_limits.columns = ['pod_cpu_limit'] mem_points_limits = pd.DataFrame(Result_Pod_MEM_limit.get_points()) mem_points_limits['time'] = pd.to_datetime(mem_points_limits['time']) mem_points_limits = mem_points_limits.set_index('time') mem_points_limits.columns = ['pod_mem_limit'] cpu_points_request = pd.DataFrame(Result_Pod_CPU_requests.get_points()) cpu_points_request['time'] = pd.to_datetime(cpu_points_request['time']) cpu_points_request = cpu_points_request.set_index('time') cpu_points_request.columns = ['pod_cpu_request'] mem_points_request = pd.DataFrame(Result_Pod_MEM_requests.get_points()) mem_points_request['time'] = pd.to_datetime(mem_points_request['time']) mem_points_request = mem_points_request.set_index('time') mem_points_request.columns = ['pod_mem_request'] df_pod =pd.concat([cpu_points_usage, mem_points_usage,cpu_points_limits,mem_points_limits,cpu_points_request,mem_points_request ], axis=1) return df_pod def getRequestsDf(self,clientK6): queryResult = clientK6.query('SELECT sum("value") FROM "vus" group by time(1m);') vus = pd.DataFrame(queryResult['vus']) vus.columns = ['vus','time'] vus = vus.set_index('time') queryResultReqs = clientK6.query('SELECT sum("value") FROM "http_reqs" group by time(1m);') reqs = pd.DataFrame(queryResultReqs['http_reqs']) reqs.columns = ['requests','time'] reqs = reqs.set_index('time') queryResultReqsDuration95 = clientK6.query('SELECT percentile("value", 95) FROM "http_req_duration" group by time(1m) ;') reqs_duration95 = pd.DataFrame(queryResultReqsDuration95['http_req_duration']) reqs_duration95.columns = [ 'requests_duration_percentile_95','time'] reqs_duration95 = reqs_duration95.set_index('time') queryResultReqsDuration90 = clientK6.query('SELECT percentile("value", 90) FROM "http_req_duration" group by time(1m) ;') reqs_duration90 = pd.DataFrame(queryResultReqsDuration90['http_req_duration']) reqs_duration90.columns = ['requests_duration_percentile_90','time'] reqs_duration90 = reqs_duration90.set_index('time') queryResultMaxDuration = clientK6.query('SELECT max("value") FROM "http_req_duration" group by time(1m);') reqs_duration_max = pd.DataFrame(queryResultMaxDuration['http_req_duration']) reqs_duration_max.columns = ['requests_duration_max','time'] reqs_duration_max = reqs_duration_max.set_index('time') queryResultMinDuration = clientK6.query('SELECT min("value") FROM "http_req_duration" group by time(1m);') reqs_duration_min = pd.DataFrame(queryResultMinDuration['http_req_duration']) reqs_duration_min.columns = ['requests_duration_min','time'] reqs_duration_min = reqs_duration_min.set_index('time') queryResultMeanDuration = clientK6.query('SELECT mean("value") FROM "http_req_duration" group by time(1m);') reqs_duration_mean = pd.DataFrame(queryResultMeanDuration['http_req_duration']) reqs_duration_mean.columns = ['requests_duration_mean','time'] reqs_duration_mean = reqs_duration_mean.set_index('time') queryResultMedianDuration = clientK6.query('SELECT median("value") FROM "http_req_duration" group by time(1m);') reqs_duration_median = pd.DataFrame(queryResultMedianDuration['http_req_duration']) reqs_duration_median.columns = ['requests_duration_median','time'] reqs_duration_median = reqs_duration_median.set_index('time') finalDF = pd.merge(vus, reqs, left_index=True, right_index=True) finalDF = pd.merge(finalDF, reqs_duration95, left_index=True, right_index=True) finalDF =
pd.merge(finalDF, reqs_duration90, left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python """ Based on all checkm results, creates a table containing the nr of approved genomes for all binning runs it can find within binning/*. @author: alneberg """ from __future__ import print_function import sys import os import argparse import pandas as pd import glob def find_checkm_dirs(): all_runs = {} for path in glob.glob("binning/*/*/output_*/*/checkm_output/stats.tsv"): run_d = {} path_parts = path.split('/') run_d["binner"] = path_parts[1] run_d["sample"] = path_parts[2] run_d["quant"] = "_".join(path_parts[3].split('_')[1:]) run_d["run_params"] = path_parts[4] run_d['SpeedUp'] = 'SpeedUp_Mp' in path_parts[4] run_d['standardize'] = 'standardize' in path_parts[4] all_runs[path] = run_d return all_runs def main(args): all_runs = find_checkm_dirs() for path, run_d in all_runs.items(): # Read in the checkm table df =
pd.read_table(path, index_col=0)
pandas.read_table
# coding=utf-8 # numpy and pandas for data manipulation import numpy as np import pandas as pd # sklearn preprocessing for dealing with categorical variables from sklearn.preprocessing import LabelEncoder # File system manangement import os # Suppress warnings import warnings warnings.filterwarnings('ignore') # matplotlib and seaborn for plotting import matplotlib.pyplot as plt # import seaborn as sns import lightgbm as lgb from sklearn import metrics # In[2]: app_train = pd.read_csv('E:/datas/public.train.csv') # 读取训练数据 app_test = pd.read_csv('E:/datas/public.test.csv') # 读取测试数据 train_id = app_train[['ID']] # 获取训练id test_id=app_test[['ID']] # 获取测试id app_train_test = [app_train, app_test] app_train_test =
pd.concat(app_train_test)
pandas.concat
# ------------------------------------------------------------------------------- # Name: critical_loads.py # Purpose: Functions to implement the updated (November 2018) Critical Loads # workflow. # # Author: <NAME> # ------------------------------------------------------------------------------- def view_dep_series(eng): """View table of deposition series already in the database. Args: eng: Obj. Active database connection object Returns: Dataframe. """ import pandas as pd # Get existing series from db sql = "SELECT * FROM deposition.dep_series_defs" df = pd.read_sql(sql, eng) return df def add_dep_series(series_id, name, short_name, grid, desc, eng): """Add new deposition series to the database. Args: series_id: Int. Unique integer ID for series name: Str. Full name for this series short_name: Str. Short name for this series grid: Str. One of ['blr', '0_1deg', 'emep'] desc: Str. Description of series eng: Obj. Active database connection object Returns: None. Row is added. """ import pandas as pd from sqlalchemy.sql import text assert isinstance(series_id, int), "'series_id' must be an integer." assert grid in ( "blr", "0_1deg", "emep", ), "'grid' must be one of ('blr', '0_1deg', 'emep')." # Get existing series from db sql = ( "INSERT INTO deposition.dep_series_defs " "(series_id, name, short_name, grid, description) " "VALUES " "(:series_id, :name, :short_name, :grid, :desc)" ) param_dict = { "series_id": series_id, "name": name, "short_name": short_name, "grid": grid, "desc": desc, } sql = text(sql) eng.execute(sql, param_dict) print("Series added successfully.") return None def upload_nilu_0_1deg_dep_data(data_fold, eng, series_id): """Process .dat files containing deposition data supplied by NILU. This function is based on the data supplied by NILU during 2017, which uses the new 0.1 degree deposition grid. Args: dat_fold: Str. Path to folder containing .dat files provided by NILU eng: Obj. Active database connection object connect to the Docker PostGIS db series_id: Int. 'series_id' for this dataset from the table deposition.dep_series_defs Returns: DataFrame of the data added to the database. """ import glob import os import pandas as pd # Read NILU data search_path = os.path.join(data_fold, "*.dat") file_list = glob.glob(search_path) df_list = [] for fpath in file_list: # Get par name name = os.path.split(fpath)[1].split("_")[:2] name = "_".join(name) # Read file df = pd.read_csv( fpath, delim_whitespace=True, header=None, names=["lat", "lon", name] ) df.set_index(["lat", "lon"], inplace=True) df_list.append(df) # Combine df = pd.concat(df_list, axis=1) df.reset_index(inplace=True) # Calculate unique integer cell ID as latlon # (both *100 and padded to 4 digits) df["cell_id"] = (df["lat"] * 100).astype(int).map("{:04d}".format) + ( df["lon"] * 100 ).astype(int).map("{:04d}".format) df["cell_id"] = df["cell_id"].astype(int) del df["lat"], df["lon"], df["tot_n"] # Rename df.rename( columns={ "tot_nhx": 2, # N (red) "tot_nox": 1, # N (oks) "tot_s": 4, }, # Non-marine S inplace=True, ) # Melt df = pd.melt(df, var_name="param_id", id_vars="cell_id") # Add series ID df["series_id"] = series_id # Add to db df.to_sql( "dep_values_0_1deg_grid", con=eng, schema="deposition", if_exists="append", index=False, method="multi", chunksize=1000, ) print("%s new rows added successfully." % len(df)) return df def extract_deposition_as_gdf(series_id, par, eng, veg_class=None): """Extracts deposition data for the specified series as a geodataframe. Args: series_id: Int. ID for deposition series of interest par: Str. One of ['nitrogen', 'sulphur'] eng: Obj. Active database connection object veg_class: Str or None. Only applies for data using the EMEP grid, which reports deposition values for different vegetation classes. For EMEP, must be one of ['grid average', 'forest', 'semi-natural']; otherwise, pass None Returns: GeoDataFrame. """ import geopandas as gpd import warnings from sqlalchemy.sql import text veg_class_dict = {"grid average": 1, "forest": 2, "semi-natural": 3} assert isinstance(series_id, int), "'series_id' must be an integer." assert par in ( "nitrogen", "sulphur", ), "'par' must be one of ('nitrogen', 'sulphur')." # Identify grid param_dict = {"series_id": series_id} sql = "SELECT grid FROM deposition.dep_series_defs " "WHERE series_id = :series_id" sql = text(sql) grid = eng.execute(sql, param_dict).fetchall()[0][0] assert ( grid is not None ), "'grid' is not defined for this series in the 'dep_series_defs' table.\n" if (grid == "emep") and (veg_class is None): assert veg_class in ["grid average", "forest", "semi-natural"], ( "The specified series ID refers to the EMEP grid, " "so you must also specify the 'veg_class' parameter.\n" "Choose one of ['grid average', 'forest', 'semi-natural'] " "and pass e.g. veg_class='grid average'." ) if (grid != "emep") and (veg_class is not None): print( "WARNING: The specified series ID does NOT refer to the EMEP grid. " "The 'veg_class' parameter will be ignored." ) if par == "nitrogen": unit_factor = 1 / 14.01 if grid == "emep": param_dict["veg_class_id"] = veg_class_dict[veg_class] # Choose 'grid-average' for veg class sql = ( f"SELECT ST_Multi(ST_Transform(b.geom, 32633)) AS geom, " f" a.cell_id, " f" ROUND(a.n_dep) AS ndep_mgpm2pyr " f"FROM (SELECT cell_id, SUM(value) as n_dep " f" FROM deposition.dep_values_{grid}_grid " f" WHERE param_id IN (1, 2) " f" AND veg_class_id = :veg_class_id " f" AND series_id = :series_id " f" GROUP BY cell_id) AS a, " f"deposition.dep_grid_{grid} AS b " f"WHERE a.cell_id = b.cell_id" ) else: # No veg classes to consider sql = ( f"SELECT ST_Multi(ST_Transform(b.geom, 32633)) AS geom, " f" a.cell_id, " f" ROUND(a.n_dep) AS ndep_mgpm2pyr " f"FROM (SELECT cell_id, SUM(value) as n_dep " f" FROM deposition.dep_values_{grid}_grid " f" WHERE param_id IN (1, 2) " f" AND series_id = :series_id " f" GROUP BY cell_id) AS a, " f"deposition.dep_grid_{grid} AS b " f"WHERE a.cell_id = b.cell_id" ) else: unit_factor = 2 / 32.06 if grid == "emep": param_dict["veg_class_id"] = veg_class_dict[veg_class] # Choose 'grid-average' for veg class sql = ( f"SELECT ST_Multi(ST_Transform(b.geom, 32633)) AS geom, " f" a.cell_id, " f" ROUND(a.s_dep) AS sdep_mgpm2pyr " f"FROM (SELECT cell_id, SUM(value) as s_dep " f" FROM deposition.dep_values_{grid}_grid " f" WHERE param_id = 4 " f" AND veg_class_id = :veg_class_id " f" AND series_id = :series_id " f" GROUP BY cell_id) AS a, " f"deposition.dep_grid_{grid} AS b " f"WHERE a.cell_id = b.cell_id" ) else: # No veg classes to consider sql = ( f"SELECT ST_Multi(ST_Transform(b.geom, 32633)) AS geom, " f" a.cell_id, " f" ROUND(a.s_dep) AS sdep_mgpm2pyr " f"FROM (SELECT cell_id, SUM(value) as s_dep " f" FROM deposition.dep_values_{grid}_grid " f" WHERE param_id = 4 " f" AND series_id = :series_id " f" GROUP BY cell_id) AS a, " f"deposition.dep_grid_{grid} AS b " f"WHERE a.cell_id = b.cell_id" ) sql = text(sql) gdf = gpd.read_postgis(sql, eng, params=param_dict) # Convert units gdf[par[0] + "dep_meqpm2pyr"] = gdf[par[0] + "dep_mgpm2pyr"] * unit_factor gdf[par[0] + "dep_kgphapyr"] = gdf[par[0] + "dep_mgpm2pyr"] / 100 return gdf def create_deposition_raster( series_id, par, unit, cell_size, eng, ndv=-9999, bit_depth="Int16", fname=None, veg_class=None, ): """Create a raster of deposition values from a Geodataframe. Args: series_id: Int. ID for deposition series of interest par: Str. One of ['nitrogen', 'sulphur'] unit: Str. One of ['mgpm2pyr', kgphapyr, 'meqpm2pyr'] cell_size: Int. Output cell size in metres. Determines the "snap raster" to be used One of (30, 60, 120) eng: Obj. Active database connection object ndv: Int. Value to use for No Data bit_depth: Str. GDAL bit depth: 'Byte' 'Int16' 'UInt16' 'UInt32' 'Int32' 'Float32' 'Float64' fname: Str or None. File path for output. If None, the raster will be saved to veg_class: Str or None. Only applies for data using the EMEP grid, which reports deposition values for different vegetation classes. For EMEP, must be one of ['grid average', 'forest', 'semi-natural']; otherwise, pass None shared/critical_loads/raster/deposition/short_name.tif where 'short_name' is as defined in the 'dep_series_defs' table. Returns: None. The grid is saved to the specified path. """ import geopandas as gpd import os from sqlalchemy.sql import text assert unit in ( "mgpm2pyr", "kgphapyr" "meqpm2pyr", ), "'unit' must be one of ('mgpm2pyr', 'kgphapyr', 'meqpm2pyr')." assert cell_size in (30, 60, 120), "'cell_size' must be one of (30, 60, 120)." # Get data gdf = extract_deposition_as_gdf(series_id, par, eng, veg_class=veg_class) # Save temporary file gdf.to_file("temp_ndep.geojson", driver="GeoJSON") # Convert to raster col_name = f"{par[0]}dep_{unit}" if fname is None: # Get short_name from db param_dict = {"series_id": series_id} sql = "SELECT short_name FROM deposition.dep_series_defs WHERE series_id = :series_id" sql = text(sql) res = eng.execute(sql, param_dict).fetchall()[0][0] assert res is not None, ( "'short_name' is not defined for this series in the 'dep_series_defs' table.\n" "Consider explicitly specifying a file name?" ) fname = f"/home/jovyan/shared/critical_loads/raster/deposition/{col_name}_{res}_{cell_size}m.tif" snap_tif = ( f"/home/jovyan/shared/critical_loads/raster/blr_land_mask_{cell_size}m.tif" ) vec_to_ras("temp_ndep.geojson", fname, snap_tif, col_name, ndv, bit_depth) # Delete temp file os.remove("temp_ndep.geojson") def vec_to_ras(in_shp, out_tif, snap_tif, attrib, ndv, data_type, fmt="GTiff"): """Converts a shapefile to a raster with values taken from the 'attrib' field. The 'snap_tif' is used to set the resolution and extent of the output raster. Args: in_shp: Str. Raw string to shapefile out_tif: Str. Raw string for geotiff to create snap_tif: Str. Raw string to geotiff used to set resolution and extent attrib: Str. Shapefile field for values ndv: Int. No data value data_type: Str. GDAL bit depth: 'Byte' 'Int16' 'UInt16' 'UInt32' 'Int32' 'Float32' 'Float64' fmt: Str. Format string. Returns: None. Raster is saved. """ import ogr import gdal # Bit depth dict bit_dict = { "Byte": gdal.GDT_Byte, "Int16": gdal.GDT_Int16, "UInt16": gdal.GDT_UInt16, "UInt32": gdal.GDT_UInt32, "Int32": gdal.GDT_Int32, "Float32": gdal.GDT_Float32, "Float64": gdal.GDT_Float64, } assert data_type in bit_dict.keys(), "ERROR: Invalid data type." # 1. Create new, empty raster with correct dimensions # Get properties from snap_tif snap_ras = gdal.Open(snap_tif) cols = snap_ras.RasterXSize rows = snap_ras.RasterYSize proj = snap_ras.GetProjection() geotr = snap_ras.GetGeoTransform() # Create out_tif driver = gdal.GetDriverByName(fmt) out_ras = driver.Create( out_tif, cols, rows, 1, bit_dict[data_type], options=["COMPRESS=LZW"] ) out_ras.SetProjection(proj) out_ras.SetGeoTransform(geotr) # Fill output with NoData out_ras.GetRasterBand(1).SetNoDataValue(ndv) out_ras.GetRasterBand(1).Fill(ndv) # 2. Rasterize shapefile shp_ds = ogr.Open(in_shp) shp_lyr = shp_ds.GetLayer() gdal.RasterizeLayer( out_ras, [1], shp_lyr, options=["ATTRIBUTE=%s" % attrib, "COMPRESS=LZW"] ) # Flush and close snap_ras = None out_ras = None shp_ds = None def reclassify_raster(in_tif, mask_tif, out_tif, reclass_df, reclass_col, ndv): """Reclassify categorical values in a raster using a mapping in a dataframe. The dataframe index must contain the classes in in_tif and the 'reclass_col' must specify the new classes. Only cells with value=1 in 'mask_tif' are written to output. Args: in_tif: Str. Raw path to input raster mask_tif: Str. Raw path to mask grid defining land area out_tif: Str. Raw path to .tif file to create reclass_df: DataFrame. Reclassification table reclass_col: Str. Name of column with new raster values ndv: Int. Value to use as NoData in the new raster Returns: None. A new raster is saved. """ import gdal import ogr from gdalconst import GA_ReadOnly as GA_ReadOnly import numpy as np import pandas as pd # Open source file, read data src_ds = gdal.Open(in_tif, GA_ReadOnly) assert src_ds rb = src_ds.GetRasterBand(1) src_data = rb.ReadAsArray() # Open mask, read data mask_ds = gdal.Open(mask_tif, GA_ReadOnly) assert mask_ds mb = mask_ds.GetRasterBand(1) mask_data = mb.ReadAsArray() # Reclassify rc_data = src_data.copy() for idx, row in reclass_df.iterrows(): rc_data[src_data == idx] = row[reclass_col] # Apply mask rc_data[mask_data != 1] = ndv # Write output driver = gdal.GetDriverByName("GTiff") dst_ds = driver.CreateCopy(out_tif, src_ds, 0, options=["COMPRESS=LZW"]) out_band = dst_ds.GetRasterBand(1) out_band.SetNoDataValue(ndv) out_band.WriteArray(rc_data) # Flush data and close datasets dst_ds = None src_ds = None mask_ds = None def calc_vegetation_exceedance_0_1deg(dep_tif, cl_tif, ex_tif, ex_tif_bool, ser_id): """Calculate exceedances for vegetation. Args: dep_tif: Str. Raw string to deposition grid cl_tif: Str. Raw string to critical loads grid ex_tif: Str. Raw string to exceedance grid to be created ex_tif_bool: Str. Raw string to exceedance grid with Boolean values (i.e. 1 where exceeded and 0 otherwise) ser_id: Int. Deposition series ID for the data of interest Returns: Summary dataframe. """ import nivapy3 as nivapy import pandas as pd import numpy as np import gdal # Container for output data_dict = {"total_area_km2": [], "exceeded_area_km2": []} # Read grids cl_grid, cl_ndv, cl_epsg, cl_ext = nivapy.spatial.read_raster(cl_tif) dep_grid, dep_ndv, dep_epsg, dep_ext = nivapy.spatial.read_raster(dep_tif) # Work out cell size cs = (cl_ext[1] - cl_ext[0]) / cl_grid.shape[1] cs = float(int(cs + 0.5)) # Upcast to float32 for safe handling of negative values cl_grid = cl_grid.astype(np.float32) dep_grid = dep_grid.astype(np.float32) # Set ndv cl_grid[cl_grid == cl_ndv] = np.nan dep_grid[dep_grid == dep_ndv] = np.nan # Get total area of non-NaN from dep grid nor_area = np.count_nonzero(~np.isnan(dep_grid)) * cs * cs / 1.0e6 # Apply scaling factor to CLs cl_grid = cl_grid * 100.0 # Exceedance ex_grid = dep_grid - cl_grid del dep_grid, cl_grid # Get total area exceeded ex_area = np.count_nonzero(ex_grid > 0) * cs * cs / 1.0e6 # Set <0 to 0 ex_grid[ex_grid < 0] = 0 # Reset ndv ex_grid[np.isnan(ex_grid)] = -1 # Downcast to int16 to save space ex_grid = ex_grid.round(0).astype(np.int16) # Append results data_dict["total_area_km2"].append(nor_area) data_dict["exceeded_area_km2"].append(ex_area) # Write exceedance output write_geotiff(ex_grid, ex_tif, cl_tif, -1, gdal.GDT_Int16) # Convert to bool grid ex_grid[ex_grid > 0] = 1 ex_grid[ex_grid == -1] = 255 # Write bool output write_geotiff(ex_grid, ex_tif_bool, cl_tif, 255, gdal.GDT_Byte) del ex_grid # Build output df ex_df = pd.DataFrame(data_dict) ex_df["exceeded_area_pct"] = ( 100 * ex_df["exceeded_area_km2"] / ex_df["total_area_km2"] ) ex_df = ex_df.round(0).astype(int) ex_df["series_id"] = ser_id ex_df["medium"] = "vegetation" ex_df = ex_df[ [ "series_id", "medium", "total_area_km2", "exceeded_area_km2", "exceeded_area_pct", ] ] return ex_df def write_geotiff(data, out_tif, snap_tif, ndv, data_type): """Write a numpy array to a geotiff using 'snap_tif' to define raster properties. Args: data: Array. out_tif: Str. File to create snap_tif: Str. Path to existing tif with same resolution and extent as target ndv: Int. No data value data_type: Bit depth etc. e.g. gdal.GDT_UInt32 Returns: None. Geotiff is saved. """ from osgeo import ogr from osgeo import gdal # 1. Create new, empty raster with correct dimensions # Get properties from snap_tif snap_ras = gdal.Open(snap_tif) cols = snap_ras.RasterXSize rows = snap_ras.RasterYSize proj = snap_ras.GetProjection() geotr = snap_ras.GetGeoTransform() # Create out_tif driver = gdal.GetDriverByName("GTiff") out_ras = driver.Create(out_tif, cols, rows, 1, data_type, options=["COMPRESS=LZW"]) out_ras.SetProjection(proj) out_ras.SetGeoTransform(geotr) # Write data out_band = out_ras.GetRasterBand(1) out_band.SetNoDataValue(ndv) out_band.WriteArray(data) # Flush and close snap_ras = None out_band = None out_ras = None def bbox_to_pixel_offsets(gt, bbox): """Helper function for zonal_stats(). Modified from: https://gist.github.com/perrygeo/5667173 Original code copyright 2013 <NAME> """ originX = gt[0] originY = gt[3] pixel_width = gt[1] pixel_height = gt[5] x1 = int((bbox[0] - originX) / pixel_width) x2 = int((bbox[1] - originX) / pixel_width) + 1 y1 = int((bbox[3] - originY) / pixel_height) y2 = int((bbox[2] - originY) / pixel_height) + 1 xsize = x2 - x1 ysize = y2 - y1 return (x1, y1, xsize, ysize) def remap_categories(category_map, stats): """Modified from https://gist.github.com/perrygeo/5667173 Original code copyright 2013 <NAME> """ def lookup(m, k): """Dict lookup but returns original key if not found""" try: return m[k] except KeyError: return k return {lookup(category_map, k): v for k, v in stats.items()} def exceedance_stats_per_0_1deg_cell( ex_tif, ser_id, eng, write_to_db=True, nodata_value=-1, global_src_extent=False, categorical=False, category_map=None, ): """Summarise exceedance values for each 0.1 degree grid cell. Args: raster_path: Raw str. Path to exceedance raster ser_id: Int. Deposition series ID eng: Obj. Active database connection object write_to_db: Bool. If True, results will be written to the database nodata_value: Float. Value in raster to treat as NoData global_src_extent: Bool. If True, reads all data into memory in a single pass. May be faster, but also takes up loats of memory when used with large vector or raster datasets categorical: Bool. If true, raster is assumed to be categorical, with integer values representing different categories (e.g. land use). In this case, the statistics returned are pixel counts of each category within each vector zone category_map: Dict. Only used when "categorical" is True. Dict mapping integer values to category names {int_id:'cat_name'}. If supplied, the integer categories in the results dataframe will be mapped to the specified category names Returns: GeoDataFrame of cell statistics. """ import gdal import ogr import numpy as np import pandas as pd import sys import geopandas as gpd import os from gdalconst import GA_ReadOnly gdal.PushErrorHandler("CPLQuietErrorHandler") # Read vector temp_fold = os.path.split(ex_tif)[0] temp_shp = os.path.join(temp_fold, "temp.shp") gdf = extract_deposition_as_gdf(ser_id, "nitrogen", eng, veg_class="grid_average") gdf.to_file(temp_shp) # Read raster rds = gdal.Open(ex_tif, GA_ReadOnly) assert rds rb = rds.GetRasterBand(1) rgt = rds.GetGeoTransform() # Get cell size cs = rgt[1] if nodata_value: nodata_value = float(nodata_value) rb.SetNoDataValue(nodata_value) vds = ogr.Open( temp_shp, GA_ReadOnly ) # TODO maybe open update if we want to write stats assert vds vlyr = vds.GetLayer(0) # create an in-memory numpy array of the source raster data # covering the whole extent of the vector layer if global_src_extent: # use global source extent # useful only when disk IO or raster scanning inefficiencies are your limiting factor # advantage: reads raster data in one pass # disadvantage: large vector extents may have big memory requirements src_offset = bbox_to_pixel_offsets(rgt, vlyr.GetExtent()) src_array = rb.ReadAsArray(*src_offset) # calculate new geotransform of the layer subset new_gt = ( (rgt[0] + (src_offset[0] * rgt[1])), rgt[1], 0.0, (rgt[3] + (src_offset[1] * rgt[5])), 0.0, rgt[5], ) mem_drv = ogr.GetDriverByName("Memory") driver = gdal.GetDriverByName("MEM") # Loop through vectors stats = [] feat = vlyr.GetNextFeature() while feat is not None: if not global_src_extent: # use local source extent # fastest option when you have fast disks and well indexed raster (ie tiled Geotiff) # advantage: each feature uses the smallest raster chunk # disadvantage: lots of reads on the source raster src_offset = bbox_to_pixel_offsets(rgt, feat.geometry().GetEnvelope()) src_array = rb.ReadAsArray(*src_offset) # calculate new geotransform of the feature subset new_gt = ( (rgt[0] + (src_offset[0] * rgt[1])), rgt[1], 0.0, (rgt[3] + (src_offset[1] * rgt[5])), 0.0, rgt[5], ) # Create a temporary vector layer in memory mem_ds = mem_drv.CreateDataSource("out") mem_layer = mem_ds.CreateLayer("poly", None, ogr.wkbPolygon) mem_layer.CreateFeature(feat.Clone()) # Rasterize it rvds = driver.Create( "", src_offset[2], src_offset[3], 1, gdal.GDT_Byte, options=["COMPRESS=LZW"] ) rvds.SetGeoTransform(new_gt) gdal.RasterizeLayer(rvds, [1], mem_layer, burn_values=[1]) rv_array = rvds.ReadAsArray() # Mask the source data array with our current feature # we take the logical_not to flip 0<->1 to get the correct mask effect # we also mask out nodata values explictly masked = np.ma.MaskedArray( src_array, mask=np.logical_or(src_array == nodata_value, np.logical_not(rv_array)), ) if categorical: # Get cell counts for each category keys, counts = np.unique(masked.compressed(), return_counts=True) pixel_count = dict( zip([np.asscalar(k) for k in keys], [np.asscalar(c) for c in counts]) ) feature_stats = dict(pixel_count) if category_map: feature_stats = remap_categories(category_map, feature_stats) else: # Get summary stats feature_stats = { "min": float(masked.min()), "mean": float(masked.mean()), "max": float(masked.max()), "std": float(masked.std()), "sum": float(masked.sum()), "count": int(masked.count()), "fid": int(feat.GetFID()), } stats.append(feature_stats) rvds = None mem_ds = None feat = vlyr.GetNextFeature() # Tidy up vds = None rds = None for fname in ["temp.cpg", "temp.dbf", "temp.prj", "temp.shp", "temp.shx"]: os.remove(os.path.join(temp_fold, fname)) # Combine results df = pd.DataFrame(stats) df.fillna(0, inplace=True) df["series_id"] = ser_id df["fid"] = df.index gdf["fid"] = gdf.index gdf = gdf.merge(df, on="fid") # Calc areas gdf["exceeded_area_km2"] = gdf["exceeded"] * cs * cs / 1e6 gdf["total_area_km2"] = (gdf["exceeded"] + gdf["not_exceeded"]) * cs * cs / 1e6 gdf["pct_exceeded"] = 100 * gdf["exceeded_area_km2"] / gdf["total_area_km2"] gdf.drop( [ "fid", "exceeded", "not_exceeded", "ndep_mgpm2pyr", "ndep_meqpm2pyr", "ndep_kgphapyr", ], axis="columns", inplace=True, ) gdf.dropna(how="any", inplace=True) if write_to_db: gdf2 = gdf.copy() del gdf2["geom"] df = pd.DataFrame(gdf2) df.to_sql( "exceedance_stats_0_1deg_grid", eng, "vegetation", if_exists="append", index=False, method="multi", chunksize=1000, ) return gdf def exceedance_stats_per_land_use_class( ex_tif_bool, veg_tif, ser_id, eng, write_to_db=True, nodata_value=255 ): """Summarise exceedance values for each land use class. Args: ex_tif_bool: Raw str. Path to boolean exceedance raster veg_tif: Str. Path to vegetation data with same resolution as ex_tif_bool ser_id: Int. Deposition series ID eng: Obj. Active database connection object write_to_db: Bool. If True, results will be written to the database nodata_value: Float. Value in rasters to treat as NoData Returns: GeoDataFrame of land use statistics. """ import gdal import ogr import numpy as np import pandas as pd import sys import geopandas as gpd import os from gdalconst import GA_ReadOnly gdal.PushErrorHandler("CPLQuietErrorHandler") # Read LU table sql = "SELECT * FROM vegetation.land_class_crit_lds" lu_df = pd.read_sql(sql, eng) # Read exceedance raster rds = gdal.Open(ex_tif_bool, GA_ReadOnly) assert rds rb = rds.GetRasterBand(1) if nodata_value: nodata_value = float(nodata_value) rb.SetNoDataValue(nodata_value) ex_array = rb.ReadAsArray() # Get cell size rgt = rds.GetGeoTransform() cs = rgt[1] # Read vegetation raster rds = gdal.Open(veg_tif, GA_ReadOnly) assert rds rb = rds.GetRasterBand(1) if nodata_value: nodata_value = float(nodata_value) rb.SetNoDataValue(nodata_value) veg_array = rb.ReadAsArray() # Loop through land classes stats = [] for idx, row in lu_df.iterrows(): # Mask the source data array masked = np.ma.MaskedArray( ex_array, mask=np.logical_or( ex_array == nodata_value, veg_array != row["norut_code"] ), ) # Get cell counts for each category keys, counts = np.unique(masked.compressed(), return_counts=True) pixel_count = dict( zip([np.asscalar(k) for k in keys], [np.asscalar(c) for c in counts]) ) feature_stats = dict(pixel_count) feature_stats = remap_categories( {1: "exceeded", 0: "not_exceeded"}, feature_stats ) stats.append(feature_stats) # Tidy up rds = None # Combine results df = pd.DataFrame(stats) df.fillna(0, inplace=True) df["norut_code"] = lu_df["norut_code"] df["series_id"] = ser_id # Calc areas df["exceeded_area_km2"] = df["exceeded"] * cs * cs / 1e6 df["total_area_km2"] = (df["exceeded"] + df["not_exceeded"]) * cs * cs / 1e6 df["pct_exceeded"] = 100 * df["exceeded_area_km2"] / df["total_area_km2"] del df["exceeded"], df["not_exceeded"] df.dropna(how="any", inplace=True) if write_to_db: df.to_sql( "exceedance_stats_land_class", eng, "vegetation", if_exists="append", index=False, method="multi", chunksize=1000, ) return df def veg_exceedance_as_gdf_0_1deg(ser_id, eng, shp_path=None): """Extracts exceedance statistics for the specified series as a geodataframe using NILU's 0.1 degree grid. Optionally, the data can be saved as a shapefile. Args: ser_id: Int. ID for deposition series of interest eng: Obj. Active database connection object shp_path: Str. Raw path for shapefile to be created Returns: GeoDataFrame. """ import geopandas as gpd # Get dep values sql_args = {"ser_id": ser_id} sql = ( "SELECT ST_Transform(b.geom, 32633) AS geom, " " a.cell_id, " " a.exceeded_area_km2, " " a.total_area_km2, " " a.pct_exceeded " "FROM (SELECT cell_id, " " exceeded_area_km2, " " total_area_km2, " " pct_exceeded " " FROM vegetation.exceedance_stats_0_1deg_grid " " WHERE series_id = {ser_id}) AS a, " "deposition.dep_grid_0_1deg AS b " "WHERE a.cell_id = b.cell_id" ).format(**sql_args) gdf = gpd.read_postgis(sql, eng) if shp_path: gdf.to_file(shp_path) return gdf def calc_anclimit_cla_clminmax(df, bc0): """Calculates the ANC Limit, the CLA and the CLmin and CLmax values using the specified version of BC0, both with and without a correction for organic acids). Used by calculate_critical_loads_for_water() Args: df: Dataframe. bc0: Str. One of ['BC0', 'BC0_Ffac', 'BC0_magic'] Returns: Dataframe with new columns for ['ANClimit_{bc0}', 'ANClimitOAA_{bc0}', 'CLA_{bc0}', 'CLAOAA_{bc0}', 'CLmaxS_{bc0}', 'CLmaxSoaa_{bc0}', 'CLmaxN_{bc0}', 'CLmaxNoaa_{bc0}', ] """ import numpy as np assert bc0 in [ "BC0", "BC0_Ffac", "BC0_magic", ], "'bc0' must be one of ['BC0', 'BC0_Ffac', 'BC0_magic']." method = bc0.replace("BC0", "") # ANC limit df[f"ANClimit{method}"] = np.minimum( 50, (0.25 * df["Runoff"] * df[bc0]) / (1 + 0.25 * df["Runoff"]) ) # ANC limit OAA df[f"ANClimitOAA{method}"] = np.minimum( 40, (0.2 * df["Runoff"] * (df[bc0] - 3.4 * df["TOC"])) / (1 + 0.2 * df["Runoff"]), ) # CLA df[f"CLA{method}"] = df["Runoff"] * (df[bc0] - df[f"ANClimit{method}"]) # CLA OAA df[f"CLAOAA{method}"] = df["Runoff"] * ( df[bc0] - df[f"ANClimitOAA{method}"] - 3.4 * df["TOC"] ) # CLmaxS df[f"CLmaxS{method}"] = df[f"CLA{method}"] / df["alphaS"] # CLmaxSoaa df[f"CLmaxSoaa{method}"] = df[f"CLAOAA{method}"] / df["alphaS"] # CLmaxN df[f"CLmaxN{method}"] = df["CLminN"] + (df[f"CLA{method}"] / df["alphaN"]) # CLmaxNoaa df[f"CLmaxNoaa{method}"] = df["CLminN"] + (df[f"CLAOAA{method}"] / df["alphaN"]) return df def calculate_critical_loads_for_water( xl_path=None, req_df=None, opt_df=None, mag_df=None, out_csv=None ): """Calculates critical loads for water based on values entered in an Excel template (input_template_critical_loads_water.xlsx) or from the database. See the Excel file for full details of the input data requirements. You must provide EITHER the 'xl_path' OR the three separate dataframes - NOT BOTH. This function performs broadly the same calculations as Tore's 'CL' and 'CALKBLR' packages in RESA2, but generalised to allow for more flexible input data. The original critical loads calculations were implemented by Tore's 'cl.clcalculations' function, which has been documented by Kari: K:\Avdeling\317 Klima- og miljømodellering\KAU\Focal Centre\Data\CL script 23032015_notes.docx These notes form the basis for much of the code here. Args: xl_path: Str. Path to completed copy the Excel input template req_df: Dataframe of required parameters opt_df: Dataframe of optional parameters mag_df: Dataframe of magic parameters out_csv: Raw str. The final dataframe is saved to the specified path Returns: Dataframe. """ import pandas as pd import numpy as np # Check input if xl_path and (req_df is not None or mag_df is not None or opt_df is not None): message = ( "ERROR: You must provide EITHER the 'xl_path' OR the three " "separate dataframes - NOT both." ) print(message) raise ValueError(message) if xl_path and (req_df is None and mag_df is None and opt_df is None): # Read worksheets req_df = pd.read_excel(xl_path, sheet_name="required_parameters") opt_df =
pd.read_excel(xl_path, sheet_name="optional_parameters")
pandas.read_excel
import sys import numpy as np import pandas as pd from sqlalchemy import create_engine, inspect from sqlalchemy import delete from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import MetaData # command to start the script # python process_data.py disaster_messages.csv disaster_categories.csv DB_disaster_msg.db # Constants # Name of the messages table DB_TABLE_NAME = 'Messages' def load_data(messages_filepath, categories_filepath): """ read the data from 2 csv files input: - messages_filepath: file path to the messages file - categories_filepath: file path to the categories file """ try: # load the 2 data sets messages = pd.read_csv(messages_filepath) print('Dataset Messages: ', messages.shape) categories = pd.read_csv(categories_filepath) print('Dateset Categories: ', categories.shape) except: print("Unable to load files. Check Parameters") return
pd.DataFrame()
pandas.DataFrame
import matplotlib matplotlib.use('TkAgg') # noqa import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.colors import LinearSegmentedColormap import matplotlib.cm as cm import matplotlib.colors as mcolors from mpl_toolkits.axes_grid1.inset_locator import inset_axes import cmocean import numpy as np import os import ast import pickle import pandas as pd from collections import defaultdict from oggm import workflow, cfg, tasks, utils from oggm.core.flowline import FileModel from oggm.graphics import plot_centerlines from relic.postprocessing import (mae_weighted, optimize_cov, calc_coverage, get_ensemble_length, get_rcp_ensemble_length) from relic.preprocessing import name_plus_id, GLCDICT, MERGEDICT def paramplots(df, glid, pout, y_len=None): # take care of merged glaciers rgi_id = glid.split('_')[0] fig1, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=[20, 7]) allvars = ['prcp_scaling_factor', 'mbbias', 'glena_factor'] varcols = {'mbbias': np.array([-1400, -1200, -1000, -800, -600, -400, -200, -100, 0, 100, 200, 400, 600, 800, 1000]), 'prcp_scaling_factor': np.arange(0.5, 4.1, 0.25), 'glena_factor': np.arange(1, 4.1, 0.5)} for var, ax in zip(allvars, [ax1, ax2, ax3]): notvars = allvars.copy() notvars.remove(var) # lets use OGGM HISTALP default papar = {'glena_factor': 1.0, 'mbbias': 0, 'prcp_scaling_factor': 1.75} # store specific runs dfvar = pd.DataFrame([], columns=varcols[var], index=df.index) # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.isclose(para[notvars[0]], papar[notvars[0]], atol=0.01)) and (np.isclose(para[notvars[1]], papar[notvars[1]], atol=0.01))): dfvar.loc[:, para[var]] = df.loc[:, run] if var == 'prcp_scaling_factor': lbl = 'Precip scaling factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.deep)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.375, 4.2, 0.25) cbarticks = np.arange(1, 4.1, 1) elif var == 'glena_factor': lbl = 'Glen A factor' cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.matter)) normalize = mcolors.Normalize(vmin=0, vmax=4.5) bounds = np.arange(0.75, 4.3, 0.5) cbarticks = np.arange(1, 4.1, 1) elif var == 'mbbias': cmap = LinearSegmentedColormap('lala', cmocean.tools.get_dict( cmocean.cm.balance)) cmaplist = [cmap(i) for i in range(cmap.N)] cmaplist[128] = (0.412, 0.847, 0.655, 1.0) cmap = mcolors.LinearSegmentedColormap.from_list('mcm', cmaplist, cmap.N) cbarticks = np.array([-1400, -1000, -600, -200, 0, 200, 600, 1000]) bounds = np.array([-1500, -1300, -1100, -900, -700, -500, -300, -150, -50, 50, 100, 300, 500, 700, 900, 1100]) normalize = mcolors.Normalize(vmin=-1600, vmax=1600) lbl = 'MB bias [mm w.e.]' colors = [cmap(normalize(n)) for n in varcols[var]] scalarmappaple = cm.ScalarMappable(norm=normalize, cmap=cmap) cbaxes = inset_axes(ax, width="3%", height="40%", loc=3) cbar = plt.colorbar(scalarmappaple, cax=cbaxes, label=lbl, boundaries=bounds) cbar.set_ticks(cbarticks) cbaxes.tick_params(axis='both', which='major', labelsize=16) cbar.set_label(label=lbl, size=16) # plot observations df.loc[:, 'obs'].rolling(1, min_periods=1).mean(). \ plot(ax=ax, color='k', style='.', marker='o', label='Observed length change', markersize=6) dfvar = dfvar.sort_index(axis=1) # default parameter column dc = np.where(dfvar.columns == papar[var])[0][0] dfvar.loc[:, varcols[var][dc]].rolling(y_len, center=True).mean(). \ plot(ax=ax, color=colors[dc], linewidth=5, label='{}: {} (OGGM default)'. format(lbl, str(varcols[var][dc]))) # all parameters nolbl = ['' for i in np.arange(len(dfvar.columns))] dfvar.columns = nolbl dfvar.rolling(y_len, center=True).mean().plot(ax=ax, color=colors, linewidth=2) ax.set_xlabel('Year', fontsize=26) ax.set_xlim([1850, 2010]) ax.set_ylim([-4000, 2000]) ax.tick_params(axis='both', which='major', labelsize=22) if not ax == ax1: ax.set_yticklabels([]) ax.grid(True) ax.set_xticks(np.arange(1880, 2010, 40)) ax.legend(fontsize=16, loc=2) ax1.set_ylabel('relative length change [m]', fontsize=26) name = name_plus_id(rgi_id) fig1.suptitle('%s' % name, fontsize=28) fig1.subplots_adjust(left=0.09, right=0.99, bottom=0.12, top=0.89, wspace=0.05) fn1 = os.path.join(pout, 'calibration_%s.png' % glid) fig1.savefig(fn1) def past_simulation_and_params(glcdict, pout, y_len=5): for glid, df in glcdict.items(): # take care of merged glaciers rgi_id = glid.split('_')[0] fig = plt.figure(figsize=[20, 7]) gs = GridSpec(1, 4) # 1 rows, 4 columns ax1 = fig.add_subplot(gs[0, 0:3]) ax2 = fig.add_subplot(gs[0, 3]) df.loc[:, 'obs'].plot(ax=ax1, color='k', marker='o', label='Observations') # OGGM standard for run in df.columns: if run == 'obs': continue para = ast.literal_eval('{' + run + '}') if ((np.abs(para['prcp_scaling_factor'] - 1.75) < 0.01) and (para['mbbias'] == 0) and (para['glena_factor'] == 1)): df.loc[:, run].rolling(y_len, center=True). \ mean().plot(ax=ax1, linewidth=2, color='k', label='OGGM default parameter run') oggmdefault = run maes = mae_weighted(df).sort_values() idx2plot = optimize_cov(df.loc[:, maes.index[:150]], df.loc[:, 'obs'], glid, minuse=5) ensmean = df.loc[:, idx2plot].mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df.loc[:, idx2plot].std(axis=1).rolling(y_len, center=True).mean() # coverage cov = calc_coverage(df, idx2plot, df['obs']) ax1.fill_between(ensmeanmean.index, ensmeanmean - ensstdmean, ensmeanmean + ensstdmean, color='xkcd:teal', alpha=0.5) # nolbl = df.loc[:, idx2plot2].rolling(y_len, center=True).mean().copy() # nolbl.columns = ['' for i in range(len(nolbl.columns))] #df.loc[:, idx2plot2].rolling(y_len, center=True).mean().plot( # ax=ax1, linewidth=0.8) # plot ens members ensmeanmean.plot(ax=ax1, linewidth=4.0, color='xkcd:teal', label='ensemble parameters runs') # reference run (basically min mae) df.loc[:, maes.index[0]].rolling(y_len, center=True).mean(). \ plot(ax=ax1, linewidth=3, color='xkcd:lavender', label='minimum wMAE parameter run') name = name_plus_id(rgi_id) mae_ens = mae_weighted(pd.concat([ensmean, df['obs']], axis=1))[0] mae_best = maes[0] ax1.set_title('%s' % name, fontsize=28) ax1.text(2030, -4900, 'wMAE ensemble mean = %.2f m\n' 'wMAE minimum run = %.2f m' % (mae_ens, mae_best), fontsize=18, horizontalalignment='right') ax1.text(2040, -4900, '%d ensemble members\n' 'coverage = %.2f' % (len(idx2plot), cov), fontsize=18) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.set_xlim([1850, 2020]) ax1.set_ylim([-3500, 1000]) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.1, -0.15), loc='upper left', fontsize=18, ncol=2) # parameter plots from colorspace import sequential_hcl col = sequential_hcl('Blue-Yellow').colors(len(idx2plot) + 3) for i, run in enumerate(idx2plot): para = ast.literal_eval('{' + run + '}') psf = para['prcp_scaling_factor'] gla = para['glena_factor'] mbb = para['mbbias'] mbb = (mbb - -1400) * (4-0.5) / (1000 - -1400) + 0.5 ax2.plot([1, 2, 3], [psf, gla, mbb], color=col[i], linewidth=2) ax2.set_xlabel('calibration parameters', fontsize=18) ax2.set_ylabel('Precipitation scaling factor\nGlen A factor', fontsize=18) ax2.set_xlim([0.8, 3.2]) ax2.set_ylim([0.3, 4.2]) ax2.set_xticks([1, 2, 3]) ax2.set_xticklabels(['Psf', 'GlenA', 'MB bias'], fontsize=16) ax2.tick_params(axis='y', which='major', labelsize=16) ax2.grid(True) ax3 = ax2.twinx() # scale to same y lims scale = (4.2-0.3)/(4.0-0.5) dy = (2400*scale-2400)/2 ax3.set_ylim([-1400-dy, 1000+dy]) ax3.set_ylabel('mass balance bias [m w.e. ]', fontsize=18) ax3.set_yticks(np.arange(-1400, 1100, 400)) ax3.set_yticklabels(['-1.4', '-1.0', '-0.6', '-0.2', '0.2', '0.6', '1.0']) ax3.tick_params(axis='both', which='major', labelsize=16) fig.subplots_adjust(left=0.08, right=0.95, bottom=0.24, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'histalp_%s.png' % glid) fig.savefig(fn1) used = dict() used['oggmdefault'] = oggmdefault used['minmae'] = idx2plot[0] used['ensemble'] = idx2plot pickle.dump(used, open(os.path.join(pout, 'runs_%s.p' % glid), 'wb')) def past_simulation_and_commitment(rgi, allobs, allmeta, histalp_storage, comit_storage, comit_storage_noseed, pout, y_len=5, comyears=300): cols = ['xkcd:teal', 'xkcd:orange', 'xkcd:azure', 'xkcd:tomato', 'xkcd:blue', 'xkcd:chartreuse', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[:2015].index, ensmeanmean.loc[:2015] - ensstdmean.loc[:2015], ensmeanmean.loc[:2015] + ensstdmean.loc[:2015], color=cols[0], alpha=0.5) ensmeanmean.loc[:2015].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # 1999 ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[1], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[1], label='Random climate (1984-2014)') # 1970 ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[5], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[5], label='Random climate (1960-1980)') # 1885 ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() ax1.fill_between(ensmeanmean.loc[2015:].index, ensmeanmean.loc[2015:] - ensstdmean.loc[2015:], ensmeanmean.loc[2015:] + ensstdmean.loc[2015:], color=cols[2], alpha=0.5) ensmeanmean.loc[2015:].plot(ax=ax1, linewidth=4.0, color=cols[2], label='Random climate (1870-1900)') # --------------------------------------------------------------------- # plot commitment ensemble length # 1984 efn99 = 'model_diagnostics_commitment1999_{:02d}.nc' edf99 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn99, meta) ensmean = edf99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], postlength + poststd, postlength - poststd, color=cols[3], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [postlength, postlength], linewidth=4.0, color=cols[3], label=('Random climate (1984-2014) ' 'equlibrium length')) # 1970 efn70 = 'model_diagnostics_commitment1970_{:02d}.nc' edf70 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn70, meta) ensmean = edf70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1960-1980) ' 'equlibrium length')) # 1885 efn85 = 'model_diagnostics_commitment1885_{:02d}.nc' edf85 = get_ensemble_length(rgi, histalp_storage, comit_storage_noseed, efn85, meta) ensmean = edf85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = edf85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2014+comyears+10, 2014+comyears+25], prelength + prestd, prelength - prestd, color=cols[4], alpha=0.5) ax1.plot([2014+comyears+10.5, 2014+comyears+24.5], [prelength, prelength], linewidth=4.0, color=cols[4], label=('Random climate (1870-1900) ' 'equlibrium length')) # --------------------------------------------------------------------- ylim = ax1.get_ylim() #ax1.plot([2015, 2015], ylim, 'k-', linewidth=2) ax1.set_xlim([1850, 2014+comyears+30]) #ax1.set_ylim(ylim) ax2 = ax1.twinx() ax2.set_ylabel('approximate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.set_xticks([1850, 1950, 2014, 2114, 2214, 2314]) ax1.set_xticklabels(['1850', '1950', '2014/0', '100', '200', '300']) ax1.grid(True) ax1.legend(bbox_to_anchor=(-0.0, -0.17), loc='upper left', fontsize=18, ncol=3) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'commit_%s.png' % rgi) fig.savefig(fn1) def past_simulation_and_projection(rgi, allobs, allmeta, histalp_storage, proj_storage, comit_storage, pout, y_len=5,): cols = ['xkcd:teal', 'xkcd:azure', 'xkcd:lime', 'xkcd:orange', 'xkcd:magenta', 'xkcd:tomato', 'xkcd:blue', 'xkcd:green' ] obs = allobs.loc[rgi.split('_')[0]] meta = allmeta.loc[rgi.split('_')[0]] dfall = pd.DataFrame([], index=np.arange(1850, 2101)) dfallstd = pd.DataFrame([], index=np.arange(1850, 2101)) for rcp in ['rcp26', 'rcp45', 'rcp60', 'rcp85']: dfrcp = get_rcp_ensemble_length(rgi, histalp_storage, proj_storage, rcp, meta) ensmean = dfrcp.mean(axis=1) dfall.loc[:, rcp] = ensmean.rolling(y_len, center=True).mean() dfallstd.loc[:, rcp] = dfrcp.std(axis=1).\ rolling(y_len, center=True).mean() # plot fig, ax1 = plt.subplots(1, figsize=[20, 7]) obs.plot(ax=ax1, color='k', marker='o', label='Observations') # past ax1.fill_between(dfall.loc[:2015, rcp].index, dfall.loc[:2015, rcp] - dfallstd.loc[:2015, rcp], dfall.loc[:2015, rcp] + dfallstd.loc[:2015, rcp], color=cols[0], alpha=0.5) dfall.loc[:2015, rcp].plot(ax=ax1, linewidth=4.0, color=cols[0], label='HISTALP climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # projections # rcp26 ax1.fill_between(dfall.loc[2015:, 'rcp26'].index, dfall.loc[2015:, 'rcp26'] - dfallstd.loc[2015:, 'rcp26'], dfall.loc[2015:, 'rcp26'] + dfallstd.loc[2015:, 'rcp26'], color=cols[1], alpha=0.5) dfall.loc[2015:, 'rcp26'].plot(ax=ax1, linewidth=4.0, color=cols[1], label='RCP 2.6 climate') # rcp45 dfall.loc[2015:, 'rcp45'].plot(ax=ax1, linewidth=4.0, color=cols[2], label='RCP 4.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # rcp60 dfall.loc[2015:, 'rcp60'].plot(ax=ax1, linewidth=4.0, color=cols[3], label='RCP 6.0 climate') # rcp85 ax1.fill_between(dfall.loc[2015:, 'rcp85'].index, dfall.loc[2015:, 'rcp85'] - dfallstd.loc[2015:, 'rcp85'], dfall.loc[2015:, 'rcp85'] + dfallstd.loc[2015:, 'rcp85'], color=cols[4], alpha=0.5) dfall.loc[2015:, 'rcp85'].plot(ax=ax1, linewidth=4.0, color=cols[4], label='RCP 8.5 climate') # dummy ax1.plot(0, 0, 'w-', label=' ') # plot commitment length # 1984 fn99 = 'model_diagnostics_commitment1999_{:02d}.nc' df99 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn99, meta) ensmean = df99.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df99.std(axis=1).rolling(y_len, center=True).mean() postlength = ensmeanmean.dropna().iloc[-30:].mean() poststd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], postlength + poststd, postlength - poststd, color=cols[5], alpha=0.5) ax1.plot([2105.5, 2110.5], [postlength, postlength], linewidth=4.0, color=cols[5], label=('Random climate (1984-2014) ' 'equilibrium length')) # 1970 fn70 = 'model_diagnostics_commitment1970_{:02d}.nc' df70 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn70, meta) ensmean = df70.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df70.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[7], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[7], label=('Random climate (1960-1980) ' 'equilibrium length')) # 1885 fn85 = 'model_diagnostics_commitment1885_{:02d}.nc' df85 = get_ensemble_length(rgi, histalp_storage, comit_storage, fn85, meta) ensmean = df85.mean(axis=1) ensmeanmean = ensmean.rolling(y_len, center=True).mean() ensstdmean = df85.std(axis=1).rolling(y_len, center=True).mean() prelength = ensmeanmean.dropna().iloc[-30:].mean() prestd = ensstdmean.dropna().iloc[-30:].mean() ax1.fill_between([2105, 2111], prelength + prestd, prelength - prestd, color=cols[6], alpha=0.5) ax1.plot([2105.5, 2110.5], [prelength, prelength], linewidth=4.0, color=cols[6], label=('Random climate (1870-1900) ' 'equilibrium length')) ylim = ax1.get_ylim() ax1.set_xlim([1850, 2112]) ax2 = ax1.twinx() ax2.set_ylabel('apporixmate\n absolute glacier length [m]', fontsize=26) y1, y2 = get_absolute_length(ylim[0], ylim[1], rgi, df99, histalp_storage) ax2.tick_params(axis='both', which='major', labelsize=22) ax2.set_ylim([y1, y2]) name = name_plus_id(rgi) ax1.set_title('%s' % name, fontsize=28) ax1.set_ylabel('relative length change [m]', fontsize=26) ax1.set_xlabel('Year', fontsize=26) ax1.tick_params(axis='both', which='major', labelsize=22) ax1.grid(True) ax1.legend(bbox_to_anchor=(0.0, -0.17), loc='upper left', fontsize=18, ncol=4) fig.subplots_adjust(left=0.09, right=0.9, bottom=0.3, top=0.93, wspace=0.5) fn1 = os.path.join(pout, 'proj_%s.png' % rgi) fig.savefig(fn1) def get_mean_temps_eq(rgi, histalp_storage, comit_storage, ensmembers): from oggm import cfg, utils, GlacierDirectory from oggm.core.massbalance import MultipleFlowlineMassBalance from oggm.core.flowline import FileModel import shutil # 1. get mean surface heights df85 = pd.DataFrame([]) df99 = pd.DataFrame([]) for i in range(ensmembers): fnc1 = os.path.join(comit_storage, rgi, 'model_run_commitment1885_{:02d}.nc'.format(i)) fnc2 = os.path.join(comit_storage, rgi, 'model_run_commitment1999_{:02d}.nc'.format(i)) tmpmod1 = FileModel(fnc1) tmpmod2 = FileModel(fnc2) for j in np.arange(270, 301): tmpmod1.run_until(j) df85.loc[:, '{}{}'.format(i, j)] = tmpmod1.fls[-1].surface_h tmpmod2.run_until(j) df99.loc[:, '{}{}'.format(i, j)] = tmpmod2.fls[-1].surface_h meanhgt99 = df99.mean(axis=1).values meanhgt85 = df85.mean(axis=1).values # 2. get the climate # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 i = 0 storage_dir = os.path.join(histalp_storage, rgi, '{:02d}'.format(i), rgi[:8], rgi[:11], rgi) new_dir = os.path.join(cfg.PATHS['working_dir'], 'per_glacier', rgi[:8], rgi[:11], rgi) shutil.copytree(storage_dir, new_dir) gdir = GlacierDirectory(rgi) mb = MultipleFlowlineMassBalance(gdir, filename='climate_monthly', check_calib_params=False) # need to do the above for every ensemble member if I consider PRECIP! # and set cfg.PARAMS['prcp_scaling_factor'] = pdict['prcp_scaling_factor'] df99_2 = pd.DataFrame() df85_2 = pd.DataFrame() for i in np.arange(9, 12): for y in np.arange(1870, 1901): flyear = utils.date_to_floatyear(y, i) tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt85, flyear)[0] df85_2.loc[y, i] = tmp.mean() for y in np.arange(1984, 2015): tmp = mb.flowline_mb_models[-1].get_monthly_climate(meanhgt99, flyear)[0] df99_2.loc[y, i] = tmp.mean() t99 = df99_2.mean().mean() t85 = df85_2.mean().mean() return t85, t99 def get_mean_temps_2k(rgi, return_prcp): from oggm import cfg, utils, workflow, tasks from oggm.core.massbalance import PastMassBalance # Initialize OGGM cfg.initialize() wd = utils.gettempdir(reset=True) cfg.PATHS['working_dir'] = wd utils.mkdir(wd, reset=True) cfg.PARAMS['baseline_climate'] = 'HISTALP' # and set standard histalp values cfg.PARAMS['temp_melt'] = -1.75 cfg.PARAMS['prcp_scaling_factor'] = 1.75 gdir = workflow.init_glacier_regions(rgidf=rgi.split('_')[0], from_prepro_level=3, prepro_border=10)[0] # run histalp climate on glacier! tasks.process_histalp_data(gdir) f = gdir.get_filepath('climate_historical') with utils.ncDataset(f) as nc: refhgt = nc.ref_hgt mb = PastMassBalance(gdir, check_calib_params=False) df = pd.DataFrame() df2 = pd.DataFrame() for y in np.arange(1870, 2015): for i in np.arange(9, 12): flyear = utils.date_to_floatyear(y, i) tmp = mb.get_monthly_climate([refhgt], flyear)[0] df.loc[y, i] = tmp.mean() if return_prcp: for i in np.arange(3, 6): flyear = utils.date_to_floatyear(y, i) pcp = mb.get_monthly_climate([refhgt], flyear)[3] df2.loc[y, i] = tmp.mean() t99 = df.loc[1984:2014, :].mean().mean() t85 = df.loc[1870:1900, :].mean().mean() t2k = df.loc[1900:2000, :].mean().mean() if return_prcp: p99 = df2.loc[1984:2014, :].mean().mean() p85 = df2.loc[1870:1900, :].mean().mean() p2k = df2.loc[1900:2000, :].mean().mean() return t85, t99, t2k, p85, p99, p2k return t85, t99, t2k def get_absolute_length(y0, y1, rgi, df, storage): rgipath = os.path.join(storage, rgi, '{:02d}'.format(0), rgi[:8], rgi[:11], rgi) mfile = os.path.join(rgipath, 'model_run_histalp_{:02d}.nc'.format(0)) tmpmod = FileModel(mfile) absL = tmpmod.length_m deltaL = df.loc[int(tmpmod.yr.values), 0] abs_y0 = absL + (y0 - deltaL) abs_y1 = absL + (y1 - deltaL) return abs_y0, abs_y1 def elevation_profiles(rgi, meta, histalp_storage, pout): name = name_plus_id(rgi) df1850 = pd.DataFrame() df2003 = pd.DataFrame() df2003b =
