prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3.6 # Copyright 2017 <NAME> <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ---------------------------------------------------------------------------- # Create charts from the benchmark results # ---------------------------------------------------------------------------- import glob import matplotlib.pyplot as plt import matplotlib.ticker as tkr import numpy as np import pandas as pd import seaborn as sns # This script should be run inside the results directory. sns.set_style("darkgrid") # Selected from https://matplotlib.org/users/colormaps.html#qualitative sns.set_palette(sns.color_palette("tab20", n_colors=11)) # Name for Pool Size Parameter in results param_pool_size = "Object Pool Size" # Adjust left for single plot left_adjust_single = 0.2 # Adjust left for multiple plots left_adjust_multiple = 0.12 def print_dataframe(df): with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(df) def save_plot(df, title, filename, x="Threads", hue="Benchmark", col=param_pool_size, col_wrap=2, print_data=False, formatter=tkr.FuncFormatter(lambda y, p: "{:,}".format(y)), left=left_adjust_multiple): unit = df['Unit'].unique()[0] print("Creating chart: " + title + ", filename: " + filename + ".") if print_data: print_dataframe(df) fig, ax = plt.subplots() g = sns.factorplot(x=x, y="Score", hue=hue, col=col, data=df, kind='bar', size=5, aspect=1, col_wrap=col_wrap, legend=False) for ax in g.axes.flatten(): ax.yaxis.set_major_formatter(formatter) g.set_axis_labels(y_var="Score (" + unit + ")") plt.subplots_adjust(top=0.9, left=left) g.fig.suptitle(title) plt.legend(loc='best', title=hue, frameon=True) plt.savefig(filename) plt.clf() plt.close(fig) # Plot bar charts with error bars # Some links helped: # https://stackoverflow.com/a/42033734/1955702 # https://stackoverflow.com/a/30428808/1955702 # https://matplotlib.org/devdocs/gallery/api/barchart.html#sphx-glr-gallery-api-barchart-py def barplot_with_errorbars(x, y, yerr, x_values, hue_values, label, **kwargs): # x_values and benchmarks must be sorted data = kwargs.pop("data") x_values_length = len(x_values) n = np.arange(x_values_length) offsets = (np.arange(len(hue_values)) - np.arange(len(hue_values)).mean()) / (len(hue_values) + 1.) width = np.diff(offsets).mean() # Make sure x axis data is sorted data = data.sort_values(x) data_length = len(data) if data_length < x_values_length: print('WARN: Not enough data points for %s. Expected %d, Found %d' % (label, x_values_length, data_length)) for i, benchmark in enumerate(hue_values): if label == benchmark: plt.bar(n[:data_length] + offsets[i], data[y], width=width, label=label, yerr=data[yerr], capsize=2) plt.xticks(n, x_values) def save_plot_with_error_bars(df, title, filename, x="Threads", hue="Benchmark", col=param_pool_size, col_wrap=2, print_data=False, formatter=tkr.FuncFormatter(lambda y, p: "{:,}".format(y)), left=left_adjust_multiple): unit = df['Unit'].unique()[0] print("Creating chart: " + title + ", filename: " + filename + ".") if print_data: print_dataframe(df) fig, ax = plt.subplots() x_values = sorted(df[x].unique()) hue_values = sorted(df[hue].unique()) g = sns.FacetGrid(df, hue=hue, col=col, size=5, aspect=1, col_wrap=col_wrap) g = g.map_dataframe(barplot_with_errorbars, x, "Score", "Score Error (99.9%)", x_values, hue_values) for ax in g.axes.flatten(): ax.yaxis.set_major_formatter(formatter) g.set_axis_labels(y_var="Score (" + unit + ")") plt.subplots_adjust(top=0.9, left=left) g.fig.suptitle(title) plt.legend(loc='best', title=hue, frameon=True) plt.savefig(filename) plt.clf() plt.close(fig) def save_plots(df, title, filename_prefix, x="Threads", hue="Benchmark", col=param_pool_size, col_wrap=2, print_data=False, formatter=tkr.FuncFormatter(lambda y, p: "{:,}".format(y)), left=left_adjust_multiple): # Save two plots with and without error bars # Plotting errorbars with dataframe data in factorplot is not directly supported. # First plot is important and must be used to verify the accuracy of the plot with error bars. save_plot(df, title, filename_prefix + '.png', x=x, hue=hue, col=col, col_wrap=col_wrap, print_data=print_data, formatter=formatter, left=left) save_plot_with_error_bars(df, title, filename_prefix + '-with-error-bars.png', x=x, hue=hue, col=col, col_wrap=col_wrap, print_data=print_data, formatter=formatter, left=left) def save_lmplot(df, x, title, filename, print_data=False, formatter=tkr.FuncFormatter(lambda y, p: "{:,}".format(y)), left=left_adjust_single): unit = df['Unit'].unique()[0] print("Creating chart: " + title + ", filename: " + filename + ".") if print_data: print_dataframe(df) fig, ax = plt.subplots() markers_length = len(df["Benchmark"].unique()) g = sns.lmplot(data=df, x=x, y="Score", hue="Benchmark", size=6, legend=False, x_jitter=0.2, y_jitter=0.5, markers=['o', 'v', '^', '<', '>', '+', 's', 'p', '*', 'x', 'D'][:markers_length]) for ax in g.axes.flatten(): ax.yaxis.set_major_formatter(formatter) plt.subplots_adjust(top=0.9, left=left) g.set_axis_labels(y_var="Score (" + unit + ")") plt.legend(loc='upper left', frameon=True) g.fig.suptitle(title) plt.savefig(filename) plt.clf() plt.cla() plt.close(fig) def replace_benchmark_names(df): df = df.replace(r'^com\.github\.chrishantha\.microbenchmark\.objectpool\.(.*)Benchmark.useObject$', r'\1', regex=True) df = df.replace([r'^com\.github\.chrishantha\.microbenchmark\.objectpool\.(.*)Benchmark.useObject:useObject(.*)$'], [r'\1\2'], regex=True) # Profiler Details df = df.replace([r'^com\.github\.chrishantha\.microbenchmark\.objectpool\.(.*)Benchmark.useObject:(.*)$'], [r'\1\2'], regex=True) df = df.replace('com.github.chrishantha.microbenchmark.objectpool.TestObjectBenchmark.expensiveObjectCreate', 'OnDemandExpensiveObject', regex=False) df = df.replace( r'^com\.github\.chrishantha\.microbenchmark\.objectpool\.TestObjectBenchmark\.expensiveObjectCreate' + r':expensiveObjectCreate(.*)$', r'OnDemandExpensiveObject\1', regex=True) # Profiler Details df = df.replace( r'^com\.github\.chrishantha\.microbenchmark\.objectpool\.TestObjectBenchmark\.expensiveObjectCreate' + r':(.*)$', r'OnDemandExpensiveObject\1', regex=True) return df def save_percentile_plot(df, title_percentile, percentile): df_sample_percentile = df.loc[df['Benchmark'].str.endswith(percentile)] save_plot(df_sample_percentile, "Sample Time " + title_percentile + "th Percentile Comparison", "sample-time-" + percentile + "th-percentile.png", formatter=tkr.FormatStrFormatter('%.2e')) def main(): all_results = glob.glob("results-*-threads.csv") print("Creating charts using data in following files:") for file in all_results: print(file) print("\nCreating charts...\n") df = pd.concat(map(pd.read_csv, all_results), ignore_index=True) df = replace_benchmark_names(df) df.rename(columns={"Param: poolSize": param_pool_size}, inplace=True) df.to_csv('all_results.csv') # df = df[df['Benchmark'].isin(['FastObjectPool', 'StackObjectPool', 'StormpotBlazePool'])] thrpt_unit = 'ops/ms' sample_unit = 'ms/op' alloc_rate_unit = 'MB/sec' df_thrpt = df.loc[(df['Mode'] == "thrpt") & (df['Unit'] == thrpt_unit)] thrpt_mask = df_thrpt['Benchmark'].isin(['OnDemandExpensiveObject']) save_plots(df_thrpt[~thrpt_mask], "Throughput vs Threads Comparison", "thrpt-vs-threads") save_plots(df_thrpt[~thrpt_mask], "Throughput vs Pool Sizes Comparison", "thrpt-vs-pool-sizes", col="Threads", x=param_pool_size) save_lmplot(df_thrpt, "Threads", "Throughput vs Threads", "lmplot-thrpt-vs-threads.png") save_lmplot(df_thrpt[~pd.isnull(df_thrpt[param_pool_size])], param_pool_size, "Throughput vs Pool Sizes", "lmplot-thrpt-vs-pool-sizes.png") for benchmark in df_thrpt[~thrpt_mask]['Benchmark'].unique(): df_benchmark_thrpt = df_thrpt[df_thrpt['Benchmark'] == benchmark] save_plots(df_benchmark_thrpt, "Throughput vs Threads", "thrpt-" + benchmark, col="Benchmark", hue=param_pool_size, col_wrap=1, left=left_adjust_single) df_sample = df.loc[(df['Mode'] == "sample") & (df['Unit'] == sample_unit)] # Score Error (99.9%) is NaN for percentiles df_sample_without_percentiles = df_sample[~pd.isnull(df_sample['Score Error (99.9%)'])] df_sample_pools_without_percentiles = df_sample_without_percentiles[ ~pd.isnull(df_sample_without_percentiles[param_pool_size])] time_formatter = tkr.FuncFormatter(lambda y, p: "{:.2e}".format(y)) sample_mask = df_sample_without_percentiles['Benchmark'].isin(['OnDemandExpensiveObject']) save_plots(df_sample_without_percentiles[~sample_mask], "Sample Time vs Threads Comparison", "sample-time-vs-threads", formatter=time_formatter) save_plots(df_sample_pools_without_percentiles, "Sample Time vs Pool Sizes Comparison", "sample-time-vs-pool-sizes", col="Threads", x=param_pool_size, formatter=time_formatter) save_lmplot(df_sample_without_percentiles, "Threads", "Sample Time vs Threads", "lmplot-sample-vs-threads.png", formatter=time_formatter, left=left_adjust_single) save_lmplot(df_sample_pools_without_percentiles, param_pool_size, "Sample Time vs Pool Sizes", "lmplot-sample-vs-pool-sizes.png", formatter=time_formatter, left=left_adjust_single) for benchmark in df_sample_pools_without_percentiles['Benchmark'].unique(): df_benchmark_sample = df_sample_pools_without_percentiles[ df_sample_pools_without_percentiles['Benchmark'] == benchmark] save_plots(df_benchmark_sample, "Sample Time vs Threads", "sample-time-" + benchmark, col="Benchmark", hue=param_pool_size, col_wrap=1, formatter=time_formatter, left=left_adjust_single) # Filter OnDemandExpensiveObject df_sample_pools = df_sample[~df_sample['Benchmark'].str.contains('OnDemandExpensiveObject.*')] save_percentile_plot(df_sample_pools, '50', 'p0.50') save_percentile_plot(df_sample_pools, '90', 'p0.90') save_percentile_plot(df_sample_pools, '95', 'p0.95') save_percentile_plot(df_sample_pools, '99', 'p0.99') save_percentile_plot(df_sample_pools, '99.9', 'p0.999') save_percentile_plot(df_sample_pools, '99.99', 'p0.9999') save_percentile_plot(df_sample_pools, '100', 'p1.00') df_sample_percentiles = df_sample_pools.copy() df_sample_percentiles = df_sample_percentiles.loc[
pd.isnull(df_sample_percentiles['Score Error (99.9%)'])
pandas.isnull
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights =
pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1'])
pandas.DataFrame
# <NAME> # for BroadInsitute # in 2019 from __future__ import print_function import pandas as pd import numpy as np from genepy.utils import helper as h import gzip import seaborn as sns def vcf_to_df(path, hasfilter=False, samples=['sample'], additional_cols=[], **kwargs): """ transforms a vcf file into a dataframe file as best as it can Args: ----- path: str filepath to the vcf file hasfilter: bool whether or not the vcf has a filter column samples: list[str] colnames of the sample names. additional_cols: list[str] of additional colnames in the vcf already looks for 'DB', 'SOMATIC', 'GERMLINE', "OVERLAP", "IN_PON", "STR", "ReverseComplementedAlleles" Returns: -------- a dataframe fo the vcf a dict associating each column with its description (gathered from the vcf header) """ uniqueargs = ['DB', 'SOMATIC', 'GERMLINE', "OVERLAP", "IN_PON", "STR", "ReverseComplementedAlleles"] + additional_cols def read_comments(f): fields = {} description = {} for l in f: l = l.decode("utf-8") if type(l) is not str else l if l.startswith('##'): if 'FORMAT' in l[:20]: res = l.split('ID=')[1].split(',')[0] desc = l.split('Description=')[1][:-2] description.update({res: desc}) if 'INFO' in l[:20]: res = l.split('ID=')[1].split(',')[0] desc = l.split('Description=')[1][:-2] description.update({res: desc}) fields.update({res: []}) else: break return fields, description if path.endswith('.gz'): with gzip.open(path, 'r') as f: fields, description = read_comments(f) else: with open(path, 'r') as f: fields, description = read_comments(f) names = ['chr', 'pos', 'id', 'ref', 'alt', 'qual'] names += ['filter'] if hasfilter else ['strand'] names += ['data', 'format'] + samples csvkwargs = {'sep': '\t', 'index_col': False, 'header': None, #'names': names, 'comment': "#"} a =
pd.read_csv(path, **csvkwargs)
pandas.read_csv
import time import numpy as np import pandas as pd from scipy.cluster.hierarchy import linkage, leaves_list # amat := alignment matrix with shape (N,L,2); last dimension is # part of an unused feature, so ignore it # namat := list of alignment iterations; each entry is a dictionary # with the iteration's amat, score, method, and time; # pima_init() initializes the list from the traces, and # pima_iter() automatically iterates from last namat entry # traces := list of log's traces; each trace is a numpy array of # integers; the integers map to activity types # csv to log, returns list of traces and case and activity index mappings def csv2log(filename, caseids_col, acts_col, starts_col, isplg=False): # csv to df df =
pd.read_csv(filename)
pandas.read_csv
#!/usr/bin/env python3 # Author: <NAME> <<EMAIL>> """Describe raw data used and share of useable papers.""" from configparser import ConfigParser from glob import glob import pandas as pd from _910_analyze_multiaff_shares import make_stacked_lineplot JOURNAL_FOLDER = "./002_journal_samples/" SOURCE_FOLDER = "./100_source_articles/" COUNTS_FOLDER = "./100_meta_counts/" OUTPUT_FOLDER = "./990_output/" pd.plotting.register_matplotlib_converters() pd.options.display.float_format = '{:,}'.format config = ConfigParser() config.optionxform = str config.read("./definitions.cfg") asjc_map = dict(config["field names"]) def format_shares(df, val_name): """Melt wide DataFrame and replace field codes with field names.""" df.columns = [asjc_map.get(c, c) for c in df.columns] df = df[asjc_map.values()] df.index.name = "year" return (df.reset_index() .melt(id_vars=["year"], var_name="field", value_name=val_name) .sort_values("field")) def read_from_statistics(fname): """Read number from statistics text files.""" fname = f"{OUTPUT_FOLDER}Statistics/{fname}.txt" with open(fname) as inf: return int(inf.read().strip().replace(",", "")) def main(): # Compute number of authors by field author_counts = pd.Series(dtype="uint64") for field in asjc_map.keys(): authors = set() for f in glob(f"{SOURCE_FOLDER}articles_{field}-*.csv"): df = pd.read_csv(f, encoding="utf8", usecols=["author"]) authors.update(df["author"].unique()) author_counts[field] = len(authors) # LaTeX table with authors and papers by field fname = JOURNAL_FOLDER + "journal-counts.csv" journals = pd.read_csv(fname, index_col=0, encoding="utf8").T journals = journals[["Total", "Coverage > 5 years", "Used"]] journals = journals.rename(columns={"Used": "Sampled"}) overall = journals.copy() cols = [("Journals", c) for c in overall.columns] overall.columns = pd.MultiIndex.from_tuples(cols) # Add columns fname = COUNTS_FOLDER + "num_publications.csv" publications = pd.read_csv(fname, index_col=0, encoding="utf8") overall[("Articles", "Sampled")] = publications.sum(axis=0) fname = COUNTS_FOLDER + "num_articles.csv" articles = pd.read_csv(fname, index_col=0, encoding="utf8") overall[("Articles", "research-type")] = articles.sum(axis=0) fname = COUNTS_FOLDER + "num_useful.csv" useful =
pd.read_csv(fname, index_col=0, encoding="utf8")
pandas.read_csv
#-*- coding: utf-8 -*- import os import re import pandas as pd from modules.venders.vender import Vender class PostCleaning(Vender): def __init__(self, code, vender=None): Vender.__init__(self, None, vender) self.set_dividend_payout_ratio() self.set_bps_multiple(0.5) self.set_bps_multiple(2) self.set_bps_multiple(3) self.set_get_price() self.set_net_income_ratio() self.set_sales_fcff() self.set_ev1_fcff() def set_ev1_fcff(self): column_name = 'EV_FCFF' df = pd.DataFrame(columns=[column_name], index=self.data.index.values) data = self.get_data() if 'FCFF' in data.columns and 'EV1' in data.columns: for month in data.index.values: value = (data['FCFF'][month] / data['EV1'][month]) * 100 df[column_name][month] = round(value if not pd.isnull(value) else 0, 2) self.concat_data(df) def set_sales_fcff(self): column_name = 'SALES_FCFF' df = pd.DataFrame(columns=[column_name], index=self.data.index.values) data = self.get_data() if 'FCFF' in data.columns and 'SALES' in data.columns: for month in data.index.values: value = (data['FCFF'][month] / data['SALES'][month]) * 100 df[column_name][month] = round(value if not pd.isnull(value) else 0, 2) self.concat_data(df) def set_net_income_ratio(self): column_name = 'NET_INCOME_RATIO' df = pd.DataFrame(columns=[column_name], index=self.data.index.values) data = self.get_data() if 'EPS_IFRS' in data.columns and 'SALES' in data.columns: for month in data.index.values: value = (data['EPS_IFRS'][month] / ((data['SALES'][month] * 100000000) / (self.data['STOCK_COUNT'][month] * 1000))) * 100 df[column_name][month] = round(value if not pd.isnull(value) else 0, 2) self.concat_data(df) # 주가 def set_get_price(self): column_name = 'PRICE' df = pd.DataFrame(columns=[column_name], index=self.data.index.values) data = self.get_data() if 'BPS' in data.columns and 'PBR' in data.columns: for month in data.index.values: value = data['BPS'][month] * self.data['PBR'][month] df[column_name][month] = int(value if not pd.isnull(value) else 0) self.concat_data(df) def set_bps_multiple(self, multiple): column_name = 'BPS_TIMES_' + str(multiple) df = pd.DataFrame(columns=[column_name], index=self.data.index.values) data = self.get_data() if 'BPS' in data.columns: for month in data.index.values: value = data['BPS'][month] * multiple df[column_name][month] = int(value if not pd.isnull(value) else 0) self.concat_data(df) # 배당성향(연결) def set_dividend_payout_ratio(self): column_name = 'DIVIDEND_PAYOUT_RATIO' df =
pd.DataFrame(columns=[column_name], index=self.data.index.values)
pandas.DataFrame
import json import re import sys import os import pandas as pd import io import config from functools import reduce import operator from pathlib import Path from rsonlite import simpleparse import runcmd def count_lspaces(l): # print(">>", repr(l)) return re.search(r'\S', l).start() def get_d_at_level(d, lvl): for l in lvl: if l not in d: d[l] = {} d = d[l] return d def clean_json(d): if not any(d.values()): return list(d.keys()) else: for k, v in d.items(): d[k] = clean_json(v) def match_keys(d, keys, only_last=False): ret = [] # print(keys) # print(keys) for sk in keys.split('//'): sk = re.compile(sk) if isinstance(d, list): d = d[0] for k, v in d.items(): if sk.match(k): ret.append(k) d = d[k] break if only_last: return 'key=NOTFOUND' if not ret else ret[-1] else: return ret def extract(d, lkeys): for k in lkeys: if isinstance(d, list): d = d[0] d = d.get(k, {}) return d def split_equalto_delim(k): return k.split('=', 1) def retrieve(dict_, nest): ''' Navigates dictionaries like dict_[nest0][nest1][nest2]... gracefully. ''' dict_ = dict_.to_dict() # for pandas try: return reduce(operator.getitem, nest, dict_) except KeyError as e: return "" except TypeError as e: return "" class PhoneDump(object): def __init__(self, dev_type, fname): self.device_type = dev_type self.fname = fname # df must be a dictionary self.df = self.load_file() def load_file(self): raise Exception("Not Implemented") def info(self, appid): raise Exception("Not Implemented") class AndroidDump(PhoneDump): def __init__(self, fname): self.dumpf = fname super(AndroidDump, self).__init__('android', fname) self.df = self.load_file() def _extract_lines(self, service): """Extract lines for te DUMP OF SERVICE <service> """ cmd = "sed -n -e '/DUMP OF SERVICE {}/,/DUMP OF SERVICE/p' {fname} "\ "| head -n -1" s = "DUMP OF SERVICE {}".format(service) started = False with open(self.dumpf) as f: for l in f: if started: if "DUMP OF SERVICE" in l: break else: yield l elif s in l: started = True @staticmethod def custom_parse(service, lines): if service == 'appops': return lines @staticmethod def new_parse_dump_file(fname): """Not used working using simple parse to parse the files. """ if not Path(fname).exists(): print("File: {!r} does not exists".format(fname)) data = open(fname) d = {} service = '' join_lines = [] custom_parse_services = {"appops"} def _parse(lines): try: if service in custom_parse_services: return AndroidDump.custom_parse(service, lines) else: return simpleparse('\n'.join(join_lines)) except Exception as ex: print("Could not parse for {} service={}. Exception={}"\ .format(fname, service, ex)) return lines for i, l in enumerate(data): if l.startswith('----'): continue if l.startswith('DUMP OF SERVICE'): if service: d[service] = _parse(join_lines) service = l.strip().rsplit(' ', 1)[1] join_lines = [] else: join_lines.append(l) if len(join_lines) > 0 and len(d.get(service, [])) == 0: d[service] = _parse(join_lines) return d @staticmethod def parse_dump_file(fname): if not Path(fname).exists(): print("File: {!r} does not exists".format(fname)) data = open(fname) d = {} service = '' lvls = ['' for _ in range(20)] # Max 100 levels allowed curr_spcnt, curr_lvl = 0, 0 for i, l in enumerate(data): if l.startswith('----'): continue if l.startswith('DUMP OF SERVICE'): service = l.strip().rsplit(' ', 1)[1] d[service] = res = {} curr_spcnt = [0] curr_lvl = 0 else: if not l.strip(): # subsection ends continue l = l.replace('\t', ' ') t_spcnt = count_lspaces(l) # print(t_spcnt, curr_spcnt, curr_lvl) # if t_spcnt == 1: # print(repr(l)) if t_spcnt > 0 and t_spcnt >= curr_spcnt[-1]*2: curr_lvl += 1 curr_spcnt.append(t_spcnt) while curr_spcnt and curr_spcnt[-1] > 0 and t_spcnt <= curr_spcnt[-1]/2: curr_lvl -= 1 curr_spcnt.pop() if curr_spcnt[-1]>0: curr_spcnt[-1] = t_spcnt assert (t_spcnt != 0) or (curr_lvl == 0), \ "t_spc: {} <--> curr_lvl: {}\n{}".format(t_spcnt, curr_lvl, l) # print(lvls[:curr_lvl], curr_lvl, curr_spcnt) curr = get_d_at_level(res, lvls[:curr_lvl]) k = l.strip().rstrip(':') lvls[curr_lvl] = k # '{} --> {}'.format(curr_lvl, k) curr[lvls[curr_lvl]] = {} return d def load_file(self): fname = self.fname.rsplit('.', 1)[0] + '.txt' json_fname = fname.rsplit('.', 1)[0] + '.json' if os.path.exists(json_fname): with open(json_fname, 'r') as f: try: d = json.load(f) except Exception as ex: print(ex) return {} else: with open(json_fname, 'w') as f: try: d = self.parse_dump_file(fname) json.dump(d, f, indent=2) except Exception as ex: print("File ({!r}) could not be opened or parsed.".format(fname)) print("Exception: {}".format(ex)) return
pd.DataFrame([])
pandas.DataFrame
# -*- coding: utf-8 -*- from statsmodels.compat.pandas import Appender, Substitution, to_numpy from collections.abc import Iterable import datetime as dt from types import SimpleNamespace import warnings import numpy as np import pandas as pd from scipy.stats import gaussian_kde, norm from statsmodels.tsa.base.prediction import PredictionResults import statsmodels.base.wrapper as wrap from statsmodels.iolib.summary import Summary from statsmodels.regression.linear_model import OLS from statsmodels.tools.decorators import cache_readonly, cache_writable from statsmodels.tools.docstring import Docstring, remove_parameters from statsmodels.tools.validation import ( array_like, bool_like, int_like, string_like, ) from statsmodels.tsa.arima_process import arma2ma from statsmodels.tsa.base import tsa_model from statsmodels.tsa.deterministic import ( DeterministicProcess, Seasonality, TimeTrend, ) from statsmodels.tsa.tsatools import ( freq_to_period, lagmat, ) __all__ = ["AR", "AutoReg"] AR_DEPRECATION_WARN = """ statsmodels.tsa.AR has been deprecated in favor of statsmodels.tsa.AutoReg and statsmodels.tsa.SARIMAX. AutoReg adds the ability to specify exogenous variables, include time trends, and add seasonal dummies. The AutoReg API differs from AR since the model is treated as immutable, and so the entire specification including the lag length must be specified when creating the model. This change is too substantial to incorporate into the existing AR api. The function ar_select_order performs lag length selection for AutoReg models. AutoReg only estimates parameters using conditional MLE (OLS). Use SARIMAX to estimate ARX and related models using full MLE via the Kalman Filter. To silence this warning and continue using AR until it is removed, use: import warnings warnings.filterwarnings('ignore', 'statsmodels.tsa.ar_model.AR', FutureWarning) """ REPEATED_FIT_ERROR = """ Model has been fit using maxlag={0}, method={1}, ic={2}, trend={3}. These cannot be changed in subsequent calls to `fit`. Instead, use a new instance of AR. """ def sumofsq(x, axis=0): """Helper function to calculate sum of squares along first axis""" return np.sum(x ** 2, axis=axis) def _ar_predict_out_of_sample(y, params, k_ar, k_trend, steps, start=0): mu = params[:k_trend] if k_trend else 0 # only have to worry constant arparams = params[k_trend:][::-1] # reverse for dot # dynamic endogenous variable endog = np.zeros(k_ar + steps) # this is one too big but does not matter if start: endog[:k_ar] = y[start - k_ar : start] else: endog[:k_ar] = y[-k_ar:] forecast = np.zeros(steps) for i in range(steps): fcast = mu + np.dot(arparams, endog[i : i + k_ar]) forecast[i] = fcast endog[i + k_ar] = fcast return forecast class AutoReg(tsa_model.TimeSeriesModel): """ Autoregressive AR-X(p) model. Estimate an AR-X model using Conditional Maximum Likelihood (OLS). Parameters ---------- endog : array_like A 1-d endogenous response variable. The dependent variable. lags : {int, list[int]} The number of lags to include in the model if an integer or the list of lag indices to include. For example, [1, 4] will only include lags 1 and 4 while lags=4 will include lags 1, 2, 3, and 4. trend : {'n', 'c', 't', 'ct'} The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. seasonal : bool Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. exog : array_like, optional Exogenous variables to include in the model. Must have the same number of observations as endog and should be aligned so that endog[i] is regressed on exog[i]. hold_back : {None, int} Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int} The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'none'. deterministic : DeterministicProcess A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. old_names : bool Flag indicating whether to use the v0.11 names or the v0.12+ names. .. deprecated:: 0.13 old_names is deprecated and will be removed after 0.14 is released. You must update any code reliant on the old variable names to use the new names. See Also -------- statsmodels.tsa.statespace.sarimax.SARIMAX Estimation of SARIMAX models using exact likelihood and the Kalman Filter. Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.tsa.ar_model import AutoReg >>> data = sm.datasets.sunspots.load_pandas().data['SUNACTIVITY'] >>> out = 'AIC: {0:0.3f}, HQIC: {1:0.3f}, BIC: {2:0.3f}' Start by fitting an unrestricted Seasonal AR model >>> res = AutoReg(data, lags = [1, 11, 12]).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 5.945, HQIC: 5.970, BIC: 6.007 An alternative used seasonal dummies >>> res = AutoReg(data, lags=1, seasonal=True, period=11).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 6.017, HQIC: 6.080, BIC: 6.175 Finally, both the seasonal AR structure and dummies can be included >>> res = AutoReg(data, lags=[1, 11, 12], seasonal=True, period=11).fit() >>> print(out.format(res.aic, res.hqic, res.bic)) AIC: 5.884, HQIC: 5.959, BIC: 6.071 """ def __init__( self, endog, lags, trend="c", seasonal=False, exog=None, hold_back=None, period=None, missing="none", *, deterministic=None, old_names=False ): super(AutoReg, self).__init__(endog, exog, None, None, missing=missing) self._trend = string_like( trend, "trend", options=("n", "c", "t", "ct") ) self._seasonal = bool_like(seasonal, "seasonal") self._period = int_like(period, "period", optional=True) if self._period is None and self._seasonal: if self.data.freq: self._period = freq_to_period(self._index_freq) else: err = ( "freq cannot be inferred from endog and model includes" " seasonal terms. The number of periods must be " "explicitly set when the endog's index does not " "contain a frequency." ) raise ValueError(err) terms = [TimeTrend.from_string(self._trend)] if seasonal: terms.append(Seasonality(self._period)) if hasattr(self.data.orig_endog, "index"): index = self.data.orig_endog.index else: index = np.arange(self.data.endog.shape[0]) self._user_deterministic = False if deterministic is not None: if not isinstance(deterministic, DeterministicProcess): raise TypeError("deterministic must be a DeterministicProcess") self._deterministics = deterministic self._user_deterministic = True else: self._deterministics = DeterministicProcess( index, additional_terms=terms ) self._lags = lags self._exog_names = [] self._k_ar = 0 self._hold_back = int_like(hold_back, "hold_back", optional=True) self._old_names = bool_like(old_names, "old_names", optional=False) if deterministic is not None and ( self._trend != "n" or self._seasonal ): warnings.warn( 'When using deterministic, trend must be "n" and ' "seasonal must be False.", RuntimeWarning, ) if self._old_names: warnings.warn( "old_names will be removed after the 0.14 release. You should " "stop setting this parameter and use the new names.", FutureWarning, ) self._check_lags() self._setup_regressors() self.nobs = self._y.shape[0] self.data.xnames = self.exog_names @property def ar_lags(self): """The autoregressive lags included in the model""" return self._lags @property def hold_back(self): """The number of initial obs. excluded from the estimation sample.""" return self._hold_back @property def seasonal(self): """Flag indicating that the model contains a seasonal component.""" return self._seasonal @property def df_model(self): """The model degrees of freedom.""" return self._x.shape[1] @property def exog_names(self): """Names of exogenous variables included in model""" return self._exog_names def initialize(self): """Initialize the model (no-op).""" pass def _check_lags(self): lags = self._lags if isinstance(lags, Iterable): lags = np.array(sorted([int_like(lag, "lags") for lag in lags])) self._lags = lags if np.any(lags < 1) or np.unique(lags).shape[0] != lags.shape[0]: raise ValueError( "All values in lags must be positive and " "distinct." ) self._maxlag = np.max(lags) else: self._maxlag = int_like(lags, "lags") if self._maxlag < 0: raise ValueError("lags must be a positive scalar.") self._lags = np.arange(1, self._maxlag + 1) if self._hold_back is None: self._hold_back = self._maxlag if self._hold_back < self._maxlag: raise ValueError( "hold_back must be >= lags if lags is an int or" "max(lags) if lags is array_like." ) def _setup_regressors(self): maxlag = self._maxlag hold_back = self._hold_back exog_names = [] endog_names = self.endog_names x, y = lagmat(self.endog, maxlag, original="sep") exog_names.extend( [endog_names + ".L{0}".format(lag) for lag in self._lags] ) if len(self._lags) < maxlag: x = x[:, self._lags - 1] self._k_ar = x.shape[1] deterministic = self._deterministics.in_sample() if deterministic.shape[1]: x = np.c_[to_numpy(deterministic), x] if self._old_names: deterministic_names = [] if "c" in self._trend: deterministic_names.append("intercept") if "t" in self._trend: deterministic_names.append("trend") if self._seasonal: period = self._period names = ["seasonal.{0}".format(i) for i in range(period)] if "c" in self._trend: names = names[1:] deterministic_names.extend(names) else: deterministic_names = list(deterministic.columns) exog_names = deterministic_names + exog_names if self.exog is not None: x = np.c_[x, self.exog] exog_names.extend(self.data.param_names) y = y[hold_back:] x = x[hold_back:] if y.shape[0] < x.shape[1]: reg = x.shape[1] period = self._period trend = 0 if self._trend == "n" else len(self._trend) seas = 0 if not self._seasonal else period - ("c" in self._trend) lags = self._lags.shape[0] nobs = y.shape[0] raise ValueError( "The model specification cannot be estimated. " "The model contains {0} regressors ({1} trend, " "{2} seasonal, {3} lags) but after adjustment " "for hold_back and creation of the lags, there " "are only {4} data points available to estimate " "parameters.".format(reg, trend, seas, lags, nobs) ) self._y, self._x = y, x self._exog_names = exog_names def fit(self, cov_type="nonrobust", cov_kwds=None, use_t=False): """ Estimate the model parameters. Parameters ---------- cov_type : str The covariance estimator to use. The most common choices are listed below. Supports all covariance estimators that are available in ``OLS.fit``. * 'nonrobust' - The class OLS covariance estimator that assumes homoskedasticity. * 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's (or Eiker-Huber-White) covariance estimator. `HC0` is the standard implementation. The other make corrections to improve the finite sample performance of the heteroskedasticity robust covariance estimator. * 'HAC' - Heteroskedasticity-autocorrelation robust covariance estimation. Supports cov_kwds. - `maxlags` integer (required) : number of lags to use. - `kernel` callable or str (optional) : kernel currently available kernels are ['bartlett', 'uniform'], default is Bartlett. - `use_correction` bool (optional) : If true, use small sample correction. cov_kwds : dict, optional A dictionary of keyword arguments to pass to the covariance estimator. `nonrobust` and `HC#` do not support cov_kwds. use_t : bool, optional A flag indicating that inference should use the Student's t distribution that accounts for model degree of freedom. If False, uses the normal distribution. If None, defers the choice to the cov_type. It also removes degree of freedom corrections from the covariance estimator when cov_type is 'nonrobust'. Returns ------- AutoRegResults Estimation results. See Also -------- statsmodels.regression.linear_model.OLS Ordinary Least Squares estimation. statsmodels.regression.linear_model.RegressionResults See ``get_robustcov_results`` for a detailed list of available covariance estimators and options. Notes ----- Use ``OLS`` to estimate model parameters and to estimate parameter covariance. """ # TODO: Determine correction for degree-of-freedom # Special case parameterless model if self._x.shape[1] == 0: return AutoRegResultsWrapper( AutoRegResults(self, np.empty(0), np.empty((0, 0))) ) ols_mod = OLS(self._y, self._x) ols_res = ols_mod.fit( cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t ) cov_params = ols_res.cov_params() use_t = ols_res.use_t if cov_type == "nonrobust" and not use_t: nobs = self._y.shape[0] k = self._x.shape[1] scale = nobs / (nobs - k) cov_params /= scale res = AutoRegResults( self, ols_res.params, cov_params, ols_res.normalized_cov_params ) return AutoRegResultsWrapper(res) def _resid(self, params): params = array_like(params, "params", ndim=2) resid = self._y - self._x @ params return resid.squeeze() def loglike(self, params): """ Log-likelihood of model. Parameters ---------- params : ndarray The model parameters used to compute the log-likelihood. Returns ------- float The log-likelihood value. """ nobs = self.nobs resid = self._resid(params) ssr = resid @ resid llf = -(nobs / 2) * (np.log(2 * np.pi) + np.log(ssr / nobs) + 1) return llf def score(self, params): """ Score vector of model. The gradient of logL with respect to each parameter. Parameters ---------- params : ndarray The parameters to use when evaluating the Hessian. Returns ------- ndarray The score vector evaluated at the parameters. """ resid = self._resid(params) return self._x.T @ resid def information(self, params): """ Fisher information matrix of model. Returns -1 * Hessian of the log-likelihood evaluated at params. Parameters ---------- params : ndarray The model parameters. Returns ------- ndarray The information matrix. """ resid = self._resid(params) sigma2 = resid @ resid / self.nobs return sigma2 * (self._x.T @ self._x) def hessian(self, params): """ The Hessian matrix of the model. Parameters ---------- params : ndarray The parameters to use when evaluating the Hessian. Returns ------- ndarray The hessian evaluated at the parameters. """ return -self.information(params) def _setup_oos_forecast(self, add_forecasts, exog_oos): x = np.zeros((add_forecasts, self._x.shape[1])) oos_exog = self._deterministics.out_of_sample(steps=add_forecasts) n_deterministic = oos_exog.shape[1] x[:, :n_deterministic] = to_numpy(oos_exog) # skip the AR columns loc = n_deterministic + len(self._lags) if self.exog is not None: x[:, loc:] = exog_oos[:add_forecasts] return x def _wrap_prediction(self, prediction, start, end): n_values = end - start if not isinstance(self.data.orig_endog, (pd.Series, pd.DataFrame)): return prediction[-n_values:] index = self._index if end > self.endog.shape[0]: freq = getattr(index, "freq", None) if freq: if isinstance(index, pd.PeriodIndex): index =
pd.period_range(index[0], freq=freq, periods=end)