pd.DataFrame()
pandas.DataFrame
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) # Any results you write to the current directory are saved as output. df = pd.read_csv('/kaggle/input/forest-cover-type-prediction/train.csv') test_df = pd.read_csv('/kaggle/input/forest-cover-type-prediction/test.csv') print(df.head(10)) print(len(df)) # print(df.describe()) print(df.columns) print(test_df.head(10)) print(len(test_df)) # print(df.describe()) print(test_df.columns) df['Cover_Type'].describe() pd.value_counts(df['Cover_Type']) df.describe() import matplotlib.pyplot as plt df.drop(axis=1, columns=['Soil_Type7','Soil_Type15'], inplace=True) # Convert the Wilderness Area one hot encoded to single column columns = ['Wilderness_Area1', 'Wilderness_Area2', 'Wilderness_Area3', 'Wilderness_Area4'] wilderness_types = [] for index, row in df.iterrows(): dummy = 'Wilderness_Area_NA' for col in columns: if row[col] == 1: dummy = col break wilderness_types.append(dummy) df['Wilderness_Areas'] = wilderness_types # Convert the Soil Type one hot encoded to single column columns = ['Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5', 'Soil_Type6', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10', 'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14', 'Soil_Type16', 'Soil_Type17', 'Soil_Type18', 'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22', 'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26', 'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30', 'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34', 'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38', 'Soil_Type39', 'Soil_Type40'] soil_types = [] for index, row in df.iterrows(): dummy = 'Soil_Type_NA' for col in columns: if row[col] == 1: dummy = col break soil_types.append(dummy) df['Soil_Types'] = soil_types print(pd.value_counts(df['Soil_Types'])) ax = df['Soil_Types'].value_counts().plot(kind='bar', figsize=(8,5), title="Number for each Soli Type") ax.set_xlabel("Soil Types") ax.set_ylabel("Frequency") plt.show() print(pd.value_counts(df['Wilderness_Areas'])) ax1 = df['Wilderness_Areas'].value_counts().plot(kind='bar', figsize=(8,5), title="Number for each Soli Type") ax1.set_xlabel("Wilderness_Areas") ax1.set_ylabel("Frequency") plt.show() df.drop(axis=1, columns=['Wilderness_Area1', 'Wilderness_Area2', 'Wilderness_Area3', 'Wilderness_Area4'], inplace=True) df.drop(axis=1, columns=['Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5', 'Soil_Type6', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10', 'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14', 'Soil_Type16', 'Soil_Type17', 'Soil_Type18', 'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22', 'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26', 'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30', 'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34', 'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38', 'Soil_Type39', 'Soil_Type40'], inplace=True) df['Soil_Types'].replace(to_replace={'Soil_Type8': 'Soil_Type_NA', 'Soil_Type25': 'Soil_Type_NA'}, inplace=True) print(pd.value_counts(df['Soil_Types'])) ## Apply to test_df test_df.drop(axis=1, columns=['Soil_Type7','Soil_Type15'], inplace=True) # Convert the Wilderness Area one hot encoded to single column columns = ['Wilderness_Area1', 'Wilderness_Area2', 'Wilderness_Area3', 'Wilderness_Area4'] wilderness_types = [] for index, row in test_df.iterrows(): dummy = 'Wilderness_Area_NA' for col in columns: if row[col] == 1: dummy = col break wilderness_types.append(dummy) test_df['Wilderness_Areas'] = wilderness_types # Convert the Soil Type one hot encoded to single column columns = ['Soil_Type1', 'Soil_Type2', 'Soil_Type3', 'Soil_Type4', 'Soil_Type5', 'Soil_Type6', 'Soil_Type8', 'Soil_Type9', 'Soil_Type10', 'Soil_Type11', 'Soil_Type12', 'Soil_Type13', 'Soil_Type14', 'Soil_Type16', 'Soil_Type17', 'Soil_Type18', 'Soil_Type19', 'Soil_Type20', 'Soil_Type21', 'Soil_Type22', 'Soil_Type23', 'Soil_Type24', 'Soil_Type25', 'Soil_Type26', 'Soil_Type27', 'Soil_Type28', 'Soil_Type29', 'Soil_Type30', 'Soil_Type31', 'Soil_Type32', 'Soil_Type33', 'Soil_Type34', 'Soil_Type35', 'Soil_Type36', 'Soil_Type37', 'Soil_Type38', 'Soil_Type39', 'Soil_Type40'] soil_types = [] for index, row in test_df.iterrows(): dummy = 'Soil_Type_NA' for col in columns: if row[col] == 1: dummy = col break soil_types.append(dummy) test_df['Soil_Types'] = soil_types print(
pd.value_counts(test_df['Soil_Types'])
pandas.value_counts
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from os.path import join as pjoin import datetime import io import os import json import pytest from pyarrow.compat import guid, u from pyarrow.filesystem import LocalFileSystem import pyarrow as pa from .pandas_examples import dataframe_with_arrays, dataframe_with_lists import numpy as np import pandas as pd import pandas.util.testing as tm # Ignore these with pytest ... -m 'not parquet' parquet = pytest.mark.parquet def _write_table(table, path, **kwargs): import pyarrow.parquet as pq if isinstance(table, pd.DataFrame): table = pa.Table.from_pandas(table) pq.write_table(table, path, **kwargs) return table def _read_table(*args, **kwargs): import pyarrow.parquet as pq return pq.read_table(*args, **kwargs) @parquet def test_single_pylist_column_roundtrip(tmpdir): for dtype in [int, float]: filename = tmpdir.join('single_{}_column.parquet' .format(dtype.__name__)) data = [pa.array(list(map(dtype, range(5))))] table = pa.Table.from_arrays(data, names=('a', 'b')) _write_table(table, filename.strpath) table_read = _read_table(filename.strpath) for col_written, col_read in zip(table.itercolumns(), table_read.itercolumns()): assert col_written.name == col_read.name assert col_read.data.num_chunks == 1 data_written = col_written.data.chunk(0) data_read = col_read.data.chunk(0) assert data_written.equals(data_read) def alltypes_sample(size=10000, seed=0): np.random.seed(seed) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Test other timestamp resolutions now that arrow supports # them 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) return df @parquet def test_pandas_parquet_2_0_rountrip(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = pq.read_pandas(filename.strpath) assert b'pandas' in table_read.schema.metadata assert arrow_table.schema.metadata == table_read.schema.metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_custom_metadata(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') md = pq.read_metadata(filename.strpath).metadata assert b'pandas' in md js = json.loads(md[b'pandas'].decode('utf8')) assert js['index_columns'] == ['__index_level_0__'] @parquet def test_pandas_parquet_2_0_rountrip_read_pandas_no_index_written(tmpdir): import pyarrow.parquet as pq df = alltypes_sample(size=10000) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, preserve_index=False) js = json.loads(arrow_table.schema.metadata[b'pandas'].decode('utf8')) assert not js['index_columns'] _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = pq.read_pandas(filename.strpath) js = json.loads(table_read.schema.metadata[b'pandas'].decode('utf8')) assert not js['index_columns'] assert arrow_table.schema.metadata == table_read.schema.metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_1_0_rountrip(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename.strpath, version="1.0") table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() # We pass uint32_t as int64_t if we write Parquet version 1.0 df['uint32'] = df['uint32'].values.astype(np.int64) tm.assert_frame_equal(df, df_read) @parquet def test_pandas_column_selection(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16) }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename.strpath) table_read = _read_table(filename.strpath, columns=['uint8']) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) def _random_integers(size, dtype): # We do not generate integers outside the int64 range platform_int_info = np.iinfo('int_') iinfo = np.iinfo(dtype) return np.random.randint(max(iinfo.min, platform_int_info.min), min(iinfo.max, platform_int_info.max), size=size).astype(dtype) def _test_dataframe(size=10000, seed=0): np.random.seed(seed) df = pd.DataFrame({ 'uint8': _random_integers(size, np.uint8), 'uint16': _random_integers(size, np.uint16), 'uint32': _random_integers(size, np.uint32), 'uint64': _random_integers(size, np.uint64), 'int8': _random_integers(size, np.int8), 'int16': _random_integers(size, np.int16), 'int32': _random_integers(size, np.int32), 'int64': _random_integers(size, np.int64), 'float32': np.random.randn(size).astype(np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': [tm.rands(10) for i in range(size)], 'all_none': [None] * size, 'all_none_category': [None] * size }) # TODO(PARQUET-1015) # df['all_none_category'] = df['all_none_category'].astype('category') return df @parquet def test_pandas_parquet_native_file_roundtrip(tmpdir): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = _read_table(reader).to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_read_pandas_column_subset(tmpdir): import pyarrow.parquet as pq df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = pq.read_pandas(reader, columns=['strings', 'uint8']).to_pandas() tm.assert_frame_equal(df[['strings', 'uint8']], df_read) @parquet def test_pandas_parquet_empty_roundtrip(tmpdir): df = _test_dataframe(0) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version="2.0") buf = imos.get_result() reader = pa.BufferReader(buf) df_read = _read_table(reader).to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_pyfile_roundtrip(tmpdir): filename = tmpdir.join('pandas_pyfile_roundtrip.parquet').strpath size = 5 df = pd.DataFrame({ 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': ['foo', 'bar', None, 'baz', 'qux'] }) arrow_table = pa.Table.from_pandas(df) with open(filename, 'wb') as f: _write_table(arrow_table, f, version="1.0") data = io.BytesIO(open(filename, 'rb').read()) table_read = _read_table(data) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_pandas_parquet_configuration_options(tmpdir): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0 }) filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df) for use_dictionary in [True, False]: _write_table(arrow_table, filename.strpath, version="2.0", use_dictionary=use_dictionary) table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for compression in ['NONE', 'SNAPPY', 'GZIP']: _write_table(arrow_table, filename.strpath, version="2.0", compression=compression) table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) def make_sample_file(df): import pyarrow.parquet as pq a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, compression='SNAPPY', version='2.0', coerce_timestamps='ms') buf.seek(0) return pq.ParquetFile(buf) @parquet def test_parquet_metadata_api(): df = alltypes_sample(size=10000) df = df.reindex(columns=sorted(df.columns)) fileh = make_sample_file(df) ncols = len(df.columns) # Series of sniff tests meta = fileh.metadata repr(meta) assert meta.num_rows == len(df) assert meta.num_columns == ncols + 1 # +1 for index assert meta.num_row_groups == 1 assert meta.format_version == '2.0' assert 'parquet-cpp' in meta.created_by # Schema schema = fileh.schema assert meta.schema is schema assert len(schema) == ncols + 1 # +1 for index repr(schema) col = schema[0] repr(col) assert col.name == df.columns[0] assert col.max_definition_level == 1 assert col.max_repetition_level == 0 assert col.max_repetition_level == 0 assert col.physical_type == 'BOOLEAN' assert col.logical_type == 'NONE' with pytest.raises(IndexError): schema[ncols + 1] # +1 for index with pytest.raises(IndexError): schema[-1] # Row group rg_meta = meta.row_group(0) repr(rg_meta) assert rg_meta.num_rows == len(df) assert rg_meta.num_columns == ncols + 1 # +1 for index @parquet def test_compare_schemas(): df = alltypes_sample(size=10000) fileh = make_sample_file(df) fileh2 = make_sample_file(df) fileh3 = make_sample_file(df[df.columns[::2]]) assert fileh.schema.equals(fileh.schema) assert fileh.schema.equals(fileh2.schema) assert not fileh.schema.equals(fileh3.schema) assert fileh.schema[0].equals(fileh.schema[0]) assert not fileh.schema[0].equals(fileh.schema[1]) @parquet def test_column_of_arrays(tmpdir): df, schema = dataframe_with_arrays() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_coerce_timestamps(tmpdir): # ARROW-622 df, schema = dataframe_with_arrays() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='us') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() df_expected = df.copy() for i, x in enumerate(df_expected['datetime64']): if isinstance(x, np.ndarray): df_expected['datetime64'][i] = x.astype('M8[us]') tm.assert_frame_equal(df_expected, df_read) with pytest.raises(ValueError): _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='unknown') @parquet def test_column_of_lists(tmpdir): df, schema = dataframe_with_lists() filename = tmpdir.join('pandas_rountrip.parquet') arrow_table = pa.Table.from_pandas(df, schema=schema) _write_table(arrow_table, filename.strpath, version="2.0", coerce_timestamps='ms') table_read = _read_table(filename.strpath) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @parquet def test_date_time_types(): t1 = pa.date32() data1 = np.array([17259, 17260, 17261], dtype='int32') a1 = pa.Array.from_pandas(data1, type=t1) t2 = pa.date64() data2 = data1.astype('int64') * 86400000 a2 = pa.Array.from_pandas(data2, type=t2) t3 = pa.timestamp('us') start = pd.Timestamp('2000-01-01').value / 1000 data3 = np.array([start, start + 1, start + 2], dtype='int64') a3 = pa.Array.from_pandas(data3, type=t3) t4 = pa.time32('ms') data4 = np.arange(3, dtype='i4') a4 = pa.Array.from_pandas(data4, type=t4) t5 = pa.time64('us') a5 = pa.Array.from_pandas(data4.astype('int64'), type=t5) t6 = pa.time32('s') a6 = pa.Array.from_pandas(data4, type=t6) ex_t6 = pa.time32('ms') ex_a6 = pa.Array.from_pandas(data4 * 1000, type=ex_t6) t7 = pa.timestamp('ns') start = pd.Timestamp('2001-01-01').value data7 = np.array([start, start + 1000, start + 2000], dtype='int64') a7 = pa.Array.from_pandas(data7, type=t7) t7_us = pa.timestamp('us') start = pd.Timestamp('2001-01-01').value data7_us = np.array([start, start + 1000, start + 2000], dtype='int64') // 1000 a7_us = pa.Array.from_pandas(data7_us, type=t7_us) table = pa.Table.from_arrays([a1, a2, a3, a4, a5, a6, a7], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) # date64 as date32 # time32[s] to time32[ms] # 'timestamp[ns]' to 'timestamp[us]' expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7_us], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) _check_roundtrip(table, expected=expected, version='2.0') # date64 as date32 # time32[s] to time32[ms] # 'timestamp[ns]' is saved as INT96 timestamp expected = pa.Table.from_arrays([a1, a1, a3, a4, a5, ex_a6, a7], ['date32', 'date64', 'timestamp[us]', 'time32[s]', 'time64[us]', 'time32_from64[s]', 'timestamp[ns]']) _check_roundtrip(table, expected=expected, version='2.0', use_deprecated_int96_timestamps=True) # Unsupported stuff def _assert_unsupported(array): table = pa.Table.from_arrays([array], ['unsupported']) buf = io.BytesIO() with pytest.raises(NotImplementedError): _write_table(table, buf, version="2.0") t7 = pa.time64('ns') a7 = pa.Array.from_pandas(data4.astype('int64'), type=t7) _assert_unsupported(a7) @parquet def test_fixed_size_binary(): t0 = pa.binary(10) data = [b'fooooooooo', None, b'barooooooo', b'quxooooooo'] a0 = pa.array(data, type=t0) table = pa.Table.from_arrays([a0], ['binary[10]']) _check_roundtrip(table) def _check_roundtrip(table, expected=None, **params): buf = io.BytesIO() _write_table(table, buf, **params) buf.seek(0) if expected is None: expected = table result = _read_table(buf) assert result.equals(expected) @parquet def test_multithreaded_read(): df = alltypes_sample(size=10000) table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(table, buf, compression='SNAPPY', version='2.0') buf.seek(0) table1 = _read_table(buf, nthreads=4) buf.seek(0) table2 = _read_table(buf, nthreads=1) assert table1.equals(table2) @parquet def test_min_chunksize(): data = pd.DataFrame([np.arange(4)], columns=['A', 'B', 'C', 'D']) table = pa.Table.from_pandas(data.reset_index()) buf = io.BytesIO() _write_table(table, buf, chunk_size=-1) buf.seek(0) result = _read_table(buf) assert result.equals(table) with pytest.raises(ValueError): _write_table(table, buf, chunk_size=0) @parquet def test_pass_separate_metadata(): import pyarrow.parquet as pq # ARROW-471 df = alltypes_sample(size=10000) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, compression='snappy', version='2.0') buf.seek(0) metadata = pq.read_metadata(buf) buf.seek(0) fileh = pq.ParquetFile(buf, metadata=metadata) tm.assert_frame_equal(df, fileh.read().to_pandas()) @parquet def test_read_single_row_group(): import pyarrow.parquet as pq # ARROW-471 N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.0') buf.seek(0) pf = pq.ParquetFile(buf) assert pf.num_row_groups == K row_groups = [pf.read_row_group(i) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df, result.to_pandas()) @parquet def test_read_single_row_group_with_column_subset(): import pyarrow.parquet as pq N, K = 10000, 4 df = alltypes_sample(size=N) a_table = pa.Table.from_pandas(df) buf = io.BytesIO() _write_table(a_table, buf, row_group_size=N / K, compression='snappy', version='2.0') buf.seek(0) pf = pq.ParquetFile(buf) cols = df.columns[:2] row_groups = [pf.read_row_group(i, columns=cols) for i in range(K)] result = pa.concat_tables(row_groups) tm.assert_frame_equal(df[cols], result.to_pandas()) @parquet def test_parquet_piece_read(tmpdir): import pyarrow.parquet as pq df = _test_dataframe(1000) table = pa.Table.from_pandas(df) path = tmpdir.join('parquet_piece_read.parquet').strpath _write_table(table, path, version='2.0') piece1 = pq.ParquetDatasetPiece(path) result = piece1.read() assert result.equals(table) @parquet def test_parquet_piece_basics(): import pyarrow.parquet as pq path = '/baz.parq' piece1 = pq.ParquetDatasetPiece(path) piece2 = pq.ParquetDatasetPiece(path, row_group=1) piece3 = pq.ParquetDatasetPiece( path, row_group=1, partition_keys=[('foo', 0), ('bar', 1)]) assert str(piece1) == path assert str(piece2) == '/baz.parq | row_group=1' assert str(piece3) == 'partition[foo=0, bar=1] /baz.parq | row_group=1' assert piece1 == piece1 assert piece2 == piece2 assert piece3 == piece3 assert piece1 != piece3 @parquet def test_partition_set_dictionary_type(): import pyarrow.parquet as pq set1 = pq.PartitionSet('key1', [u('foo'), u('bar'), u('baz')]) set2 = pq.PartitionSet('key2', [2007, 2008, 2009]) assert isinstance(set1.dictionary, pa.StringArray) assert isinstance(set2.dictionary, pa.IntegerArray) set3 = pq.PartitionSet('key2', [datetime.datetime(2007, 1, 1)]) with pytest.raises(TypeError): set3.dictionary @parquet def test_read_partitioned_directory(tmpdir): fs = LocalFileSystem.get_instance() base_path = str(tmpdir) _partition_test_for_filesystem(fs, base_path) @pytest.yield_fixture def s3_example(): access_key = os.environ['PYARROW_TEST_S3_ACCESS_KEY'] secret_key = os.environ['PYARROW_TEST_S3_SECRET_KEY'] bucket_name = os.environ['PYARROW_TEST_S3_BUCKET'] import s3fs fs = s3fs.S3FileSystem(key=access_key, secret=secret_key) test_dir = guid() bucket_uri = 's3://{0}/{1}'.format(bucket_name, test_dir) fs.mkdir(bucket_uri) yield fs, bucket_uri fs.rm(bucket_uri, recursive=True) @pytest.mark.s3 @parquet def test_read_partitioned_directory_s3fs(s3_example): from pyarrow.filesystem import S3FSWrapper import pyarrow.parquet as pq fs, bucket_uri = s3_example wrapper = S3FSWrapper(fs) _partition_test_for_filesystem(wrapper, bucket_uri) # Check that we can auto-wrap dataset = pq.ParquetDataset(bucket_uri, filesystem=fs) dataset.read() def _partition_test_for_filesystem(fs, base_path): import pyarrow.parquet as pq foo_keys = [0, 1] bar_keys = ['<KEY>'] partition_spec = [ ['foo', foo_keys], ['bar', bar_keys] ] N = 30 df = pd.DataFrame({ 'index': np.arange(N), 'foo': np.array(foo_keys, dtype='i4').repeat(15), 'bar': np.tile(np.tile(np.array(bar_keys, dtype=object), 5), 2), 'values': np.random.randn(N) }, columns=['index', 'foo', 'bar', 'values']) _generate_partition_directories(fs, base_path, partition_spec, df) dataset = pq.ParquetDataset(base_path, filesystem=fs) table = dataset.read() result_df = (table.to_pandas() .sort_values(by='index') .reset_index(drop=True)) expected_df = (df.sort_values(by='index') .reset_index(drop=True) .reindex(columns=result_df.columns)) expected_df['foo'] = pd.Categorical(df['foo'], categories=foo_keys) expected_df['bar'] = pd.Categorical(df['bar'], categories=bar_keys) assert (result_df.columns == ['index', 'values', 'foo', 'bar']).all() tm.assert_frame_equal(result_df, expected_df) def _generate_partition_directories(fs, base_dir, partition_spec, df): # partition_spec : list of lists, e.g. [['foo', [0, 1, 2], # ['bar', ['a', 'b', 'c']] # part_table : a pyarrow.Table to write to each partition DEPTH = len(partition_spec) def _visit_level(base_dir, level, part_keys): name, values = partition_spec[level] for value in values: this_part_keys = part_keys + [(name, value)] level_dir = pjoin(base_dir, '{0}={1}'.format(name, value)) fs.mkdir(level_dir) if level == DEPTH - 1: # Generate example data file_path = pjoin(level_dir, 'data.parq') filtered_df = _filter_partition(df, this_part_keys) part_table = pa.Table.from_pandas(filtered_df) with fs.open(file_path, 'wb') as f: _write_table(part_table, f) else: _visit_level(level_dir, level + 1, this_part_keys) _visit_level(base_dir, 0, []) @parquet def test_read_common_metadata_files(tmpdir): import pyarrow.parquet as pq N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) base_path = str(tmpdir) data_path = pjoin(base_path, 'data.parquet') table = pa.Table.from_pandas(df) _write_table(table, data_path) metadata_path = pjoin(base_path, '_metadata') pq.write_metadata(table.schema, metadata_path) dataset = pq.ParquetDataset(base_path) assert dataset.metadata_path == metadata_path common_schema = pq.read_metadata(data_path).schema assert dataset.schema.equals(common_schema) # handle list of one directory dataset2 = pq.ParquetDataset([base_path]) assert dataset2.schema.equals(dataset.schema) @parquet def test_read_schema(tmpdir): import pyarrow.parquet as pq N = 100 df = pd.DataFrame({ 'index': np.arange(N), 'values': np.random.randn(N) }, columns=['index', 'values']) data_path = pjoin(str(tmpdir), 'test.parquet') table = pa.Table.from_pandas(df) _write_table(table, data_path) assert table.schema.equals(pq.read_schema(data_path)) def _filter_partition(df, part_keys): predicate = np.ones(len(df), dtype=bool) to_drop = [] for name, value in part_keys: to_drop.append(name) predicate &= df[name] == value return df[predicate].drop(to_drop, axis=1) @parquet def test_read_multiple_files(tmpdir): import pyarrow.parquet as pq nfiles = 10 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) # Hack so that we don't have a dtype cast in v1 files df['uint32'] = df['uint32'].astype(np.int64) path = pjoin(dirpath, '{0}.parquet'.format(i)) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) paths.append(path) # Write a _SUCCESS.crc file with open(pjoin(dirpath, '_SUCCESS.crc'), 'wb') as f: f.write(b'0') def read_multiple_files(paths, columns=None, nthreads=None, **kwargs): dataset = pq.ParquetDataset(paths, **kwargs) return dataset.read(columns=columns, nthreads=nthreads) result = read_multiple_files(paths) expected = pa.concat_tables(test_data) assert result.equals(expected) # Read with provided metadata metadata = pq.read_metadata(paths[0]) result2 = read_multiple_files(paths, metadata=metadata) assert result2.equals(expected) result3 = pa.localfs.read_parquet(dirpath, schema=metadata.schema) assert result3.equals(expected) # Read column subset to_read = [result[0], result[2], result[6], result[result.num_columns - 1]] result = pa.localfs.read_parquet( dirpath, columns=[c.name for c in to_read]) expected = pa.Table.from_arrays(to_read, metadata=result.schema.metadata) assert result.equals(expected) # Read with multiple threads pa.localfs.read_parquet(dirpath, nthreads=2) # Test failure modes with non-uniform metadata bad_apple = _test_dataframe(size, seed=i).iloc[:, :4] bad_apple_path = tmpdir.join('{0}.parquet'.format(guid())).strpath t = pa.Table.from_pandas(bad_apple) _write_table(t, bad_apple_path) bad_meta = pq.read_metadata(bad_apple_path) with pytest.raises(ValueError): read_multiple_files(paths + [bad_apple_path]) with pytest.raises(ValueError): read_multiple_files(paths, metadata=bad_meta) mixed_paths = [bad_apple_path, paths[0]] with pytest.raises(ValueError): read_multiple_files(mixed_paths, schema=bad_meta.schema) with pytest.raises(ValueError): read_multiple_files(mixed_paths) @parquet def test_dataset_read_pandas(tmpdir): import pyarrow.parquet as pq nfiles = 5 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] frames = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) df.index = np.arange(i * size, (i + 1) * size) df.index.name = 'index' path = pjoin(dirpath, '{0}.parquet'.format(i)) table = pa.Table.from_pandas(df) _write_table(table, path) test_data.append(table) frames.append(df) paths.append(path) dataset = pq.ParquetDataset(dirpath) columns = ['uint8', 'strings'] result = dataset.read_pandas(columns=columns).to_pandas() expected = pd.concat([x[columns] for x in frames]) tm.assert_frame_equal(result, expected) @parquet def test_dataset_read_pandas_common_metadata(tmpdir): # ARROW-1103 import pyarrow.parquet as pq nfiles = 5 size = 5 dirpath = tmpdir.join(guid()).strpath os.mkdir(dirpath) test_data = [] frames = [] paths = [] for i in range(nfiles): df = _test_dataframe(size, seed=i) df.index = pd.Index(np.arange(i * size, (i + 1) * size)) df.index.name = 'index' path = pjoin(dirpath, '{0}.parquet'.format(i)) df_ex_index = df.reset_index(drop=True) df_ex_index['index'] = df.index table = pa.Table.from_pandas(df_ex_index, preserve_index=False) # Obliterate metadata table = table.replace_schema_metadata(None) assert table.schema.metadata is None _write_table(table, path) test_data.append(table) frames.append(df) paths.append(path) # Write _metadata common file table_for_metadata = pa.Table.from_pandas(df) pq.write_metadata(table_for_metadata.schema, pjoin(dirpath, '_metadata')) dataset = pq.ParquetDataset(dirpath) columns = ['uint8', 'strings'] result = dataset.read_pandas(columns=columns).to_pandas() expected =
pd.concat([x[columns] for x in frames])
pandas.concat
# Python Code implementation for Class_Reg ALGORITHM import pandas as pd import numpy as np import itertools from sklearn.model_selection import train_test_split from models import * from sklearn.metrics import accuracy_score,mean_squared_error from tqdm import tqdm import random from sklearn.metrics import median_absolute_error from sklearn.metrics import mean_absolute_error import statistics class class_reg(object): """ A function combining classifiers and regressors""" def __init__(self, data = None, X_cols = None, y_col = None, test_size = 0.3, validation_size = 0.2, epochs = 5, metrics = 'wmape'): self.data = data self.X_cols = X_cols self.y_col = y_col self.test_size = test_size self.validation_size = validation_size self.epochs = epochs self.metrics = metrics self.test_X = None self.test_y = None self.classifier = None self.regressor = None self.mets = None def fitted(self): data = self.data X_cols = self.X_cols y_col = self.y_col test_size = self.test_size validation_size = self.validation_size epochs = self.epochs metrics = self.metrics mape_vals = [] epoch_num = 0 X = data[X_cols] y = pd.DataFrame(data[y_col]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = test_size, random_state = 0) y_test = list(processing.avgfit(list(y_test[y_col]))) dataset = [] for i in range(len(X_train)): dataset.append(list(X_train.iloc[i])) dataset = pd.DataFrame(dataset) cols = [] for i in X_cols : cols.append(i) cols.append(y_col) dataset[y_col] = y_train dataset.columns = cols self.test_X = X_test self.test_y = y_test self.train_X = X_train self.train_y = y_train for random_state in np.random.randint(0, 10000, epochs): epoch_num = epoch_num + 1 X,y,n_classes = processing.split(dataset, X_cols, y_col) X_train, X_test, y_train, y_test = processing.train_test(X, y, validation_size, random_state) X_train_list, y_train_list = processing.dataset_split_class(X_train , y_train[1], y, len(y), n_classes, 'train') epoch = str(epoch_num) + '/' + str(epochs) print(' ') print("Epoch " + epoch + ' :') acc_conf, clf, reg = training.train(y, y_col, X_train, y_train, X_train_list, y_train_list, X_test, y_test, n_classes, random_state, metrics) for acc_ in acc_conf: mape_vals.append(acc_) acc_vals, c, r = analysis.analyse(mape_vals,epochs) self.acc_vals = acc_vals classifier = clf[c] regressor = [] for i in range(n_classes): regressor.append(reg[i][r]) X_train = self.train_X y_train = self.train_y train = X_train train[y_col] = y_train X_train,y_train,n_classes = processing.split(train, X_cols, y_col) classifier.fit(X_train, pd.DataFrame(y_train[1])) X_train = processing.rem_col_name(X_train) y_train = processing.rem_col_name(y_train) X_train.columns = X_cols #y_train.columns = [y_col] X_train_list, y_train_list = processing.dataset_split_class(X_train , y_train[1], y, len(y), n_classes, 'train') for i in range(n_classes): (regressor[i]).fit(X_train_list[i],y_train_list[i][0]) self.classifier = classifier self.regressor = regressor self.n_classes = n_classes def fit(self, X, y, validation_size = 0.3, epochs = 1): X_cols = X.columns y_col = y.columns X = processing.rem_col_name(X) y = processing.rem_col_name(y) X.columns = X_cols y.columns = y_col dataset = X dataset[y_col] = y epoch_num = 0 mape_vals = [] for random_state in np.random.randint(0, 10000, epochs): epoch_num = epoch_num + 1 X,y,n_classes = processing.split(dataset, X_cols, y_col) X_train, X_test, y_train, y_test = processing.train_test(X, y, validation_size, random_state) X_train_list, y_train_list = processing.dataset_split_class(X_train , y_train[1], pd.DataFrame(y), len(y), n_classes, 'train') epoch = str(epoch_num) + '/' + str(epochs) print(' ') print("Epoch " + epoch + ' :') metrics = 'wmape' acc_conf, clf, reg = training.train(y, y_col, X_train, y_train, X_train_list, y_train_list, X_test, y_test, n_classes, random_state, metrics) for acc_ in acc_conf: mape_vals.append(acc_) acc_vals, c, r = analysis.analyse(mape_vals,epochs) self.acc_vals = acc_vals classifier = clf[c] regressor = [] for i in range(n_classes): regressor.append(reg[i][r]) X_train,y_train,n_classes = processing.split(dataset,X_cols,y_col) classifier.fit(X_train, pd.DataFrame(y_train[1])) X_train.columns = X_cols X_train_list, y_train_list = processing.dataset_split_class(X_train , y_train[1], y, len(y), n_classes, 'train') for i in range(n_classes): (regressor[i]).fit(X_train_list[i],y_train_list[i][0]) self.classifier = classifier self.regressor = regressor self.n_classes = n_classes def predict(self, X): clf = self.classifier reg = self.regressor if isinstance(X, pd.DataFrame): pred = [] for i in range(len(X)): arr = list(X.iloc[i]) pred.append(class_reg.pred(clf,reg,arr)) else: X = ((np.array(X).reshape(1,-1))) clf_pred = (clf.predict(X))[0] class_ = ([int(s) for s in clf_pred.split() if s.isdigit()])[0] pred = (reg[class_ - 1].predict(X))[0] return(pred) @classmethod def pred(self,clf,reg,X): X = ((np.array(X).reshape(1,-1))) clf_pred = (clf.predict(X))[0] class_ = ([int(s) for s in clf_pred.split() if s.isdigit()])[0] pred = (reg[class_ - 1].predict(X))[0] return(pred) def performance(self): clf = self.classifier reg = self.regressor data = self.data X_cols = self.X_cols y_col = self.y_col test_size = self.test_size X,y,n_classes = processing.split(data, X_cols, y_col) mape_list = [] mse_list = [] for random_state in np.random.randint(0, 10000, 20): X_train, X_test, y_train, y_test = processing.train_test(X, y, test_size, random_state) X_train_list, y_train_list = processing.dataset_split_class(X_train , y_train[1], y, len(y), n_classes, 'train') classi = clf classi.fit(X_train, y_train[1]) regr = [] for i in range(n_classes): regre_ = reg[i] regre_.fit(X_train_list[i],y_train_list[i][0]) regr.append(regre_) pred = [] for i in range(len(X_test)): arr = list(X_test.iloc[i]) pred.append(class_reg.pred(classi, regr, arr)) mape = metric.wmape(list(y_test[0]), list(pred)) mse = mean_squared_error(list(y_test[0]), pred, squared = False) mse = (np.sqrt(mse) - min(y_test[0]))/((max(y_test[0])) - min(y_test[0])) mse = mse**2 mape_list.append(mape) mse_list.append(mse) mape = sum(mape_list)/len(mape_list) mse = sum(mse_list)/len(mse_list) mets = {'WMAPE' : mape, 'MSE' : mse} self.mets = mets return(mets) class processing(object): @classmethod def avgfit(self,l): self.l = l na =
pd.isna(l)
pandas.isna
""" Changepoint Detection ===================== You can detect trend and seasonality changepoints with just a few lines of code. Provide your timeseries as a pandas dataframe with timestamp and value. For example, to work with daily sessions data, your dataframe could look like this: .. code-block:: python import pandas as pd df = pd.DataFrame({ "datepartition": ["2020-01-08-00", "2020-01-09-00", "2020-01-10-00"], "macrosessions": [10231.0, 12309.0, 12104.0] }) The time column can be any format recognized by ``pd.to_datetime``. In this example, we'll load a dataset representing ``log(daily page views)`` on the Wikipedia page for <NAME>. It contains values from 2007-12-10 to 2016-01-20. More dataset info `here <https://facebook.github.io/prophet/docs/quick_start.html>`_. """ import warnings warnings.filterwarnings("ignore") import pandas as pd import plotly from greykite.algo.changepoint.adalasso.changepoint_detector import ChangepointDetector from greykite.framework.benchmark.data_loader_ts import DataLoaderTS from greykite.framework.templates.autogen.forecast_config import ForecastConfig from greykite.framework.templates.forecaster import Forecaster from greykite.framework.templates.model_templates import ModelTemplateEnum # Loads dataset into UnivariateTimeSeries dl = DataLoaderTS() ts = dl.load_peyton_manning_ts() df = ts.df # cleaned pandas.DataFrame # %% # Detect trend change points # -------------------------- # Let's plot the original timeseries. # There are actually trend changes within this data set. # The `~greykite.framework.input.univariate_time_series.UnivariateTimeSeries` # class is used to store a timeseries and to provide basic description and plotting functions. # The ``load_peyton_manning`` function automatically returns a ``UnivariateTimeSeries`` instance, # however, for any ``df``, you can always initialize a ``UnivariateTimeSeries`` instance and # do further explorations. # (The interactive plot is generated by ``plotly``: **click to zoom!**) fig = ts.plot() plotly.io.show(fig) # %% # `~greykite.algo.changepoint.adalasso.changepoint_detector.ChangepointDetector` # utilizes pre-filters, regularization with regression based models, and # post-filters to find time points where trend changes. # # To create a simple trend changepoint detection model, we first initialize the # `~greykite.algo.changepoint.adalasso.changepoint_detector.ChangepointDetector` class, # then run its attribute function ``find_trend_changepoints``. model = ChangepointDetector() res = model.find_trend_changepoints( df=df, # data df time_col="ts", # time column name value_col="y") # value column name pd.DataFrame({"trend_changepoints": res["trend_changepoints"]}) # prints a dataframe showing the result # %% # The code above runs trend changepoint detection with the default parameters. # We may visualize the detection results by plotting it with the attribute # function ``plot``. fig = model.plot(plot=False) # plot = False returns a plotly figure object. plotly.io.show(fig) # %% # There might be too many changepoints with the default parameters. # We could customize the parameters to meet individual requirements. # # To understand the parameters, we introduce a little bit of the background # knowledge. The algorithm first does a mean aggregation to eliminate small # fluctuations/seasonality effects (``resample_freq``). This avoids the trend # picking up small fluctuations/seasonality effects. # # Then a great number of potential changepoints are placed uniformly over the # whole time span (specified by time between changepoints ``potential_changepoint_distance`` # or number of potential changepoints ``potential_changepoint_n`` # , the former overrides the latter). # # The adaptive lasso (more info # at `adalasso <http://users.stat.umn.edu/~zouxx019/Papers/adalasso.pdf>`_) # is used to shrink insignificant changepoints' coefficients to zero. # The initial estimator for adaptive lasso could be one of "ols", "ridge" # and "lasso" (``adaptive_lasso_initial_estimator``). The regularization # strength of adaptive lasso is also controllable by users # (``regularization_strength``, between 0.0 and 1.0, greater values imply # fewer changepoints. ``None`` triggers cross-validation to select the best # tuning parameter based on prediction performance). # # Yearly seasonality effect is too long to be eliminated by aggregation, so # fitting it with trend is recommended (``yearly_seasonality_order``). # This allows changepoints to distinguish trend from yearly seasonality. # # Putting changepoints too close to the end of data is not recommended, # because we may not have enough data to fit the final trend, # especially in forecasting tasks. Therefore, one could specify how far # from the end changepoints are not allowed (specified by the time from the end # of data ``no_changepoint_distance_from_end`` or proportion of data from the end # ``no_changepoint_proportion_from_end``, the former overrides the latter). # # Finally, a post-filter is applied to eliminate changepoints that are too close # (``actual_changepoint_min_distance``). # # The following parameter combination uses longer aggregation with less potential # changepoints placed and higher yearly seasonality order. Changepoints are not # allowed in the last 20% of the data model = ChangepointDetector() # it's also okay to omit this and re-use the old instance res = model.find_trend_changepoints( df=df, # data df time_col="ts", # time column name value_col="y", # value column name yearly_seasonality_order=15, # yearly seasonality order, fit along with trend regularization_strength=0.5, # between 0.0 and 1.0, greater values imply fewer changepoints, and 1.0 implies no changepoints resample_freq="7D", # data aggregation frequency, eliminate small fluctuation/seasonality potential_changepoint_n=25, # the number of potential changepoints no_changepoint_proportion_from_end=0.2) # the proportion of data from end where changepoints are not allowed
pd.DataFrame({"trend_changepoints": res["trend_changepoints"]})
pandas.DataFrame
import os import pandas as pd import src.merge as merge import src.utils as cutil raw_data_dir = str(cutil.DATA_RAW / "usa") int_data_dir = str(cutil.DATA_INTERIM / "usa") proc_data_dir = str(cutil.DATA_PROCESSED / "adm1") def main(): add_testing_regime = True output_csv_name = "USA_processed.csv" out_dir = proc_data_dir cases_data = pd.read_csv(os.path.join(int_data_dir, "usa_usafacts_state.csv")) cases_data["date"] = pd.to_datetime(cases_data["date"]) # drop any cases data columns that are all null cases_data = cases_data.dropna(how="all", axis=1) policy_data = pd.read_csv( os.path.join(int_data_dir, "USA_policy_data_sources.csv"), encoding="latin" ) # drop any rows which are all nan policy_data = policy_data.dropna(how="all", axis=0) policy_data = policy_data.rename(columns={"Optional": "optional"}) policy_data = policy_data.rename(columns={"date": "date_start"}) policy_data.loc[:, "date_start"] =
pd.to_datetime(policy_data["date_start"])
pandas.to_datetime
from multiprocessing import Pool from os import makedirs from os.path import join as pjoin from traceback import print_exc import warnings import cv2 import numpy as np import pandas as pd from skimage.io import imsave from skimage import img_as_ubyte from lib.config import gen_config, class_labels from lib.utils import (debug, display_imgs, info, load_img, str_to_labels, warn) def filter_(n): def filter_fixed(row): return n in str_to_labels(row['Target']) return filter_fixed def crop_one_id(task): try: id_ = task['id_'] group = task['row']['group'] n_windows = task['row']['n_windows'] config = task['config'] n_candidate_windows = config['n_candidate_windows'] # random_if_no_centroid = config['random_if_no_centroid'] output_windowed_imgs_path = config['output_windowed_imgs_path'] output_windowed_imgs_extension = config['output_windowed_imgs_extension'] rgby_img = load_img( id_, group=group, ) rgby_thumbnail = cv2.resize(rgby_img, (256, 256)) green_thumbnail = rgby_thumbnail[:, :, 1].astype(float) # the reason we choose centers first is to ensure that every possible "interest point" # in the picture will get equal chance of being captured. if we choose from all contained windows # with equal chance, then the interest points around the edge of the picture will get # less chance of being captured. random_centers = np.random.rand(n_candidate_windows, 2) * (1 - config['win_size'] / 2) + config['win_size'] / 4 random_centers = np.minimum(random_centers, 1 - config['win_size'] / 2) random_centers = np.maximum(random_centers, config['win_size'] / 2) windows = [ np.array( [ x - config['win_size'] / 2, y - config['win_size'] / 2, x + config['win_size'] / 2, y + config['win_size'] / 2, ] ) for x, y in random_centers ] img_size = green_thumbnail.shape[0] greenest_windows = [] for _ in range(n_windows): green_totals = [] for window in windows: left, top, right, bottom = (window * img_size).astype(int) green_totals.append(np.sum(green_thumbnail[top:bottom, left:right])) greenest_window = windows.pop(np.argmax(green_totals)) left, top, right, bottom = (greenest_window * img_size).astype(int) green_thumbnail[top:bottom, left:right] *= 0.6 greenest_windows.append(greenest_window) if len(windows) == 0: break img_size = rgby_img.shape[0] # dot_size = max(round(img_size / 64), 1) img_ids = [] source_img_ids = [] for i_window, window in enumerate(greenest_windows): left, top, right, bottom = (window * img_size).astype(int) if output_windowed_imgs_path is not None: cropped_img = rgby_img[top:bottom, left:right] image_id = f'{id_}_{i_window}' img_ids.append(image_id) source_img_ids.append(id_) for i_channel, channel in enumerate(['red', 'green', 'blue', 'yellow']): img_filename = f'{image_id}_{channel}{output_windowed_imgs_extension}' cropped_img_channel = cropped_img[:, :, i_channel] with warnings.catch_warnings(): warnings.simplefilter("ignore") cropped_img_channel = img_as_ubyte(cropped_img_channel) imsave(pjoin(output_windowed_imgs_path, img_filename), cropped_img_channel) out_df = pd.DataFrame(np.array(greenest_windows), columns=['left', 'top', 'right', 'bottom']) out_df.index = pd.Index(img_ids, name='img_id') out_df['source_img_id'] = source_img_ids return { 'id_': id_, 'df': out_df, # 'blue_channel': ( # blue_channel, # '\n'.join([ # f'{id_}', # f'pct = {pct}', # f'avg_of_brightest_5% = {avg_of_brightest}', # ]), # ), # 'thresholded_img': ( # thresholded_img, # '\n'.join([ # f'{id_}', # f'ret = {ret}', # f'th = {th}', # ]), # ), # 'labeled_img': ( # labeled_img, # '\n'.join([ # f'{id_}', # f'ret = {ret}', # f'greenest_windows = {greenest_windows}', # ]), # ), } except Exception as e: debug(f'Error in processing {id_}') print_exc() return { 'id_': id_, 'df': pd.DataFrame({ 'img_ids': id_, 'left': ['ERROR'], 'top': [str(e)], }).set_index('img_ids'), } def crop(config): if config['output_windowed_imgs_path'] is not None: makedirs(config['output_windowed_imgs_path'], exist_ok=True) if type(config['set_n_windows']) is str: set_n_windows_anno = pd.read_csv(config['set_n_windows'], index_col=0) n_classes = 28 xs = [] for target_str in set_n_windows_anno['Target']: targets = str_to_labels(target_str) x = np.zeros(n_classes, dtype='int') x[targets] = 1 xs.append(x) xx = np.array(xs) n_samples_per_class = np.sum(xx, axis=0) cut_summary = pd.DataFrame( { 'organelle': class_labels, 'n_samples': n_samples_per_class, 'n_windows': np.round(1500 / n_samples_per_class).astype(int) + 1 }, index=range(n_classes), ) print(cut_summary) estimated_n_windows = np.sum(cut_summary['n_samples'].values * cut_summary['n_windows'].values) print(f'estimated_n_windows = {estimated_n_windows}') def determine_n_windows_fn(id_): if type(config['set_n_windows']) is str: targets = str_to_labels(set_n_windows_anno.loc[id_, 'Target']) n_windows = np.max(cut_summary.iloc[targets]['n_windows'].values) return n_windows else: return config['set_n_windows'] anno = config['anno'].copy() anno['n_windows'] = [determine_n_windows_fn(id_) for id_ in anno.index] crop_task_list = [{ 'id_': id_, 'row': row, 'config': config, } for id_, row in anno.iterrows()] with Pool(config['n_threads']) as p: result_iter = p.imap_unordered(crop_one_id, crop_task_list) result_list = [] for i_result, result in enumerate(result_iter): info(f"({i_result}/{len(crop_task_list)}) {result['id_']} -> ({len(result['df'])})") result_list.append(result) if config['output_windowed_imgs_path'] is not None: windowed_anno =
pd.concat([x['df'] for x in result_list])
pandas.concat
# Remarks # # Download is don manually via a S3 client -> no more get requests # Unzipping can be done without a script and should be done in the folders based on the id, # so we dont build one big dataframe with allllll the dataaaa # # IMPORTS # import pandas as pd # Data processing import numpy as np # Data processing import os import warnings import physi_calc # Physiological calculaction import loc_clustering from datetime import datetime warnings.filterwarnings("ignore") # GLOBAL VARIABLES # current_dir = os.path.dirname(os.path.realpath(__file__)) # dir_name_unzipped = os.path.join(current_dir, 'unzipped/') dir_name_unzipped = os.path.join(current_dir, 'max/unzipped/') def run_preprocessing(): for folder in os.listdir(dir_name_unzipped): folder = '{0}/'.format(folder) measurements = {} for i, file in enumerate(os.listdir(dir_name_unzipped + folder)): if file.endswith(".json"): temp =
pd.read_json(dir_name_unzipped + folder + file)
pandas.read_json
import numpy as np import pandas as pd import hydrostats.data as hd import hydrostats.analyze as ha import hydrostats.visual as hv import HydroErr as he import matplotlib.pyplot as plt import os from netCDF4 import Dataset # Put all the directories (different states and resolutions) and corresponding NetCDF files into lists. list_of_files = [] list_of_dir = [] streamflow_dict = {} list_streams = [] for i in os.listdir('/home/chrisedwards/Documents/rapid_output/mult_res_output'): for j in os.listdir(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i)): list_of_files.append(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i, j, 'Qout_erai_t511_24hr_19800101to20141231.nc')) list_of_dir.append(os.path.join('/home/chrisedwards/Documents/rapid_output/mult_res_output', i, j)) list_of_dir.sort() list_of_files.sort() list_of_states=['az', 'id', 'mo', 'ny', 'or', 'col', 'az', 'id', 'mo', 'ny', 'or', 'col', 'az', 'id', 'mo', 'ny', 'or', 'col'] list_of_states.sort() # Loop through the lists to create the csv for each stream, in each resolution. for file, direc, state in zip(list_of_files, list_of_dir, list_of_states): # Call the NetCDF file. nc = Dataset(file) nc.variables.keys() nc.dimensions.keys() # Define variables from the NetCDF file. riv = nc.variables['rivid'][:].tolist() lat = nc.variables['lat'][:] lon = nc.variables['lon'][:] Q = nc.variables['Qout'][:] sQ = nc.variables['sQout'][:] time = nc.variables['time'][:].tolist() # Convert time from 'seconds since 1970' to the actual date. dates = pd.to_datetime(time, unit='s', origin='unix') temp_dictionary = {} counter = 0 for n in riv: str=state+'-{}'.format(n) temp_dictionary['{}'.format(str)] = pd.DataFrame(data=Q[:, counter], index=dates, columns=[str]) streamflow_dict.update(temp_dictionary) list_streams.append(str) counter += 1 list_streams_condensed = list(set(list_streams)) list_streams_condensed.sort() # Now there is a dictionary called 'streamflow_dict' that has the 35-yr time series stored in a pandas DataFrame. # Each array has the datetime and flowrate. # Each data frame is named in the format '{state}-{streamID}' (eg: 'az-7' or 'col-9'). # There are a total of 180 streams, or 180 keys in the dictionary: streamflow_dict['az-7'] # list_streams_condensed = list of all the stream names, or names of the data frames. # *********************************************************************************************************** # Extract specific dataframe for a specific stream. This only includes the watershed mouths. az_lowres = streamflow_dict['az-9'] az_medres = streamflow_dict['az-21'] az_highres = streamflow_dict['az-69'] id_lowres = streamflow_dict['id-8'] id_medres = streamflow_dict['id-17'] id_highres = streamflow_dict['id-39'] mo_lowres = streamflow_dict['mo-7'] mo_medres = streamflow_dict['mo-15'] mo_highres = streamflow_dict['mo-43'] ny_lowres = streamflow_dict['ny-9'] ny_medres = streamflow_dict['ny-20'] ny_highres = streamflow_dict['ny-48'] or_lowres = streamflow_dict['or-7'] or_medres = streamflow_dict['or-16'] or_highres = streamflow_dict['or-51'] # This list holds all 18 DataFrames, which each hold th 35-yr Time Series Data list_riv_mouth = [az_lowres, az_medres, az_highres, id_lowres, id_medres, id_highres, mo_lowres, mo_medres, mo_highres, ny_lowres, ny_medres, ny_highres, or_lowres, or_medres, or_highres] # Extract specific dataframe for a specific stream. This section is for streams above the mouth. az_60 = streamflow_dict['az-60'] mo_50 = streamflow_dict['mo-50'] mo_51 = streamflow_dict['mo-51'] ny_8 = streamflow_dict['ny-8'] ny_19 = streamflow_dict['ny-19'] ny_47 = streamflow_dict['ny-47'] ny_18 = streamflow_dict['ny-18'] ny_46 = streamflow_dict['ny-46'] or_20 = streamflow_dict['or-20'] or_58 = streamflow_dict['or-58'] or_15 = streamflow_dict['or-15'] or_47 = streamflow_dict['or-47'] # -----------------------------Format Gauge Data--------------------------------------------------- # Catchment Outlets: az_obs_full = pd.read_csv('/home/chrisedwards/Documents/gauge_data/09494000_1-1-1980_12-31-2014.csv', index_col=0) az_obs_cms = az_obs_full.drop(columns=["Flow-cfs", "Estimation"]) id_obs_full = pd.read_csv('/home/chrisedwards/Documents/gauge_data/13340600_1-1-1980_12-31-2014.csv', index_col=0) id_obs_cms = id_obs_full.drop(columns=["Flow-cfs", "Estimation"]) mo_obs_full = pd.read_csv('/home/chrisedwards/Documents/gauge_data/07014500_1-1-1980_12-31-2014.csv', index_col=0) mo_obs_cms = mo_obs_full.drop(columns=["Flow-cfs", "Estimation"]) ny_obs_full = pd.read_csv('/home/chrisedwards/Documents/gauge_data/01413500_1-1-1980_12-31-2014.csv', index_col=0) ny_obs_cms = ny_obs_full.drop(columns=["Flow-cfs", "Estimation"]) or_obs_full = pd.read_csv('/home/chrisedwards/Documents/gauge_data/14306500_1-1-1980_12-31-2014.csv', index_col=0) or_obs_cms = or_obs_full.drop(columns=["Flow-cfs", "Estimation"]) # Upstream Gauges (Not OUTLET): az_60_obs = pd.read_csv('/home/chrisedwards/Documents/gauge_data/09492400_1-1-1980_12-31-2014.csv', index_col=0) az_60_obs_cms = az_60_obs.drop(columns=["Flow-cfs", "Estimation"]) mo_50_obs = pd.read_csv('/home/chrisedwards/Documents/gauge_data/07013000_1-1-1980_12-31-2014.csv', index_col=0) mo_50_obs_cms = mo_50_obs.drop(columns=["Flow-cfs", "Estimation"]) mo_51_obs =
pd.read_csv('/home/chrisedwards/Documents/gauge_data/07014000_3-5-2007_12-31-2014.csv', index_col=0)
pandas.read_csv
# IMPORT import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Ridge, LinearRegression from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import TransformerMixin, BaseEstimator import re import scipy from scipy import sparse import time import gc from IPython.display import display, HTML from pprint import pprint from tqdm import tqdm import warnings warnings.filterwarnings("ignore") pd.options.display.max_colwidth=300 # Seed pl.seed_everything(seed=42) class JigsawRidgeModel: def __init__(self,path,folds): self.path=path self.df_val=pd.read_csv(f"{self.path}/jigsaw-toxic-severity-rating/validation_data.csv") self.df_sub=pd.read_csv(f"{self.path}/jigsaw-toxic-severity-rating/comments_to_score.csv") self.folds=folds def train_and_predict(self,file_prefix): start_time = time.time() val_preds_arr1 = np.zeros((self.df_val.shape[0], self.folds)) val_preds_arr2 = np.zeros((self.df_val.shape[0], self.folds)) test_preds_arr = np.zeros((self.df_sub.shape[0], self.folds)) for fld in tqdm(range(self.folds)): print("\n\n") print(f' ****************************** FOLD: {fld} ******************************') df = pd.read_csv(f'{self.path}/folds/{file_prefix}{fld}.csv') print(df.shape) features = FeatureUnion([ ("vect3", TfidfVectorizer(min_df= 3, max_df=0.5, analyzer = 'char_wb', ngram_range = (3,5))), ]) pipeline = Pipeline( [ ("features", features), ("clf", Ridge()) ] ) # Train the pipeline pipeline.fit(df['text'].values.astype(str), df['y']) feature_wts = sorted(list(zip(pipeline['features'].get_feature_names(), np.round(pipeline['clf'].coef_,2) )), key = lambda x:x[1], reverse=True) val_preds_arr1[:,fld] = pipeline.predict(self.df_val['less_toxic']) val_preds_arr2[:,fld] = pipeline.predict(self.df_val['more_toxic']) test_preds_arr[:,fld] = pipeline.predict(self.df_sub['text']) print("\n--- %s seconds ---" % (time.time() - start_time)) return val_preds_arr1,val_preds_arr2, test_preds_arr if __name__=="__main__": trainer=JigsawRidgeModel("../input",7) # jigsaw classification dataset val_preds_arr1,val_preds_arr2, test_preds_arr=trainer.train_and_predict("df_fld") d1=pd.DataFrame(val_preds_arr1) d1.to_csv(f'../output/predictions/df1_1.csv', index=False) d2=pd.DataFrame(val_preds_arr2) d2.to_csv(f'../output/predictions/df1_2.csv', index=False) d3=pd.DataFrame(test_preds_arr) d3.to_csv(f'../output/predictions/df1_3.csv', index=False) # jigsaw clean classification dataset val_preds_arrc1,val_preds_arrc2, test_preds_arrc=trainer.train_and_predict("df_clean_fld") d1=pd.DataFrame(val_preds_arrc1) d1.to_csv(f'../output/predictions/df2_1.csv', index=False) d2=pd.DataFrame(val_preds_arrc2) d2.to_csv(f'../output/predictions/df2_2.csv', index=False) d3=pd.DataFrame(test_preds_arrc) d3.to_csv(f'../output/predictions/df2_3.csv', index=False) # jigsaw ruddit dataset val_preds_arr1r,val_preds_arr2r, test_preds_arrr=trainer.train_and_predict("df2_fld") d1=pd.DataFrame(val_preds_arr1r) d1.to_csv(f'../output/predictions/df3_1.csv', index=False) d2=pd.DataFrame(val_preds_arr2r) d2.to_csv(f'../output/predictions/df3_2.csv', index=False) d3=pd.DataFrame(test_preds_arrr) d3.to_csv(f'../output/predictions/df3_3.csv', index=False) # jigsaw unhealthy comments dataset val_preds_arr1u,val_preds_arr2u, test_preds_arru=trainer.train_and_predict("df3_fld") d1=
pd.DataFrame(val_preds_arr1u)
pandas.DataFrame
from collections import OrderedDict import os import logging.config import logging from bson.codec_options import CodecOptions import time import pymongo import pandas as pd import numpy as np from originbar import OriginBar from constant import * class MainEngine(object): """ 操作实例 """ def __init__(self, futpath, mongoConf, logconfig): logging.config.dictConfig(logconfig) self.log = logging.getLogger('root') self.mongoConf = mongoConf self.futpath = futpath self.path = OrderedDict() # 原始 CSV 数据的路径 self.collection = None def init(self): """ :return: """ # 链接数据库 self.dbConnect() # 加载文件路径 self.loaddir() self.log.warning('10秒后开始导入数据!!!') time.sleep(10) def start(self): """ :return: """ count = 0 for year, originBars in self.path.items(): for ob in originBars: # 清洗数据 if '主力' in ob.symbol: # 暂时不处理 主力连续 和 次主力连续合约 continue # 生成 DataFrame 数据 df = self.getBarDf(ob) # # # 添加结算日 df = self.setTradingDay(df) # 清洗没有成交的数据 df = self.clearNoTrader(df) # 保存数据 documents = df.to_dict('records') self.collection.insert_many(documents) self.log.info("{} 保存了 {} 条数据到mongodb".format(ob.symbol, df.shape[0])) count += df.shape[0] time.sleep(1) self.log.info('year {} 累积保存了 {} 条数据'.format(year, count)) def dbConnect(self): mongoConf = self.mongoConf db = pymongo.MongoClient( mongoConf['host'], mongoConf['port'] )[mongoConf['dbn']] if mongoConf.get('username') is not None: # 登陆授权 db.authenticate(mongoConf['username'], mongoConf['password']) # 确认登陆 db.client.server_info() # 设置 collection 的时区生效 self.collection = db[mongoConf['collection']].with_options( codec_options=CodecOptions(tz_aware=True, tzinfo=LOCAL_TIMEZONE)) def loaddir(self): """ :return: """ root, dirs, files = next(os.walk(self.futpath)) dirs.sort() for yearDir in dirs: year = yearDir[-4:] # 年份 yearDirPath = os.path.join(root, yearDir) # 文件按年打包 yearDirPath, dirs, files = next(os.walk(yearDirPath)) originBars = [] self.path[year] = originBars for f in files: if not f.endswith('.csv'): # 忽略非 csv 文件 continue # if __debug__ and 'rb1710' not in f: # # 调试指定合约 # continue path = os.path.join(yearDirPath, f) ob = OriginBar(year, path) originBars.append(ob) # if __debug__: # self.log.warning('只取一个文件 {}'.format(ob.symbol)) # return self.log.info('即将导入年份 {}'.format(str(list(self.path.keys())))) def getBarDf(self, ob): df = pd.read_csv(ob.path, encoding='GB18030') # 去掉多余的字段 del df['市场代码'] del df['成交额'] df.columns = ['symbol', 'datetime', 'open', 'high', 'low', 'close', 'volume', 'openInterest'] df.datetime = pd.to_datetime(df.datetime) df['date'] = df.datetime.apply(lambda dt: dt.strftime('%Y%m%d')) df['time'] = df.datetime.apply(lambda dt: dt.time()) return df def clearNoTrader(self, df): """ 清洗没有成交的 bar :param df: :return: """ return df[df.volume != 0] def setTradingDay(self, df): # 白天的数据,就是交易日 td = df.time.apply(lambda t: DAY_TRADING_START_TIME <= t <= DAY_TRADING_END_TIME) tds = [] for i, isTading in enumerate(td): if isTading: tds.append(df.date[i]) else: tds.append(np.nan) # 空白的bar,使用最近一个有效数据来作为交易日 tradingDay =
pd.Series(tds)
pandas.Series
import unittest import pandas as pd from featurefilter import TargetCorrelationFilter def test_low_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 0, 1, 1], 'Y': [0, 1, 0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit(train_df) assert target_correlation_filter.columns_to_drop == ['A'] def test_high_negative_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 0], 'B': [1, 0], 'Y': [0, 1]}) test_df = pd.DataFrame({'A': [0, 1], 'B': [1, 1], 'Y': [0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit_transform(train_df) test_df = target_correlation_filter.transform(test_df) # Make sure column 'B' is dropped for both train and test set # Also, column 'A' must not be dropped for the test set even though its # correlation in the test set is above the threshold assert train_df.equals(pd.DataFrame({'A': [0, 0], 'Y': [0, 1]})) assert test_df.equals(pd.DataFrame({'A': [0, 1], 'Y': [0, 1]})) def test_high_positive_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 0], 'B': [0, 1], 'Y': [0, 1]}) test_df = pd.DataFrame({'A': [0, 1], 'B': [1, 1], 'Y': [0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit_transform(train_df) test_df = target_correlation_filter.transform(test_df) # Make sure column 'B' is dropped for both train and test set # Also, column 'A' must not be dropped for the test set even though its # correlation in the test set is above the threshold assert train_df.equals(pd.DataFrame({'A': [0, 0], 'Y': [0, 1]})) assert test_df.equals(pd.DataFrame({'A': [0, 1], 'Y': [0, 1]})) def test_low_categorical_correlation(): train_df = pd.DataFrame({'A': ['a', 'a'], 'B': ['b', 'a'], 'Y': [0, 1]}) test_df = pd.DataFrame({'A': ['a', 'b'], 'B': ['b', 'b'], 'Y': [0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit_transform(train_df) test_df = target_correlation_filter.transform(test_df) # Make sure column 'B' is dropped for both train and test set # Also, column 'A' must not be dropped for the test set even though its # correlation in the test set is above the threshold assert train_df.equals(
pd.DataFrame({'A': ['a', 'a'], 'Y': [0, 1]})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : <NAME> # @Version : 1.0.2 # # ecom_finder # Standard library imports import re as __re__ import urllib as __ulp__ # Third party imports import pandas as __pd__ import requests as __requests__ import speech_recognition as __sr__ from bs4 import BeautifulSoup as __BS__ # Get items list From amazon.in # Inputs: text (Item Name) # Outputs: pandas dataframe of items def __get_items_from_amazon__(text): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0", "Accept-Encoding": "gzip, deflate", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "DNT": "1", "Connection": "close", "Upgrade-Insecure-Requests": "1", } query = "https://www.amazon.in/s?" + __ulp__.parse.urlencode({"k": text.lower()}) code = __requests__.get(query, headers=headers) s = __BS__(code.text, "html.parser") items = s.findAll("div", attrs={"class": "a-section"}) alls = [] for item in items: name = item.find( "span", attrs={"class": "a-size-medium a-color-base a-text-normal"} ) price = item.find("span", attrs={"class": "a-price-whole"}) url = item.find("a", attrs={"class": "a-link-normal a-text-normal"}) rating = item.find("span", attrs={"class": "a-icon-alt"}) if name == None or price == None: continue else: alls.append( { "name": name.text, "price": price.text, "url": "https://amazon.com" + url["href"] if url.has_attr("href") else None, "rating": float(rating.text.split(" ")[0]) if rating is not None else None, "provider": "Amazon", } ) return
__pd__.DataFrame(alls)
pandas.DataFrame
import pandas as pd import numpy as np def load_and_process(url1, url2): rec1data = (
pd.read_csv("../data/processed/rec1data.csv")
pandas.read_csv
import pytest import pandas as pd import numpy as np from src.main import create_app @pytest.fixture(scope="session") def test_client(): flask_app = create_app( db_config={"db": "mongoenginetest", "host": "mongomock://localhost"}, testing=True, ) with flask_app.test_client() as testing_client: with flask_app.app_context(): yield testing_client def generate_temp_dataset(): data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected =
MultiIndex.from_tuples(tups)
pandas.MultiIndex.from_tuples
# coding: utf8 from collections import deque from collections import Counter # noinspection PyPackageRequirements import pytest from pandas import DataFrame # noinspection PyProtectedMember from dfqueue.core.dfqueue import QueuesHandler, QueueHandlerItem, QueueBehaviour def test_singleton(): handler_a = QueuesHandler() handler_b = QueuesHandler() assert id(handler_a) != id(handler_b) assert id(handler_a._QueuesHandler__instance) == id(handler_b._QueuesHandler__instance) assert handler_a.default_queue_name == handler_b.default_queue_name def test_valid_get_item(): handler = QueuesHandler() default_queue_name = handler.default_queue_name queue_data = handler[default_queue_name] assert isinstance(queue_data, dict) assert len(queue_data) == len(QueueHandlerItem) assert all([item in queue_data for item in QueueHandlerItem]) assert isinstance(queue_data[QueueHandlerItem.QUEUE], deque) assert queue_data[QueueHandlerItem.DATAFRAME] is None assert isinstance(queue_data[QueueHandlerItem.MAX_SIZE], int) def test_invalid_get_item(): handler = QueuesHandler() invalid_queue_name = "UNKNOWN" with pytest.raises(AssertionError): handler[invalid_queue_name] @pytest.mark.parametrize("queue_iterable,dataframe,max_size,counter,behaviour", [ (deque(), DataFrame(), 1, Counter(), QueueBehaviour.LAST_ITEM), (deque((1, {"A": "a", "B": "b"})), DataFrame(), 1, {1: Counter({"A": 1, "B": 1})}, QueueBehaviour.ALL_ITEMS), (deque(),
DataFrame()
pandas.DataFrame
import psycopg2 from psycopg2.extras import execute_values from psycopg2.extensions import register_adapter,AsIs import numpy as np import pandas as pd from .utils import map_column_types class clientPsql(): def __init__( self, host:str, user:str, password:str, port:str='5432', db_name:str = 'postgres' ) -> None: #credentials self.__host = host self.__user = user self.__password = password self.__port=port self.database=db_name #register adapters register_adapter(np.int64,AsIs) register_adapter(np.bool_,AsIs) def exec_query( self, query, chunksize=1000 ): column_name = None response = None try: conn = psycopg2.connect( host=self.__host, user=self.__user, password=self.__password, database=self.database, ) with conn.cursor() as cur: cur.itersize = chunksize cur.execute(query) if cur.description: column_name = [desc[0] for desc in cur.description] response = cur.fetchall() conn.commit() except (Exception, psycopg2.DatabaseError) as e: print ('Error executing query: ',e) conn = None finally: if conn is not None: conn.close() if column_name is not None: try: return pd.DataFrame(np.array(response),columns=column_name) except: return
pd.DataFrame(columns=column_name)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from hypothesis import given, settings from pandas.testing import assert_frame_equal from janitor.testing_utils.strategies import ( df_strategy, categoricaldf_strategy, ) from janitor.functions import expand_grid @given(df=df_strategy()) def test_others_not_dict(df): """Raise Error if `others` is not a dictionary.""" with pytest.raises(TypeError): df.expand_grid("frame", others=[2, 3]) @given(df=df_strategy()) def test_others_none(df): """Return DataFrame if no `others`, and df exists.""" assert_frame_equal(df.expand_grid("df"), df) def test_others_empty(): """Return None if no `others`.""" assert (expand_grid(), None) # noqa : F631 @given(df=df_strategy()) def test_df_key(df): """Raise error if df exists and df_key is not supplied.""" with pytest.raises(KeyError): expand_grid(df, others={"y": [5, 4, 3, 2, 1]}) @given(df=df_strategy()) def test_df_key_hashable(df): """Raise error if df exists and df_key is not Hashable.""" with pytest.raises(TypeError): expand_grid(df, df_key=["a"], others={"y": [5, 4, 3, 2, 1]}) def test_numpy_zero_d(): """Raise ValueError if numpy array dimension is zero.""" with pytest.raises(ValueError): expand_grid(others={"x": np.array([], dtype=int)}) def test_numpy_gt_2d(): """Raise ValueError if numpy array dimension is greater than 2.""" with pytest.raises(ValueError): expand_grid(others={"x": np.array([[[2, 3]]])}) def test_series_empty(): """Raise ValueError if Series is empty.""" with pytest.raises(ValueError): expand_grid(others={"x": pd.Series([], dtype=int)}) def test_dataframe_empty(): """Raise ValueError if DataFrame is empty.""" with pytest.raises(ValueError): expand_grid(others={"x": pd.DataFrame([])}) def test_index_empty(): """Raise ValueError if Index is empty.""" with pytest.raises(ValueError): expand_grid(others={"x": pd.Index([], dtype=int)}) @settings(deadline=None) @given(df=df_strategy()) def test_series(df): """Test expand_grid output for Series input.""" A = df["a"] B = df["cities"] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B = df.loc[:, ["cities"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_series_dataframe(df): """Test expand_grid output for Series and DataFrame inputs.""" A = df["a"] B = df.iloc[:, [1, 2]] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_series_multiindex_dataframe(df): """ Test expand_grid output if the DataFrame's columns is a MultiIndex. """ A = df["a"] B = df.iloc[:, [1, 2]] B.columns = pd.MultiIndex.from_arrays([["C", "D"], B.columns]) others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B.columns = B.columns.map("_".join) expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_numpy_1d(df): """Test expand_grid output for a 1D numpy array.""" A = df["a"].to_numpy() B = df["cities"] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]].rename(columns={"a": 0}) B = df.loc[:, ["cities"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=categoricaldf_strategy()) def test_numpy_2d(df): """Test expand_grid output for a 2D numpy array""" A = df["names"] base = df.loc[:, ["numbers"]].assign(num=df.numbers * 4) B = base.to_numpy(dtype=int) others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["names"]] B = base.set_axis([0, 1], axis=1) expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_index(df): """Test expand_grid output for a pandas Index that has a name.""" A = pd.Index(df["a"]) B = df["cities"] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B = df.loc[:, ["cities"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_index_name_none(df): """Test expand_grid output for a pandas Index without a name.""" A = pd.Index(df["a"].array, name=None) B = df["cities"] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B = df.loc[:, ["cities"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays([["A", "B"], [0, "cities"]]) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=categoricaldf_strategy()) def test_multiindex(df): """Test expand_grid output for a pandas MultiIndex with a name.""" A = df["names"] base = df.loc[:, ["numbers"]].assign(num=df.numbers * 4) B = pd.MultiIndex.from_frame(base) others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["names"]] B = base.copy() expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=categoricaldf_strategy()) def test_multiindex_names_none(df): """Test expand_grid output for a pandas MultiIndex without a name.""" A = df["names"] base = df.loc[:, ["numbers"]].assign(num=df.numbers * 4) B = pd.MultiIndex.from_frame(base, names=[None, None]) others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["names"]] B = base.copy() expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B", "B"], ["names", 0, 1]] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_pandas_extension_array(df): """Test expand_grid output for a pandas array.""" A = df["a"] B = df["cities"].astype("string").array others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B = df.loc[:, ["cities"]].astype("string").set_axis([0], axis=1) expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_sequence(df): """Test expand_grid output for list.""" A = df["a"].to_list() B = df["cities"] others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]].rename(columns={"a": 0}) B = df.loc[:, ["cities"]] expected = A.assign(key=1).merge(B.assign(key=1), on="key") expected = expected.drop(columns="key") expected.columns = pd.MultiIndex.from_arrays( [["A", "B"], expected.columns] ) assert_frame_equal(result, expected) @settings(deadline=None) @given(df=df_strategy()) def test_scalar(df): """Test expand_grid output for a scalar value.""" A = df["a"] B = 2 others = {"A": A, "B": B} result = expand_grid(others=others) A = df.loc[:, ["a"]] B =
pd.DataFrame([2])
pandas.DataFrame
from typing import Any, List, Tuple, Dict, Union, Optional, cast from warnings import warn import numpy as np import pandas as pd from scipy import sparse from scipy.sparse import linalg from chemicalc.reference_spectra import ReferenceSpectra, alpha_el from chemicalc.instruments import InstConfig def init_crlb_df(reference: ReferenceSpectra) -> pd.DataFrame: """ Initialized CRLB dataframe with indices corresponding to all the labels included :param ReferenceSpectra reference: Reference star object (used to identify stellar labels) :return pd.DataFrame: Empty CRLB dataframe """ if not isinstance(reference, ReferenceSpectra): raise TypeError( "reference must be a chemicalc.reference_spectra.ReferenceSpectra object" ) return
pd.DataFrame(index=reference.labels.index)
pandas.DataFrame
#Comenzamos cargando la libreria sys, csv, numpy import sys import csv import numpy as np from datetime import datetime import pandas as pd import matplotlib.pyplot as plt #-----------ABRIR ARCHIVO---------------------------------- #leemos el archivo cl_line = sys.argv #Lineas usadas en el debug OBS_file_name = 'acapulco_obs.txt' FOR_file_name = 'acapulco_marpron.txt' #OBS_file_name = cl_line[1] #WRF_file_name = cl_line[2] #Abrir los archivos OBS_file = open(OBS_file_name, "r") FOR_file = open(FOR_file_name, "r") #Y ahora lo pasamos a una lista obs_lines = OBS_file.readlines() for_lines = FOR_file.readlines() #Cerramos el archivo ya que no lo necesitamos OBS_file.close() FOR_file.close() ######################OBSERVATION SECTION##################################################### #Make two empty lists to add info later obs_list = [] date_list = [] #From this loop we get two lists, one containing all the info from the obs file in a list with floats, and one with the dates as a string for the time series for line in obs_lines: obs_lines_split = [x.strip() for x in line.split(' ')] obs_lines_split = [float(i) for i in obs_lines_split] obs_list.append(obs_lines_split) date = '{}/{}/{} {}:{}'.format(int(obs_lines_split[0]),int(obs_lines_split[1]),int(obs_lines_split[2]),int(obs_lines_split[3]),int(obs_lines_split[4])) date_list.append(date) #Extract only the relevant elevation data, on column number 6 from the observation file. elev = [obs_list[i][6] for i in range(len(obs_list))] #Using the time string from before, create Timestamp objects to be used in the time series object. Note that this object does not need to have a consistent #frequency on the dates (dates can have missing values). dates = pd.to_datetime(date_list) #Create the first time series object, allowing it to have missing values ("holes" in the data). elev_series_original = pd.Series(elev, index=dates) #############OBSERVATION DATE SECTION#################### #This section fixes the missing data issue, first filling the time series with nan's where there should be a value, and then using a forward value to fill the missing values. #First create a date range with the desired frequency (this will have NO holes in it). start_date = datetime(2015,1,1,0,0,0) end_date = datetime(2015,12,31,23,0,0) dates_full = pd.date_range(start_date,end_date,freq='H') #Now "resample" the time series so it has the same lenght as the previously made date range list. elev_series = elev_series_original.reindex(dates_full) #This section is optional, only to find out how many nan values there are in the time series. test = pd.isnull(elev_series) indx = 0 for i in test: if i: indx = indx + 1 #This section fills the nan values with the closest existing value backwards. (Or as it's called, the forward method). elev_series = elev_series.fillna(method='pad') ######################FORECAST SECTION##################################################### #Make two empty lists to add info later for_list = [] date_list = [] #From this loop we get two lists, one containing all the info from the for file in a list with floats, and one with the dates as a string for the time series for line in for_lines: for_lines_split = [x.strip() for x in line.split(' ')] for_lines_split = [float(i) for i in for_lines_split] for_list.append(for_lines_split) date = '{}/{}/{} {}:{}'.format(int(for_lines_split[0]),int(for_lines_split[1]),int(for_lines_split[2]),int(for_lines_split[3]),int(for_lines_split[4])) date_list.append(date) #Extract only the relevant elevation data, on column number 6 from the forervation file. elevfor = [for_list[i][6] for i in range(len(for_list))] #Using the time string from before, create Timestamp objects to be used in the time series object. Note that this object does not need to have a consistent #frequency on the dates (dates can have missing values). dates = pd.to_datetime(date_list) #Create the first time series object, allowing it to have missing values ("holes" in the data). fore_series_original = pd.Series(elevfor, index=dates) #############FORECAST DATE SECTION#################### #This section fixes the missing data issue, first filling the time series with nan's where there should be a value, and then using a forward value to fill the missing values. #First create a date range with the desired frequency (this will have NO holes in it). start_date = datetime(2015,1,1,0,0,0) end_date = datetime(2015,12,31,23,0,0) dates_full =
pd.date_range(start_date,end_date,freq='H')
pandas.date_range
#!/usr/bin/python import unittest import cv2 import numpy as np import os import pandas as pd from pandas.testing import assert_frame_equal from numpy.testing import assert_allclose from PIE import track_colonies # load in a test timecourse colony property dataframe # NB: this case is quite pathological, preliminary analysis on bad # images, with poor tracking, but this is probably better for testing timecourse_colony_prop_df = \ pd.read_csv(os.path.join('tests','test_ims', 'SL_170619_2_GR_small_xy0001_phase_colony_data_tracked.csv'), index_col = 0) satellite_prop_df = \ pd.read_csv(os.path.join('tests','test_ims', 'test_sat_data.csv'), index_col = 0) class TestGetOverlap(unittest.TestCase): ''' Tests getting overlap of colonies between current and next timepoint ''' def setUp(self): self.colony_tracker = \ track_colonies.ColonyTracker() self.colony_tracker.perform_registration = True def test_get_overlap_t5t6(self): ''' Tests finding overlap between timepoints 5 and 6 of timecourse_colony_prop_df Checked against results of previous matlab code (and manual confirmation of most rows) ''' tp_5_data = \ timecourse_colony_prop_df[ timecourse_colony_prop_df.timepoint == 5] # get colony properties at next timepoint tp_6_data = \ timecourse_colony_prop_df[ timecourse_colony_prop_df.timepoint == 6] expected_overlap_df = pd.DataFrame( np.array([ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype = bool), index = tp_5_data.index, columns = tp_6_data.index) test_overlap_df = \ self.colony_tracker._get_overlap(tp_5_data, tp_6_data)
assert_frame_equal(expected_overlap_df, test_overlap_df)
pandas.testing.assert_frame_equal
import unittest import pandas as pd import os from functools import partial from StyleFrame import Container, StyleFrame, Styler, utils from StyleFrame.tests import TEST_FILENAME class StyleFrameTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.default_styler_obj = Styler(wrap_text=False) cls.styler_obj_1 = Styler(bg_color=utils.colors.blue, bold=True, font='Impact', font_color=utils.colors.yellow, font_size=20, underline=utils.underline.single, horizontal_alignment=utils.horizontal_alignments.left, vertical_alignment=utils.vertical_alignments.center, comment_text='styler_obj_1 comment') cls.styler_obj_2 = Styler(bg_color=utils.colors.yellow, comment_text='styler_obj_2 comment') cls.openpy_style_obj_1 = cls.styler_obj_1.to_openpyxl_style()._style cls.openpy_style_obj_2 = cls.styler_obj_2.to_openpyxl_style()._style def setUp(self): self.ew = StyleFrame.ExcelWriter(TEST_FILENAME) self.sf = StyleFrame({'a': ['col_a_row_1', 'col_a_row_2', 'col_a_row_3'], 'b': ['col_b_row_1', 'col_b_row_2', 'col_b_row_3']}, self.default_styler_obj) self.apply_column_style = partial(self.sf.apply_column_style, styler_obj=self.styler_obj_1, width=10) self.apply_style_by_indexes = partial(self.sf.apply_style_by_indexes, styler_obj=self.styler_obj_1, height=10) self.apply_headers_style = partial(self.sf.apply_headers_style, styler_obj=self.styler_obj_1) @classmethod def tearDownClass(cls): try: os.remove(TEST_FILENAME) except OSError as ex: print(ex) def export_and_get_default_sheet(self, save=False): self.sf.to_excel(excel_writer=self.ew, right_to_left=True, columns_to_hide=self.sf.columns[0], row_to_add_filters=0, columns_and_rows_to_freeze='A2', allow_protection=True) if save: self.ew.save() return self.ew.sheets['Sheet1'] def get_cf_rules(self, sheet): conditional_formatting = sheet.conditional_formatting try: return conditional_formatting.cf_rules except AttributeError: return conditional_formatting def test_init_styler_obj(self): self.sf = StyleFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}, styler_obj=self.styler_obj_1) self.assertTrue(all(self.sf.at[index, 'a'].style.to_openpyxl_style()._style == self.openpy_style_obj_1 for index in self.sf.index)) sheet = self.export_and_get_default_sheet() self.assertTrue(all(sheet.cell(row=i, column=j)._style == self.openpy_style_obj_1 for i in range(2, len(self.sf)) for j in range(1, len(self.sf.columns)))) with self.assertRaises(TypeError): StyleFrame({}, styler_obj=1) def test_init_dataframe(self): self.assertIsInstance(StyleFrame(pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]})), StyleFrame) self.assertIsInstance(StyleFrame(
pd.DataFrame()
pandas.DataFrame
import pandas as pd def load_data(): source_1 = pd.read_csv('data/example_gtex_train_data_1.zip', compression='zip', index_col='sample_id') source_2 = pd.read_csv('data/example_gtex_train_data_2.zip', compression='zip', index_col='sample_id') source = pd.concat([source_1, source_2], axis=0).values.astype('float32') target = pd.read_csv('data/example_tcga_test_data.zip', compression='zip', index_col='sample_id').values.astype('float32') bias =
pd.read_csv('data/example_sra_train_data.zip', compression='zip', index_col='sample_id')
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import seaborn as sns import json import argparse import os import sys from typing import List, Dict, Any from ast import literal_eval """ Plot heatmap or violinplot of tactics and vendors """ CPE_ID_NORB_ID_PATH = "NORB/original_id_to_norb_id/cpe_id_norb_id.json" def make_intensity_array(tactics, vendors, tactic_ids, tactic_vendor_products): intensity_array = np.zeros((len(vendors),len(tactics))) for tactic in tactic_vendor_products: for vendor in tactic_vendor_products[tactic]: products = tactic_vendor_products[tactic][vendor] num_products = len(products) intensity_array[vendors.index(vendor)][tactic_ids.index(tactic)] = num_products return intensity_array def norb_id_to_cpe_id(NORB_folder_path): NORB_cpe_id_path = os.path.join(NORB_folder_path, CPE_ID_NORB_ID_PATH) with open(NORB_cpe_id_path) as f: cpe_id_norb_id = json.load(f) norb_id_to_cpe_id = dict() for cpe_id, norb_id in cpe_id_norb_id.items(): norb_id_to_cpe_id[f"cpe_{norb_id}"] = cpe_id return norb_id_to_cpe_id def analyze_tactic_result(vendors, tactic_result, norb_id_to_cpe_id): df = pd.read_csv(tactic_result, usecols=["tactic", "cpe"]) tactic_vendor_products = dict() for row_index in df.index[:-1]: tactic = literal_eval(df["tactic"][row_index]).pop() cpes = set() entry = df["cpe"][row_index] if entry != "set()": cpes = literal_eval(entry) cpe_ids = find_cpe_ids(cpes, norb_id_to_cpe_id) vendor_products = find_vendor_cpes(vendors, cpe_ids) tactic_vendor_products[tactic] = vendor_products return tactic_vendor_products def find_vendor_cpes(vendors, cpe_ids): vendor_products = dict() for vendor in vendors: vendor_products[vendor] = set() for cpe_id in cpe_ids: parsed = cpe_id.split(':', 5) vendor = parsed[3] product = parsed[4] if vendor in vendors: vendor_products[vendor].add(product) return vendor_products def find_cpe_ids(cpes, norb_id_to_cpe_id): cpe_ids = set() for norb_id in cpes: cpe_ids.add(norb_id_to_cpe_id[norb_id]) return cpe_ids def make_heat_map(tactics, vendors, tactic_ids, tactic_search_result, norb_id_to_cpe_id, save_path=None): plt.rc('font', size=12) plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" tactic_vendor_products = analyze_tactic_result(vendors, tactic_search_result, norb_id_to_cpe_id) intensity_array = make_intensity_array(tactics, vendors, tactic_ids, tactic_vendor_products) labels = np.asarray([[int(intensity_array[row, col]) for col in range(len(tactics))] for row in range(len(vendors))]) comma_fmt = FuncFormatter(lambda x, p: format(int(x), ',')) heatmap = sns.heatmap(intensity_array, cmap='magma_r', xticklabels=tactics, yticklabels=vendors, annot=labels, fmt='', annot_kws={'size':10}, cbar_kws={'format':comma_fmt}) # heatmap.set_xticklabels(heatmap.get_xticklabels(), rotation=45, horizontalalignment='right') for t in heatmap.texts: t.set_text('{:,d}'.format(int(t.get_text()))) heatmap.set(xlabel="Tactics", ylabel="Vendors") heatmap.tick_params(which='both', width=2) heatmap.tick_params(which='major', length=7) heatmap.tick_params(which='minor', length=4) b, t = plt.ylim() b += 0.5 t -= 0.5 plt.ylim(b, t) plt.tight_layout() fig = heatmap.get_figure() if save_path is None: plt.show() else: fig.savefig(save_path, dpi=400) def cve_to_risk(cve_summary): cve_to_risk_dict = dict() df =
pd.read_csv(cve_summary, usecols=["node_name", "metadata"])
pandas.read_csv
import unittest from unittest.mock import patch, PropertyMock import time import mt5_correlation.correlation as correlation import pandas as pd from datetime import datetime, timedelta from test_mt5 import Symbol import random import os class TestCorrelation(unittest.TestCase): # Mock symbols. 4 Symbols, 3 visible. mock_symbols = [Symbol(name='SYMBOL1', visible=True), Symbol(name='SYMBOL2', visible=True), Symbol(name='SYMBOL3', visible=False), Symbol(name='SYMBOL4', visible=True), Symbol(name='SYMBOL5', visible=True)] # Start and end date for price data and mock prices: base; correlated; and uncorrelated. start_date = None end_date = None price_columns = None mock_base_prices = None mock_correlated_prices = None mock_uncorrelated_prices = None def setUp(self): """ Creates some price data fro use in tests :return: """ # Start and end date for price data and mock price dataframes. One for: base; correlated; uncorrelated and # different dates. self.start_date = datetime(2021, 1, 1, 1, 5, 0) self.end_date = datetime(2021, 1, 1, 11, 30, 0) self.price_columns = ['time', 'close'] self.mock_base_prices = pd.DataFrame(columns=self.price_columns) self.mock_correlated_prices = pd.DataFrame(columns=self.price_columns) self.mock_uncorrelated_prices = pd.DataFrame(columns=self.price_columns) self.mock_correlated_different_dates = pd.DataFrame(columns=self.price_columns) self.mock_inverse_correlated_prices = pd.DataFrame(columns=self.price_columns) # Build the price data for the test. One price every 5 minutes for 500 rows. Base will use min for price, # correlated will use min + 5 and uncorrelated will use random for date in (self.start_date + timedelta(minutes=m) for m in range(0, 500*5, 5)): self.mock_base_prices = self.mock_base_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, date.minute]])) self.mock_correlated_prices = \ self.mock_correlated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, date.minute + 5]])) self.mock_uncorrelated_prices = \ self.mock_uncorrelated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, random.randint(0, 1000000)]])) self.mock_correlated_different_dates = \ self.mock_correlated_different_dates.append(pd.DataFrame(columns=self.price_columns, data=[[date + timedelta(minutes=100), date.minute + 5]])) self.mock_inverse_correlated_prices = \ self.mock_inverse_correlated_prices.append(pd.DataFrame(columns=self.price_columns, data=[[date, (date.minute + 5) * -1]])) @patch('mt5_correlation.mt5.MetaTrader5') def test_calculate(self, mock): """ Test the calculate method. Uses mock for MT5 symbols and prices. :param mock: :return: """ # Mock symbol return values mock.symbols_get.return_value = self.mock_symbols # Correlation class cor = correlation.Correlation(monitoring_threshold=1, monitor_inverse=True) # Calculate for price data. We should have 100% matching dates in sets. Get prices should be called 4 times. # We don't have a SYMBOL3 as this is set as not visible. Correlations should be as follows: # SYMBOL1:SYMBOL2 should be fully correlated (1) # SYMBOL1:SYMBOL4 should be uncorrelated (0) # SYMBOL1:SYMBOL5 should be negatively correlated # SYMBOL2:SYMBOL5 should be negatively correlated # We will not use p_value as the last set uses random numbers so p value will not be useful. mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices, self.mock_uncorrelated_prices, self.mock_inverse_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) # Test the output. We should have 6 rows. S1:S2 c=1, S1:S4 c<1, S1:S5 c=-1, S2:S5 c=-1. We are not checking # S2:S4 or S4:S5 self.assertEqual(len(cor.coefficient_data.index), 6, "There should be six correlations rows calculated.") self.assertEqual(cor.get_base_coefficient('SYMBOL1', 'SYMBOL2'), 1, "The correlation for SYMBOL1:SYMBOL2 should be 1.") self.assertTrue(cor.get_base_coefficient('SYMBOL1', 'SYMBOL4') < 1, "The correlation for SYMBOL1:SYMBOL4 should be <1.") self.assertEqual(cor.get_base_coefficient('SYMBOL1', 'SYMBOL5'), -1, "The correlation for SYMBOL1:SYMBOL5 should be -1.") self.assertEqual(cor.get_base_coefficient('SYMBOL2', 'SYMBOL5'), -1, "The correlation for SYMBOL2:SYMBOL5 should be -1.") # Monitoring threshold is 1 and we are monitoring inverse. Get filtered correlations. There should be 3 (S1:S2, # S1:S5 and S2:S5) self.assertEqual(len(cor.filtered_coefficient_data.index), 3, "There should be 3 rows in filtered coefficient data when we are monitoring inverse " "correlations.") # Now aren't monitoring inverse correlations. There should only be one correlation when filtered cor.monitor_inverse = False self.assertEqual(len(cor.filtered_coefficient_data.index), 1, "There should be only 1 rows in filtered coefficient data when we are not monitoring inverse " "correlations.") # Now were going to recalculate, but this time SYMBOL1:SYMBOL2 will have non overlapping dates and coefficient # should be None. There shouldn't be a row. We should have correlations for S1:S4, S1:S5 and S4:S5 mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_different_dates, self.mock_correlated_prices, self.mock_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) self.assertEqual(len(cor.coefficient_data.index), 3, "There should be three correlations rows calculated.") self.assertEqual(cor.coefficient_data.iloc[0, 2], 1, "The correlation for SYMBOL1:SYMBOL4 should be 1.") self.assertEqual(cor.coefficient_data.iloc[1, 2], 1, "The correlation for SYMBOL1:SYMBOL5 should be 1.") self.assertEqual(cor.coefficient_data.iloc[2, 2], 1, "The correlation for SYMBOL4:SYMBOL5 should be 1.") # Get the price data used to calculate the coefficients for symbol 1. It should match mock_base_prices. price_data = cor.get_price_data('SYMBOL1') self.assertTrue(price_data.equals(self.mock_base_prices), "Price data returned post calculation should match " "mock price data.") def test_calculate_coefficient(self): """ Tests the coefficient calculation. :return: """ # Correlation class cor = correlation.Correlation() # Test 2 correlated sets coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_correlated_prices) self.assertEqual(coefficient, 1, "Coefficient should be 1.") # Test 2 uncorrelated sets. Set p value to 1 to force correlation to be returned. coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_uncorrelated_prices, max_p_value=1) self.assertTrue(coefficient < 1, "Coefficient should be < 1.") # Test 2 sets where prices dont overlap coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_correlated_different_dates) self.assertTrue(coefficient < 1, "Coefficient should be None.") # Test 2 inversely correlated sets coefficient = cor.calculate_coefficient(self.mock_base_prices, self.mock_inverse_correlated_prices) self.assertEqual(coefficient, -1, "Coefficient should be -1.") @patch('mt5_correlation.mt5.MetaTrader5') def test_get_ticks(self, mock): """ Test that caching works. For the purpose of this test, we can use price data rather than tick data. Mock 2 different sets of prices. Get three times. Base, One within cache threshold and one outside. Set 1 should match set 2 but differ from set 3. :param mock: :return: """ # Correlation class to test cor = correlation.Correlation() # Mock the tick data to contain 2 different sets. Then get twice. They should match as the data was cached. mock.copy_ticks_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices] # We need to start and stop the monitor as this will set the cache time cor.start_monitor(interval=10, calculation_params={'from': 10, 'min_prices': 0, 'max_set_size_diff_pct': 0, 'overlap_pct': 0, 'max_p_value': 1}, cache_time=3) cor.stop_monitor() # Get the ticks within cache time and check that they match base_ticks = cor.get_ticks('SYMBOL1', None, None) cached_ticks = cor.get_ticks('SYMBOL1', None, None) self.assertTrue(base_ticks.equals(cached_ticks), "Both sets of tick data should match as set 2 came from cache.") # Wait 3 seconds time.sleep(3) # Retrieve again. This one should be different as the cache has expired. non_cached_ticks = cor.get_ticks('SYMBOL1', None, None) self.assertTrue(not base_ticks.equals(non_cached_ticks), "Both sets of tick data should differ as cached data had expired.") @patch('mt5_correlation.mt5.MetaTrader5') def test_start_monitor(self, mock): """ Test that starting the monitor and running for 2 seconds produces two sets of coefficient history when using an interval of 1 second. :param mock: :return: """ # Mock symbol return values mock.symbols_get.return_value = self.mock_symbols # Create correlation class. We will set a divergence threshold so that we can test status. cor = correlation.Correlation(divergence_threshold=0.8, monitor_inverse=True) # Calculate for price data. We should have 100% matching dates in sets. Get prices should be called 4 times. # We dont have a SYMBOL2 as this is set as not visible. All pairs should be correlated for the purpose of this # test. mock.copy_rates_range.side_effect = [self.mock_base_prices, self.mock_correlated_prices, self.mock_correlated_prices, self.mock_inverse_correlated_prices] cor.calculate(date_from=self.start_date, date_to=self.end_date, timeframe=5, min_prices=100, max_set_size_diff_pct=100, overlap_pct=100, max_p_value=1) # We will build some tick data for each symbol and patch it in. Tick data will be from 10 seconds ago to now. # We only need to patch in one set of tick data for each symbol as it will be cached. columns = ['time', 'ask'] starttime = datetime.now() - timedelta(seconds=10) tick_data_s1 = pd.DataFrame(columns=columns) tick_data_s2 = pd.DataFrame(columns=columns) tick_data_s4 = pd.DataFrame(columns=columns) tick_data_s5 = pd.DataFrame(columns=columns) now = datetime.now() price_base = 1 while starttime < now: tick_data_s1 = tick_data_s1.append(pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.5]])) tick_data_s2 = tick_data_s1.append(
pd.DataFrame(columns=columns, data=[[starttime, price_base * 0.1]])
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #import networkx as nx from scIB.utils import * from scIB.preprocessing import score_cell_cycle from scIB.clustering import opt_louvain from scipy import sparse from scipy.sparse.csgraph import connected_components from scipy.io import mmwrite import sklearn import sklearn.metrics from time import time import cProfile from pstats import Stats import memory_profiler import itertools import multiprocessing import subprocess import tempfile import pathlib from os import mkdir, path, remove, stat import gc import rpy2.rinterface_lib.callbacks import logging rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR) # Ignore R warning messages import rpy2.robjects as ro import anndata2ri # Define Errors class RootCellError(Exception): def __init__(self, message): self.message = message class NeighborsError(Exception): def __init__(self, message): self.message = message ### Silhouette score def silhouette(adata, group_key, metric='euclidean', embed='X_pca', scale=True): """ wrapper for sklearn silhouette function values range from [-1, 1] with 1 being an ideal fit, 0 indicating overlapping clusters and -1 indicating misclassified cells """ if embed not in adata.obsm.keys(): print(adata.obsm.keys()) raise KeyError(f'{embed} not in obsm') asw = sklearn.metrics.silhouette_score(adata.obsm[embed], adata.obs[group_key], metric=metric) if scale: asw = (asw + 1)/2 return asw def silhouette_batch(adata, batch_key, group_key, metric='euclidean', embed='X_pca', verbose=True, scale=True): """ Silhouette score of batch labels subsetted for each group. params: batch_key: batches to be compared against group_key: group labels to be subsetted by e.g. cell type metric: see sklearn silhouette score embed: name of column in adata.obsm returns: all scores: absolute silhouette scores per group label group means: if `mean=True` """ if embed not in adata.obsm.keys(): print(adata.obsm.keys()) raise KeyError(f'{embed} not in obsm') sil_all = pd.DataFrame(columns=['group', 'silhouette_score']) for group in adata.obs[group_key].unique(): adata_group = adata[adata.obs[group_key] == group] if adata_group.obs[batch_key].nunique() == 1: continue sil_per_group = sklearn.metrics.silhouette_samples(adata_group.obsm[embed], adata_group.obs[batch_key], metric=metric) # take only absolute value sil_per_group = [abs(i) for i in sil_per_group] if scale: # scale s.t. highest number is optimal sil_per_group = [1 - i for i in sil_per_group] d = pd.DataFrame({'group' : [group]*len(sil_per_group), 'silhouette_score' : sil_per_group}) sil_all = sil_all.append(d) sil_all = sil_all.reset_index(drop=True) sil_means = sil_all.groupby('group').mean() if verbose: print(f'mean silhouette per cell: {sil_means}') return sil_all, sil_means def plot_silhouette_score(adata_dict, batch_key, group_key, metric='euclidean', embed='X_pca', palette='Dark2', per_group=False, verbose=True): """ params: adata_dict: dictionary of adata objects, each labeled by e.g. integration method name """ with sns.color_palette(palette): for label, adata in adata_dict.items(): checkAdata(adata) sil_scores = silhouette(adata, batch_key=batch_key, group_key=group_key, metric=metric, embed=embed, means=False, verbose=verbose) sns.distplot(sil_scores['silhouette_score'], label=label, hist=False) plt.title('Silhouette scores per cell for all groups') plt.show() if per_group: for data_set, adata in adata_dict.items(): sil_scores = silhouette(adata, batch_key=batch_key, group_key=group_key, metric=metric, embed=embed, means=False, verbose=verbose) # plot for all groups for group in sil_scores['group'].unique(): group_scores = sil_scores[sil_scores['group'] == group] sns.distplot(group_scores['silhouette_score'], label=group, hist=False) plt.title(f'Silhouette scores per cell for {data_set}') plt.show() ### NMI normalised mutual information def nmi(adata, group1, group2, method="arithmetic", nmi_dir=None): """ Normalized mutual information NMI based on 2 different cluster assignments `group1` and `group2` params: adata: Anndata object group1: column name of `adata.obs` or group assignment group2: column name of `adata.obs` or group assignment method: NMI implementation 'max': scikit method with `average_method='max'` 'min': scikit method with `average_method='min'` 'geometric': scikit method with `average_method='geometric'` 'arithmetic': scikit method with `average_method='arithmetic'` 'Lancichinetti': implementation by <NAME> 2009 et al. 'ONMI': implementation by <NAME> et al. (https://github.com/aaronmcdaid/Overlapping-NMI) Hurley 2011 nmi_dir: directory of compiled C code if 'Lancichinetti' or 'ONMI' are specified as `method`. Compilation should be done as specified in the corresponding README. return: normalized mutual information (NMI) """ checkAdata(adata) if isinstance(group1, str): checkBatch(group1, adata.obs) group1 = adata.obs[group1].tolist() elif isinstance(group1, pd.Series): group1 = group1.tolist() if isinstance(group2, str): checkBatch(group2, adata.obs) group2 = adata.obs[group2].tolist() elif isinstance(group2, pd.Series): group2 = group2.tolist() if len(group1) != len(group2): raise ValueError(f'different lengths in group1 ({len(group1)}) and group2 ({len(group2)})') # choose method if method in ['max', 'min', 'geometric', 'arithmetic']: nmi_value = sklearn.metrics.normalized_mutual_info_score(group1, group2, average_method=method) elif method == "Lancichinetti": nmi_value = nmi_Lanc(group1, group2, nmi_dir=nmi_dir) elif method == "ONMI": nmi_value = onmi(group1, group2, nmi_dir=nmi_dir) else: raise ValueError(f"Method {method} not valid") return nmi_value def onmi(group1, group2, nmi_dir=None, verbose=True): """ Based on implementation https://github.com/aaronmcdaid/Overlapping-NMI publication: <NAME>, <NAME>, <NAME> 2011 params: nmi_dir: directory of compiled C code """ if nmi_dir is None: raise FileNotFoundError("Please provide the directory of the compiled C code from https://sites.google.com/site/andrealancichinetti/mutual3.tar.gz") group1_file = write_tmp_labels(group1, to_int=False) group2_file = write_tmp_labels(group2, to_int=False) nmi_call = subprocess.Popen( [nmi_dir+"onmi", group1_file, group2_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = nmi_call.communicate() if stderr: print(stderr) nmi_out = stdout.decode() if verbose: print(nmi_out) nmi_split = [x.strip().split('\t') for x in nmi_out.split('\n')] nmi_max = float(nmi_split[0][1]) # remove temporary files remove(group1_file) remove(group2_file) return nmi_max def nmi_Lanc(group1, group2, nmi_dir="external/mutual3/", verbose=True): """ paper by <NAME> 2009 https://sites.google.com/site/andrealancichinetti/mutual recommended by Malte """ if nmi_dir is None: raise FileNotFoundError("Please provide the directory of the compiled C code from https://sites.google.com/site/andrealancichinetti/mutual3.tar.gz") group1_file = write_tmp_labels(group1, to_int=False) group2_file = write_tmp_labels(group2, to_int=False) nmi_call = subprocess.Popen( [nmi_dir+"mutual", group1_file, group2_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout, stderr = nmi_call.communicate() if stderr: print(stderr) nmi_out = stdout.decode().strip() return float(nmi_out.split('\t')[1]) def write_tmp_labels(group_assignments, to_int=False, delim='\n'): """ write the values of a specific obs column into a temporary file in text format needed for external C NMI implementations (onmi and nmi_Lanc functions), because they require files as input params: to_int: rename the unique column entries by integers in range(1,len(group_assignments)+1) """ if to_int: label_map = {} i = 1 for label in set(group_assignments): label_map[label] = i i += 1 labels = delim.join([str(label_map[name]) for name in group_assignments]) else: labels = delim.join([str(name) for name in group_assignments]) clusters = {label:[] for label in set(group_assignments)} for i, label in enumerate(group_assignments): clusters[label].append(str(i)) output = '\n'.join([' '.join(c) for c in clusters.values()]) output = str.encode(output) # write to file with tempfile.NamedTemporaryFile(delete=False) as f: f.write(output) filename = f.name return filename ### ARI adjusted rand index def ari(adata, group1, group2): """ params: adata: anndata object group1: ground-truth cluster assignments (e.g. cell type labels) group2: "predicted" cluster assignments The function is symmetric, so group1 and group2 can be switched """ checkAdata(adata) if isinstance(group1, str): checkBatch(group1, adata.obs) group1 = adata.obs[group1].tolist() elif isinstance(group1, pd.Series): group1 = group1.tolist() if isinstance(group2, str): checkBatch(group2, adata.obs) group2 = adata.obs[group2].tolist() elif isinstance(group2, pd.Series): group2 = group2.tolist() if len(group1) != len(group2): raise ValueError(f'different lengths in group1 ({len(group1)}) and group2 ({len(group2)})') return sklearn.metrics.cluster.adjusted_rand_score(group1, group2) ### Isolated label score def isolated_labels(adata, label_key, batch_key, cluster_key="iso_cluster", cluster=True, n=None, all_=False, verbose=True): """ score how well labels of isolated labels are distiguished in the dataset by 1. clustering-based approach 2. silhouette score params: cluster: if True, use clustering approach, otherwise use silhouette score approach n: max number of batches per label for label to be considered as isolated. if n is integer, consider labels that are present for n batches as isolated if n=None, consider minimum number of batches that labels are present in all_: return scores for all isolated labels instead of aggregated mean return: by default, mean of scores for each isolated label retrieve dictionary of scores for each label if `all_` is specified """ scores = {} isolated_labels = get_isolated_labels(adata, label_key, batch_key, cluster_key, n=n, verbose=verbose) for label in isolated_labels: score = score_isolated_label(adata, label_key, cluster_key, label, cluster=cluster, verbose=verbose) scores[label] = score if all_: return scores return np.mean(list(scores.values())) def get_isolated_labels(adata, label_key, batch_key, cluster_key, n, verbose): """ get labels that are considered isolated by the number of batches """ tmp = adata.obs[[label_key, batch_key]].drop_duplicates() batch_per_lab = tmp.groupby(label_key).agg({batch_key: "count"}) # threshold for determining when label is considered isolated if n is None: n = batch_per_lab.min().tolist()[0] if verbose: print(f"isolated labels: no more than {n} batches per label") labels = batch_per_lab[batch_per_lab[batch_key] <= n].index.tolist() if len(labels) == 0 and verbose: print(f"no isolated labels with less than {n} batches") return labels def score_isolated_label(adata, label_key, cluster_key, label, cluster=True, verbose=False, **kwargs): """ compute label score for a single label params: cluster: if True, use clustering approach, otherwise use silhouette score approach """ adata_tmp = adata.copy() def max_label_per_batch(adata, label_key, cluster_key, label, argmax=False): """cluster optimizing over cluster with largest number of isolated label per batch""" sub = adata.obs[adata.obs[label_key] == label].copy() label_counts = sub[cluster_key].value_counts() if argmax: return label_counts.index[label_counts.argmax()] return label_counts.max() def max_f1(adata, label_key, cluster_key, label, argmax=False): """cluster optimizing over largest F1 score of isolated label""" obs = adata.obs max_cluster = None max_f1 = 0 for cluster in obs[cluster_key].unique(): y_pred = obs[cluster_key] == cluster y_true = obs[label_key] == label f1 = sklearn.metrics.f1_score(y_pred, y_true) if f1 > max_f1: max_f1 = f1 max_cluster = cluster if argmax: return max_cluster return max_f1 if cluster: opt_louvain(adata_tmp, label_key, cluster_key, function=max_f1, label=label, verbose=False, inplace=True) score = max_f1(adata_tmp, label_key, cluster_key, label, argmax=False) else: adata_tmp.obs['group'] = adata_tmp.obs[label_key] == label score = silhouette(adata_tmp, group_key='group', **kwargs) del adata_tmp if verbose: print(f"{label}: {score}") return score def precompute_hvg_batch(adata, batch, features, n_hvg=500, save_hvg=False): adata_list = splitBatches(adata, batch, hvg=features) hvg_dir = {} for i in adata_list: sc.pp.filter_genes(i, min_cells=1) n_hvg_tmp = np.minimum(n_hvg, int(0.5*i.n_vars)) if n_hvg_tmp<n_hvg: print(i.obs[batch][0]+' has less than the specified number of genes') print('Number of genes: '+str(i.n_vars)) hvg = sc.pp.highly_variable_genes(i, flavor='cell_ranger', n_top_genes=n_hvg_tmp, inplace=False) hvg_dir[i.obs[batch][0]] = i.var.index[hvg['highly_variable']] adata_list=None if save_hvg: adata.uns['hvg_before']=hvg_dir else: return hvg_dir ### Highly Variable Genes conservation def hvg_overlap(adata_pre, adata_post, batch, n_hvg=500): hvg_post = adata_post.var_names adata_post_list = splitBatches(adata_post, batch) overlap = [] if ('hvg_before' in adata_pre.uns_keys()) and (set(hvg_post) == set(adata_pre.var_names)): print('Using precomputed hvgs per batch') hvg_pre_list = adata_pre.uns['hvg_before'] else: hvg_pre_list = precompute_hvg_batch(adata_pre, batch, hvg_post) for i in range(len(adata_post_list)):#range(len(adata_pre_list)): sc.pp.filter_genes(adata_post_list[i], min_cells=1) # remove genes unexpressed (otherwise hvg might break) #ov = list(set(adata_pre_list[i].var_names).intersection(set(hvg_pre_list[i]))) #adata_pre_list[i] = adata_pre_list[i][:,ov] #adata_post_list[i] = adata_post_list[i][:,ov] batch_var = adata_post_list[i].obs[batch][0] n_hvg_tmp = len(hvg_pre_list[batch_var])#adata_pre.uns['n_hvg'][hvg_post]#np.minimum(n_hvg, int(0.5*adata_post_list[i].n_vars)) print(n_hvg_tmp) #if n_hvg_tmp<n_hvg: # print(adata_post_list[i].obs[batch][0]+' has less than the specified number of genes') # print('Number of genes: '+str(adata_post_list[i].n_vars)) #hvg_pre = sc.pp.highly_variable_genes(adata_pre_list[i], flavor='cell_ranger', n_top_genes=n_hvg_tmp, inplace=False) tmp_pre = hvg_pre_list[batch_var] #adata_pre_list[i].var.index[hvg_pre['highly_variable']] hvg_post = sc.pp.highly_variable_genes(adata_post_list[i], flavor='cell_ranger', n_top_genes=n_hvg_tmp, inplace=False) tmp_post = adata_post_list[i].var.index[hvg_post['highly_variable']] n_hvg_real = np.minimum(len(tmp_pre),len(tmp_post)) overlap.append((len(set(tmp_pre).intersection(set(tmp_post))))/n_hvg_real) return np.mean(overlap) ### Cell cycle effect def precompute_cc_score(adata, batch_key, organism='mouse', n_comps=50, verbose=False): batches = adata.obs[batch_key].cat.categories scores_before = {} s_score = [] g2m_score = [] for batch in batches: raw_sub = adata[adata.obs[batch_key] == batch].copy() #score cell cycle if not already done if (np.in1d(['S_score', 'G2M_score'], adata.obs_keys()).sum() < 2): score_cell_cycle(raw_sub, organism=organism) s_score.append(raw_sub.obs['S_score']) g2m_score.append(raw_sub.obs['G2M_score']) covariate = raw_sub.obs[['S_score', 'G2M_score']] before = pc_regression(raw_sub.X, covariate, pca_sd=None, n_comps=n_comps, verbose=verbose) scores_before.update({batch : before}) if (np.in1d(['S_score', 'G2M_score'], adata.obs_keys()).sum() < 2): adata.obs['S_score'] = pd.concat(s_score) adata.obs['G2M_score'] =