pandas.period_range
"""Helper functions to read and convert common data formats.""" import pandas as pd import numpy as np import os import logging from functools import partial from .format_checkers import _is_bed_row def convert_bed_to_bedpe(input_file, target_file, halfwindowsize, chromsize_path): """Converts bedfile at inputFile to a bedpefile, expanding the point of interest up- and downstream by halfwindowsize basepairs. Only intervals that fall within the bounds of chromosomes are written out. """ # load input_file input_frame =
pd.read_csv(input_file, sep="\t", header=None)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from collections import Counter import itertools import os #import WOSutilities as wosutil #path2rawdata='/home/apoorva_kasoju2712/WOS_data' def load_author_data(): #['ArticleID', 'AuthorOrder', 'AuthorDAIS', 'FullName', 'LastName', 'FirstName', 'Email'] author_df_1 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = [1900] + list(range(1945, 1955)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None,dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_2 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = list(range(1955, 1965)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None,dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_3 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = list(range(1965, 1975)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None, dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_4 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = list(range(1975, 1990)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None, dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_5 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = list(range(1990, 2005)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None,dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_6 = wosutil.load_wos_data(name = 'authorship',path2rawdata = path2rawdata,year_list = list(range(2005, 2016)),columns=['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName','FirstName'], duplicate_subset = None,dropna = ['ArticleID','FullName', 'LastName','FirstName'], verbose = 50) author_df_12=pd.concat([author_df_1, author_df_2], ignore_index=True) del author_df_1 del author_df_2 author_df_34=pd.concat([author_df_3, author_df_4], ignore_index=True) del author_df_3 del author_df_4 author_df_56=pd.concat([author_df_5, author_df_6], ignore_index=True) del author_df_5 del author_df_6 author_df=pd.concat([author_df_12,author_df_34,author_df_56],ignore_index=True) del author_df_12 del author_df_34 del author_df_56 print(author_df.shape) return author_df def load_article_data(): article_df_1 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = [1900] + list(range(1945, 1955)), columns = ['ArticleID','Title', 'PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_1['Doctypes'] #print("Completed in %f" % (time.time() - st)) article_df_2 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = list(range(1955, 1965)), columns = ['ArticleID','Title','PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_2['Doctypes'] article_df_3 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = list(range(1965, 1975)), columns = ['ArticleID', 'Title','PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_3['Doctypes'] article_df_4 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = list(range(1975, 1990)), columns = ['ArticleID', 'Title','PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_4['Doctypes'] article_df_5 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = list(range(1990, 2005)), columns = ['ArticleID','Title', 'PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_5['Doctypes'] article_df_6 = wosutil.load_wos_data(name = 'article', path2rawdata = path2rawdata, year_list = list(range(2005, 2016)), columns = ['ArticleID', 'Title','PubYear','Doctypes'], dropna = ['ArticleID', 'PubYear'], duplicate_subset = ['ArticleID'], isindict = {'Doctypes':np.sort(['Article','Letter','Review','Note'])}, verbose = 50) del article_df_6['Doctypes'] article_df_12=pd.concat([article_df_1, article_df_2], ignore_index=True) del article_df_1 del article_df_2 article_df_34=pd.concat([article_df_3, article_df_4], ignore_index=True) del article_df_3 del article_df_4 article_df_56=
pd.concat([article_df_5, article_df_6], ignore_index=True)
pandas.concat
__author__ = "<NAME>" import numpy import pandas import copy import math from . import Utilities from . import MultiPrediXcanAssociation, PrediXcanAssociation from ..expression import HDF5Expression, Expression ######################################################################################################################## def mp_callback(gene, model, result, vt_projection, variance, model_keys, coefs, save): save["coefs"] = coefs class Context(object): def __init__(self, expression_manager, phenotype_generator, filter, do_predixcan=False, only_truth=False): self.expression_manager = expression_manager self.phenotype_generator = phenotype_generator self.filter = filter self.do_predixcan = do_predixcan self.only_truth = only_truth def do_predixcan(self): return self.do_predixcan def get_genes(self): return self.expression_manager.get_genes() def __enter__(self): self.expression_manager.enter() return self def __exit__(self, exc_type, exc_val, exc_tb): self.expression_manager.exit() def get_mp_simulation(self, gene): if not gene: return Utilities.DumbMTPContext(None, None, None, self.filter), None, None expression = self.expression_manager.expression_for_gene(gene) phenotype, description = self.phenotype_generator.get(expression, gene) if phenotype is None: return None, None, None _cp = None if self.do_predixcan: _cp = {} for t in description.itertuples(): if "covariate" in t.variable: continue _cp[t.variable] = Utilities.DumbPContext(expression[t.variable], phenotype, gene, self.filter) if self.only_truth: expression = {x.variable:expression[x.variable] for x in description.itertuples() if x.variable in expression} return Utilities.DumbMTPContext(expression, phenotype, gene, self.filter), _cp, description ######################################################################################################################## class PhenotypeGenerator(object): def __init__(self): raise RuntimeError("Not implemented") class RandomPhenotypeGenerator(PhenotypeGenerator): def __init__(self): pass def get(self, expression, gene): k = list(expression.keys())[0] e = expression[k] n = len(e) pheno = numpy.random.uniform(size=n) description = pandas.DataFrame({ "variable":["covariate"], "param": [1.0]}) return pheno, description class LinearCombinationPhenotypeGenerator(PhenotypeGenerator): def __init__(self, combination, covariate_sd, use_all=None): self.combination = combination self.covariate_sd = covariate_sd self.use_all = use_all def get(self, expression, gene): combination = copy.copy(self.combination) if self.use_all: if type(self.use_all) == float: c = self.use_all elif self.use_all == "ONE_VAR": c = math.sqrt(1.0 / len(expression)) elif self.use_all == "FIX_VAR": c = 1.0 combination["covariate"] = math.sqrt(len(expression)*99) else: raise RuntimeError("Unsupported option") for e in list(expression.keys()): combination[e] = c return _pheno_from_combination(expression, combination, self.covariate_sd) class CombinationOfCorrelatedPhenotypeGenerator(PhenotypeGenerator): def __init__(self, covariate_coefficient, covariate_sd, threshold): self.covariate_coefficient = covariate_coefficient self.threshold = threshold self.covariate_sd = covariate_sd def get(self, expression, gene): # Get the tissue with the most correlated siblings; # then average them build a phenotype values = list(expression.values()) if len(values) == 1: return None, None e = values c = numpy.corrcoef(e) d = len(expression) f = 0 r = 0 for i in range(0, d): f_ = numpy.sum(c[i] > self.threshold) if f_ > f: r = i f = f_ if f<2: return None, None which = c[r] > self.threshold keys = list(expression.keys()) combination = {keys[i]:math.sqrt(1.0/f) for i in range(0, d) if which[i]} #for i in xrange(0,d): # combination["covariate_{}".format(i)] = 10.0/f combination["covariate"] = self.covariate_coefficient return _pheno_from_combination(expression, combination, self.covariate_sd) def _pheno_from_combination(expression, combination, covariate_sd): ok = True _k = list(expression.keys())[0] _e = expression[_k] n = len(_e) e = numpy.zeros(n) used = set() for k, v in combination.items(): if k in expression: e += expression[k] * v used.add(k) elif "covariate" in k: e += numpy.random.normal(scale=covariate_sd, size=n) * v used.add(k) else: # If we couldn't build a model with the desired combination, abort ok = False break if not ok: return None, None _c = {x: v for x, v in combination.items() if x in used} pheno = e description = pandas.DataFrame({"variable": list(_c.keys()), "param": list(_c.values())}) return pheno, description ######################################################################################################################## class SExpressionManager(Expression.ExpressionManager): def __init__(self, em): self.em = em self.which = None def expression_for_gene(self, gene): e = self.em.expression_for_gene(gene) if self.which is None: n = len(e[list(e.keys())[0]]) s = 10000 #self.which = numpy.random.choice([True, False], size=n, p=[s*1.0/n, 1 - s*1.0/n]) self.which = list(numpy.random.choice(range(0,n), size=s, replace=False)) e = {k:v[self.which] for k,v in e.items()} return e def get_genes(self): return self.em.get_genes() def enter(self): return self.em.enter() def exit(self): self.em.exit() def context_from_args(args): #expression_ = HDF5Expression.ExpressionManager(args.hdf5_expression_folder, args.expression_pattern, code_999=args.code_999, standardise= args.standardize_expression) #expression = SExpressionManager(expression_) expression = HDF5Expression.ExpressionManager(args.expression_folder, args.expression_pattern, code_999=args.code_999, standardise=args.standardize_expression) def _argumentize(x, t, default=1.0): return t(x) if x is not None else default p = {x[0]: x[1] for x in args.simulation_parameters} if args.simulation_parameters else {} covariate_coefficient = _argumentize(p.get("covariate_coefficient"), float) covariate_sd = _argumentize(p.get("covariate_sd"), float) if args.simulation_type == "random": phenotype = RandomPhenotypeGenerator() elif args.simulation_type == "combination": use_all = None if "model_spec" in p: _c = p.get("model_spec") if not _c: _c = {} else: _c = _c.split() _c = {_c[i*2]:float(_c[i*2+1]) for i in range(0,len(_c)/2)} elif "use_tissues" in p: _c = p.get("use_tissues").strip().split() _c = {x:math.sqrt(1.0/len(_c)) for x in _c} elif "use_all" in p: _c = {} if p["use_all"] == "ONE_VAR" or p["use_all"] == "FIX_VAR": use_all = p["use_all"] else: use_all = float(p["use_all"]) _c["covariate"] = covariate_coefficient phenotype = LinearCombinationPhenotypeGenerator(_c, covariate_sd=covariate_sd, use_all=use_all) elif args.simulation_type == "combination_from_correlated": threshold = _argumentize(p.get("threshold"), float, 0.9) phenotype = CombinationOfCorrelatedPhenotypeGenerator(covariate_coefficient=covariate_coefficient, covariate_sd=covariate_sd, threshold=threshold) else: raise RuntimeError("Wrong phenotype simulation spec") filter = Utilities._filter_from_args(args) context = Context(expression, phenotype, filter, args.do_predixcan, args.only_truth) return context ######################################################################################################################## def simulate(gene, context): save_results = {} _cb = lambda gene, model, result, vt_projection, variance, model_keys, coefs: mp_callback(gene, model, result, vt_projection, variance, model_keys, coefs, save_results) _context_mt, _context_p, _description = context.get_mp_simulation(gene) if _context_mt is None: return None, None, None p = None if _context_p: p = pandas.DataFrame() for model,_c in _context_p.items(): p_ = PrediXcanAssociation.predixcan_association(gene, _c) p_ = PrediXcanAssociation.dataframe_from_results([p_]) p_["model"] = model p =
pandas.concat([p,p_])
pandas.concat
import unittest import pandas as pd # fix to allow zip_longest on Python 2.X and 3.X try: # Python 3 from itertools import zip_longest except ImportError: # Python 2 from itertools import izip_longest as zip_longest from math import fabs from mock import patch, sentinel, Mock, MagicMock from ib.ext.Contract import Contract from ib.ext.Order import Order from ib.ext.Execution import Execution from ib.ext.OrderState import OrderState from zipline.gens.brokers.ib_broker import IBBroker, TWSConnection from zipline.testing.fixtures import WithSimParams from zipline.finance.execution import (StopLimitOrder, MarketOrder, StopOrder, LimitOrder) from zipline.finance.order import ORDER_STATUS from zipline.testing.fixtures import (ZiplineTestCase, WithDataPortal) @unittest.skip("Failing on CI - Fix later") class TestIBBroker(WithSimParams, WithDataPortal, ZiplineTestCase): ASSET_FINDER_EQUITY_SIDS = (1, 2) ASSET_FINDER_EQUITY_SYMBOLS = ("SPY", "XIV") @staticmethod def _tws_bars(): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): tws = TWSConnection("localhost:9999:1111") tws._add_bar('SPY', 12.4, 10, pd.to_datetime('2017-09-27 10:30:00', utc=True), 10, 12.401, False) tws._add_bar('SPY', 12.41, 10, pd.to_datetime('2017-09-27 10:30:40', utc=True), 20, 12.411, False) tws._add_bar('SPY', 12.44, 20, pd.to_datetime('2017-09-27 10:31:10', utc=True), 40, 12.441, False) tws._add_bar('SPY', 12.74, 5, pd.to_datetime('2017-09-27 10:37:10', utc=True), 45, 12.741, True) tws._add_bar('SPY', 12.99, 15, pd.to_datetime('2017-09-27 12:10:00', utc=True), 60, 12.991, False) tws._add_bar('XIV', 100.4, 100, pd.to_datetime('2017-09-27 9:32:00', utc=True), 100, 100.401, False) tws._add_bar('XIV', 100.41, 100, pd.to_datetime('2017-09-27 9:32:20', utc=True), 200, 100.411, True) tws._add_bar('XIV', 100.44, 200, pd.to_datetime('2017-09-27 9:41:10', utc=True), 400, 100.441, False) tws._add_bar('XIV', 100.74, 50, pd.to_datetime('2017-09-27 11:42:10', utc=True), 450, 100.741, False) return tws.bars @staticmethod def _create_contract(symbol): contract = Contract() contract.m_symbol = symbol contract.m_secType = 'STK' return contract @staticmethod def _create_order(action, qty, order_type, limit_price, stop_price): order = Order() order.m_action = action order.m_totalQuantity = qty order.m_auxPrice = stop_price order.m_lmtPrice = limit_price order.m_orderType = order_type return order @staticmethod def _create_order_state(status_): status = OrderState() status.m_status = status_ return status @staticmethod def _create_exec_detail(order_id, shares, cum_qty, price, avg_price, exec_time, exec_id): exec_detail = Execution() exec_detail.m_orderId = order_id exec_detail.m_shares = shares exec_detail.m_cumQty = cum_qty exec_detail.m_price = price exec_detail.m_avgPrice = avg_price exec_detail.m_time = exec_time exec_detail.m_execId = exec_id return exec_detail @patch('zipline.gens.brokers.ib_broker.TWSConnection') def test_get_spot_value(self, tws): dt = None # dt is not used in real broker data_freq = 'minute' asset = self.asset_finder.retrieve_asset(1) bars = {'last_trade_price': [12, 10, 11, 14], 'last_trade_size': [1, 2, 3, 4], 'total_volume': [10, 10, 10, 10], 'vwap': [12.1, 10.1, 11.1, 14.1], 'single_trade_flag': [0, 1, 0, 1]} last_trade_times = [pd.to_datetime('2017-06-16 10:30:00', utc=True), pd.to_datetime('2017-06-16 10:30:11', utc=True), pd.to_datetime('2017-06-16 10:30:30', utc=True), pd.to_datetime('2017-06-17 10:31:9', utc=True)] index = pd.DatetimeIndex(last_trade_times) broker = IBBroker(sentinel.tws_uri) tws.return_value.bars = {asset.symbol: pd.DataFrame( index=index, data=bars)} price = broker.get_spot_value(asset, 'price', dt, data_freq) last_trade = broker.get_spot_value(asset, 'last_traded', dt, data_freq) open_ = broker.get_spot_value(asset, 'open', dt, data_freq) high = broker.get_spot_value(asset, 'high', dt, data_freq) low = broker.get_spot_value(asset, 'low', dt, data_freq) close = broker.get_spot_value(asset, 'close', dt, data_freq) volume = broker.get_spot_value(asset, 'volume', dt, data_freq) # Only the last minute is taken into account, therefore # the first bar is ignored assert price == bars['last_trade_price'][-1] assert last_trade == last_trade_times[-1] assert open_ == bars['last_trade_price'][1] assert high == max(bars['last_trade_price'][1:]) assert low == min(bars['last_trade_price'][1:]) assert close == bars['last_trade_price'][-1] assert volume == sum(bars['last_trade_size'][1:]) def test_get_realtime_bars_produces_correct_df(self): bars = self._tws_bars() with patch('zipline.gens.brokers.ib_broker.TWSConnection'): broker = IBBroker(sentinel.tws_uri) broker._tws.bars = bars assets = (self.asset_finder.retrieve_asset(1), self.asset_finder.retrieve_asset(2)) realtime_history = broker.get_realtime_bars(assets, '1m') asset_spy = self.asset_finder.retrieve_asset(1) asset_xiv = self.asset_finder.retrieve_asset(2) assert asset_spy in realtime_history assert asset_xiv in realtime_history spy = realtime_history[asset_spy] xiv = realtime_history[asset_xiv] assert list(spy.columns) == ['open', 'high', 'low', 'close', 'volume'] assert list(xiv.columns) == ['open', 'high', 'low', 'close', 'volume'] # There are 159 minutes between the first (XIV @ 2017-09-27 9:32:00) # and the last bar (SPY @ 2017-09-27 12:10:00) assert len(realtime_history) == 159 spy_non_na = spy.dropna() xiv_non_na = xiv.dropna() assert len(spy_non_na) == 4 assert len(xiv_non_na) == 3 assert spy_non_na.iloc[0].name == pd.to_datetime( '2017-09-27 10:30:00', utc=True) assert spy_non_na.iloc[0].open == 12.40 assert spy_non_na.iloc[0].high == 12.41 assert spy_non_na.iloc[0].low == 12.40 assert spy_non_na.iloc[0].close == 12.41 assert spy_non_na.iloc[0].volume == 20 assert spy_non_na.iloc[1].name == pd.to_datetime( '2017-09-27 10:31:00', utc=True) assert spy_non_na.iloc[1].open == 12.44 assert spy_non_na.iloc[1].high == 12.44 assert spy_non_na.iloc[1].low == 12.44 assert spy_non_na.iloc[1].close == 12.44 assert spy_non_na.iloc[1].volume == 20 assert spy_non_na.iloc[-1].name == pd.to_datetime( '2017-09-27 12:10:00', utc=True) assert spy_non_na.iloc[-1].open == 12.99 assert spy_non_na.iloc[-1].high == 12.99 assert spy_non_na.iloc[-1].low == 12.99 assert spy_non_na.iloc[-1].close == 12.99 assert spy_non_na.iloc[-1].volume == 15 assert xiv_non_na.iloc[0].name == pd.to_datetime( '2017-09-27 9:32:00', utc=True) assert xiv_non_na.iloc[0].open == 100.4 assert xiv_non_na.iloc[0].high == 100.41 assert xiv_non_na.iloc[0].low == 100.4 assert xiv_non_na.iloc[0].close == 100.41 assert xiv_non_na.iloc[0].volume == 200 @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_new_order_appears_in_orders(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-123') broker._tws.nextValidId(0) asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset amount = -4 limit_price = 43.1 stop_price = 6 style = StopLimitOrder(limit_price=limit_price, stop_price=stop_price) order = broker.order(asset, amount, style) assert len(broker.orders) == 1 assert broker.orders[order.id] == order assert order.open assert order.asset == asset assert order.amount == amount assert order.limit == limit_price assert order.stop == stop_price assert (order.dt - pd.to_datetime('now', utc=True) < pd.Timedelta('10s')) @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_orders_loaded_from_open_orders(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-<PASSWORD>') asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset ib_order_id = 3 ib_contract = self._create_contract(str(asset.symbol)) action, qty, order_type, limit_price, stop_price = \ 'SELL', 40, 'STP LMT', 4.3, 2 ib_order = self._create_order( action, qty, order_type, limit_price, stop_price) ib_state = self._create_order_state('PreSubmitted') broker._tws.openOrder(ib_order_id, ib_contract, ib_order, ib_state) assert len(broker.orders) == 1 zp_order = list(broker.orders.values())[-1] assert zp_order.broker_order_id == ib_order_id assert zp_order.status == ORDER_STATUS.HELD assert zp_order.open assert zp_order.asset == asset assert zp_order.amount == -40 assert zp_order.limit == limit_price assert zp_order.stop == stop_price assert (zp_order.dt - pd.to_datetime('now', utc=True) < pd.Timedelta('10s')) @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_orders_loaded_from_exec_details(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-123') asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset (req_id, ib_order_id, shares, cum_qty, price, avg_price, exec_time, exec_id) = (7, 3, 12, 40, 12.43, 12.50, '20160101 14:20', 4) ib_contract = self._create_contract(str(asset.symbol)) exec_detail = self._create_exec_detail( ib_order_id, shares, cum_qty, price, avg_price, exec_time, exec_id) broker._tws.execDetails(req_id, ib_contract, exec_detail) assert len(broker.orders) == 1 zp_order = list(broker.orders.values())[-1] assert zp_order.broker_order_id == ib_order_id assert zp_order.open assert zp_order.asset == asset assert zp_order.amount == -40 assert zp_order.limit == limit_price assert zp_order.stop == stop_price assert (zp_order.dt - pd.to_datetime('now', utc=True) < pd.Timedelta('10s')) @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_orders_updated_from_order_status(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-123') broker._tws.nextValidId(0) # orderStatus calls only work if a respective order has been created asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset amount = -4 limit_price = 43.1 stop_price = 6 style = StopLimitOrder(limit_price=limit_price, stop_price=stop_price) order = broker.order(asset, amount, style) ib_order_id = order.broker_order_id status = 'Filled' filled = 14 remaining = 9 avg_fill_price = 12.4 perm_id = 99 parent_id = 88 last_fill_price = 12.3 client_id = 1111 why_held = '' broker._tws.orderStatus(ib_order_id, status, filled, remaining, avg_fill_price, perm_id, parent_id, last_fill_price, client_id, why_held) assert len(broker.orders) == 1 zp_order = list(broker.orders.values())[-1] assert zp_order.broker_order_id == ib_order_id assert zp_order.status == ORDER_STATUS.FILLED assert not zp_order.open assert zp_order.asset == asset assert zp_order.amount == amount assert zp_order.limit == limit_price assert zp_order.stop == stop_price assert (zp_order.dt - pd.to_datetime('now', utc=True) < pd.Timedelta('10s')) @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_multiple_orders(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-123') broker._tws.nextValidId(0) asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset order_count = 0 for amount, order_style in [ (-112, StopLimitOrder(limit_price=9, stop_price=1)), (43, LimitOrder(limit_price=10)), (-99, StopOrder(stop_price=8)), (-32, MarketOrder())]: order = broker.order(asset, amount, order_style) order_count += 1 assert order_count == len(broker.orders) assert broker.orders[order.id] == order is_buy = amount > 0 assert order.stop == order_style.get_stop_price(is_buy) assert order.limit == order_style.get_limit_price(is_buy) def test_order_ref_serdes(self): # Even though _creater_order_ref and _parse_order_ref is private # it is helpful to test as it plays a key role to re-create orders order = self._create_order("BUY", 66, "STP LMT", 13.4, 44.2) serialized = IBBroker._create_order_ref(order) deserialized = IBBroker._parse_order_ref(serialized) assert deserialized['action'] == order.m_action assert deserialized['qty'] == order.m_totalQuantity assert deserialized['order_type'] == order.m_orderType assert deserialized['limit_price'] == order.m_lmtPrice assert deserialized['stop_price'] == order.m_auxPrice assert (deserialized['dt'] - pd.to_datetime('now', utc=True) < pd.Timedelta('10s')) @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_transactions_not_created_for_incompl_orders(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-123') broker._tws.nextValidId(0) asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset amount = -4 limit_price = 43.1 stop_price = 6 style = StopLimitOrder(limit_price=limit_price, stop_price=stop_price) order = broker.order(asset, amount, style) assert not broker.transactions assert len(broker.orders) == 1 assert broker.orders[order.id].open ib_order_id = order.broker_order_id ib_contract = self._create_contract(str(asset.symbol)) action, qty, order_type, limit_price, stop_price = \ 'SELL', 4, 'STP LMT', 4.3, 2 ib_order = self._create_order( action, qty, order_type, limit_price, stop_price) ib_state = self._create_order_state('PreSubmitted') broker._tws.openOrder(ib_order_id, ib_contract, ib_order, ib_state) broker._tws.orderStatus(ib_order_id, status='Cancelled', filled=0, remaining=4, avg_fill_price=0.0, perm_id=4, parent_id=4, last_fill_price=0.0, client_id=32, why_held='') assert not broker.transactions assert len(broker.orders) == 1 assert not broker.orders[order.id].open broker._tws.orderStatus(ib_order_id, status='Inactive', filled=0, remaining=4, avg_fill_price=0.0, perm_id=4, parent_id=4, last_fill_price=0.0, client_id=1111, why_held='') assert not broker.transactions assert len(broker.orders) == 1 assert not broker.orders[order.id].open @patch('zipline.gens.brokers.ib_broker.symbol_lookup') def test_transactions_created_for_complete_orders(self, symbol_lookup): with patch('zipline.gens.brokers.ib_broker.TWSConnection.connect'): broker = IBBroker("localhost:9999:1111", account_id='TEST-<PASSWORD>') broker._tws.nextValidId(0) asset = self.asset_finder.retrieve_asset(1) symbol_lookup.return_value = asset order_count = 0 for amount, order_style in [ (-112, StopLimitOrder(limit_price=9, stop_price=1)), (43, LimitOrder(limit_price=10)), (-99, StopOrder(stop_price=8)), (-32, MarketOrder())]: order = broker.order(asset, amount, order_style) broker._tws.orderStatus(order.broker_order_id, 'Filled', filled=int(fabs(amount)), remaining=0, avg_fill_price=111, perm_id=0, parent_id=1, last_fill_price=112, client_id=1111, why_held='') contract = self._create_contract(str(asset.symbol)) (shares, cum_qty, price, avg_price, exec_time, exec_id) = \ (int(fabs(amount)), int(fabs(amount)), 12.3, 12.31, pd.to_datetime('now', utc=True), order_count) exec_detail = self._create_exec_detail( order.broker_order_id, shares, cum_qty, price, avg_price, exec_time, exec_id) broker._tws.execDetails(0, contract, exec_detail) order_count += 1 assert len(broker.transactions) == order_count transactions = [tx for tx in broker.transactions.values() if tx.order_id == order.id] assert len(transactions) == 1 assert broker.transactions[exec_id].asset == asset assert broker.transactions[exec_id].amount == order.amount assert (broker.transactions[exec_id].dt -
pd.to_datetime('now', utc=True)
pandas.to_datetime
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt =
pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt")
pandas.Series
from pymongo import MongoClient, DESCENDING import pandas as pd from portfolio.iportfolio import IPortfolio from database.portfoliodb import PortfolioDb class APortfolio(IPortfolio): def __init__(self,name): self.name = name self.db = PortfolioDb(name) super().__init__() def load(): self.strats = [] def sim(): return
pd.DataFrame([{}])
pandas.DataFrame
import numpy as np import os from numpy.testing import assert_equal, assert_almost_equal from svrimg.utils.get_tables import (_create_unid, _create_dtime, _preprocess_svrgis_table, _create_svrgis_table, _create_index_table, get_table, get_pred_tables) test_data_dir = os.environ.get('TEST_DATA_DIR') def test_create_unid(): import pandas as pd d = {'om': [1, 2], 'date': ['2011-04-27', '2011-04-27'], 'time': ['12:00:00', '12:15:00']} test_unid =
pd.DataFrame.from_dict(d)
pandas.DataFrame.from_dict
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import warnings from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import numpy as np # type: ignore import pandas as pd # type: ignore from elasticsearch import Elasticsearch # Default number of rows displayed (different to pandas where ALL could be displayed) DEFAULT_NUM_ROWS_DISPLAYED = 60 DEFAULT_CHUNK_SIZE = 10000 DEFAULT_CSV_BATCH_OUTPUT_SIZE = 10000 DEFAULT_PROGRESS_REPORTING_NUM_ROWS = 10000 DEFAULT_ES_MAX_RESULT_WINDOW = 10000 # index.max_result_window DEFAULT_PAGINATION_SIZE = 5000 # for composite aggregations PANDAS_VERSION: Tuple[int, ...] = tuple( int(part) for part in pd.__version__.split(".") if part.isdigit() )[:2] with warnings.catch_warnings(): warnings.simplefilter("ignore") EMPTY_SERIES_DTYPE =
pd.Series()
pandas.Series
# -*- coding: utf-8 -*- """Causal graphs have implications that can be tested in the context of a specific dataset. This module includes algorithms to perform those tests. """ from collections import abc from typing import Iterable, Optional, Union import pandas as pd from ananke.graphs import SG from tqdm import tqdm from .conditional_independencies import get_conditional_independencies from ..struct import DSeparationJudgement from ..util.stat_utils import cressie_read class Falsifications(abc.Sequence): """A list of variables pairs that failed the D-separation and covariance test. Has an extra 'evidence' property that is a dictionary. - Keys are the d-separated variable pairs - Values are the covariances measured between them. """ def __init__(self, failures, evidence: pd.DataFrame): """Create Falsifications result. :param failures: Sequence of implications that did not pass :param evidence: Collection of all implications tested """ self._failures = failures self.evidence = evidence def __getitem__(self, i): return self._failures[i] def __len__(self): return len(self._failures) def __repr__(self): return repr(self._failures) + "+evidence" def falsifications( to_test: Union[SG, Iterable[DSeparationJudgement]], df: pd.DataFrame, significance_level: float = 0.05, max_given: Optional[int] = None, verbose: bool = False, ) -> Falsifications: """Test conditional independencies implied by a graph. :param to_test: Either a graph to generate d-separation from or a list of D-separations to check. :param df: Data to check for consistency with a causal implications :param significance_level: Significance for p-value test :param max_given: The maximum set size in the power set of the vertices minus the d-separable pairs :param verbose: If true, use tqdm for status updates. :return: Falsifications report """ if isinstance(to_test, SG): to_test = get_conditional_independencies(to_test, max_conditions=max_given, verbose=verbose) variances = { (judgement.left, judgement.right, judgement.conditions): cressie_read( judgement.left, judgement.right, judgement.conditions, df, boolean=False ) for judgement in tqdm(to_test, disable=not verbose, desc="Checking conditionals") } rows = [ (left, right, given, chi, p, dof) for (left, right, given), (chi, dof, p) in variances.items() ] evidence = (
pd.DataFrame(rows, columns=["left", "right", "given", "chi^2", "p", "dof"])
pandas.DataFrame
from contextlib import suppress from typing import List from pandas import DataFrame, to_datetime, to_timedelta from weaverbird.backends.pandas_executor.types import DomainRetriever, PipelineExecutor from weaverbird.pipeline.steps import DateExtractStep from weaverbird.pipeline.steps.date_extract import DATE_INFO from .utils.cast import cast_to_int OPERATIONS_MAPPING = { 'minutes': 'minute', 'seconds': 'second', 'dayOfYear': 'dayofyear', } def execute_date_extract( step: DateExtractStep, df: DataFrame, domain_retriever: DomainRetriever = None, execute_pipeline: PipelineExecutor = None, ) -> DataFrame: date_info: List[DATE_INFO] if step.operation: # for retrocompatibility date_info = [step.operation] new_columns = [step.new_column_name or f'{step.column}_{step.operation}'] else: date_info = step.date_info new_columns = step.new_columns for dt_info, new_col in zip(date_info, new_columns): serie_dt = df[step.column].dt if dt_info == 'week': # cast in float and not in int to manage NaN properly result = serie_dt.strftime('%U').astype(float) elif dt_info == 'dayOfWeek': # result should be between 1 (sunday) and 7 (saturday) result = (serie_dt.dayofweek + 2) % 7 result = result.replace({0: 7}) elif dt_info == 'isoYear': result = serie_dt.isocalendar().year elif dt_info == 'isoWeek': result = serie_dt.isocalendar().week elif dt_info == 'isoDayOfWeek': result = serie_dt.isocalendar().day elif dt_info == 'firstDayOfYear': result = to_datetime(DataFrame({'year': serie_dt.year, 'month': 1, 'day': 1})) elif dt_info == 'firstDayOfMonth': result = to_datetime( DataFrame({'year': serie_dt.year, 'month': serie_dt.month, 'day': 1}) ) elif dt_info == 'firstDayOfWeek': # dayofweek should be between 1 (sunday) and 7 (saturday) dayofweek = (serie_dt.dayofweek + 2) % 7 dayofweek = dayofweek.replace({0: 7}) # we subtract a number of days corresponding to(dayOfWeek - 1) result = df[step.column] - to_timedelta(dayofweek - 1, unit='d') # the result should be returned with 0-ed time information result =
to_datetime(result.dt.date)
pandas.to_datetime
import pytest import operator import pandas as pd from pandas.core import ops from .base import BaseExtensionTests class BaseOpsUtil(BaseExtensionTests): def get_op_from_name(self, op_name): short_opname = op_name.strip('_') try: op = getattr(operator, short_opname) except AttributeError: # Assume it is the reverse operator rop = getattr(operator, short_opname[1:]) op = lambda x, y: rop(y, x) return op def check_opname(self, s, op_name, other, exc=Exception): op = self.get_op_from_name(op_name) self._check_op(s, op, other, op_name, exc) def _check_op(self, s, op, other, op_name, exc=NotImplementedError): if exc is None: result = op(s, other) expected = s.combine(other, op) self.assert_series_equal(result, expected) else: with pytest.raises(exc): op(s, other) def _check_divmod_op(self, s, op, other, exc=Exception): # divmod has multiple return values, so check separatly if exc is None: result_div, result_mod = op(s, other) if op is divmod: expected_div, expected_mod = s // other, s % other else: expected_div, expected_mod = other // s, other % s self.assert_series_equal(result_div, expected_div) self.assert_series_equal(result_mod, expected_mod) else: with pytest.raises(exc): divmod(s, other) class BaseArithmeticOpsTests(BaseOpsUtil): """Various Series and DataFrame arithmetic ops methods. Subclasses supporting various ops should set the class variables to indicate that they support ops of that kind * series_scalar_exc = TypeError * frame_scalar_exc = TypeError * series_array_exc = TypeError * divmod_exc = TypeError """ series_scalar_exc = TypeError frame_scalar_exc = TypeError series_array_exc = TypeError divmod_exc = TypeError def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # series & scalar op_name = all_arithmetic_operators s = pd.Series(data) self.check_opname(s, op_name, s.iloc[0], exc=self.series_scalar_exc) @pytest.mark.xfail(run=False, reason="_reduce needs implementation", strict=True) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op_name = all_arithmetic_operators df = pd.DataFrame({'A': data}) self.check_opname(df, op_name, data[0], exc=self.frame_scalar_exc) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op_name = all_arithmetic_operators s =