pd.concat(g2m_score)
pandas.concat
import datetime as dt from typing import List from src.repos.metricsData.metricsDataRepo import MetricsDataRepo from src.utils.addMonths import addMonths from src.config.appConfig import getREConstituentsMappings import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates def fetchSection1_11_LoadCurve(appDbConnStr: str, startDt: dt.datetime, endDt: dt.datetime): mRepo = MetricsDataRepo(appDbConnStr) pltDataObj:list = [] totalGen = mRepo.getEntityREHourlyData('wr',startDt, endDt) df = pd.DataFrame(totalGen) max_total_gen_position = df['val'].idxmax() max_total_gen_dt = df['time_stamp'].iloc[max_total_gen_position] max_str_date = dt.datetime(max_total_gen_dt.year,max_total_gen_dt.month,max_total_gen_dt.day) totalGenOnMaxGenDay = mRepo.getEntityREHourlyData('wr',max_str_date,max_str_date) wrDemandOnMaxGenDay = mRepo.getEntityMetricHourlyData('wr','Demand(MW)',max_str_date,max_str_date) pltDataDf =
pd.DataFrame()
pandas.DataFrame
from T2GEORES import geometry as geomtr import sqlite3 import os import pandas as pd import json def checktable(table_name,c): """It verifies the existance of a table on the sqlite database Parameters ---------- table_name : str Table name c : cursor Conection to the database Returns ------- int check: if table exists returns 1 Examples -------- >>> checktable(table_name,c) """ query="SELECT COUNT(name) from sqlite_master WHERE type='table' AND name='%s'"%(table_name) c.execute(query) if c.fetchone()[0]==1: check=1 else: check=0 return check def db_creation(input_dictionary): """It creates a sqlite databa base Parameters ---------- input_dictionary : dictionary Dictionary contaning the path and name of database on keyword 'db_path', usually on '../input/' Returns ------- database name: database on desire path Note ---- The tables: wells, survey, PT, mh, drawdown, cooling, wellfeedzone, t2wellblock, t2wellsource, layers and t2PTout are generated Examples -------- >>> db_creation(input_dictionary) """ db_path=input_dictionary['db_path'] if not os.path.isfile(db_path): conn=sqlite3.connect(db_path) c = conn.cursor() # Create table - wells if checktable('wells',c)==0: c.execute('''CREATE TABLE wells ([well] TEXT PRIMARY KEY, [type] TEXT, [east] REAL, [north] REAL, [elevation] REAL, [lnr_init] REAL, [lnr_end] REAL, [lnr_D] TEXT, [ptube_init] REAL, [ptube_end] REAL, [ptube_D] TEXT, [drilldate] datetime)''') #Create table - survey if checktable('survey',c)==0: c.execute('''CREATE TABLE survey ([well] TEXT, [MeasuredDepth] REAL, [Delta_east] REAL, [Delta_north] REAL)''') #Create table - PT if checktable('PT',c)==0: c.execute('''CREATE TABLE PT ([well] TEXT, [MeasuredDepth] REAL, [Pressure] REAL, [Temperature] REAL)''') #Create table - mh if checktable('mh',c)==0: c.execute('''CREATE TABLE mh ([well] TEXT, [type] TEXT, [date_time] datetime, [steam_flow] REAL, [liquid_flow] REAL, [flowing_enthalpy] REAL, [well_head_pressure] REAL)''') #Create table - drawdown if checktable('drawdown',c)==0: c.execute('''CREATE TABLE drawdown ([well] TEXT, [date_time] datetime, [TVD] REAL, [pressure] REAL)''') #Create table - cooling if checktable('cooling',c)==0: c.execute('''CREATE TABLE cooling ([well] TEXT, [date_time] datetime, [TVD] REAL, [temp] REAL)''') #Create table - wellfeedzone if checktable('wellfeedzone',c)==0: c.execute('''CREATE TABLE wellfeedzone ([well] TEXT, [MeasuredDepth] REAL, [contribution] REAL)''') #Create table - TOUGH2 well block(correlative) if checktable('t2wellblock',c)==0: c.execute('''CREATE TABLE t2wellblock ([well] TEXT PRIMARY KEY, [blockcorr] TEXT)''') #Create table - TOUGH2 well source if checktable('t2wellsource',c)==0: c.execute('''CREATE TABLE t2wellsource ([well] TEXT, [blockcorr] TEXT , [source_nickname] TEXT PRIMARY KEY)''') #Create table - layers levels if checktable('layers',c)==0: c.execute('''CREATE TABLE layers ([correlative] TEXT PRIMARY KEY, [top] REAL, [middle] REAL, [bottom] REAL)''') #Create table - stores ELEME section of mesh if checktable('ELEME',c)==0: c.execute('''CREATE TABLE ELEME ([model_version] REAL, [model_output_timestamp] timestamp, [ELEME] TEXT, [NSEQ] REAL, [NADD] REAL, [MA1] REAL, [MA2] REAL, [VOLX] REAL, [AHTX] REAL, [PMX] REAL, [X] REAL, [Y] REAL, [Z] REAL, [LAYER_N] REAL, [h] REAL)''') #Create table - stores CONNE section of mesh if checktable('CONNE',c)==0: c.execute('''CREATE TABLE CONNE ([model_version] REAL, [model_output_timestamp] timestamp, [ELEME1] TEXT, [ELEME2] TEXT, [NSEQ] REAL, [NAD1] REAL, [NAD2] REAL, [ISOT] REAL, [D1] REAL, [D2] REAL, [AREAX] REAL, [BETAX] REAL, [SIGX] REAL)''') #Create table - stores segment if checktable('segment',c)==0: c.execute('''CREATE TABLE segment ([model_version] REAL, [model_output_timestamp] timestamp, [x1] REAL, [y1] REAL, [x2] REAL, [y2] REAL, [redundant] REAL, [ELEME1] TEXT, [ELEME2] TEXT)''') #Create table - PT out if checktable('t2PTout',c)==0: c.execute('''CREATE TABLE t2PTout ([blockcorr] TEXT PRIMARY KEY, [x] REAL, [y] REAL, [z] REAL, [index] REAL, [P] REAL, [T] REAL, [SG] REAL, [SW] REAL, [X1] REAL, [X2] REAL, [PCAP] REAL, [DG] REAL, [DW] REAL)''') #Create table - stores flows TOUGH2 output section if checktable('t2FLOWSout',c)==0: c.execute('''CREATE TABLE t2FLOWSout ([model_version] REAL, [model_output_timestamp] timestamp, [ELEME1] TEXT, [ELEME2] TEXT, [INDEX] INT, [FHEAT] REAL, [FLOH] REAL, [FLOF] REAL, [FLOG] REAL, [FLOAQ] REAL, [FLOWTR2] REAL, [VELG] REAL, [VELAQ] REAL, [TURB_COEFF] REAL, [model_time] REAL)''') #Create table - stores flows directions from every block if checktable('t2FLOWVectors',c)==0: c.execute('''CREATE TABLE t2FLOWVectors ([model_version] REAL, [model_output_timestamp] timestamp, [ELEME] TEXT, [FHEAT_x] REAL, [FHEAT_y] REAL, [FHEAT_z] REAL, [FLOH_x] REAL, [FLOH_y] REAL, [FLOH_z] REAL, [FLOF_x] REAL, [FLOF_y] REAL, [FLOF_z] REAL, [FLOG_x] REAL, [FLOG_y] REAL, [FLOG_z] REAL, [FLOAQ_x] REAL, [FLOAQ_y] REAL, [FLOAQ_z] REAL, [FLOWTR2_x] REAL, [FLOWTR2_y] REAL, [FLOWTR2_z] REAL, [VELG_x] REAL, [VELG_y] REAL, [VELG_z] REAL, [VELAQ_x] REAL, [VELAQ_y] REAL, [VELAQ_z] REAL, [TURB_COEFF_x] REAL, [TURB_COEFF_y] REAL, [TURB_COEFF_z] REAL, [model_time] REAL)''') conn.commit() conn.close() def insert_wells_sqlite(input_dictionary): """It stores the data contain on the ubication.csv file and stores it on the database Parameters ---------- input_dictionary: dictionary Dictionary containing the path and name of database and the path of the input file Note ---- The well name is written as primary key. Thus, if the coordinates of the file ubication.csv change, it is better to eliminate the records and rerun this function again. Some print are expected. Examples -------- >>> insert_wells_sqlite(input_dictionary) """ db_path=input_dictionary['db_path'] source_txt=input_dictionary['source_txt'] conn=sqlite3.connect(db_path) c = conn.cursor() wells=pd.read_csv(source_txt+'ubication.csv') wells['drilldate'] = pd.to_datetime(wells['drilldate'],format="%Y%m%d") for index,row in wells.iterrows(): try: q="INSERT INTO wells(well,type,east,north,elevation,drilldate) VALUES ('%s','%s',%s,%s,%s,'%s')"%\ (row['well'],row['type'],row['east'],row['north'],row['masl'],row['drilldate']) c.execute(q) conn.commit() except sqlite3.IntegrityError: print("The well %s is already on the database") conn.close() def insert_feedzone_to_sqlite(input_dictionary): """It stores the data contain on the ubication.csv file and stores it on the database Parameters ---------- input_dictionary: dictionary Dictionary containing the path and name of database and the path of the input file Examples -------- >>> insert_feedzone_to_sqlite(input_dictionary) """ db_path=input_dictionary['db_path'] source_txt=input_dictionary['source_txt'] conn=sqlite3.connect(db_path) c=conn.cursor() feedzones=pd.read_csv(source_txt+'well_feedzone.csv',delimiter=',') for index,row in feedzones.iterrows(): q="INSERT INTO wellfeedzone(well,MeasuredDepth,contribution) VALUES ('%s',%s,%s)"%\ (row['well'],row['MD'],row['contribution']) c.execute(q) conn.commit() conn.close() def insert_survey_to_sqlite(input_dictionary): """It stores all the data contain on the subfolder survey from the input file folder. Parameters ---------- input_dictionary: dictionary Dictionary containing the path and name of database and the path of the input file Note ---- The survey for every well must have the next headers MeasuredDepth,Delta_north,Delta_east Examples -------- >>> insert_survey_to_sqlite(input_dictionary) """ db_path=input_dictionary['db_path'] source_txt=input_dictionary['source_txt'] conn=sqlite3.connect(db_path) c=conn.cursor() for f in os.listdir(source_txt+'survey/'): if os.path.isfile(os.path.join(source_txt, 'survey/',f)): well_name=f.replace("'","").replace("_MD.dat","") well_file=os.path.join(source_txt, 'survey/',f) survey=pd.read_csv(well_file) for index, row in survey.iterrows(): q="INSERT INTO survey(well,MeasuredDepth,Delta_north,Delta_east) VALUES ('%s',%s,%s,%s)"%\ (well_name,row['MeasuredDepth'],row['Delta_north'],row['Delta_east']) c.execute(q) conn.commit() conn.close() def insert_PT_to_sqlite(input_dictionary): """It stores all the data contain on the subfolder PT from the input file folder. Parameters ---------- input_dictionary: dictionary Dictionary containing the path and name of database and the path of the input file Note ---- The PT for every well must have the next headers MD,P,T. The file name must be well_MDPT.dat Examples -------- >>> insert_PT_to_sqlite(input_dictionary) """ db_path=input_dictionary['db_path'] source_txt=input_dictionary['source_txt'] conn=sqlite3.connect(db_path) c=conn.cursor() for f in os.listdir(source_txt+'PT'): if os.path.isfile(source_txt+'PT/'+f): if '_MDPT' in f: well_name=f.replace("'","").replace("_MDPT.dat","") if os.path.isfile(source_txt+'PT/'+f): PT=
pd.read_csv(source_txt+'PT/'+f)
pandas.read_csv
####### ### Code to run ML models ####### ### imports import re import time import numpy as np import pandas as pd import os import pickle5 as pickle import matplotlib.pyplot as plt # ML imports from sklearn.compose import ColumnTransformer from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression, LogisticRegressionCV from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import MultinomialNB from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GroupShuffleSplit from sklearn.utils import resample ## modeling functions def get_metrics(y_test, y_predicted): '''generate evaluation scores accroding predicted y''' accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='binary') recall = recall_score(y_test, y_predicted, average='binary') f1 = f1_score(y_test, y_predicted, average='binary') return accuracy, precision, recall, f1 def estimate_models(model_list, model_list_names, X_train, y_train, X_test, y_test): '''takes in a list of models, fit and test each one, generates a df with evaluation parameters of all models ran''' all_fi = [] for i in range(0, len(model_list)): ## pull out model one_model = model_list[i] print("fitting model: " + str(one_model)) ## fit the model and evaluate one_model.fit(X_train, y_train) if model_list_names[i] == "gb_shallow": fi = one_model.feature_importances_ else: fi = one_model.coef_ fi_df = pd.DataFrame({'value': fi[0], 'coef_name': X_train.columns}) fi_df['model'] = model_list_names[i] all_fi.append(fi_df) fi_df = pd.concat(all_fi) print("concatenated and returned object") return fi_df ## shortened list of model objects model_list = [GradientBoostingClassifier(criterion='friedman_mse', n_estimators=100), LogisticRegression(penalty = "l1",max_iter=10000, C = 0.01, solver='liblinear')] model_list_names = ["gb_shallow", "lasso"] assert len(model_list) == len(model_list_names) ## define paths and read in data DROPBOX_YOUR_PATH = "Dropbox/qss20_finalproj_rawdata/summerwork/" MODEL_OUTPUT_PATH = "Dropbox/qss20_s21_proj/output/model_outputs/" whd_train_init = pd.read_pickle(DROPBOX_YOUR_PATH + "clean/whd_training.pkl") whd_test =
pd.read_pickle(DROPBOX_YOUR_PATH + "clean/whd_testing.pkl")
pandas.read_pickle
import streamlit as st import pandas as pd from pyvis.network import Network import networkx as nx import matplotlib.pyplot as plt import bz2 import pickle import _pickle as cPickle import pydot import math import numpy as num def decompress_pickle(file): data = bz2.BZ2File(file, 'rb') data = cPickle.load(data) return data uploaded_files = st.sidebar.file_uploader("Choose files", accept_multiple_files=True) # sidebar for navigating pages page_nav = st.sidebar.selectbox("Select view:",('Document overviews','Focus concepts','Path views','Active Study view','Study phenomena','Study sets')) @st.cache def do_this_first(uploaded_files): #st.write(st.__version__) # Load any compressed pickle file # for uploaded_file in uploaded_files: # concepts = decompress_pickle(uploaded_file) # st.write("filename:", uploaded_file.name) filenames = [file.name for file in uploaded_files] # return this import pandas as pd Agg_Conceptdata = pd.DataFrame() All_Conceptdata = pd.DataFrame() Agg_np_to_sent = dict() Agg_sent_to_npflat = dict() Agg_sent_to_phen = dict() Agg_phen_to_sent = dict() Agg_att_to_sent = dict() Agg_sent_to_att = dict() Agg_ins_to_sent = dict() Agg_sent_to_ins = dict() Agg_set_to_sent = dict() Agg_sent_to_set = dict() Agg_np_to_forms = dict() doc_to_np = dict() np_to_doc = dict() Agg_df = pd.DataFrame() Agg_df = pd.DataFrame() Agg_np_to_roles = dict() Agg_sent_to_clt = dict() Agg_sents = dict() #Agg_sents_df = pd.DataFrame() #Agg_docs_df = pd.DataFrame() All_df = pd.DataFrame() for uploaded_file in uploaded_files: concepts = decompress_pickle(uploaded_file) filename = uploaded_file.name #st.write("filename:", uploaded_file.name) Conceptdata = concepts['Conceptdata'] sent_to_npflat = concepts['sent_to_npflat'] np_to_sent = concepts['np_to_sent'] np_to_forms = concepts['np_to_forms'] sent_to_phen = concepts['sent_to_phen'] phen_to_sent = concepts['phen_to_sent'] sent_to_att = concepts['sent_to_att'] att_to_sent = concepts['att_to_sent'] att_to_sent = concepts['att_to_sent'] ins_to_sent = concepts['ins_to_sent'] sent_to_ins = concepts['sent_to_ins'] set_to_sent = concepts['set_to_sent'] sent_to_set = concepts['sent_to_set'] np_to_roles = concepts['np_to_roles'] sent_to_clt = concepts['sent_to_clt'] sents = concepts['sents'] df = concepts['df'] Conceptdata['docname'] = filename Agg_Conceptdata = Agg_Conceptdata.append(Conceptdata,ignore_index=True) Agg_sent_to_clt[filename.replace(".pbz2","")] = sent_to_clt Agg_np_to_sent[filename.replace(".pbz2","")] = np_to_sent Agg_sents[filename.replace(".pbz2","")] = sents Agg_sent_to_npflat[filename.replace(".pbz2","")] = sent_to_npflat Agg_sent_to_set[filename.replace(".pbz2","")] = sent_to_set Agg_sent_to_att[filename.replace(".pbz2","")] = sent_to_att Agg_sent_to_phen[filename.replace(".pbz2","")] = sent_to_phen Agg_sent_to_ins[filename.replace(".pbz2","")] = sent_to_ins Agg_df = Agg_df.append(df,ignore_index=True) doc_to_np[filename] = list(np_to_sent.keys()) # return this for np in np_to_sent: # if np in Agg_np_to_sent: # Agg_np_to_sent[np] = Agg_np_to_sent[np] + [(filename,s) for s in np_to_sent[np]] # else: # Agg_np_to_sent[np] = [(filename,s) for s in np_to_sent[np]] if np in np_to_doc: np_to_doc[np] = np_to_doc[np] + [filename] else: np_to_doc[np] = [filename] for np in np_to_forms: if np in Agg_np_to_forms: Agg_np_to_forms[np] = Agg_np_to_forms[np] + np_to_forms[np] else: Agg_np_to_forms[np] = np_to_forms[np] for np in np_to_roles: if np in Agg_np_to_roles: Agg_np_to_roles[np] = Agg_np_to_roles[np] + np_to_roles[np] else: Agg_np_to_roles[np] = np_to_roles[np] for np in phen_to_sent: if np in Agg_phen_to_sent: Agg_phen_to_sent[np] = Agg_phen_to_sent[np] + [(filename,s) for s in phen_to_sent[np]] else: Agg_phen_to_sent[np] = [(filename,s) for s in phen_to_sent[np]] for np in att_to_sent: if np in Agg_att_to_sent: Agg_att_to_sent[np] = Agg_att_to_sent[np] + [(filename,s) for s in att_to_sent[np]] else: Agg_att_to_sent[np] = [(filename,s) for s in att_to_sent[np]] for np in set_to_sent: if np in Agg_set_to_sent: Agg_set_to_sent[np] = Agg_set_to_sent[np] + [(filename,s) for s in set_to_sent[np]] else: Agg_set_to_sent[np] = [(filename,s) for s in set_to_sent[np]] for np in ins_to_sent: if np in Agg_ins_to_sent: Agg_ins_to_sent[np] = Agg_ins_to_sent[np] + [(filename,s) for s in ins_to_sent[np]] else: Agg_ins_to_sent[np] = [(filename,s) for s in ins_to_sent[np]] #st.write(Agg_Conceptdata.columns) All_Conceptdata = pd.DataFrame() def most_common_form(np): return pd.Series(Agg_np_to_forms[np]).value_counts().sort_values(ascending=False).index[0] Agg_np_to_mcform = dict() for np in Agg_np_to_forms: Agg_np_to_mcform[np] = most_common_form(np) All_Conceptdata = Agg_Conceptdata.groupby('Concept').agg(doc_Occurence = pd.NamedAgg('docname',lambda x: list(x)), doc_Frequency = pd.NamedAgg('docname',lambda x: x.shape[0]), Raw_Frequency = pd.NamedAgg('Frequency','sum'), Mean = pd.NamedAgg('Mean','mean'), Median = pd.NamedAgg('Median','mean'), Sdev = pd.NamedAgg('Sdev','mean'), Ext_IDF = pd.NamedAgg('IDF',num.nanmin)) All_Conceptdata['Mean_Frequency'] = All_Conceptdata['Raw_Frequency']/All_Conceptdata['doc_Frequency'] All_Conceptdata['normalized_RawFreq'] = All_Conceptdata['Raw_Frequency']/All_Conceptdata['Raw_Frequency'].max() All_Conceptdata['normalized_MeanFreq'] = All_Conceptdata['Mean_Frequency']/All_Conceptdata['Mean_Frequency'].max() All_Conceptdata['intIDF'] = All_Conceptdata['doc_Frequency'].apply(lambda x: math.log(len(filenames),2)-abs(math.log(1+x,2))) All_Conceptdata['intmeanTFIDF'] = All_Conceptdata['normalized_MeanFreq']*All_Conceptdata['intIDF'] for filename in filenames: colname = filename.replace(".pbz2","") All_Conceptdata = pd.merge(left = All_Conceptdata, right = Agg_Conceptdata.loc[Agg_Conceptdata['docname']==filename,['Concept','Frequency']], how='left', left_on = 'Concept', right_on = 'Concept') All_Conceptdata[colname+'_TF'] = All_Conceptdata['Frequency'] del All_Conceptdata['Frequency'] All_Conceptdata[colname+'_TF'].fillna(0,inplace=True) All_Conceptdata[colname+'_IntTFIDF'] = All_Conceptdata[colname+'_TF']*All_Conceptdata['intIDF'] All_Conceptdata['MCForm'] = All_Conceptdata['Concept'].apply(lambda x: Agg_np_to_mcform[x]) All_Conceptdata['role_frac'] = All_Conceptdata['Concept'].apply(lambda x: dict(
pd.Series(Agg_np_to_roles[x])
pandas.Series
import pytest import collections from pathlib import Path import pandas as pd from mbf_genomics import DelayedDataFrame from mbf_genomics.annotator import Constant, Annotator import pypipegraph as ppg from pypipegraph.testing import run_pipegraph, force_load from pandas.testing import assert_frame_equal from mbf_genomics.util import find_annos_from_column class LenAnno(Annotator): def __init__(self, name): self.columns = [name] def calc(self, df): return pd.DataFrame( {self.columns[0]: ["%s%i" % (self.columns[0], len(df))] * len(df)} ) @pytest.mark.usefixtures("no_pipegraph") @pytest.mark.usefixtures("clear_annotators") class Test_DelayedDataFrameDirect: def test_create(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_create_from_df(self): test_df = pd.DataFrame({"A": [1, 2]}) a = DelayedDataFrame("shu", test_df) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_write(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write()[1] assert "/sha" in str(fn.parent.absolute()) assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), test_df) def test_write_excel(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_excel2(self): data = {} for i in range(0, 257): c = "A%i" % i d = [1, 1] data[c] = d test_df = pd.DataFrame(data) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_mangle(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert (a.non_annotator_columns == ["A", "B"]).all() def mangle(df): df = df.drop("A", axis=1) df = df[df.B == "c"] return df fn = a.write("test.csv", mangle)[1] assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), mangle(test_df)) def test_magic(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) a = DelayedDataFrame("shu", lambda: test_df) assert hash(a) assert a.name in str(a) assert a.name in repr(a) def test_annotator(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += Constant("column", "value") a.annotate() assert "column" in a.df.columns assert (a.df["column"] == "value").all() def test_add_non_anno(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(TypeError): a += 5 def test_annotator_wrong_columns(self): class WrongConstant(Annotator): def __init__(self, column_name, value): self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({"shu": self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(ValueError): a += WrongConstant("column", "value") def test_annotator_minimum_columns(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) assert "Direct" in str(a.load_strategy) class MissingCalc(Annotator): column_names = ["shu"] with pytest.raises(AttributeError): a += MissingCalc() class EmptyColumnNames(Annotator): columns = [] def calc(self, df): return pd.DataFrame({}) with pytest.raises(IndexError): a += EmptyColumnNames() class EmptyColumnNamesButCacheName(Annotator): cache_name = "shu" columns = [] def calc(self, df): return pd.DataFrame({}) with pytest.raises(IndexError): a += EmptyColumnNamesButCacheName() class MissingColumnNames(Annotator): def calc(self, df): pass with pytest.raises(AttributeError): a += MissingColumnNames() class NonListColumns(Annotator): columns = "shu" def calc(self, df): pass with pytest.raises(ValueError): a += NonListColumns() def test_DynamicColumNames(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) class Dynamic(Annotator): @property def columns(self): return ["a"] def calc(self, df): return pd.DataFrame({"a": ["x", "y"]}) a += Dynamic() a.annotate() assert_frame_equal( a.df, pd.DataFrame({"A": [1, 2], "B": ["c", "d"], "a": ["x", "y"]}) ) def test_annos_added_only_once(self): count = [0] class CountingConstant(Annotator): def __init__(self, column_name, value): count[0] += 1 self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({self.columns[0]: self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) c = CountingConstant("hello", "c") a += c a.annotate() assert "hello" in a.df.columns assert count[0] == 1 a += c # this get's ignored def test_annos_same_column_different_anno(self): count = [0] class CountingConstant(Annotator): def __init__(self, column_name, value): count[0] += 1 self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({self.columns[0]: self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) c = CountingConstant("hello", "c") a += c a.annotate() assert "hello" in a.df.columns assert count[0] == 1 c = CountingConstant("hello2", "c") a += c a.annotate() assert "hello2" in a.df.columns assert count[0] == 2 d = CountingConstant("hello2", "d") assert c is not d with pytest.raises(ValueError): a += d def test_annos_same_column_different_anno2(self): class A(Annotator): cache_name = "hello" columns = ["aa"] def calc(self, df): return pd.DataFrame({self.columns[0]: "a"}, index=df.index) class B(Annotator): cache_name = "hello2" columns = ["aa"] def calc(self, df): return pd.DataFrame({self.columns[0]: "a"}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += A() with pytest.raises(ValueError): a += B() def test_annos_dependening(self): class A(Annotator): cache_name = "hello" columns = ["aa"] def calc(self, df): return pd.DataFrame({self.columns[0]: "a"}, index=df.index) class B(Annotator): cache_name = "hello2" columns = ["ab"] def calc(self, df): return df["aa"] + "b" def dep_annos(self): return [A()] a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += B() a.annotate() assert "ab" in a.df.columns assert "aa" in a.df.columns assert (a.df["ab"] == (a.df["aa"] + "b")).all() def test_annos_dependening_none(self): class A(Annotator): cache_name = "hello" columns = ["aa"] def calc(self, df): return pd.DataFrame({self.columns[0]: "a"}, index=df.index) class B(Annotator): cache_name = "hello2" columns = ["ab"] def calc(self, df): return df["aa"] + "b" def dep_annos(self): return [None, A(), None] a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += B() a.annotate() assert "ab" in a.df.columns assert "aa" in a.df.columns assert (a.df["ab"] == (a.df["aa"] + "b")).all() def test_filtering(self): class A(Annotator): cache_name = "A" columns = ["aa"] def calc(self, df): return
pd.DataFrame({self.columns[0]: "a"}, index=df.index)
pandas.DataFrame
# -*- coding: utf-8 -*- from config import START,END,INTERVAL,INIT_H,END_H,SATELLITE,PRODUCT,CHANNEL,TMP,OUTPUT,BBOX,PROJ,INTERP,DQC_THRESHOLD import s3fs import pandas as pd import netCDF4 as nc import requests from datetime import datetime,timedelta import pathlib import errno import os import netCDF4 import logging import warnings import re warnings.filterwarnings("ignore") server = SATELLITE+'/'+PRODUCT+'/' aws = s3fs.S3FileSystem(anon=True) def file_list(): days = pd.date_range(start=START, end=END,freq='D',tz='America/Belem').strftime('%d/%m/%Y') hours = pd.date_range(start=INIT_H,end=END_H, freq=INTERVAL).strftime('%H:%M') data_range = [] for d in days: for h in hours: if h == INIT_H: tm = d+' '+h tm = datetime.strptime(tm, '%d/%m/%Y %H:%M') data_range.append(tm) else: tm = d+' '+h tm = datetime.strptime(tm, '%d/%m/%Y %H:%M') data_range.append(tm) return data_range def regex_strack(x,y): value = '' try: value = re.search(r''+str(y),x).group(0) except: pass return value def aws_file_list(list_of_files): logging.basicConfig(filename='missing.txt', filemode='w', format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S') download =
pd.DataFrame(columns=['timestamp','url'])
pandas.DataFrame
from typing import Any, Dict, Optional, Tuple, Union from collections import defaultdict from datetime import datetime from pathlib import Path import json import re import uuid from pandas import DataFrame from schematics.exceptions import ValidationError import lunchbox.tools as lbt import numpy as np from hidebound.core.parser import AssetNameParser from hidebound.core.specification_base import SpecificationBase import hidebound.core.tools as tools # ------------------------------------------------------------------------------ ''' A library of tools for Database to use in construction of its central DataFrame. ''' def _add_specification(data, specifications): # type: (DataFrame, Dict[str, SpecificationBase]) -> None ''' Adds specification data to given DataFrame. Columns added: * specification * specification_class * file_error Args: data (DataFrame): DataFrame. specifications (dict): Dictionary of specifications. ''' def get_spec(filename): # type: (str) -> Dict output = lbt.try_( AssetNameParser.parse_specification, filename, 'error' ) if not isinstance(output, dict): output = dict(file_error=str(output)) for key in ['specification', 'file_error']: if key not in output.keys(): output[key] = np.nan return output spec = data.filename.apply(get_spec).tolist() spec =
DataFrame(spec)
pandas.DataFrame
""" Map CEMS CC generators to EIA CC units """ import logging import numpy as np import pandas as pd logger = logging.getLogger(__name__) def method_1(boilers, eia_plants): """ Method 1 to map boilers to eia plants """ # Create boiler-specific unit (Method 1) no_eia_plant = boilers.loc[~np.in1d(boilers["Plant Code"], eia_plants), :] no_eia_plant = no_eia_plant.reset_index() no_eia_plant["Unit Code"] = no_eia_plant["Boiler ID"] no_eia_plant["Unit Code Method"] = 1 return no_eia_plant def method_2_3(boilers23, boilers_generators, generators): """ Method 2 and 3 """ # Get boiler -> generator matches (Methods 2 + 3) boilers_units = boilers23.join(boilers_generators, on=["Plant Code", "Boiler ID"], how="inner") boilers_units = boilers_units.join(generators[["Unit Code"]], on=["Plant Code", "Generator ID"], how="inner") boilers_units = boilers_units.reset_index().drop_duplicates(["CEMSUnit", "Unit Code"]) gen_missing_unit_code = boilers_units["Unit Code"].isna() # Assign unit code directly (Method 2) direct_result = boilers_units.loc[~gen_missing_unit_code, :].copy() direct_result["Unit Code Method"] = 2 # Create generator-specific unit (Method 3) direct_nounit_result = boilers_units.loc[gen_missing_unit_code, :].copy() direct_nounit_result["Unit Code"] = direct_nounit_result["Generator ID"] direct_nounit_result["Unit Code Method"] = 3 return direct_result, direct_nounit_result def method_4(boilers4567, generators_cc): """ Method 4 """ # Check for no CA/CTs boilers_plants = boilers4567.loc[~np.in1d(boilers4567["Plant Code"], generators_cc["Plant Code"]), :].copy() # Create boiler-specific unit (Method 4) boilers_plants["Unit Code"] = boilers_plants["Boiler ID"].astype(str) boilers_plants["Unit Code Method"] = 4 return boilers_plants.reset_index() def method_5(boilers4567, generators_cc): """ Method 5 """ # Check for single unit code among all CA/CTs in plant pos = np.in1d(generators_cc["Plant Code"], boilers4567["Plant Code"]) plants_units = generators_cc.loc[pos, ["Plant Code", "Unit Code"]] plants_units = plants_units.drop_duplicates().set_index("Plant Code") plants_units = plants_units["Unit Code"] unit_code_count = plants_units.groupby(level="Plant Code").nunique() pos = unit_code_count == 1 single_unit_plants = unit_code_count.loc[pos].index.get_values() # Assign all boilers in plant to same unit code if single unit code exists # (Method 5) single_unit_plants = plants_units.loc[single_unit_plants] result = boilers4567.join(single_unit_plants, on="Plant Code", how="right").reset_index() result["Unit Code Method"] = 5 return result def method_6_7(boilers4567, generators_cc): """ Method 6 and 7 """ # Check for nonsingle unit code among all CA/CTs in plant pos = np.in1d(generators_cc["Plant Code"], boilers4567["Plant Code"]) plants_units = generators_cc.loc[pos, ["Plant Code", "Unit Code"]] plants_units = plants_units.drop_duplicates().set_index("Plant Code") plants_units = plants_units["Unit Code"] unit_code_count = plants_units.groupby(level="Plant Code").nunique() pos = unit_code_count != 1 nonsingle_unit_plants = unit_code_count.loc[pos].index.get_values() # Group boilers and generators by plant boiler_groups = boilers4567.loc[ np.in1d(boilers4567["Plant Code"], nonsingle_unit_plants), :].reset_index().groupby("Plant Code") gen_groups = generators_cc.loc[ generators_cc["Prime Mover"] == "CT", :].groupby("Plant Code") colnames = ["Plant Code", "Boiler ID", "Generator ID", "Unit Code"] result6 = pd.DataFrame(columns=colnames) result7 = pd.DataFrame(columns=colnames) # Match boilers and generators by sorting for plant in nonsingle_unit_plants: bs = boiler_groups.get_group(plant).sort_values("Boiler ID") gs = gen_groups.get_group(plant).sort_values("Generator ID") n_bs = len(bs.index) n_gs = len(gs.index) # Match boilers to generator unit codes (Method 6) if n_bs <= n_gs: gs = gs.head(n_bs) result6 = result6.append(pd.DataFrame({ "CEMSUnit": np.array(bs["CEMSUnit"]), "Plant Code": plant, "Boiler ID": np.array(bs["Boiler ID"]), "Generator ID": np.array(gs["Generator ID"]), "Unit Code": np.array(gs["Unit Code"])}), sort=True) # Match boilers to generator unit codes, # creating new units for extra boilers (Method 7) else: bs_rem = bs.tail(n_bs - n_gs) bs = bs.head(n_gs) df = pd.DataFrame({"CEMSUnit": np.array(bs["CEMSUnit"]), "Plant Code": plant, "Boiler ID": np.array(bs["Boiler ID"]), "Generator ID": np.array(gs["Generator ID"]), "Unit Code": np.array(gs["Unit Code"])}) result7 = result7.append(df, sort=True) df = pd.DataFrame({"CEMSUnit": np.array(bs_rem["CEMSUnit"]), "Plant Code": plant, "Boiler ID": np.array(bs_rem["Boiler ID"]), "Unit Code": np.array(bs_rem["Boiler ID"])}) result7 = result7.append(df, sort=True) result6["Unit Code Method"] = 6 result7["Unit Code Method"] = 7 return result6, result7 if __name__ == "__main__": # Load CEMS boilers boilers = pd.read_csv("../bin/emission_01-17-2017.csv", usecols=[2, 3, 25], header=0, names=["Plant Code", "Boiler ID", "Unit Type"]) boilers = boilers.loc[["combined cycle" in ut.lower() for ut in boilers["Unit Type"]], :] boilers.drop("Unit Type", axis=1, inplace=True) index = boilers["Plant Code"].astype(str) + "_" + boilers["Boiler ID"] boilers.index = index boilers.index.name = "CEMSUnit" # Load boiler-generator mapping boilers_generators = pd.read_excel( "../bin/6_1_EnviroAssoc_Y2017.xlsx", "Boiler Generator", header=1, usecols=[2, 4, 5], index_col=[0, 1], skipfooter=1) def read_generators(f, sheet): """ Read generator from excel sheet """ return f.parse(sheet, header=1, usecols=[2, 6, 8, 9], index_col=[0, 1], skipfooter=1) # Load generator-unit mapping with
pd.ExcelFile("../bin/3_1_Generator_Y2017.xlsx")
pandas.ExcelFile
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import investpy import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # ### Get funds in Germany funds = investpy.get_etfs(country='germany') print(f"There are {len(funds)} funds avaliable in Germany") # ## I am mostly interested in accumulating BlackRock (and later Amundi) ETFs # So we are searching for iShares with Acc fields in the names. n = 0 for fund in funds.name: if (fund.find('iShares') != -1 and fund.find('Acc') != -1) or (fund.find('Lyxor') != -1 and fund.find('Acc') != -1): # or (fund.find('Amundi') != -1) if n == 0: df = investpy.etfs.get_etf_information(etf=fund, country='germany', as_json=False) n += 1 else: df_2 = investpy.etfs.get_etf_information(etf=fund, country='germany', as_json=False) df =
pd.concat([df,df_2])
pandas.concat
"""Preprocessing data methods.""" import numpy as np import pandas as pd from autots.tools.impute import FillNA def remove_outliers(df, std_threshold: float = 3): """Replace outliers with np.nan. https://stackoverflow.com/questions/23199796/detect-and-exclude-outliers-in-pandas-data-frame Args: df (pandas.DataFrame): DataFrame containing numeric data, DatetimeIndex std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df = df[np.abs(df - df.mean()) <= (std_threshold * df.std())] return df def clip_outliers(df, std_threshold: float = 3): """Replace outliers above threshold with that threshold. Axis = 0. Args: df (pandas.DataFrame): DataFrame containing numeric data std_threshold (float): The number of standard deviations away from mean to count as outlier. """ df_std = df.std(axis=0, skipna=True) df_mean = df.mean(axis=0, skipna=True) lower = df_mean - (df_std * std_threshold) upper = df_mean + (df_std * std_threshold) df2 = df.clip(lower=lower, upper=upper, axis=1) return df2 def simple_context_slicer(df, method: str = 'None', forecast_length: int = 30): """Condensed version of context_slicer with more limited options. Args: df (pandas.DataFrame): training data frame to slice method (str): Option to slice dataframe 'None' - return unaltered dataframe 'HalfMax' - return half of dataframe 'ForecastLength' - return dataframe equal to length of forecast '2ForecastLength' - return dataframe equal to twice length of forecast (also takes 4, 6, 8, 10 in addition to 2) """ if method in [None, "None"]: return df df = df.sort_index(ascending=True) if 'forecastlength' in str(method).lower(): len_int = int([x for x in str(method) if x.isdigit()][0]) return df.tail(len_int * forecast_length) elif method == 'HalfMax': return df.tail(int(len(df.index) / 2)) elif str(method).isdigit(): return df.tail(int(method)) else: print("Context Slicer Method not recognized") return df """ if method == '2ForecastLength': return df.tail(2 * forecast_length) elif method == '6ForecastLength': return df.tail(6 * forecast_length) elif method == '12ForecastLength': return df.tail(12 * forecast_length) elif method == 'ForecastLength': return df.tail(forecast_length) elif method == '4ForecastLength': return df.tail(4 * forecast_length) elif method == '8ForecastLength': return df.tail(8 * forecast_length) elif method == '10ForecastLength': return df.tail(10 * forecast_length) """ class Detrend(object): """Remove a linear trend from the data.""" def __init__(self): self.name = 'Detrend' def fit(self, df): """Fits trend for later detrending. Args: df (pandas.DataFrame): input dataframe """ from statsmodels.regression.linear_model import GLS try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") # formerly df.index.astype( int ).values y = df.values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') self.model = GLS(y, X, missing='drop').fit() self.shape = df.shape return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") # formerly X = df.index.astype( int ).values X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') df = df.astype(float) - self.model.predict(X) return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values # from statsmodels.tools import add_constant # X = add_constant(X, has_constant='add') df = df.astype(float) + self.model.predict(X) return df class StatsmodelsFilter(object): """Irreversible filters.""" def __init__(self, method: str = 'bkfilter'): self.method = method def fit(self, df): """Fits filter. Args: df (pandas.DataFrame): input dataframe """ return self def fit_transform(self, df): """Fit and Return Detrended DataFrame. Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Return detrended data. Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") if self.method == 'bkfilter': from statsmodels.tsa.filters import bk_filter cycles = bk_filter.bkfilter(df, K=1) cycles.columns = df.columns df = (df - cycles).fillna(method='ffill').fillna(method='bfill') elif self.method == 'cffilter': from statsmodels.tsa.filters import cf_filter cycle, trend = cf_filter.cffilter(df) cycle.columns = df.columns df = df - cycle return df def inverse_transform(self, df): """Return data to original form. Args: df (pandas.DataFrame): input dataframe """ return df class SinTrend(object): """Modelling sin.""" def __init__(self): self.name = 'SinTrend' def fit_sin(self, tt, yy): """Fit sin to the input time sequence, and return fitting parameters "amp", "omega", "phase", "offset", "freq", "period" and "fitfunc" from user unsym @ https://stackoverflow.com/questions/16716302/how-do-i-fit-a-sine-curve-to-my-data-with-pylab-and-numpy """ import scipy.optimize tt = np.array(tt) yy = np.array(yy) ff = np.fft.fftfreq(len(tt), (tt[1] - tt[0])) # assume uniform spacing Fyy = abs(np.fft.fft(yy)) guess_freq = abs( ff[np.argmax(Fyy[1:]) + 1] ) # excluding the zero frequency "peak", which is related to offset guess_amp = np.std(yy) * 2.0 ** 0.5 guess_offset = np.mean(yy) guess = np.array([guess_amp, 2.0 * np.pi * guess_freq, 0.0, guess_offset]) def sinfunc(t, A, w, p, c): return A * np.sin(w * t + p) + c popt, pcov = scipy.optimize.curve_fit(sinfunc, tt, yy, p0=guess, maxfev=10000) A, w, p, c = popt # f = w/(2.*np.pi) # fitfunc = lambda t: A * np.sin(w*t + p) + c return { "amp": A, "omega": w, "phase": p, "offset": c, } # , "freq": f, "period": 1./f, "fitfunc": fitfunc, "maxcov": np.max(pcov), "rawres": (guess,popt,pcov)} def fit(self, df): """Fits trend for later detrending Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values self.sin_params = pd.DataFrame() # make this faster for column in df.columns: try: y = df[column].values vals = self.fit_sin(X, y) current_param = pd.DataFrame(vals, index=[column]) except Exception as e: print(e) current_param = pd.DataFrame( {"amp": 0, "omega": 1, "phase": 1, "offset": 1}, index=[column] ) self.sin_params = pd.concat([self.sin_params, current_param], axis=0) self.shape = df.shape return self def fit_transform(self, df): """Fits and Returns Detrended DataFrame Args: df (pandas.DataFrame): input dataframe """ self.fit(df) return self.transform(df) def transform(self, df): """Returns detrended data Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X = pd.to_numeric(df.index, errors='coerce', downcast='integer').values sin_df = pd.DataFrame() # make this faster for index, row in self.sin_params.iterrows(): yy = pd.DataFrame( row['amp'] * np.sin(row['omega'] * X + row['phase']) + row['offset'], columns=[index], ) sin_df = pd.concat([sin_df, yy], axis=1) df_index = df.index df = df.astype(float).reset_index(drop=True) - sin_df.reset_index(drop=True) df.index = df_index return df def inverse_transform(self, df): """Returns data to original form Args: df (pandas.DataFrame): input dataframe """ try: df = df.astype(float) except Exception: raise ValueError("Data Cannot Be Converted to Numeric Float") X =
pd.to_numeric(df.index, errors='coerce', downcast='integer')
pandas.to_numeric
import ccxt from datetime import datetime, timedelta, timezone import math import argparse import pandas as pd def parse_args(): parser = argparse.ArgumentParser(description = 'CCXT Market Downloader') parser.add_argument('-s','--symbol', type=str, required=True, help='The Symbol of the Instrument/Currency Pair To Download') parser.add_argument('-e','--exchange', type=str, required=True, help='The exchange to download from') parser.add_argument('-t','--timeframe', type=str, default='1d', choices=['1m', '5m','15m', '30m','1h', '2h', '3h', '4h', '6h', '12h', '1d', '1M', '1y'], help='The timeframe to download') parser.add_argument('--debug', action ='store_true', help=('Print Sizer Debugs')) return parser.parse_args() args = parse_args() try: exchange = getattr (ccxt, args.exchange) () except AttributeError: print('-'*36,' ERROR ','-'*35) print('Exchange "{}" not found. Please check the exchange is supported.'.format(args.exchange)) print('-'*80) quit() if exchange.has["fetchOHLCV"] == False: print('-'*36,' ERROR ','-'*35) print('{} does not support fetching OHLC data. Please use another exchange'.format(args.exchange)) print('-'*80) quit() if args.timeframe not in exchange.timeframes: print('-'*36,' ERROR ','-'*35) print('The requested timeframe ({}) is not available from {}\n'.format(args.timeframe,args.exchange)) print('Available timeframes are:') for key in exchange.timeframes.keys(): print(' - ' + key) print('-'*80) quit() exchange.load_markets() if args.symbol not in exchange.symbols: print('-'*36,' ERROR ','-'*35) print('The requested symbol ({}) is not available from {}\n'.format(args.symbol,args.exchange)) print('Available symbols are:') for key in exchange.symbols: print(' - ' + key) print('-'*80) quit() data = exchange.fetch_ohlcv(args.symbol, args.timeframe) header = ['TimeStamp', 'Open', 'High', 'Low', 'Close', 'Volume'] df =
pd.DataFrame(data, columns=header)
pandas.DataFrame
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 =
sql.read_sql_query("select * from test_chunksize", self.conn)
pandas.io.sql.read_sql_query
import unittest import pandas as pd from dataprofiler.profilers.unstructured_text_profile import TextProfiler from dataprofiler.profilers.profiler_options import TextProfilerOptions class TestUnstructuredTextProfile(unittest.TestCase): def test_text_profile_update_and_name(self): text_profile = TextProfiler("Name") sample = pd.Series(["Hello my name is: Grant.!!!", "Bob and \"Grant\", 'are' friends"]) text_profile.update(sample) self.assertEqual("Name", text_profile.name) def test_vocab(self): text_profile = TextProfiler("Name") sample = pd.Series(["Hello my name is: Grant.!!!", "Bob and \"Grant\", 'are' friends"]) text_profile.update(sample) profile = text_profile.profile # Assert vocab is correct expected_vocab = [' ', '!', '"', "'", ',', '.', ':', 'B', 'G', 'H', 'a', 'b', 'd', 'e', 'f', 'i', 'l', 'm', 'n', 'o', 'r', 's', 't', 'y'] self.assertListEqual(sorted(expected_vocab), sorted(profile['vocab'])) # Update the data again sample = pd.Series(["Grant knows how to code", "Grant will code with Bob"]) text_profile.update(sample) profile = text_profile.profile # Assert vocab is correct expected_vocab = [' ', '!', '"', "'", ',', '.', ':', 'B', 'G', 'H', 'a', 'b', 'c', 'd', 'e', 'f', 'h', 'i', 'k', 'l', 'm', 'n', 'o', 'r', 's', 't', 'w', 'y'] self.assertListEqual(sorted(expected_vocab), sorted(profile['vocab'])) def test_words_and_word_count(self): text_profile = TextProfiler("Name") sample = pd.Series(["Hello my name is: Grant.!!!", "Bob and \"Grant\", 'are' friends"]) text_profile.update(sample) profile = text_profile.profile # Assert words is correct and stop words are not present expected_words = ['Hello', 'name', 'Grant', 'Bob', 'friends'] self.assertListEqual(expected_words, profile['words']) self.assertNotIn("is", profile['words']) # Assert word counts are correct expected_word_count = {'Hello': 1, 'name': 1, 'Grant': 2, 'Bob': 1, 'friends': 1} self.assertDictEqual(expected_word_count, profile['word_count']) # Update the data again sample = pd.Series(["Grant knows how to code", "Grant will code with Bob"]) text_profile.update(sample) profile = text_profile.profile # Assert words is correct and stop words are not present expected_words = ['Hello', 'name', 'Grant', 'Bob', 'friends', 'knows', 'code'] self.assertListEqual(expected_words, profile['words']) self.assertNotIn("with", profile['words']) # Assert word counts are correct expected_word_count = {'Hello': 1, 'name': 1, 'Grant': 4, 'Bob': 2, 'friends': 1, 'knows': 1, 'code': 2} self.assertDictEqual(expected_word_count, profile['word_count']) def test_sample_size(self): text_profile = TextProfiler("Name") sample = pd.Series(["Hello my name is: Grant.!!!", "Bob and \"Grant\", 'are' friends"]) text_profile.update(sample) # Assert sample size is accurate self.assertEqual(2, text_profile.sample_size) # Update the data again sample = pd.Series(["Grant knows how to code", "Grant will code with Bob"]) text_profile.update(sample) # Assert sample size is accurate self.assertEqual(4, text_profile.sample_size) def test_timing(self): text_profile = TextProfiler("Name") sample = pd.Series(["Hello my name is: Grant.!!!", "Bob and \"Grant\", 'are' friends"]) text_profile.update(sample) profile = text_profile.profile # Assert timing is occurring self.assertIn("vocab", profile["times"]) self.assertIn("words", profile["times"]) def test_merge_profiles(self): text_profile1 = TextProfiler("Name") sample =
pd.Series(["Hello my name is: Grant.!!!"])
pandas.Series
import numpy as np import pandas as pd import pathlib import operator class typyDB(object): ''' A database for storing simulation data Attributes ---------- trial_index: pd.DataFrame, size (ntrials,ntlabels) Table of trials and parameters describing trials. The index of this DataFrame should be unique as it identifies the trial in other tables. data_index: pd.DataFrame, size (ndata,ndlabels) Table of data for all trials. Each row in the trial_index corresponds to many rows in this table by the trial_id column. data: dict of pd.DataFrames dictionary keyed by data length (i.e. vector length) with DataFrames as values. Each DataFrame stores vector data where all vectors in a dataframe are the same length corresponding to the dict key. ''' def __init__(self,trial_labels=None,data_labels=None,path=None,prefix=None): '''Constructor User should specify either both trial_ and data_labels or both path and prefix. The former creates a new and empty db while the latter attempts to load a db from disk. Arguments: ---------- trial_labels: list column labels for trial_index data_labels: list column labels for trial_index path: str path to directory containing pickled db prefix: str filename prefix of pickled db ''' if (trial_labels is not None) and (data_labels is not None): self.trial_labels = trial_labels self.data_labels = data_labels self.trial_index = pd.DataFrame(columns=trial_labels) self.trial_index.name = 'trial_id' # We add three columns to the data_index ## trial_id is for joining with trial_index ## vector_id is for joining with a data table ## length is for selecting the self.data_index= pd.DataFrame(columns=['trial_id','vector_id','length'] + data_labels) self.data = {} elif (path is not None) and (prefix is not None): self.load(path,prefix) else: err = 'Incompatible argument to db constructor.' err+= '\n Either specify both trial_labels and data_labels or' err+= '\n specify both path and prefix.' raise ValueError(err) def save(self,path,prefix): '''Save db to disk Arguments --------- path: str path to directory containing pickled db prefix: str filename prefix of pickled db ''' path = pathlib.Path(path) fname = path / (prefix + '-tindex.pkl') self.trial_index.to_pickle(fname) fname = path / (prefix + '-dindex.pkl') self.data_index.to_pickle(fname) for k,v in self.data.items(): fname = path / (prefix + '-{}-data.pkl'.format(k)) v.to_pickle(fname) def load(self,path,prefix): '''load db from disk Arguments --------- path: str path to directory containing pickled db prefix: str filename prefix of pickled db ''' path = pathlib.Path(path) fname = path / (prefix + '-tindex.pkl') self.trial_index = pd.read_pickle(fname) self.trial_labels = list(self.trial_index.columns) fname = path / (prefix + '-dindex.pkl') self.data_index = pd.read_pickle(fname) # Must strip columns added in __init__() so that add_data() can created # temporary DataFrame without these columns self.data_labels = list(self.data_index.columns) self.data_labels.remove('trial_id') self.data_labels.remove('vector_id') self.data_labels.remove('length') self.data = {} for fname in path.glob(prefix + '-*-data.pkl'): k = int(str(fname).split('-')[-2]) self.data[k] = pd.read_pickle(fname) def validate_trial_key(self,trial_key): '''Try to sanity check passed trial_keys.''' try: nkeys = np.shape(trial_key)[1] # list of trial dkeys except IndexError: nkeys = np.shape(trial_key)[0] # single trial dkeys if nkeys != self.trial_index.shape[-1]: err = 'trial_key shape mismatched with trial_index' err += '\ntrial_key shape: {}'.format(np.shape(trial_key)) err += '\ntrial_index shape: {}'.format(np.shape(self.trial_index.shape)) raise ValueError(err) def get_trial(self,trial_key): '''Returns first row matching trial_key Search through trial_index and return the first row and row_number that matches trial_key. Arguments --------- trial_key: list row-values to search for in trial_index Returns ------- trial: pd.DataFrame or None If a matching row is found: DataFrame of matching row If not found: None trial_id: pd.DataFrame or None If a matching row is found: row number of matching row If not found: None ''' self.validate_trial_key(trial_key) #all columns must match match = (self.trial_index==np.asarray(trial_key)).all(1) if match.any(): #trial found! #iloc[0] gets first match trial = self.trial_index.loc[match].iloc[0] trial_id = self.trial_index.loc[match].index[0] else: #no trial found! trial = None trial_id = None return trial,trial_id def add_trials(self,trial_keys): '''Add several trials to trial_index .. note:: Duplicates entries are removed from the trial_index using the DataFrame.drop_duplicates() command. Arguments --------- trial_keys: list of lists, or list of dict List of rows to be added to the trial_index. Each value in the list is a list of column values either as a sublist or a dictionary. Example ------- .. code-block:: python trial_labels = ['dispersity','mass','conc'] data_labels = ['name','date','notes'] db = typyDB(trial_labels=trial_labels,data_labels=data_labels) trial_keys = [] trial_keys.append({'dispersity':1.5,'mass':2.25,'conc':0.3}) trial_keys.append([1.25,2.25,0.3]) trial_keys.append({'dispersity':1.45,'mass':2.15,'conc':0.2}) db.add_trials(trial_keys) db.trial_index #show all trials ''' self.validate_trial_key(trial_keys) new_trials = pd.DataFrame(trial_keys,columns=self.trial_labels) try: shift_val = max(self.trial_index.index)+1 except ValueError: shift_val = 0 new_trials.index += shift_val self.trial_index = pd.concat([self.trial_index,new_trials]) self.trial_index.drop_duplicates(inplace=True) def add_trial(self,trial_key): '''Add a single trial to trial_index .. note:: Duplicates entries are not added to the trial_index Arguments --------- trial_keys: list of lists, or list of dict List of rows to be added to the trial_index. Each value in the list is a list of column values either as a sublist or a dictionary. Returns ------- trial: pd.DataFrame DataFrame row corresponding to the added trial in the trial_index trial_id: int pandas index to the trial_index DataFrame Example ------- .. code-block:: python trial_labels = ['dispersity','mass','conc'] data_labels = ['name','date','notes'] db = typyDB(trial_labels=trial_labels,data_labels=data_labels) db.add_trials([1.25,2.25,0.3) db.trial_index #show all trials ''' self.validate_trial_key(trial_key) # look for trial in trial_index trial,trial_id = self.get_trial(trial_key) if trial_id is None: #need to add try: trial_id = max(self.trial_index.index) + 1 except ValueError: trial_id = 0 self.trial_index.loc[trial_id] = trial_key trial = self.trial_index.loc[trial_id] else: # Do nothing because trial is already in trial_index pass return trial,trial_id def add_data(self,data_keys,data,trial_key=None,trial_id=None): if (trial_key is None) and (trial_id is None): raise ValueError('Must specify either trial_key or trial_id') elif trial_id is None: _,trial_id = self.get_trial(trial_key) if trial_id is None: raise ValueError('trial_id not specified or not found in trial_index') if len(data_keys)!=len(data): raise ValueError('data_keys and data do not have the same number of entries') if np.ndim(data)!=2: raise ValueError('data array must be 2D with ndata rows of the same column length') data = pd.DataFrame(data) ndata,ldata = data.shape if not (ldata in self.data): istart = 0 self.data[ldata] = data self.data[ldata].index.name = 'vector_id' else: istart = self.data[ldata].shape[0] self.data[ldata] = pd.concat([self.data[ldata],data],ignore_index=True,sort=True) self.data[ldata].index.name = 'vector_id' data_index = pd.DataFrame(data_keys,columns=self.data_labels) data_index['trial_id'] = trial_id data_index['vector_id'] = np.arange(istart,istart+ndata,dtype=int) data_index['length'] = ldata self.data_index = pd.concat([self.data_index,data_index],ignore_index=True,sort=True) # need to make sure the trial_id column is mergable with the trial_index index self.data_index.trial_id = self.data_index.trial_id.astype(int) def build_mask(self,sel,index): ''' Arguments --------- sel: dict dictionary of specifiers, where the keys of the dictionary match columns of the index. See below for more information. Case 1: Value of sel at a key is a str/int/float. Result: Rows are matched where value at in column == key is equal t the value Case 2: Value of sel at a key is a dict with two keys: op and val Case 3: Value of sel at a key is a list of values and/or dictionaries. ''' mask = np.ones(index.shape[0],dtype=bool) for k,v1 in sel.items(): # v1 needs to be iterable; hopefully no one passed an ndarray if not isinstance(v1,list): v1 = [v1] sub_mask = np.zeros_like(mask,dtype=bool) for v2 in v1: if isinstance(v2,dict):# specialized operator op = v2['op'] val = v2['val'] else: # assume operature.eq op = operator.eq val = v2 sub_mask = np.logical_or(sub_mask,op(index[k],val)) mask &= sub_mask return mask def select(self,trial_select=None,data_select=None,trial_id=None): ''' Arguments --------- trial_select,data_select: int/float/str/dict or list of int/float/str/dict See description above ''' if all([sel is None for sel in [trial_select,data_select,trial_id]]): raise ValueError('data_select and (trial_select or trial_id) must be specified.') elif all([sel is None for sel in [trial_select,trial_id]]): raise ValueError('(trial_select or trial_id) must be specified.') elif all([sel is not None for sel in [trial_select,trial_id]]): raise ValueError('Do not specify both trial_select or trial_id.') if trial_select is not None: # boolean mask for trial_index df trial_mask = self.build_mask(trial_select,self.trial_index) else: trial_mask = trial_id trial_index_sel = self.trial_index.loc[trial_mask] # left index in trial_index should correspond to trial_id column data_index_sel1 = trial_index_sel.merge(self.data_index, left_index=True, right_on='trial_id') # boolean mask for data_index data_index_mask = self.build_mask(data_select,data_index_sel1) data_index_sel2 = data_index_sel1.loc[data_index_mask] index = [] data = [] for data_len,group in data_index_sel2.groupby('length'): index.append(group) data_mask = group.vector_id data.append(self.data[data_len].loc[data_mask]) if len(index) == 1: return index[0],data[0] else: return index,data def select_x(self,indexx,datax,trial_select=None,data_select_y=None,trial_id_y=None): if indexx.shape[0] != 1: raise ValueError('select_x() only works get a single dataset (1 row) is passed to it') dx = datax.iloc[0] idx = datax.index[0] ix = indexx.index[0] indexy,datay = self.select(trial_select,data_select_y,trial_id_y) indexxy = [] dataxy = [] for (iy,y),(idy,dy) in zip(indexy.iterrows(),datay.iterrows()): dy.index = datax.iloc[0] dataxy.append(dy) del y['vector_id'] y['vector_id_x'] = idx y['vector_id_y'] = idy y['data_id_x'] = ix y['data_id_y'] = iy indexxy.append(y) index = pd.DataFrame(indexxy) data = pd.DataFrame(dataxy) return index,data def select_xy(self,trial_select=None,data_select_x=None,data_select_y=None,trial_id_x=None,trial_id_y=None): indexx,datax = self.select(trial_select,data_select_x,trial_id_x) indexy,datay = self.select(trial_select,data_select_y,trial_id_y) if indexx.shape != indexy.shape: raise ValueError('X and Y data are not the same shape. Aborting merge.') indexxy = [] dataxy = [] for (ix,x),(iy,y),(idx,dx),(idy,dy) in zip(indexx.iterrows(),indexy.iterrows(),datax.iterrows(),datay.iterrows()): dy.index = dx dataxy.append(dy) del y['vector_id'] y['vector_id_x'] = idx y['vector_id_y'] = idy y['data_id_x'] = ix y['data_id_y'] = iy indexxy.append(y) index =
pd.DataFrame(indexxy)
pandas.DataFrame
# coding=utf-8 import pandas as pd import xgboost as xgb from sklearn.metrics import f1_score import param ############################ 定义评估函数 ############################ def micro_avg_f1(preds, dtrain): y_true = dtrain.get_label() return 'micro_avg_f1', f1_score(y_true, preds, average='micro') ############################ 加载特征 & 标签 ############################ df_tfidf_lr =
pd.read_csv(param.data_path + '/output/feature/tfidf/lr_prob_12w.csv')
pandas.read_csv
import csv,yaml,os import pandas as pd import json with open('player_map.json','r') as fd: player_map = json.load(fd) yaml_list = os.listdir() def make_reg(temp): if temp[1].islower(): return temp temp=temp.split() reg=temp[0][0]+'.*'+temp[-1] return reg def find_player(name,df): if name in player_map: k = player_map[name] player = df.filter(regex=k,axis = 0) return player.iloc[0] else: print(name) return -1 bats_cluster = pd.read_csv('batsman_cluster.csv',index_col='player_name') bowl_cluster = pd.read_csv('bowler_cluster.csv',index_col='player_name') with open('decisiontree_ballinfo.csv','w') as csvfile: fieldnames = ['batsman','nonstrike','bowler','runs','wickets','home','ave_score','sr','bowl_ave','bowl_sr','econ','innings','wickets'] writer = csv.DictWriter(csvfile, fieldnames = fieldnames) writer.writeheader() batsman_info = dict() bowler_info = dict() for num,yaml_file in enumerate(yaml_list): if 'yaml' in yaml_file: with open(yaml_file,"r") as stream: try: yaml_dict = yaml.load(stream) except yaml.YAMLError as err: print(err) team1 = yaml_dict['info']['teams'][0] for number,innings in enumerate(yaml_dict['innings']): wickets=0 total = 0 innings_info = list(innings.values())[0] if innings_info['team'] == team1: home = 1 else: home = 0 cur_over = 0 for ball in innings_info['deliveries']: ball_info = list(ball.values())[0] prev_over = cur_over cur_over = int(list(ball.keys())[0]) print(cur_over,prev_over) if prev_over!=cur_over: print(prev_over,{'batsman':batsman_info[batsman]['prediction'],'nonstrike':ball_info['non_striker'],'bowler':bowler_info[bowler]['prediction'],'out':out,'home':home,'ave_score':batsman_info[batsman]['ave_score'],'sr':batsman_info[batsman]['sr'],'bowl_ave':bowler_info[bowler]['bowl_ave'],'bowl_sr':bowler_info[bowler]['bowl_sr'],'econ':bowler_info[bowler]['econ'],'innings':number%2,'wickets':wickets,'runs':total}) writer.writerow({'batsman':batsman_info[batsman]['prediction'],'nonstrike':batsman_info[nonstrike]['prediction'],'bowler':bowler_info[bowler]['prediction'],'runs':total,'wickets':wickets,'home':home,'ave_score':batsman_info[batsman]['ave_score'],'sr':batsman_info[batsman]['sr'],'bowl_ave':bowler_info[bowler]['bowl_ave'],'bowl_sr':bowler_info[bowler]['bowl_sr'],'econ':bowler_info[bowler]['econ'],'innings':number%2}) total = 0 wickets = 0 batsman = ball_info['batsman'] bowler = ball_info['bowler'] nonstrike=ball_info['non_striker'] if batsman not in batsman_info: batsman_info[batsman] = find_player(batsman,bats_cluster) if type(batsman_info[batsman]) == int: temp_dict = {'prediction':0,'ave_score':18.161195652173927, 'sr':124.90467391304348, 'balls_faced':512.4130434782609, 'hundreds/innings':0.0003079888613018342, 'fifties/innings':0.03316629905487374, 'fours_rate':0.10561940238357537, 'six_rate':0.045928253202445646, 'vulnerability':0.08160455808205533} batsman_info[batsman] = pd.Series(temp_dict) if nonstrike not in batsman_info: batsman_info[nonstrike] = find_player(nonstrike,bats_cluster) if type(batsman_info[nonstrike]) == int: temp_dict = {'prediction':0,'ave_score':18.161195652173927, 'sr':124.90467391304348, 'balls_faced':512.4130434782609, 'hundreds/innings':0.0003079888613018342, 'fifties/innings':0.03316629905487374, 'fours_rate':0.10561940238357537, 'six_rate':0.045928253202445646, 'vulnerability':0.08160455808205533} batsman_info[nonstrike] = pd.Series(temp_dict) if bowler not in bowler_info: bowler_info[bowler] = find_player(bowler,bowl_cluster) if type(bowler_info[bowler]) == int: temp_dict = {'prediction':3, 'bowl_ave':27.86269230769231, 'econ':7.669653846153847, 'bowl_sr':21.53619230769231, 'balls':430.4730769230769} bowler_info[bowler] =
pd.Series(temp_dict)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sat May 25 15:38:06 2019 使用selenium抓取数据模板 @author: lei """ import time import re import requests import numpy as np import pandas as pd from selenium.webdriver.common.by import By from selenium_chrome import chrome from selenium.webdriver.support import expected_conditions as EC class Spyder(): # file_name为保存文件名 def __init__(self, file_name='数据结果.xlsx'): self.file_name = file_name self.driver, self.wait = chrome() self.run() def run(self): self.defined_var() # 第一步:定义待爬取数据 self.generate_urls() # 第二步:生成待爬取网址 self.main() # 第三步:爬取主要过程 self.driver.close() # 第四步:关闭谷歌浏览器 self.clean_data() # 第五步:清洗数据 self.save_data() # 第六步:保存数据 def defined_var(self): # 定义待爬取数据 self.value = [] # 原始数据 self.val = [] # 清洗后数据 def generate_urls(self): pass def main(self): pass def clean_data(self): # 清洗数据 pass def save_data(self): df =
pd.DataFrame(self.val, columns=['爬取结果'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ## Generating CSV # In[81]: import os import numpy as np from matplotlib import pyplot as plt import matplotlib.image as mpimg import IPython.display as ipd import librosa import pandas as pd # In[12]: root_dir="D:/Sundar/speech/Speaker/Sachin" for dir_, _, files in os.walk(root_dir): for file_name in files: print(file_name) # In[19]: root_dir="D:/Sundar/speech/Speaker/Sachin/" for dir_, _, files in os.walk(root_dir): for file_name in files: if not file_name == '.DS_Store': rel_dir = os.path.relpath(dir_, root_dir) print(rel_dir) rel_file = os.path.join(rel_dir, file_name) file_no_ext,ext=os.path.splitext(file_name) y, sr = librosa.load(root_dir + rel_file) np.savetxt(root_dir+rel_dir+"/"+file_no_ext+".csv",y.transpose(),delimiter=",") # ## Generating RPs # In[20]: import os import numpy as np from sklearn.preprocessing import MinMaxScaler from matplotlib import pyplot as plt #import scipy.io import pyts import pandas as pd from pyts.image import RecurrencePlot # In[ ]: root_dir="D:/Sundar/speech/Speaker/Sachin/" for dir_, _, files in os.walk(root_dir): for file_name in files: if not file_name == '.DS_Store' and file_name[-4:]!= '.wav': rel_dir = os.path.relpath(dir_, root_dir) rel_file = os.path.join(rel_dir, file_name) file_no_ext,ext=os.path.splitext(file_name) df = pd.read_csv(root_dir + rel_file, index_col=None, header=None) count = 0 end = df.shape[0] for i in range(0, end, 600): f = i + 600 frame = df[i:f] generate_rp(frame, 6, None, 0, file_no_ext, count) count +=1 generate_rp(df[i:], 6, None, 0, file_no_ext, count) # In[115]: def generate_rp(frame, dimension, threshold, percentage, file_name, count): data_rp = [] data_rp.append(frame.values.reshape(1,-1)) data_rp.append(frame.values.reshape(1,-1)) data_rp = np.asarray(data_rp) # Recurrence plot transformation #X_rp1 = RecurrencePlot(dimension=3, time_delay=1,threshold=None, percentage=0).fit_transform(data_rp[0])[0] X_rp1 = RecurrencePlot(dimension=dimension, time_delay=1,threshold=threshold, percentage=percentage).fit_transform(data_rp[0])[0] imgplot = plt.imshow(X_rp1, cmap='binary', origin='lower') fig1 = plt.gcf() #plt.show() plt.draw() fig1.savefig('D:/Sundar/speech/Speaker/Threshold/0/Sachin/'+file_name+'_RP'+str(count)+'.png') # In[ ]: '''' dir_name = root_dir #map_signal = {"Wav_csv":"seizure activity"} all_files = os.listdir(dir_name) li = [] for i in range(1,2): df = pd.read_csv(dir_name+"/"+all_files[2], index_col=None, header=None) li.append(df) frame = pd.concat(li, axis=0, ignore_index=True) frame = frame.rename(columns={0:dir_name}) frame.head()''' #Shape: (409700,1) #i = 3000 #f = 3600 #i=7700 #f=8300 #print(len(frame[:f])) #print(len(frame[:]))' # In[103]: data_rp = [] data_rp.append(frame.values.reshape(1,-1)) data_rp.append(frame.values.reshape(1,-1)) data_rp = np.asarray(data_rp) # Recurrence plot transformation #X_rp1 = RecurrencePlot(dimension=3, time_delay=1,threshold=None, percentage=0).fit_transform(data_rp[0])[0] X_rp1 = RecurrencePlot(dimension=3, time_delay=1,threshold='point', percentage=5).fit_transform(data_rp[0])[0] imgplot = plt.imshow(X_rp1, cmap='binary', origin='lower') fig1 = plt.gcf() plt.show() plt.draw() fig1.savefig('Sound/threshold/0/anil/'+'sample'+'_RP'+'1'+'.png') # ### Recurrence Plots for A, C & E at None Threshold # In[ ]: dir_names = ["/gdrive/My Drive/EEG/S"] # In[ ]: for dir_name in dir_names: all_files = os.listdir(dir_name) li = [] for i in range(len(all_files)): df = pd.read_csv(dir_name+"/"+all_files[i], index_col=None, header=None, engine="python") li.append(df) frame = pd.concat(li, axis=0, ignore_index=True) frame = frame.rename(columns={0:dir_name}) for i,f in zip(range(0,409100,600), range(700,409700,600)): data_rp = [] data_rp.append(frame[dir_name][i:f].values.reshape(1,-1)) data_rp.append(frame[dir_name][i:f].values.reshape(1,-1)) data_rp = np.asarray(data_rp) # Recurrence plot transformation rp = RecurrencePlot(threshold=None) X_rp = rp.fit_transform(data_rp[0])[0] # Show the results for the first time series plt.figure(figsize=(5, 5)) plt.imshow(X_rp, cmap='binary', origin='lower') plt.title('Recurrence Plot', fontsize=16) plt.tight_layout() plt.savefig("/gdrive/My Drive/EEG/RP_None/"+dir_name[-1]+"/"+str(i)+"-"+str(f)+".png") plt.close() print(dir_name+" done!") # ### Recurrence Plots for A, C & E at Point Threshold - 5%, 25%, 75% # In[ ]: for dir_name in dir_names: all_files = os.listdir(dir_name) li = [] for i in range(len(all_files)): df =
pd.read_csv(dir_name+"/"+all_files[i], index_col=None, header=None, engine="python")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Fri Feb 12 11:04:14 2021 @author: jose- """ import pandas as pd import tkinter as tk from tkinter import ttk from tkinter import filedialog import tkinter.scrolledtext as scrolledtext def getExcel (): global df import_file_path = filedialog.askopenfilename() data = pd.read_excel (import_file_path) df =
pd.DataFrame(data,columns=['No.','TIPO DE CONSEJO','CABECERA','MODALIDAD'])
pandas.DataFrame
import popsims import numpy as np import matplotlib.pyplot as plt import wisps import pandas as pd import wisps.simulations as wispsim from tqdm import tqdm import astropy.units as u import numba from scipy.interpolate import griddata from popsims import galaxy def probability_of_selection(spt, snr): """ probablity of selection for a given snr and spt """ ref_df=wispsim.SELECTION_FUNCTION.dropna() #self.data['spt']=self.data.spt.apply(splat.typeToNum) interpoints=np.array([ref_df.spt.values, ref_df.logsnr.values]).T return griddata(interpoints, ref_df.tot_label.values , (spt, np.log10(snr)), method='linear') def get_snr(exp_grism, appf110s, appf140s, appf160s): #print (exp_grism) snrjs110= 10**(fit_snr_exptime( exp_grism, appf110s, *list(wispsim.MAG_LIMITS['snr_exp']['F110']))) snrjs140= 10**(fit_snr_exptime( exp_grism, appf140s, *list(wispsim.MAG_LIMITS['snr_exp']['F140']))) snrjs160= 10**(fit_snr_exptime( exp_grism, appf160s, *list(wispsim.MAG_LIMITS['snr_exp']['F160']))) #assign upper and lo limits snr_bool_up= np.logical_or.reduce([ appf110s >25, appf140s >25, appf160s>24]) snr_bool_do= np.logical_or.reduce([ appf110s <15, appf140s <15, appf160s>15]) snrjs= np.nanmin(np.vstack([snrjs110, snrjs140, snrjs160]), axis=0) return snrjs def format_maglimits(wisp_limits): return {'WFC3_F110W':[16, wisp_limits['F110']],\ 'WFC3_F140W':[16, wisp_limits['F140']],\ 'WFC3_F160W':[16,wisp_limits['F160']]} def make_cuts(df, dcts, expt): snr=get_snr(expt, df.WFC3_F110W.values, df.WFC3_F140W.values, df.WFC3_F160W.values) bools0=np.logical_or.reduce([df[k]< dcts[k][1] for k in dcts.keys()]) return df[np.logical_and(bools0, snr>=3)] def get_average_distance_limits(p, cuts): p.mag_limits=cuts return dict(
pd.DataFrame(p.distance_limits)
pandas.DataFrame
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | This file contains function templates used by the auto-generation script """ # below imports are copied into the auto-generated source file as-is # for the auto-generation script to work ensure they are not mixed up with code import numba import numpy import operator import pandas from numba.core.errors import TypingError from numba import types from sdc.utilities.sdc_typing_utils import (TypeChecker, check_index_is_numeric, check_types_comparable, find_common_dtype_from_numpy_dtypes) from sdc.datatypes.common_functions import (sdc_join_series_indexes, ) from sdc.hiframes.pd_series_type import SeriesType from sdc.str_arr_ext import (string_array_type, str_arr_is_na) from sdc.utilities.utils import sdc_overload, sdc_overload_method from sdc.functions import numpy_like from sdc.datatypes.range_index_type import RangeIndexType def sdc_pandas_series_binop(self, other, level=None, fill_value=None, axis=0): """ Intel Scalable Dataframe Compiler User Guide ******************************************** Pandas API: pandas.Series.binop Limitations ----------- Parameters ``level`` and ``axis`` are currently unsupported by Intel Scalable Dataframe Compiler Examples -------- .. literalinclude:: ../../../examples/series/series_binop.py :language: python :lines: 27- :caption: :name: ex_series_binop .. command-output:: python ./series/series_binop.py :cwd: ../../../examples Intel Scalable Dataframe Compiler Developer Guide ************************************************* Pandas Series method :meth:`pandas.Series.binop` implementation. .. only:: developer Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_op5 """ _func_name = 'Method binop().' ty_checker = TypeChecker(_func_name) self_is_series, other_is_series = isinstance(self, SeriesType), isinstance(other, SeriesType) if not (self_is_series or other_is_series): return None # this overload is not for string series self_is_string_series = self_is_series and isinstance(self.dtype, types.UnicodeType) other_is_string_series = other_is_series and isinstance(other.dtype, types.UnicodeType) if self_is_string_series or other_is_string_series: return None if not isinstance(self, (SeriesType, types.Number)): ty_checker.raise_exc(self, 'pandas.series or scalar', 'self') if not isinstance(other, (SeriesType, types.Number)): ty_checker.raise_exc(other, 'pandas.series or scalar', 'other') operands_are_series = self_is_series and other_is_series if operands_are_series: none_or_numeric_indexes = ((isinstance(self.index, types.NoneType) or check_index_is_numeric(self)) and (isinstance(other.index, types.NoneType) or check_index_is_numeric(other))) series_indexes_comparable = check_types_comparable(self.index, other.index) or none_or_numeric_indexes if not series_indexes_comparable: raise TypingError('{} Not implemented for series with not-comparable indexes. \ Given: self.index={}, other.index={}'.format(_func_name, self.index, other.index)) series_data_comparable = check_types_comparable(self, other) if not series_data_comparable: raise TypingError('{} Not supported for not-comparable operands. \ Given: self={}, other={}'.format(_func_name, self, other)) if not isinstance(level, types.Omitted) and level is not None: ty_checker.raise_exc(level, 'None', 'level') if not isinstance(fill_value, (types.Omitted, types.Number, types.NoneType)) and fill_value is not None: ty_checker.raise_exc(fill_value, 'number', 'fill_value') fill_value_is_none = isinstance(fill_value, (types.NoneType, types.Omitted)) or fill_value is None if not isinstance(axis, types.Omitted) and axis != 0: ty_checker.raise_exc(axis, 'int', 'axis') # specializations for numeric series only if not operands_are_series: def _series_binop_scalar_impl(self, other, level=None, fill_value=None, axis=0): if self_is_series == True: # noqa numpy_like.fillna(self._data, inplace=True, value=fill_value) result_data = numpy.empty(len(self._data), dtype=numpy.float64) result_data[:] = self._data + numpy.float64(other) return pandas.Series(result_data, index=self._index, name=self._name) else: numpy_like.fillna(other._data, inplace=True, value=fill_value) result_data = numpy.empty(len(other._data), dtype=numpy.float64) result_data[:] = numpy.float64(self) + other._data return pandas.Series(result_data, index=other._index, name=other._name) return _series_binop_scalar_impl else: # both operands are numeric series # optimization for series with default indexes, that can be aligned differently if (isinstance(self.index, types.NoneType) and isinstance(other.index, types.NoneType)): def _series_binop_none_indexes_impl(self, other, level=None, fill_value=None, axis=0): numpy_like.fillna(self._data, inplace=True, value=fill_value) numpy_like.fillna(other._data, inplace=True, value=fill_value) if (len(self._data) == len(other._data)): result_data = numpy_like.astype(self._data, numpy.float64) result_data = result_data + other._data return pandas.Series(result_data) else: left_size, right_size = len(self._data), len(other._data) min_data_size = min(left_size, right_size) max_data_size = max(left_size, right_size) result_data = numpy.empty(max_data_size, dtype=numpy.float64) _fill_value = numpy.nan if fill_value_is_none == True else fill_value # noqa if (left_size == min_data_size): result_data[:min_data_size] = self._data for i in range(min_data_size, len(result_data)): result_data[i] = _fill_value result_data = result_data + other._data else: result_data[:min_data_size] = other._data for i in range(min_data_size, len(result_data)): result_data[i] = _fill_value result_data = self._data + result_data return
pandas.Series(result_data)
pandas.Series
from my_lambdata.lambdata import DataFrameTransmogrifier import pandas as pd from pandas.testing import assert_frame_equal import unittest # Docstring ''' DOCSTRING Tests the functionality of DataFrameTransmogrifier and its various capabilities ''' base_df = pd.DataFrame({ 'name': ['Anders', 'Charles', 'Bryce'], 'score': [87, 32, 58], 'date': ['09-03-2020', '02-29-2020', '01-15-2019'] }) class LambdataTest(unittest.TestCase): ''' Tests functionality for DataFrameTransmogrifier ''' def test_lambdata_init(self): # test initialization of DataFrameTransmogrifier df = base_df.copy() df_t = DataFrameTransmogrifier(df) assert_frame_equal(df_t.df, df) def test_lambdata_date_split(self): # test splitting datetimes df = base_df.copy() df['date'] = pd.to_datetime(base_df['date'], infer_datetime_format=True) df_t = DataFrameTransmogrifier(df) # run the function itself df_t.split_datetime() # run what I think should happen df['date_month'] = df['date'].dt.month df['date_day'] = df['date'].dt.day df['date_year'] = df['date'].dt.year # check if i've done this right assert_frame_equal(df_t.df, df) def test_lambdata_add_column(self): # test adding a column of data df = base_df.copy() # create some data to test with data_to_add = [1, 0, 1] df_t = DataFrameTransmogrifier(df) # run what I think should happen df['ones_and_zeroes'] = pd.Series(data_to_add, index=df.index) # run the function itself df_t.add_column(data_to_add, 'ones_and_zeroes') # check if i've done this right
assert_frame_equal(df_t.df, df)
pandas.testing.assert_frame_equal
import glob import math import brewer2mpl import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.lines import Line2D from matplotlib.ticker import MultipleLocator SPINE_COLOR = 'gray' ##################################################### # Process average from files # ##################################################### def process_average(folder, scenarios, labels, header): columns = ['property'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=header, names=columns)['property'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result = pd.concat(dfs1, axis=1) return result class Plotter(): ##################################################### # Latexify # ##################################################### @staticmethod def latexify(fig_width=None, fig_height=None, columns=1, fullwidth=False): """Set up matplotlib's RC params for LaTeX plotting. Call this before plotting a figure. Parameters ---------- fig_width : float, optional, inches fig_height : float, optional, inches columns : {1, 2} """ # code adapted from http://www.scipy.org/Cookbook/Matplotlib/LaTeX_Examples # Width and max height in inches for IEEE journals taken from # computer.org/cms/Computer.org/Journal%20templates/transactions_art_guide.pdf assert(columns in [1,2]) if fig_width is None: if fullwidth: fig_width = 3.39*2 if columns==1 else 6.9 # width in inches else: fig_width = 3.39 if columns==1 else 6.9 # width in inches if fig_height is None: golden_mean = (math.sqrt(5)-1.0)/2.0 # Aesthetic ratio if fullwidth: fig_height = fig_width*golden_mean/2.0 # height in inches else: fig_height = fig_width*golden_mean # height in inches MAX_HEIGHT_INCHES = 8.0 if fig_height > MAX_HEIGHT_INCHES: print("WARNING: fig_height too large:" + fig_height + "so will reduce to" + MAX_HEIGHT_INCHES + "inches.") fig_height = MAX_HEIGHT_INCHES params = { 'backend': 'ps', 'text.latex.preamble': ['\\usepackage{amssymb}'], 'axes.labelsize': 5, # fontsize for x and y labels (was 10) 'axes.titlesize': 5, 'lines.markersize' : 3, 'lines.markeredgewidth': 0.3, 'legend.fontsize': 4, # was 10 'text.usetex': True, 'legend.edgecolor': 'w', 'figure.figsize': [fig_width, fig_height], 'font.family': 'serif', 'grid.linestyle': 'dashed', 'grid.color': 'grey', 'lines.dashed_pattern' : [150, 150], 'xtick.color': 'k', 'ytick.color': 'k', 'xtick.direction': 'in', 'ytick.direction': 'in', 'xtick.minor.width': 0.05, 'ytick.minor.width': 0.05, 'xtick.major.width': 0.1, 'ytick.major.width': 0.1, 'xtick.labelsize': 4, 'ytick.labelsize': 4, 'lines.linewidth' : 0.2, 'grid.linewidth': 0.01, 'axes.linewidth': 0.2, 'errorbar.capsize' : 1, 'xtick.minor.visible': False, # visibility of minor ticks on x-axis # 'ytick.minor.visible': False, # visibility of minor ticks on x-axis 'boxplot.notch': False, 'boxplot.vertical': True, 'boxplot.whiskers': 1.5, 'boxplot.bootstrap': None, 'boxplot.patchartist': False, 'boxplot.showmeans': False, 'boxplot.showcaps': True, 'boxplot.showbox': True, 'boxplot.showfliers': True, 'boxplot.meanline': False, 'boxplot.flierprops.color': 'lightgrey', 'boxplot.flierprops.marker': 'o', 'boxplot.flierprops.markerfacecolor': 'none', 'boxplot.flierprops.markeredgecolor': 'lightgrey', 'boxplot.flierprops.markersize': 1, 'boxplot.flierprops.linestyle': 'none', 'boxplot.flierprops.linewidth': 0.1, 'boxplot.boxprops.color': 'C2', 'boxplot.boxprops.linewidth': 0.2, 'boxplot.boxprops.linestyle': '-', 'boxplot.whiskerprops.color': 'C2', 'boxplot.whiskerprops.linewidth': 0.2, 'boxplot.whiskerprops.linestyle': '-', 'boxplot.capprops.color': 'C2', 'boxplot.capprops.linewidth': 0.2, 'boxplot.capprops.linestyle': '-', 'boxplot.medianprops.color': 'C2', 'boxplot.medianprops.linewidth': 0.20, 'boxplot.medianprops.linestyle': '-', 'boxplot.meanprops.color': 'C2', 'boxplot.meanprops.marker': '^', 'boxplot.meanprops.markerfacecolor': 'C2', 'boxplot.meanprops.markeredgecolor': 'C2', 'boxplot.meanprops.markersize': 6, 'boxplot.meanprops.linestyle': 'none', 'boxplot.meanprops.linewidth': 0.20, } matplotlib.rcParams.update(params) # for spine in ['top', 'right']: # ax.spines[spine].set_visible(False) # for spine in ['left', 'bottom']: # ax.spines[spine].set_color(SPINE_COLOR) # ax.spines[spine].set_linewidth(0.1) # ax.xaxis.set_ticks_position('bottom') # ax.yaxis.set_ticks_position('left') # # Or if you want different settings for the grids: # ax.grid(which='minor', alpha=0.2) # ax.grid(which='major', alpha=0.5) # for axis in [ax.xaxis, ax.yaxis]: # axis.set_tick_params(direction='out', color=SPINE_COLOR) # return ax ##################################################### # Latency - Mean - 4 methods # ##################################################### @staticmethod def latency_avg_4methods(folder1, folder2, folder3, folder4, scenarios, labels, output, title, ylim, fullwidth=False): plt.figure() Plotter.latexify(fullwidth=fullwidth) columns = ['latency'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder1 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=4, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result1 = pd.concat(dfs1, axis=1) #print('result1\n', result1.describe()) #print('result1\n', result1.to_string()) std1 = result1.std() ax1 = result1.mean().plot(label="Sourcey", legend = True, yerr=std1, color="red") ax1.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs2 = [] for scenario in scenarios: file = glob.glob(folder2 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs2 += [df] result2 = pd.concat(dfs2, axis=1) #print('result2\n', result2.describe()) #print('result2\n', result2.to_string()) std2 = result2.std() ax2 = result2.mean().plot(label="Sourcey Fabric", legend = True, yerr=std2, color="orange") ax2.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs3 = [] for scenario in scenarios: file = glob.glob(folder3 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs3 += [df] result3 = pd.concat(dfs3, axis=1) #print('result3\n', result3.describe()) #print('result3\n', result3.to_string()) std3 = result3.std() ax3 = result3.mean().plot(label="PolKA", legend = True, yerr=std3, color="blue") ax3.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) dfs4 = [] for scenario in scenarios: file = glob.glob(folder4 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs4 += [df] result4 = pd.concat(dfs4, axis=1) #print('result4\n', result4.describe()) #print('result4\n', result4.to_string()) std4 = result4.std() ax4 = result4.mean().plot(label="PolKA Fabric", legend = True, yerr=std4, color="green") ax4.set_ylim(0, ylim) ax4.tick_params(axis='both', which='major', labelsize=5) ax4.grid(b=True, which='major', linestyle='dashed', axis='x') ax4.grid(b=True, which='major', linestyle='dashed', axis='y') ax4.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) plt.title(title) plt.ylabel('RTT Latency (s)') plt.xlabel('Number of Hops') plt.tight_layout() plt.savefig(output) ##################################################### # Latency - Mean - 4 methods # ##################################################### @staticmethod def latency_avg_4methods_bar(folder1, folder2, folder3, folder4, scenarios, labels, output, title, ylim, fullwidth=False): plt.figure() Plotter.latexify(fullwidth=fullwidth) columns = ['latency'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder1 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=4, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result1 = pd.concat(dfs1, axis=1) std1 = result1.std() dfs2 = [] for scenario in scenarios: file = glob.glob(folder2 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs2 += [df] result2 = pd.concat(dfs2, axis=1) std2 = result2.std() dfs3 = [] for scenario in scenarios: file = glob.glob(folder3 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs3 += [df] result3 = pd.concat(dfs3, axis=1) std3 = result3.std() dfs4 = [] for scenario in scenarios: file = glob.glob(folder4 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=None, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs4 += [df] result4 = pd.concat(dfs4, axis=1) std4 = result4.std() x=scenarios #since the date are the same in both tables I only have 1 x aa=dict(result1.mean()) bb=dict(result2.mean()) cc=dict(result3.mean()) dd=dict(result4.mean()) errorbar = [std1, std2, std3, std4] colors = ['lightpink', 'lightblue', 'red', 'darkblue'] dfbar = pd.DataFrame({'(1)Sourcey': aa, '(3)Sourcey Fabric': bb, '(2)PolKA': cc,'(4)PolKA Fabric': dd}, index=x) ax4 = dfbar.plot.bar(yerr=errorbar, color=colors, rot=0) ax4.set_ylim(0, ylim) ax4.tick_params(axis='both', which='major', labelsize=4) ax4.grid(b=True, which='major', linestyle='dashed', axis='x') ax4.grid(b=True, which='major', axis='y') ax4.set_xticks([0,1,2,3,4,5,6,7,8,9,10]) plt.title(title) plt.ylabel('RTT Latency (s)') plt.xlabel('Number of Hops') plt.tight_layout() plt.savefig(output) ##################################################### # Latency - Mean - 3 methods # ##################################################### @staticmethod def latency_avg_3methods_bar(folder1, folder2, folder3, scenarios, labels, output, title, ylim, fullwidth=False): plt.figure() Plotter.latexify(fullwidth=fullwidth) columns = ['latency'] dfs1 = [] for scenario in scenarios: file = glob.glob(folder1 + '/' + scenario + '/a1*') df = pd.read_csv(file[0], header=4, names=columns)['latency'] df.name = labels[scenarios.index(scenario)] dfs1 += [df] result1 = pd.concat(dfs1, axis=1) std1 = result1.std() dfs2 = [] for scenario in scenarios: file = glob.glob(folder2 + '/' + scenario + '/a1*') df =
pd.read_csv(file[0], header=None, names=columns)
pandas.read_csv
""" Functions for creating GTF databases using gffutils and using those databases to annotate alternative events. """ from collections import Counter import itertools import os import gffutils from gffutils.helpers import merge_attributes import pandas as pd from ..common import SPLICE_TYPE_ISOFORM_EXONS, OUTRIGGER_DE_NOVO, NOVEL_EXON from ..region import Region, STRANDS # Annotations from: # ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz gene_transcript = set(('gene', 'transcript')) def maybe_analyze(db): try: # For gffutils >0.8.7.1 db.analyze() except AttributeError: # For compatability with gffutils<=0.8.7.1 db.execute('ANALYZE features') def transform(f): if f.featuretype in gene_transcript: return f else: exon_location = '{}:{}:{}-{}:{}'.format( f.featuretype, f.seqid, f.start, f.stop, f.strand) exon_id = exon_location if f.featuretype == 'CDS': exon_id += ':' + f.frame f.attributes['location_id'] = [exon_id] return f def create_db(gtf_filename, db_filename=None): db_filename = ':memory:' if db_filename is None else db_filename db = gffutils.create_db( gtf_filename, db_filename, merge_strategy='merge', id_spec={'gene': 'gene_id', 'transcript': 'transcript_id', 'exon': 'location_id', 'CDS': 'location_id', 'start_codon': 'location_id', 'stop_codon': 'location_id', 'UTR': 'location_id'}, transform=transform, force=True, verbose=True, disable_infer_genes=True, disable_infer_transcripts=True, force_merge_fields=['source']) maybe_analyze(db) return db class SplicingAnnotator(object): """Annotates basic features of splicing events: gene ids and names""" def __init__(self, db, events, splice_type): """Annotate splicing events with their respective genes Parameters ---------- db : gffutils.FeatureDB Database including all the exons found in the events events : pandas.DataFrame Table of events, with the event ids as the index splice_type : 'se' | 'mxe' The type of alternative splicing, which informs the exon configurations for different isoforms """ self.db = db self.events = events self.splice_type = splice_type self.isoform_exons = SPLICE_TYPE_ISOFORM_EXONS[ self.splice_type.lower()] self.exon_cols = list(set(itertools.chain( *self.isoform_exons.values()))) self.exon_cols.sort() # Make a dataframe with outrigger.Region objects self.regions = pd.DataFrame(index=self.events.index) self.region_cols = ['{}_region'.format(x) for x in self.exon_cols] for exon_col, region_col in zip(self.exon_cols, self.region_cols): self.regions[region_col] = self.events[exon_col].map(Region) # Make introns and copy-pastable genome locations for the whole event intron_regions = self.regions[self.region_cols].apply( self.event_introns_regions, axis=1) self.regions = pd.concat([self.regions, intron_regions], axis=1) self.region_cols.extend(['intron_region', 'event_region']) # Add the lengths of exons, introns, event region, and the genome # location ("name") of each intron self.lengths = self.regions.applymap(len) self.lengths.columns = [x.replace('_region', '_length') for x in self.lengths] self.lengths = self.lengths.astype(int) intron_names = intron_regions.applymap(lambda x: x.name) intron_names.columns = [x.replace('_region', '_location') for x in intron_names] self.events = pd.concat([self.events, self.lengths, intron_names], axis=1) def maybe_get_feature(self, feature_id): try: return self.db[feature_id] except gffutils.FeatureNotFoundError: r = Region(feature_id) feature = location_to_feature(self.db, r.chrom, r.start, r.stop, r.strand, source=OUTRIGGER_DE_NOVO, featuretype=NOVEL_EXON) self.db.update([feature], make_backup=False, id_spec={NOVEL_EXON: 'location_id'}, transform=transform) return feature def attributes(self): """Retrieve all GTF attributes for each isoform's event""" ignore_keys = 'location_id', 'exon_id', 'exon_number' lines = [] for event_id, row in self.events.iterrows(): attributes = pd.Series(name=event_id) for isoform, exons in self.isoform_exons.items(): for e in exons: attributes[e] = row[e] n_exons = len(exons) exon_ids = row[exons] exon_features = [self.maybe_get_feature(exon_id) for exon_id in exon_ids] keys = set(itertools.chain( *[exon.attributes.keys() for exon in exon_features])) for key in keys: # Skip the location IDs which is specific to the # outrigger-built database, and the exon ids which will # never match up across all exons if key in ignore_keys: continue values = Counter() for exon_id in exon_ids: try: values.update( self.db[exon_id].attributes[key]) except KeyError: continue if len(values) > 0: # Only use attributes that came up in for all exons # of the isoform values = [value for value, count in values.items() if count == n_exons] new_key = isoform + '_' + key attributes[new_key] = ','.join(sorted(values)) lines.append(attributes) event_attributes = pd.concat(lines, axis=1).T df =
pd.concat([self.events, event_attributes], axis=1)
pandas.concat
#!/usr/bin/env python3 from DeepJetCore import DataCollection import os from argparse import ArgumentParser import numpy as np import matplotlib.pyplot as plt import math from multiprocessing import Process import random from datastructures import TrainData_NanoML import plotly.express as px import pandas as pd import tqdm from DeepJetCore.dataPipeline import TrainDataGenerator parser = ArgumentParser('') parser.add_argument('inputFile') parser.add_argument('outputDir') args = parser.parse_args() outdir = args.outputDir+'/' ### rewrite! os.system('mkdir -p '+outdir) #read a file def invokeGen(infile): if infile[-6:] == '.djcdc': dc = DataCollection(infile) td = dc.dataclass() dc.setBatchSize(1) gen = dc.invokeGenerator() elif infile[-6:] == '.djctd': td = TrainData_NanoML() td.readFromFile(infile) gen = TrainDataGenerator() gen.setBatchSize(1) gen.setBuffer(td) elif infile[-5:] == '.root': td = TrainData_NanoML() td.convertFromSourceFile(infile,{},True) gen = TrainDataGenerator() gen.setBatchSize(1) gen.setBuffer(td) gen.setSkipTooLargeBatches(False) nevents = gen.getNBatches() return gen.feedNumpyData,nevents,td gen,nevents,td = invokeGen(args.inputFile) def shuffle_truth_colors(df, qualifier="truthHitAssignementIdx"): ta = df[qualifier] unta = np.unique(ta) unta = unta[unta>-0.1] np.random.shuffle(unta) out = ta.copy() dfo = df.copy() for i in range(len(unta)): out[ta ==unta[i]]=i dfo[qualifier] = out return dfo def toDataFrame(thegen, thetd): def popRSAndSqueeze(df): for k in df.keys(): if "_rowsplits" in k: df.pop(k) else: df[k] = np.squeeze(df[k]) return df data,_ = next(thegen())#this is a dict, row splits can be ignored, this is per event df = thetd.createFeatureDict(data,False) dftruth = thetd.createTruthDict(data) df = popRSAndSqueeze(df) dftruth = popRSAndSqueeze(dftruth) df['recHitLogEnergy'] = np.log(df['recHitEnergy']+1.+1e-6) dffeat = pd.DataFrame.from_dict(df) dftruth = pd.DataFrame.from_dict(dftruth) df.update(dftruth) dfall =
pd.DataFrame.from_dict(df)
pandas.DataFrame.from_dict
# JSON reader & Panda Creator + Updater import json import pandas as pd import os from typing import List if __name__ == "functions.fastfield_json_reader": from functions.new_daily_handler import event_main else: from new_daily_handler import event_main class open_JSON(): def __init__(self,json_file): self.json_file_location = json_file self.json_info = self.open_json(json_file) # self.job_num = self.get_field("JI_job_number") # self.daily_date = self.get_field("JI_dailyDate") # self.job_name = self.get_field("JI_project_name") @staticmethod def open_json(file_path): """opens .json file""" with open(file_path,encoding="utf-8") as f: info = json.load(f) return info def get_field(self,job_field): return self.json_info[job_field] def print_all_fields(self): for idx, field in enumerate(self.json_info): print(f"field {idx}: {field}") class json_combiner(open_JSON): def __init__(self,json_file_dir,event_handler_files:List = None): """takes in a list of json file names, and their directory, and returns a list of open jsons in a list""" self.dir = json_file_dir if event_handler_files == None: self.files = self.grab_files(self.dir,file_ext=".json") else: #code for event_handler updating instead of combining all files self.files = event_handler_files # combine list of .jsons into a singular list of jsons self.complete_paths = [os.path.join(self.dir,f) for f in self.files] #hard path joiner self.json_records = [single_json.json_info for single_json in [open_JSON(json_obj) for json_obj in self.complete_paths]] def to_existing_dataframe(self,existing_csv_path): """append new json's to an existing dataframe()""" dataset = pd.read_csv(existing_csv_path) new_data = self.to_dataframe() final_dataset = dataset.append(new_data) # print(f"existing data shape:{dataset.shape}") # print(f"new data shape: {new_data.shape}") # print(f"Updated Dataset Shape: {final.shape}") return final_dataset def to_dataframe(self): """returns pandas dataframe and saves it file inside dir""" self.dataframe =
pd.DataFrame.from_records(self.json_records)
pandas.DataFrame.from_records