pd.Series(data)
pandas.Series
import pandas as pd def run_fengxian(path_1, path_2): """ name:“求风险值函数” function: 将分组求和后的销项发票信息和进项发票信息合并; 求销售净利率 path_1:销项发票 path_2:进项发票 """ df_1 = pd.read_csv(path_1, encoding='UTF-8') # 销项 df_2 = pd.read_csv(path_2, encoding='UTF-8') # 进项 # 删除没用的列 del df_1['发票号码'] del df_1['开票日期'] del df_1['购方单位代号'] del df_2['发票号码'] del df_2['开票日期'] del df_2['销方单位代号'] # 只保留发票状态中有效发票的行 df_1 = df_1[(df_1['发票状态'].isin(['有效发票']))] df_2 = df_2[(df_2['发票状态'].isin(['有效发票']))] # 删除整个数据表中所有含有负值的行 df_1 = df_1[df_1['金额'].apply(lambda x: x >= 0)] df_1 = df_1[df_1['税额'].apply(lambda x: x >= 0)] df_2 = df_2[df_2['金额'].apply(lambda x: x >= 0)] df_2 = df_2[df_2['税额'].apply(lambda x: x >= 0)] # 删除发票状态,为了后面的分组求和(中文求不了) del df_1['发票状态'] del df_2['发票状态'] # 分组求和 df_1 = df_1.groupby('企业代号').sum() df_1 = df_1.rename(columns={'金额': '金额_销项', '税额': '税额_销项', '价税合计': '价税合计_销项'}) df_2 = df_2.groupby('企业代号').sum() df_2 = df_2.rename(columns={'金额': '金额_进项', '税额': '税额_进项', '价税合计': '价税合计_进项'}) # 合并两张表 result = pd.concat([df_1, df_2], axis=1) # 求销售净利率 result['净利润'] = result['金额_销项'] - result['金额_进项'] + result['税额_进项'] - result['税额_销项'] result['销售收入'] = result['金额_销项'] result['销售净利率'] = result['净利润'] / result['销售收入'] # 求风险值 result["exp_销售净利率"] = result["销售净利率"].apply(pd.np.exp) result['风险值'] = 1 / (result['exp_销售净利率']) return result def run_fenxian_p3(path): """ name:“求问题三的风险值” path:求出的风险文件路径 """ df = pd.read_csv(path, encoding='GBK') result = df result['净利润'] = result['突发影响函数值'](result['金额_销项'] - result['金额_进项'] + result['税额_进项'] - result['税额_销项']) result['销售收入'] = result['金额_销项'] result['销售净利率'] = result['净利润'] / result['销售收入'] # 求风险值 result["exp_销售净利率"] = result["销售净利率"].apply(pd.np.exp) result['风险值'] = 1 / (result['exp_销售净利率']) return def run_fenxian_qujian(path): """ name:“求风险值函数区间” function: 【总年】将求出来的风险值去掉<1的【单年】不用 path:求出的风险文件路径 """ df =
pd.read_csv(path, encoding='GBK')
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index =
DatetimeIndex(data)
pandas.DatetimeIndex
#!/usr/bin/env python3 import argparse from collections import OrderedDict from glob import glob import logging import numpy import pandas import scipy.special import scipy.stats from statsmodels.sandbox.stats.multicomp import multipletests from singleqc import configure_logging, read_concentrations logger = logging.getLogger('tube_likelihood') def main(cmdline=None): parser = make_parser() args = parser.parse_args(cmdline) configure_logging(args) concentrations = read_concentrations(args.concentrations) sep = args.sep data = [] pool = read_rsem_quantifications(args.pool, 'pool', args.quantification, concentrations) data.extend(pool) single = read_rsem_quantifications(args.single, 'single', args.quantification, concentrations) data.extend(single) data.extend(read_combined_quantifications(args.combined_pool, 'pool', args.quantification, concentrations, sep)) data.extend(read_combined_quantifications(args.combined_single, 'single', args.quantification, concentrations, sep)) data = pandas.concat(data) if len(data) == 0: parser.error('some libraries need to be specified') data = log_likelihood(data) data = data.sort_values(by="run_LR", ascending=True) data = chi(data) if args.output: data.to_csv(args.output, sep='\t', index=False) else: print(data.to_string(index=False)) def make_parser(): parser = argparse.ArgumentParser() group = parser.add_argument_group('combined quantification file') group.add_argument('--combined-pool', action='append', default=[], help='file with merged pool-split quantifications to read') group.add_argument('--combined-single', action='append', default=[], help='file with merge single cell quantifications to read') group = parser.add_argument_group('raw RSEM files') group.add_argument('-p', '--pool', action='append', default=[], help='pool-split RSEM quantification files') group.add_argument('-s', '--single', action='append', default=[], help='single-cell RSEM quantification files') group.add_argument('-q', '--quantification', default='FPKM', help='Which RSEM quantification column to use') parser.add_argument('-c', '--concentrations', required=True, help='name of file with concentrations for spike ins') parser.add_argument('-o', '--output', help='output name') parser.add_argument('--sep', help='quantification file seperator', choices=['\t', ','], default='\t') parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('-d', '--debug', action='store_true') return parser def read_combined_quantifications(filenames, tube_type, quantification_name, concentrations, sep=','): """Read several combined quantification files. this is a gene_id vs library_id tables, if there is a column named "gene_name" it will be ignored. """ data = [] for filename in filenames: data.append(read_combined_quantification(filename, tube_type, quantification_name, concentrations, sep)) return data def read_combined_quantification(filename, tube_type, quantification_name, concentrations, sep=','): """Read a combined quantification files gene_id vs library_id this is a gene_id vs library_id tables, if there is a column named "gene_name" it will be ignored. """ dtype = {'gene_id': str, 'gene_name': str} quantifications = pandas.read_csv(filename, dtype=dtype, sep=sep, header=0) quantifications = quantifications.set_index('gene_id') quantifications.reindex(concentrations.index) data = [] for column in quantifications.columns: if column == 'gene_name': logger.info('Ignoring gene_name column') else: spikes = make_spike_success_table( quantifications[column].to_frame(quantification_name), concentrations, quantification_name, column, tube_type) data.append(spikes) return pandas.concat(data) def read_rsem_quantifications(patterns, tube_type, quantification_name, concentrations): """Read a specific quantification type column out of RSEM quantification files. """ if patterns is None or len(patterns) == 0: return [] data = [] for pattern in patterns: filenames = glob(pattern) for filename in filenames: rsem =
pandas.read_csv(filename, sep='\t', header=0, usecols=['gene_id', quantification_name])
pandas.read_csv
import numpy as np import pandas as pd from sklearn.base import TransformerMixin, BaseEstimator from ...utils import check_type, check_has_columns def _nan_to_end(enc): ''' :param enc: an fLabelEncoder instance :return: enc after moving nan in classes_ attribte to end of list ''' # boolean saying if null present in data null_cmp = np.asarray(pd.isnull(enc.classes_)) | \ np.asarray(list(map(lambda label: str(label).lower() == 'nan', enc.classes_))) has_null = np.any(null_cmp) if has_null: null_index = np.nonzero(null_cmp)[0][0] enc.classes_.append(enc.classes_.pop(null_index)) return enc class fOneHotEncoder(BaseEstimator, TransformerMixin): def __init__(self, sep='_', dummy_na=False, columns=None): self.sep = sep self.dummy_na = dummy_na self.columns = columns def fit(self, X, y=None): # encoding columns as integers {0, 1, ..., n_classes} self.enc_ = fOrdinalEncoder(nan_handle = 'hard', columns=self.columns, copy=True).fit(X) # propagating nan values to the end of the classes_ list in fLabelEncoder's for i, enc in enumerate(self.enc_.encoders_): self.enc_.encoders_[i] = _nan_to_end(enc) return self def transform(self, X): X_ord = self.enc_.transform(X) names = [] arrays = [] for i, column in enumerate(self.enc_.columns_): classes = self.enc_.encoders_[i].classes_ if self.dummy_na: rows = np.eye(len(classes)) else: rows = np.vstack([np.eye(len(classes)-1), np.zeros(len(classes)-1)[np.newaxis, :]]) array = rows.take(X_ord[column].values, axis=0) name_list = [str(column) + self.sep + str(cls) for cls in classes] if not self.dummy_na: name_list = name_list[:-1] arrays.append(array) names.extend(name_list) arrays = np.hstack(arrays) dummies =
pd.DataFrame(arrays,index=X.index, columns=names)
pandas.DataFrame
import unittest import pandas as pd import calendar import time from application.model_functions import * class Testing(unittest.TestCase): def test_isempty(self): df1 = pd.DataFrame() self.assertTrue(isempty_df(df1)) df2 = pd.DataFrame([[0,'abcd',0,1,123]],columns=['a','b','c','d','e']) self.assertFalse(isempty_df(df2)) def test_convert_to_epoch(self): #TODO: REVIEW FUNCTION pass # df1 = pd.DataFrame([["Wednesday, 27-Jul-16 11:37:51 UTC"]],columns=['time']) # df1 = convert_to_epoch(df1, "time") # df2 = pd.DataFrame([[1469619471]],columns=['time']) # self.assertEqual(df1['time'][0], df2['time'][0]) def room_number(self): df1 = pd.DataFrame([['B002']],columns=['room']) df2 =
pd.DataFrame([['B106']],columns=['room'])
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [
pd.Series([1])
pandas.Series
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" This module trains the NFM model based on the (updating) data and saves it in order for the recommendation engine to import it. """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" #import datetime as dt import logging import pandas as pd import pickle from time import sleep from sklearn.decomposition import NMF logging.basicConfig(#filename='RecommenderLog.log', format='%(asctime)s:%(levelname)s: %(message)s') def update_model(df): """ trains the model based on the latest input ARGUMENT: The pandas dataframe containing the recommandations """ # Changing dataframe to numpy ndarray for building R matrix R = pd.DataFrame(df, index=df.index, columns=df.columns).values #create a model and set the hyperparameters # 20 Genres (from EDA.py) + 106 years -> 126 number of components model = NMF(n_components=126, init='random', random_state=1, max_iter=100000, solver='cd') # fitting the model to R fit_model = model.fit(R) return fit_model, R if __name__ == '__main__': while True: # Loading the up to date preprocessed rating file # X-Axis -> userId , Y-Axis -> movieId df_final =
pd.read_csv('../data/preprocessed/df_final.csv')
pandas.read_csv
""" The BIGMACC script. """ import os import pandas as pd import numpy as np import logging import xarray as xr import zarr from itertools import repeat import time import cea.utilities.parallel logging.getLogger('numba').setLevel(logging.WARNING) import cea.config import cea.utilities import cea.inputlocator import cea.demand.demand_main import cea.resources.radiation_daysim.radiation_main import cea.bigmacc.bigmacc_rules import cea.bigmacc.wesbrook_DH_single import cea.bigmacc.wesbrook_DH_multi import cea.utilities.dbf import cea.datamanagement.archetypes_mapper import cea.datamanagement.data_initializer import cea.analysis.costs.system_costs import cea.analysis.lca.main import cea.bigmacc.bigmacc_util as util __author__ = "<NAME>" __copyright__ = "" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "" __email__ = "" __status__ = "" def generate_building_list(config): locator = cea.inputlocator.InputLocator(config.scenario) data = pd.read_csv(locator.get_total_demand()) return np.array(data['Name']) def hourly_xr_get_hourly_results(config, bldg): locator = cea.inputlocator.InputLocator(config.scenario) return pd.read_csv(locator.get_demand_results_file(bldg)) def hourly_xr_create_hourly_results_df(config): buildings = generate_building_list(config) interior_temp_dict = dict() pv_gen_dict = dict() operative_temp_dict = dict() district_dhw_dict = dict() district_heat_dict = dict() district_cool_dict = dict() electrical_aux_dict = dict() electrical_dhw_dict = dict() electrical_heat_dict = dict() electrical_cool_dict = dict() heatloss_rad_dict = dict() heatgain_solar_dict = dict() grid_dict = dict() electrical_appliances_dict = dict() electrical_ev_dict = dict() electrical_refrig_dict = dict() electrical_data_cool_dict = dict() electrical_ind_process_dict = dict() electrical_data_dict = dict() ng_dhw_dict = dict() ng_heat_dict = dict() heat_enduse_sys_dict = dict() heat_enduse_dict = dict() dhw_enduse_sys_dict = dict() dhw_enduse_dict = dict() cool_enduse_sys_dict = dict() cool_enduse_dict = dict() for bldg in buildings.tolist(): print(f' - Adding {bldg} to the dataarray.') data = hourly_xr_get_hourly_results(config, bldg) interior_temp_dict[bldg] = data['T_int_C'] # 0 pv_gen_dict[bldg] = data['PV_kWh'] # 1 operative_temp_dict[bldg] = data['theta_o_C'] # 2 district_dhw_dict[bldg] = data['DH_ww_kWh'] # 3 district_heat_dict[bldg] = data['DH_hs_kWh'] # 4 district_cool_dict[bldg] = data['DC_cs_kWh'] # 5 electrical_aux_dict[bldg] = data['Eaux_kWh'] # 6 electrical_dhw_dict[bldg] = data['E_ww_kWh'] # 7 electrical_heat_dict[bldg] = data['E_hs_kWh'] # 8 electrical_cool_dict[bldg] = data['E_cs_kWh'] # 9 heatloss_rad_dict[bldg] = data['I_rad_kWh'] # 10 heatgain_solar_dict[bldg] = data['I_sol_kWh'] # 11 grid_dict[bldg] = data['GRID_kWh'] # 12 electrical_appliances_dict[bldg] = data['Eal_kWh'] # 13 electrical_ev_dict[bldg] = data['Ev_kWh'] # 14 electrical_refrig_dict[bldg] = data['E_cre_kWh'] # 15 electrical_data_cool_dict[bldg] = data['E_cdata_kWh'] # 16 electrical_ind_process_dict[bldg] = data['Epro_kWh'] # 17 electrical_data_dict[bldg] = data['Edata_kWh'] # 18 ng_dhw_dict[bldg] = data['NG_ww_kWh'] # 19 ng_heat_dict[bldg] = data['NG_hs_kWh'] # 20 heat_enduse_sys_dict[bldg] = data['Qhs_sys_kWh'] # 21 heat_enduse_dict[bldg] = data['Qhs_kWh'] # 22 dhw_enduse_sys_dict[bldg] = data['Qww_sys_kWh'] # 23 dhw_enduse_dict[bldg] = data['Qww_kWh'] # 24 cool_enduse_sys_dict[bldg] = data['Qcs_sys_kWh'] # 25 cool_enduse_dict[bldg] = data['Qcs_kWh'] # 26 return [interior_temp_dict, pv_gen_dict, operative_temp_dict, district_dhw_dict, district_heat_dict, district_cool_dict, electrical_aux_dict, electrical_dhw_dict, electrical_heat_dict, electrical_cool_dict, heatloss_rad_dict, heatgain_solar_dict, grid_dict, electrical_appliances_dict, electrical_ev_dict, electrical_refrig_dict, electrical_data_cool_dict, electrical_ind_process_dict, electrical_data_dict, ng_dhw_dict, ng_heat_dict, heat_enduse_sys_dict, heat_enduse_dict, dhw_enduse_sys_dict, dhw_enduse_dict, cool_enduse_sys_dict, cool_enduse_dict] def hourly_xr_get_annual_results(config): locator = cea.inputlocator.InputLocator(config.scenario) embodied_carbon_path = locator.get_lca_embodied() operational_carbon_path = locator.get_lca_operation() building_tac_path = locator.get_building_tac_file() supply_syst_path = locator.get_costs_operation_file() emb_carbon = pd.read_csv(embodied_carbon_path)['GHG_sys_embodied_tonCO2'].sum() op_carbon_district = pd.read_csv(operational_carbon_path)['GHG_sys_district_scale_tonCO2'].sum() op_carbon_building = pd.read_csv(operational_carbon_path)['GHG_sys_building_scale_tonCO2'].sum() build_costs_opex = pd.read_csv(building_tac_path)['opex_building_systems'].sum() build_costs_capex = pd.read_csv(building_tac_path)['capex_building_systems'].sum() supply_costs_opex = pd.read_csv(supply_syst_path)['Opex_sys_USD'].sum() supply_costs_capex = pd.read_csv(supply_syst_path)['Capex_total_sys_USD'].sum() return [emb_carbon, op_carbon_district, op_carbon_building, build_costs_opex, build_costs_capex, supply_costs_opex, supply_costs_capex] def hourly_xr_create_hourly_dataset(config): scenario = config.general.parent strategy = config.bigmacc.key time_arr = pd.date_range("{}-01-01".format(scenario.split('_')[1]), periods=8760, freq="h") data = hourly_xr_create_hourly_results_df(config) annual_results = hourly_xr_get_annual_results(config) print(' - Creating dataset.') d = xr.Dataset( data_vars=dict( interior_temp_C=(["times", "buildings"], pd.DataFrame.from_dict(data[0]).to_numpy()), pv_generated_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[1]).to_numpy()), operative_temp_C=(["times", "buildings"], pd.DataFrame.from_dict(data[2]).to_numpy()), district_dhw_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[3]).to_numpy()), district_heat_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[4]).to_numpy()), district_cool_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[5]).to_numpy()), electric_aux_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[6]).to_numpy()), electric_dhw_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[7]).to_numpy()), electric_heating_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[8]).to_numpy()), electric_cooling_kwh=(["times", "buildings"], pd.DataFrame.from_dict(data[9]).to_numpy()), radiative_heat_loss_kwh=(["times", "buildings"],
pd.DataFrame.from_dict(data[10])
pandas.DataFrame.from_dict
import optuna import numpy as np import pandas as pd from functools import partial from . import model_bank import mlflow from .AAMPreprocessor import AAMPreprocessor import joblib from .FastAIutils import * from .metrics import model_metrics, pretty_scores, get_scores from loguru import logger from pathlib import Path from tabulate import tabulate import pprint import random class ProjectConfigurator: def __init__(self, config) -> None: if config: self.key_attrs = [i for i in dir(config) if not i.startswith('__')] for key in self.key_attrs: setattr(self, key, getattr(config, key)) self.create_project_folder() self.add_logger_path() self.add_project_config_to_logs(config) def create_project_folder(self): self.output_path = Path(self.BASE_OUTPUT_PATH) / Path(self.PROJECT_NAME) / Path(self.SUB_PROJECT_NAME) self.output_path.mkdir(parents=True, exist_ok=True) self.models_path = self.output_path / 'models' self.models_path.mkdir(parents=True, exist_ok=True) # def copy_config_file(self): # import shutil # shutil.copy('config.py', str(self.output_path)) def add_logger_path(self): logger_name = str(random.randint(0,10000)) self.logger = logger.bind(name = logger_name) self.logger.add(str(self.output_path/'logfile.log'), filter=lambda record: record["extra"].get("name") == logger_name) def add_project_config_to_logs(self, config): bc_attrs = {i : getattr(config, i) for i in self.key_attrs } self.logger.info('\n'+pprint.pformat(bc_attrs)) class ARKAutoML(AAMPreprocessor): def __init__(self, data = None, config=None, n_folds= 5, eval_metric='recall', n_trials=10, model_algos=['xgb','rf'], loading=False): self.config = ProjectConfigurator(config) if not loading: super().__init__(data, cat_cols=config.cat_cols, cont_cols=config.cont_cols, y_names=config.TARGET_COL, n_folds=n_folds, fold_method=config.FOLD_METHOD) self.eval_metric = eval_metric self.n_trials = n_trials self.model_algos = model_algos self.logger = self.config.logger self.total_features = len(self.cat_cols + self.cont_cols) self.mpb = model_bank.ModelParamBank(total_features = self.total_features) def create_optuna_optimization(self): self.study = optuna.create_study(direction='maximize', study_name=self.config.PROJECT_NAME, load_if_exists=True) mlflow.set_experiment(self.config.PROJECT_NAME) optimization_function = partial(self.objective) self.study.optimize(optimization_function, n_trials=self.n_trials) def objective(self, trial): valid_metrics = {} for fold in range(self.n_folds): self.mpb = model_bank.ModelParamBank(total_features = self.total_features, trial = trial) # self.trial_number_model[trial.number] = model_algo model_algo = trial.suggest_categorical("model_algo", self.model_algos) model = self.mpb.get_model_with_optuna_params(model_algo) model.fit(self.X_train[fold], self.y_train[fold]) # train_metrics = self.model_metrics(model, self.X_train[fold], self.y_train[fold]) valid_metrics[fold] = model_metrics(model, self.X_test[fold], self.y_test[fold], self.logger) cross_validated_metrics = pd.DataFrame(valid_metrics).mean(axis=1).to_dict() self.logger.info(f'''Trial No : {trial.number}, {self.eval_metric} : {np.round(cross_validated_metrics[self.eval_metric], 4)}, Params : {trial.params} {pretty_scores(cross_validated_metrics)}''') with mlflow.start_run(): mlflow.log_params(trial.params) for fold in range(self.n_folds): mlflow.log_metrics(valid_metrics[fold]) # metrics for each fold mlflow.log_metrics(cross_validated_metrics) # Adding the cross validated metrics tags = { 'eval_metric' : self.eval_metric, 'model_type' : 'classification', 'model_algo' : model_algo, 'train_shape' : self.X_train[fold].shape, 'test_shape' : self.X_test[fold].shape, 'sub_project' : self.config.SUB_PROJECT_NAME } mlflow.set_tags(tags) return cross_validated_metrics[self.eval_metric] @staticmethod def calculate_metrics_based_on_different_cut_offs(model, X, y, cut_offs): full_metrics = [] for co in cut_offs: loop_dict = get_scores(y, np.where(model.predict_proba(X)[:,1]>co, 1, 0)) loop_dict['prob_cut_off'] = co full_metrics.append(loop_dict) cols = ['prob_cut_off'] + [i for i in loop_dict.keys() if i!='prob_cut_off'] #Reordering the columns return
pd.DataFrame(full_metrics)
pandas.DataFrame
from collections import defaultdict from datetime import datetime as dt import base64 import json import datetime import streamlit as st import pandas as pd import numpy as np import plotly.graph_objects as go import plotly.io as pio import extaedio.amp_consts import extaedio.amp_st_functs from extaedio.amp_functs import ( build_plot, get_plot_help_digest, get_plot_docstring, ) def get_final_index(default_index: int, options: list, key: str, overrides: dict) -> int: if key in overrides: return options.index(overrides[key]) else: return default_index class ParamInitializer(object): def __init__(self, parent, params_doc, overrides, show_help) -> None: self._parent = parent self._params_doc = params_doc self._overrides = overrides self._show_help = show_help def __call__( self, param_name, widget_params, widget_type="selectbox", doc_override=None, lock: bool = False, ): if self._overrides and lock: if param_name in self._overrides: self._parent.markdown( f"**{param_name}** <- {self._overrides[param_name]}" ) self._parent.info(f"**{param_name}** is locked in report mode") ret = self._overrides[param_name] else: return None elif widget_type: f = getattr(self._parent, widget_type) if param_name in self._overrides: if "options" in widget_params and "index" in widget_params: widget_params["index"] = get_final_index( default_index=widget_params["index"], options=widget_params["options"], key=param_name, overrides=self._overrides, ) if "options" in widget_params and "default" in widget_params: widget_params["default"] = self._overrides[param_name] elif "value" in widget_params: widget_params["value"] = self._overrides[param_name] ret = None if f is None else f(**widget_params) else: ret = None if ret == extaedio.amp_consts.PICK_ONE: self._parent.warning( f"Please pic a column for the {widget_params.get('label', 'previous parameter')}." ) if (self._show_help == "all") or ( (self._show_help == "mandatory") and (ret == extaedio.amp_consts.PICK_ONE) ): self.print_help( param_name=param_name, params_doc=doc_override if doc_override is not None else self._params_doc, ) return ret def print_help(self, param_name, params_doc): if isinstance(params_doc, str): self._parent.markdown(params_doc) else: for k, v in params_doc.items(): p, *_ = k.split(":") if p == param_name: self._parent.markdown("".join(v)) break else: self._parent.warning(f"Missing doc for {param_name}") self._parent.markdown("___") def _max_width_(): max_width_str = f"max-width: 100%;" st.markdown( f""" <style> .reportview-container .main .block-container{{ {max_width_str} }} </style> """, unsafe_allow_html=True, ) @st.cache def wrangle_the_data(df, dw_options): # Sort if dw_options["sort_columns"]: df = df.sort_values( dw_options["sort_columns"], ascending=not dw_options["invert_sort"], ) # Filter columns df = df[dw_options["kept_columns"]] # Filter rows if len(dw_options["filters"]) > 0: for k, v in dw_options["filters"].items(): df = df[df[k].isin(v)] # Bin columns if len(dw_options["binners"]) > 0: for k, v in dw_options["binners"].items(): df[k] =
pd.cut(df[k], v)
pandas.cut
import warnings from datetime import datetime import pytest import pandas as pd from mssql_dataframe.connect import connect from mssql_dataframe.core import custom_warnings, custom_errors, create, conversion, conversion_rules from mssql_dataframe.core.write import insert, _exceptions pd.options.mode.chained_assignment = "raise" class package: def __init__(self, connection): self.connection = connection.connection self.create = create.create(self.connection) self.create_meta = create.create(self.connection, include_metadata_timestamps=True) self.insert = insert.insert(self.connection, autoadjust_sql_objects=True) self.insert_meta = insert.insert(self.connection, include_metadata_timestamps=True, autoadjust_sql_objects=True) @pytest.fixture(scope="module") def sql(): db = connect(database="tempdb", server="localhost") yield package(db) db.connection.close() def test_insert_autoadjust_errors(sql): table_name = "##test_insert_autoadjust_errors" # create table with column for each conversion rule columns = conversion_rules.rules['sql_type'].to_numpy() columns = {'_'+x:x for x in columns} sql.create.table(table_name, columns=columns) # create dataframes for each conversion rule that should fail insert boolean = [3] exact_numeric = ['a', '2-1', 1.1, datetime.now()] approximate_numeric = ['a', '2-1',datetime.now()] date_time = ['a', 1, 1.1] character_string = [1, datetime.now()] dataframe = [ pd.DataFrame({'_bit': boolean}), pd.DataFrame({'_tinyint': exact_numeric}), pd.DataFrame({'_smallint': exact_numeric}), pd.DataFrame({'_int': exact_numeric}), pd.DataFrame({'_bigint': exact_numeric}), pd.DataFrame({'_float': approximate_numeric}), pd.DataFrame({'_time': date_time}), pd.DataFrame({'_date': date_time}), pd.DataFrame({'_datetime2': date_time}), pd.DataFrame({'_varchar': character_string}),
pd.DataFrame({'_nvarchar': character_string})
pandas.DataFrame
import cleaning import codecs import pandas as pd import subprocess def main(): doc_clean,document_tweets=cleaning.get_clean_docs(0) file = codecs.open('data.txt', 'w', 'utf-8') doc_list=[] print (len(doc_clean)) print(len(document_tweets)) for doc in doc_clean: document_text=" ".join(doc) file.write(document_text+'\n') p = subprocess.Popen(["sh", "runExample.sh"], shell=True) print(p.communicate()) result_doc=open("C:/Users/brohi/OneDrive/Desktop/BTM-master/output/model/k5.pz_d",'r') topic=[] for doc in result_doc.readlines(): doc_dist=doc.split() topic.append(doc_dist.index(max(doc_dist))) df = pd.DataFrame({'text':document_tweets[:len(topic )]}) se =
pd.Series(topic)
pandas.Series
#!/usr/bin/env python import pandas as pd import numpy as np from typing import List class DataSet(pd.core.frame.DataFrame): """A represenation of a dataset This is basically a pandas dataframe with a set of "metadata" columns that will be removed when the dataframe is converted to a numpy array Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects .. versionchanged :: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided metadata_columns : Array-like A list of metadata columns that are already contained in the columns parameter. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. DataFrame.from_items : From sequence of (key, value) pairs pandas.read_csv, pandas.read_table, pandas.read_clipboard. Notes ---- Based on https://notes.mikejarrett.ca/storing-metadata-in-pandas-dataframes/ """ def __init__( self, data=None, index=None, columns=None, metadata_columns=[], units=None, dtype=None, copy=False, ): # Column multindex level names level_names = ["NAME", "TYPE"] if units: names.append("UNITS") if isinstance(columns, pd.MultiIndex): pass elif columns is not None: column_names = columns if metadata_columns: types = [ "METADATA" if x in metadata_columns else "DATA" for x in column_names ] else: types = ["DATA" for _ in range(len(column_names))] arrays = [column_names, types] if units: arrays.append(units) tuples = list(zip(*arrays)) columns = pd.MultiIndex.from_tuples(tuples, names=level_names) pd.core.frame.DataFrame.__init__( self, data=data, index=index, columns=columns, dtype=dtype, copy=copy ) @staticmethod def from_df(df: pd.DataFrame, metadata_columns: List = [], units: List = []): """Create Dataset from a pandas dataframe Arguments ---------- df: pandas.DataFrame Dataframe to be converted to a DataSet metadata_columns: list, optional names of the columns in the dataframe that are metadata columns units: list, optional A list of objects representing the units of the columns """ column_names = df.columns.to_numpy() if metadata_columns: types = [ "METADATA" if x in metadata_columns else "DATA" for x in df.columns ] else: types = ["DATA" for _ in range(len(column_names))] arrays = [column_names, types] levels = ["NAME", "TYPE"] if units: arrays.append(units) levels.append("UNITS") tuples = list(zip(*arrays)) columns = pd.MultiIndex.from_tuples(tuples, names=levels) return DataSet(df.to_numpy(), columns=columns, index=df.index) @staticmethod def read_csv(filepath_or_buffer, **kwargs): """Create a DataSet from a csv""" header = kwargs.get("header", [0, 1]) index_col = kwargs.get("index_col", 0) df =
pd.read_csv(filepath_or_buffer, header=header, index_col=index_col)
pandas.read_csv
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the zipline.assets package """ from contextlib import contextmanager from datetime import timedelta from functools import partial import pickle import sys from types import GetSetDescriptorType from unittest import TestCase import uuid import warnings from nose_parameterized import parameterized from numpy import full, int32, int64 import pandas as pd from pandas.util.testing import assert_frame_equal from six import PY2, viewkeys import sqlalchemy as sa from zipline.assets import ( Asset, Equity, Future, AssetDBWriter, AssetFinder, ) from zipline.assets.synthetic import ( make_commodity_future_info, make_rotating_equity_info, make_simple_equity_info, ) from six import itervalues, integer_types from toolz import valmap from zipline.assets.asset_writer import ( check_version_info, write_version_info, _futures_defaults, SQLITE_MAX_VARIABLE_NUMBER, ) from zipline.assets.asset_db_schema import ASSET_DB_VERSION from zipline.assets.asset_db_migrations import ( downgrade ) from zipline.errors import ( EquitiesNotFound, FutureContractsNotFound, MultipleSymbolsFound, MultipleValuesFoundForField, MultipleValuesFoundForSid, NoValueForSid, AssetDBVersionError, SidsNotFound, SymbolNotFound, AssetDBImpossibleDowngrade, ValueNotFoundForField, ) from zipline.testing import ( all_subindices, empty_assets_db, parameter_space, tmp_assets_db, ) from zipline.testing.predicates import assert_equal from zipline.testing.fixtures import ( WithAssetFinder, ZiplineTestCase, WithTradingCalendars, ) from zipline.utils.range import range @contextmanager def build_lookup_generic_cases(asset_finder_type): """ Generate test cases for the type of asset finder specific by asset_finder_type for test_lookup_generic. """ unique_start = pd.Timestamp('2013-01-01', tz='UTC') unique_end = pd.Timestamp('2014-01-01', tz='UTC') dupe_0_start = pd.Timestamp('2013-01-01', tz='UTC') dupe_0_end = dupe_0_start + timedelta(days=1) dupe_1_start = pd.Timestamp('2013-01-03', tz='UTC') dupe_1_end = dupe_1_start + timedelta(days=1) equities = pd.DataFrame.from_records( [ { 'sid': 0, 'symbol': 'duplicated', 'start_date': dupe_0_start.value, 'end_date': dupe_0_end.value, 'exchange': 'TEST', }, { 'sid': 1, 'symbol': 'duplicated', 'start_date': dupe_1_start.value, 'end_date': dupe_1_end.value, 'exchange': 'TEST', }, { 'sid': 2, 'symbol': 'unique', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'TEST', }, ], index='sid' ) fof14_sid = 10000 futures = pd.DataFrame.from_records( [ { 'sid': fof14_sid, 'symbol': 'FOF14', 'root_symbol': 'FO', 'start_date': unique_start.value, 'end_date': unique_end.value, 'exchange': 'FUT', }, ], index='sid' ) root_symbols = pd.DataFrame({ 'root_symbol': ['FO'], 'root_symbol_id': [1], 'exchange': ['CME'], }) with tmp_assets_db( equities=equities, futures=futures, root_symbols=root_symbols) \ as assets_db: finder = asset_finder_type(assets_db) dupe_0, dupe_1, unique = assets = [ finder.retrieve_asset(i) for i in range(3) ] fof14 = finder.retrieve_asset(fof14_sid) cf = finder.create_continuous_future( root_symbol=fof14.root_symbol, offset=0, roll_style='volume', ) dupe_0_start = dupe_0.start_date dupe_1_start = dupe_1.start_date yield ( ## # Scalars # Asset object (finder, assets[0], None, assets[0]), (finder, assets[1], None, assets[1]), (finder, assets[2], None, assets[2]), # int (finder, 0, None, assets[0]), (finder, 1, None, assets[1]), (finder, 2, None, assets[2]), # Duplicated symbol with resolution date (finder, 'DUPLICATED', dupe_0_start, dupe_0), (finder, 'DUPLICATED', dupe_1_start, dupe_1), # Unique symbol, with or without resolution date. (finder, 'UNIQUE', unique_start, unique), (finder, 'UNIQUE', None, unique), # Futures (finder, 'FOF14', None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, 'FOF14', unique_start, fof14), # Futures int (finder, fof14_sid, None, fof14), # Future symbols should be unique, but including as_of date # make sure that code path is exercised. (finder, fof14_sid, unique_start, fof14), # ContinuousFuture (finder, cf, None, cf), ## # Iterables # Iterables of Asset objects. (finder, assets, None, assets), (finder, iter(assets), None, assets), # Iterables of ints (finder, (0, 1), None, assets[:-1]), (finder, iter((0, 1)), None, assets[:-1]), # Iterables of symbols. (finder, ('DUPLICATED', 'UNIQUE'), dupe_0_start, [dupe_0, unique]), (finder, ('DUPLICATED', 'UNIQUE'), dupe_1_start, [dupe_1, unique]), # Mixed types (finder, ('DUPLICATED', 2, 'UNIQUE', 1, dupe_1), dupe_0_start, [dupe_0, assets[2], unique, assets[1], dupe_1]), # Futures and Equities (finder, ['FOF14', 0], None, [fof14, assets[0]]), # ContinuousFuture and Equity (finder, [cf, 0], None, [cf, assets[0]]), ) class AssetTestCase(TestCase): # Dynamically list the Asset properties we want to test. asset_attrs = [name for name, value in vars(Asset).items() if isinstance(value, GetSetDescriptorType)] # Very wow asset = Asset( 1337, symbol="DOGE", asset_name="DOGECOIN", start_date=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), end_date=pd.Timestamp('2014-06-25 11:21AM', tz='UTC'), first_traded=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), auto_close_date=pd.Timestamp('2014-06-26 11:21AM', tz='UTC'), exchange='THE MOON', ) asset3 = Asset(3, exchange="test") asset4 = Asset(4, exchange="test") asset5 = Asset(5, exchange="still testing") def test_asset_object(self): the_asset = Asset(5061, exchange="bar") self.assertEquals({5061: 'foo'}[the_asset], 'foo') self.assertEquals(the_asset, 5061) self.assertEquals(5061, the_asset) self.assertEquals(the_asset, the_asset) self.assertEquals(int(the_asset), 5061) self.assertEquals(str(the_asset), 'Asset(5061)') def test_to_and_from_dict(self): asset_from_dict = Asset.from_dict(self.asset.to_dict()) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_from_dict, attr), ) def test_asset_is_pickleable(self): asset_unpickled = pickle.loads(pickle.dumps(self.asset)) for attr in self.asset_attrs: self.assertEqual( getattr(self.asset, attr), getattr(asset_unpickled, attr), ) def test_asset_comparisons(self): s_23 = Asset(23, exchange="test") s_24 = Asset(24, exchange="test") self.assertEqual(s_23, s_23) self.assertEqual(s_23, 23) self.assertEqual(23, s_23) self.assertEqual(int32(23), s_23) self.assertEqual(int64(23), s_23) self.assertEqual(s_23, int32(23)) self.assertEqual(s_23, int64(23)) # Check all int types (includes long on py2): for int_type in integer_types: self.assertEqual(int_type(23), s_23) self.assertEqual(s_23, int_type(23)) self.assertNotEqual(s_23, s_24) self.assertNotEqual(s_23, 24) self.assertNotEqual(s_23, "23") self.assertNotEqual(s_23, 23.5) self.assertNotEqual(s_23, []) self.assertNotEqual(s_23, None) # Compare to a value that doesn't fit into a platform int: self.assertNotEqual(s_23, sys.maxsize + 1) self.assertLess(s_23, s_24) self.assertLess(s_23, 24) self.assertGreater(24, s_23) self.assertGreater(s_24, s_23) def test_lt(self): self.assertTrue(self.asset3 < self.asset4) self.assertFalse(self.asset4 < self.asset4) self.assertFalse(self.asset5 < self.asset4) def test_le(self): self.assertTrue(self.asset3 <= self.asset4) self.assertTrue(self.asset4 <= self.asset4) self.assertFalse(self.asset5 <= self.asset4) def test_eq(self): self.assertFalse(self.asset3 == self.asset4) self.assertTrue(self.asset4 == self.asset4) self.assertFalse(self.asset5 == self.asset4) def test_ge(self): self.assertFalse(self.asset3 >= self.asset4) self.assertTrue(self.asset4 >= self.asset4) self.assertTrue(self.asset5 >= self.asset4) def test_gt(self): self.assertFalse(self.asset3 > self.asset4) self.assertFalse(self.asset4 > self.asset4) self.assertTrue(self.asset5 > self.asset4) def test_type_mismatch(self): if sys.version_info.major < 3: self.assertIsNotNone(self.asset3 < 'a') self.assertIsNotNone('a' < self.asset3) else: with self.assertRaises(TypeError): self.asset3 < 'a' with self.assertRaises(TypeError): 'a' < self.asset3 class TestFuture(WithAssetFinder, ZiplineTestCase): @classmethod def make_futures_info(cls): return pd.DataFrame.from_dict( { 2468: { 'symbol': 'OMH15', 'root_symbol': 'OM', 'notice_date': pd.Timestamp('2014-01-20', tz='UTC'), 'expiration_date': pd.Timestamp('2014-02-20', tz='UTC'), 'auto_close_date': pd.Timestamp('2014-01-18', tz='UTC'), 'tick_size': .01, 'multiplier': 500.0, 'exchange': "TEST", }, 0: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC'), 'multiplier': 1.0, 'exchange': 'TEST', }, }, orient='index', ) @classmethod def init_class_fixtures(cls): super(TestFuture, cls).init_class_fixtures() cls.future = cls.asset_finder.lookup_future_symbol('OMH15') cls.future2 = cls.asset_finder.lookup_future_symbol('CLG06') def test_str(self): strd = str(self.future) self.assertEqual("Future(2468 [OMH15])", strd) def test_repr(self): reprd = repr(self.future) self.assertIn("Future", reprd) self.assertIn("2468", reprd) self.assertIn("OMH15", reprd) self.assertIn("root_symbol=%s'OM'" % ('u' if PY2 else ''), reprd) self.assertIn( "notice_date=Timestamp('2014-01-20 00:00:00+0000', tz='UTC')", reprd, ) self.assertIn( "expiration_date=Timestamp('2014-02-20 00:00:00+0000'", reprd, ) self.assertIn( "auto_close_date=Timestamp('2014-01-18 00:00:00+0000'", reprd, ) self.assertIn("tick_size=0.01", reprd) self.assertIn("multiplier=500", reprd) def test_reduce(self): assert_equal( pickle.loads(pickle.dumps(self.future)).to_dict(), self.future.to_dict(), ) def test_to_and_from_dict(self): dictd = self.future.to_dict() for field in _futures_defaults.keys(): self.assertTrue(field in dictd) from_dict = Future.from_dict(dictd) self.assertTrue(isinstance(from_dict, Future)) self.assertEqual(self.future, from_dict) def test_root_symbol(self): self.assertEqual('OM', self.future.root_symbol) def test_lookup_future_symbol(self): """ Test the lookup_future_symbol method. """ om = TestFuture.asset_finder.lookup_future_symbol('OMH15') self.assertEqual(om.sid, 2468) self.assertEqual(om.symbol, 'OMH15') self.assertEqual(om.root_symbol, 'OM') self.assertEqual(om.notice_date, pd.Timestamp('2014-01-20', tz='UTC')) self.assertEqual(om.expiration_date, pd.Timestamp('2014-02-20', tz='UTC')) self.assertEqual(om.auto_close_date, pd.Timestamp('2014-01-18', tz='UTC')) cl = TestFuture.asset_finder.lookup_future_symbol('CLG06') self.assertEqual(cl.sid, 0) self.assertEqual(cl.symbol, 'CLG06') self.assertEqual(cl.root_symbol, 'CL') self.assertEqual(cl.start_date, pd.Timestamp('2005-12-01', tz='UTC')) self.assertEqual(cl.notice_date, pd.Timestamp('2005-12-20', tz='UTC')) self.assertEqual(cl.expiration_date, pd.Timestamp('2006-01-20', tz='UTC')) with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('#&?!') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('FOOBAR') with self.assertRaises(SymbolNotFound): TestFuture.asset_finder.lookup_future_symbol('XXX99') class AssetFinderTestCase(WithTradingCalendars, ZiplineTestCase): asset_finder_type = AssetFinder def write_assets(self, **kwargs): self._asset_writer.write(**kwargs) def init_instance_fixtures(self): super(AssetFinderTestCase, self).init_instance_fixtures() conn = self.enter_instance_context(empty_assets_db()) self._asset_writer = AssetDBWriter(conn) self.asset_finder = self.asset_finder_type(conn) def test_blocked_lookup_symbol_query(self): # we will try to query for more variables than sqlite supports # to make sure we are properly chunking on the client side as_of = pd.Timestamp('2013-01-01', tz='UTC') # we need more sids than we can query from sqlite nsids = SQLITE_MAX_VARIABLE_NUMBER + 10 sids = range(nsids) frame = pd.DataFrame.from_records( [ { 'sid': sid, 'symbol': 'TEST.%d' % sid, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for sid in sids ] ) self.write_assets(equities=frame) assets = self.asset_finder.retrieve_equities(sids) assert_equal(viewkeys(assets), set(sids)) def test_lookup_symbol_delimited(self): as_of = pd.Timestamp('2013-01-01', tz='UTC') frame = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'TEST.%d' % i, 'company_name': "company%d" % i, 'start_date': as_of.value, 'end_date': as_of.value, 'exchange': uuid.uuid4().hex } for i in range(3) ] ) self.write_assets(equities=frame) finder = self.asset_finder asset_0, asset_1, asset_2 = ( finder.retrieve_asset(i) for i in range(3) ) # we do it twice to catch caching bugs for i in range(2): with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST', as_of) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST1', as_of) # '@' is not a supported delimiter with self.assertRaises(SymbolNotFound): finder.lookup_symbol('TEST@1', as_of) # Adding an unnecessary fuzzy shouldn't matter. for fuzzy_char in ['-', '/', '_', '.']: self.assertEqual( asset_1, finder.lookup_symbol('TEST%s1' % fuzzy_char, as_of) ) def test_lookup_symbol_fuzzy(self): metadata = pd.DataFrame.from_records([ {'symbol': 'PRTY_HRD', 'exchange': "TEST"}, {'symbol': 'BRKA', 'exchange': "TEST"}, {'symbol': 'BRK_A', 'exchange': "TEST"}, ]) self.write_assets(equities=metadata) finder = self.asset_finder dt = pd.Timestamp('2013-01-01', tz='UTC') # Try combos of looking up PRTYHRD with and without a time or fuzzy # Both non-fuzzys get no result with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', None) with self.assertRaises(SymbolNotFound): finder.lookup_symbol('PRTYHRD', dt) # Both fuzzys work self.assertEqual(0, finder.lookup_symbol('PRTYHRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTYHRD', dt, fuzzy=True)) # Try combos of looking up PRTY_HRD, all returning sid 0 self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', None, fuzzy=True)) self.assertEqual(0, finder.lookup_symbol('PRTY_HRD', dt, fuzzy=True)) # Try combos of looking up BRKA, all returning sid 1 self.assertEqual(1, finder.lookup_symbol('BRKA', None)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt)) self.assertEqual(1, finder.lookup_symbol('BRKA', None, fuzzy=True)) self.assertEqual(1, finder.lookup_symbol('BRKA', dt, fuzzy=True)) # Try combos of looking up BRK_A, all returning sid 2 self.assertEqual(2, finder.lookup_symbol('BRK_A', None)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt)) self.assertEqual(2, finder.lookup_symbol('BRK_A', None, fuzzy=True)) self.assertEqual(2, finder.lookup_symbol('BRK_A', dt, fuzzy=True)) def test_lookup_symbol_change_ticker(self): T = partial(pd.Timestamp, tz='utc') metadata = pd.DataFrame.from_records( [ # sid 0 { 'symbol': 'A', 'asset_name': 'Asset A', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'B', 'asset_name': 'Asset B', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, # sid 1 { 'symbol': 'C', 'asset_name': 'Asset C', 'start_date': T('2014-01-01'), 'end_date': T('2014-01-05'), 'exchange': "TEST", }, { 'symbol': 'A', # claiming the unused symbol 'A' 'asset_name': 'Asset A', 'start_date': T('2014-01-06'), 'end_date': T('2014-01-10'), 'exchange': "TEST", }, ], index=[0, 0, 1, 1], ) self.write_assets(equities=metadata) finder = self.asset_finder # note: these assertions walk forward in time, starting at assertions # about ownership before the start_date and ending with assertions # after the end_date; new assertions should be inserted in the correct # locations # no one held 'A' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('A', T('2013-12-31')) # no one held 'C' before 01 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('C', T('2013-12-31')) for asof in pd.date_range('2014-01-01', '2014-01-05', tz='utc'): # from 01 through 05 sid 0 held 'A' A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(0), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(A_result.symbol, 'B') assert_equal(A_result.asset_name, 'Asset B') # from 01 through 05 sid 1 held 'C' C_result = finder.lookup_symbol('C', asof) assert_equal( C_result, finder.retrieve_asset(1), msg=str(asof), ) # The symbol and asset_name should always be the last held values assert_equal(C_result.symbol, 'A') assert_equal(C_result.asset_name, 'Asset A') # no one held 'B' before 06 with self.assertRaises(SymbolNotFound): finder.lookup_symbol('B', T('2014-01-05')) # no one held 'C' after 06, however, no one has claimed it yet # so it still maps to sid 1 assert_equal( finder.lookup_symbol('C', T('2014-01-07')), finder.retrieve_asset(1), ) for asof in pd.date_range('2014-01-06', '2014-01-11', tz='utc'): # from 06 through 10 sid 0 held 'B' # we test through the 11th because sid 1 is the last to hold 'B' # so it should ffill B_result = finder.lookup_symbol('B', asof) assert_equal( B_result, finder.retrieve_asset(0), msg=str(asof), ) assert_equal(B_result.symbol, 'B') assert_equal(B_result.asset_name, 'Asset B') # from 06 through 10 sid 1 held 'A' # we test through the 11th because sid 1 is the last to hold 'A' # so it should ffill A_result = finder.lookup_symbol('A', asof) assert_equal( A_result, finder.retrieve_asset(1), msg=str(asof), ) assert_equal(A_result.symbol, 'A') assert_equal(A_result.asset_name, 'Asset A') def test_lookup_symbol(self): # Incrementing by two so that start and end dates for each # generated Asset don't overlap (each Asset's end_date is the # day after its start date.) dates = pd.date_range('2013-01-01', freq='2D', periods=5, tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': i, 'symbol': 'existing', 'start_date': date.value, 'end_date': (date + timedelta(days=1)).value, 'exchange': 'NYSE', } for i, date in enumerate(dates) ] ) self.write_assets(equities=df) finder = self.asset_finder for _ in range(2): # Run checks twice to test for caching bugs. with self.assertRaises(SymbolNotFound): finder.lookup_symbol('NON_EXISTING', dates[0]) with self.assertRaises(MultipleSymbolsFound): finder.lookup_symbol('EXISTING', None) for i, date in enumerate(dates): # Verify that we correctly resolve multiple symbols using # the supplied date result = finder.lookup_symbol('EXISTING', date) self.assertEqual(result.symbol, 'EXISTING') self.assertEqual(result.sid, i) def test_fail_to_write_overlapping_data(self): df = pd.DataFrame.from_records( [ { 'sid': 1, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later end date. { 'sid': 2, 'symbol': 'multiple', 'start_date': pd.Timestamp('2010-01-01'), 'end_date': pd.Timestamp('2013-01-01'), 'exchange': 'NYSE' }, # Same as asset 1, but with a later start_date { 'sid': 3, 'symbol': 'multiple', 'start_date': pd.Timestamp('2011-01-01'), 'end_date': pd.Timestamp('2012-01-01'), 'exchange': 'NYSE' }, ] ) with self.assertRaises(ValueError) as e: self.write_assets(equities=df) self.assertEqual( str(e.exception), "Ambiguous ownership for 1 symbol, multiple assets held the" " following symbols:\n" "MULTIPLE:\n" " intersections: (('2010-01-01 00:00:00', '2012-01-01 00:00:00')," " ('2011-01-01 00:00:00', '2012-01-01 00:00:00'))\n" " start_date end_date\n" " sid \n" " 1 2010-01-01 2012-01-01\n" " 2 2010-01-01 2013-01-01\n" " 3 2011-01-01 2012-01-01" ) def test_lookup_generic(self): """ Ensure that lookup_generic works with various permutations of inputs. """ with build_lookup_generic_cases(self.asset_finder_type) as cases: for finder, symbols, reference_date, expected in cases: results, missing = finder.lookup_generic(symbols, reference_date) self.assertEqual(results, expected) self.assertEqual(missing, []) def test_lookup_none_raises(self): """ If lookup_symbol is vectorized across multiple symbols, and one of them is None, want to raise a TypeError. """ with self.assertRaises(TypeError): self.asset_finder.lookup_symbol(None,
pd.Timestamp('2013-01-01')
pandas.Timestamp
"""Tests for detection peaks nodes""" from numbers import Number import numpy as np import os import pandas as pd import pandas.util.testing as tm import pytest from timeflux.helpers.testing import ReadData, Looper from timeflux_dsp.nodes.peaks import LocalDetect, RollingDetect @pytest.fixture(scope="module") def ppg_generator(): """Create object to mimic data streaming """ # Signal of 300 points (sum of two sinus at 0.5 Hz and 10 Hz) sampled at 50 kHz. df = pd.read_csv(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'test_data_ppg.csv'), index_col=None) df = pd.DataFrame( index=
pd.to_datetime(df["index"].values)
pandas.to_datetime
import sys import pandas as pd import numpy as np import streamlit as st import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import roc_auc_score, confusion_matrix from matplotlib.lines import Line2D sys.path.append('src') from models import KernelClassifier # Define parameter names (AUs) and target label (EMOTIONS) PARAM_NAMES = np.loadtxt('data/au_names_new.txt', dtype=str).tolist() EMOTIONS = np.array(['anger', 'disgust', 'fear', 'happy', 'sadness', 'surprise']) SUBS = [str(s).zfill(2) for s in range(1, 61)] plt.style.use('dark_background') @st.cache(show_spinner=False) def _load_data(n_subs=60): X_all, y_all = [], [] for sub in SUBS[:n_subs]: data = pd.read_csv(f'data/ratings/sub-{sub}_ratings.tsv', sep='\t', index_col=0) data = data.query("emotion != 'other'") data = data.loc[data.index != 'empty', :] X, y = data.iloc[:, :-2], data.iloc[:, -2] X_all.append(X) y_all.append(y) return X_all, y_all @st.cache(show_spinner=False) def _run_analysis(mapp, X_all, y_all, beta, kernel, analysis_type): ktype = 'similarity' if kernel in ['cosine', 'sigmoid', 'linear'] else 'distance' model = KernelClassifier(au_cfg=mapp, param_names=PARAM_NAMES, kernel=kernel, ktype=ktype, binarize_X=False, normalization='softmax', beta=beta) model.fit(None, None) scores = np.zeros((len(SUBS), len(EMOTIONS))) confmat = np.zeros((6, 6)) # Compute model performance per subject! for i, (X, y) in enumerate(zip(X_all, y_all)): # Predict data + compute performance (AUROC) y_pred = model.predict_proba(X) y_ohe = pd.get_dummies(y).to_numpy() scores[i, :] = roc_auc_score(y_ohe, y_pred, average=None) confmat += confusion_matrix(y_ohe.argmax(axis=1), y_pred.argmax(axis=1)) # Store scores and raw predictions scores = pd.DataFrame(scores, columns=EMOTIONS, index=SUBS).reset_index() scores =
pd.melt(scores, id_vars='index', value_name='score', var_name='emotion')
pandas.melt
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with
option_context("display.max_rows", 5)
pandas.option_context
import pandas as pd from pandas.testing import assert_frame_equal import numpy as np import pytest from pytest import approx from pytest import mark import okama as ok from .conftest import data_folder @mark.asset_list def test_asset_list_init_failing(): with pytest.raises(ValueError, match=r"Assets must be a list."): ok.AssetList(assets=("RUB.FX", "MCFTR.INDX")) @mark.asset_list @mark.usefixtures("_init_asset_list") class TestAssetList: def test_repr(self): value = pd.Series(dict( assets="[pf1.PF, RUB.FX, MCFTR.INDX]", currency="USD", first_date="2019-02", last_date="2020-01", period_length="1 years, 0 months", inflation="USD.INFL" )) assert repr(self.asset_list_with_portfolio) == repr(value) def test_len(self): assert self.asset_list.__len__() == 2 def test_tickers(self): assert self.asset_list_with_portfolio.tickers == ['pf1', 'RUB', 'MCFTR'] def test_ror(self): asset_list_sample =
pd.read_pickle(data_folder / "asset_list.pkl")
pandas.read_pickle
# -*- coding: utf-8 -*- """ Applies ResNet50 network to large images dynamically to make decisions about which objects are present. """ from threading import Thread from keras.preprocessing import image as image_utils from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions from matplotlib import pyplot from scipy.misc import imresize from skimage import io import numpy import cv2 import pandas #%% from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) #%% def load_image(filename, scale=1.0): original = io.imread(filename) original = cv2.cvtColor(original, cv2.COLOR_BGR2RGB) original = imresize(original, scale) data = image_utils.img_to_array(original) display = preprocess_input(original).squeeze() display -= display.min() display /= display.max() return original, data, display def slice_subimage(image, offset, dimension=(224,224)): x = int(offset[1] * (image.shape[1] - dimension[1])) y = int(offset[0] * (image.shape[0] - dimension[0])) sub = image[y:y + dimension[0], x:x + dimension[1], :].copy() sub = numpy.expand_dims(sub, axis=0) sub = preprocess_input(sub) return sub def plot_image(ax, image): scaled_image = image.copy().squeeze() scaled_image -= scaled_image.min() scaled_image /= scaled_image.max() ax.imshow(scaled_image) #%% original, data, display = load_image('./Jake.jpg', 0.75) pyplot.figure(figsize=(12,6)) ax = pyplot.subplot(121) plot_image(ax, display) ax = pyplot.subplot(122) plot_image(ax, slice_subimage(data, (0.5, 0.5))) pyplot.tight_layout() #%% model = ResNet50(weights="imagenet") predictions = model.predict(slice_subimage(data, (0.5, 0.5))) decoded = decode_predictions(predictions) for i in range(5): print('{} {:.0%}'.format(decoded[0][i][1], decoded[0][i][2])) pyplot.plot(predictions.transpose()) #%% class Region: def __init__(self, offset, bounds, dimension=(224, 224)): self.offset = offset self.bounds = bounds self.dimension = dimension class SubimageClassifier: def __init__(self, model): self.model = model self.original, self.data, self.display = load_image('./jake.jpg') self.region = Region((0.5, 0.5), (self.data.shape[0], self.data.shape[1])) self.subimage = slice_subimage(self.data, self.region.offset) self.predictions = numpy.zeros(1000) def load_image(self, filename, scale=1.0): try: self.original, self.data, self.display = load_image(filename, scale) except: return False return self.data.shape[0] > self.region.dimension[0] and self.data.shape[1] > self.region.dimension[1] def classify_subimage(self): self.region.offset = numpy.random.rand(2) self.subimage = slice_subimage(self.data, self.region.offset) self.predictions = self.model.predict(self.subimage) def show_running_predictions(ax, preds): ax.imshow(preds.transpose(), aspect='auto', vmin=0, vmax=1) def plot_top_prediction_classes(ax, preds): max_preds = preds.max(axis=0).reshape((1, 1000)) order = numpy.argsort(max_preds) decoded = decode_predictions(max_preds) for i in range(5): ax.plot(preds[:,order[0][-1 - i]].transpose(), label=decoded[0][i][1]) ax.legend() def draw_subimage_border(ax, image, offset, dimension=(224,224)): x0 = int(offset[1] * (image.shape[1] - dimension[1])) y0 = int(offset[0] * (image.shape[0] - dimension[0])) x1 = x0 + dimension[1] y1 = y0 + dimension[0] ax.plot([x0, x0, x1, x1, x0], [y0, y1, y1, y0, y0], 'g--') def update_classifier(classifier, predictions, row): classifier.classify_subimage() predictions[row,:] = classifier.predictions def click_figure(event): if event.button == 1 and event.inaxes == event.canvas.active_axes: region = event.canvas.region region.offset = (event.ydata / region.bounds[0], event.xdata / region.bounds[1]) def close_figure(event): event.canvas.closed = True #%% imageset =
pandas.read_csv('./open_images_urls.csv', delimiter=',')
pandas.read_csv
import pandas import pytest import modin.pandas as pd import numpy as np from .utils import test_data_values, test_data_keys, df_equals @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_isna(data): pandas_df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) pandas_result = pandas.isna(pandas_df) modin_result = pd.isna(modin_df) df_equals(modin_result, pandas_result) modin_result = pd.isna(pd.Series([1, np.nan, 2])) pandas_result = pandas.isna(pandas.Series([1, np.nan, 2])) df_equals(modin_result, pandas_result) assert pd.isna(np.nan) ==
pandas.isna(np.nan)
pandas.isna
import os from datetime import date from datetime import datetime from datetime import timedelta from pathlib import Path import dash import dash_html_components as html import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_table from dash.dependencies import Input, Output, State import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np import datetime as dt # コロナ感染者数データの読み込み pcr = pd.read_csv('./data/nhk_news_covid19_domestic_daily_data.csv') pcr['日付'] = pd.to_datetime( pcr['日付'] ) pcr = pcr.rename({'国内の感染者数_1日ごとの発表数':'感染者数'},axis=1) pcr = pcr[["日付", "感染者数"]] # styleテンプレ styles = { # 'backgroundColor': '#00008b', 'backgroundColor': '#191970', 'textColor': '#ffffff', 'font':'sans-serif' } # 初期データフレームの作成 empty_list = ["" for _ in range(365)] df = pd.DataFrame({"日付": empty_list, "データ": empty_list}) # サンプルデータ sample1 = pd.read_csv('./data/temperature.csv', header=3, names=['日付','平均気温','品質情報','均質番号'], encoding='shift-JIS') # 東京の平均気温 # dash app = dash.Dash( __name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1"} ], ) server = app.server app.title = 'コロナ状況と比較' app.layout = html.Div( id='whole', style={ 'backgroundColor': styles['backgroundColor'], 'color':styles['textColor'], 'font-family':styles['font'], 'textAlign':'center', 'font-size':'1.1rem', 'margin':'0', 'padding':'0', }, children=[ html.Div( id='header', style={ 'width':'100%', 'height':'70px', # 'position':'fixed', 'z-index':'10', 'background-color':'#330033', 'border-bottom':'1.5px solid white', }, children=[ html.A( href='/compare-with-corona', style={ 'float':'left', 'text-decoration':'None', 'margin':'20px 50px', 'font-size':'1.2rem', 'font-weight':'bold', 'color':'white', }, children="コロナ状況と比較" ), ], ), html.H1( id='title', style={ 'font-size':'60px', # 'border-bottom':'3px solid white', 'margin':'30px', 'padding':'50px 0 20px 0', }, children="コロナ状況と比較", ), html.Div( id='body-container', style={ "margin": "0 10%" }, children=[ html.P( id='explanation', style={ 'margin':'20px', 'font-size':'1.5rem', }, children='時系列データを入力すると、国内の新型コロナウイルス感染者数状況との比較ができます。', ), # テーブル html.Div( id='table-container', style={ 'margin':'70px', }, children=[ html.P( style={ 'margin':'30px' }, children=dcc.Markdown(''' 以下のテーブルに日付、データを入力してください。 手元にデータがない場合、サンプルデータで見てみることもできます。 ''') ), # サンプルで見てみる html.Div([ dbc.Button( id="collapse-button4", children="サンプルデータで見てみる", color="light", className="mb-3", n_clicks=0, outline=True, style={'color':'white',}, ), dbc.Collapse( dbc.Card(dbc.CardBody( dbc.Button( id="button-sample1", children="サンプルデータ: 東京都の平均気温(気象庁より取得)", color="light", className="mb-3", n_clicks=0, ), style={ 'padding':'30px', 'margin':'30px' }, ), style={'background-color':'#191970',}), id="collapse4", is_open=False, ), ]), # エラーメッセージ html.P( id="warning", style={ 'margin':'30px', 'color':'red', 'font-size':'1.2rem', }, children="", ), # テーブル dash_table.DataTable( id="table", columns=[{"name": i, "id": i} for i in df.columns], data=df.to_dict("records"), editable=True, page_size=365, # export_format="csv", style_table={ "height": "300px", "overflowY": "auto", "background-color":"white", "border":"3px solid black", }, style_cell={ "minWidth": "95px", "maxWidth": "95px", "width": "95px", "color":"black", "textAlign": "center", }, style_cell_conditional = [{ 'if': {'column_id': '日付'}, 'type': 'datetime', 'format': 'YYYY-mm-dd' }], # fixed_rows={"headers": True}, # fixしたいけど、見え方がおかしくなる ), ] ), # ボタン html.Div( [ html.P( style={ 'margin':'30px' }, children='データが入力できたら、以下のボタンを押してください。' ), dbc.Button( id="my_button", children="グラフを出力", color="light", className="mr-1", size='lg', ), ], style={ "display": "inline-block", "width": "100% auto", "verticalAlign": "top", "textAlign": "center", "padding-bottom":"50px", }, ), # グラフ表示 html.Div( id='graph_container', style={ 'background-color':'white', 'border':'3px solid black', 'color':'black', }, children=[ html.H3( "グラフ表示結果",style={'padding-top':'30px',} ), dcc.Loading(dcc.Graph(id="my_graph", style={ 'width': '100%', 'height': '700px', } ),), ] ), # 統計量レポート html.Div( id='report', style={ 'background-color':'white', 'color':'black', 'margin':'100px 30px', 'padding':'30px 30px 60px 30px', # 'border':'3px solid red', }, children=[ html.H3( "統計量レポート" ), html.Div( style={ 'border':'3px solid black', 'display':'inline-block', 'padding': '30px', 'margin':'20px', 'width':'350px', 'height':'150px', }, children=[ html.P( children='入力データとコロナ感染者数との相関係数:', style={}, ), html.Div( id='correlation', children='-', style={ 'font-size':'1.5rem', }, ), ], ), html.Div( style={ 'border':'3px solid black', 'display':'inline-block', 'padding': '30px', 'margin':'20px', 'width':'350px', 'height':'150px', }, children=[ html.P( children='入力データ期間中のコロナ感染者数の平均値:', style={}, ), html.Div( id='mean', children='-', style={ 'font-size':'1.5rem', }, ), ], ), html.Div( style={ 'border':'3px solid black', 'display':'inline-block', 'padding': '30px', 'margin':'20px', 'width':'350px', 'height':'150px', }, children=[ html.P( children='入力データ期間中のコロナ感染者数の中央値:', style={}, ), html.Div( id='median', children='-', style={ 'font-size':'1.5rem', }, ), ], ), html.Div( style={ 'border':'3px solid black', 'display':'inline-block', 'padding': '30px', 'margin':'20px', 'width':'350px', 'height':'150px', }, children=[ html.P( children='入力データ期間中のコロナ感染者数の標準偏差:', style={}, ), html.Div( id='stdev', children='-', style={ 'font-size':'1.5rem', }, ), ], ), ], ), # 使い方のcollapse html.Div([ dbc.Button("使い方", id="collapse-button1", className="mb-3", color="Light", outline=True, n_clicks=0, style={'color':'white', 'font-size':'1.5rem',}, ), dbc.Collapse( dbc.Card(dbc.CardBody( dcc.Markdown(''' ① お手持ちの日次データの日付と値をテーブルにペーストして入力します。 日付は'YYYY-MM-DD','YYYY/MM/DD'などの形式で、値は半角でご入力ください。 「サンプルデータで見てみる」ボタンを押してサンプルデータで試すこともできます。 ② 「グラフを出力」ボタンをクリックします。 ③ グラフと各種統計量が表示されます。グラフはドラッグして表示範囲を変えることもできます。 '''), style={'padding':'30px','margin':'30px'},), style={'background-color':'#191970',}), id="collapse1", is_open=False, ), ]), # データについてのcollapse html.Div([ dbc.Button("入力データについて", id="collapse-button2", className="mb-3", color="Light", outline=True, n_clicks=0, style={'color':'white', 'font-size':'1.5rem',}, ), dbc.Collapse( dbc.Card(dbc.CardBody("入力されたデータは保存されず、製作者や第三者がデータを収集、利用することはありません。", style={ 'padding':'30px', 'margin':'30px'},), style={'background-color':'#191970',}), id="collapse2", is_open=False, ), ]), # 免責事項のcollapse html.Div([ dbc.Button("免責事項", id="collapse-button3", className="mb-3", color="Light", outline=True, n_clicks=0, style={'color':'white', 'font-size':'1.5rem',}, ), dbc.Collapse( dbc.Card(dbc.CardBody("当ダッシュボードの利用により利用者に何らかの損害が生じても、製作者は一切責任を負いません。", style={ 'padding':'30px', 'margin':'30px'},), style={'background-color':'#191970',}), id="collapse3", is_open=False, ), ]), html.A( id='ref', href="https://www3.nhk.or.jp/news/special/coronavirus/data-widget/#mokuji0", target="_blank", rel="noopener noreferrer", style={ 'color':'white', 'display':'inline-block', 'margin':'100px 0 0 0', }, children='新型コロナ関連の情報提供:NHK', ), ], ), # フッター html.Div( id='footer', style={ 'padding':'30px', 'margin-top':'50px', 'font-size':'0.9rem', 'padding-top':'50px', 'border-top':'1.5px solid white', 'background-color':'#330033' }, children=[ dcc.Markdown(''' 製作者: kikeda [twitter](https://twitter.com/kikeda1102) '''), html.A( href="https://github.com/kikeda1102", target="_blank", rel="noopener noreferrer", style={ 'color':'white', "display":"block", "margin-top":"10px", }, children=[ html.Br(), "その他の制作物", ], ), ], ), ], ) # 入力されたデータに感染者数データを結合し返す関数(日付変換できないときはエラーメッセージも返す) def merge_pcr( data: pd.DataFrame, pcr: pd.DataFrame ) -> "[ data2: pd.DataFrame, warning: str ]": # 入力が適切でなく、日付変換できないときのための例外処理 try: data['日付'] = pd.to_datetime(data['日付']) data["データ"] = data["データ"].replace("", np.nan) data = data.dropna() # 空白を落とす data["データ"] = data["データ"].map(lambda x: float(x)) # float値にする data2 = pd.merge(data, pcr, on="日付", how='outer') # データに合わせて結合 warning = "" except Exception: data2 = data warning = "日付、データを適切な形式で入力されているか確かめてください。" return [data2, warning] # 入力データ、感染者数をプロットしたfigを返す関数 def dataplot(data: pd.DataFrame) -> go.Figure: fig = go.Figure() fig.add_trace(go.Scatter(x=data["日付"], y=data["データ"], name="入力データ")) fig.add_trace(go.Scatter(x=data["日付"], y=data["感染者数"], name="感染者数", yaxis="y2")) fig.update_layout( xaxis=dict(domain=[0.1, 0.9], dtick='M1'), yaxis=dict( title="入力データ" ), yaxis2=dict( title="感染者数", anchor="free", overlaying="y", side="right", position=0.9, ), ) return fig @app.callback( Output("my_graph", "figure"), Output("warning", "children"), Output("correlation","children"), Output("mean","children"), Output("median","children"), Output("stdev","children"), Input("my_button", "n_clicks"), State("table", "columns"), State("table", "derived_virtual_data"), ) def update_data(n_clicks, columns, rows): # テーブルへの入力からデータフレームを作成 df = pd.DataFrame(rows, columns=[c["name"] for c in columns]) df = df.replace("", np.nan) df = df.dropna() data, warning = merge_pcr(df, pcr) # エラーが出ているときは何も返さない if warning == "日付、データを適切な形式で入力してください。": fig = dash.no_update corr = "-" mean = "-" median = "-" stdev = "-" else: fig = dataplot(data) # 統計量レポート data2 = data.dropna() if len(data2) != 0: corr = round( data2["データ"].corr(data2["感染者数"]), 4) mean = round( data2["感染者数"].mean() ) median = round( data2["感染者数"].median() ) stdev = round( data2["感染者数"].std(), 1 ) else: corr = "-" mean = "-" median = "-" stdev = "-" return fig, warning, corr, mean, median, stdev # collapse @app.callback( Output("collapse1", "is_open"), [Input("collapse-button1", "n_clicks")], [State("collapse1", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open @app.callback( Output("collapse2", "is_open"), [Input("collapse-button2", "n_clicks")], [State("collapse2", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open @app.callback( Output("collapse3", "is_open"), [Input("collapse-button3", "n_clicks")], [State("collapse3", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open @app.callback( Output("collapse4", "is_open"), [Input("collapse-button4", "n_clicks")], [State("collapse4", "is_open")], ) def toggle_collapse(n, is_open): if n: return not is_open return is_open # サンプルデータ @app.callback( Output("table","data"), [Input("button-sample1", "n_clicks")], ) def sample_output(n): if n: empty_list = ["" for _ in range(1095)] df =
pd.DataFrame({"日付": empty_list, "データ": empty_list})
pandas.DataFrame
from sklearn.datasets import load_boston import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import pickle X, y = load_boston(return_X_y=True) X = pd.DataFrame(data=X, columns=load_boston().feature_names) y =
pd.DataFrame(data=y, columns=["Price"])
pandas.DataFrame
import plotly import plotly.graph_objs as go import pandas as pd import numpy as np import json import dash_core_components as dcc def create_line_plot_dash(data, x_axis_title, y_axis_title, x_range=None): return dcc.Graph(id='timeseries', config={'displayModeBar': False}, animate=True, figure={ 'data': data, 'layout': get_plotly_layout(x_axis_title, y_axis_title, x_range=x_range) }) def create_scatter_and_line_plot_dash(fig): return dcc.Graph(figure=fig) def create_line_plot(x=None, y=None, line_name=None, line_color=None, line_width=1.5, show_legend=True): if x is None: x = np.arange(1, len(y) + 1, 1) df = pd.DataFrame({'x': x, 'y': y}) # creating a sample dataframe data_line = go.Line( x=df['x'], # assign x as the dataframe column 'x' y=df['y'], line={ 'width': line_width }, showlegend=show_legend ) if line_name is not None: data_line['name'] = line_name if line_color is not None: data_line['line']['color'] = line_color return json.dumps([data_line], cls=plotly.utils.PlotlyJSONEncoder) def create_line_plot_fill(x=None, y=None, line_name=None, line_color=None, line_width=1.5, show_legend=True): if x is None: x = np.arange(1, len(y) + 1, 1) df =