from __future__ import annotations from typing import List import pandas as pd from pathlib import Path import json from os import path import logging from card_live_dashboard.model.CardLiveData import CardLiveData from card_live_dashboard.model.RGIParser import RGIParser from card_live_dashboard.model.data_modifiers.CardLiveDataModifier import CardLiveDataModifier logger = logging.getLogger(__name__) class CardLiveDataLoader: JSON_DATA_FIELDS = [ 'rgi_main', 'rgi_kmer', 'mlst', 'lmat', ] OTHER_TABLE_DROP_FIELDS = JSON_DATA_FIELDS + [ 'timestamp', 'geo_area_code', ] def __init__(self, card_live_data: Path): self._directory = card_live_data if self._directory is None: raise Exception('Invalid value [card_live_data=None]') self._data_modifiers = [] def add_data_modifiers(self, data_modifiers: List[CardLiveDataModifier]) -> None: """ Adds a list of new objects used to apply post modifications to the data. :param data_modifiers: A list of data modifier objects. :return: None. """ self._data_modifiers.extend(data_modifiers) def read_or_update_data(self, existing_data: CardLiveData = None) -> CardLiveData: """ Given an existing data object, updates the data object with any new files. :param existing_data: The existing data object (None if all data should be read). :return: The original (unmodified) data object if no updates, otherwise a new data object with additional data. """ input_files = list(Path(self._directory).glob('*')) if existing_data is None: return self.read_data(input_files) elif not self._directory.exists(): raise Exception(f'Data directory [card_live_dir={self._directory}] does not exist') else: existing_files = existing_data.files() input_files_set = {p.name for p in input_files} files_new = input_files_set - existing_files # If no new files have been found if len(files_new) == 0: logger.debug(f'Data has not changed from {len(input_files_set)} samples, not updating') return existing_data else: logger.info(f'{len(files_new)} additional samples found.') return self.read_data(input_files) def read_data(self, input_files: list = None) -> CardLiveData: """ Reads in the data and constructs a CardLiveData object. :param input_files: The (optional) list of input files. Leave as None to read from the configured directory. The optional list is used so I don't have to re-read the directory after running read_or_update_data(). :return: The CardLiveData object. """ if input_files is None: if not self._directory.exists(): raise Exception(f'Data directory [card_live_dir={self._directory}] does not exist') else: input_files = list(Path(self._directory).glob('*')) json_data = [] for input_file in input_files: filename = path.basename(input_file) with open(input_file) as f: json_obj = json.load(f) json_obj['filename'] = filename json_data.append(json_obj) full_df = pd.json_normalize(json_data).set_index('filename') full_df = self._replace_empty_list_na(full_df, self.JSON_DATA_FIELDS) full_df = self._create_analysis_valid_column(full_df, self.JSON_DATA_FIELDS) full_df['timestamp'] = pd.to_datetime(full_df['timestamp']) main_df = full_df.drop(columns=self.JSON_DATA_FIELDS) rgi_df = self._expand_column(full_df, 'rgi_main', na_char='n/a').drop( columns=self.OTHER_TABLE_DROP_FIELDS) rgi_kmer_df = self._expand_column(full_df, 'rgi_kmer', na_char='n/a').drop( columns=self.OTHER_TABLE_DROP_FIELDS) mlst_df = self._expand_column(full_df, 'mlst', na_char='-').drop( columns=self.OTHER_TABLE_DROP_FIELDS) lmat_df = self._expand_column(full_df, 'lmat', na_char='n/a').drop( columns=self.OTHER_TABLE_DROP_FIELDS) data = CardLiveData(main_df=main_df, rgi_parser=RGIParser(rgi_df), rgi_kmer_df=rgi_kmer_df, mlst_df=mlst_df, lmat_df=lmat_df) # apply data modifiers for modifier in self._data_modifiers: data = modifier.modify(data) return data def _rows_with_empty_list(self, df: pd.DataFrame, col_name: str): empty_rows = {} for index, row in df.iterrows(): empty_rows[index] = (len(row[col_name]) == 0) return pd.Series(empty_rows) def _replace_empty_list_na(self, df: pd.DataFrame, cols: List[str]): dfnew = df.copy() for column in cols: empty_rows = self._rows_with_empty_list(df, column) dfnew.loc[empty_rows, column] = None return dfnew def _create_analysis_valid_column(self, df: pd.DataFrame, analysis_cols: List[str]): df = df.copy() df['analysis_valid'] = 'None' for col in analysis_cols: df.loc[~df[col].isna() & ~(df['analysis_valid'] == 'None'), 'analysis_valid'] = df[ 'analysis_valid'] + ' and ' + col df.loc[~df[col].isna() & (df['analysis_valid'] == 'None'), 'analysis_valid'] = col return df.replace(' and '.join(self.JSON_DATA_FIELDS), 'all') def _expand_column(self, df: pd.DataFrame, column: str, na_char: str = None): """ Expands a particular column in the dataframe from a list of dictionaries to columns. That is expands a column like 'col' => [{'key1': 'value1', 'key2': 'value2'}] to a dataframe with new columns 'col.key1', 'col.key2'. :param df: The dataframe to use. :param column: The name of the column to explode. :param na_char: A character to replace with NA (defaults to no replacement). :return: A new dataframe with the new columns appended onto it. """ exploded_columns = df[column].explode().apply(pd.Series).add_prefix(f'{column}.') if na_char is not None: exploded_columns.replace({na_char: None}, inplace=True) merged_df =
pd.merge(df, exploded_columns, how='left', on=df.index.name)
pandas.merge
#!/usr/bin/env python import os import pandas as pd def get_supertwists(qmc_out): """ read supercell twists from QMCPACK output Args: qmc_out (str): QMCPACK output, must contain "Super twist #" Return: np.array: an array of twist vectors (ntwist, ndim) """ from qharv.reel import ascii_out mm = ascii_out.read(qmc_out) idxl = ascii_out.all_lines_with_tag(mm, 'Super twist #') lines = ascii_out.all_lines_at_idx(mm ,idxl) data = [] for line in lines: text = ascii_out.lr_mark(line, '[', ']') vec = np.array(text.split(), dtype=float) data.append(vec) mat = np.array(data) return mat def epl_val_err(epl_out): """ convert epl_out to a pandas DataFrame. epl_out is expected to be an output of energy.pl from QMCPACK It simply has to have the format {name:22c}={val:17.3f} +/- {err:26.4f}. rows with forces will be recognized with 'force_prefix' Args: epl_out (str): energy.pl output filename Returns: pd.DataFrame: df contains columns ['name','val','err'] """ tab = pd.read_csv(epl_out, delimiter='=', names=['name', 'text']) tab = tab.dropna() def text2val(text): tokens = text.split('+/-') if len(tokens) != 2: raise NotImplementedError('unrecognized value '+text) val,err = map(float, tokens) return pd.Series({'val':val, 'err':err}) df = pd.concat([ tab.drop('text', axis=1), tab['text'].apply(text2val)], axis=1) return df def epldf_to_entry(df): names = [name.strip() for name in df.name.values] ymean = ['%s_mean' % name for name in names] yerror = ['%s_error' % name for name in names] names1 = np.concatenate([ymean, yerror]) means = df.val.values errs = df.err.values entry = pd.Series(np.concatenate([means, errs]), names1) return entry def get_forces(df, natom, prefix='force', ndim=3): yml = [] yel = [] for iatom in range(natom): for idim in range(ndim): col = '%s_%d_%d' % (prefix, iatom, idim) sel = df.name.apply(lambda x: col in x) y1m = df.loc[sel].val.squeeze() y1e = df.loc[sel].err.squeeze() yml.append(y1m) yel.append(y1e) return np.array(yml), np.array(yel) def sk_from_fs_out(fs_out): """ extract fluctuating S(k) from qmcfinitesize output returns: kmag,sk,vk,spk,spsk kmag: magnitude of kvectors, sk: raw fluc. S(k), vk: long-range potential after break-up spk: kmags for splined S(k), spsk: splined S(k) """ import reader bint = reader.BlockInterpreter() sfile = reader.SearchableFile(fs_out) # read raw data block_text = sfile.block_text('#SK_RAW_START#','#SK_RAW_STOP#') kmag,sk,vk = bint.matrix(block_text[block_text.find('\n')+1:]).T # read splined S(k) block_text = sfile.block_text('#SK_SPLINE_START#','#SK_SPLINE_STOP#') spk,spsk = bint.matrix(block_text[block_text.find('\n')+1:]).T return kmag,sk,vk,spk,spsk # end def # =============== complicated functions =============== import numpy as np from copy import deepcopy def read_jastrows(jas_node): """ 'jas_node' should be an xml node containing bspline jastrows put coefficients and attributes into a list of dictionaries """ if (jas_node.attrib["type"] != "Two-Body"): # works for one-body! miracle! pass#raise TypeError("input is not a two-body Jastrow xml node") elif (jas_node.attrib["function"].lower() != "bspline"): raise NotImplementedError("can only handle bspline Jastrows for now") # end if data = [] for corr in jas_node.xpath('./correlation'): coeff = corr.xpath('./coefficients')[0] entry = deepcopy( corr.attrib ) entry.update(coeff.attrib) entry['coeff'] = np.array(coeff.text.split(),dtype=float) entry['type'] = jas_node.attrib['type'] data.append(entry) # end for corr return data # end def read_jastrows from lxml import etree def extract_jastrows(qmcpack_input,json_name='jas.json',warn=True,force_refresh=False): """ given a QMCPACK input that contains linear optimization, extract all printed Jastrows and store in a local database 1. parse 'qmcpack_input' for the qmc[@metho="linear"] section 2. for each *.opt.xml, parse if it exists 3. parse each opt.xml and make local database """ failed = False subdir = os.path.dirname(qmcpack_input) target_json = os.path.join(subdir,json_name) if os.path.isfile(target_json) and (not force_refresh): if warn: print("skipping %s" % subdir) # end if return 0 # skip ths file # end if parser = etree.XMLParser(remove_blank_text=True) # get prefix xml = etree.parse(qmcpack_input,parser) proj = xml.xpath("//project")[0] prefix = proj.attrib['id'] # determine number of optimization loops all_qmc_sections = xml.xpath('.//qmc[@method="linear"]') all_iopt = 0 # track multiple 'linear' sections data = [] for qmc_section in all_qmc_sections: # for each linear optimization: # find the number of loops nopt = 1 loop = qmc_section.getparent() if loop.tag == 'loop': nopt = int(loop.attrib['max']) # end if # collect all jastrow coefficients for iopt in range(nopt): # get optimization file opt_file = prefix + ".s%s.opt.xml" % str(all_iopt).zfill(3) opt_xml = os.path.join(subdir,opt_file) if not os.path.isfile(opt_xml): if warn: print("skipping %d in %s" % (all_iopt,subdir)) # end if continue # end if # parse optimization file opt = etree.parse(opt_xml,parser) jnodes = opt.xpath('//jastrow') for jas_node in jnodes: entries = read_jastrows(jas_node) for entry in entries: entry['iopt'] = all_iopt # end for entry data.append(entry) # end for all_iopt += 1 # end for iopt # end for qmc_section if len(data) == 0: failed = True else: df = pd.DataFrame( data ) df.to_json(target_json) # end if return failed # end def extract_jastrows def extract_best_jastrow_set(opt_input,opt_json='opt_scalar.json',nequil='auto',force_refresh=False): import nexus_addon as na subdir = os.path.dirname(opt_input) # locally create jas.json extract_jastrows(opt_input,force_refresh=force_refresh) # locally create opt_scalar.json scalar_json = os.path.join(subdir,opt_json) if (not os.path.isfile(scalar_json)) or force_refresh: # initialize analyzer from qmca import QBase options = {"equilibration":nequil} QBase.options.transfer_from(options) entry = na.scalars_from_input(opt_input) pd.DataFrame(entry).to_json(scalar_json) # end if # get best jastrow set best_jas = collect_best_jastrow_set(subdir) return best_jas # end def extract_best_jastrow_set def collect_best_jastrow_set(subdir,jas_json='jas.json',opt_json='opt_scalar.json' ,rval_weight=0.75,rerr_weight=0.25): """ find best set of jastrows in 'subdir', assume files: 1. jas.json: a database of QMCPACK bspline jastrows with 'iopt' column 2. opt_scalar.json: a database of QMCPACK scalars including 'LocalEnergy_mean', 'LocalEnergy_error', 'Variance_mean', and 'Variance_error' """ from dmc_database_analyzer import div_columns jfile = os.path.join(subdir,jas_json) if not os.path.isfile(jfile): raise RuntimeError('%s not found in %s' % (jfile,subdir)) # end if ofile = os.path.join(subdir,opt_json) if not os.path.isfile(ofile): raise RuntimeError('%s not found in %s' % (ofile,subdir)) # end if jdf =
pd.read_json(jfile)
pandas.read_json
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from preprocessing import preprocess from tokenizer import tokenize class ThaiPreprocessor(BaseEstimator, TransformerMixin): def fit(self, X, y=None, **fit_params): return self def preprocess(self, text: str) -> str: return preprocess(text) def transform(self, X) -> pd.Series: return pd.Series(X).apply(self.preprocess) class ThaiTokenizer(BaseEstimator, TransformerMixin): def __init__(self, remove_placeholders: bool = False, min_char: bool = 2): self.remove_placeholders = remove_placeholders self.min_char = min_char def fit(self, X, y=None, **fit_params): return self def tokenize(self, text): tokens = tokenize( text, min_char=self.min_char, remove_placeholder=self.remove_placeholders, ) return tokens def transform(self, X) -> pd.Series: return
pd.Series(X)
pandas.Series
import logging from abc import abstractmethod from typing import Union import dask.dataframe as dd import pandas as pd from Bio import SeqIO import openomics from openomics.utils.read_gtf import read_gtf from .base import Database # from gtfparse import read_gtf class SequenceDatabase(Database): """Provides a series of methods to extract sequence data from SequenceDataset. """ def __init__(self, replace_U2T=False, **kwargs): """ Args: replace_U2T: **kwargs: """ self.replace_U2T = replace_U2T super(SequenceDatabase, self).__init__(**kwargs) @abstractmethod def read_fasta(self, fasta_file:str, replace_U2T:bool, npartitions=None): """Returns a pandas DataFrame containing the fasta sequence entries. With a column named 'sequence'. Args: fasta_file (str): path to the fasta file, usually as self.file_resources[<file_name>] replace_U2T (bool): npartitions: """ raise NotImplementedError @abstractmethod def get_sequences(self, index:str, omic:str, agg_sequences:str, **kwargs): """Returns a dictionary where keys are 'index' and values are sequence(s). Args: index (str): {"gene_id", "gene_name", "transcript_id", "transcript_name"} omic (str): {"lncRNA", "microRNA", "messengerRNA"} agg_sequences (str): {"all", "shortest", "longest"} **kwargs: any additional argument to pass to SequenceDataset.get_sequences() """ raise NotImplementedError @staticmethod def get_aggregator(agg:Union[str, callable]=None): """Returns a function used aggregate a list of sequences from a groupby on a given key. Args: agg: One of ("all", "shortest", "longest"), default "all". If "all", then for all """ if agg == "all": agg_func = lambda x: list(x) if not isinstance(x, str) else x elif agg == "shortest": agg_func = lambda x: min(x, key=len) elif agg == "longest": agg_func = lambda x: max(x, key=len) elif isinstance(agg, callable): return agg else: raise Exception( "agg_sequences argument must be one of {'all', 'shortest', 'longest'}" ) return agg_func class GENCODE(SequenceDatabase): """Loads the GENCODE database from https://www.gencodegenes.org/ . Default path: ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/ . Default file_resources: { "basic.annotation.gtf": "gencode.v32.basic.annotation.gtf.gz", "long_noncoding_RNAs.gtf": "gencode.v32.long_noncoding_RNAs.gtf.gz", "lncRNA_transcripts.fa": "gencode.v32.lncRNA_transcripts.fa.gz", "transcripts.fa": "gencode.v32.transcripts.fa.gz", } """ def __init__( self, path="ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_32/", file_resources=None, col_rename=None, npartitions=0, replace_U2T=False, remove_version_num=False, ): """ Args: path: file_resources: col_rename: npartitions: replace_U2T (bool): Whether to replace nucleotides from U to T on the RNA primary sequences. remove_version_num (bool): Whether to drop the version number on the ensembl ID. """ if file_resources is None: file_resources = { "basic.annotation.gtf": "gencode.v32.basic.annotation.gtf.gz", "long_noncoding_RNAs.gtf": "gencode.v32.long_noncoding_RNAs.gtf.gz", "lncRNA_transcripts.fa": "gencode.v32.lncRNA_transcripts.fa.gz", "transcripts.fa": "gencode.v32.transcripts.fa.gz", } self.remove_version_num = remove_version_num super(GENCODE, self).__init__( path=path, file_resources=file_resources, col_rename=col_rename, replace_U2T=replace_U2T, npartitions=npartitions, ) def load_dataframe(self, file_resources, npartitions=None): """ Args: file_resources: npartitions: """ dfs = [] for filename, content in file_resources.items(): if ".gtf" in filename: df = read_gtf(content, npartitions=npartitions, compression="gzip") dfs.append(df) if npartitions: annotation_df = dd.concat(dfs) else: annotation_df =
pd.concat(dfs)
pandas.concat
from datetime import date from components.transaction_store_block import TransactionStoreInput from components.transactions_table_block import TransactionTableComponent, TransactionTableInput from core.transaction_journal import TransactionJournal, TransactionJournalConfig import piecash import dash from dash import html, dash_table as dt import pandas as pd from components import ForecastComponent, ForecastComponentInput, TransactionStore from core.typings import BalanceType def dash_test(): app = dash.Dash(__name__) book = piecash.open_book( "/mnt/c/Users/guilh/Documents/Gnucash/personal-sqlite.gnucash", open_if_lock=True) config = TransactionJournalConfig( checkings_parent_guid="3838edd7804247868ebed2d2404d4c26", liabilities_parent_guid="44a238b52fdd44c6bad26b9eb5efc219" ) journal = TransactionJournal(book=book, config=config) transaction_data = journal.get_transaction_data(date(2022, 2, 1), date(2022, 10, 1)) transaction_store = TransactionStore(input=TransactionStoreInput(data=transaction_data)) forecast = ForecastComponent(app=app, input=ForecastComponentInput(store_name=transaction_store.get_name())) table = TransactionTableComponent(app=app, input=TransactionTableInput( store_name=transaction_store.get_name(), graph_name=forecast.get_name() )) app.layout = html.Div([ html.Div(id="store-container"), html.Div(id="graph-container"), html.Div(id="table-container") ]) app.layout["graph-container"] = forecast.layout app.layout["table-container"] = table.layout app.layout["store-container"] = transaction_store.layout app.run_server(debug=True) def component_test(): app = dash.Dash(__name__) d = { 'date': [1, 2], 'balance': [100, 111], 'scheduled': [False, True], 'type': [BalanceType.CHECKINGS, BalanceType.LIABILITIES] } data =
pd.DataFrame(data=d)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Classes and methods used to implement specific forms of dynamic analysis @author: rihy """ from __init__ import __version__ as currentVersion import numpy import timeit import itertools import matplotlib.pyplot as plt import dill import pandas as pd #import multiprocessing # does not work with Spyder! import tstep import loading import msd_chain from common import chunks #%% class Dyn_Analysis(): """ Base class for dynamic analysis implementations _Inheritance expected_ """ def __init__(self,name:str,dynsys_obj,loading_obj): """ Initialisation function _All derived classes are expected to run this function_ """ self.name = name """ String identifier for object """ self.dynsys_obj = dynsys_obj """ Dynamic system to which analysis relates """ self.loading_obj = loading_obj """ Object defining applied loading """ def run(self): """ Runs dynamic analysis _Inheritance expected_ """ pass def _pickle_fName(self,fName): """ Defines default filename for pickle files """ if fName is None: fName = "{0}".format(self.__class__.__name__) if self.name is not None: fName += "{0}".format(self.name) fName += ".pkl" return fName def save(self,fName=None): """ Serialises object to file `fName` """ fName=self._pickle_fName(fName) with open('{0}'.format(fName), 'wb') as dill_file: print("Serialising `{0}` object to `{1}`".format(self.__class__.__name__,fName)) dill.dump(self, dill_file) print("Serialisation complete!") class MovingLoadAnalysis(Dyn_Analysis): """ Class to implement moving load analysis *** _Moving load analysis_ involves the determining the response of the system to groups of point loads moving in a pre-defined manner along a defined track. _Moving loads_ include, but are not limited to: * Train axles, which are usually at pre-defined spacings * Vehicle axles * Forces to represent the actions of walkers/joggers per UK NA to BS EN 1991-2 """ def __init__(self, modalsys_obj, name=None, loadtrain_obj=None, loadtrain_fName="loadDefs.csv", loadVel=5.0, use_abs_modeshape=False, tEpilogue=10.0, dt=None, dt_loads=0.01, max_dt=None, retainDOFTimeSeries=True, retainResponseTimeSeries=True, writeResults2File=False, results_fName="results.csv"): """ Initialisation function *** Required: * `modalsys_obj`, modal system to which analysis relates **Important note:** `modalsys_obj` must be a modal system, as the action of the moving loads is determined by obtaining the mode-generalised force functions for each mode. _This is checked_. *** Optional: * `loadtrain_obj`, load train object defining load pattern. If _None_ then `loadtrain_fName` must be provided (see below) * `loadtrain_fName", file containing load train definition * `loadVel`, constant velocity of load pattern (m/s) * `loadDefs_fName`, file containing load definitions """ # Handle None for loadtrain_obj if loadtrain_obj is None: loadtrain_obj = loading.LoadTrain(fName=loadtrain_fName) # Check class name of modalsys_obj if modalsys_obj.__class__.__name__ != "ModalSys": raise ValueError("`modalsys_obj`: instance of `ModalSys` class expected!") # Check loadtrain_obj is of class 'LoadTrain' or derived class if loadtrain_obj.__class__.__name__ != "LoadTrain": base_class_name = loadtrain_obj.__class__.__bases__[0].__name__ if base_class_name != "LoadTrain": raise ValueError("`loadtrain_obj`: instance of `LoadTrain` "+ "class (or derived classes) expected!\n" + "`loadtrain_obj` base class: %s" % base_class_name) # Run parent init super().__init__(name,modalsys_obj,loadtrain_obj) # Save details as attributes self.loadVel = loadVel """ Velocity of load pattern along track """ # Define time-stepping analysis tStart, tEnd = self._CalcSimDuration(loadVel=loadVel, tEpilogue=tEpilogue) # Define force function for parent system and subsystems modalForces_func = modalsys_obj.CalcModalForces(loading_obj=loadtrain_obj, loadVel=loadVel, dt=dt_loads, use_abs_modeshape=use_abs_modeshape) force_func_dict = {modalsys_obj : modalForces_func} self.tstep_obj = tstep.TStep(modalsys_obj, name=name, tStart=tStart, tEnd=tEnd, dt=dt, max_dt=max_dt, force_func_dict=force_func_dict, retainDOFTimeSeries=retainDOFTimeSeries, retainResponseTimeSeries=retainResponseTimeSeries, writeResults2File=writeResults2File, results_fName=results_fName ) """ Time-stepping solver object """ self.results_obj = self.tstep_obj.results_obj """ Results object """ # Create relationship to this analysis object self.results_obj.analysis_obj = self def run(self, verbose=True, saveResults=False, save_fName=None): """ Runs moving load analysis, using `tstep.run()` _Refer documentation for that function for more details_ """ if verbose: print("***** Running `%s`..." % self.__class__.__name__) print("Dynamic system: '{0}'".format(self.dynsys_obj.name)) print("Load pattern: '{0}'".format(self.loading_obj.name)) print("Load velocity: %.1f" % self.loadVel) tic=timeit.default_timer() results_obj = self.tstep_obj.run(verbose=verbose) toc=timeit.default_timer() if verbose: print("***** Analysis complete after %.3f seconds." % (toc-tic)) if saveResults: self.save(fName=save_fName) return results_obj def _CalcSimDuration(self,loadVel=10.0,tEpilogue=5.0): """ Calculates the required duration for time-stepping simulation *** Optional: * `loadVel`, constant velocity (m/s) of the load pattern * `tEpilogue`, additional time to run following exit of last load from track overlying the dynamic system in question. In the case of `Ltrack` and `loadLength`, if _None_ is provided then function will attempt to obtain this information from class attributes. *** Returns: tStart, `tEnd`: start and end times (secs) for simulation """ #print("tEpilogue = %.3f" % tEpilogue) modalsys_obj = self.dynsys_obj loadtrain_obj = self.loading_obj # Get length of track along which loading is running attr = "Ltrack" obj = modalsys_obj if hasattr(obj,attr): Ltrack = getattr(obj,attr) else: raise ValueError("`{0}` not defined!".format(attr)) # Get length of load train attr = "loadLength" obj = loadtrain_obj if hasattr(obj,attr): loadLength = getattr(obj,attr) else: raise ValueError("`{0}` not defined!".format(attr)) # Determine time required for all loads to pass along track tStart=0 Ltotal = Ltrack + loadLength tEnd = Ltotal/loadVel + tEpilogue return tStart, tEnd def PlotResults(self,dofs2Plot=None): """ Plots results using `tstep_results.PlotResults()`. _Refer documentation from that function for further details_ """ self.results_obj.PlotResults(dofs2Plot=dofs2Plot) class Multiple(): """ Function to run multiple dynamic analyses and provide functionality to store, plot and analyse results from multiple dynamic analyses in a systematic manner """ def __init__(self, classDef, dynsys_obj:object, writeResults2File:bool=False, retainDOFTimeSeries:bool=False, retainResponseTimeSeries:bool=False, **kwargs): """ Initialisation function **** Required: * `classDef`, `Dyn_Analysis` class definition (usually inherited) that implements the required analysis type * `dynsys_obj`, dynamic system to which analysis relates *** Optional: * `retainResponseTimeSeries`, _boolean_, denotes whether detailed _response_ time series results can be deleted once summary statistics have been computed * `retainDOFTimeSeries`, _boolean_, denotes whether detailed _DOF_ time series results can be deleted once summary statistics have been computed By default _False_ is assigned to be above (contrary to usual defaults) as running multiple analyses would otherwise often lead to large memory demands. """ className = classDef.__name__ print("Initialising multiple `{0}`".format(className)) if className == "MovingLoadAnalysis": kwargs2permute = ["loadVel","loadtrain_obj"] elif className == "UKNA_BSEN1991_2_walkers_joggers": kwargs2permute = ["analysis_type","mode_index"] else: raise ValueError("Unsupported class name!") # Get input arguments to permute vals2permute={} for key in kwargs2permute: # Get list as supplied via **kwargs if key in kwargs: vals_list = kwargs[key] del kwargs[key] # Convert to list if single if not isinstance(vals_list,list): vals_list = [vals_list] vals2permute[key]=vals_list else: raise ValueError("'{0}' ".format(key) + "included in `kwargs2permute` list but " + "list of values to permute not provided!") # Populate object array with initialised objects vals_list = list(itertools.product(*vals2permute.values())) analysis_list=[] nAnalysis = len(vals_list) for i in range(nAnalysis): # Prepare dict of key arguments to pass kwargs_vals = vals_list[i] kwargs_dict = dict(zip(kwargs2permute, kwargs_vals)) # Append any general kwargs provided results_fName = "results/analysis%04d.csv" % (i+1) kwargs_dict.update(kwargs) kwargs_dict.update({"retainDOFTimeSeries":retainDOFTimeSeries, "retainResponseTimeSeries":retainResponseTimeSeries, "writeResults2File":writeResults2File, "results_fName":results_fName}) # Initialisise new analysis object analysis_list.append(classDef(name="%04d"% i, modalsys_obj=dynsys_obj, **kwargs_dict)) self.dynsys_obj = dynsys_obj """ `DynSys` object to which analysis relates """ self.analysisType = className """ Class name of `dyn_analysis` derived class """ self.vals2permute = vals2permute """ Dictionary of keywords and values to permute in the multiple analyses defined """ self.vals2permute_shape = tuple([len(x) for x in self.vals2permute.values()]) """ Tuple to denote the shape of lists specified in `vals2permute` """ self.results_arr=None """ ndarray of `tstep_results` object instances """ self.stats_dict=None """ Dict of ndarrays containing stats (max, min, std, absmax) for each of the analyses carried out, for each of the responses defined """ self.analysis_list = analysis_list """ List of `Dyn_Analysis` object instances, each of which defines a dynamic analysis to be performed """ def run(self,save=True,solveInParallel=False): """ Runs multiple dynamic analyses, as defined by `__init__` *** In principle this can be done in parallel, to efficiently use all avaliable cores and give improve runtime. _Parallel processing not yet implemented due to outstanding bug associated with using `multiprocessing` module from within Spyder_ """ print("Running multiple `{0}`\n".format(self.analysisType)) tic=timeit.default_timer() # Run analyses using parallel processing (if possible) if solveInParallel: print("Parallel processing not yet implemented due to " + "outstanding bug associated with using "+ "`multiprocessing` module from within Spyder\n"+ "A single-process analysis will be carried out instead.") # Run all pre-defined analyses for i, x in enumerate(self.analysis_list): print("Analysis #%04d of #%04d" % (i+1, len(self.analysis_list))) x.run(saveResults=False) print("")#clear line for emphasis toc=timeit.default_timer() print("Multiple `%s` analysis complete after %.3f seconds!\n" % (self.analysisType,(toc-tic))) # Reshape results objects in ndarray results_obj_list = [x.tstep_obj.results_obj for x in self.analysis_list] reqdShape = self.vals2permute_shape results_arr = numpy.reshape(results_obj_list,reqdShape) self.results_arr = results_arr # Collate statistics self.collate_stats() # Pickle results if save: self.save() def plot_stats(self, stat='absmax', sys=None, **kwargs): """ Produces a plot of a given statistic, taken across multiple analyses Optional: * `stat`, name of statistic to be plotted (e.g. 'max', 'min') * `sys`, instance of `DynSys` class, or string to denote name of system, used to select system whose outputs are to be plotted. If None then seperate figures will be produced for each subsystem. _See docstring for `plot_stats_for_system()` for other keyword arguments that may be passed._ """ # Get list of system names to loop over if sys is None: sys_names = [obj.name for obj in self.dynsys_obj.DynSys_list] else: # Get name of system if isinstance(sys,str): sys_name = sys else: sys_name = sys.name # get name from object sys_names = [sys_name] # list of length 1 # Produce a seperate figure for each sub-system responses fig_list = [] fig_list = [] for sys_name in sys_names: _fig_list = self.plot_stats_for_system(sys_name=sys_name, stat=stat, **kwargs) fig_list.append(_fig_list) # Return list of figures, one for each subsystem return fig_list def plot_stats_for_system(self,sys_name,stat, max_responses_per_fig:int=5, subplot_kwargs={} ): """ Produces a plot of a given statistic, taken across multiple analyses for a specified sub-system Required: * `sys_name`, string giving name of system * `stat`, string to specify statistic to be plotted. E.g. 'absmax' Optional: * `max_responses_per_fig`, integer to denote maximum number of responses to be plotted in each figure. If None, all responses will be plotted via a single figure. Default value (=4) should give nice plots in most cases. _Users are advised to tweak the appearance of figures, e.g. using the `pyplot.subplots_adjust()` method._ * `subplot_kwargs`, dict of keyword arguments to be passed to `pyplot.subplots()` method, to customise subplots (e.g. share axes) """ # Re-collate statistics as required if self.stats_df is None: stats_df = self.collate_stats() else: stats_df = self.stats_df # Slice for requested stat try: stats_df = stats_df.xs(stat,level=-1,axis=1) except KeyError: raise KeyError("Invalid statistic selected!") # Get stats for just this system df_thissys = stats_df.xs(sys_name,level=0,axis=0) # Obtain responses names for this subsystem response_names = df_thissys.index.values nResponses = len(response_names) if max_responses_per_fig is None: max_responses_per_fig = nResponses fig_list = [] for _response_names in chunks(response_names,max_responses_per_fig): # Create figure, with one subplot per response fig, axlist = plt.subplots(len(_response_names), sharex=True, **subplot_kwargs) fig_list.append(fig) for i, (r,ax) in enumerate(zip(_response_names,axlist)): # Get series for this response df = df_thissys.loc[r] # Reshape such that index will be x-variable for plot df = df.unstack() # Make plot ax = df.plot(ax=ax,legend=False) ax.set_ylabel(r, rotation=0, fontsize='small', horizontalAlignment='right', verticalAlignment='center') if i==0: # Add legend to figure fig.legend(ax.lines, df.columns,fontsize='x-small') fig.subplots_adjust(left=0.15,right=0.95) fig.align_ylabels() return fig_list def _pickle_fName(self,fName): """ Defines default filename for pickle files """ if fName is None: fName = "{0}_{1}".format(self.__class__.__name__,self.analysisType) if self.dynsys_obj.name is not None: fName += "_{0}".format(self.dynsys_obj.name) fName += ".pkl" return fName def save(self,fName=None): """ Serialises object to file `fName` """ fName=self._pickle_fName(fName) with open('{0}'.format(fName), 'wb') as dill_file: print("\nSerialising `{0}` object to `{1}`".format(self.__class__.__name__,fName)) dill.dump(self, dill_file) print("Serialisation complete!\n") def collate_stats(self): """ Collates computed statistics into a Pandas DataFrame, as follows: * Index is a MultiIndex, comprising the following levels: * 0 : Name of sub-system * 1 : Name of output / response * Columns are a MultiIndex comprising the following levels: * 0 to -2 : Variables of analysis `vals2permute` * -1 : Statistic name (e.g. 'max', 'min') """ print("Collating statistics...") # Get list of all tstep_results objects associate with Multiple() if self.results_arr is None: raise ValueError("self.results_arr=None! No results to collate!") # Get lists of inputs permuted for analyses kwargs2permute = list(self.vals2permute.keys()) vals2permute = list(self.vals2permute.values()) # Where list contains objects, get their names for i in range(len(vals2permute)): if hasattr(vals2permute[i][0],'name'): vals2permute[i] = [x.name for x in vals2permute[i]] # Get list of systems and subsystems DynSys_list = self.dynsys_obj.DynSys_list stats_df = None for i, (index, results_obj) in enumerate(numpy.ndenumerate(self.results_arr)): # Get combination of vals2permute for results_obj combination = [vals[i] for i, vals in zip(index, vals2permute)] # Get stats from results_obj stats_df_inner = results_obj.get_response_stats_df() # Loop over all sub-systems for df, sys in zip(stats_df_inner,DynSys_list): # Prepend system to index df = pd.concat([df], axis=0, keys=[sys.name], names=['System','Response']) # Prepare combination values to column MultiIndex tuples = [(*combination,col) for col in df.columns] df.columns = pd.MultiIndex.from_tuples(tuples) df.columns.names = [*kwargs2permute,'Statistic'] # Append results to DataFrame stats_df =
pd.concat([stats_df, df],axis=1)
pandas.concat
import argparse from pathlib import Path import numpy as np import pandas as pd def get_global_score(npz_path: str): x = np.load(npz_path) global_score = np.mean(x['lddt']) return global_score def get_df(dir_path: Path) -> pd.DataFrame: model_name_list = [] global_score_list = [] for npz_path in dir_path.glob('*.npz'): global_score = get_global_score(str(npz_path)) model_name_list.append(npz_path.stem) global_score_list.append(global_score) method_name = dir_path.stem df = pd.DataFrame({method_name: global_score_list}, index=model_name_list) return df if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('score_dir', type=str, help='directory of local score. ex) ../../../score/dataset/target') args = parser.parse_args() score_dir = Path(args.score_dir) standard_score_dir = score_dir / 'DeepAccNet' standard_df = get_df(standard_score_dir) msa_score_dir = score_dir / 'DeepAccNet-Bert' msa_df = get_df(msa_score_dir) df =
pd.merge(standard_df, msa_df, left_index=True, right_index=True, how='outer')
pandas.merge
import json import math import random import numpy as np import pandas as pd from scipy.stats import norm from sklearn import linear_model from math import sqrt from DataSynthesizer.lib.utils import read_json_file from FAIR.FairnessInRankings import FairnessInRankingsTester def save_uploaded_file(file, current_file): """ Save user uploaded data on server. Attributes: file: the uploaded dataset. current_file: file name with out ".csv" suffix """ with open(current_file+".csv", 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) def get_score_scatter(current_file,top_K=100): """ Generated data for scatter plot. Attributes: current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold of data size that scatter plot included Return: data for scatter plot using HighChart format """ data = pd.read_csv(current_file+"_weightsum.csv").head(top_K) scatter_points = [] score_value = data["GeneratedScore"].tolist() position_value = [x for x in range(1, len(data) + 1)] for i in range(len(score_value)): scatter_points.append([position_value[i], score_value[i]]) return scatter_points def getAttValueCountTopAndOverall(input_data, att_name, top_K=10): """ Subfunction to count values of input attribute in the data for top 10 and overall pie chart. Attributes: input_data: dataframe that store the input data att_name: name of attribuet to count top_K: top k position to count the value, default value is 10 Return: json data includes two two-dimension arrays for value and its count at top 10 and overall """ counts_all = {} all_values_count = input_data[att_name].value_counts() top_data = input_data[0:top_K] # get overall counts new_values_all = [] for i in range(len(all_values_count)): cur_cate = all_values_count.index[i] # if not a string, then encode it to the type that is JSON serializable if not isinstance(cur_cate, str): cur_cate = str(cur_cate) cur_count = int(all_values_count.values[i]) new_values_all.append([cur_cate,cur_count]) counts_all["overall"] = new_values_all # get top K counts and make sure list of counts include every value of input attribute for consistent pie chart colors top_values_count = top_data[att_name].value_counts() top_cates = top_values_count.index # generate a dict to store the top k value counts top_values_count_dic = {} for i in range(len(top_values_count)): top_values_count_dic[top_values_count.index[i]] = int(top_values_count.values[i]) # generate a new value list for top K using same order as in over all list new_values_top = [] for i in range(len(all_values_count)): cur_cate = all_values_count.index[i] # if not a string, then encode it to the type that is JSON serializable if not isinstance(cur_cate, str): str_cur_cate = str(cur_cate) else: str_cur_cate = cur_cate if cur_cate in top_cates: # exiting in top K new_values_top.append([str_cur_cate, top_values_count_dic[cur_cate]]) else: new_values_top.append([str_cur_cate, 0]) counts_all["topTen"] = new_values_top return counts_all def get_chart_data(current_file, att_names): """ Generated data for pie chart. Attributes: current_file: file name that stored the data (with out ".csv" suffix) att_names: list of attribute names to compute the chart data Return: json data for pie chart plot using HighChart format """ data = pd.read_csv(current_file + "_weightsum.csv") pie_data = {} for ai in att_names: cur_ai_json = {} counts_all = getAttValueCountTopAndOverall(data,ai) cur_ai_json["topTen"] = counts_all["topTen"] cur_ai_json["overall"] = counts_all["overall"] pie_data[ai] = cur_ai_json return pie_data def computeSlopeOfScores(current_file,top_K, round_default=2): """ Compute the slop of scatter plot. Attributes: current_file: file name that stored the data (with out ".csv" suffix) top_K: threshold of data size to compute the slope Return: slope of scatter plot of top_K data """ data = pd.read_csv(current_file + "_weightsum.csv") top_data = data[0:top_K] xd = [i for i in range(1,top_K+1)] yd = top_data["GeneratedScore"].tolist() # determine best fit line par = np.polyfit(xd, yd, 1, full=True) slope = par[0][0] return round(slope,round_default) def compute_correlation(current_file,y_col="GeneratedScore",top_threshold=3,round_default=2): """ Compute the correlation between attributes and generated scores. Attributes: current_file: file name that stored the data (with out ".csv" suffix) y_col: column name of Y variable top_threshold: threshold of number of returned correlated attribute round_default: threshold of round function for the returned coefficient Return: list of correlated attributes and its coefficients """ # get the data for generated ranking ranking_df = pd.read_csv(current_file+"_weightsum.csv") # get the upload data for correlation computation upload_df = pd.read_csv(current_file+".csv") numeric_atts = list(upload_df.describe().columns) X = upload_df[numeric_atts].values # no need to standardize data # scaler = StandardScaler() # transform_X = scaler.fit_transform(X) y = ranking_df[y_col].values regr = linear_model.LinearRegression(normalize=False) regr.fit(X, y) # get coeff's, ordered by significance # format weight with decile of 3 for i in range(len(regr.coef_)): regr.coef_[i] = round(regr.coef_[i], round_default) # normalize coefficients to [-1,1] max_coef = max(regr.coef_) min_coef = min(regr.coef_) abs_max = max(abs(max_coef),abs(min_coef)) stand_coef = [] for ci in regr.coef_: new_ci = round(ci/abs_max,round_default) stand_coef.append(new_ci) # coeff_zip = zip(regr.coef_, numeric_atts) coeff_zip = zip(stand_coef, numeric_atts) coeff_sorted = sorted(coeff_zip, key=lambda tup: abs(tup[0]), reverse=True) if len(coeff_sorted) > top_threshold: coeff_return = coeff_sorted[0:top_threshold] else: coeff_return = coeff_sorted # only return top_threshold most correlated attributes return coeff_return def compute_statistic_topN(chosed_atts,current_file,top_N,round_default=1): """ Compute the statistics of input attributes. Attributes: chosed_atts: list of attributes to be computed current_file: file name that stored the data (with out ".csv" suffix) top_N: size of data to be used in current_file round_default: threshold of round function for the returned statistics Return: json data of computed statistics """ # data is sorted by ranking scores from higher to lower data = pd.read_csv(current_file+"_weightsum.csv").head(top_N) statistic_data = {} # get the median data for atti in chosed_atts: cur_att_max = max(data[atti]) cur_att_median = np.median(data[atti]) cur_att_min = min(data[atti]) statistic_data[atti] = {"max": round(cur_att_max, round_default), "median": round(cur_att_median, round_default), "min": round(cur_att_min, round_default)} return statistic_data def mergeUnfairRanking(_px, _sensitive_idx, _fprob): # input is the ranking """ Generate a fair ranking. Attributes: _px: input ranking (sorted), list of ids _sensitive_idx: the index of protected group in the input ranking _fprob: probability to choose the protected group Return: generated fair ranking, list of ids """ # _px=sorted(range(len(_inputrankingscore)), key=lambda k: _inputrankingscore[k],reverse=True) rx = [x for x in _px if x not in _sensitive_idx] qx = [x for x in _px if x in _sensitive_idx] rx.reverse() # prepare for pop function to get the first element qx.reverse() res_list = [] while (len(qx) > 0 and len(rx) > 0): r_cur = random.random() # r_cur=random.uniform(0,1.1) if r_cur < _fprob: res_list.append(qx.pop()) # insert protected group first else: res_list.append(rx.pop()) if len(qx) > 0: qx.reverse() res_list = res_list + qx if len(rx) > 0: rx.reverse() res_list = res_list + rx if len(res_list) < len(_px): print("Error!") return res_list def runFairOracles(chosed_atts,current_file,alpha_default=0.05,k_threshold=200,k_percentage=0.5): """ Run all fairness oracles: FA*IR, Pairwise and Proportion Attributes: chosed_atts: list of sensitive attributes current_file: file name that stored the data (with out ".csv" suffix) alpha_default: default value of significance level in each oracle k_threshold: threshold of size of upload data to decide the top-K in FA*IR and Proportion k_percentage: threshold to help to decide the top-K in FA*IR and Proportion when upload dataset's size less than k_threshold Return: json data of fairness results of all oracles """ # data is sorted by ranking scores from higher to lower data = pd.read_csv(current_file+"_weightsum.csv") total_n = len(data) # set top K based on the size of input data # if N > 200, then set top K = 100, else set top K = 0.5*N if total_n > k_threshold: top_K = 100 else: top_K = int(np.ceil(k_percentage* total_n)) fair_res_data = {} # include all details of fairness validation fair_statement_data = {} # only include the fairness result, i.e. fair or unfair, True represents fair, False represents unfair. for si in chosed_atts: # get the unique value of this sensitive attribute values_si_att = list(data[si].unique()) # for each value, compute the current pairs and estimated fair pairs si_value_json = {} si_fair_json = {} for vi in values_si_att: # run FAIR oracle to compute its p-value and alpha_c p_value_fair,alphac_fair = computePvalueFAIR(si,vi,current_file,top_K) res_fair= p_value_fair > alphac_fair # run Pairwise orace to compute its p-value, alpha use the default value p_value_pairwise = computePvaluePairwise(si,vi,current_file) res_pairwise = p_value_pairwise > alpha_default # run Proportion oracle to compute its p-value, alpha use the default value p_value_proportion = computePvalueProportion(si,vi,current_file,top_K) res_proportion = p_value_proportion > alpha_default if not isinstance(vi, str): filled_vi = vi else: filled_vi = vi.replace(" ", "") si_value_json[filled_vi] = [p_value_fair,alphac_fair,p_value_pairwise,alpha_default,p_value_proportion,alpha_default] si_fair_json[filled_vi] = [res_fair,res_pairwise,res_proportion] if not isinstance(si, str): filled_si = si else: filled_si = si.replace(" ", "") fair_res_data[filled_si] = si_value_json fair_statement_data[filled_si] = si_fair_json return fair_res_data, fair_statement_data, alpha_default, top_K def computePvalueFAIR(att_name,att_value,current_file,top_K,round_default=2): """ Compute p-value using FA*IR oracle Attributes: att_name: sensitive attribute name att_value: value of protected group of above attribute current_file: file name that stored the data (with out ".csv" suffix) top_K: top_K value in FA*IR round_default: threshold of round function for the returned p-value Return: rounded p-value and adjusted significance level in FA*IR """ # input checked_atts includes names of checked sensitive attributes data =
pd.read_csv(current_file + "_weightsum.csv")
pandas.read_csv
import flask #import sklearn from flask import Flask,redirect, url_for, request,render_template,send_file,jsonify #from bottle import static_file import werkzeug import pandas as pd from werkzeug.utils import secure_filename from flask import get_flashed_messages from flask import flash #from werkzeug import FileWrapper #from io import BytesIO from flask import Flask, Response from flask import send_from_directory import sys global d global d1 global labs,lablist import warnings warnings.filterwarnings("ignore") app=Flask(__name__) @app.route("/viewresult/<string:name>") def viewresult(name): global d global d1 global nl global labs ,lablist import pandas as pd global th,tl,nl """ tl=int(input("enter no of types of labs in the curriculum: ")) for typ in range(tl): nty=int(input("no of labs of type {}: ".format(typ))) nl.append(nty)""" s=pd.read_csv(name) print(s.head()) #s.columns=["Unnamed: 0","Year","Course Teachers","Section","Course Name","theorey","lab","labavil","xcom","labtype","CBCS"] #for i in range(len(s)): co=s["Course Teachers"] for i in range(len(co)): co[i]=str(co[i]) if(co[i]=="nan"): co[i]=co[i-1] co[i]=str(co[i]) co[i]=co[i].replace(".","") co[i]=co[i].lower() co[i]=co[i].replace(" ","") co[i]=co[i].replace("\n","") s["Course Teachers"]=co grouped=[] data=[] s["x com"]=s["x com"].astype(float) s["theorey"]=s["theorey"].astype(float) s["labtype"]=s["labtype"].astype(float) s["lab"]=s["lab"]+(s["labavil"]*0.1) s["lab"]=s["lab"].astype(float) s.drop(columns=["labavil"],inplace=True) for i in range(len(s)): if(s["CBCS"][i]!=0): g=list(s.iloc[i,:]) g.insert(0,s["CBCS"][i]) grouped.append(g) else: data.append(list(s.iloc[i,:])) print(grouped,"---------------------------------------------------------") s.drop(s.columns[0],axis=1,inplace=True) colsn=s.columns grouped.sort() classes=[] cl=[] fl=[];col=[] t1=[] ind=0 import warnings warnings.filterwarnings("ignore") for i in range(len(grouped)-1): if(grouped[i][0]==grouped[i+1][0]): classes=grouped[i][4].split("/") for j in range(len(classes)): cl.append(grouped[i][2]+" "+classes[j]) col.append(grouped[i][5]) fl.append(grouped[i][3]) else: if("/" in grouped[i][4]): classes=grouped[i][4].split("/") for j in range(len(classes)): cl.append(grouped[i][2]+" "+classes[j]) col.append(grouped[i][5]) fl.append(grouped[i][3]) else: cl.append(grouped[i][2]+" "+grouped[i][4]) col.append(grouped[i][5]) fl.append(grouped[i][3]) k="/".join(sorted(list(set(cl))));grouped[i][2]=k;grouped[i][4]="CBCS" print(grouped[i],"***********************************************") print(fl) print(col) k1="/".join(sorted(list(set(fl))));grouped[i][3]=k1 k2="/".join(sorted(list(set(col))));grouped[i][5]=k2 t1.extend(list(set(fl))) t1.append(k1) cl=[] fl=[] col=[] ind=i cl=[] fl=[] col=[] for i in range(ind+1,len(grouped)): classes=grouped[i][4].split("/") for j in range(len(classes)): cl.append(grouped[i][2]+" "+classes[j]) col.append(grouped[i][5]) fl.append(grouped[i][3]) if(len(grouped)!=0): k1="/".join(sorted(list(set(fl))));grouped[i][3]=k1 k="/".join(sorted(list(set(cl))));grouped[i][2]=k;grouped[i][4]="CBCS" k2="/".join(sorted(list(set(col))));grouped[i][5]=k2 t1.extend(list(set(fl))) t1.append(k1) grp=[] for i in grouped: if(i[4]=="CBCS"): i.pop(0) grp.append(i) data.insert(0,i) dd=
pd.DataFrame(data)
pandas.DataFrame
import os import numpy as np import pandas as pd import statistics from datetime import datetime, timedelta def _list_build(done_list, total_list, deliveries): _case = done_list[-1] _case_list = [] while _case < total_list[-1]: _case += deliveries if _case <= total_list[-1]: _case_list.append(_case) else: if _case_list: _case_list.append( _case_list[-1]+(total_list[-1] - _case_list[-1])) else: _case_list.append(_case+(total_list[-1] - _case)) return _case_list def forecasting(df): done_list = df['done'].tolist() date_list = df['date'].tolist() total_list = df['total'].tolist() deliveries = [] if set(done_list) == {0}: return deliveries = [done_list[i] - done_list[i-1] for i in range(1, len(done_list))] deliveries.append(done_list[0]) if len(deliveries) == 0: return _pencentil50 = int(np.percentile(deliveries, 50)) _pencentil75 = int(np.percentile(deliveries, 75)) deliveries = list(set(filter(lambda a: a != 0, deliveries))) deliveries.sort() if len(deliveries) == 0: return df_best = pd.DataFrame({'date': [date_list[-1]], 'best': [done_list[-1]]}) df_worst = pd.DataFrame( {'date': [date_list[-1]], 'worst': [done_list[-1]]}) df_percentile_seventy_five = pd.DataFrame( {'date': [date_list[-1]], 'seventy_five': [done_list[-1]]}) df_percentile_fifty = pd.DataFrame( {'date': [date_list[-1]], 'fifty': [done_list[-1]]}) _best_list = _list_build(done_list, total_list, deliveries[-1]) _worst_list = _list_build(done_list, total_list, deliveries[0]) _percentile_seventy_five_list = _list_build(done_list, total_list, _pencentil75) _percentile_fifty_list = _list_build(done_list, total_list, _pencentil50) if len(date_list) > 1: _cycle_delta = datetime.strptime(date_list[1], '%d/%m/%Y') - datetime.strptime(date_list[0], '%d/%m/%Y') else: _cycle_delta = datetime.strptime(date_list[0], '%d/%m/%Y') datetime_object = datetime.strptime(date_list[-1], '%d/%m/%Y') _datetime_object = datetime_object for b in _best_list: if len(date_list) > 1: _datetime_object = _datetime_object + timedelta(days=_cycle_delta.days) else: _datetime_object = _datetime_object + timedelta(days=7) df_best = df_best.append(pd.DataFrame( {"date": [_datetime_object.strftime("%d/%m/%Y")], "best": [b], }), ignore_index=True) _datetime_object = datetime_object for w in _worst_list: _datetime_object = _datetime_object + timedelta(days=7) df_worst = df_worst.append(pd.DataFrame( {"date": [_datetime_object.strftime("%d/%m/%Y")], "worst": [w], }), ignore_index=True) _datetime_object = datetime_object for p in _percentile_seventy_five_list: if len(date_list) > 1: _datetime_object = _datetime_object + timedelta(days=_cycle_delta.days) else: _datetime_object = _datetime_object + timedelta(days=7) df_percentile_seventy_five = df_percentile_seventy_five.append(pd.DataFrame( {"date": [_datetime_object.strftime("%d/%m/%Y")], "seventy_five": [p], }), ignore_index=True) _datetime_object = datetime_object for pf in _percentile_fifty_list: if len(date_list) > 1: _datetime_object = _datetime_object + timedelta(days=_cycle_delta.days) else: _datetime_object = _datetime_object + timedelta(days=7) df_percentile_fifty = df_percentile_fifty.append(pd.DataFrame( {"date": [_datetime_object.strftime("%d/%m/%Y")], "fifty": [pf], }), ignore_index=True) df_bw = pd.merge(df_worst, df_best, how='outer', on='date') df_p = pd.merge(df_bw, df_percentile_seventy_five, how='outer', on='date') df_pf = pd.merge(df_p, df_percentile_fifty, how='outer', on='date') df_final =
pd.merge(df, df_pf, how='outer', on='date')
pandas.merge
import pandas as pd import numpy as np from numpy import float32 import matplotlib as mpl import matplotlib.pyplot as plt BUCKET_VOLUME_SIZE = 844 # to be tweated WINDOWS_LENGTH = 50 # to be tweated sum_v_tau_b_minus_s = 0 v_tau_b_mius_s = [ 0 ] * WINDOWS_LENGTH # a list to save values of |v_tau_s - v_tau_b| vpin_num = 0 vpin_df = pd.DataFrame(columns=['bucket_time', 'vpin']) def new_bucket(buy_volume, sell_volume, bucket_time): global sum_v_tau_b_minus_s, v_tau_b_mius_s, vpin_num, vpin_df sum_v_tau_b_minus_s = sum_v_tau_b_minus_s - v_tau_b_mius_s[ vpin_num % WINDOWS_LENGTH] + abs(buy_volume - sell_volume) v_tau_b_mius_s[vpin_num % WINDOWS_LENGTH] = abs(buy_volume - sell_volume) vpin_num += 1 if vpin_num >= WINDOWS_LENGTH: vpin = sum_v_tau_b_minus_s / (WINDOWS_LENGTH * BUCKET_VOLUME_SIZE) # cumulative_count_vpin = len(vpin_df[vpin >= vpin_df['vpin']]) # len_vpin = len(vpin_df) vpin_df = vpin_df.append( # add a new timeseries of VPIN (bucket_time, vpin) { 'bucket_time': bucket_time, 'vpin': vpin # 'cdf_vpin': cumulative_count_vpin / len_vpin }, ignore_index=True) # all_trades = pd.read_csv('./BTCUSDT/BINANCE_BTCUSDT_1808.csv') all_trades =
pd.read_csv('./BTCUSDT/binance_20180801.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 4 15:41:08 2020 @author: jireh.park """ # path 설정 import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) # library import pandas as pd from google.cloud import storage from appointment.appointment import * from datetime import datetime def main(): global sub_index, hot4, route, route_uni, place_list, bucket_name, save_path, file_name # gcs 인증 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = os.path.dirname( os.path.abspath(os.path.dirname(__file__))) + '/key/level-district.json' # 이름 설정 bucket_name = 'j-first-bucket' save_path = 'place/' # data setting setting_data() #print(route_uni) # calculate all place and save to gcs calculate_place() #print(data) def list_blob(bucket_name): storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blobs = list(bucket.list_blobs()) return blobs def blobs_to_dataframe(blobs): df = pd.DataFrame() for bl in blobs: if 'route_all' in bl.name: with open("tmp.txt", "wb") as file_obj: bl.download_to_file(file_obj) df = df.append(pd.read_csv("tmp.txt")) print(bl.name) else: pass return df def upload_blob(bucket_name, destination_blob_name, df): global credentials """Uploads a file to the bucket. bucket_name = "your-bucket-name" destination_blob_name = "storage-object-name" df = dataframe to save """ storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) df.to_csv("tmp.txt", encoding='utf-8', index=False) blob.upload_from_filename("tmp.txt", content_type='text/csv') print( "File uploaded to {}.".format( destination_blob_name ) ) def setting_data(): global sub_index, hot4, route, route_uni, place_list # 역번호 리스트 호출 path = "../data/" sub_index = pd.read_csv(path + "sub_index.txt", encoding = 'cp949', sep = '|', engine = 'python', dtype = str) # 핫플레이스 리스트 호출 hot4 = pd.read_csv(path + "sub_hot4.txt", sep = '|', encoding = 'cp949', dtype = str) # route 데이터 호출 blobs = list_blob(bucket_name) route = blobs_to_dataframe(blobs) # 중복제거 route_uni = route.loc[pd.DataFrame(np.sort(route[['start','destination']],1),index=route.index).drop_duplicates(keep='first').index] route_uni = route_uni.reset_index(drop = True) # 핫플레이스 역명 리스트 base = basic(df = sub_index) place_list = base.code_to_name(hot4['역번호'].tolist()) def calculate_place(): global sub_index, hot4, route, route_uni, place_list # 약속장소 산출 st = datetime.now() s1_ = 0 place_df = pd.DataFrame() for ii in range(len(route_uni)): s1 = route_uni.loc[ii, 'start'] s2 = route_uni.loc[ii, 'destination'] print("%s\t%s\t\t%3.2f\t%s" %(s1, s2, round(ii / len(route_uni) * 100, 2), str(datetime.now() - st))) if s1 != s1_: if len(place_df) > 0: file_name = "place_%s_%d" %(s1_, ii) upload_blob(bucket_name, save_path + file_name, place_df) place_df =
pd.DataFrame()
pandas.DataFrame
""" Copyright 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd class aerodynamicalBalance: def __init__(self): self.F = None # 力与力矩 self.array = None # 系数矩阵 self.angle = None def getDelta(self): pass def setLinearArray(self, array): """ 读入系数矩阵并求逆. [input] array: 测力天平系数矩阵 """ try: self.array = np.linalg.inv(array) except(np.linalg.LinAlgError): print("Error: Singular matrix.\n") print("press any key to exit...") input() exit() def reverse(self): """ 用于倒置转动的方向. """ self.F = self.F[::-1] def left_offset(self, offset): """ 用于攻角的偏移. """ self.F = np.r_[self.F[offset:], self.F[:offset]] def solve(self): self.F = np.dot(self.array, self.F.T) self.F = self.F.T def scale(self, coeff): self.F *= coeff def readTXTFromDiv5(self, filename): """ [input] filename: 测力天平输出的数据文件.txt, 要求第一行为初始标定行,其余为各风攻角数据行 例: 2021-1-28 14:13:54 -155.9 94.2 235.1 124.6 -187.1 #无风时的测量值 2021-1-28 14:22:53 -67.9 159.9 245.8 147.3 -190.5 #第1个攻角的测量值 ... 2021-1-28 14:56:16 -48.6 152.0 279.1 155.3 -192.3 #第N个攻角的测量值 """ df = [] with open(filename, 'r') as f: for line in f: if len(line.split()) < 5: continue Fx = float(line.split()[3]) # 阻力 Fy = float(line.split()[3]) # 侧力 Mx = float(line.split()[3]) My = float(line.split()[3]) Mz = float(line.split()[3]) # 扭矩 df.append([Fx, Fy, Mx, My, Mz]) df = np.array(df) print(df) self.F = (df[1:] - df[0])*9.8 print(self.F) def writeCSV(self, filename): df =
pd.DataFrame(self.F, columns=['Fx', 'Fy', 'Mx', 'My', 'Mz'])
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler def scal(): dataset = pd.read_csv('../train_cuting/train_cutting2_lstm_mean.csv') dataset['Timestamp'] = pd.to_datetime(dataset['Timestamp']) dataset = dataset.set_index('Timestamp') dataset.index.name = 'date' scaler = MinMaxScaler(feature_range=(0, 1)) values = dataset['Value'] values = values.values values = values.reshape(-1, 1) scaler.fit_transform(values) return scaler def data_process_lstm(path1=None, name1=None, path2=None, name2=None, scaler=None): if path1 == None: dataset =
pd.read_csv(name1)
pandas.read_csv
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # File called _pytest for PyCharm compatability import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_index_equal, assert_series_equal from tests.common import TestData class TestGroupbyDataFrame(TestData): funcs = ["max", "min", "mean", "sum"] filter_data = [ "AvgTicketPrice", "Cancelled", "dayOfWeek", ] ecommerce_filter_data = [ "total_quantity", "geoip.region_name", "day_of_week", "total_unique_products", "taxful_total_price", ] @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("numeric_only", [True]) def test_groupby_aggregate(self, numeric_only, dropna): # TODO Add tests for numeric_only=False for aggs # when we support aggregations on text fields pd_flights = self.pd_flights().filter(self.filter_data) ed_flights = self.ed_flights().filter(self.filter_data) pd_groupby = pd_flights.groupby("Cancelled", dropna=dropna).agg( self.funcs, numeric_only=numeric_only ) ed_groupby = ed_flights.groupby("Cancelled", dropna=dropna).agg( self.funcs, numeric_only=numeric_only ) # checking only values because dtypes are checked in aggs tests assert_frame_equal(pd_groupby, ed_groupby, check_exact=False, check_dtype=False) @pytest.mark.parametrize("pd_agg", funcs) def test_groupby_aggregate_single_aggs(self, pd_agg): pd_flights = self.pd_flights().filter(self.filter_data) ed_flights = self.ed_flights().filter(self.filter_data) pd_groupby = pd_flights.groupby("Cancelled").agg([pd_agg], numeric_only=True) ed_groupby = ed_flights.groupby("Cancelled").agg([pd_agg], numeric_only=True) # checking only values because dtypes are checked in aggs tests assert_frame_equal(pd_groupby, ed_groupby, check_exact=False, check_dtype=False) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("pd_agg", ["max", "min", "mean", "sum", "median"]) def test_groupby_aggs_numeric_only_true(self, pd_agg, dropna): # Pandas has numeric_only applicable for the above aggs with groupby only. pd_flights = self.pd_flights().filter(self.filter_data) ed_flights = self.ed_flights().filter(self.filter_data) pd_groupby = getattr(pd_flights.groupby("Cancelled", dropna=dropna), pd_agg)( numeric_only=True ) ed_groupby = getattr(ed_flights.groupby("Cancelled", dropna=dropna), pd_agg)( numeric_only=True ) # checking only values because dtypes are checked in aggs tests assert_frame_equal( pd_groupby, ed_groupby, check_exact=False, check_dtype=False, rtol=2 ) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("pd_agg", ["mad", "var", "std"]) def test_groupby_aggs_mad_var_std(self, pd_agg, dropna): # For these aggs pandas doesn't support numeric_only pd_flights = self.pd_flights().filter(self.filter_data) ed_flights = self.ed_flights().filter(self.filter_data) pd_groupby = getattr(pd_flights.groupby("Cancelled", dropna=dropna), pd_agg)() ed_groupby = getattr(ed_flights.groupby("Cancelled", dropna=dropna), pd_agg)( numeric_only=True ) # checking only values because dtypes are checked in aggs tests assert_frame_equal( pd_groupby, ed_groupby, check_exact=False, check_dtype=False, rtol=4 ) @pytest.mark.parametrize("pd_agg", ["nunique"]) def test_groupby_aggs_nunique(self, pd_agg): pd_flights = self.pd_flights().filter(self.filter_data) ed_flights = self.ed_flights().filter(self.filter_data) pd_groupby = getattr(pd_flights.groupby("Cancelled"), pd_agg)() ed_groupby = getattr(ed_flights.groupby("Cancelled"), pd_agg)() # checking only values because dtypes are checked in aggs tests assert_frame_equal( pd_groupby, ed_groupby, check_exact=False, check_dtype=False, rtol=4 ) @pytest.mark.parametrize("pd_agg", ["max", "min", "mean", "median"]) def test_groupby_aggs_numeric_only_false(self, pd_agg): pd_flights = self.pd_flights().filter(self.filter_data + ["timestamp"]) ed_flights = self.ed_flights().filter(self.filter_data + ["timestamp"]) # pandas numeric_only=False, matches with Eland numeric_only=None pd_groupby = getattr(pd_flights.groupby("Cancelled"), pd_agg)( numeric_only=False ) ed_groupby = getattr(ed_flights.groupby("Cancelled"), pd_agg)(numeric_only=None) # sum usually returns NaT for Eland, Nothing is returned from pandas # we only check timestamp field here, because remaining cols are similar to numeric_only=True tests # assert_frame_equal doesn't work well for timestamp fields (It converts into int) # so we convert it into float pd_timestamp = pd.to_numeric(pd_groupby["timestamp"], downcast="float") ed_timestamp =
pd.to_numeric(ed_groupby["timestamp"], downcast="float")
pandas.to_numeric
"""Classes for report generation and add-ons.""" import os from copy import copy import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from jinja2 import FileSystemLoader, Environment from json2html import json2html from sklearn.metrics import roc_auc_score, precision_recall_fscore_support, roc_curve, precision_recall_curve, \ average_precision_score, explained_variance_score, mean_absolute_error, \ mean_squared_error, median_absolute_error, r2_score, f1_score, precision_score, recall_score, confusion_matrix from ..utils.logging import get_logger logger = get_logger(__name__) base_dir = os.path.dirname(__file__) def extract_params(input_struct): params = dict() iterator = input_struct if isinstance(input_struct, dict) else input_struct.__dict__ for key in iterator: if key.startswith(('_', 'autonlp_params')): continue value = iterator[key] if type(value) in [bool, int, float, str]: params[key] = value elif value is None: params[key] = None elif hasattr(value, '__dict__') or isinstance(value, dict): params[key] = extract_params(value) else: params[key] = str(type(value)) return params def plot_roc_curve_image(data, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)); fpr, tpr, _ = roc_curve(data['y_true'], data['y_pred']) auc_score = roc_auc_score(data['y_true'], data['y_pred']) lw = 2 plt.plot(fpr, tpr, color='blue', lw=lw, label='Trained model'); plt.plot([0, 1], [0, 1], color='red', lw=lw, linestyle='--', label='Random model'); plt.xlim([-0.05, 1.05]); plt.ylim([-0.05, 1.05]); plt.xlabel('False Positive Rate'); plt.ylabel('True Positive Rate'); lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2); plt.xticks(np.arange(0, 1.01, 0.05), rotation=45); plt.yticks(np.arange(0, 1.01, 0.05)); plt.grid(color='gray', linestyle='-', linewidth=1); plt.title('ROC curve (GINI = {:.3f})'.format(2 * auc_score - 1)); plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight'); plt.close() return auc_score def plot_pr_curve_image(data, path): sns.set(style="whitegrid", font_scale=1.5) plt.figure(figsize=(10, 10)); precision, recall, _ = precision_recall_curve(data['y_true'], data['y_pred']) ap_score = average_precision_score(data['y_true'], data['y_pred']) lw = 2 plt.plot(recall, precision, color='blue', lw=lw, label='Trained model'); positive_rate = np.sum(data['y_true'] == 1) / data.shape[0] plt.plot([0, 1], [positive_rate, positive_rate], \ color='red', lw=lw, linestyle='--', label='Random model'); plt.xlim([-0.05, 1.05]); plt.ylim([0.45, 1.05]); plt.xlabel('Recall'); plt.ylabel('Precision'); lgd = plt.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=2); plt.xticks(np.arange(0, 1.01, 0.05), rotation=45); plt.yticks(np.arange(0, 1.01, 0.05)); plt.grid(color='gray', linestyle='-', linewidth=1); plt.title('PR curve (AP = {:.3f})'.format(ap_score)); plt.savefig(path, bbox_extra_artists=(lgd,), bbox_inches='tight'); plt.close() def plot_preds_distribution_by_bins(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(figsize=(16, 10)) box_plot_data = [] labels = [] for name, group in data.groupby('bin'): labels.append(name) box_plot_data.append(group['y_pred'].values) box = axs.boxplot(box_plot_data, patch_artist=True, labels=labels) for patch in box['boxes']: patch.set_facecolor('green') axs.set_yscale('log') axs.set_xlabel('Bin number') axs.set_ylabel('Prediction') axs.set_title('Distribution of object predictions by bin') fig.savefig(path, bbox_inches='tight'); plt.close() def plot_distribution_of_logits(data, path): sns.set(style="whitegrid", font_scale=1.5) fig, axs = plt.subplots(figsize=(16, 10)) data['proba_logit'] = np.log(data['y_pred'].values / (1 - data['y_pred'].values)) sns.kdeplot(data[data['y_true'] == 0]['proba_logit'], shade=True, color="r", label='Class 0 logits', ax=axs) sns.kdeplot(data[data['y_true'] == 1]['proba_logit'], shade=True, color="g", label='Class 1 logits', ax=axs) axs.set_xlabel('Logits') axs.set_ylabel('Density') axs.set_title('Logits distribution of object predictions (by classes)'); fig.savefig(path, bbox_inches='tight'); plt.close() def plot_pie_f1_metric(data, F1_thresh, path): tn, fp, fn, tp = confusion_matrix(data['y_true'], (data['y_pred'] > F1_thresh).astype(int)).ravel() (_, prec), (_, rec), (_, F1), (_, _) = precision_recall_fscore_support(data['y_true'], (data['y_pred'] > F1_thresh).astype(int)) sns.set(style="whitegrid", font_scale=1.5) fig, ax = plt.subplots(figsize=(20, 10), subplot_kw=dict(aspect="equal")) recipe = ["{} True Positives".format(tp), "{} False Positives".format(fp), "{} False Negatives".format(fn), "{} True Negatives".format(tn)] wedges, texts = ax.pie([tp, fp, fn, tn], wedgeprops=dict(width=0.5), startangle=-40) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-", color='k'), bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1) / 2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax.annotate(recipe[i], xy=(x, y), xytext=(1.35 * np.sign(x), 1.4 * y), horizontalalignment=horizontalalignment, **kw) ax.set_title( "Trained model: Precision = {:.2f}%, Recall = {:.2f}%, F1-Score = {:.2f}%".format(prec * 100, rec * 100, F1 * 100)) plt.savefig(path, bbox_inches='tight'); plt.close() return prec, rec, F1 def f1_score_w_co(data, min_co=.01, max_co=.99, step=0.01): data['y_pred'] = np.clip(np.ceil(data['y_pred'].values / step) * step, min_co, max_co) pos = data['y_true'].sum() neg = data['y_true'].shape[0] - pos grp =
pd.DataFrame(data)
pandas.DataFrame
import sys from itertools import chain import pandas as pd import numpy as np from sklearn.metrics import log_loss from sklearn.preprocessing import StandardScaler from models import EnsembleXGBoostClassifier from models import EnsembleLightGBMClassifier from models import EnsembleNNClassifier np.random.seed = 13 ### Parameters of ensembles num_ensembles = 25 submits_in_ensemble_min = 0.2 submits_in_ensemble_max = 0.8 features_in_ensemble_min = 0.3 features_in_ensemble_max = 0.8 ##! Parameters of ensembles def get_random_model(input_dim): models = [ EnsembleXGBoostClassifier(), EnsembleLightGBMClassifier(), EnsembleNNClassifier(input_dim) ] probas = [0.5, 0.5, 0.0] return np.random.choice(models, p=probas) submits = ['0' + str(i) for i in chain( range(43, 54), range(55, 61), range(62, 66), range(70, 81), range(82, 85) ) ] submits_cv = [pd.read_csv('../submits_cv/submission_cv_' + submit + '.csv') for submit in submits] submits_lb = [pd.read_csv('../submits/submission_' + submit + '.csv') for submit in submits] meta_cv =
pd.read_csv('./train_metadata.csv')
pandas.read_csv
from io import StringIO import os import numpy as np import pandas as pd from .. import fem_attribute class ListStringSeries(): def __init__(self, list_string_series): self._list_string_series = list_string_series return def __len__(self): return len(self._list_string_series) def __getitem__(self, key): if isinstance(key, int): return self._list_string_series[key] elif isinstance(key, list): return [self[i] for i in key] else: raise ValueError(f"Unexpected key: {key}") def strip(self): return [s.strip() for s in self] def expand_include(self, pattern, base_name): return [s.expand_include(pattern, base_name) for s in self] class StringSeries(pd.Series): def __init__(self, *args, **kw): if len(args) == 0 or len(args[0]) == 0: kw['dtype'] = object super().__init__(*args, **kw) @property def _constructor(self): return StringSeries @classmethod def read_file(cls, file_name, *, pattern_ignore=None): """Read file and convert to numpy string array. Args: file_name: String of file name. pattern_ignore: String to be used for ignore unecessary line e.g. comment. Returns: StringDataFrame object. Each component corresponds to each line of the input file. """ print(f"Reading file: {file_name}") s = pd.read_csv( file_name, header=None, index_col=None, sep='@', dtype=str)[0] # sep='@' because don't want to separate if pattern_ignore is None: return cls(s) else: return cls(s).find_match( pattern_ignore, negative_match=True) @classmethod def read_files(cls, file_names, *, pattern_ignore=None, separate=False): """Read files. Args: file_names: Array of strings indicating file names. pattern_ignore: String to be used for ignore unecessary line e.g. comment. separate: bool If True, return separated contents, namely, ListStringSeries object. Returns: StringDataFrame object. Each component corresponds to each line of input files (contents are concatenated). """ if separate: list_string_series = ListStringSeries([ cls.read_file(file_name, pattern_ignore=pattern_ignore) for file_name in file_names]) if len(list_string_series) == 1: return list_string_series[0] else: return list_string_series else: return cls(pd.concat([ cls.read_file(file_name, pattern_ignore=pattern_ignore) for file_name in file_names])) @classmethod def read_array(cls, _array, *, delimiter=',', str_format=None): """Read array to make StringSeries object. Args: array: Ndarray or list of NDarray to make StringSeries object. delimiter: String indicating delimiter to connect components in a raw (default: ','). str_format: Format string to be passed to numpy.savetxt. Returns: StringSeries object after reading arrays. """ array = np.asarray(_array) if str_format is None and 'float' in str(array.dtype): str_format = '%.8E' if len(array.shape) == 1: if str_format is None: try: str_array = array.astype(str) return cls(str_array) except ValueError: return cls.read_array( array[:, None], delimiter=delimiter, str_format=str_format) else: sio = StringIO() np.savetxt(sio, array, fmt=str_format) return cls(sio.getvalue().split('\n')[:-1]) elif len(array.shape) == 2 and array.shape[1] == 1: if str_format is None: try: converted_array = array.astype(str) # Array can be converted to other types return cls(converted_array[:, 0]) except ValueError: # Array is realy object return cls(np.array([ '\n'.join(delimiter.join(a) for a in arr.astype(str)) for arr in array[:, 0] ])) else: sio = StringIO() np.savetxt(sio, array[:, 0], fmt=str_format) return cls(sio.getvalue().split('\n')[:-1]) elif len(array.shape) > 2: raise ValueError(f"Too high dimensions: {array.shape}") else: pass a0 = array[:, 0] if str_format is None: s = cls(a0.astype(str)) for a in array[:, 1:].T: s = s.connect(a.astype(str)) else: sio = StringIO() np.savetxt(sio, a0, fmt=str_format) s = cls(sio.getvalue().split('\n')[:-1]) for a in array[:, 1:].T: sio = StringIO() np.savetxt(sio, a, fmt=str_format) s = s.connect(sio.getvalue().split('\n')[:-1]) return s @classmethod def connect_all(cls, list_data, delimiter=',', str_format=None): if len(list_data) == 0: return cls() if str_format is None: str_format = [None] * len(list_data) elif isinstance(str_format, str): str_format = [str_format] * len(list_data) if len(list_data) != len(str_format): raise ValueError( 'When str_format is list, the length should be' 'the same as that of list_data' f"({len(str_format)} vs {len(list_data)})") s = cls.read_array(list_data[0], str_format=str_format[0]) for d, f in zip(list_data[1:], str_format[1:]): s = s.connect( cls.read_array(d, str_format=f), delimiter=delimiter) return s @classmethod def concat(cls, list_data, axis=0): return cls(pd.concat(list_data, axis=axis)) def to_header_data(self, pattern): matches = self.str.match(pattern).values headers = self[matches] match_indices = np.concatenate([np.where(matches)[0], [len(self)]]) list_indices = [ range(i1+1, i2) for i1, i2 in zip(match_indices[:-1], match_indices[1:])] return HeaderData(headers, list_indices, data=self) # header_dict = { # header: self[i1+1:i2] for header, i1, i2 # in zip(headers, match_indices[:-1], match_indices[1:])} # return HeaderData(header_dict) def strip(self): return self.str.strip() def extract_captures(self, pattern, *, convert_values=False): captures = self.str.extract(pattern, expand=False) captures = captures[~pd.isnull(captures)] if convert_values: return captures.values else: return captures def find_match(self, pattern, *, allow_multiple_matches=True, convert_values=False, negative_match=False): """Find match to the specified pattern. Args: pattern: Pattern to be used for matching. allow_multiple_matches: True to accept several matches. (Default = True) convert_values: Bool, [True] Flag to convert StringSeries to values Returns: StringSeries or ndarray of matches. """ if negative_match: match = self[~self.str.contains(pattern)] else: match = self[self.str.contains(pattern)] if not allow_multiple_matches and len(match) > 1: raise ValueError(f"{len(match)} matches found. Expected 1.") if convert_values: return match.values else: return match def expand_include(self, pattern, base_name): """Expand data like 'include' statement. Expanded data is concatenated at the end of the non-expanded data. Args: pattern: Pattern showing include statement. Include file should be captured with the first expression. base_name: Directory name of the include file location. Returns: StringSeries object after expansion. """ captures = self.extract_captures(pattern) include_files = [os.path.join(base_name, c) for c in captures] if len(include_files) == 0: return self include_ss = StringSeries.read_files(include_files) return
pd.concat([self, include_ss], ignore_index=True)
pandas.concat
from __future__ import division, print_function import numpy as np import pandas as pd from scipy.stats import skew from sklearn.preprocessing import RobustScaler from sklearn.linear_model import LassoCV,RidgeCV from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR from sklearn.model_selection import cross_val_score, train_test_split from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasRegressor from keras.layers.core import Dropout #first attempt at a kaggle competition, experiment with different regressors and follow some of the advice in #kernels. def load_and_preprocess(): """ Load the data (either train.csv or test.csv) and pre-process it with some simple transformations. Return in the correct form for usage in scikit-learn. Arguments --------- filestr: string string pointing to csv file to load into pandas Returns ------- X_train: numpy.array array containing features of training set X_test: numpy.array array containing features of test set y: numpy.array array containing labels for training set test_ID: numpy.array IDs for test set, for submission """ train =
pd.read_csv("data/train.csv")
pandas.read_csv
import pandas as pd import numpy as np #################################################################################################################### # preprocess ACS data between 2012 to 2017 table_dict = {"total_population": {"table": "B01003", "zip": "GEO.id2", "variable":"HD01_VD01"}, "median_household_income": {"table": "B19013", "zip": "GEO.id2", "variable":"HD01_VD01"}, "gini_index": {"table": "B19083", "zip": "GEO.id2", "variable":"HD01_VD01"}, "health_coverage_population": {"table": "B992701", "zip": "GEO.id2", "variable":"HD01_VD02"}, "same_house": {"table": "B07012", "zip": "GEO.id2", "variable":"HD01_VD06"}, "poverty_rate": {"table": "S1701", "zip": "GEO.id2", "variable":"HC02_EST_VC01"}} unemp_dict = {"unemployment_rate": {"table": "S2301", "zip": "GEO.id2", "variable":"HC04_EST_VC01"}, "unemployment_rate2": {"table": "DP03", "zip": "GEO.id2", "variable":"HC03_VC07"}} def read_ACS(year_list, table_dict, unemp_dict): ''' ''' data_dict = {} for year in year_list: for t_name, value in table_dict.items(): if (year == 13) and (t_name == "same_house"): pass else: table_name = t_name + str(year) df = pd.read_csv(r"..\data\ACS_final\ACS_" + str(year) + "_" + \ value["table"] + "_" + t_name + ".csv") data_dict[table_name] = [df.iloc[1:], value] if year <= 14: emp_table_name = "unemployment_rate" + str(year) df = pd.read_csv(r"..\data\ACS_final\ACS_" + str(year) + "_" + \ unemp_dict["unemployment_rate"]["table"] + "_" + "unemployment_rate" + ".csv") data_dict[emp_table_name] = [df.iloc[1:], unemp_dict["unemployment_rate"]] else: emp_table_name = "unemployment_rate" + str(year) df = pd.read_csv(r"..\data\ACS_final\ACS_" + str(year) + "_" + \ unemp_dict["unemployment_rate2"]["table"] + "_" + "unemployment_rate" + ".csv") data_dict[emp_table_name] = [df.iloc[1:], unemp_dict["unemployment_rate2"]] return data_dict def ACS_select(df_dict): ''' ''' new_df_dict = {} yearly_data = {} for df_name, df_value in df_dict.items(): variable, year = df_name[:-2], df_name[-2:] df_v = df_value[1] df = df_value[0][[df_v["zip"], df_v["variable"]]] new_df_dict[df_name] = {df_v["zip"]:"zipcode", df_v["variable"]:variable} df = df.rename(columns=new_df_dict[df_name]) if year not in yearly_data: yearly_data[year] = df else: yearly_data[year] = pd.merge(df, yearly_data[year], left_on="zipcode", right_on="zipcode") same_home13 = pd.DataFrame({"zipcode": yearly_data["13"]["zipcode"],"same_house":([np.nan] * yearly_data["13"].shape[0])}) yearly_data["13"] =
pd.merge(yearly_data["13"], same_home13, left_on="zipcode", right_on="zipcode")
pandas.merge
# This file uses RNN model for making predictions about diagnostic labels. # Note that the output of this file is generated models. File 'sim/rnn_label_pred.py' # should be used on the output of this file to make predictions about diagnostic labels. import sys from multiprocessing.pool import Pool from actionflow.data.data_process import DataProcess from actionflow.rnn.lstm_beh import LSTMBeh from actionflow.rnn.opt_beh import OptBEH from actionflow.util.helper import get_total_pionts from actionflow.util.logger import LogFile, DLogger from BD.data.data_reader import DataReader from BD.util.paths import Paths import tensorflow as tf import pandas as pd cv_counts = 10 cv_lists_group = {} data = DataReader.read_BD() for group in data['diag'].unique().tolist(): gdata = data.loc[data.diag == group] ids = gdata['id'].unique().tolist() cv_lists = [] dftr =
pd.DataFrame({'id': ids, 'train': 'train'})
pandas.DataFrame
"""hgboost: Hyperoptimized Gradient Boosting library. Contributors: https://github.com/erdogant/hgboost """ import warnings warnings.filterwarnings("ignore") import classeval as cle from df2onehot import df2onehot import treeplot as tree import colourmap import pypickle import os import numpy as np import pandas as pd import wget from sklearn.metrics import mean_squared_error, cohen_kappa_score, mean_absolute_error, log_loss, roc_auc_score, f1_score, r2_score from sklearn.ensemble import VotingClassifier, VotingRegressor import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score import xgboost as xgb import catboost as ctb try: import lightgbm as lgb except: pass from hyperopt import fmin, tpe, STATUS_OK, Trials, hp from tqdm import tqdm import time import copy # %% class hgboost: """Create a class hgboost that is instantiated with the desired method.""" def __init__(self, max_eval=250, threshold=0.5, cv=5, test_size=0.2, val_size=0.2, top_cv_evals=10, is_unbalance=True, random_state=None, n_jobs=-1, verbose=3): """Initialize hgboost with user-defined parameters. Parameters ---------- max_eval : int, (default : 250) Search space is created on the number of evaluations. threshold : float, (default : 0.5) Classification threshold. In case of two-class model this is 0.5 cv : int, optional (default : 5) Cross-validation. Specifying the test size by test_size. top_cv_evals : int, (default : 10) Number of top best performing models that is evaluated. If set to None, each iteration (max_eval) is tested. If set to 0, cross validation is not performed. test_size : float, (default : 0.2) Splitting train/test set with test_size=0.2 and train=1-test_size. val_size : float, (default : 0.2) Setup the validation set. This part is kept entirely separate from the test-size. is_unbalance : Bool, (default: True) Control the balance of positive and negative weights, useful for unbalanced classes. xgboost clf : sum(negative instances) / sum(positive instances) catboost clf : sum(negative instances) / sum(positive instances) lightgbm clf : balanced False: grid search random_state : int, (default : None) Fix the random state for validation set and test set. Note that is not used for the crossvalidation. n_jobs : int, (default : -1) The number of jobs to run in parallel for fit. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. verbose : int, (default : 3) Print progress to screen. 0: None, 1: ERROR, 2: WARN, 3: INFO, 4: DEBUG, 5: TRACE Returns ------- None. References ---------- * https://github.com/hyperopt/hyperopt * https://www.districtdatalabs.com/parameter-tuning-with-hyperopt * https://scikit-learn.org/stable/modules/model_evaluation.html """ if (threshold is None) or (threshold <= 0): raise ValueError('[hgboost] >Error: [threshold] must be >0 and not [None]') if (max_eval is None) or (max_eval <= 0): max_eval=1 if top_cv_evals is None: max_eval=0 if (test_size is None) or (test_size <= 0): raise ValueError('[hgboost] >Error: test_size must be >0 and not [None] Note: the final model is learned on the entire dataset. [test_size] may help you getting a more robust model.') if (val_size is not None) and (val_size<=0): val_size=None self.max_eval=max_eval self.top_cv_evals=top_cv_evals self.threshold=threshold self.test_size=test_size self.val_size=val_size self.algo=tpe.suggest self.cv=cv self.random_state=random_state self.n_jobs=n_jobs self.verbose=verbose self.is_unbalance = is_unbalance def _fit(self, X, y, pos_label=None): """Fit the best performing model. Description ----------- Minimize a function over a hyperparameter space. More realistically: *explore* a function over a hyperparameter space according to a given algorithm, allowing up to a certain number of function evaluations. As points are explored, they are accumulated in "trials". Parameters ---------- X : pd.DataFrame Input dataset. y : array-like. Response variable. pos_label : string/int. In case of classification (_clf), the model will be fitted on the pos_label that is in y. Returns ------- results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ # Check input data X, y, self.pos_label=_check_input(X, y, pos_label, self.method, verbose=self.verbose) # Recaculate test size. This should be the percentage of the total dataset after removing the validation set. if (self.val_size is not None) and (self.val_size > 0): self.test_size = np.round((self.test_size * X.shape[0]) / (X.shape[0] - (self.val_size * X.shape[0])), 2) # Print to screen if self.verbose>=3: print('[hgboost] >method: %s' %(self.method)) print('[hgboost] >eval_metric: %s' %(self.eval_metric)) print('[hgboost] >greater_is_better: %s' %(self.greater_is_better)) # Set validation set self._set_validation_set(X, y) # Find best parameters self.model, self.results=self._HPOpt() # Fit on all data using best parameters if self.verbose>=3: print('[hgboost] >Retrain [%s] on the entire dataset with the optimal parameters settings.' %(self.method)) self.model.fit(X, y) # Return return self.results def _classification(self, X, y, eval_metric, greater_is_better, params): # Gather for method, the default metric and greater is better. self.eval_metric, self.greater_is_better =_check_eval_metric(self.method, eval_metric, greater_is_better) # Import search space for the specific function if params == 'default': params = _get_params(self.method, eval_metric=self.eval_metric, y=y, pos_label=self.pos_label, is_unbalance=self.is_unbalance, verbose=self.verbose) self.space = params # Fit model self.results = self._fit(X, y, pos_label=self.pos_label) # Fin if self.verbose>=3: print('[hgboost] >Fin!') def _regression(self, X, y, eval_metric, greater_is_better, params): # Gather for method, the default metric and greater is better. self.eval_metric, self.greater_is_better = _check_eval_metric(self.method, eval_metric, greater_is_better) # Import search space for the specific function if params == 'default': params = _get_params(self.method, eval_metric=self.eval_metric, verbose=self.verbose) self.space = params # Fit model self.results = self._fit(X, y) # Fin if self.verbose>=3: print('[hgboost] >Fin!') def xgboost_reg(self, X, y, eval_metric='rmse', greater_is_better=False, params='default'): """Xgboost Regression with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame. Input dataset. y : array-like Response variable. eval_metric : str, (default : 'rmse'). Evaluation metric for the regressor model. * 'rmse': root mean squared error. * 'mse': mean squared error. * 'mae': mean absolute error. greater_is_better : bool (default : False). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. params : dict, (default : 'default'). Hyper parameters. Returns ------- results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost regression..') # Method self.method='xgb_reg' # Run method self._regression(X, y, eval_metric, greater_is_better, params) # Return return self.results def lightboost_reg(self, X, y, eval_metric='rmse', greater_is_better=False, params='default'): """Light Regression with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame. Input dataset. y : array-like. Response variable. eval_metric : str, (default : 'rmse'). Evaluation metric for the regressor model. * 'rmse': root mean squared error. * 'mse': mean squared error. * 'mae': mean absolute error. greater_is_better : bool (default : False). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. params : dict, (default : 'default'). Hyper parameters. Returns ------- results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost regression..') # Method self.method='lgb_reg' # Run method self._regression(X, y, eval_metric, greater_is_better, params) # Return return self.results def catboost_reg(self, X, y, eval_metric='rmse', greater_is_better=False, params='default'): """Catboost Regression with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame. Input dataset. y : array-like. Response variable. eval_metric : str, (default : 'rmse'). Evaluation metric for the regressor model. * 'rmse': root mean squared error. * 'mse': mean squared error. * 'mae': mean absolute error. greater_is_better : bool (default : False). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. params : dict, (default : 'default'). Hyper parameters. Returns ------- results : dict. * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost regression..') # Method self.method='ctb_reg' # Run method self._regression(X, y, eval_metric, greater_is_better, params) # Return return self.results def xgboost(self, X, y, pos_label=None, method='xgb_clf', eval_metric=None, greater_is_better=None, params='default'): """Xgboost Classification with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame. Input dataset. y : array-like. Response variable. pos_label : string/int. Fit the model on the pos_label that that is in [y]. method : String, (default : 'auto'). * 'xgb_clf': XGboost two-class classifier * 'xgb_clf_multi': XGboost multi-class classifier eval_metric : str, (default : None). Evaluation metric for the regressor of classification model. * 'auc': area under ROC curve (default for two-class) * 'kappa': (default for multi-class) * 'f1': F1-score * 'logloss' * 'auc_cv': Compute average auc per iteration in each cross. This approach is computational expensive. greater_is_better : bool. If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. * auc : True -> two-class * kappa : True -> multi-class Returns ------- results : dict. * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost classification..') self.method = method self.pos_label = pos_label # Run method self._classification(X, y, eval_metric, greater_is_better, params) # Return return self.results def catboost(self, X, y, pos_label=None, eval_metric='auc', greater_is_better=True, params='default'): """Catboost Classification with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame. Input dataset. y : array-like. Response variable. pos_label : string/int. Fit the model on the pos_label that that is in [y]. eval_metric : str, (default : 'auc'). Evaluation metric for the regressor of classification model. * 'auc': area under ROC curve (default for two-class) * 'kappa': (default for multi-class) * 'f1': F1-score * 'logloss' * 'auc_cv': Compute average auc per iteration in each cross. This approach is computational expensive. greater_is_better : bool (default : True). If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. Returns ------- results : dict. * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost classification..') self.method = 'ctb_clf' self.pos_label = pos_label # Run method self._classification(X, y, eval_metric, greater_is_better, params) # Return return self.results def lightboost(self, X, y, pos_label=None, eval_metric='auc', greater_is_better=True, params='default'): """Lightboost Classification with parameter hyperoptimization. Parameters ---------- X : pd.DataFrame Input dataset. y : array-like Response variable. pos_label : string/int. Fit the model on the pos_label that that is in [y]. eval_metric : str, (default : 'auc') Evaluation metric for the regressor of classification model. * 'auc': area under ROC curve (default for two-class) * 'kappa': (default for multi-class) * 'f1': F1-score * 'logloss' * 'auc_cv': Compute average auc per iteration in each cross. This approach is computational expensive. greater_is_better : bool (default : True) If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. Returns ------- results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ if self.verbose>=3: print('[hgboost] >Start hgboost classification..') self.method = 'lgb_clf' self.pos_label = pos_label # Run method self._classification(X, y, eval_metric, greater_is_better, params) # Return return self.results def ensemble(self, X, y, pos_label=None, methods=['xgb_clf', 'ctb_clf', 'lgb_clf'], eval_metric=None, greater_is_better=None, voting='soft'): """Ensemble Classification with parameter hyperoptimization. Description ----------- Fit best model for xgboost, catboost and lightboost, and then combine the individual models to a new one. Parameters ---------- X : pd.DataFrame Input dataset. y : array-like Response variable. pos_label : string/int. Fit the model on the pos_label that that is in [y]. methods : list of strings, (default : ['xgb_clf','ctb_clf','lgb_clf']). The models included for the ensemble classifier or regressor. The clf and reg models can not be combined. * ['xgb_clf','ctb_clf','lgb_clf'] * ['xgb_reg','ctb_reg','lgb_reg'] eval_metric : str, (default : 'auc') Evaluation metric for the regressor of classification model. * 'auc': area under ROC curve (two-class classification : default) greater_is_better : bool (default : True) If a loss, the output of the python function is negated by the scorer object, conforming to the cross validation convention that scorers return higher values for better models. * auc : True -> two-class voting : str, (default : 'soft') Combining classifier using a voting scheme. * 'hard': using predicted classes. * 'soft': using the Probabilities. Returns ------- results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * model: Ensemble of the best performing models. * val_results: Results on independent validation dataset. """ # Store parameters in object self.results = {} self.voting = voting self.methods = methods if np.all(list(map(lambda x: 'clf' in x, methods))): if self.verbose>=3: print('[hgboost] >Create ensemble classification model..') self.method = 'ensemble_clf' elif np.all(list(map(lambda x: 'reg' in x, methods))): if self.verbose>=3: print('[hgboost] >Create ensemble regression model..') self.method = 'ensemble_reg' else: raise ValueError('[hgboost] >Error: The input [methods] must be of type "_clf" or "_reg" but can not be combined.') # Check input data X, y, self.pos_label = _check_input(X, y, pos_label, self.method, verbose=self.verbose) # Gather for method, the default metric and greater is better. self.eval_metric, self.greater_is_better = _check_eval_metric(self.method, eval_metric, greater_is_better) # Store the clean initialization in hgb hgb = copy.copy(self) # Create independent validation set. if self.method == 'ensemble_clf': X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=self.val_size, random_state=self.random_state, shuffle=True, stratify=y) else: X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=self.val_size, random_state=self.random_state, shuffle=True) # Hyperparameter optimization for boosting models models = [] for method in methods: # Make copy of clean init hgbM = copy.copy(hgb) hgbM.method = method hgbM._classification(X_train, y_train, eval_metric, greater_is_better, 'default') # Store models.append((method, copy.copy(hgbM.model))) self.results[method] = {} self.results[method]['model'] = copy.copy(hgbM) # Create the ensemble model if self.verbose>=3: print('[hgboost] >Fit ensemble model with [%s] voting..' %(self.voting)) if self.method == 'ensemble_clf': model = VotingClassifier(models, voting=voting, n_jobs=self.n_jobs) model.fit(X, y==pos_label) else: model = VotingRegressor(models, n_jobs=self.n_jobs) model.fit(X, y) # Store ensemble model self.model = model # Validation error for the ensemble model if self.verbose>=3: print('[hgboost] >Evalute [ensemble] model on independent validation dataset (%.0f samples, %.2g%%)' %(len(y_val), self.val_size * 100)) # Evaluate results on the same validation set val_score, val_results = self._eval(X_val, y_val, model, verbose=2) if self.verbose>=3: print('[hgboost] >[Ensemble] [%s]: %.4g on independent validation dataset' %(self.eval_metric, val_score['loss'])) # Validate each of the independent methods to show differences in loss-scoring if self.val_size is not None: self.X_val = X_val self.y_val = y_val for method in methods: # Evaluation val_score_M, val_results_M = self._eval(X_val, y_val, self.results[method]['model'].model, verbose=2) # Store self.results[method]['loss'] = val_score_M['loss'] self.results[method]['val_results'] = val_results_M if self.verbose>=3: print('[hgboost] >[%s] [%s]: %.4g on independent validation dataset' %(method, self.eval_metric, val_score_M['loss'])) # Store self.results['val_results'] = val_results self.results['model'] = model # self.results['summary'] = pd.concat([hgbX.results['summary'], hgbC.results['summary'], hgbL.results['summary']]) # Return return self.results def _set_validation_set(self, X, y): """Set the validation set. Description ----------- Here we separate a small part of the data as the validation set. * The new data is stored in self.X and self.y * The validation X and y are stored in self.X_val and self.y_val """ if self.verbose>=3: print('[hgboost] >Total dataset: %s ' %(str(X.shape))) if (self.val_size is not None): if '_clf' in self.method: self.X, self.X_val, self.y, self.y_val = train_test_split(X, y, test_size=self.val_size, random_state=self.random_state, shuffle=True, stratify=y) elif '_reg' in self.method: self.X, self.X_val, self.y, self.y_val = train_test_split(X, y, test_size=self.val_size, random_state=self.random_state, shuffle=True) if self.verbose>=3: print('[hgboost] >Validation set: %s ' %(str(self.X_val.shape))) else: self.X = X self.y = y self.X_val = None self.y_val = None def _HPOpt(self): """Hyperoptimization of the search space. Description ----------- Minimize a function over a hyperparameter space. More realistically: *explore* a function over a hyperparameter space according to a given algorithm, allowing up to a certain number of function evaluations. As points are explored, they are accumulated in "trials". Returns ------- model : object Fitted model. results : dict * best_params: Best performing parameters. * summary: Summary of the models with the loss and other variables. * trials: All model results. * model: Best performing model. * val_results: Results on independent validation dataset. """ # Import the desired model-function for the classification/regression disable = (False if (self.verbose<3) else True) fn = getattr(self, self.method) # Split train-test set. This set is used for parameter optimization. Note that parameters are shuffled and the train-test set is retained constant. # This will make the comparison across parameters and not differences in train-test variances. if '_clf' in self.method: self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=self.random_state, shuffle=True, stratify=self.y) elif '_reg' in self.method: self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=self.random_state, shuffle=True) if self.verbose>=3: print('[hgboost] >Train-set: %s ' %(str(self.X_train.shape))) if self.verbose>=3: print('[hgboost] >Test-set: %s ' %(str(self.X_test.shape))) if self.verbose>=3: print('[hgboost] >Hyperparameter optimization..') # Hyperoptimization to find best performing model. Set the trials which is the object where all the HPopt results are stored. trials=Trials() best_params = fmin(fn=fn, space=self.space, algo=self.algo, max_evals=self.max_eval, trials=trials, show_progressbar=disable) # Summary results results_summary, model = self._to_df(trials, verbose=self.verbose) # Cross-validation over the top n models. To speed up we can decide to further test only the best performing ones. The best performing model is returned. if self.cv is not None: model, results_summary, best_params = self._cv(results_summary, self.space, best_params) # Create a basic model by using default parameters. space_basic = {} space_basic['fit_params'] = {'verbose': 0} space_basic['model_params'] = {} model_basic = getattr(self, self.method) model_basic = fn(space_basic)['model'] comparison_results = {} # Validation error val_results = None if (self.val_size is not None): if self.verbose>=3: print('[hgboost] >Evalute best [%s] model on validation dataset (%.0f samples, %.2g%%)' %(self.method, len(self.y_val), self.val_size * 100)) # Evaluate results val_score, val_results = self._eval(self.X_val, self.y_val, model, verbose=2) val_score_basic, val_results_basic = self._eval(self.X_val, self.y_val, model_basic, verbose=2) comparison_results['Model with HyperOptimized parameters (validation set)'] = val_results comparison_results['Model with default parameters (validation set)'] = val_results_basic if self.verbose>=3: print('[hgboost] >[%s]: %.4g using HyperOptimized parameters on validation set.' %(self.eval_metric, val_score['loss'])) if self.verbose>=3: print('[hgboost] >[%s]: %.4g using default (not optimized) parameters on validation set.' %(self.eval_metric, val_score_basic['loss'])) # Store validation results results_summary = _store_validation_scores(results_summary, best_params, model_basic, val_score_basic, val_score, self.greater_is_better) # Remove the model column del results_summary['model'] # Store results = {} results['params'] = best_params results['summary'] = results_summary results['trials'] = trials results['model'] = model results['val_results'] = val_results results['comparison_results'] = comparison_results # Return return model, results def _cv(self, results_summary, space, best_params): ascending = False if self.greater_is_better else True results_summary['loss_mean'] = np.nan results_summary['loss_std'] = np.nan # Determine maximum folds top_cv_evals = np.minimum(results_summary.shape[0], self.top_cv_evals) idx = results_summary['loss'].sort_values(ascending=ascending).index[0:top_cv_evals] if self.verbose>=3: print('[hgboost] >%.0d-fold cross validation for the top %.0d scoring models, Total nr. tests: %.0f' %(self.cv, len(idx), self.cv * len(idx))) disable = (True if (self.verbose==0 or self.verbose>3) else False) # Run over the top-scoring models. for i in tqdm(idx, disable=disable): scores = [] # Run over the cross-validations for k in np.arange(0, self.cv): # Split train-test set if '_clf' in self.method: self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=None, shuffle=True, stratify=self.y) elif '_reg' in self.method: self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=self.test_size, random_state=None, shuffle=True) # Evaluate model score, _ = self._train_model(results_summary['model'].iloc[i], space) score.pop('model') scores.append(score) # Store mean and std summary results_summary['loss_mean'].iloc[i] = pd.DataFrame(scores)['loss'].mean() results_summary['loss_std'].iloc[i] = pd.DataFrame(scores)['loss'].std() # Negate scoring if required. The hpopt is optimized for loss functions (lower is better). Therefore we need to set eg the auc to negative and here we need to return. if self.greater_is_better: results_summary['loss_mean'] = results_summary['loss_mean'] * -1 idx_best = results_summary['loss_mean'].argmax() else: idx_best = results_summary['loss_mean'].argmin() # Get best performing model based on the mean scores. model = results_summary['model'].iloc[idx_best] results_summary['best_cv'] = False results_summary['best_cv'].iloc[idx_best] = True # Collect best parameters for this model best_params = dict(results_summary.iloc[idx_best, np.isin(results_summary.columns, [*best_params.keys()])]) # Return return model, results_summary, best_params def _train_model(self, model, space): verbose = 2 if self.verbose<=3 else 3 # Evaluation is determine for both training and testing set. These results can plotted after finishing. eval_set = [(self.X_train, self.y_train), (self.X_test, self.y_test)] # Make fit with stopping-rule to avoid overfitting. Directly perform evaluation with the eval_set. model.fit(self.X_train, self.y_train, eval_set=eval_set, **space['fit_params']) # Evaluate results out, eval_results = self._eval(self.X_test, self.y_test, model, verbose=verbose) # Return return out, eval_results def xgb_reg(self, space): """Train Xgboost regression model.""" reg = xgb.XGBRegressor(**space['model_params'], n_jobs=self.n_jobs, verbosity=0) out, _ = self._train_model(reg, space) return out def lgb_reg(self, space): """Train lightboost regression model.""" reg = lgb.LGBMRegressor(**space['model_params'], n_jobs=self.n_jobs, verbosity=0) out, _ = self._train_model(reg, space) return out def ctb_reg(self, space): """Train catboost regression model.""" reg = ctb.CatBoostRegressor(**space['model_params']) out, _ = self._train_model(reg, space) return out def xgb_clf(self, space): """Train xgboost classification model.""" clf = xgb.XGBClassifier(**space['model_params'], n_jobs=self.n_jobs, verbosity=0) out, _ = self._train_model(clf, space) return out def ctb_clf(self, space): """Train catboost classification model.""" clf = ctb.CatBoostClassifier(**space['model_params']) out, _ = self._train_model(clf, space) return out def lgb_clf(self, space): """Train lightboost classification model.""" clf = lgb.LGBMClassifier(**space['model_params'], n_jobs=self.n_jobs, verbosity=0) out, _ = self._train_model(clf, space) return out def xgb_clf_multi(self, space): """Train xgboost multi-class classification model.""" clf = xgb.XGBClassifier(**space['model_params'], n_jobs=self.n_jobs, verbosity=0) out, _ = self._train_model(clf, space) return out # Transform results into dataframe def _to_df(self, trials, verbose=3): # Combine params with scoring results df_params = pd.DataFrame(trials.vals) df_scoring = pd.DataFrame(trials.results) df =