pd.DataFrame({'x': x, 'y': y})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Aug 3 18:17:07 2021 @author: alber """ import os import pandas as pd import numpy as np import itertools import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pickle import lightgbm as lgb from os import walk from scipy import stats from statsmodels.stats.power import TTestIndPower from sklearn import preprocessing from sklearn.semi_supervised import ( LabelPropagation, LabelSpreading, SelfTrainingClassifier, ) from common.config import ( PATH_POEMS, PATH_RESULTS, PATH_AFF_LEXICON, PATH_GROUND_TRUTH ) df_metrics_h_test = pd.DataFrame() ### Sample Size # parameters for power analysis effect = 0.8 alpha = 0.1 # Ojo al alpha, que no es 0.5 power = 0.8 # perform power analysis analysis = TTestIndPower() result = analysis.solve_power(effect, power=power, nobs1=None, ratio=1.0, alpha=alpha) print('Sample Size: %.3f' % result) df_kappa_limits = pd.DataFrame( { 'limit_k': [0, 0.2, 0.4], 'category': ['poor', 'slight', 'fair'] } ) # ============================================================================= # Best Models based on CV # ============================================================================= # ENG names df_names = pd.read_csv( f"{PATH_GROUND_TRUTH}/variable_names_en.csv", encoding="latin-1") df_names['category'] = df_names['es_name'] ### Load CV - Psychological f_path = f"{PATH_RESULTS}/results_cv/emotion_aff_full" f_folders = next(walk(f_path), (None, None, []))[1] # [] if no file df_results_aff_cv = pd.DataFrame() i = 0 for folder in f_folders: i += 1 filenames = next(walk(f_path + f'/{folder}'), (None, None, []))[2] df_iter = pd.concat([ pd.read_csv(f_path + f'/{folder}' + '/' + x, encoding="latin-1") for x in filenames ]) df_iter['iter'] = folder df_results_aff_cv = df_results_aff_cv.append( df_iter ) df_raw = df_results_aff_cv df_raw = ( df_raw .replace("Aversión", "Aversión") .replace("Depresión", "Depresión") .replace('Dramatización', "Dramatización") .replace('Ilusión', "Ilusión") .replace("Desilusión", "Desilusión") .replace("Obsesión", "Obsesión") .replace("Compulsión", "Compulsión") .replace("Ensoñación", "Ensoñación") .replace("Idealización", "Idealización") .dropna(subset=['category']) .drop(columns=['category', 'en_name'], errors="ignore") ) df_raw = df_raw.merge(df_names, how="left").round(2) # ENG names df_names = pd.read_csv( f"{PATH_GROUND_TRUTH}/variable_names_en.csv", encoding="latin-1") df_names['category'] = df_names['es_name'] df_raw = ( df_raw .merge(df_names, how="left") .drop(columns=['es_name']) ) ### Get the metrics per emotion tag df_results_aff = ( df_raw .groupby(by=['category', 'regression_model', 'semantic_model']) .mean() .reset_index() ) df_results_aff['mean_metric'] = ( (df_results_aff['kappa']+ df_results_aff['auc']) / 2 ) df_median_ref = ( df_results_aff .groupby(by=['regression_model', 'semantic_model']) .median() .reset_index() .copy() [['regression_model', 'semantic_model', 'f1_weighted', 'kappa', 'auc', 'corr']] .rename(columns={ 'f1_weighted': 'f1_weighted_median', 'kappa': 'kappa_median', 'auc': 'auc_median', 'corr': 'corr_median' }) ) df_results_aff = df_results_aff[df_results_aff['auc']>0.5] df_results_aff = df_results_aff[df_results_aff.fillna(0)['corr']>=0] # Remove baselines df_results_aff = df_results_aff[ (df_results_aff['regression_model'] != 'class_baseline_lightgbm') & (df_results_aff['regression_model'] != 'class_baseline_smote_lightgbm') & (df_results_aff['regression_model'] != 'class_label_spreading_base_knn') & (df_results_aff['regression_model'] != 'class_label_spreading_base_rbf') & (df_results_aff['regression_model'] != 'class_dummy_classifier') & (df_results_aff['regression_model'] != 'reg_baseline_lightgbm') & (df_results_aff['regression_model'] != 'reg_baseline_smote_lightgbm') & (df_results_aff['regression_model'] != 'reg_label_spreading_base') & (df_results_aff['regression_model'] != 'reg_dummy_classifier') ].copy() # Remove unused semantic models list_semantic_models = [ 'enc_text_model1', 'enc_text_model2', 'enc_text_model3', 'enc_text_model4', 'enc_text_model5', # 'enc_text_model_hg_bert_max', # 'enc_text_model_hg_bert_span', # 'enc_text_model_hg_bert_median', 'enc_text_model_hg_bert_avg_w', # 'enc_text_model_hg_bert_sp_max', # 'enc_text_model_hg_bert_sp_span', # 'enc_text_model_hg_bert_sp_median', 'enc_text_model_hg_bert_sp_avg_w', # 'enc_text_model_hg_ro_max', # 'enc_text_model_hg_ro_span', # 'enc_text_model_hg_ro_median', # 'enc_text_model_hg_ro_avg_w' ] df_results_aff = df_results_aff[ df_results_aff['semantic_model'].isin(list_semantic_models)] df_results_aff = ( df_results_aff .sort_values(by=['category', 'mean_metric'], ascending=False) .groupby(by=['category']) .first() .reset_index() ) df_results_aff = ( df_results_aff.merge(df_names, how="left").drop(columns=['es_name']) ) df_results = df_results_aff[[ 'en_name', 'semantic_model', 'regression_model', 'f1_weighted', 'kappa', 'auc', 'corr' ]].copy().round(2) df_reference = df_results # df_reference = df_results[[ # 'en_name', 'semantic_model', 'classification_model', # 'f1_weighted', 'kappa', 'auc' # ]].copy().round(2) df_reference = df_reference.merge(df_median_ref, how="left") ### Add data distribution # Load psycho names df_names = pd.read_csv(f"{PATH_GROUND_TRUTH}/variable_names_en.csv", encoding="latin-1") list_names = list(df_names["es_name"].values) list_aff = [ "concreteness", "context availability", "anger", "arousal", "disgust", "fear", "happinness", "imageability", "sadness", "valence", ] list_kfolds = [] n_folds = 21 for i in range(n_folds): df_gt = pd.read_csv(f"{PATH_GROUND_TRUTH}/poems_corpus_all.csv") df_gt = df_gt.rename(columns={"text": "text_original"}) df_gt.columns = [str(x).rstrip().lstrip() for x in list(df_gt.columns)] df_add = pd.DataFrame() for category in list_names: if category in list_aff: continue try: df_iter = df_gt.groupby(category).apply(lambda s: s.sample(2)) except: continue df_add = df_add.append(df_iter) df_add = df_add.drop_duplicates() # New GT (without data used in training) df_gt = df_gt[~df_gt["index"].isin(df_add["index"])].copy() ## Check no affective feature categories are missing for category in list_aff: l1 = list(df_add[category].unique()) l2 = list(df_gt[category].unique()) if len(l1)<len(l2): l3 = [x for x in l2 if x not in l1] df_add_new = df_gt[df_gt[category].isin(l3)] df_add_new = df_add_new.drop_duplicates(subset=category) df_add = df_add.append(df_add_new) df_gt = df_gt[~df_gt["index"].isin(df_add_new["index"])].copy() list_kfolds.append([{i: {'df_gt': df_gt, 'df_add': df_add}}]) df_distribution = pd.DataFrame() for iter_item in list_kfolds: iter_item = [x for x in iter_item[0].values()][0]['df_gt'] for category in list_aff: data_cat = ( pd.DataFrame(iter_item[category].copy().value_counts()) .T .reset_index() .rename(columns={'index':'en_name'}) ) df_distribution = df_distribution.append(data_cat) df_distribution = df_distribution.groupby(by=['en_name']).mean().reset_index().round(1) df_distribution = df_distribution.replace("fear", "Fear (ordinal)") df_distribution = df_distribution.replace("happinness", "happiness") df_reference = df_distribution.merge(df_reference) df_reference.round(2).to_csv( "tables_paper/df_results_emotions_reference.csv", index=False) # ============================================================================= # Differences vs. Baselines # ============================================================================= # ENG names df_names = pd.read_csv( f"{PATH_GROUND_TRUTH}/variable_names_en.csv", encoding="latin-1") df_names['category'] = df_names['es_name'] # Load best combinations df_reference = pd.read_csv("tables_paper/df_results_emotions_reference.csv") list_semantic_models = list(set(df_reference['semantic_model'].values)) list_prediction_models = list(set(df_reference['regression_model'].values)) list_categories = list(set(df_reference['en_name'].values)) ### Load CV - Emotions f_path = f"{PATH_RESULTS}/results_cv/emotion_aff_full" f_folders = next(walk(f_path), (None, None, []))[1] # [] if no file df_results_aff_cv =
pd.DataFrame()
pandas.DataFrame
# coding: utf-8 ### Import Packages import pandas as pd import numpy as np import elasticsearch import re import json from datetime import datetime from pprint import pprint import timeit # Define elasticsearch class es = elasticsearch.Elasticsearch() ### Helper Functions # convert np.int64 into int. json.dumps does not work with int64 class SetEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.int64): return np.int(obj) # else return json.JSONEncoder.default(self, obj) # Convert datestamp into ISO format def str_to_iso(text): if text != '': for fmt in ('%Y-%m-%d %H:%M:%S.%f', '%Y-%m-%d %H:%M:%S', '%Y-%m-%d'): try: return datetime.isoformat(datetime.strptime(text, fmt)) except ValueError: pass raise ValueError('no valid date format found') else: return None # Custom groupby function def concatdf(x): if len(x) > 1: #if multiple values return list(x) else: #if single value return x.iloc[0] ### Import Data # Load projects, resources & donations data projects =
pd.read_csv('./data/opendata_projects.csv', index_col=None, escapechar='\\')
pandas.read_csv
import pandas as pd import numpy as np import datetime as dt import os from enum import Enum from sklearn import preprocessing from collections import deque import random import tensorflow as tf import time from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint os.environ['CUDA_VISIBLE_DEVICES'] = '-1' def classify(current: float, future: float) -> int: if future > current: return 1 return 0 # here we basically preprocess the data # ... in order to have some proper training data def preprocess_df(df): df = df.drop("Future", 1) # fuck that future shit for c in df.columns: if c != "Target": df[c] = df[c].pct_change() df.dropna(inplace=True) df[c] = preprocessing.scale(df[c].values) df.dropna(inplace=True) sequential_data = [] prev_data = deque(maxlen=SEQ_PERIOD) for v in df.values: prev_data.append([n for n in v[:-1]]) if len(prev_data) == SEQ_PERIOD: sequential_data.append([np.array(prev_data), v[-1]]) random.shuffle(sequential_data) buys = [] sells = [] for seq, target in sequential_data: if target == 0: # sell sells.append([seq, target]) elif target == 1: buys.append([seq, target]) random.shuffle(buys) random.shuffle(sells) lower = min(len(buys), len(sells)) buys = buys[:lower] sells = sells[:lower] sequential_data = buys + sells random.shuffle(sequential_data) X = [] y = [] for seq, target in sequential_data: X.append(seq) y.append(target) return np.array(X), y main_df = pd.DataFrame() ratios = ["BTC-USD", "LTC-USD", "ETH-USD", "BCH-USD"] SEQ_PERIOD = 60 # units to look at FUTURE_PERIOD = 3 # units CHOSEN_CRYPTO = "LTC-USD" EPOCHS = 10 BATCH_SIZE = 64 NAME = f"Zubinator-{SEQ_PERIOD}-{FUTURE_PERIOD}@{int(time.time())}" for r in ratios: data_path = F"crypto/crypto_data/{ r }.csv" df =
pd.read_csv(data_path, names=["time", "low", "high", "open", "close", "volume"])
pandas.read_csv
import pandas as pd import sklearn import joblib import argparse import sys import pkg_resources import os from csv import DictWriter import covizu from covizu.utils import seq_utils from covizu.minimap2 import minimap2, stream_fasta class Pangolin: def __init__(self, header_file, model_file): model_headers = joblib.load(header_file) self.indices = model_headers[1::] # list of integers self.model = joblib.load(model_file) self.categories = ['A', 'C', 'G', 'T', 'N', '-'] def classify(self, seq): """ Assign genome to one or more lineages """ # convert sequence into list seqlist = [nt if nt in 'ACGT-' else 'N' for i, nt in enumerate(seq) if i in self.indices] df = pd.DataFrame([seqlist], columns=self.indices) # add extra rows to ensure all categories are represented for nt in self.categories: df.loc[len(df)] = [nt] * len(self.indices) df =
pd.get_dummies(df, columns=self.indices)
pandas.get_dummies
import pandas as pd import pytest from pyspark.sql import SparkSession def test_stoys_init(): df =
pd.DataFrame([{"k": "1", "v": 42.0, "e": "foo"}])
pandas.DataFrame
from qutip import * from ..mf import * import pandas as pd from scipy.interpolate import interp1d from copy import deepcopy import matplotlib.pyplot as plt def ham_gen_jc(params, alpha=0): sz = tensor(sigmaz(), qeye(params.c_levels)) sm = tensor(sigmam(), qeye(params.c_levels)) a = tensor(qeye(2), destroy(params.c_levels)) + alpha ham = (params.fc-params.fd)*a.dag()*a ham += params.eps*(a+a.dag()) ham += 0.5*(params.f01-params.fd)*sz ham += params.g*(a*sm.dag() + a.dag()*sm) ham *= 2*np.pi return ham def c_ops_gen_jc(params, alpha=0): c_ops = [] sm = tensor(sigmam(), qeye(params.c_levels)) a = tensor(qeye(2), destroy(params.c_levels)) + alpha if params.gamma > 0.0: c_ops.append(np.sqrt(2*np.pi*params.gamma*(1+params.n_t))*sm) if params.n_t > 0: c_ops.append(np.sqrt(2*np.pi*params.gamma*params.n_t)*sm.dag()) if params.gamma_phi > 0.0: c_ops.append(np.sqrt(2*np.pi*params.gamma_phi)*sm.dag()*sm) if params.kappa > 0.0: c_ops.append(np.sqrt(2*np.pi*params.kappa*(1+params.n_c))*a) if params.n_c > 0: c_ops.append(np.sqrt(2*np.pi*params.kappa*params.n_c)*a.dag()) return c_ops def iterative_alpha_calc(params, n_cycles=10, initial_alpha=0): alpha = initial_alpha try: for idx in range(n_cycles): ham = ham_gen_jc(params, alpha=alpha) c_ops = c_ops_gen_jc(params, alpha=alpha) rho = steadystate(ham, c_ops) a = tensor(qeye(2), destroy(params.c_levels)) + alpha a_exp = expect(a, rho) alpha = a_exp except: alpha = None return alpha class Spectrum: def __init__(self, parameters): print('hello') self.parameters = deepcopy(parameters) self.mf_amplitude = None self.me_amplitude = None self.transmission_exp = None self.hilbert_params = None def iterative_calculate(self, fd_array, initial_alpha=0, n_cycles=10, prune=True): if self.parameters.fc < self.parameters.f01: change = 'hard' else: change = 'soft' params = deepcopy(self.parameters) fd_array = np.sort(fd_array) a_array = np.zeros(fd_array.shape[0], dtype=complex) alpha = initial_alpha for fd_idx, fd in tqdm(enumerate(fd_array)): params.fd = fd alpha = iterative_alpha_calc(params, initial_alpha=alpha, n_cycles=n_cycles) a_array[fd_idx] = alpha if change is 'hard': alpha_bright_iterative = pd.Series(a_array, index=fd_array, name='alpha_bright') else: alpha_dim_iterative = pd.Series(a_array, index=fd_array, name='alpha_dim') fd_array = np.flip(fd_array) a_array = np.zeros(fd_array.shape[0], dtype=complex) alpha = initial_alpha for fd_idx, fd in tqdm(enumerate(fd_array)): params.fd = fd alpha = iterative_alpha_calc(params, initial_alpha=alpha, n_cycles=n_cycles) a_array[fd_idx] = alpha if change is 'hard': alpha_dim_iterative = pd.Series(a_array, index=fd_array, name='alpha_dim') else: alpha_bright_iterative = pd.Series(a_array, index=fd_array, name='alpha_bright') if prune: alpha_dim_iterative = alpha_dim_iterative.dropna() alpha_bright_iterative = alpha_bright_iterative.dropna() alpha_dim_iterative.sort_index(inplace=True) alpha_bright_iterative.sort_index(inplace=True) if change is 'hard': # alpha_dim_diff = np.diff(alpha_dim_iterative)/np.diff(alpha_dim_iterative.index) # first_dim_idx = np.argmax(np.abs(alpha_dim_diff)) + 1 first_dim_idx = np.argmax(alpha_dim_iterative.real) alpha_dim_iterative = alpha_dim_iterative.iloc[first_dim_idx:] # alpha_bright_diff = np.diff(alpha_bright_iterative) / np.diff(alpha_bright_iterative.index) # last_bright_idx = np.argmax(np.abs(alpha_bright_diff)) last_bright_idx = np.argmin(alpha_bright_iterative.imag) alpha_bright_iterative = alpha_bright_iterative.iloc[:last_bright_idx + 1] else: first_bright_idx = np.argmin(alpha_bright_iterative.imag) alpha_bright_iterative = alpha_bright_iterative.iloc[first_bright_idx:] last_dim_idx = np.argmin(alpha_dim_iterative.real) alpha_dim_iterative = alpha_dim_iterative.iloc[:last_dim_idx+1] self.iterative_amplitude = pd.concat([alpha_dim_iterative, alpha_bright_iterative], axis=1) def gen_raw_hilbert_params(self, fd_array, c_levels): self.hilbert_params = pd.DataFrame(np.zeros([fd_array.shape[0], 1]), index=fd_array, columns=['alpha_0']) self.hilbert_params['c_levels'] = c_levels def gen_iterative_hilbert_params(self, fd_limits, kind='linear', fill_value='extrapolate', fraction=0.5, level_scaling=1.0, max_shift=False, max_levels=True, relative='dim', relative_crossover=None, c_levels_bistable=None): if self.parameters.fc < self.parameters.f01: change = 'hard' else: change = 'soft' alpha_dim = self.iterative_amplitude['alpha_dim'].dropna() # alpha_dim.sort_index(inplace=True) # alpha_dim_diff = np.diff(alpha_dim)/np.diff(alpha_dim.index) # first_dim_idx = np.argmax(np.abs(alpha_dim_diff)) + 1 # alpha_dim = alpha_dim.iloc[first_dim_idx:] alpha_bright = self.iterative_amplitude['alpha_bright'].dropna() # alpha_bright.sort_index(inplace=True) # alpha_bright_diff = np.diff(alpha_bright) / np.diff(alpha_bright.index) # last_bright_idx = np.argmax(np.abs(alpha_bright_diff)) # alpha_bright = alpha_bright.iloc[:last_bright_idx] new_iterative_alphas = pd.concat([alpha_dim, alpha_bright], axis=1) self.iterative_amplitude = new_iterative_alphas alpha_dim_real_func = interp1d(alpha_dim.index, alpha_dim.real, kind=kind, fill_value=fill_value) alpha_dim_imag_func = interp1d(alpha_dim.index, alpha_dim.imag, kind=kind, fill_value=fill_value) def alpha_dim_func_single(fd): alpha_dim = alpha_dim_real_func(fd) + 1j * alpha_dim_imag_func(fd) return alpha_dim alpha_dim_func_vec = np.vectorize(alpha_dim_func_single) def alpha_dim_func(fd_array): alpha_dim_array = alpha_dim_func_vec(fd_array) alpha_dim_series = pd.Series(alpha_dim_array, index=fd_array, name='alpha_dim_func') return alpha_dim_series alpha_bright_real_func = interp1d(alpha_bright.index, alpha_bright.real, kind=kind, fill_value=fill_value) alpha_bright_imag_func = interp1d(alpha_bright.index, alpha_bright.imag, kind=kind, fill_value=fill_value) def alpha_bright_func_single(fd): alpha_bright = alpha_bright_real_func(fd) + 1j * alpha_bright_imag_func(fd) return alpha_bright alpha_bright_func_vec = np.vectorize(alpha_bright_func_single) def alpha_bright_func(fd_array): alpha_bright_array = alpha_bright_func_vec(fd_array) alpha_bright_series = pd.Series(alpha_bright_array, index=fd_array, name='alpha_bright') return alpha_bright_series alpha_dim_interp = alpha_dim_func(self.iterative_amplitude.index) alpha_bright_interp = alpha_bright_func(self.iterative_amplitude.index) alpha_diff_interp = (alpha_bright_interp - alpha_dim_interp).dropna() if max_shift: min_diff = np.min(np.abs(alpha_diff_interp)) alpha_diff_unit_interp = alpha_diff_interp / np.abs(alpha_diff_interp) if relative is 'dim': alpha_0_interp = alpha_dim_interp + fraction * min_diff * alpha_diff_unit_interp elif relative is 'bright': alpha_0_interp = alpha_bright_interp - fraction * min_diff * alpha_diff_unit_interp elif relative is 'both': if change is 'soft': alpha_0_interp = alpha_dim_interp + fraction * min_diff * alpha_diff_unit_interp alpha_0_interp[relative_crossover:] = alpha_bright_interp[relative_crossover:] - fraction * min_diff * alpha_diff_unit_interp[relative_crossover:] else: alpha_0_interp = alpha_dim_interp + fraction * min_diff * alpha_diff_unit_interp alpha_0_interp[:relative_crossover] = alpha_bright_interp[:relative_crossover] - fraction * min_diff * alpha_diff_unit_interp[:relative_crossover] else: raise Exception('Relative is neither bright, dim nor both.') else: if relative is 'dim': alpha_0_interp = alpha_dim_interp + fraction * alpha_diff_interp elif relative is 'bright': alpha_0_interp = alpha_bright_interp - fraction * alpha_diff_interp else: raise Exception('Relative is neither bright norm dim.') alpha_diff_interp.name = 'alpha_diff' alpha_0_interp.name = 'alpha_0' hilbert_params = pd.concat([alpha_diff_interp, alpha_0_interp], axis=1) if max_levels: if c_levels_bistable is not None: hilbert_params['c_levels'] = c_levels_bistable else: min_diff = np.min(np.abs(alpha_diff_interp)) hilbert_params['c_levels'] = np.int(np.ceil(level_scaling * min_diff ** 2)) else: hilbert_params['c_levels'] = np.ceil(level_scaling * np.abs(alpha_diff_interp.values) ** 2).astype(int) hilbert_params['c_levels'].loc[:fd_limits[0]] = self.parameters.c_levels hilbert_params['c_levels'].loc[fd_limits[1]:] = self.parameters.c_levels if change is 'hard': hilbert_params['alpha_0'].loc[:fd_limits[0]] = self.iterative_amplitude['alpha_bright'].loc[:fd_limits[0]] hilbert_params['alpha_0'].loc[fd_limits[1]:] = self.iterative_amplitude['alpha_dim'].loc[fd_limits[1]:] else: hilbert_params['alpha_0'].loc[:fd_limits[0]] = self.iterative_amplitude['alpha_dim'].loc[:fd_limits[0]] hilbert_params['alpha_0'].loc[fd_limits[1]:] = self.iterative_amplitude['alpha_bright'].loc[fd_limits[1]:] # hilbert_params = pd.concat([hilbert_params, alpha_dim_interp, alpha_bright_interp], axis=1) self.alpha_dim_interp = alpha_dim_interp self.alpha_bright_interp = alpha_bright_interp self.alpha_diff_interp = alpha_diff_interp self.hilbert_params = hilbert_params self.completed = np.zeros(hilbert_params.index.shape[0]) self.attempted = np.zeros(hilbert_params.index.shape[0]) a_array = np.zeros(hilbert_params.index.shape[0], dtype=complex) self.me_amplitude = pd.DataFrame(a_array, index=hilbert_params.index) def mf_calculate(self, fd_array, characterise_only=False): if self.mf_amplitude is None: self.mf_amplitude = map_mf_jc(self.parameters, fd_array=fd_array, characterise_only=characterise_only) else: fd0 = fd_array[0] fd1 = fd_array[-1] idx0 = self.mf_amplitude.index.get_loc(fd0, method='nearest') idx1 = self.mf_amplitude.index.get_loc(fd1, method='nearest') alpha0_dim = self.mf_amplitude['a_dim'].iloc[idx0] sm0_dim = self.mf_amplitude['sm_dim'].iloc[idx0] sz0_dim = self.mf_amplitude['sz_dim'].iloc[idx0] alpha0_bright = self.mf_amplitude['a_bright'].iloc[idx1] sm0_bright = self.mf_amplitude['sm_bright'].iloc[idx1] sz0_bright = self.mf_amplitude['sz_bright'].iloc[idx1] mf_amplitude_new = mf_characterise_jc(self.parameters, fd_array, alpha0_bright=alpha0_bright, sm0_bright=sm0_bright, sz0_bright=sz0_bright, alpha0_dim=alpha0_dim, sm0_dim=sm0_dim, sz0_dim=sz0_dim, check_bistability=False) self.mf_amplitude = pd.concat([self.mf_amplitude, mf_amplitude_new]) self.mf_amplitude = self.mf_amplitude.sort_index() self.mf_amplitude = self.mf_amplitude[~self.mf_amplitude.index.duplicated(keep='first')] def generate_hilbert_params(self, c_levels_bi_scale=1.0, scale=0.5, fd_limits=None, max_shift=True, c_levels_mono=10, c_levels_bi=10, alpha_0_mono=0, alpha_0_bi=0, kind='linear', method='extrapolate_alpha_0'): print(c_levels_bi) self.hilbert_params = generate_hilbert_params(self.mf_amplitude, c_levels_bi_scale=c_levels_bi_scale, scale=scale, fd_limits=fd_limits, kind=kind, max_shift=max_shift, c_levels_mono=c_levels_mono, c_levels_bi=c_levels_bi, alpha_0_mono=alpha_0_mono, alpha_0_bi=alpha_0_bi, method=method) def me_calculate(self, solver_kwargs={}, c_levels_bi_scale=1.0, scale=0.5, fd_limits=None, fill_value='extrapolate', max_shift=False, c_levels_mono=10, c_levels_bi=10, alpha_0_mono=0, alpha_0_bi=0, kind='linear', method='extrapolate_alpha_0', level_scaling=1.0, max_levels=True, save_name=None, resume_uncompleted=True): if self.hilbert_params is None: if method is 'iterative': frequencies = self.iterative_amplitude.index self.gen_iterative_hilbert_params(fd_limits, kind=kind, fill_value=fill_value, fraction=scale, level_scaling=level_scaling, max_shift=max_shift, max_levels=max_levels) else: frequencies = self.mf_amplitude.index self.generate_hilbert_params(c_levels_bi_scale=c_levels_bi_scale, scale=scale, max_shift=max_shift, c_levels_mono=c_levels_mono, c_levels_bi=c_levels_bi, alpha_0_mono=alpha_0_mono, alpha_0_bi=alpha_0_bi, fd_limits=fd_limits, kind=kind, method=method) if self.me_amplitude is None: self.completed = np.zeros(self.hilbert_params.index.shape[0]) self.attempted = np.zeros(self.hilbert_params.index.shape[0]) a_array = np.zeros(self.hilbert_params.index.shape[0], dtype=complex) self.me_amplitude = pd.DataFrame(a_array, index=self.hilbert_params.index) frequencies = self.hilbert_params.index a_array = self.me_amplitude.values[:,0] params = deepcopy(self.parameters) for fd_idx, fd, alpha0, c_levels in tqdm( zip(np.arange(self.hilbert_params.index.shape[0]), self.hilbert_params.index, self.hilbert_params['alpha_0'], self.hilbert_params['c_levels'])): if (resume_uncompleted and self.completed[fd_idx] == 0) or (not resume_uncompleted and self.attempted[fd_idx] == 0): params.fd = fd params.c_levels = c_levels ham = ham_gen_jc(params, alpha=alpha0) c_ops = c_ops_gen_jc(params, alpha=alpha0) self.attempted[fd_idx] = 1 try: rho = steadystate(ham, c_ops, **solver_kwargs) a = tensor(qeye(2), destroy(params.c_levels)) + alpha0 a_array[fd_idx] = expect(rho, a) self.me_amplitude = pd.DataFrame(a_array, index=frequencies) if save_name is not None: qsave(self, save_name) self.completed[fd_idx] = 1 except: print('Failure at fd = ' + str(fd)) a_array[fd_idx] = np.nan def plot(self, axes=None, mf=True, me=True, db=True, me_kwargs={'marker': 'o'}, mf_kwargs={'marker': 'o'}): if axes is None: fig, axes = plt.subplots(1, 1, figsize=(10, 6)) axes.set_xlabel(r'$f_d$ (GHz)') axes.set_ylabel(r'|$\langle a \rangle$|') if db: if me: if self.me_amplitude is not None: axes.plot(self.me_amplitude.dropna().index, 20 * np.log10(np.abs(self.me_amplitude.dropna())), **me_kwargs) if mf: if self.mf_amplitude.shape[1] == 1: axes.plot(self.mf_amplitude.index, 20 * np.log10(np.abs(self.mf_amplitude['a'])), **mf_kwargs) else: axes.plot(self.mf_amplitude.index, 20 * np.log10(np.abs(self.mf_amplitude['a_bright'])), **mf_kwargs) axes.plot(self.mf_amplitude.index, 20 * np.log10(np.abs(self.mf_amplitude['a_dim'])), **mf_kwargs) else: if me: if self.me_amplitude is not None: axes.plot(self.me_amplitude.dropna().index, np.abs(self.me_amplitude.dropna()), **me_kwargs) if mf: if self.mf_amplitude.shape[1] == 1: axes.plot(self.mf_amplitude.index, np.abs(self.mf_amplitude['a']), **mf_kwargs) else: axes.plot(self.mf_amplitude.index, np.abs(self.mf_amplitude['a_bright']), **mf_kwargs) axes.plot(self.mf_amplitude.index, np.abs(self.mf_amplitude['a_dim']), **mf_kwargs) def plot_transmission(self, axes=None, scale=4.851024710399999e-09, exp=True, sim=True, me_kwargs={'marker': 'o'}, mf_kwargs={'marker': 'o'}): if axes is None: fig, axes = plt.subplots(1, 1, figsize=(10, 6)) axes.set_ylabel(r'$T_{NA}$ (dB)') axes.set_xlabel(r'$f_{df}$ (GHz)') if sim and self.me_amplitude is not None: self.transmission = scale * np.abs(self.me_amplitude.dropna()) ** 2 / self.parameters.eps ** 2 axes.plot(self.transmission.index, 10 * np.log10(self.transmission), label='Sim', **me_kwargs) if exp and self.transmission_exp is not None: axes.plot(self.transmission_exp.index, self.transmission_exp, label='Exp') def load_exp(self, path): self.transmission_exp = pd.read_csv(path, dtype=float, header=None).T self.transmission_exp = self.transmission_exp.set_index(0) def generate_hilbert_params(mf_amplitude, fd_limits=None, scale=0.5, c_levels_mono=10, c_levels_bi=10, alpha_0_mono=0, alpha_0_bi=0, c_levels_bi_scale=1.0, max_shift=True, kind='linear', method='extrapolate_alpha_0'): if 'a_dim' not in mf_amplitude.columns: hilbert_params = deepcopy(mf_amplitude) hilbert_params.columns = ['alpha_0'] hilbert_params['c_levels'] = c_levels_mono elif method is 'static': n_frequencies = mf_amplitude.shape[0] hilbert_params = pd.DataFrame(alpha_0_mono*np.ones([n_frequencies,1],dtype=complex), columns=['alpha_0'], index=mf_amplitude.index) hilbert_params['c_levels'] = c_levels_mono if fd_limits is not None: hilbert_params['c_levels'][fd_limits[0]:fd_limits[1]] = c_levels_bi hilbert_params['alpha_0'][fd_limits[0]:fd_limits[1]] = alpha_0_bi else: mf_amplitude_bistable = mf_amplitude.dropna() bistable_frequencies = mf_amplitude_bistable.index alpha_diff_bistable = mf_amplitude_bistable['a_bright'] - mf_amplitude_bistable['a_dim'] alpha_diff_bistable_min = np.min(np.abs(alpha_diff_bistable)) alpha_dim_bistable = mf_amplitude_bistable['a_dim'] if max_shift: alpha_diff_bistable_unit = alpha_diff_bistable / np.abs(alpha_diff_bistable) alpha_0_bistable = alpha_dim_bistable + scale * alpha_diff_bistable_min * alpha_diff_bistable_unit else: alpha_0_bistable = alpha_dim_bistable + scale * alpha_diff_bistable if fd_limits is not None: if method not in ['extrapolate_alpha_0', 'extrapolate_diff']: raise Exception('Method not recognised.') bistable_frequencies = mf_amplitude[fd_limits[0]:fd_limits[1]].index if method is 'extrapolate_alpha_0': alpha_0_bistable_re_func = interp1d(alpha_0_bistable.index, alpha_0_bistable.values.real, fill_value='extrapolate', kind=kind) alpha_0_bistable_im_func = interp1d(alpha_0_bistable.index, alpha_0_bistable.values.imag, fill_value='extrapolate', kind=kind) def alpha_0_bistable_func_single(fd): return alpha_0_bistable_re_func(fd) + 1j * alpha_0_bistable_im_func(fd) alpha_0_bistable_func = np.vectorize(alpha_0_bistable_func_single, otypes=[complex]) alpha_0_bistable = alpha_0_bistable_func(bistable_frequencies) alpha_0_bistable = pd.Series(alpha_0_bistable, index=bistable_frequencies) elif method is 'extrapolate_diff': diff_re_func = interp1d(alpha_diff_bistable.index, alpha_diff_bistable.values.real, fill_value='extrapolate', kind=kind) diff_im_func = interp1d(alpha_diff_bistable.index, alpha_diff_bistable.values.imag, fill_value='extrapolate', kind=kind) def diff_func_single(fd): return diff_re_func(fd) + 1j * diff_im_func(fd) diff_func = np.vectorize(diff_func_single, otypes=[complex]) upper_mf_bistable_fd = mf_amplitude.dropna().index[-1] if fd_limits[1] < upper_mf_bistable_fd or fd_limits[0] > upper_mf_bistable_fd: raise Exception('Frequency range does not cover the upper bistability crossover.') lower_midpoint_frequencies = mf_amplitude[fd_limits[0]:upper_mf_bistable_fd].index diff_lower = diff_func(lower_midpoint_frequencies) diff_lower_unit = diff_lower / np.abs(diff_lower) alpha_dim_lower = mf_amplitude['a_dim'][lower_midpoint_frequencies] alpha_0_lower = alpha_dim_lower + scale * alpha_diff_bistable_min * diff_lower_unit alpha_0_lower = pd.Series(alpha_0_lower, index=lower_midpoint_frequencies) upper_midpoint_frequencies = mf_amplitude[upper_mf_bistable_fd:fd_limits[1]].index[1:] diff_upper = diff_func(upper_midpoint_frequencies) diff_upper_unit = diff_upper / np.abs(diff_upper) alpha_bright_upper = mf_amplitude['a_bright'][upper_midpoint_frequencies] alpha_0_upper = alpha_bright_upper + (scale - 1) * alpha_diff_bistable_min * diff_upper_unit alpha_0_upper = pd.Series(alpha_0_upper, index=upper_midpoint_frequencies) alpha_0_bistable = pd.concat([alpha_0_lower, alpha_0_upper]) fd_lower = alpha_0_bistable.index[0] fd_upper = alpha_0_bistable.index[-1] alpha_0_monostable_bright = mf_amplitude['a_bright'].dropna().loc[fd_upper:] alpha_0_monostable_bright = alpha_0_monostable_bright.iloc[1:] alpha_0_monostable_dim = mf_amplitude['a_dim'].dropna().loc[:fd_lower] alpha_0_monostable_dim = alpha_0_monostable_dim.iloc[:-1] hilbert_params_mono = pd.concat( [alpha_0_monostable_bright.to_frame('alpha_0'), alpha_0_monostable_dim.to_frame('alpha_0')]) hilbert_params_mono['c_levels'] = c_levels_mono hilbert_params_bi = alpha_0_bistable.to_frame('alpha_0') hilbert_params_bi['c_levels'] = int(np.ceil(c_levels_bi_scale * alpha_diff_bistable_min ** 2)) hilbert_params =
pd.concat([hilbert_params_mono, hilbert_params_bi])
pandas.concat
import numpy as _np import pandas as _pd import logging as _logging from .gn_io.sinex import _get_snx_matrix, _get_snx_vector, get_variance_factor from .gn_transform import get_helmert7, transform7 from .gn_io.common import path2bytes def cova2neq(cova:_np.ndarray, variance_factor): """Function to convert COVA matrix to NEQ matrix as per Bernese ADDNEQ""" neqm = _np.linalg.inv(cova / variance_factor) # neqv = neqm @ (vec.EST.values - vec.APR.values) # return neqm, neqv return neqm def corr2cova(corr:_np.ndarray) -> _np.ndarray: """Converts sinex CORR matrix to COVA using the diagonal STD values""" D = corr.diagonal() * corr.diagonal()[:,None] _np.fill_diagonal(corr,1) # fill COVA diagonal with 1 so we only multiply with D to get COVA return corr * D def get_neq(path_or_bytes): snx_bytes = path2bytes(path_or_bytes) # TODO read and parse sinex header neq = _get_snx_matrix(path_or_bytes=snx_bytes, stypes=["NEQ"], verbose=False) vec = b"" # to silence the pylance if neq is not None: vec = _get_snx_vector( path_or_bytes=snx_bytes, stypes=["APR", "EST", "NEQ"], verbose=False,snx_format=None ) # revisit this vec thing return neq[0][0], vec # NEQ matrix and vector are present so just return # return N and N_vec if they exist, else -> magic _logging.warning( msg="No NEQ was found. Generating from COVA/CORR as not strict" ) apr_est = _get_snx_matrix(path_or_bytes=snx_bytes, stypes=["APR", "EST"], verbose=False) if apr_est is not None: matrices, stype_dict = apr_est else: raise ValueError variance_factor = get_variance_factor(path_or_bytes) if variance_factor is None: variance_factor = 1 _logging.warning( msg="No variance factor found. Considering it 1" ) a_e = _get_snx_vector(path_or_bytes = snx_bytes, stypes=["EST", "APR"], verbose=False,snx_format=None) if a_e is None: raise ValueError if not 'APR' in stype_dict.keys(): std = a_e.STD.values mat_apr = _np.identity(std.shape[0]) _np.fill_diagonal(mat_apr,std*std) neq_apr = cova2neq(mat_apr,variance_factor) else: if stype_dict['APR'] == 'CORR': neq_apr = cova2neq(corr2cova(matrices[list(stype_dict.keys()).index('APR')]),variance_factor=variance_factor) elif stype_dict['APR'] == 'COVA': # K_constr neq_apr = cova2neq(matrices[list(stype_dict.keys()).index('APR')],variance_factor=variance_factor) elif stype_dict['APR'] == 'INFO': # N_constr neq_apr = matrices[list(stype_dict.keys()).index('APR')] else: raise ValueError if stype_dict['EST'] == 'CORR': neq_est = cova2neq(corr2cova(matrices[list(stype_dict.keys()).index('EST')]),variance_factor=variance_factor) elif stype_dict['EST'] == 'COVA': # K_xx print('cova2neq') neq_est = cova2neq(corr2cova(matrices[list(stype_dict.keys()).index('EST')]),variance_factor=variance_factor) elif stype_dict['EST'] == 'INFO': # N_total neq_est = matrices[list(stype_dict.keys()).index('EST')] else: raise ValueError neq = neq_est - neq_apr # N_total - N_constr neqv = neq @ (a_e.EST.values - a_e.APR.values) # (a.APR + _np.linalg.solve(a=neqm,b=neqv)) - a.EST # to check a_e['NEQ'] = neqv return neq, a_e def neq_elim_dim(neq_mat: _np.ndarray, neq_vec: _np.ndarray, i: int): """Eliminates 'i' dimension in NEQ system""" elim_row = neq_mat[i][_np.newaxis] elim_col = neq_mat[:, i] elim_centr = elim_col[i] neq_mat -= ( elim_row * (elim_col / elim_centr)[:, _np.newaxis] ) # division done on 1dim vector first neq_vec -= elim_col * neq_vec[i] / elim_centr def prepare_neq(neq_m, vec_apr_neq, frame_of_day): """Eliminate the non-XYZ parameters from the NEQ system and align a priori XYZ values to the frame of choice if frame_of_day is given""" neq_mat = neq_m.copy() vec_apr_neq = vec_apr_neq.copy() neq_vec = vec_apr_neq.NEQ.values xyz_mask = _np.isin(vec_apr_neq.TYPE.values, ["STAX", "STAY", "STAZ"]) idx2elim = vec_apr_neq.index.values[~xyz_mask] # neq_mat,neq_vec = neq, neq_vec for i in range( idx2elim.shape[0] ): # need to be positive and sorted from bigger to smaller neq_elim_dim(neq_mat, neq_vec, idx2elim[i]) neq_mat_elim = neq_mat[xyz_mask, :][:, xyz_mask] neq_vec_elim = neq_vec[xyz_mask] vec_apr_neq = vec_apr_neq[xyz_mask] aprioris = vec_apr_neq.APR index_combo = _pd.MultiIndex.from_arrays( [vec_apr_neq.CODE.values + "_" + vec_apr_neq.PT.values.astype(str), vec_apr_neq.TYPE] ) aprioris.index = index_combo aprioris = aprioris.unstack(level=1) aprioris_missing_mask = aprioris.STAX.values == 0 aprioris_vals_mask = ~aprioris_missing_mask if aprioris_missing_mask.sum() > 0: estimates = vec_apr_neq.EST estimates.index = index_combo aprioris[aprioris_missing_mask] += estimates.unstack(level=1).values[aprioris_missing_mask] if frame_of_day is not None: common = _np.intersect1d(aprioris[aprioris_vals_mask].index.values, frame_of_day.index.values) hlm = get_helmert7(pt1=frame_of_day.loc[common].iloc[:, :3].values, pt2=aprioris[aprioris_vals_mask].loc[common].values) # could not work if the order of XYZ is changed to YXZ etc # copy over estimate values to 0-aprioris here and rotate them using the computed hlm coeff new_aprioris = _pd.DataFrame(data = transform7(xyz_in=aprioris.values, helmert_list=hlm[0][0] * -1), index = aprioris.index, columns = aprioris.columns) else: new_aprioris = aprioris # we later use substr with a mask and fill_value 0 to make all masked values 0 d_apr = new_aprioris.subtract(aprioris[aprioris_vals_mask],fill_value=0).stack()[index_combo].values # the aprioris index is sorted, so need to align with original index neq_vec_elim -= neq_mat_elim @ d_apr vec_apr_neq[["APR", "NEQ"]] = _np.vstack([new_aprioris.stack()[index_combo].values, neq_vec_elim]).T # index_combo is needed to preserve the order that may have been changed by stack() return neq_mat_elim, vec_apr_neq def insert_neq(master_neq, master_vec_neq, ind, neq, neq_vec): bool_arr = _np.zeros(shape=master_neq.shape[0], dtype=bool) bool_arr[ind] = 1 mask = bool_arr[_np.newaxis] * bool_arr[:, _np.newaxis] master_neq[mask] += neq.flatten() # check the flatten order. Could change to +=1 master_vec_neq[ bool_arr ] += neq_vec # Could chage to +=1 for number of solutions plot def vec2comboind(vec): return vec.CODE.values + vec.PT.values + vec.TYPE.values.astype(str) def get_uniind(vec_list): buf = [] for vec in vec_list: buf.append( vec.set_index( vec.CODE.values + vec.PT.values.astype(str) + vec.TYPE.values.astype(str) ).APR ) combo_uni = (
_pd.concat(buf, axis=1)
pandas.concat