pd.concat([df_params, df_scoring], axis=1)
pandas.concat
# -*- coding: utf-8 -*- import copy import numpy as np import math import random import time from Point import Point from AntMain import Ant import pandas as pd class ViolatedRecord: """Violated record history for one point""" def __init__(self, marker, vio_time, dep_time, is_check=False): """ :param marker: the name of parking spot :param vioTime: the violation time of car in this parking spot :param depTime: the departure time of car in this parking spot :param isCheck: mark whether this records are be capture """ self.marker = marker self.vioTime = vio_time self.depTime = dep_time self.isCheck = is_check class Officer: """Find path """ SA_STOPPiNG_ITER = 5000 # stop iteration of SA, type(int) SA_A = 0.995 # Annealing coefficient, type(float) SA_STOPPING_TEMP = 0.00001 # stop temperature of SA, type(float) CROSS_RATE = 0.7 # crossover probability of GA, type(float) MUTATE_RATE = 0.3 # mutation probability of GA, type(float) POP_SIZE = 500 # population size of GA, type(int) N_GENERATION = 50 # generation size of GA, type(int) ANT_COUNT = 10 # ant count of ACO, type(int) ACO_GENERATION = 20 # generation size of ACO, type(int) ALPHA = 1.0 # weight of pheromones, type(float) BETA = 10.0 # weight of visibility, type(float) RHO = 0.5 # pheromone evaporation coefficient, type(float) Q = 10 # pheromone enhancement coefficient, type(int) def __init__(self, distance_data, violation_list, walk_speed, cost_time_data, start_point, start_time, end_time, interval_time, prob_data, cluster_data, day_state, index): self.walkingSpeed = walk_speed # walk speed of police, type(int) self.startTime = start_time # start time of find path, type(int) self.startPoint = copy.deepcopy(start_point) # start point of find path self.endTime = end_time # end time of find path, type(int) self.saveTime = 0 # save time of the final path, type(int) self.intervalTime = interval_time # time for police to deal with violations, type(int) self.distanceData = distance_data # distance of two points self.parkSpotData = distance_data.index.tolist() # park plots self.costTime = cost_time_data # cost time of two points self.point = self.get_point(violation_list, self.parkSpotData) # park plots with its violation records self.unChangePoint = copy.deepcopy(self.point) # unchanging park plots with its violation records self.m_path = [] # final path self.arrive = [] # arrive time of each point of the best solution self.totalProbability = [] # capture probability of each point of the best solution self.totalDistance = [] # total distance of the best solution self.benefit = 0 # benefits of the best solution self.adjust_arrive = [] # arrive time of the adjust solution self.adjust_candidate = [] # access point of the adjust solution self.adjust_probability = [] # capture probability of each point of the adjust solution self.provisionally_time = [] # somewhere need save provisionally arrive time of provisionally solution self.provisionally_prob = [] # somewhere need save provisionally capture probability of provisionally solution self.provisionally_path = [] # somewhere need save provisionally solution self.solution = [] # mutation results of GA or candidate next points of ACO self.sa_T = 0 # initial temperature of SA self.cur_path = [] # current solution of SA or GA self.cur_arrive = [] # current arrive time of each points of current solution of GA or SA self.ga_cur_benefit = [] # current benefits of population size solution of GA self.cur_benefits = 0 # current benefits of current solution of SA or ACO self.cur_save_time = 0 # current save time of current solution of SA self.cur_probability = [] # current capture probability of current solution of SA self.iteration = 0 # current iteration of SA self.pheromone = copy.deepcopy(self.costTime) # initialize the pheromone table of ACO self.prob_data = prob_data self.cluster_data = cluster_data self.day_state = day_state self.index = str(index) def get_point(self, violation_list, park_spot_data): """Initial points """ m_point = [] # park plots with its violation records vio = [] # violation time dep = [] # departure time # for index in range(len(park_spot_data)): for index in range(len(park_spot_data)): # print(index) point = Point(index, park_spot_data[index]) for index1, row1 in violation_list.iterrows(): if park_spot_data[index] == row1['street_marker']: violation_time = self.time_transfer(row1['vio_time']) departure_time = self.time_transfer(row1['departure_time']) vio.append(violation_time) dep.append(departure_time) point.violated = True vio.sort() dep.sort() for i in range(len(vio)): point.vioRecords.append(ViolatedRecord(park_spot_data[index], vio[i], dep[i])) m_point.append(point) vio.clear() dep.clear() return m_point def time_transfer(self, time): """get total minutes from a time in a day""" hour_str, minute_str = time.split(':') hour = int(hour_str) minute = int(minute_str) return hour * 60 + minute def output(self, a): """Output the results of each method """ test = pd.DataFrame(data=self.m_path) test.to_csv(a + self.index + '_path.csv') self.totalDistance.clear() self.calculate_total_distance() test1 = pd.DataFrame(data=self.totalDistance) test1.to_csv(a + self.index + '_dis.csv') output_benefit = [] output_benefit.append(self.benefit) test2 = pd.DataFrame(data=output_benefit) test2.to_csv(a + self.index + '_pro.csv') test3 =
pd.DataFrame(data=self.arrive)
pandas.DataFrame
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp =
Categorical(['A', 'B', 'B', 'B', np.nan])
pandas.Categorical
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns from sklearn.cluster import KMeans from sklearn.manifold import TSNE from sklearn.metrics import homogeneity_score, completeness_score, adjusted_mutual_info_score, adjusted_rand_score from sklearn.metrics import silhouette_samples from sklearn.metrics.cluster import contingency_matrix # For reproducibility np.random.seed(1000) # Download from: https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data # Change <data_folder> with the actual path bc_dataset_path = '<data_folder>/wdbc.data' bc_dataset_columns = ['id','diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se','texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst'] if __name__ == '__main__': # Load the dataset df = pd.read_csv(bc_dataset_path, index_col=0, names=bc_dataset_columns).fillna(0.0) # Show the overall statistical properties print(df.describe()) # Show the pair-plot sns.set() with sns.plotting_context("notebook", font_scale=1.2): sns.pairplot(df, vars=['perimeter_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean'], hue="diagnosis") plt.show() # Project the dataset on a bidimensional plane cdf = df.drop(['diagnosis'], axis=1) tsne = TSNE(n_components=2, perplexity=10, random_state=1000) data_tsne = tsne.fit_transform(cdf) df_tsne = pd.DataFrame(data_tsne, columns=['x', 'y'], index=cdf.index) dff = pd.concat([df, df_tsne], axis=1) # Show the diagram fig, ax = plt.subplots(figsize=(18, 11)) with sns.plotting_context("notebook", font_scale=1.5): sns.scatterplot(x='x', y='y', hue='diagnosis', size='area_mean', style='diagnosis', sizes=(30, 400), palette=sns.color_palette("husl", 2), data=dff, ax=ax) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$y$') plt.show() # Perform a K-Means clustering with K=2 km = KMeans(n_clusters=2, max_iter=1000, random_state=1000) Y_pred = km.fit_predict(cdf) df_km =
pd.DataFrame(Y_pred, columns=['prediction'], index=cdf.index)
pandas.DataFrame
import os, glob, sys import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string import re def load_data(path): """Load training and testing datasets based on their path Parameters ---------- path : relative path to location of data, should be always the same (string) Returns ------- Training and testing Dataframes """ train = pd.read_csv(os.path.join(path,'train.csv')) test = pd.read_csv(os.path.join(path,'test.csv')) return train, test def modify_fare(df, n: int = 4): """Introduce n new intervals (based on quantiles) for the feature fare, such that it is modified from being continuous to being discrete Parameters ---------- df : panda dataframe n: number of new intervals (int) Returns ------- Original dataframe with discretized version of the feature 'Fare', categories """ df['Fare'] = df['Fare'].fillna(df['Fare'].median()) df['Fare'] = pd.qcut(df['Fare'], n, labels = list(string.ascii_uppercase)[:n]) return df def get_size_family(df, mod: bool = False): """Defines family relations based on the features 'SibSp' (the # of siblings / spouses aboard the Titanic) and 'Parch' (the # of parents / children aboard the Titanic) Parameters ---------- df : panda dataframe Returns ------- Original dataframe with a new feature called 'FamilySize' """ df['FamilySize'] = df['SibSp'] + df['Parch'] + 1 if mod: bins_ = [0,1,2,12] df['FamilySize'] = pd.cut(df["FamilySize"], bins = bins_, labels = list(string.ascii_uppercase)[:len(bins_)-1]) return df def get_title(name): """Search for individual title in a string by considering it to have a ASCII format from A-Z Parameters ---------- name : The name from which a title wants to be extracted (string) Returns ------- String associated to a found title """ title_search = re.search(' ([A-Za-z]+)\.', name) # If the title exists, extract and return it. if title_search: return title_search.group(1) return "" def get_titles(df, mod: bool = True): """Search for all titles inside a dataframe, given the feature 'Name' Parameters ---------- df : panda dataframe mod : simplify the extend of titles available (boolean) Returns ------- Original dataframe with a new feature called 'Title' """ df['Title'] = df['Name'].apply(get_title) if mod: # perform modifications df['Title'] = df['Title'].replace('Mlle', 'Miss') df['Title'] = df['Title'].replace('Ms', 'Miss') df['Title'] = df['Title'].replace('Mme', 'Mrs') return df def get_all_ages(df, n: int = 5): """Fills in empty Ages based on the Title of a person, and then introduces n intervals for the feature 'Ages', such that it is modified from being continuous to be discrete Parameters ---------- df : panda dataframe n: number of new intervals (int) Returns ------- Discretized version of the feature 'Age', categories """ emb = [] for i, row in df.iterrows(): if pd.isnull(row['Age']): title = row['Title'] age_avg = df['Age'][df['Title'] == title].mean() age_std = df['Age'][df['Title'] == title].std() emb.append(np.random.randint(age_avg - age_std, age_avg + age_std, size=1)[0]) else: emb.append(row['Age']) # Update column df['Age'] = emb # Create new column df["Age"] = pd.cut(df["Age"], n, labels = list(string.ascii_uppercase)[:n]) return df def get_age2(df): """Fills in empty Ages based on the Title of a person. DR Parameters ---------- df : panda dataframe Returns ------- Dataframe with missing values for age filled. """ ages_mean = df[['Title', 'Age']].groupby(['Title'], as_index=False).mean().set_index('Title').rename(columns={'Age': 'mean'}) ages_std = df[['Title', 'Age']].groupby(['Title'], as_index=False).std().set_index('Title').rename(columns={'Age': 'std'}) ages_title = pd.merge(ages_mean,ages_std, how='inner', left_index=True, right_index=True) age = [] for i, Port in df.iterrows(): if pd.isnull(Port['Age']): age.append(np.random.normal(ages_title.loc[Port['Title'],'mean'],ages_title.loc[Port['Title'],'std'])) else: age.append(Port['Age']) # Update column df['Age'] = age return df def get_age_group(df,n: int=10): """Assigns a category to the age DR Parameters ---------- df : Dataframe n : number of categories Returns ------- Dataset with Age_group column """ df["Age_group"] = pd.cut(df["Age"], n, labels = list(string.ascii_uppercase)[:n]) return df def modify_titles(df): """Concatenates titles found to be similar or considered to be simplified in one category Parameters ---------- df : panda dataframe Returns ------- Simplified categories in the features 'Title' """ # join less representative cotegories df['Title'] = df['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') return df def get_deck(name): """Search for individual Capital letter inside a string associated to the cabin of a person, from A-Z Parameters ---------- name : The name from which a deck wants to be extracted (string) Returns ------- Letter associated with the deck from that a person has """ if pd.isnull(name): return 'None' else: title_search = re.findall(r"^\w", name) # If the title exists, extract and return it. if title_search: return title_search[0] else: return 'None' def get_decks(df): """Search for the information of all decks inside a dataframe, given the feature 'Cabin' Parameters ---------- df : panda dataframe Returns ------- Original dataframe with a new feature called 'Deck' """ df['Deck'] = df['Cabin'].apply(get_deck) # Modifications df['Deck'] = df['Deck'].replace('T', 'None') return df def embarked_bayes(df, i): """Using Bayes Theorem, and based on 'Pclass', determine the probability of 'Embarked' for a person given the possibilities S, C or Q. Parameters ---------- df : panda dataframe Returns ------- String associated to the most likely port from where a passenger Embarked, given its Pclass """ pclass_ = df['Pclass'].iloc[i] # P(s|1) = P(s)*P(1|S)/[ P(s)*P(1|s) + P(s)*P(1|s) + P(s)*P(1|s)] # probability that given the class 1, the person came from port S P_S, P_C, P_Q = df['Embarked'].value_counts()['S'], df['Embarked'].value_counts()['C'], \ df['Embarked'].value_counts()['Q'] P_class_S = df['Embarked'][df['Pclass'] == pclass_].value_counts()['S'] P_class_C = df['Embarked'][df['Pclass'] == pclass_].value_counts()['C'] P_class_Q = df['Embarked'][df['Pclass'] == pclass_].value_counts()['Q'] res = [] P_S_class = (P_S * P_class_S) / ((P_S * P_class_S) + (P_C * P_class_C) + (P_Q * P_class_Q)) res.append(P_S_class) P_C_class = (P_C * P_class_C) / ((P_S * P_class_S) + (P_C * P_class_C) + (P_Q * P_class_Q)) res.append(P_C_class) P_Q_class = (P_Q * P_class_Q) / ((P_S * P_class_S) + (P_C * P_class_C) + (P_Q * P_class_Q)) res.append(P_C_class) if sorted(res, reverse=True)[0] == P_S_class: return 'S' elif sorted(res, reverse=True)[0] == P_C_class: return 'C' elif sorted(res, reverse=True)[0] == P_Q_class: return 'Q' def get_embarked_bayes(df): """Search for the Embarked information of passengers missing this data, based on its 'Pclass' Parameters ---------- df : panda dataframe Returns ------- Original dataframe with all missing values from the feature 'Embarked' """ emb = [] for i, Port in df.iterrows(): if pd.isnull(Port['Embarked']): emb.append(embarked_bayes(df, i)) else: emb.append(Port['Embarked']) # Update column df['Embarked'] = emb return df def get_if_cabin(df): """Indicate if a person has a 'Cabin' Parameters ---------- df : panda dataframe Returns ------- String with a Yes or No """ # Feature that tells whether a passenger had a cabin on the Titanic df['Has_Cabin'] = df["Cabin"].apply(lambda x: 'No' if type(x) == float else 'Yes') return df def get_type_ticket(df): """Indicate if a person has a 'Ticket' Parameters ---------- df : panda dataframe Returns ------- Categorical unique code """ # Feature that tells whether a passenger had a cabin on the Titanic df['Type_Ticket'] = df['Ticket'].apply(lambda x: x[0:3]) df['Type_Ticket'] = df['Type_Ticket'].astype('category').cat.codes # ordinal encoding df['Type_Ticket'] = df['Type_Ticket'].astype(int) return df def get_count_name(df): """Indicate if a person has a 'Name' Parameters ---------- df : panda dataframe Returns ------- Categorical unique code """ # Feature that tells whether a passenger had a cabin on the Titanic df['Words_Count'] = df['Name'].apply(lambda x: len(x.split())).astype(int) return df def drop_features(df, to_drop): """Drop unwanted features Parameters ---------- df : panda dataframe to_drop : array with name of features to be dropped Returns ------- Original dataframe with all original features but those in to_drop """ return df.drop(to_drop, axis=1) def bookkeeping_results(frame, name, model, cv_): """Dataframe to save results from experiment Parameters ---------- frame : empty dataframe with desired features name : name model to save, string model : model used, object cv_ : results from cross validation, array Returns ------- Updated original dataframe with the new added result from model """ # Initialize a dictionary to save the results. res = {} res['Model'] = name res['best_params'] = [model.get_params()] res['cv_acc'] = cv_.mean() * 100 res['cv_acc_std'] = cv_.std() * 100 return pd.concat([frame,
pd.DataFrame(res)
pandas.DataFrame
import os import warnings import argparse from pathlib import Path import netCDF4 import pandas as pd import numpy as np from geotiff import GeoTiff from tqdm import tqdm from sklearn.metrics import pairwise_distances from sklearn.model_selection import GroupShuffleSplit from tools.settings import CLIMATE_OPT, CAT_OPT, FEATURES_COLS, START_VAL_COLS, TARGET_COLS warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(prog='Подготовка данных', description = """ Скрипт формирует данные для обучения Neural ODE По гипотезе на вход подаются: - t2m (температура на 2м) - td2m (точка росы на 2м) - ff (скорость ветра) - R (осадки за 6,12,24 часа опционально) - phi(t) (периодическая ф-ия по времени) - climate (temp, soil, precip) (климатические характеристики температуры, влагозапаса и осадков) - soil type (тип почвы) - cover type (тип подстилающей поверхности) - kult type (тип выращиваемой культуры) - val_1, val_2 (ЗПВ на момент времени t0) На выходе производная по влагозапасу: - new val_1, val_2 (ЗПВ на момент времени t1) """, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-d', '--dist', type=float, default=1, help='Убрать станции с большим расстоянием') parser.add_argument('-ts', '--test_size', type=float, default=0.1, help='Доля валидационной выборки от общей') opt = parser.parse_args() def load_syn(path: str) -> pd.DataFrame: syn = pd.read_csv(path, usecols=['s_ind', 'datetime', 't2m', 'td2m', 'ff', 'R12']) syn.loc[syn.datetime.astype(str).str.len() == 7, 'datetime'] = '0'+\ syn[syn.datetime.astype(str).str.len() == 7].datetime.astype(str) syn.loc[:, 'datetime'] =
pd.to_datetime(syn.datetime, format='%y%m%d%H')
pandas.to_datetime
import os, glob import pandas as pd from datetime import datetime as dt from pathlib import Path from emotion_recognition import EmotionRecognizer from pylab import * import numpy as np import seaborn as sn from progressbar import * import pickle import ntpath from pathlib import Path import shutil from sklearn.svm import SVC from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier class CordioESP_ToolBox: """ Expressive Speech Processing This class manage emotion detection from speech. * Emotion class support: 'neutral', 'calm', 'happy', 'sad', 'angry', 'fear', 'disgust', 'ps', 'boredom' * CordioESP_ToolBox support all scikit-learn models, for example: 'SVC', 'AdaBoostClassifier', 'RandomForestClassifier', 'GradientBoostingClassifier', 'DecisionTreeClassifier' * example for usage can be find in: Main_test.py or in Main_create_emotion_label_table_and_emotion_labaled_scalarDist_table.py Cordio Medical - Confidential Version: 0.1 2020-04-27 Revision History: | Ver | Author | Date | Change Description |----------|-----------|----------------|-------------------- | 0.1 | Or | 2020-04-27 | Initial | x.x | xxxx | xxxx-xx-xx | x """ def __init__(self): self.version = 0.1 self.suported_emotions = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fear', 'disgust', 'ps', 'boredom'] self.supported_models = ['SVC', 'AdaBoostClassifier', 'RandomForestClassifier', 'GradientBoostingClassifier', 'DecisionTreeClassifier', 'KNeighborsClassifier', 'MLPClassifier'] self.model_emotion_dict = {'SVC': ['angry', 'sad', 'neutral'], 'AdaBoostClassifier': ['sad', 'fear', 'boredom', 'neutral'], 'RandomForestClassifier': ['sad', 'fear', 'boredom', 'neutral'], 'KNeighborsClassifier': ['sad', 'fear', 'boredom', 'neutral']} self.model_list = [SVC(probability=True), AdaBoostClassifier(), RandomForestClassifier(), KNeighborsClassifier()] def save_object(self, obj, save_url_path, filename): # create folders in path if not exist: Path(save_url_path).mkdir(parents=True, exist_ok=True) with open(save_url_path+'\\'+filename, 'wb') as output: # Overwrites any existing file. pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) def modelTrain(self, model, emotions_list): # my_model probability attribute needs to be Truth! save_url_path = 'trained_models' filename = 'trained_' + type(model).__name__ + '_ESPVer' + str(self.version) + '.pkl' # check if model exist: if os.path.exists(save_url_path+'\\'+filename): with open(save_url_path+'\\'+filename, 'rb') as input: rec = pickle.load(input) else: # train the model # pass my model to EmotionRecognizer instance # and balance the dataset rec = EmotionRecognizer(model=model, emotions=emotions_list, balance=True, verbose=0, probability=True) rec.train() self.save_object(rec, save_url_path, filename) return rec def modelPredict(self, rec, wav_url): try: out = rec.predict_proba(wav_url) # wav_url == '\\\\192.168.55.210\\f$\\db\\BSV\\BSV-0009\\BSV-0009_200403_105407_S0007_he_1.54_SMJ400F_Android26.wav' except ValueError: wavPath = Path(wav_url) print('\nempty file skipped: '+wavPath.name) out = 'empty file' except RuntimeError: wavPath = Path(wav_url) print("\nFixing header: "+wavPath.name) LOCAL_PATH = os.getcwd() shutil.copyfile(wav_url, LOCAL_PATH+'\\'+wavPath.name) os.system("ffmpeg -nostats -loglevel 0 -i " + LOCAL_PATH+'\\'+wavPath.name + " -f s16le -acodec pcm_s16le -y temp.pcm") os.system("ffmpeg -nostats -loglevel 0 -f s16le -ar 48.0k -ac 1 -i temp.pcm " + LOCAL_PATH+'\\'+wavPath.name + " -y") print("\nDone fixing the header") out = rec.predict_proba( LOCAL_PATH+'\\'+wavPath.name ) # remove temp files: os.remove(LOCAL_PATH+'\\'+wavPath.name) os.remove(LOCAL_PATH + '\\temp.pcm') return out def predict_all_proba_for_patientNmodel(self, model, fileHandle, clinicalInformation, patient_info_column_names, emotions_list, all_wavs): df_len = len(all_wavs) patientNmodel_df = pd.DataFrame(index=np.arange(df_len), columns=patient_info_column_names + ['Model'] + emotions_list) model_name = model if type(model)==str else type(model).__name__ rec = self.modelTrain(model, self.model_emotion_dict[model_name]) # progress bar initialization: p = Path(str(all_wavs[0])) # fileHandle = CordioFile patient_ID = fileHandle.CordioExtractPatient(p) patient_model = type(model).__name__ widgets = [FormatLabel('<patient: ' + patient_ID + '; model: ' + patient_model + '>'), ' ', Percentage(), ' ', Bar('#'), ' ', RotatingMarker()] progressbar = ProgressBar(widgets=widgets, maxval=df_len) progressbar.start() # fill df: for (i, wav) in zip(range(df_len), all_wavs): # progress bar update: widgets[0] = FormatLabel('<filename-{0}>'.format(i)) progressbar.update(i) # add soft decision score for each emotion patientNmodel_df.loc[i] = self.modelPredict(rec, wav) # insert basic information: p = Path(str(wav)) # fileHandle = CordioFile patientNmodel_df.at[i, "PatientName"] = fileHandle.CordioExtractPatient(p) patientNmodel_df.at[i, "Date"] = fileHandle.CordioExtractRecordingDateTime(p).strftime("%d/%m/%Y") patientNmodel_df.at[i, "Time"] = fileHandle.CordioExtractRecordingDateTime(p).strftime("%H:%M:%S") patientNmodel_df.at[i, "sentence"] = fileHandle.CordioExtractSentence(p) patientNmodel_df.at[i, "Language"] = fileHandle.CordioExtractLanguage(p) # TODO: add App version, Device identifier and OS version columns # setting clinical status: clinicalStatus = self.get_clinical_info(clinicalInformation, fileHandle.CordioExtractRecordingDateTime(p), patientNmodel_df.at[i, "PatientName"]) patientNmodel_df.at[i, "ClinicalStatus"] = clinicalStatus # setting model: patientNmodel_df.at[i, "Model"] = type(model).__name__ progressbar.finish() return patientNmodel_df # def predict_all_proba_for_patient(self, patientDir_path, clinicalInformation, fileHandle, model_list, # emotions_list): # # get all wavs: # all_wavs = glob.glob(os.path.join(patientDir_path, '*.wav')) # num_of_wav = len(all_wavs) * len(model_list) # # # create basic information table for patient: # patient_info_column_names = ["PatientName", "Date", "Time", "sentence", "Language", "ClinicalStatus"] # patient_df = pd.DataFrame(columns=patient_info_column_names + ['Model'] + emotions_list) # # # progress bar initialization: # p = Path(str(all_wavs[0])) # # fileHandle = CordioFile # patient_ID = fileHandle.CordioExtractPatient(p) # widgets = [FormatLabel('<<patient: ' + patient_ID + '; all models process>>'), ' ', Percentage(), ' ', # Bar('#'), ' ', RotatingMarker()] # progressbar = ProgressBar(widgets=widgets, maxval=len(model_list)) # progressbar.start() # # # calculating for all models: # for i, model in zip(range(len(model_list)), model_list): # # progress bar update: # widgets[0] = FormatLabel('<filename-{0}>'.format(i)) # progressbar.update(i) # # # --for debug: # sentence = 'S0007' # tmp = self.create_ESP_labeled_table(patientDir_path, model, sentence, emotions_list, clinicalInformation, # fileHandle) # # -- # tmp = self.predict_all_proba_for_patientNmodel(model, fileHandle, clinicalInformation, # patient_info_column_names, all_wavs) # # patient_df = patient_df.append(tmp) # progressbar.finish() # # return patient_df def get_clinical_info(self, clinicalInformation, recording_datetime, patient_id): clinicalInfo = clinicalInformation(patient_id, '') clinicalStatusCode = clinicalInfo(recording_datetime) clinicalStatus = "dry" if clinicalStatusCode == -1: # recording is not valid (before patient registration) clinicalStatus = 'recording is not valid (before patient registration)' elif clinicalStatusCode == clinicalInfo.CLINICAL_STATUS_UNKNOWN: clinicalStatus = "unknown" elif clinicalStatusCode == clinicalInfo.CLINICAL_STATUS_WET: clinicalStatus = "wet" return clinicalStatus def SaveFig(self, fig, save_url_path, save_file_name, add_datetime, close_fig): # from pathlib import Path # create folders in path if not exist: Path(save_url_path).mkdir(parents=True, exist_ok=True) # remove old file with the same name if exist: if os.path.isfile(save_url_path + "\\" + save_file_name + ".png"): os.remove(save_url_path + "\\" + save_file_name + ".png") plt.ioff() # save file: # datetime object containing current date and time now = dt.now() if (add_datetime == []) or (add_datetime == True): dt_string = now.strftime("%d%m%y_%H%M%S") fig.savefig(save_url_path + "\\" + save_file_name + dt_string + ".png", bbox_inches='tight') else: fig.savefig(save_url_path + "\\" + save_file_name + ".png", bbox_inches='tight') if close_fig: plt.close(fig) def SaveTable(self, table, save_url_path, save_file_name, add_datetime, is_index_col=True): # from pathlib import Path # create folders in path if not exist: Path(save_url_path).mkdir(parents=True, exist_ok=True) # remove old file with the same name if exist: if os.path.isfile(save_url_path + "\\" + save_file_name + ".png"): os.remove(save_url_path + "\\" + save_file_name + ".png") plt.ioff() # save file: # datetime object containing current date and time now = dt.now() if (add_datetime == []) or (add_datetime == True): dt_string = now.strftime("%d%m%y_%H%M%S") table.to_csv(save_url_path + "\\" + save_file_name + "_" + dt_string + '.csv', index=is_index_col) else: table.to_csv(save_url_path + "\\" + save_file_name + '.csv', index=is_index_col) def get_table_by_session(self, prob_table, session_hour_range, session_action, emotions_list): # TODO: add description # prob_table check: check necessary columns existence prob_table_col_names = list(prob_table.columns) if 'Unnamed: 0' in prob_table_col_names: prob_table.drop('Unnamed: 0', axis=1) prob_table['Date'] = pd.to_datetime(prob_table['Date'], format="%d/%m/%Y") prob_table['Time'] = pd.to_datetime(prob_table['Time'], format="%H:%M:%S") # initial graphs df: emotions_in_prob_table_idx = [idx for idx, val in enumerate(self.suported_emotions) if val in prob_table_col_names] emotions_in_prob_table = [self.suported_emotions[i] for i in emotions_in_prob_table_idx] graphs_df_col_names = ['Patient_id', 'SessionIdx', 'Date', 'FirstSessionRecTime', 'LastSessionRecTime', 'Model', 'IsWet'] + emotions_in_prob_table graphs_df = pd.DataFrame(columns=graphs_df_col_names) # fill graphs_df: unique_dates = prob_table.Date.dt.strftime("%d/%m/%Y").unique() unique_dates = [x for x in unique_dates if str(x) != 'nan'] # remove nans prob_table = prob_table.sort_values(['Date', 'Time'], ascending=[True, True]) session_idx = 0 for date in unique_dates: # get current date sub-df dt_date = dt.strptime(date, "%d/%m/%Y") # mean probabilities for each model type: unique_model_types = prob_table.Model.unique() # remove unsapported models: unique_model_types = [val for idx, val in enumerate(self.supported_models) if val in unique_model_types] for model in unique_model_types: prob_table_dateNmodel_sub_df = prob_table[(prob_table['Model'] == model) & (prob_table['Date'] == dt_date)] curr_time_idx = prob_table_dateNmodel_sub_df.index.values[0] # first index of prob_table_dateNmodel_sub_df curr_time =
pd.to_datetime(prob_table_dateNmodel_sub_df['Time'].loc[curr_time_idx], format="%H:%M:%S")
pandas.to_datetime
import pandas as pd import numpy as np attr = pd.read_csv('GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt', sep='\t') reader = pd.read_csv('GTEx_Analysis_2017-06-05_v8_RSEMv1.3.0_transcript_tpm.gct', sep='\t', chunksize=10000) chunks = [] for chunk in reader: chunks.append(chunk) expressions = pd.concat(chunks) sample_names = attr['SAMPID'] terms = ['SMTS', 'SMTSD'] for term in terms: samples_sum = 0 groups = np.unique(attr[term]) df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import time import os def symbol_to_path(symbol, basedir='data'): return os.path.join(basedir, '{}.csv'.format(symbol)) def get_data(symbols, dates): df = pd.DataFrame(index=dates) if 'SPY' not in symbols: symbols.insert(0, 'SPY') for symbol in symbols: dftmp = pd.read_csv(symbol_to_path(symbol), index_col='Date', parse_dates=True, usecols=['Date', 'Adj Close'], na_values='nan') dftmp = dftmp.rename(columns={'Adj Close': symbol}) df = df.join(dftmp, how='left') if 'SPY' == symbol: df = df.dropna(subset=['SPY']) return df def plot_data(df, title='Stock Prices'): ax = df.plot(title=title, fontsize=12, linewidth=0.7) ax.set_xlabel('Date') ax.set_ylabel('Price') plt.show() def fill_missing_values(df): df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) def p06_using_fillna(): dates =
pd.date_range(start='2010-01-01', end='2012-12-31')
pandas.date_range
#from matplotlib.pyplot import title import streamlit as st import streamlit.components.v1 as components import pandas as pd import plotly.express as px from modzy import ApiClient from modzy._util import file_to_bytes import json from sklearn.manifold import TSNE import numpy as np from pyvis.network import Network from sklearn.cluster import KMeans from wordcloud import WordCloud import matplotlib.pyplot as plt st.set_option('deprecation.showPyplotGlobalUse', False) st.sidebar.image('text.png') #col1,col2 = st.columns([1,6]) st.image('subtext.png') #df=pd.read_csv("https://raw.githubusercontent.com/pupimvictor/NetworkOfThrones/master/stormofswords.csv") df = pd.read_csv("https://raw.githubusercontent.com/napoles-uach/Data/main/got1.csv") df=df[['Source','Target','weight']] #st.write(df) #weigths=df['weight'].tolist() def got_func(): got_net = Network(height="600px", width="100%", heading='A song of Ice and Fire (Book 1) Graph')#,bgcolor='#222222', font_color='white') # set the physics layout of the network #got_net.barnes_hut() got_net.force_atlas_2based() #got_net.show_buttons(filter_=True) #got_data = pd.read_csv("https://www.macalester.edu/~abeverid/data/stormofswords.csv") got_data = pd.read_csv("https://raw.githubusercontent.com/napoles-uach/Data/main/got1.csv") #got_data = pd.read_csv("stormofswords.csv") #got_data.rename(index={0: "Source", 1: "Target", 2: "Weight"}) sources = got_data['Source'] targets = got_data['Target'] weights = got_data['weight'] edge_data = zip(sources, targets, weights) for e in edge_data: src = e[0] dst = e[1] w = e[2] got_net.add_node(src, src, title=src, color='red') got_net.add_node(dst, dst, title=dst,color='red') got_net.add_edge(src, dst, value=w) neighbor_map = got_net.get_adj_list() # add neighbor data to node hover data for node in got_net.nodes: node["title"] += " Neighbors:<br>" + "<br>".join(neighbor_map[node["id"]]) node["value"] = len(neighbor_map[node["id"]]) got_net.show("gameofthrones.html") got_func() HtmlFile = open("gameofthrones.html", 'r', encoding='utf-8') source_code = HtmlFile.read() #check_graph = st.sidebar.checkbox('Show Graph') #if check_graph: with st.expander('Show Graph'): components.html(source_code, width=670,height=700) text = open("edges.txt","w") text.write('graph') for i in range(len(df)): text.write('\n%s' % str(df.iloc[i][0]).replace(" ", "")+" "+str(df.iloc[i][1]).replace(" ", "")+" "+str(df.iloc[i][2])) text.close() f = open('edges.txt','r',encoding='utf-8') client = ApiClient(base_url="https://app.modzy.com/api", api_key="<KEY>") sources = {} sources["my-input"] = { "edges.txt": f.read(), } @st.cache() def res(sources): job = client.jobs.submit_text("sixvdaywy0", "0.0.1", sources) result = client.results.block_until_complete(job, timeout=None) return result #job = client.jobs.submit_text("sixvdaywy0", "0.0.1", sources) #result = client.results.block_until_complete(job, timeout=None) result = res(sources) #st.button('Download') #st.balloons() #st.stop() results_json = result.get_first_outputs()['results.json'] x = results_json['Node Embeddings'] names_dict = [] vec_dict = [] for names in x: names_dict.append(names) v=x[names].split() vec_dict.append(v) # convert a list of string numbers to a list of float numbers def convert_to_float(l): return [float(i) for i in l] vec_dict = [convert_to_float(i) for i in vec_dict] chart_data=
pd.DataFrame(vec_dict)
pandas.DataFrame
import random import timeit import string import numpy as np import pandas.util.testing as tm from pandas import DataFrame, Categorical, date_range, read_csv from pandas.compat import PY2 from pandas.compat import cStringIO as StringIO from ..pandas_vb_common import setup, BaseIO # noqa class ToCSV(BaseIO): goal_time = 0.2 fname = '__test__.csv' params = ['wide', 'long', 'mixed'] param_names = ['kind'] def setup(self, kind): wide_frame = DataFrame(np.random.randn(3000, 30)) long_frame = DataFrame({'A': np.arange(50000), 'B': np.arange(50000) + 1., 'C': np.arange(50000) + 2., 'D': np.arange(50000) + 3.}) mixed_frame = DataFrame({'float': np.random.randn(5000), 'int': np.random.randn(5000).astype(int), 'bool': (np.arange(5000) % 2) == 0, 'datetime': date_range('2001', freq='s', periods=5000), 'object': ['foo'] * 5000}) mixed_frame.loc[30:500, 'float'] = np.nan data = {'wide': wide_frame, 'long': long_frame, 'mixed': mixed_frame} self.df = data[kind] def time_frame(self, kind): self.df.to_csv(self.fname) class ToCSVDatetime(BaseIO): goal_time = 0.2 fname = '__test__.csv' def setup(self): rng = date_range('1/1/2000', periods=1000) self.data = DataFrame(rng, index=rng) def time_frame_date_formatting(self): self.data.to_csv(self.fname, date_format='%Y%m%d') class ReadCSVDInferDatetimeFormat(object): goal_time = 0.2 params = ([True, False], ['custom', 'iso8601', 'ymd']) param_names = ['infer_datetime_format', 'format'] def setup(self, infer_datetime_format, format): rng = date_range('1/1/2000', periods=1000) formats = {'custom': '%m/%d/%Y %H:%M:%S.%f', 'iso8601': '%Y-%m-%d %H:%M:%S', 'ymd': '%Y%m%d'} dt_format = formats[format] self.data = StringIO('\n'.join(rng.strftime(dt_format).tolist())) def time_read_csv(self, infer_datetime_format, format): read_csv(self.data, header=None, names=['foo'], parse_dates=['foo'], infer_datetime_format=infer_datetime_format) class ReadCSVSkipRows(BaseIO): goal_time = 0.2 fname = '__test__.csv' params = [None, 10000] param_names = ['skiprows'] def setup(self, skiprows): N = 20000 index = tm.makeStringIndex(N) df = DataFrame({'float1': np.random.randn(N), 'float2': np.random.randn(N), 'string1': ['foo'] * N, 'bool1': [True] * N, 'int1': np.random.randint(0, N, size=N)}, index=index) df.to_csv(self.fname) def time_skipprows(self, skiprows): read_csv(self.fname, skiprows=skiprows) class ReadUint64Integers(object): goal_time = 0.2 def setup(self): self.na_values = [2**63 + 500] arr = np.arange(10000).astype('uint64') + 2**63 self.data1 = StringIO('\n'.join(arr.astype(str).tolist())) arr = arr.astype(object) arr[500] = -1 self.data2 = StringIO('\n'.join(arr.astype(str).tolist())) def time_read_uint64(self):
read_csv(self.data1, header=None, names=['foo'])
pandas.read_csv
from root.config.db_config import SQLDatabase #importing Database class import os from flask import Flask, render_template, url_for, json import re import pandas as pd from flask import request, jsonify import numpy as np import random import string import json from root import app conn = SQLDatabase() #creating Database class object #cur = conn.getConnection() home_directory = "C:\\workings\\Python\\testFolder\\" UPLOAD_FOLDER = "C:\\workings\\Python\\testFolder\\" app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def getFileDetails(ac_token, user_id): try: dbconn = conn.getConnection() #creating Database connection parameter sql = "SELECT * FROM C_SYS_SRC_GEN WHERE AC_TOKEN = '" + str(ac_token) + "' AND USER_ID ='"+ str(user_id) +"'" cursor = conn.query(sql, dbconn) rv = cursor.fetchone() return {'FILE_NAME': rv.TARGET_FILE_NAME,'FILE_PATH': rv.TARGET_FILE_PATH,'FILE_ID':rv.PKEY_SRC_GEN} del dbconn # except IOError as e: # result = "I/O error"+str(e) # except ValueError as e: # result = "ValueError error"+str(e) # except: # raise # # return result except Exception as e: return {'error': str(e)} def getProjectDetails(project_ac_token, user_id): try: dbconn = conn.getConnection() # creating Database connection parameter sql = "SELECT * FROM C_SYS_PROJECTS WHERE AC_TOKEN = '" + str(project_ac_token) + "' AND USER_ID ='" + str( user_id) + "'" cursor = conn.query(sql, dbconn) rv = cursor.fetchone() return rv del dbconn # except IOError as e: # result = "I/O error" + str(e) # except ValueError as e: # result = "ValueError error" + str(e) # except: # raise # # return result except Exception as e: return {'error': str(e)} def getFileList(project_id, user_id): try: dbconn = conn.getConnection() # creating Database connection parameter sql = "SELECT * FROM C_SYS_SRC_GEN WHERE PROJECT_ID = '" + str(project_id) + "' AND USER_ID ='" + str(user_id) + "' ORDER BY PKEY_SRC_GEN DESC" cursor = conn.query(sql, dbconn) rv = cursor.fetchall() rowarray_list =[] for value in rv: t = {'PKEY_SRC_GEN': value.PKEY_SRC_GEN, 'FILE_NAME': value.TARGET_FILE_NAME, 'AC_TOKEN': value.AC_TOKEN } rowarray_list.append(t) return rowarray_list del dbconn # except IOError as e: # result = "I/O error" + str(e) # except ValueError as e: # result = "ValueError error" + str(e) # except: # raise # # return result except Exception as e: return {'error': str(e)} def ran_gen(size, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for x in range(size)) def saveConsolidation(project_ac_token,user_id,actual_file, files ,con_file_name): try: dbconn = conn.getConnection() # creating Database connection parameter project_details = getProjectDetails(project_ac_token, user_id) project_id = project_details.PKEY_PROJECTS getData = getFileDetails(actual_file, user_id) json_url = os.path.join(os.path.abspath(getData['FILE_PATH']), "", getData['FILE_NAME']) foo = open(json_url) file1 = json.load(foo) foo.close() column1 = list() result_data = list(); ### get columns from 1st Array for i in file1[0].keys(): column1.append(i) for value in files: if actual_file!=value: column2 = list() common_col = list() ### Read 2nd File getData2 = getFileDetails(value, user_id) json_url2 = os.path.join(os.path.abspath(getData2['FILE_PATH']), "", getData2['FILE_NAME']) foo2 = open(json_url2) file2 = json.load(foo2) foo2.close() ### get columns from 2nd Array for i in file2[0].keys(): column2.append(i) new_array = np.intersect1d(column1, column2) for i in new_array: common_col.append(i) ### Merge Both array A =
pd.DataFrame(file1)
pandas.DataFrame
import requests import glob import os import json import zipfile import shutil import pandas as pd import time BASE_DIR = os.path.abspath(os.path.dirname(__file__)) DATA_DIR = os.path.join(BASE_DIR, 'datasets') api_adress = 'http://18.180.27.178:5050' # api_adress = 'http://54.249.71.234:5050' address_test_file = '/api/process' address_upload_gt_dir = '/api/upload_gtdir' address_current_synDir = "/api/current_synDir" address_list_data_dir = "/api/list_data_dir" address_view_data = "/api/view_data" address_del_data = "/api/del_data" address_down_data = "/api/down_data" address_train_status = "/api/train_status" address_trainning_history = "/api/trainning_history" address_trainning_log = "/api/trainning_log" address_stop_training = "/api/stop_training" address_save_notes = '/api/save_notes' address_train = '/api/train' address_checkpoint_chose = '/api/checkpoint_chose' address_down_checkpoint = '/api/down_checkpoint2' address_get_hint = '/api/get_hint' download_Server_Data = '/api/download_Server_Data' address_upload_charlist = '/api/upload_charlist' allowExtend = ['.jpg', '.JPG', '.png', '.PNG', '.jpeg', '.JPEG'] def zipdirImgs(imgpath, zipout): # allowExtend = ['.jpg', '.JPG', '.png', '.PNG', '.jpeg', '.JPEG'] ziph = zipfile.ZipFile(zipout, "w", zipfile.ZIP_DEFLATED) for f in os.listdir(imgpath): if os.path.splitext(f)[-1] in allowExtend: ziph.write(os.path.join(imgpath,f), f) ziph.close() def upload_file(filename): files = {'file': open(filename, 'rb')} r = requests.post(api_adress + address_test_file , files=files, ) return r def zipdir(imgpath,gtpath, zipout): global allowExtend ziph = zipfile.ZipFile(zipout, "w", zipfile.ZIP_DEFLATED) gts = os.listdir(gtpath) for f in os.listdir(imgpath): if os.path.splitext(f)[-1] in allowExtend and '{}.txt'.format(os.path.splitext(f)[0]) in gts: ziph.write(os.path.join(imgpath,f), os.path.join('imgs',f)) ziph.write(os.path.join(gtpath, '{}.txt'.format(os.path.splitext(f)[0])), os.path.join('gts', '{}.txt'.format(os.path.splitext(f)[0]))) ziph.close() def request_current_synDir(): data = {'request': True} r = requests.post(api_adress + address_current_synDir, data=data ) print(r.json()) print('request_current_synDir done',api_adress, r.status_code) return r.json(), r.status_code def upload_gt_dir(dir_imgs, dir_gts, newName): import time begin = time.time() zipPath = os.path.join(DATA_DIR, '{}.zip'.format(newName)) zipdir(dir_imgs, dir_gts, zipPath) files = {'file': open(zipPath, 'rb')} res = requests.post( url=api_adress + address_upload_gt_dir, files=files ) num = len(os.listdir(dir_gts)) print('upload {} files time: {}'.format(num * 2, time.time() - begin), api_adress, res.status_code) # os.remove(zipPath) mess = None if res.status_code == 200 else res.json()['mess'] return mess, res.status_code def request_train(synDirs_chose, pretrain, numEpoch, prefixName, charlistName): data = {'chose': synDirs_chose, 'pretrain':str(pretrain), 'numEpoch':numEpoch,\ 'prefixName': str(prefixName), 'charlist': charlistName, 'syn_Ratio': 0.6, 'wiki_Ratio': 0.1, 'learning_rate':2e-5, 'use_hard_syn_gen':True} print(data) r = requests.post(api_adress + address_train, data=json.dumps(data), ) print('request_train done', api_adress, r.status_code) mess = None if r.status_code==200 else r.json()['mess'] return mess , r.status_code def upload_charlist(filename): files = {'file': open(filename, 'rb')} r = requests.post(api_adress + address_upload_charlist , files=files, ) mess = None if r.status_code == 200 else r.json()['mess'] return mess, r.status_code def request_train_status(): data = {'request': True} r = requests.post(api_adress + address_train_status, data=data) if r.status_code == 200 or r.status_code==201: ret = r.json() df = json.loads(ret['df']) training_log = ret['training_log'] df =
pd.DataFrame.from_dict(df)
pandas.DataFrame.from_dict
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
""" Copyright 2019 Samsung SDS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd from brightics.common.utils import check_required_parameters from brightics.common.utils import get_default_from_parameters_if_required from brightics.common.validation import validate from brightics.common.validation import greater_than from brightics.common.validation import greater_than_or_equal_to from brightics.common.classify_input_type import check_col_type def string_split(table, **params): check_required_parameters(_string_split, params, ['table']) return _string_split(table, **params) def _string_split(table, input_col, hold_cols=None, delimiter=',', output_col_name='split', output_col_cnt=3, output_col_type='double', start_pos=0, end_pos=0): out_table = pd.DataFrame() output_arr = [x[start_pos:-end_pos].split(delimiter, output_col_cnt) \ if not pd.isnull(x) \ else [x] * output_col_cnt for x in list(table[input_col])] \ if end_pos > 0 \ else [x[start_pos:].split(delimiter, output_col_cnt) \ if not pd.isnull(x) \ else [x] * output_col_cnt for x in list(table[input_col])] head_arr = [x[:start_pos] \ if not pd.isnull(x) \ else '' for x in list(table[input_col])] tail_arr = [x[-end_pos:] \ if not
pd.isnull(x)
pandas.isnull