import xgboost as xgb import numpy as np import pandas as pd from scipy.stats import t, norm import math from scipy.special import gammaln, digamma, polygamma from xgboostlss.utils import * np.seterr(all="ignore") ######################################################################################################################## ################################################# BCT ########################################################## ######################################################################################################################## # When a custom objective is provided XGBoost doesn't know its response function so the user is responsible for making # the transformation for both objective and custom evaluation metric. For objective with identity link like squared # error this is trivial, but for other link functions like log link or inverse link the difference is significant. # For the Python package, the behaviour of the predictions can be controlled by the output_margin parameter in the # predict function. When using the custom_metric parameter without a custom objective, the metric function will receive # transformed predictions since the objective is defined by XGBoost. However, when a custom objective is also provided # along with a custom metric, then both the objective and custom metric will receive raw predictions and hence must be # transformed using the specified response functions. class BCT(): """Box-Cox t (BCT) Distribution Class """ ### # Specifies the number of distributional parameters ### @staticmethod def n_dist_param(): """Number of distributional parameter. """ n_param = 4 return n_param ### # Parameter Dictionary ### @staticmethod def param_dict(): """ Dictionary that holds the name of distributional parameter and their corresponding response functions. """ param_dict = {"location": soft_plus, "scale": soft_plus, "nu": identity, "tau": soft_plus } return param_dict ### # Inverse Parameter Dictionary ### @staticmethod def param_dict_inv(): """ Dictionary that holds the name of distributional parameter and their corresponding link functions. """ param_dict_inv = {"location_inv": soft_plus_inv, "scale_inv": soft_plus_inv, "nu_inv": identity, "tau_inv": soft_plus_inv } return param_dict_inv ### # Starting Values ### @staticmethod def initialize(y: np.ndarray): """ Function that calculates the starting values, for each distributional parameter individually. y: np.ndarray Data from which starting values are calculated. """ loc_fit = np.nanmean(y) scale_fit = np.max([((np.nanvar(y, ddof=1) - np.nanmean(y)) / (np.nanmean(y) ** 2)), 0.1]) nu_fit = 0.5 tau_fit = 10 location_init = BCT.param_dict_inv()["location_inv"](loc_fit) scale_init = BCT.param_dict_inv()["scale_inv"](scale_fit) nu_init = BCT.param_dict_inv()["nu_inv"](nu_fit) tau_init = BCT.param_dict_inv()["tau_inv"](tau_fit) start_values = np.array([location_init, scale_init, nu_init, tau_init]) return start_values ### # Density Function ### @staticmethod def dBCCG(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, log=False): """Helper density function. """ if len(nu) > 1: z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) elif nu != 0: z = (((y / location) ** nu - 1) / (nu * scale)) else: z = np.log(y / location) / scale loglik = nu * np.log(y / location) - np.log(scale) - (z ** 2) / 2 - np.log(y) - (np.log(2 * np.pi)) / 2 loglik = loglik - np.log(norm.cdf(1 / (scale * np.abs(nu)))) if log == False: ft = np.exp(loglik) else: ft = loglik return ft @staticmethod def dBCT(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, log=False): """Density function. """ if len(nu) > 1: z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) elif nu != 0: z = (((y / location) ** nu - 1) / (nu * scale)) else: z = np.log(y / location) / scale loglik = (nu - 1) * np.log(y) - nu * np.log(location) - np.log(scale) fTz = gammaln((tau + 1) / 2) - gammaln(tau / 2) - 0.5 * np.log(tau) - gammaln(0.5) fTz = fTz - ((tau + 1) / 2) * np.log(1 + (z * z) / tau) loglik = loglik + fTz - np.log(t.cdf(1 / (scale * np.abs(nu)), df=tau)) if len(tau) > 1: loglik = np.where(tau > 1e+06, BCT.dBCCG(y, location, scale, nu, log=True), loglik) elif tau > 1e+06: loglik = BCT.dBCCG(y, location, scale, nu, log=True) ft = np.exp(loglik) if log == False else loglik return ft ### # Quantile Function ### @staticmethod def qBCT(p: float, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, lower_tail=True, log_p=False): """Quantile function. """ if log_p == True: p = np.exp(p) else: p = p if lower_tail == True: p = p else: p = 1 - p if len(nu) > 1: z = np.where((nu <= 0), t.ppf(p * t.cdf(1 / (scale * np.abs(nu)), tau), tau), t.ppf(1 - (1 - p) * t.cdf(1 / (scale * abs(nu)), tau), tau)) else: z = t.ppf(p * t.cdf(1 / (scale * np.abs(nu)), tau), tau) if nu <= 0 else t.ppf( 1 - (1 - p) * t.cdf(1 / (scale * abs(nu)), tau), tau) if len(nu) > 1: ya = np.where(nu != 0, location * (nu * scale * z + 1) ** (1 / nu), location * np.exp(scale * z)) elif nu != 0: ya = location * (nu * scale * z + 1) ** (1 / nu) else: ya = location * np.exp(scale * z) return ya ### # Random variable generation ### def rBCT(n: int, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray): """Random variable generation function. """ n = math.ceil(n) p = np.random.uniform(0, 1, n) r = BCT.qBCT(p, location=location, scale=scale, nu=nu, tau=tau) return r ### # Location Parameter gradient and hessian ### @staticmethod def gradient_location(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Gradient of location parameter. """ z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) w = (tau + 1) / (tau + z ** 2) grad = (w * z) / (location * scale) + (nu / location) * (w * (z ** 2) - 1) grad = stabilize_derivative(grad, BCT.stabilize) grad = grad * (-1) * weights return grad @staticmethod def hessian_location(location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Hessian of location parameter. """ hes = -(tau + 2 * nu * nu * scale * scale * tau + 1) / (tau + 3) hes = hes / (location * location * scale * scale) hes = stabilize_derivative(hes, BCT.stabilize) hes = hes * (-1) * weights return hes ### # Scale Parameter gradient and hessian ### @staticmethod def gradient_scale(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Gradient of scale parameter. """ z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) w = (tau + 1) / (tau + z ** 2) h = t.pdf(1 / (scale * np.abs(nu)), df=tau) / t.cdf(1 / (scale * np.abs(nu)), df=tau) grad = (w * (z ** 2) - 1) / scale + h / (scale ** 2 * np.abs(nu)) grad = stabilize_derivative(grad, BCT.stabilize) grad = grad * (-1) * weights return grad @staticmethod def hessian_scale(scale: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Hessian of scale parameter. """ hes = -2 * tau / (scale ** 2 * (tau + 3)) hes = stabilize_derivative(hes, BCT.stabilize) hes = hes * (-1) * weights return hes ### # Nu Parameter gradient and hessian ### @staticmethod def gradient_nu(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Gradient of nu parameter. """ z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) w = (tau + 1) / (tau + z ** 2) h = t.pdf(1 / (scale * np.abs(nu)), df=tau) / t.cdf(1 / (scale * np.abs(nu)), df=tau) grad = ((w * z ** 2) / nu) - np.log(y / location) * (w * z ** 2 + ((w * z) / (scale * nu)) - 1) grad = grad + np.sign(nu) * h / (scale * nu ** 2) grad = stabilize_derivative(grad, BCT.stabilize) grad = grad * (-1) * weights return grad @staticmethod def hessian_nu(scale: np.ndarray, weights: np.ndarray): """Calculates Hessian of nu parameter. """ hes = -7 * (scale ** 2) / 4 hes = stabilize_derivative(hes, BCT.stabilize) hes = hes * (-1) * weights return hes ### # Tau Parameter gradient and hessian ### @staticmethod def gradient_tau(y: np.ndarray, location: np.ndarray, scale: np.ndarray, nu: np.ndarray, tau: np.ndarray, weights: np.ndarray): """Calculates Gradient of tau parameter. """ z = np.where(nu != 0, (((y / location) ** nu - 1) / (nu * scale)), np.log(y / location) / scale) w = (tau + 1) / (tau + z ** 2) j = (np.log(t.cdf(1 / (scale * np.abs(nu)), df=tau + 0.01)) - np.log( t.cdf(1 / (scale * abs(nu)), df=tau))) / 0.01 grad = -0.5 * np.log(1 + (z ** 2) / tau) + (w * (z ** 2)) / (2 * tau) grad = grad + 0.5 * digamma((tau + 1) / 2) - 0.5 * digamma(tau / 2) - 1 / (2 * tau) - j grad = stabilize_derivative(grad, BCT.stabilize) grad = grad * (-1) * weights return grad @staticmethod def hessian_tau(tau: np.ndarray, weights: np.ndarray): """Calculates Hessian of tau parameter. """ hes = polygamma(1, ((tau + 1) / 2)) - polygamma(1, tau / 2) + 2 * (tau + 5) / (tau * (tau + 1) * (tau + 3)) hes = hes / 4 hes = np.where(hes < -1e-15, hes, -1e-15) hes = stabilize_derivative(hes, BCT.stabilize) hes = hes * (-1) * weights return hes ### # Custom Objective Function ### def Dist_Objective(predt: np.ndarray, data: xgb.DMatrix): """A customized objective function to train each distributional parameter using custom gradient and hessian. """ target = data.get_label() # When num_class!= 0, preds has shape (n_obs, n_dist_param). # Each element in a row represents a raw prediction (leaf weight, hasn't gone through response function yet). preds_location = BCT.param_dict()["location"](predt[:, 0]) preds_scale = BCT.param_dict()["scale"](predt[:, 1]) preds_nu = BCT.param_dict()["nu"](predt[:, 2]) preds_tau = BCT.param_dict()["tau"](predt[:, 3]) # Weights if data.get_weight().size == 0: # Use 1 as weight if no weights are specified weights = np.ones_like(target, dtype=float) else: weights = data.get_weight() # Initialize Gradient and Hessian Matrices grad = np.zeros(shape=(len(target), BCT.n_dist_param())) hess = np.zeros(shape=(len(target), BCT.n_dist_param())) # Location grad[:, 0] = BCT.gradient_location(y=target, location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, weights=weights) hess[:, 0] = BCT.hessian_location(location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, weights=weights) # Scale grad[:, 1] = BCT.gradient_scale(y=target, location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, weights=weights) hess[:, 1] = BCT.hessian_scale(scale=preds_scale, tau=preds_tau, weights=weights) # Nu grad[:, 2] = BCT.gradient_nu(y=target, location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, weights=weights) hess[:, 2] = BCT.hessian_nu(scale=preds_scale, weights=weights) # Tau grad[:, 3] = BCT.gradient_tau(y=target, location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, weights=weights) hess[:, 3] = BCT.hessian_tau(tau=preds_tau, weights=weights) # Reshaping grad = grad.flatten() hess = hess.flatten() return grad, hess ### # Custom Evaluation Metric ### def Dist_Metric(predt: np.ndarray, data: xgb.DMatrix): """A customized evaluation metric that evaluates the predictions using the negative log-likelihood. """ target = data.get_label() # Using a custom objective function, the custom metric receives raw predictions which need to be transformed # with the corresponding response function. preds_location = BCT.param_dict()["location"](predt[:, 0]) preds_scale = BCT.param_dict()["scale"](predt[:, 1]) preds_nu = BCT.param_dict()["nu"](predt[:, 2]) preds_tau = BCT.param_dict()["tau"](predt[:, 3]) nll = -np.nansum(BCT.dBCT(y=target, location=preds_location, scale=preds_scale, nu=preds_nu, tau=preds_tau, log=True) ) return "NegLogLikelihood", nll ### # Function for drawing random samples from predicted distribution ### def pred_dist_rvs(pred_params: pd.DataFrame, n_samples: int, seed: int): """ Function that draws n_samples from a predicted response distribution. pred_params: pd.DataFrame Dataframe with predicted distributional parameters. n_samples: int Number of sample to draw from predicted response distribution. seed: int Manual seed. Returns ------- pd.DataFrame with n_samples drawn from predicted response distribution. """ pred_dist_list = [] for i in range(pred_params.shape[0]): pred_dist_list.append(BCT.rBCT(n=n_samples, location=np.array([pred_params.loc[i, "location"]]), scale=np.array([pred_params.loc[i, "scale"]]), nu=np.array([pred_params.loc[i, "nu"]]), tau=np.array([pred_params.loc[i, "tau"]]) ) ) pred_dist =
pd.DataFrame(pred_dist_list)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/03_transform.ipynb (unless otherwise specified). __all__ = ['TBStep', 'noop_step', 'TBTransform', 'drop_features', 'remove_outlier', 'boxnwhisker_value', 'subset', 'app_cat', 'dummies', 'scale_vars', 'fill_na', 'select', 'apply_function', 'noop_transform'] # Cell from .utils import * import pandas as pd import numpy as np from pandas.api.types import is_string_dtype, is_numeric_dtype from sklearn.preprocessing import StandardScaler from sklearn_pandas import DataFrameMapper import warnings import sklearn from sklearn.exceptions import DataConversionWarning import pdb # Cell #todo: only apply for some features class TBStep: def __init__(self, **kargs): pass def fit(self, *args,**kargs): pass def transform(self, df, **kargs): pass def fit_transform(self, df): self.fit(df) return self.transform(df) class noop_step(TBStep): def transform(self, df): return df class TBTransform: def __init__(self, steps): self.steps = steps self.features = None def __repr__(self): return '\n'.join([str(pos) + ' - '+ str(step) for pos, step in enumerate(self.steps)]) def fit(self, df): for step in self.steps: step.fit(df) def transform(self, df): df = df.copy() for step in self.steps: df = step.transform(df) if self.features is None: self.features = df.columns self.cons = []; self.cats = [] for feature, value in df.items(): if np.array_equal(np.sort(value.unique()), np.array([0, 1])) or np.array_equal(np.sort(value.unique()), np.array([0])): self.cats.append(feature) else: self.cons.append(feature) return df def append(self, steps): self.steps.append(steps) def insert(self, index, steps): self.steps.insert(index, steps) def pop(self, n_pop): self.steps.pop(n_pop) noop_transform = TBTransform([noop_step()]) class drop_features(TBStep): def __init__(self, features = None): self.features = features def __repr__(self): print_features = ', '.join(to_iter(self.features)) return f'drop {print_features}' def fit(self, df, tfms_out): tfms_out['features'] = [i for i in df.columns if i not in self.features] tfms_out['cons'] = [i for i in tfms_out['cons'] if i not in self.features] def transform(self, df): return df.drop(self.features, axis=1) class remove_outlier(TBStep): def __init__(self, features = None): self.features = features def __repr__(self): print_features = ', '.join(to_iter(self.features)) return f'remove outlier of {print_features}' def fit(self, df): self.bw_dict = {} if self.features is None: self.features = df.columns mask = np.full(df.shape[0], True) for feature, value in df[self.features].items(): if is_numeric_dtype(value): self.bw_dict[feature] = {} Min, _, _, _, Max, _ = boxnwhisker_value(value) inlier = np.logical_and(value >= Min, value <= Max) mask = np.logical_and(mask, inlier) self.mask = mask def transform(self, df): return df[self.mask] def boxnwhisker_value(values): Median = np.median(values) Q1, Q3 = np.percentile(values, [25,75]) IQR = Q3 - Q1 Min, Max = Q1 - IQR*1.5, Q3 + IQR*1.5 return max(Min, np.min(values)), Q1, Median, Q3, min(Max,np.max(values)), IQR class subset(TBStep): def __init__(self, n_sample = None, ratio = 0.3): self.n_sample = n_sample self.ratio = ratio def __repr__(self): return f'select subset with {self.n_sample} samples' def fit(self, df): if self.n_sample is None: self.n_sample = self.ratio*df.shape[0] def transform(self, df): return df.sample(self.n_sample) class app_cat(TBStep): def __init__(self, max_n_cat=15, features = None): self.max_n_cat = max_n_cat self.features = features def __repr__(self): return f'apply category with maximum number of distinct value is {self.max_n_cat}' def fit(self, df): if self.features is None: self.features = df.columns self.app_cat_dict = {} for feature, value in df[self.features].items(): if is_numeric_dtype(value) and value.dtypes != np.bool: if value.nunique()<=self.max_n_cat: if not np.array_equal(value.unique(), np.array([0, 1])): self.app_cat_dict[feature] = self.as_category_as_order else: if value.nunique()>self.max_n_cat: self.app_cat_dict[feature] = self.as_category_as_codes elif value.dtypes.name == 'object': self.app_cat_dict[feature] = self.as_category_as_order elif value.dtypes.name == 'category': self.app_cat_dict[feature] = self.cat_as_order @staticmethod def cat_as_order(x): return x.cat.as_ordered() @staticmethod def as_category_as_codes(x): return x.astype('category').cat.codes+1 @staticmethod def as_category_as_order(x): return x.astype('category').cat.as_ordered() def transform(self, df): df = df.copy() for key in self.app_cat_dict.keys(): df[key] = self.app_cat_dict[key](df[key]) return df class dummies(TBStep): def __init__(self, dummy_na = True): self.dummy_na = dummy_na def __repr__(self): return 'get dummies' def transform(self, df): df = df.copy() df = pd.get_dummies(df, dummy_na=True) return df class scale_vars(TBStep): def __init__(self, features = None): warnings.filterwarnings('ignore', category=sklearn.exceptions.DataConversionWarning) self.features= features def __repr__(self): return 'scale features' def fit(self, df): if self.features is None: self.features = df.columns self.features = [i for i in self.features if is_numeric_dtype(df[i])] map_f = [([n],StandardScaler()) for n in df[self.features].columns] self.mapper = DataFrameMapper(map_f).fit(df[self.features].dropna(axis=0)) def transform(self, df): df = df.copy() df[self.mapper.transformed_names_] = self.mapper.transform(df[self.features]) return df class fill_na(TBStep): def __init__(self, features = None): self.na_dict = {} self.features = features def __repr__(self): return 'fill na' def fit(self, df): if self.features is None: self.features = df.columns for feature in self.features: if is_numeric_dtype(df[feature].values): if
pd.isnull(df[feature])
pandas.isnull
from bokeh.embed import components from bokeh.resources import CDN from collections import defaultdict from datetime import datetime as dt from datetime import timedelta as td from highcharts import Highchart from io import BytesIO from numpy import exp, cos, linspace, random, array from pandas_highcharts.core import serialize, json_encode import base64 import bokeh.plotting as bplt import json import matplotlib.pyplot as plt import mpld3 import os, re, time, glob import pandas as pd import string def read_header(filename): header = {} skiprows = 0 with open(filename, 'r') as fh: for line in fh: skiprows += 1 if re.match(r'ddd_hh:mm:ss(.*)', line, re.M | re.I): break if ':' in line: key, value = line.replace('#','').strip().split(':', 1) header[key.replace('(', '').replace( ')', '')] = value.strip().replace('"', '') if header['Output Filename'].startswith('power'): header_rows = 2 if header['Output Filename'].startswith('data'): header_rows = 3 header['skiprows'] = skiprows-header_rows header['Ref_date'] = dt.strptime(header['Ref_date'], '%d-%B-%Y') header['rows'] = header_rows return header def parse_dates(x, ref_date): days, time = x.split('_') hours, minutes, seconds = time.split(':') delta = td(days = int(days), hours=int(hours), minutes=int(minutes), seconds=int(seconds)) return ref_date + delta def read_file(filename): header = read_header(filename) df = pd.read_csv(filename, skiprows=header['skiprows'], header=list(range(0, header['rows'])), index_col=0) df['Elapsed time'] = [parse_dates(x, header['Ref_date']) for x in df.index] df = df.set_index(['Elapsed time']) return df def damped_vibrations(t, A, b, w): return A*exp(-b*t)*cos(w*t) def compute_png(A, b, w, T, resolution=500): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, w) plt.figure() # needed to avoid adding curves in plot plt.plot(t, u) plt.title('A=%g, b=%g, w=%g' % (A, b, w)) figfile = BytesIO() plt.savefig(figfile, format='png') figfile.seek(0) # rewind to beginning of file figdata_png = base64.b64encode(figfile.getvalue()) return figdata_png def compute_svg(A, b, w, T, resolution=500): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, w) plt.figure() # needed to avoid adding curves in plot plt.plot(t, u) plt.title('A=%g, b=%g, w=%g' % (A, b, w)) figfile = BytesIO() plt.savefig(figfile, format='svg') figfile.seek(0) figdata_svg = '<svg' + figfile.getvalue().split('<svg')[1] figdata_svg = unicode(figdata_svg,'utf-8') return figdata_svg def compute_mpld3(A, b, w, T, resolution=500): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, T) fig, ax = plt.subplots() ax.plot(t, u) ax.set_title("A={}, b={}, w={}".format(A, b, w)) html_text = mpld3.fig_to_html(fig) return html_text def compute_bokeh(A, b, w, T, resolution=500): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, w) # create a new plot with a title and axis labels TOOLS = "pan,wheel_zoom,hover,box_zoom,reset,save,box_select,lasso_select" p = bplt.figure(title="simple line example", tools=TOOLS, x_axis_label='t', y_axis_label='y', logo=None) # add a line renderer with legend and line thickness p.line(t, u, legend="u(t)", line_width=2) script, div = components(p) head = """ <link rel="stylesheet" href="http://cdn.pydata.org/bokeh/release/bokeh-0.9.0.min.css" type="text/css" /> <script type="text/javascript" src="http://cdn.pydata.org/bokeh/release/bokeh-0.9.0.min.js"> </script> <script type="text/javascript"> Bokeh.set_log_level("info"); </script> """ return head, script, div def compute_highcharts_simple(A, b, w, T, resolution=500): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, T) d = {'t': t, 'u': u} df = pd.DataFrame(d) df.set_index('t', inplace=True) chart = serialize(df, chart_type='stock', render_to='my-chart', output_type='json' ) return chart def compute_highcharts(A, b, w, T, resolution=10000): """Return filename of plot of the damped_vibration function.""" t = linspace(0, T, resolution+1) u = damped_vibrations(t, A, b, T) d = {'t': t, 'u': u} df = pd.DataFrame(d) df.set_index('t', inplace=True) data = serialize(df, output_type='dict', chart_type='stock', render_to='my-chart', ) data['chart']['type'] = 'line' data['chart']['zoomType'] = 'x' data['chart']['panning'] = True data['chart']['panKey'] = 'shift' data['chart']['plotBackgroundColor'] = '#FCFFC5' data["plotOptions"] = { "spline": { "color": "#FF0000", "lineWidth": 1, "states": { "hover": { "lineWidth": 1 } }, "marker": {"enabled": True } } } chart = 'new Highcharts.Chart({});'.format(json_encode(data)) return chart def timeline_pandas_highcharts(): """Return filename of plot of the damped_vibration function.""" data = defaultdict(lambda: defaultdict(dict)) timeline_data =
pd.read_csv('timeline.txt')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' QSDsan: Quantitative Sustainable Design for sanitation and resource recovery systems This module is developed by: <NAME> <<EMAIL>> This module is under the University of Illinois/NCSA Open Source License. Please refer to https://github.com/QSD-Group/QSDsan/blob/master/LICENSE.txt for license details. ''' # %% import math import numpy as np import pandas as pd from collections.abc import Iterable from . import ImpactItem, WasteStream from ._units_of_measure import auom from .utils.formatting import format_number as f_num items = ImpactItem._items isinstance = isinstance iter = iter callable = callable __all__ = ('LCA',) class LCA: ''' For life cycle assessment (LCA) of a System. Parameters ---------- system : :class:`biosteam.System` System for which this LCA is conducted for. lifetime : float Lifetime of the LCA. lifetime_unit : str Unit of lifetime. uptime_ratio : float Fraction of time that the plant is operating. item_quantities : kwargs, :class:`ImpactItem` or str = float/callable or (float/callable, unit) Other :class:`ImpactItem` objects (e.g., electricity) and their quantities. Note that callable functions are used so that quantity of items can be updated. ''' __slots__ = ('_system', '_lifetime', '_uptime_ratio', '_construction_units', '_transportation_units', '_lca_streams', '_impact_indicators', '_other_items', '_other_items_f') def __init__(self, system, lifetime, lifetime_unit='yr', uptime_ratio=1, **item_quantities): system.simulate() self._construction_units = set() self._transportation_units = set() self._lca_streams = set() self._update_system(system) self._update_lifetime(lifetime, lifetime_unit) self.uptime_ratio = uptime_ratio self._other_items = {} self._other_items_f = {} for item, val in item_quantities.items(): try: f_quantity, unit = val # unit provided for the quantity except: f_quantity = val unit = '' self.add_other_item(item, f_quantity, unit) def _update_system(self, system): for u in system.units: if u.construction: self._construction_units.add(u) if u.transportation: self._transportation_units.add(u) self._construction_units = sorted(self._construction_units, key=lambda u: u.ID) self._transportation_units = sorted(self._transportation_units, key=lambda u: u.ID) for s in (i for i in system.feeds+system.products): if s.impact_item: self._lca_streams.add(s) self._lca_streams = sorted(self._lca_streams, key=lambda s: s.ID) self._system = system def _update_lifetime(self, lifetime=0., unit='yr'): if not unit or unit == 'yr': self._lifetime = float(lifetime) else: converted = auom(unit).convert(float(lifetime), 'yr') self._lifetime = converted def add_other_item(self, item, f_quantity, unit=''): '''Add other :class:`ImpactItem` in LCA.''' if isinstance(item, str): item = items[item] fu = item.functional_unit if not callable(f_quantity): f = lambda: f_quantity else: f = f_quantity quantity = f() if unit and unit != fu: try: quantity = auom(unit).convert(quantity, fu) except: raise ValueError(f'Conversion of the given unit {unit} to ' f'item functional unit {fu} is not supported.') self._other_items_f[item.ID] = {'item':item, 'f_quantity':f, 'unit':unit} self.other_items[item.ID] = {'item':item, 'quantity':quantity} def refresh_other_items(self): '''Refresh quantities of other items using the given functions.''' for item_ID, record in self._other_items_f.items(): item, f_quantity, unit = record.values() self.other_items[item_ID]['quantity'] = f_quantity() def __repr__(self): return f'<LCA: {self.system}>' def show(self, lifetime_unit='yr'): '''Show basic information of this :class:`LCA` object.''' lifetime = auom('yr').convert(self.lifetime, lifetime_unit) info = f'LCA: {self.system} (lifetime {f_num(lifetime)} {lifetime_unit})' info += '\nImpacts:' print(info) if len(self.indicators) == 0: print(' None') else: index = pd.Index((i.ID+' ('+i.unit+')' for i in self.indicators)) df = pd.DataFrame({ 'Construction': tuple(self.total_construction_impacts.values()), 'Transportation': tuple(self.total_transportation_impacts.values()), 'WasteStream': tuple(self.total_stream_impacts.values()), 'Others': tuple(self.total_other_impacts.values()), 'Total': tuple(self.total_impacts.values()) }, index=index) # print(' '*9+df.to_string().replace('\n', '\n'+' '*9)) print(df.to_string()) _ipython_display_ = show def get_construction_impacts(self, units, time=None, time_unit='hr'): ''' Return all construction-related impacts for the given unit, normalized to a certain time frame. ''' if not isinstance(units, Iterable): units = (units,) if not time: ratio = 1 else: converted = auom(time_unit).convert(float(time), 'hr') ratio = converted/self.lifetime_hr impacts = dict.fromkeys((i.ID for i in self.indicators), 0.) for i in units: for j in i.construction: impact = j.impacts if j.lifetime is not None: factor = math.ceil(time/j.lifetime) else: factor = 1. for m, n in impact.items(): impacts[m] += n*ratio*factor return impacts def get_transportation_impacts(self, units, time=None, time_unit='hr'): ''' Return all transportation-related impacts for the given unit, normalized to a certain time frame. ''' if not (isinstance(units, tuple) or isinstance(units, list) or isinstance(units, set)): units = (units,) if not time: time = self.lifetime_hr else: time = auom(time_unit).convert(float(time), 'hr') impacts = dict.fromkeys((i.ID for i in self.indicators), 0.) for i in units: for j in i.transportation: impact = j.impacts for m, n in impact.items(): impacts[m] += n*time/j.interval return impacts def get_stream_impacts(self, stream_items=None, exclude=None, kind='all', time=None, time_unit='hr'): ''' Return all stream-related impacts for the given streams, normalized to a certain time frame. ''' if not (isinstance(stream_items, tuple) or isinstance(stream_items, list) or isinstance(stream_items, set)): stream_items = (stream_items,) if not (isinstance(exclude, tuple) or isinstance(exclude, list) or isinstance(exclude, set)): exclude = (exclude,) if stream_items == None: stream_items = self.stream_inventory impacts = dict.fromkeys((i.ID for i in self.indicators), 0.) if not time: time = self.lifetime_hr else: time = auom(time_unit).convert(float(time), 'hr') for j in stream_items: # In case that ws instead of the item is given if isinstance(j, WasteStream): ws = j if j.impact_item: j = ws.impact_item else: continue else: ws = j.linked_stream if ws in exclude: continue for m, n in j.CFs.items(): if kind == 'all': pass elif kind == 'direct_emission': n = max(n, 0) elif kind == 'offset': n = min(n, 0) else: raise ValueError('kind can only be "all", "direct_emission", or "offset", ' f'not {kind}.') impacts[m] += n*time*ws.F_mass return impacts def get_other_impacts(self): ''' Return all additional impacts from "other" :class:`ImpactItems` objects, based on defined quantity. ''' self.refresh_other_items() impacts = dict.fromkeys((i.ID for i in self.indicators), 0.) other_dct = self.other_items for i in other_dct.keys(): item = items[i] for m, n in item.CFs.items(): impacts[m] += n*other_dct[i]['quantity'] return impacts def get_total_impacts(self, exclude=None, time=None, time_unit='hr'): '''Return total impacts, normalized to a certain time frame.''' impacts = dict.fromkeys((i.ID for i in self.indicators), 0.) ws_impacts = self.get_stream_impacts(stream_items=self.stream_inventory, exclude=exclude, time=time, time_unit=time_unit) for i in (self.total_construction_impacts, self.total_transportation_impacts, ws_impacts, self.total_other_impacts): for m, n in i.items(): impacts[m] += n return impacts def get_allocated_impacts(self, streams=(), allocate_by='mass'): ''' Allocate total impacts to one or multiple streams. Parameters ---------- streams : :class:`WasteStream` or sequence One or a sequence of streams. Note that impacts of these streams will be excluded in calculating the total impacts. allocate_by : str, sequence, or function to generate an sequence If provided as a str, can be "mass", "energy", or 'value' to allocate the impacts accordingly. If provided as a sequence (no need to normalize so that sum of the sequence is 1), will allocate impacts according to the sequence. If provided as a function, will call the function to generate an sequence to allocate the impacts accordingly. .. note:: Energy of the stream will be calcuated as the sum of HHVs of all components in the stream. ''' if not (isinstance(streams, tuple) or isinstance(streams, list) or isinstance(streams, set)): streams = (streams,) impact_dct = self.get_total_impacts(exclude=streams) impact_vals = np.array([i for i in impact_dct.values()]) allocated = {} if len(streams) == 1: return impact_dct if allocate_by == 'mass': ratios = np.array([i.F_mass for i in streams]) elif allocate_by == 'energy': ratios = np.array([i.HHV for i in streams]) elif allocate_by == 'value': ratios = np.array([i.F_mass*i.price for i in streams]) elif iter(allocate_by): ratios = allocate_by elif callable(allocate_by): ratios = allocate_by() else: raise ValueError('allocate_by can only be "mass", "energy", "value", ' 'a sequence, or a function to generate a sequence.') if ratios.sum() == 0: raise ValueError('Calculated allocation ratios are all zero, cannot allocate.') ratios = ratios/ratios.sum() for n, ws in enumerate(streams): if not ws in self.system.streams: raise ValueError(f'`WasteStream` {ws} not in the system.') allocated[ws.ID] = dict.fromkeys(impact_dct.keys(), (ratios[n]*impact_vals).sum()) return allocated def get_unit_impacts(self, units, time=None, time_unit='hr', exclude=None): '''Return total impacts with certain units, normalized to a certain time frame. ''' if not (isinstance(units, tuple) or isinstance(units, list) or isinstance(units, set)): units = (units,) constr = self.get_construction_impacts(units, time, time_unit) trans = self.get_transportation_impacts(units, time, time_unit) ws_items = set(i for i in sum((tuple(unit.ins+unit.outs) for unit in units), ()) if i.impact_item) ws = self.get_stream_impacts(stream_items=ws_items, exclude=exclude, time=time, time_unit=time_unit) other = self.get_other_impacts() tot = constr.copy() for m in tot.keys(): tot[m] += trans[m] + ws[m] + other[m] return tot def _append_cat_sum(self, cat_table, cat, tot): num = len(cat_table) cat_table.loc[num] = '' for i in self.indicators: cat_table[f'{i.ID} [{i.unit}]'][num] = tot[i.ID] cat_table[f'Category {i.ID} Ratio'][num] = 1 if cat in ('construction', 'transportation'): cat_table.rename(index={num: ('Sum', 'All')}, inplace=True) cat_table.index = \ pd.MultiIndex.from_tuples(cat_table.index, names=[cat.capitalize(), 'SanUnit']) else: cat_table.rename(index={num: 'Sum'}, inplace=True) return cat_table def get_impact_table(self, category=None, time=None, time_unit='hr'): ''' Return a :class:`pandas.DataFrame` table for the given impact category, normalized to a certain time frame. ''' if not time: time = self.lifetime_hr else: time = auom(time_unit).convert(float(time), 'hr') if category in ('Construction', 'Other'): time = time/self.lifetime_hr cat = category.lower() tot = getattr(self, f'total_{cat}_impacts') if category in ('Construction', 'Transportation'): cat = category.lower() units = sorted(getattr(self, f'_{cat}_units'), key=(lambda su: su.ID)) items = sorted(set(i.item for i in getattr(self, f'{cat}_inventory')), key=(lambda item: item.ID)) if len(items) == 0: return f'No {cat}-related impacts.' # Note that item_dct = dict.fromkeys([item.ID for item in items], []) won't work item_dct = dict.fromkeys([item.ID for item in items]) for item_ID in item_dct.keys(): item_dct[item_ID] = dict(SanUnit=[], Quantity=[]) for su in units: for i in getattr(su, cat): item_dct[i.item.ID]['SanUnit'].append(su.ID) item_dct[i.item.ID]['Quantity'].append(i.quantity*time) if cat == 'transportation': item_dct[i.item.ID]['Quantity'][-1] /= i.interval dfs = [] for item in items: dct = item_dct[item.ID] dct['SanUnit'].append('Total') dct['Quantity'] = np.array(dct['Quantity']) dct['Quantity'] = np.append(dct['Quantity'], dct['Quantity'].sum()) dct['Item Ratio'] = dct['Quantity']/dct['Quantity'].sum()*2 for i in self.indicators: if i.ID in item.CFs: dct[f'{i.ID} [{i.unit}]'] = impact = dct['Quantity']*item.CFs[i.ID] dct[f'Category {i.ID} Ratio'] = impact/tot[i.ID] else: dct[f'{i.ID} [{i.unit}]'] = dct[f'Category {i.ID} Ratio'] = 0 df = pd.DataFrame.from_dict(dct) index0 = f'{item.ID} [{item.functional_unit}]' df.set_index([pd.MultiIndex.from_arrays( [(index0,)*len(dct['SanUnit'])], names=(category,)), 'SanUnit'], inplace=True) dfs.append(df) table = pd.concat(dfs) return self._append_cat_sum(table, cat, tot) ind_head = sum(([f'{i.ID} [{i.unit}]', f'Category {i.ID} Ratio'] for i in self.indicators), []) if category == 'Stream': headings = ['Stream', 'Mass [kg]', *ind_head] item_dct = dict.fromkeys(headings) for key in item_dct.keys(): item_dct[key] = [] for ws_item in self.stream_inventory: ws = ws_item.linked_stream item_dct['Stream'].append(ws.ID) mass = ws.F_mass * time item_dct['Mass [kg]'].append(mass) for ind in self.indicators: if ind.ID in ws_item.CFs.keys(): impact = ws_item.CFs[ind.ID]*mass item_dct[f'{ind.ID} [{ind.unit}]'].append(impact) item_dct[f'Category {ind.ID} Ratio'].append(impact/tot[ind.ID]) else: item_dct[f'{ind.ID} [{ind.unit}]'].append(0) item_dct[f'Category {ind.ID} Ratio'].append(0) table = pd.DataFrame.from_dict(item_dct) table.set_index(['Stream'], inplace=True) return self._append_cat_sum(table, cat, tot) elif category == 'Other': headings = ['Other', 'Quantity', *ind_head] item_dct = dict.fromkeys(headings) for key in item_dct.keys(): item_dct[key] = [] for other_ID in self.other_items.keys(): other = self.other_items[other_ID]['item'] item_dct['Other'].append(f'{other_ID} [{other.functional_unit}]') quantity = self.other_items[other_ID]['quantity'] * time item_dct['Quantity'].append(quantity) for ind in self.indicators: if ind.ID in other.CFs.keys(): impact = other.CFs[ind.ID]*quantity item_dct[f'{ind.ID} [{ind.unit}]'].append(impact) item_dct[f'Category {ind.ID} Ratio'].append(impact/tot[ind.ID]) else: item_dct[f'{ind.ID} [{ind.unit}]'].append(0) item_dct[f'Category {ind.ID} Ratio'].append(0) table =
pd.DataFrame.from_dict(item_dct)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd from copy import deepcopy def main(net): ''' calculate pvalue of category closeness ''' # calculate the distance between the data points within the same category and # compare to null distribution for inst_rc in ['row', 'col']: inst_nodes = deepcopy(net.dat['nodes'][inst_rc]) inst_index = deepcopy(net.dat['node_info'][inst_rc]['clust']) # reorder based on clustered order inst_nodes = [ inst_nodes[i] for i in inst_index] # make distance matrix dataframe dm = dist_matrix_lattice(inst_nodes) node_infos = list(net.dat['node_info'][inst_rc].keys()) all_cats = [] for inst_info in node_infos: if 'dict_cat_' in inst_info: all_cats.append(inst_info) for cat_dict in all_cats: tmp_dict = net.dat['node_info'][inst_rc][cat_dict] pval_name = cat_dict.replace('dict_','pval_') net.dat['node_info'][inst_rc][pval_name] = {} for cat_name in tmp_dict: subset = tmp_dict[cat_name] inst_median = calc_median_dist_subset(dm, subset) hist = calc_hist_distances(dm, subset, inst_nodes) pval = 0 for i in range(len(hist['prob'])): if i == 0: pval = hist['prob'][i] if i >= 1: if inst_median >= hist['bins'][i]: pval = pval + hist['prob'][i] net.dat['node_info'][inst_rc][pval_name][cat_name] = pval def dist_matrix_lattice(names): from scipy.spatial.distance import pdist, squareform lattice_size = len(names) mat = np.zeros([lattice_size, 1]) mat[:,0] = list(range(lattice_size)) inst_dm = pdist(mat, metric='euclidean') inst_dm[inst_dm < 0] = float(0) inst_dm = squareform(inst_dm) df = pd.DataFrame(data=inst_dm, columns=names, index=names) return df def calc_median_dist_subset(dm, subset): return np.median(dm[subset].ix[subset].values) def calc_hist_distances(dm, subset, inst_nodes): np.random.seed(100) num_null = 1000 num_points = len(subset) median_dist = [] for i in range(num_null): tmp = np.random.choice(inst_nodes, num_points, replace=False) median_dist.append( np.median(dm[tmp].ix[tmp].values) ) tmp_dist = sorted(deepcopy(median_dist)) median_dist = np.asarray(median_dist) s1 =
pd.Series(median_dist)
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from mabwiser.mab import MAB, LearningPolicy, NeighborhoodPolicy from tests.test_base import BaseTest class MABTest(BaseTest): ################################################# # Test context free predict() method ################################################ def test_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) def test_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=True) for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], learning_policy=lp, seed=123456, num_run=1, is_predict=True) ################################################# # Test context free predict_expectation() method ################################################ def test_exp_arm_list_int(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_arm_list_str(self): for lp in MABTest.lps: self.predict(arms=["A", "B", "C"], decisions=["A", "A", "A", "B", "B", "B", "C", "C", "C"], rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=[0, 0, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=[1, 1, 1, 2, 2, 2, 3, 3, 3], rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_series_reward_array(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=pd.Series([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_exp_decision_array_reward_series(self): for lp in MABTest.lps: self.predict(arms=[1, 2, 3], decisions=np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]), rewards=pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, seed=123456, num_run=1, is_predict=False) def test_context_history_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3], 'column2': [2, 3, 1]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1], rewards=[0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=[[1]], seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) def test_context_series(self): contexts = pd.DataFrame({'column1': [1, 2, 3, 3, 2, 1], 'column2': [2, 3, 1, 1, 2, 3]}) for lp in BaseTest.para_lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(mab._imp.arm_to_model[0].beta.shape[0], 1) for cp in BaseTest.nps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) for cp in BaseTest.cps: for lp in BaseTest.lps: arm, mab = self.predict(arms=[0, 1], decisions=[1, 1, 1, 1, 1, 1], rewards=[0, 0, 0, 0, 0, 0], learning_policy=lp, neighborhood_policy=cp, context_history=contexts['column1'], contexts=pd.Series([1]), seed=123456, num_run=1, is_predict=True) self.assertEqual(np.ndim(mab._imp.contexts), 2) ################################################# # Test contextual predict() method ################################################ def test_context_arm_list_int(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_arm_list_str(self): for lp in MABTest.para_lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=["A", "B", "C", "D"], decisions=["A", "A", "A", "B", "B", "C", "C", "C", "C", "C"], rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, -2, 2, 3, 11], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, -5, 2, 3, 10], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, -2, 4, 3, 9], [20, 19, 18, 17, 16], [1, 2, 1, 1, 3], [17, 18, 17, 19, 18]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_decision_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=[0, 1, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_reward_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.cps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, neighborhood_policy=cp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) def test_context_decision_reward_series(self): for lp in MABTest.para_lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1]), learning_policy=lp, context_history=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], contexts=[[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], seed=123456, num_run=1, is_predict=True) for cp in MABTest.nps: for lp in MABTest.lps: self.predict(arms=[1, 2, 3, 4], decisions=pd.Series([1, 1, 1, 2, 2, 3, 3, 3, 3, 3]), rewards=
pd.Series([0, 1, 1, 0, 0, 0, 0, 1, 1, 1])
pandas.Series
from os.path import exists, join import numpy as np import pandas as pd from matplotlib import pyplot as plt from tqdm import trange from math import ceil from traitlets import Dict, List from ctapipe.core import Tool from targetpipe.fitting.spe_sipm import sipm_spe_fit from targetpipe.fitting.chec import CHECSSPEFitter, CHECSSPEMultiFitter from targetpipe.plots.official import ThesisPlotter from IPython import embed def get_params(lambda_=1): params = dict( norm=1000, eped=-0.6, eped_sigma=0.4, spe=1.4, spe_sigma=0.2, lambda_=lambda_, opct=0.6, pap=0.3, dap=0.4 ) return params.copy() def get_params_multi(params1, params2, params3): params_multi = dict( norm1=params1['norm'], norm2=params2['norm'], norm3=params3['norm'], eped=params1['eped'], eped_sigma=params1['eped_sigma'], spe=params1['spe'], spe_sigma=params1['spe_sigma'], lambda_1=params1['lambda_'], lambda_2=params2['lambda_'], lambda_3=params3['lambda_'], opct=params1['opct'], pap=params1['pap'], dap=params1['dap'] ) return params_multi.copy() def get_initial(lambda_=1): params = dict( norm=None, eped=-0.5, eped_sigma=0.5, spe=1, spe_sigma=0.1, lambda_=lambda_, opct=0.5, pap=0.5, dap=0.5 ) return params.copy() def get_initial_multi(initial1, initial2, initial3): params_multi = dict( norm1=initial1['norm'], norm2=initial2['norm'], norm3=initial3['norm'], eped=initial1['eped'], eped_sigma=initial1['eped_sigma'], spe=initial1['spe'], spe_sigma=initial1['spe_sigma'], lambda_1=initial1['lambda_'], lambda_2=initial2['lambda_'], lambda_3=initial3['lambda_'], opct=initial1['opct'], pap=initial1['pap'], dap=initial1['dap'] ) return params_multi.copy() def sample_distribution(x, params, n=30000): y = sipm_spe_fit(x, **params) samples = np.random.choice(x, 30000, p=y / y.sum()) return samples, y class FitPlotter(ThesisPlotter): def __init__(self, config, tool, **kwargs): super().__init__(config, tool, **kwargs) self.figures = dict() def plot(self): # Create the fitters range_ = [-3, 10] nbins = 100 fitter1 = CHECSSPEFitter(self.config, self.parent) fitter1.range = range_ fitter1.nbins = nbins fitter1.initial = get_initial(1) fitter2 = CHECSSPEFitter(self.config, self.parent) fitter2.range = range_ fitter2.nbins = nbins fitter2.initial = get_initial(2) fitter3 = CHECSSPEFitter(self.config, self.parent) fitter3.range = range_ fitter3.nbins = nbins fitter3.initial = get_initial(3) fitter_multi = CHECSSPEMultiFitter(self.config, self.parent) fitter_multi.range = range_ fitter_multi.nbins = nbins fitter_multi.initial = get_initial_multi(fitter1.initial, fitter2.initial, fitter3.initial) # Generate the functions found_good = False found_bad = False i = 0 while not found_good or not found_bad: self.log.info("FitPlotter: Attempt {}".format(i)) i += 1 params1 = get_params(1.2) params2 = get_params(1.7) params3 = get_params(3.1) x = np.linspace(-3, 10, 1000) samples1, y1 = sample_distribution(x, params1) samples2, y2 = sample_distribution(x, params2) samples3, y3 = sample_distribution(x, params3) params_multi = get_params_multi(params1, params2, params3) fitter1.apply(samples1) p1 = fitter1.p_value fitter2.apply(samples2) p2 = fitter2.p_value fitter3.apply(samples3) p3 = fitter3.p_value fitter_multi.apply_multi(samples1, samples2, samples3) pm = fitter_multi.p_value print(pm, p1, p2, p3) if (pm > p1) & (pm > p2) & (pm > p3) & (p1 < 0.0001): if found_good: continue self.log.info("FitPlotter: Found good") found_good = True desc = "good" elif (pm < 0.001) & (p3 > 0.001): if found_bad: continue self.log.info("FitPlotter: Found bad") found_bad = True desc = "bad" else: continue fig_individual = plt.figure(figsize=(13, 6)) fig_individual.suptitle("Individual Fit") ax1 = plt.subplot2grid((3, 2), (0, 0)) ax1_t = plt.subplot2grid((3, 2), (0, 1)) ax2 = plt.subplot2grid((3, 2), (1, 0)) ax2_t = plt.subplot2grid((3, 2), (1, 1)) ax3 = plt.subplot2grid((3, 2), (2, 0)) ax3_t = plt.subplot2grid((3, 2), (2, 1)) self.individual_plot(x, y1, params1, samples1, fitter1, ax1, ax1_t, True) self.individual_plot(x, y2, params2, samples2, fitter2, ax2, ax2_t) self.individual_plot(x, y3, params3, samples3, fitter3, ax3, ax3_t) name = "fit_" + desc + "_individual" self.figures[name] = fig_individual fig_multi = plt.figure(figsize=(13, 6)) fig_multi.suptitle("Multi Fit") ax1 = plt.subplot2grid((3, 2), (0, 0)) ax2 = plt.subplot2grid((3, 2), (1, 0)) ax3 = plt.subplot2grid((3, 2), (2, 0)) ax_mt = plt.subplot2grid((3, 2), (0, 1), rowspan=3) self.multi_plot(x, [y1, y2, y3], params_multi, [samples1, samples2, samples3], fitter_multi, [ax1, ax2, ax3], ax_mt) name = "fit_" + desc + "_multi" self.figures[name] = fig_multi def save(self, output_path=None): for name, fig in self.figures.items(): self.fig = fig self.figure_name = name super().save(output_path) @staticmethod def individual_plot(x, y, params, samples, fitter, ax_p, ax_t, legend=False): hist = fitter.hist edges = fitter.edges between = fitter.between coeff = fitter.coeff.copy() coeffl = fitter.coeff_list.copy() initial = fitter.initial.copy() fit = fitter.fit_function(x, **coeff) rc2 = fitter.reduced_chi2 pval = fitter.p_value ax_p.plot(x, y, label="Base") ax_p.hist(between, bins=edges, weights=hist, histtype='step', label="Hist") ax_p.plot(x, fit, label="Fit") td = [['%.3f' % params[i], initial[i], '%.3f' % coeff[i]] for i in coeffl] td.append(["", "", '%.3g' % rc2]) td.append(["", "", '%.3g' % pval]) tr = coeffl tr.append("Reduced Chi^2") tr.append("P-Value") tc = ['Base', 'Initial', 'Fit'] ax_t.axis('off') table = ax_t.table(cellText=td, rowLabels=tr, colLabels=tc, loc='center') table.set_fontsize(6) table.scale(0.7, 0.7) if legend: ax_p.legend(loc=1, frameon=True, fancybox=True, framealpha=0.7) @staticmethod def multi_plot(x, y_list, params, samples_list, fitter, ax_list, ax_t): y1, y2, y3 = y_list samples1, samples2, samples3 = samples_list ax1, ax2, ax3 = ax_list hist1, hist2, hist3 = fitter.hist edges = fitter.edges between = fitter.between coeff = fitter.coeff.copy() coeffl = fitter.coeff_list.copy() initial = fitter.initial.copy() fit1, fit2, fit3 = fitter.fit_function(x, **coeff) rc2 = fitter.reduced_chi2 pval = fitter.p_value ax1.plot(x, y1, label="Base") ax1.hist(between, bins=edges, weights=hist1, histtype='step', label="Hist") ax1.plot(x, fit1, label="Fit") ax1.legend(loc=1, frameon=True, fancybox=True, framealpha=0.7) ax2.plot(x, y2, label="Base") ax2.hist(between, bins=edges, weights=hist2, histtype='step', label="Hist") ax2.plot(x, fit2, label="Fit") ax3.plot(x, y3, label="Base") ax3.hist(between, bins=edges, weights=hist3, histtype='step', label="Hist") ax3.plot(x, fit3, label="Fit") ax_t.axis('off') td = [['%.3f' % params[i], initial[i], '%.3f' % coeff[i]] for i in coeffl] td.append(["", "", '%.3g' % rc2]) td.append(["", "", '%.3g' % pval]) tr = coeffl tr.append("Reduced Chi^2") tr.append("P-Value") tc = ['Base', 'Initial', 'Fit'] table = ax_t.table(cellText=td, rowLabels=tr, colLabels=tc, loc='center') table.set_fontsize(6) class NoInitialPlotter(ThesisPlotter): def __init__(self, config, tool, **kwargs): super().__init__(config, tool, **kwargs) self.figures = dict() self.dataset_path = self.output_path + "_data.h5" self.initial1 = 1 self.initial2 = 1 self.initial3 = 1 self.figures = {} def plot(self): df = self.load_dataset() df = df[df > 0.01].groupby('x').count().reset_index() x = df['x'] y1 = df['p1'] y2 = df['p2'] y3 = df['p3'] ym = df['pm'] x = ['%.3f\n%.3f\n%.3f\n' % (i[0], i[1], i[2]) for i in x] self.fig, self.ax = self.create_figure() self.add_points(x, y1, "Individual1") self.add_points(x, y2, "Individual2") self.add_points(x, y3, "Individual3") self.add_points(x, ym, "Multi") self.ax.set_xlabel("lambda") self.ax.set_ylabel("Number of signficant p-values") self.ax.legend(loc=1, frameon=True, fancybox=True, framealpha=0.7) self.figures[self.figure_name + "_p"] = self.fig def add_points(self, x, y, label, p='-'): x_i = np.arange(len(x)) self.ax.plot(x_i, y, p, label=label) self.ax.set_xticks(x_i) self.ax.set_xticklabels(x) def add_points_err(self, x, y, y_err, label): x_i = np.arange(len(x)) (_, caps, _) = self.ax.errorbar(x_i, y, xerr=None, yerr=y_err, fmt='o', mew=0.5, label=label, markersize=3, capsize=3) for cap in caps: cap.set_markeredgewidth(1) self.ax.set_xticks(x_i) self.ax.set_xticklabels(x) def save(self, output_path=None): for name, fig in self.figures.items(): self.figure_name = name self.fig = fig super().save(output_path) def load_dataset(self): if exists(self.dataset_path): store = pd.HDFStore(self.dataset_path) df = store['df'] else: df = self.create_dataset() store = pd.HDFStore(self.dataset_path) store['df'] = df return df def create_dataset(self): df_list = [] # Create the fitters range_ = [-3, 10] nbins = 100 fitter1 = CHECSSPEFitter(self.config, self.parent) fitter1.range = range_ fitter1.nbins = nbins fitter1.initial = get_initial(1) fitter2 = CHECSSPEFitter(self.config, self.parent) fitter2.range = range_ fitter2.nbins = nbins fitter2.initial = get_initial(1) fitter3 = CHECSSPEFitter(self.config, self.parent) fitter3.range = range_ fitter3.nbins = nbins fitter3.initial = get_initial(1) fitter_multi = CHECSSPEMultiFitter(self.config, self.parent) fitter_multi.range = range_ fitter_multi.nbins = nbins fitter_multi.initial = get_initial_multi(fitter1.initial, fitter2.initial, fitter3.initial) lambda_1 = np.linspace(0.3, 1.5, 10) lambda_2 = np.linspace(0.5, 3, 10) lambda_3 = np.linspace(0.7, 4.5, 10) for i in trange(10): params1 = get_params(lambda_1[i]) params2 = get_params(lambda_2[i]) params3 = get_params(lambda_3[i]) params_multi = get_params_multi(params1, params2, params3) x = np.linspace(-3, 10, 1000) for j in trange(100): samples1, y1 = sample_distribution(x, params1) samples2, y2 = sample_distribution(x, params2) samples3, y3 = sample_distribution(x, params3) fitter1.apply(samples1) p1 = fitter1.p_value fitter2.apply(samples2) p2 = fitter2.p_value fitter3.apply(samples3) p3 = fitter3.p_value fitter_multi.apply_multi(samples1, samples2, samples3) pm = fitter_multi.p_value df_list.append(dict(x=(lambda_1[i], lambda_2[i], lambda_3[i]), p1=p1, p2=p2, p3=p3, pm=pm)) df = pd.DataFrame(df_list) return df class WithInitialPlotter(NoInitialPlotter): def create_dataset(self): df_list = [] # Create the fitters range_ = [-3, 10] nbins = 100 fitter1 = CHECSSPEFitter(self.config, self.parent) fitter1.range = range_ fitter1.nbins = nbins fitter2 = CHECSSPEFitter(self.config, self.parent) fitter2.range = range_ fitter2.nbins = nbins fitter3 = CHECSSPEFitter(self.config, self.parent) fitter3.range = range_ fitter3.nbins = nbins fitter_multi = CHECSSPEMultiFitter(self.config, self.parent) fitter_multi.range = range_ fitter_multi.nbins = nbins lambda_1 = np.linspace(0.3, 1.5, 10) lambda_2 = np.linspace(0.5, 3, 10) lambda_3 = np.linspace(0.7, 4.5, 10) for i in trange(10): params1 = get_params(lambda_1[i]) params2 = get_params(lambda_2[i]) params3 = get_params(lambda_3[i]) fitter1.initial = get_initial(round(lambda_1[i])) fitter2.initial = get_initial(round(lambda_2[i])) fitter3.initial = get_initial(round(lambda_3[i])) fitter_multi.initial = get_initial_multi(fitter1.initial, fitter2.initial, fitter3.initial) params_multi = get_params_multi(params1, params2, params3) x = np.linspace(-3, 10, 1000) for j in trange(100): samples1, y1 = sample_distribution(x, params1) samples2, y2 = sample_distribution(x, params2) samples3, y3 = sample_distribution(x, params3) fitter1.apply(samples1) p1 = fitter1.p_value fitter2.apply(samples2) p2 = fitter2.p_value fitter3.apply(samples3) p3 = fitter3.p_value fitter_multi.apply_multi(samples1, samples2, samples3) pm = fitter_multi.p_value df_list.append(dict(x=(lambda_1[i], lambda_2[i], lambda_3[i]), p1=p1, p2=p2, p3=p3, pm=pm)) df =
pd.DataFrame(df_list)
pandas.DataFrame
#!/usr/bin/python3 # Functions to handle Input ############################################################################################# def read_csv(file): # simple function to read data from a file data = pd.read_csv(file, sep=';') return data # Functions to handle string/value conversion ############################################################################################# # function converts format (DD-)HH:MM:SS to seconds def ave2sec(x): if ( '-' in x ): vals = x.split('-') times = vals[1].split(':') sec = 24*3600*int(vals[0])+3600*int(times[0])+60*int(times[1])+int(times[2]) else: times = x.split(':') sec = 3600*int(times[0])+60*int(times[1])+int(times[2]) return (sec) def scalingref(x): # returns reference scaling factor for MPI jobs based on 1.5 factor: # doubling cores should make parformance x1.5 (or better) if int(x) == 1: ref = 1 else: ref = np.power(1/1.5,np.log2(int(x))) return ref def rss2g(x): return int(float(x[:-1]))/1024 def reqmem2g(x): return int(float(x[:-2]))/1024 # Functions to handle DataFrames ############################################################################################# def parse_df(data): # convert multi-line DataFrame to more compact form for analysis import datetime from dateutil import parser data[['id','subid']] = data.JobID.str.split('_',1, expand=True) data.drop(['subid'],axis=1, inplace=True) df=pd.DataFrame() df=data[~data['JobID'].str.contains("\.")] df.rename(columns={'State': 'Parentstate'}, inplace=True) data2=data.shift(-1).dropna(subset=['JobID']) df2=data2[data2['JobID'].str.contains("\.batch")] data2=data.shift(-2).dropna(subset=['JobID']) df3=data2[data2['JobID'].str.contains("\.0")] df.update(df2.MaxRSS) df.update(df3.MaxRSS) df.update(df2.AveCPU) df.update(df3.AveCPU) df=df.join(df2[['State']]) df.update(df3.State) # drop columns that all all nan df.dropna(axis=1, inplace=True, how='all') # drop rows where any element is nan (errors in the data) df.dropna(axis=0, inplace=True, how='any') df.reset_index(inplace=True) df.loc[:,'State']=df.State.apply(str) # reduce data point, 5min accuracy instead of seconds just fine df['Submit']=pd.to_datetime(df['Submit']).dt.round('5min') df['Start']=pd.to_datetime(df['Start']).dt.round('5min') df['End']=
pd.to_datetime(df['End'])
pandas.to_datetime
from config import * import pandas as pd import numpy as np import networkx as nx import glob, os import bct from sklearn import preprocessing def normalize(df): ''' normalize dataframe columns by mean ''' min_max_scaler = preprocessing.MinMaxScaler() x = df.values #returns a numpy array x_scaled = min_max_scaler.fit_transform(x) normalized = pd.DataFrame(x_scaled) normalized.columns = df.columns return normalized def loc_mes_disconnected(G,M): """ computes and saves local measures for a disconnected graph G """ m = {} m['ID'] = G.nodes m['degree'] = \ bct.degrees_und(M) m['betweenness'] = \ np.fromiter(nx.betweenness_centrality(G).values(), dtype=float) m['betweennessbct'] = \ bct.betweenness_bin(M) m['eigenvector'] = \ np.fromiter(nx.eigenvector_centrality(G, max_iter=500).values(), dtype=float) m['eigenvectorbct'] = \ bct.eigenvector_centrality_und(M) m['katz'] = \ np.fromiter(nx.katz_centrality_numpy(G).values(), dtype=float) m['closeness'] = \ np.fromiter(nx.closeness_centrality(G).values(), dtype=float) m['load'] = \ np.fromiter(nx.load_centrality(G).values(), dtype=float) m['clustering_coef'] = \ np.fromiter(nx.clustering(G).values(), dtype=float) m['clustering_coefbct'] = \ bct.clustering_coef_bu(M) m['pagerank'] = \ np.fromiter(nx.pagerank(G).values(), dtype=float) m['pagerank_d85bct'] = \ bct.pagerank_centrality(M, d = .85) m['subgraph'] = \ np.fromiter(nx.subgraph_centrality(G).values(), dtype=float) m['subgraphbct'] = \ bct.subgraph_centrality(M) m['harmonic'] = \ np.fromiter(nx.harmonic_centrality(G).values(), dtype=float) return pd.DataFrame.from_dict(m) def glob_mes_disconnected(G): """ computes and saves global measures for a disconnected graph G """ m = {} # transitivity: the fraction of all possible triangles present in G. m['transitivity'] = [nx.transitivity(G)] # average_clustering: Compute the average clustering coefficient m['average_clustering'] = [nx.average_clustering(G)] m['local_efficiency'] = [nx.local_efficiency(G)] m['global_efficiency'] = [nx.global_efficiency(G)] m['pearson_correlation'] = nx.degree_pearson_correlation_coefficient(G) return pd.DataFrame.from_dict(m) def loc_mes_connected(G,ct): """ computes and saves local measures for a connected graph G """ #ordered list of degrees lss=[] for i in list(G.degree(nx.nodes(G))): lss.append(i[1]) k=list(set(lss)) m = {} m['ID'] = G.nodes m['degree'] = lss m['eccentricity'] = \ np.fromiter(nx.eccentricity(G).values(), dtype=float) m['betweenness'] = \ np.fromiter(nx.betweenness_centrality(G).values(), dtype=float) m['com_betweenness'] = \ np.fromiter(nx.communicability_betweenness_centrality(G).values(), dtype=float) m['eigenvector'] = \ np.fromiter(nx.eigenvector_centrality(G, max_iter=500).values(), dtype=float) m['katz'] = \ np.fromiter(nx.katz_centrality_numpy(G).values(), dtype=float) m['closeness'] = \ np.fromiter(nx.closeness_centrality(G).values(), dtype=float) m['current_flow_closeness'] = \ np.fromiter(nx.current_flow_closeness_centrality(G).values(), dtype=float) m['load'] = \ np.fromiter(nx.load_centrality(G).values(), dtype=float) m['clustering_coef'] = \ np.fromiter(nx.clustering(G).values(), dtype=float) if ct!='glasso': m['pagerank'] = \ np.fromiter(nx.pagerank(G,max_iter=500).values(), dtype=float) m['subgraph'] = \ np.fromiter(nx.subgraph_centrality(G).values(), dtype=float) m['harmonic'] = \ np.fromiter(nx.harmonic_centrality(G).values(), dtype=float) return pd.DataFrame.from_dict(m) def glob_mes_connected(G): """ computes and saves global measures for a connected graph G """ m = {} m['density'] = nx.density(G) m['average_shortest_path_length'] = nx.average_shortest_path_length(G) # transitivity: the fraction of all possible triangles present in G. m['transitivity'] = nx.transitivity(G) # average_clustering: Compute the average clustering coefficient m['average_clustering'] = nx.average_clustering(G) m['center'] = [nx.center(G)] m['diameter'] = nx.diameter(G) m['radius'] = nx.radius(G) m['periphery'] = [nx.periphery(G)] m['local_efficiency'] = nx.local_efficiency(G) m['global_efficiency'] = nx.global_efficiency(G) m['pearson_correlation'] = nx.degree_pearson_correlation_coefficient(G) # The small-world coefficient defined as: sigma = C/Cr / L/Lr #m['sigma'] = nx.sigma(G) # The small-world coefficient defined as: omega = Lr/L - C/Cl #m['omega'] = nx.omega(G) return pd.DataFrame.from_dict(m) def compute_measures(subjects, denoising_strategies, correlation_types, thresholding_methods, thresholding_values, negative_corr = False): global rootdir for sub in subjects: for ds in denoising_strategies: for ct in correlation_types: for tm in thresholding_methods: for tv in thresholding_values: if tm=='userdefined': tm = '%s-%.3f'%(tm,tv) # read data corrGdir = glob.glob(rootdir + "/data/04_correlations/corr-%s/ds-%s/*%s*.gexf" %(ct,ds,sub)) corrMdir = glob.glob(rootdir + "/data/04_correlations/corr-%s/ds-%s/*%s*.npy" %(ct,ds,sub)) if not negative_corr: adjGdir = glob.glob(rootdir + "/data/05_adjacency_matrices/positive/tm-*%s*/corr-%s/ds-%s/*%s*.gexf"%(tm,ct,ds,sub)) adjMdir = glob.glob(rootdir + "/data/05_adjacency_matrices/positive/tm-*%s*/corr-%s/ds-%s/*%s*.npy"%(tm,ct,ds,sub)) else: adjGdir = glob.glob(rootdir + "/data/05_adjacency_matrices/negative/tm-*%s*/corr-%s/ds-%s/*%s*.gexf"%(tm,ct,ds,sub)) adjMdir = glob.glob(rootdir + "/data/05_adjacency_matrices/negative/tm-*%s*/corr-%s/ds-%s/*%s*.npy"%(tm,ct,ds,sub)) corrG = nx.read_gexf(corrGdir[0]) corrM = np.load(corrMdir[0]) adjG = nx.read_gexf(adjGdir[0]) adjM = np.load(adjMdir[0]) # compute the giant component adjG_gc = [adjG.subgraph(c).copy() for c in nx.connected_components(adjG)] adjG_gc = adjG_gc[0] # compute measures loc_mes_adj = loc_mes_disconnected(adjG,adjM) glob_mes_adj = glob_mes_disconnected(adjG) gc_loc_mes_adj = loc_mes_connected(adjG_gc) gc_glob_mes_adj = glob_mes_connected(adjG_gc) # compute normalized local measures loc_mes_adj_norm = normalize(loc_mes_adj) loc_mes_adj_norm.ID = loc_mes_adj.ID gc_loc_mes_adj_norm = normalize(gc_loc_mes_adj) gc_loc_mes_adj_norm.ID = gc_loc_mes_adj.ID # save measures dirc = rootdir + '/data/06_network_measures/positive/tm-%s/corr-%s/ds-%s/sub-%s'%(tm,ct,ds,sub) if negative_corr: dirc = rootdir + '/data/06_network_measures/negative/tm-%s/corr-%s/ds-%s/sub-%s'%(tm,ct,ds,sub) os.system('mkdir -p %s'%dirc) loc_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures.csv' %(dirc,sub,ds,ct,tm), sep='\t') glob_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_global_measures.csv' %(dirc,sub,ds,ct,tm), sep='\t') gc_loc_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component.csv' %(dirc,sub,ds,ct,tm), sep='\t') gc_glob_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_global_measures_giant_component.csv' %(dirc,sub,ds,ct,tm), sep='\t') loc_mes_adj_norm.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_norm.csv' %(dirc,sub,ds,ct,tm),sep='\t') gc_loc_mes_adj_norm.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component_norm.csv' %(dirc,sub,ds,ct,tm), sep='\t') print('✓ subject: %s, Denoising Strategy: %s, Correlation Type: %s, \ Thresholding Methods: %s'%(sub,ds,ct,tm)) def add_measure(gl,c,bw, mes,mes_name, subjects, denoising_strategies, smethods, negative_corr = False): ''' adding new measures to the existing measure files for all subjects inputs: gl = It could be 'global' or 'local'. c = It could be 'connected' or 'disconnected'. bw = It could be 'binary' or 'weighted' mes = a function for computing the measure values for local measures the output would be a scaler for global measures the output is a dictionary with node IDs as key and the corresponding meacure as value. subjects = list of subject IDs. denoising_strategies = list of denoising strategies that you want to include. thresholding_methods = list of thresholding methods that you want to include. ''' global rootdir for sub in subjects: for ds in denoising_strategies: for ct in correlation_types: for tm in thresholding_methods: for tv in thresholding_values: if tm=='userdefined': tm = '%s-%.3f'%(tm,tv) print(sub,ds,tm,ct) corrGdir = glob.glob(rootdir + "/data/04_correlations/corr-%s/ds-%s/*%s*.gexf" %(ct,ds,sub)) if not negative_corr: adjGdir = glob.glob(rootdir + "/data/05_adjacency_matrices/positive/tm-*%s*/corr-%s/ds-%s/*%s*.gexf"%(tm,ct,ds,sub)) if negative_corr: adjGdir = glob.glob(rootdir + "/data/05_adjacency_matrices/negative/tm-*%s*/corr-%s/ds-%s/*%s*.gexf"%(tm,ct,ds,sub)) corrG = nx.read_gexf(corrGdir[0]) adjG = nx.read_gexf(adjGdir[0]) # compute the giant component adjG_gc = [adjG.subgraph(c).copy() for c in nx.connected_components(adjG)] adjG_gc = adjG_gc[0] corrG_gc = corrG.copy() not_connected = set(corrG.nodes) - set(adjG_gc.nodes) corrG_gc.remove_nodes_from(not_connected) dirc = '%s/data/06_network_measures/positive/tm-%s/corr-%s/ds-%s/sub-%s'%(rootdir,tm,ct,ds,sub) if negative_corr: dirc = rootdir + '/dataframe/06_network_measures/negative/tm-%s/corr-%s/ds-%s/sub-%s'%(tm,ct,ds,sub) if gl=='local': if c=='disconnected': gc_local_dir = glob.glob("%s/*local_measures_giant_component.csv" %(dirc)) # Local Measures of the giant component: gc_loc_mes_adj = pd.read_csv(gc_local_dir[0], sep='\t') local_dir = glob.glob("%s/*local_measures.csv"%(dirc)) # Local measures of the whole graph: loc_mes_adj = pd.read_csv(local_dir[0], sep='\t') if mes_name in loc_mes_adj: print('measure already computed for subject %s network or its giant component with %s DS, %s CT and %s TM.'%(sub,ds,ct,tm)) continue del loc_mes_adj['Unnamed: 0'] del gc_loc_mes_adj['Unnamed: 0'] if bw == 'binary': loc_new_mes = mes(adjG) gc_loc_new_mes = mes(adjG_gc) if bw == 'weighted': loc_new_mes = mes(corrG) gc_loc_new_mes = mes(corrG_gc) loc_mes_adj[mes_name] = loc_new_mes.values() gc_loc_mes_adj[mes_name] = gc_loc_new_mes.values() loc_mes_adj_norm = normalize(loc_mes_adj) loc_mes_adj_norm.ID = loc_mes_adj.ID gc_loc_mes_adj_norm = normalize(gc_loc_mes_adj) gc_loc_mes_adj_norm.ID = gc_loc_mes_adj.ID loc_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures.csv' %(dirc,sub,ds,ct,tm), sep='\t') gc_loc_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component.csv' %(dirc,sub,ds,ct,tm), sep='\t') loc_mes_adj_norm.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_norm.csv' %(dirc,sub,ds,ct,tm), sep='\t') gc_loc_mes_adj_norm.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component_norm.csv' %(dirc,sub,ds,ct,tm), sep='\t') if c=='connected': gc_local_dir = glob.glob("%s/*local_measures_giant_component.csv" %(dirc)) # Local Measures of the giant component: gc_loc_mes_adj = pd.read_csv(gc_local_dir[0], sep='\t') if mes_name in gc_loc_mes_adj: print('measure already computed for subject %s with %s DS, %s CT and %s TM' %(sub,ds,ct,tm)) continue del gc_loc_mes_adj['Unnamed: 0'] if bw == 'binary': gc_loc_new_mes = mes(adjG_gc) if bw == 'weighted': gc_loc_new_mes = mes(corrG_gc) gc_loc_mes_adj[mes_name] = gc_loc_new_mes.values() gc_loc_mes_adj_norm = normalize(gc_loc_mes_adj) gc_loc_mes_adj_norm.ID = gc_loc_mes_adj.ID gc_loc_mes_adj.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component.csv' %(dirc,sub,ds,ct,tm), sep='\t') gc_loc_mes_adj_norm.to_csv \ ('%s/sub-%s_ds-%s_corr-%s_tm-%s_local_measures_giant_component_norm.csv' %(dirc,sub,ds,ct,tm), sep='\t') elif gl=='global': if c=='disconnected': gc_global_dir = glob.glob("%s/*global_measures_giant_component.csv" %(dirc)) global_dir = glob.glob("%s/*global_measures.csv"%(dirc)) # Global measures of the whole graph: glob_mes_adj = pd.read_csv(global_dir[0], sep='\t') # Global Measures of the giant component: gc_glob_mes_adj =
pd.read_csv(gc_global_dir[0], sep='\t')
pandas.read_csv
import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from itertools import product import calendar class Features(): def __init__(self): self.df = [] self.readFile() def execute(self): self.remove_ex_value() self.remove_same_data() self.augumentation() self.create_test_col() self.locate_feature() self.encodeing() self.time_feature() self.history_saled_feature() self.slide_window_feature() self.three_month_buying_feature() self.history_sum_feature() self.another_feature() self.save() def readFile(self): self.test = pd.read_csv('./data/test.csv') self.sales = pd.read_csv('./data/sales_train.csv') self.shops = pd.read_csv('./data/shops.csv') self.items = pd.read_csv('./data/items.csv') self.item_cats = pd.read_csv('./data/item_categories.csv') def remove_ex_value(self): self.train = self.sales[(self.sales.item_price < 100000) & (self.sales.item_price > 0)] self.train = self.train[self.sales.item_cnt_day < 1001] def remove_same_data(self): self.train.loc[self.train.shop_id == 0, 'shop_id'] = 57 self.test.loc[self.test.shop_id == 0, 'shop_id'] = 57 self.train.loc[self.train.shop_id == 1, 'shop_id'] = 58 self.test.loc[self.test.shop_id == 1, 'shop_id'] = 58 self.train.loc[self.train.shop_id == 40, 'shop_id'] = 39 self.test.loc[self.test.shop_id == 40, 'shop_id'] = 39 def augumentation(self): self.index_cols = ['shop_id', 'item_id', 'date_block_num'] for block_num in self.train['date_block_num'].unique(): cur_shops = self.train.loc[self.sales['date_block_num'] == block_num, 'shop_id'].unique() cur_items = self.train.loc[self.sales['date_block_num'] == block_num, 'item_id'].unique() self.df.append(np.array(list(product(*[cur_shops, cur_items, [block_num]])),dtype='int32')) self.df = pd.DataFrame(np.vstack(self.df), columns = self.index_cols,dtype=np.int32) self.group = self.train.groupby(['date_block_num','shop_id','item_id']).agg({'item_cnt_day': ['sum']}) self.group.columns = ['item_cnt_month'] self.group.reset_index(inplace=True) self.df = pd.merge(self.df, self.group, on=self.index_cols, how='left') self.df['item_cnt_month'] = (self.df['item_cnt_month'] .fillna(0) .clip(0,20) .astype(np.float16)) def create_test_col(self): self.test['date_block_num'] = 34 self.test['date_block_num'] = self.test['date_block_num'].astype(np.int8) self.test['shop_id'] = self.test['shop_id'].astype(np.int8) self.test['item_id'] = self.test['item_id'].astype(np.int16) df = pd.concat([self.df, self.test], ignore_index=True, sort=False, keys=self.index_cols) df.fillna(0, inplace=True) def locate_feature(self): self.shops['city'] = self.shops['shop_name'].apply(lambda x: x.split()[0].lower()) self.shops.loc[self.shops.city == '!якутск', 'city'] = 'якутск' self.shops['city_code'] = LabelEncoder().fit_transform(self.shops['city']) coords = dict() coords['якутск'] = (62.028098, 129.732555, 4) coords['адыгея'] = (44.609764, 40.100516, 3) coords['балашиха'] = (55.8094500, 37.9580600, 1) coords['волжский'] = (53.4305800, 50.1190000, 3) coords['вологда'] = (59.2239000, 39.8839800, 2) coords['воронеж'] = (51.6720400, 39.1843000, 3) coords['выездная'] = (0, 0, 0) coords['жуковский'] = (55.5952800, 38.1202800, 1) coords['интернет-магазин'] = (0, 0, 0) coords['казань'] = (55.7887400, 49.1221400, 4) coords['калуга'] = (54.5293000, 36.2754200, 4) coords['коломна'] = (55.0794400, 38.7783300, 4) coords['красноярск'] = (56.0183900, 92.8671700, 4) coords['курск'] = (51.7373300, 36.1873500, 3) coords['москва'] = (55.7522200, 37.6155600, 1) coords['мытищи'] = (55.9116300, 37.7307600, 1) coords['н.новгород'] = (56.3286700, 44.0020500, 4) coords['новосибирск'] = (55.0415000, 82.9346000, 4) coords['омск'] = (54.9924400, 73.3685900, 4) coords['ростовнадону'] = (47.2313500, 39.7232800, 3) coords['спб'] = (59.9386300, 30.3141300, 2) coords['самара'] = (53.2000700, 50.1500000, 4) coords['сергиев'] = (56.3000000, 38.1333300, 4) coords['сургут'] = (61.2500000, 73.4166700, 4) coords['томск'] = (56.4977100, 84.9743700, 4) coords['тюмень'] = (57.1522200, 65.5272200, 4) coords['уфа'] = (54.7430600, 55.9677900, 4) coords['химки'] = (55.8970400, 37.4296900, 1) coords['цифровой'] = (0, 0, 0) coords['чехов'] = (55.1477000, 37.4772800, 4) coords['ярославль'] = (57.6298700, 39.8736800, 2) self.shops['city_coord_1'] = self.shops['city'].apply(lambda x: coords[x][0]) self.shops['city_coord_2'] = self.shops['city'].apply(lambda x: coords[x][1]) self.shops['country_part'] = self.shops['city'].apply(lambda x: coords[x][2]) self.shops = self.shops[['shop_id', 'city_code', 'city_coord_1', 'city_coord_2', 'country_part']] self.df = pd.merge(self.df, self.shops, on=['shop_id'], how='left') def encodeing(self): map_dict = { 'Чистые носители (штучные)': 'Чистые носители', 'Чистые носители (шпиль)' : 'Чистые носители', 'PC ': 'Аксессуары', 'Служебные': 'Служебные ' } self.items = pd.merge(self.items, self.item_cats, on='item_category_id') self.items['item_category'] = self.items['item_category_name'].apply(lambda x: x.split('-')[0]) self.items['item_category'] = self.items['item_category'].apply(lambda x: map_dict[x] if x in map_dict.keys() else x) self.items['item_category_common'] = LabelEncoder().fit_transform(self.items['item_category']) self.items['item_category_code'] = LabelEncoder().fit_transform(self.items['item_category_name']) self.items = self.items[['item_id', 'item_category_common', 'item_category_code']] self.df =
pd.merge(self.df, self.items, on=['item_id'], how='left')
pandas.merge
import os import argparse import pandas as pd import numpy as np from pandas.api.types import CategoricalDtype import matplotlib from scipy.interpolate import interp1d from mpl_toolkits.axes_grid1 import make_axes_locatable import seaborn as sns import matplotlib.pyplot as plt sns.set(style='whitegrid') sns.set_palette(sns.xkcd_palette( ['greyish', 'pale red', 'amber', 'dark grey'])) # Grade categories [3, 3+, ..., 9c+] gradeType = CategoricalDtype( [grade + plus for grade in [str(number) for number in range(3, 6)] + [str(number) + sub for number in range(6, 10) for sub in 'abc'] for plus in ['', '+']], ordered=True ) # Ascent style categories styleType = CategoricalDtype( ['Top rope', 'Red point', 'Flash', 'On-sight'], ordered=True ) # Style for figure titles titleSpec = {'fontsize': 14, 'color': 'C0', 'weight': 'bold'} def crawl(username): """Crawl 27 Crags for the user's tick list Args: username (str): Name of user """ from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings process = CrawlerProcess(get_project_settings()) process.crawl('27crags', user=username) process.start() def create_plot(data, xticks, ylim, **kwargs): """Create a scatter and yearly top10 avg. plot for the ticks in data, along with a marginal histogram. Args: data (DataFrame): A pandas DataFrame containing the ticks xticks (DatetimeIndex): Locations of xticks ylim (tuple): Limits for the y-axis (grade cat codes) **kwargs: Not used but needed for calls from FacetGrid """ ax = plt.gca() # plot datapoints sns.stripplot(x='date_ordinal', y='grade', data=data, alpha=.3, hue='ascent_style', jitter=True, ax=ax) # plot marginal histogram divider = make_axes_locatable(ax) marg = divider.append_axes('right', '15%', pad='3%', sharey=ax) a = data.groupby(['ascent_style', 'grade'])['route'].count().reset_index() left = np.zeros(len(gradeType.categories),) for name, df in a.groupby('ascent_style'): marg.barh(df.grade.cat.codes, df.route, left=left[df.grade.cat.codes], linewidth=0) left[df.grade.cat.codes] += df.route for grade in np.unique(data.grade.cat.codes): marg.text(left[grade], grade, ' %d' % left[grade], color='C0', verticalalignment='center', horizontalalignment='left', fontsize=8) marg.axis('off') # get yearly top10 average top10 = data.groupby(['ascent_style', 'year'], as_index=False).apply( lambda x: x.nlargest(min(10, len(x)), 'grade_ordinal')) top10 = top10.groupby(['ascent_style', 'year']).agg( {'grade_ordinal': np.mean, 'date_ordinal': np.mean}).rename( columns={'grade_ordinal': 'top10'}) # plot interpolation of yearly top10 for name, df in top10.groupby('ascent_style'): df.dropna(inplace=True) if len(df) < 2: continue if len(df) == 2: kind = 'linear' elif len(df) == 3: kind = 'quadratic' else: kind = 'cubic' new_index = np.arange(df.date_ordinal.iloc[0], df.date_ordinal.iloc[-1]) f = interp1d(df.date_ordinal.values, df.top10, kind=kind) df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2020 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities functions to manipulate the data in the colab.""" import datetime import itertools import operator from typing import List, Optional import dataclasses import numpy as np import pandas as pd import pandas.io.formats.style as style from scipy import stats from trimmed_match.design import common_classes TimeWindow = common_classes.TimeWindow FormatOptions = common_classes.FormatOptions _operator_functions = {'>': operator.gt, '<': operator.lt, '<=': operator.le, '>=': operator.ge, '=': operator.eq, '!=': operator.ne} _inverse_op = {'<': '>', '<=': '>=', '>': '<', '>=': '<=', '=': '!='} @dataclasses.dataclass class CalculateMinDetectableIroas: """Class for the calculation of the minimum detectable iROAS. Hypothesis testing for H0: iROAS=0 vs H1: iROAS>=min_detectable_iroas based on one sample X which follows a normal distribution with mean iROAS (unknown) and standard deviation rmse (known). Typical usage example: calc_min_detectable_iroas = CalculateMinDetectableIroas(0.1, 0.9) min_detectable_iroas = calc_min_detectable_iroas.at(2.0) """ # chance of rejecting H0 incorrectly when H0 holds. significance_level: float = 0.1 # chance of rejecting H0 correctly when H1 holds. power_level: float = 0.9 # minimum detectable iroas at rmse=1. rmse_multiplier: float = dataclasses.field(init=False) def __post_init__(self): """Calculates rmse_multiplier. Raises: ValueError: if significance_level or power_level is not in (0, 1). """ if self.significance_level <= 0 or self.significance_level >= 1.0: raise ValueError('significance_level must be in (0, 1), but got ' f'{self.significance_level}.') if self.power_level <= 0 or self.power_level >= 1.0: raise ValueError('power_level must be in (0, 1), but got ' f'{self.power_level}.') self.rmse_multiplier = ( stats.norm.ppf(self.power_level) + stats.norm.ppf(1 - self.significance_level)) def at(self, rmse: float) -> float: """Calculates min_detectable_iroas at the specified rmse.""" return rmse * self.rmse_multiplier def find_days_to_exclude( dates_to_exclude: List[str]) -> List[TimeWindow]: """Returns a list of time windows to exclude from a list of days and weeks. Args: dates_to_exclude: a List of strings with format indicating a single day as '2020/01/01' (YYYY/MM/DD) or an entire time period as '2020/01/01 - 2020/02/01' (indicating start and end date of the time period) Returns: days_exclude: a List of TimeWindows obtained from the list in input. """ days_exclude = [] for x in dates_to_exclude: tmp = x.split('-') if len(tmp) == 1: try: days_exclude.append( TimeWindow(pd.Timestamp(tmp[0]), pd.Timestamp(tmp[0]))) except ValueError: raise ValueError(f'Cannot convert the string {tmp[0]} to a valid date.') elif len(tmp) == 2: try: days_exclude.append( TimeWindow(pd.Timestamp(tmp[0]), pd.Timestamp(tmp[1]))) except ValueError: raise ValueError( f'Cannot convert the strings in {tmp} to a valid date.') else: raise ValueError(f'The input {tmp} cannot be interpreted as a single' + ' day or a time window') return days_exclude def expand_time_windows(periods: List[TimeWindow]) -> List[pd.Timestamp]: """Return a list of days to exclude from a list of TimeWindows. Args: periods: List of time windows (first day, last day). Returns: days_exclude: a List of obtained by expanding the list in input. """ days_exclude = [] for window in periods: days_exclude += pd.date_range(window.first_day, window.last_day, freq='D') return list(set(days_exclude)) def overlap_percent(dates_left: List['datetime.datetime'], dates_right: List['datetime.datetime']) -> float: """Find the size of the intersections of two arrays, relative to the first array. Args: dates_left: List of datetime.datetime dates_right: List of datetime.datetime Returns: percentage: the percentage of elements of dates_right that also appear in dates_left """ intersection = np.intersect1d(dates_left, dates_right) percentage = 100 * len(intersection) / len(dates_right) return percentage def check_time_periods(geox_data: pd.DataFrame, start_date_eval: pd.Timestamp, start_date_aa_test: pd.Timestamp, experiment_duration_weeks: int, frequency: str) -> bool: """Checks that the geox_data contains the data for the two periods. Check that the geox_data contains all observations during the evaluation and AA test periods to guarantee that the experiment lasts exactly a certain number of days/weeks, depending on the frequency of the data (daily/weekly). Args: geox_data: pd.Dataframe with at least the columns (date, geo). start_date_eval: start date of the evaluation period. start_date_aa_test: start date of the aa test period. experiment_duration_weeks: int, length of the experiment in weeks. frequency: str indicating the frequency of the time series. It should be one of 'infer', 'D', 'W'. Returns: bool: a bool, True if the time periods specified pass all the checks Raises: ValueError: if part of the evaluation or AA test period are shorter than experiment_duration (either weeks or days). """ if frequency not in ['infer', 'D', 'W']: raise ValueError( f'frequency should be one of ["infer", "D", "W"], got {frequency}') if frequency == 'infer': tmp = geox_data.copy().set_index(['date', 'geo']) frequency = infer_frequency(tmp, 'date', 'geo') if frequency == 'W': frequency = '7D' number_of_observations = experiment_duration_weeks else: number_of_observations = 7 * experiment_duration_weeks freq_str = 'weeks' if frequency == '7D' else 'days' missing_eval = find_missing_dates(geox_data, start_date_eval, experiment_duration_weeks, number_of_observations, frequency) if missing_eval: raise ValueError( (f'The evaluation period contains the following {freq_str} ' + f'{missing_eval} for which we do not have data.')) missing_aa_test = find_missing_dates(geox_data, start_date_aa_test, experiment_duration_weeks, number_of_observations, frequency) if missing_aa_test: raise ValueError((f'The AA test period contains the following {freq_str} ' + f'{missing_aa_test} for which we do not have data.')) return True def find_missing_dates(geox_data: pd.DataFrame, start_date: pd.Timestamp, period_duration_weeks: int, number_of_observations: int, frequency: str) -> List[str]: """Find missing observations in a time period. Args: geox_data: pd.Dataframe with at least the columns (date, geo). start_date: start date of the evaluation period. period_duration_weeks: int, length of the period in weeks. number_of_observations: expected number of time points. frequency: str or pd.DateOffset indicating the frequency of the time series. Returns: missing: a list of strings, containing the dates for which data are missing in geox_data. """ days = datetime.timedelta(days=7 * period_duration_weeks - 1) period_dates = ((geox_data['date'] >= start_date) & (geox_data['date'] <= start_date + days)) days_in_period = geox_data.loc[ period_dates, 'date'].drop_duplicates().dt.strftime('%Y-%m-%d').to_list() missing = np.array([]) if len(days_in_period) != number_of_observations: expected_observations = list( pd.date_range(start_date, start_date + days, freq=frequency).strftime('%Y-%m-%d')) missing = set(expected_observations) - set(days_in_period) return sorted(missing) def infer_frequency(data: pd.DataFrame, date_index: str, series_index: str) -> str: """Infers frequency of data from pd.DataFrame with multiple indices. Infers frequency of data from pd.DataFrame with two indices, one for the slice name and one for the date-time. Example: df = pd.Dataframe{'date': [2020-10-10, 2020-10-11], 'geo': [1, 1], 'response': [10, 20]} df.set_index(['geo', 'date'], inplace=True) infer_frequency(df, 'date', 'geo') Args: data: a pd.DataFrame for which frequency needs to be inferred. date_index: string containing the name of the time index. series_index: string containing the name of the series index. Returns: A str, either 'D' or 'W' indicating the most likely frequency inferred from the data. Raises: ValueError: if it is not possible to infer frequency of sampling from the provided pd.DataFrame. """ data = data.sort_values(by=[date_index, series_index]) # Infer most likely frequence for each series_index series_names = data.index.get_level_values(series_index).unique().tolist() series_frequencies = [] for series in series_names: observed_times = data.iloc[data.index.get_level_values(series_index) == series].index.get_level_values(date_index) n_steps = len(observed_times) if n_steps > 1: time_diffs = ( observed_times[1:n_steps] - observed_times[0:(n_steps - 1)]).astype('timedelta64[D]').values modal_frequency, _ = np.unique(time_diffs, return_counts=True) series_frequencies.append(modal_frequency[0]) if not series_frequencies: raise ValueError( 'At least one series with more than one observation must be provided.') if series_frequencies.count(series_frequencies[0]) != len(series_frequencies): raise ValueError( 'The provided time series seem to have irregular frequencies.') try: frequency = { 1: 'D', 7: 'W' }[series_frequencies[0]] except KeyError: raise ValueError('Frequency could not be identified. Got %d days.' % series_frequencies[0]) return frequency def human_readable_number(number: float) -> str: """Print a large number in a readable format. Return a readable format for a number, e.g. 123 milions becomes 123M. Args: number: a float to be printed in human readable format. Returns: readable_number: a string containing the formatted number. """ number = float('{:.3g}'.format(number)) magnitude = 0 while abs(number) >= 1000 and magnitude < 4: magnitude += 1 number /= 1000.0 readable_number = '{}{}'.format('{:f}'.format(number).rstrip('0').rstrip('.'), ['', 'K', 'M', 'B', 'tn'][magnitude]) return readable_number def change_background_row(df: pd.DataFrame, value: float, operation: str, column: str): """Colors a row of a table based on the expression in input. Color a row in: - orange if the value of the column satisfies the expression in input - beige if the value of the column satisfies the inverse expression in input - green otherwise For example, if the column has values [1, 2, 3] and we pass 'value' equal to 2, and operation '>', then - 1 is marked in beige (1 < 2, which is the inverse expression) - 2 is marked in green (it's not > and it's not <) - 3 is marked in orange(3 > 2, which is the expression) Args: df: the table of which we want to change the background color. value: term of comparison to be used in the expression. operation: a string to define which operator to use, e.g. '>' or '='. For a full list check _operator_functions. column: name of the column to be used for the comparison Returns: pd.Series """ if _operator_functions[operation](float(df[column]), value): return
pd.Series('background-color: orange', df.index)
pandas.Series
import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Datetime, Double, Integer, ) from evalml.pipelines import DelayedFeatureTransformer @pytest.fixture def delayed_features_data(): X = pd.DataFrame({"feature": range(1, 32)}) y = pd.Series(range(1, 32)) return X, y def test_delayed_features_transformer_init(): delayed_features = DelayedFeatureTransformer( max_delay=4, delay_features=True, delay_target=False, date_index="Date", random_seed=1, ) assert delayed_features.parameters == { "max_delay": 4, "delay_features": True, "delay_target": False, "gap": 0, "forecast_horizon": 1, "date_index": "Date", } def encode_y_as_string(y): y = y.astype("category") y_answer = y.astype(int) - 1 y = y.map(lambda val: str(val).zfill(2)) return y, y_answer def encode_X_as_string(X): X_answer = X.astype(int) - 1 # So that the encoder encodes the values in ascending order. This makes it easier to # specify the answer for each unit test X.feature = pd.Categorical(X.feature.map(lambda val: str(val).zfill(2))) return X, X_answer def encode_X_y_as_strings(X, y, encode_X_as_str, encode_y_as_str): y_answer = y if encode_y_as_str: y, y_answer = encode_y_as_string(y) X_answer = X if encode_X_as_str: X, X_answer = encode_X_as_string(X) return X, X_answer, y, y_answer @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay3_forecasthorizon1_gap0( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, gap=0, forecast_horizon=1).fit_transform( X=X, y=y ), ) answer_only_y = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, gap=0, forecast_horizon=1).fit_transform( X=None, y=y ), ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay5_forecasthorizon1_gap0( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "feature_delay_5": X_answer.feature.shift(5), "feature_delay_6": X_answer.feature.shift(6), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), "target_delay_5": y_answer.shift(5), "target_delay_6": y_answer.shift(6), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=5, gap=0, forecast_horizon=1).fit_transform( X, y ), ) answer_only_y = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), "target_delay_5": y_answer.shift(5), "target_delay_6": y_answer.shift(6), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=5, gap=0, forecast_horizon=1).fit_transform( X=None, y=y ), ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_delayed_feature_extractor_maxdelay3_forecasthorizon7_gap1( encode_X_as_str, encode_y_as_str, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame( { "feature_delay_8": X_answer.feature.shift(8), "feature_delay_9": X_answer.feature.shift(9), "feature_delay_10": X_answer.feature.shift(10), "feature_delay_11": X_answer.feature.shift(11), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X, y ), ) answer_only_y = pd.DataFrame( { "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X=None, y=y ), ) def test_delayed_feature_extractor_numpy(delayed_features_data): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings(X, y, False, False) X_np = X.values y_np = y.values answer = pd.DataFrame( { "0_delay_8": X_answer.feature.shift(8), "0_delay_9": X_answer.feature.shift(9), "0_delay_10": X_answer.feature.shift(10), "0_delay_11": X_answer.feature.shift(11), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X_np, y_np ), ) answer_only_y = pd.DataFrame( { "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), "target_delay_11": y_answer.shift(11), } ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7, gap=1).fit_transform( X=None, y=y_np ), ) @pytest.mark.parametrize( "delay_features,delay_target", [(False, True), (True, False), (False, False)] ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_lagged_feature_extractor_delay_features_delay_target( encode_y_as_str, encode_X_as_str, delay_features, delay_target, delayed_features_data, ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) all_delays = pd.DataFrame( { "feature_delay_1": X_answer.feature.shift(1), "feature_delay_2": X_answer.feature.shift(2), "feature_delay_3": X_answer.feature.shift(3), "feature_delay_4": X_answer.feature.shift(4), "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) if not delay_features: all_delays = all_delays.drop( columns=[c for c in all_delays.columns if "feature_" in c] ) if not delay_target: all_delays = all_delays.drop( columns=[c for c in all_delays.columns if "target" in c] ) transformer = DelayedFeatureTransformer( max_delay=3, forecast_horizon=1, delay_features=delay_features, delay_target=delay_target, ) assert_frame_equal(all_delays, transformer.fit_transform(X, y)) @pytest.mark.parametrize( "delay_features,delay_target", [(False, True), (True, False), (False, False)] ) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) def test_lagged_feature_extractor_delay_target( encode_y_as_str, encode_X_as_str, delay_features, delay_target, delayed_features_data, ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) answer = pd.DataFrame() if delay_target: answer = pd.DataFrame( { "target_delay_1": y_answer.shift(1), "target_delay_2": y_answer.shift(2), "target_delay_3": y_answer.shift(3), "target_delay_4": y_answer.shift(4), } ) transformer = DelayedFeatureTransformer( max_delay=3, forecast_horizon=1, delay_features=delay_features, delay_target=delay_target, ) assert_frame_equal(answer, transformer.fit_transform(None, y)) @pytest.mark.parametrize("encode_X_as_str", [True, False]) @pytest.mark.parametrize("encode_y_as_str", [True, False]) @pytest.mark.parametrize("data_type", ["ww", "pd"]) def test_delay_feature_transformer_supports_custom_index( encode_X_as_str, encode_y_as_str, data_type, make_data_type, delayed_features_data ): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings( X, y, encode_X_as_str, encode_y_as_str ) X.index = pd.RangeIndex(50, 81) X_answer.index = pd.RangeIndex(50, 81) y.index = pd.RangeIndex(50, 81) y_answer.index = pd.RangeIndex(50, 81) answer = pd.DataFrame( { "feature_delay_7": X_answer.feature.shift(7), "feature_delay_8": X_answer.feature.shift(8), "feature_delay_9": X_answer.feature.shift(9), "feature_delay_10": X_answer.feature.shift(10), "target_delay_7": y_answer.shift(7), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), }, index=pd.RangeIndex(50, 81), ) X = make_data_type(data_type, X) y = make_data_type(data_type, y) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7).fit_transform(X, y), ) answer_only_y = pd.DataFrame( { "target_delay_7": y_answer.shift(7), "target_delay_8": y_answer.shift(8), "target_delay_9": y_answer.shift(9), "target_delay_10": y_answer.shift(10), }, index=pd.RangeIndex(50, 81), ) assert_frame_equal( answer_only_y, DelayedFeatureTransformer(max_delay=3, forecast_horizon=7).fit_transform( X=None, y=y ), ) def test_delay_feature_transformer_multiple_categorical_columns(delayed_features_data): X, y = delayed_features_data X, X_answer, y, y_answer = encode_X_y_as_strings(X, y, True, True) X["feature_2"] = pd.Categorical(["a"] * 10 + ["aa"] * 10 + ["aaa"] * 10 + ["aaaa"]) X_answer["feature_2"] = pd.Series([0] * 10 + [1] * 10 + [2] * 10 + [3]) answer = pd.DataFrame( { "feature_delay_11": X_answer.feature.shift(11), "feature_delay_12": X_answer.feature.shift(12), "feature_2_delay_11": X_answer.feature_2.shift(11), "feature_2_delay_12": X_answer.feature_2.shift(12), "target_delay_11": y_answer.shift(11), "target_delay_12": y_answer.shift(12), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=1, forecast_horizon=9, gap=2).fit_transform( X, y ), ) def test_delay_feature_transformer_y_is_none(delayed_features_data): X, _ = delayed_features_data answer = pd.DataFrame( { "feature_delay_11": X.feature.shift(11), "feature_delay_12": X.feature.shift(12), } ) assert_frame_equal( answer, DelayedFeatureTransformer(max_delay=1, forecast_horizon=11).fit_transform( X, y=None ), ) def test_delayed_feature_transformer_does_not_modify_input_data(delayed_features_data): X, _ = delayed_features_data expected = X.copy() _ = DelayedFeatureTransformer(max_delay=1, forecast_horizon=11).fit_transform( X, y=None ) assert_frame_equal(X, expected) @pytest.mark.parametrize( "X_df", [ pd.DataFrame( pd.to_datetime(["20190902", "20200519", "20190607"] * 5, format="%Y%m%d") ), pd.DataFrame(pd.Series([0, 0, 3, 1] * 5, dtype="int64")), pd.DataFrame(
pd.Series([0, 0, 3.0, 2] * 5, dtype="float")
pandas.Series
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime64") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="category") ei = df[["f"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include="period") def test_select_dtypes_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(exclude=np.number) ei = df[["a", "e", "f", "g", "h", "i", "j"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(exclude="category") ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(exclude="period") def test_select_dtypes_include_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude="floating") ei = df[["b", "c", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_include_exclude_mixed_scalars_lists(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) ei = df[["b", "c"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") ei = df[["b", "c", "f", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_duplicate_columns(self): # GH20839 odict = OrderedDict df = DataFrame( odict( [ ("a", list("abc")), ("b", list(range(1, 4))), ("c", np.arange(3, 6).astype("u1")), ("d", np.arange(4.0, 7.0, dtype="float64")), ("e", [True, False, True]), ("f", pd.date_range("now", periods=3).values), ] ) ) df.columns = ["a", "a", "b", "b", "b", "c"] expected = DataFrame( {"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")} ) result = df.select_dtypes(include=[np.number], exclude=["floating"]) tm.assert_frame_equal(result, expected) def test_select_dtypes_not_an_attr_but_still_valid_dtype(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) df["g"] = df.f.diff() assert not hasattr(np, "u8") r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"]) e = df[["a", "b"]] tm.assert_frame_equal(r, e) r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"]) e = df[["a", "b", "g"]] tm.assert_frame_equal(r, e) def test_select_dtypes_empty(self): df = DataFrame({"a": list("abc"), "b": list(range(1, 4))}) msg = "at least one of include or exclude must be nonempty" with pytest.raises(ValueError, match=msg): df.select_dtypes() def test_select_dtypes_bad_datetime64(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(include=["datetime64[D]"]) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(exclude=["datetime64[as]"]) def test_select_dtypes_datetime_with_tz(self): df2 = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="CET"), ), index=range(5), ) df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) result = df3.select_dtypes(include=["datetime64[ns]"]) expected = df3.reindex(columns=[]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"] ) @pytest.mark.parametrize("arg", ["include", "exclude"]) def test_select_dtypes_str_raises(self, dtype, arg): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "string dtypes are not allowed" kwargs = {arg: [dtype]} with pytest.raises(TypeError, match=msg): df.select_dtypes(**kwargs) def test_select_dtypes_bad_arg_raises(self): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "data type.*not understood" with pytest.raises(TypeError, match=msg): df.select_dtypes(["blargy, blarg, blarg"]) def test_select_dtypes_typecodes(self): # GH 11990 df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random()) expected = df FLOAT_TYPES = list(np.typecodes["AllFloat"]) tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index ) tm.assert_series_equal(result, expected) # compat, GH 8722 with
option_context("use_inf_as_na", True)
pandas.option_context
""" BUILD_FEATURES Module --------------------- @author : Stratoshad This module contains function that relate to data pre-processing or aggregation. """ from tqdm import tqdm import pandas as pd import numpy as np from datetime import datetime import warnings def process_cancellations(df, limit_rows=None): """ Takes in the dataframe of transactions and identifies all cancellations. It then runs through the following logic to identify matches for those cancellations. For each cancellation identifies all transactions that have the same CustomerID, StockCode are in the past and have the same or less Quantity. It excludes cancellations with no CustomerID. For cancellations with no matches it just takes a note of the index. For single matches it adds the canceled quantity to the original dataframe. For multi-matches it either picks up the transaction with an exact match on Quantity or keeps eliminating transactions until it covers all cancellation quantities. Parameters: ----------- df : dataframe A dataframe of transactions that has the "Cancelled" column limit_rows : int (default : None) Limits the numbers of cancellations to look through. This is useful for testing. If None looks through all of them. Returns: -------- df_clean : dataframe A dataframe with all canceled transactions dropped and the paired ones marked down. match_dict : dictionary A dictionary of all indices of the cancellation transactions split by their matched category """ # Create the main dataframes df_clean = df.copy() df_cancel = df_clean.loc[ (df_clean["Cancelled"] == 1) & (df_clean["CustomerID"] != "00000") ] incomplete_cancelations = [] # Intilize the dictionary and the columns match_dict = {"no_match": [], "one_match": [], "mult_match": []} df_clean["Quantity_Canc"] = 0 df_clean["Cancel_Date"] = np.nan if limit_rows is not None: df_cancel = df_cancel.iloc[:limit_rows] for index, row in tqdm(df_cancel.iterrows(), total=df_cancel.shape[0]): # for index, row in df_cancel.iterrows(): # Extract all useful information customer_id = row["CustomerID"] stock_code = row["StockCode"] canc_quantity = row["Quantity"] canc_date = row["InvoiceDate"] # Get all transactions that have the # same customerID and Stock Code but # happened earlier than the cancellation df_tmp = df_clean.loc[ (df_clean["CustomerID"] == customer_id) & (df_clean["StockCode"] == stock_code) & (df_clean["InvoiceDate"] <= canc_date) & (df_clean["Cancelled"] != 1) ] # If we have no matches just record # that cancelation as unmatches if df_tmp.shape[0] == 0: match_dict["no_match"].append(index) # If we have only one match then take that # as its match. Ensure we get the minimum between # the quantity match and the available cancelations elif df_tmp.shape[0] == 1: matched = df_tmp.iloc[0] quantity_bought = matched["Quantity"] already_canc = matched["Quantity_Canc"] # If we don't find enough purchases to match # the cancelations then keep track of them if quantity_bought < (canc_quantity * -1): incomplete_cancelations.append(index) if (quantity_bought - already_canc) >= (canc_quantity * -1): match_dict["one_match"].append(index) # Take the minimum between remainder and total bought actual_cancel = min(quantity_bought, (canc_quantity * -1)) # Update the original dataframe df_clean.loc[matched.name, "Quantity_Canc"] += actual_cancel df_clean.loc[matched.name, "Cancel_Date"] = canc_date # print() # print(index) # display(df_cancel.loc[index:index, :]) # display(df_tmp) # print() # print(f"{matched.name} was chosen with {actual_cancel} taken out of it.") # display(df_clean.loc[matched.name:matched.name, :]) # print() else: match_dict["no_match"].append(index) # In the case that we have more than one matches the follow # rules apply. If there is an exact match to the quantity take the # most recent one. Otherwise keep taking recent transactions until # you get all total cancelations. elif df_tmp.shape[0] > 1: match_dict["mult_match"].append(index) # print() # print(index) # display(df_cancel.loc[index:index, :]) # display(df_tmp) # print() # Check if there are any exact matches or greater matches of Quantity exact_matches = df_tmp.loc[ (df_tmp["Quantity"] == (canc_quantity * -1)) & ( df_tmp["Quantity"] >= (df_tmp["Quantity_Canc"] + (canc_quantity * -1)) ) ] if len(exact_matches) == 0: # Loop through the array from bottom up # and only mark transactions until you # match the total quantity canceled cum_quant = 0 for idx, r in df_tmp[::-1].iterrows(): quantity_bought = r["Quantity"] - r["Quantity_Canc"] quantity_left = quantity_bought - r["Quantity_Canc"] if quantity_left <= (canc_quantity * -1): continue elif cum_quant < (canc_quantity * -1): # Ensure we are only assigning as much # quantity as available remainder = (canc_quantity * -1) - cum_quant actual_cancel = min(quantity_bought, remainder) cum_quant += actual_cancel # print(f"Cancelled {actual_cancel} / {quantity_bought} of order {idx}") # print(f"Added transaction {idx} and cum_quant is now: {cum_quant} / {canc_quantity * -1}") # Update the original dataframe df_clean.loc[idx, "Quantity_Canc"] += actual_cancel df_clean.loc[idx, "Cancel_Date"] = canc_date # Take the latest exact match as # the correct transaction else: matched = exact_matches.iloc[-1] idx = matched.name actual_cancel = canc_quantity * -1 # Update the original dataframe df_clean.loc[idx, "Quantity_Canc"] += actual_cancel df_clean.loc[idx, "Cancel_Date"] = canc_date # print(f"{idx} was chosen.") # display(df_clean.loc[idx:idx, :]) # print() # Print the summary print(f"Total Cancelation Summary") print(f"Total Cancelations: {df_cancel.shape[0]}") print( f"No-Matches: {len(match_dict['no_match'])} ({round((len(match_dict['no_match']) / df_cancel.shape[0] * 100), 1)}%)" ) print( f"Single-Matches: {len(match_dict['one_match'])} ({round((len(match_dict['one_match']) / df_cancel.shape[0] * 100), 1)}%)" ) print( f"Multi-Matches: {len(match_dict['mult_match'])} ({round((len(match_dict['mult_match']) / df_cancel.shape[0] * 100), 1)}%)" ) # At the end ensure that we don't have any canceled quantities above # the actual quantity except for Discounts df_test = df_clean[ (df_clean["Cancelled"] != 1) & (df_clean["StockCode"] != "D") ].copy() assert ( df_test["Quantity"] < df_test["Quantity_Canc"] ).sum() == 0, "There are transactions with canceled quantities > bought quantities" return df_clean, match_dict def get_df_date_features(date_df, date_column): """ Takes in a dataframe and the corresponding date_column. From that it extracts the following information: - Month - Month Name - Day - Week Num - Season - Year - Is_Weekend Parameters ---------- date_df: dataframe A timeseries dataset that contains a date column where features can be extracted from. date_column: str Column name of where the dates are in the dataframe Returns ------- edited_df: dateframe Dataframe with the features mentioned above added as columns """ # Copy the dataframe df_edited = date_df.copy() df_edited[date_column] =
pd.to_datetime(df_edited[date_column])
pandas.to_datetime
#!/usr/bin/env python3 import requests import json import pandas as pd import tweepy import os import config as cfg from datetime import datetime, timedelta from pytz import timezone def main(): # get data nys_data = get_nys_data() nys = get_nys_appt(nys_data, cfg.config["nys_sites"]) alb = get_nys_appt(nys_data, cfg.config["alb_sites"]) cvs = get_cvs_data() pc = get_pc_data() wal = get_walgreens_data() # book urls nys_url = 'https://am-i-eligible.covid19vaccine.health.ny.gov/' cvs_url = 'https://www.cvs.com/immunizations/covid-19-vaccine' wal_url = 'https://www.walgreens.com/findcare/vaccination/covid-19/location-screening' pc_url = 'https://www.pricechopper.com/covidvaccine/new-york/' # img urls nys_img = '<img alt="" src="https://favicons.githubusercontent.com/am-i-eligible.covid19vaccine.health.ny.gov" height="13">' cvs_img = '<img alt="" src="https://favicons.githubusercontent.com/www.cvs.com" height="13">' wal_img = '<img alt="" src="https://favicons.githubusercontent.com/www.walgreens.com" height="13">' pc_img = '<img alt="" src="https://favicons.githubusercontent.com/www.pricechopper.com" height="13">' tz = timezone('EST') date = str(datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S')) sites = ['SUNY Albany','Albany Armory','Price Chopper','CVS','Walgreens'] appointments = [ nys, alb, pc, cvs, wal ] df_long =
pd.DataFrame({'date': date, 'appointments': appointments, 'sites': sites})
pandas.DataFrame
# being a bit too dynamic # pylint: disable=E1101 import datetime import warnings import re from math import ceil from collections import namedtuple from contextlib import contextmanager from distutils.version import LooseVersion import numpy as np from pandas.util.decorators import cache_readonly, deprecate_kwarg import pandas.core.common as com from pandas.core.common import AbstractMethodError from pandas.core.generic import _shared_docs, _shared_doc_kwargs from pandas.core.index import Index, MultiIndex from pandas.core.series import Series, remove_na from pandas.tseries.index import DatetimeIndex from pandas.tseries.period import PeriodIndex, Period import pandas.tseries.frequencies as frequencies from pandas.tseries.offsets import DateOffset from pandas.compat import range, lrange, lmap, map, zip, string_types import pandas.compat as compat from pandas.util.decorators import Appender try: # mpl optional import pandas.tseries.converter as conv conv.register() # needs to override so set_xlim works with str/number except ImportError: pass # Extracted from https://gist.github.com/huyng/816622 # this is the rcParams set when setting display.with_mpl_style # to True. mpl_stylesheet = { 'axes.axisbelow': True, 'axes.color_cycle': ['#348ABD', '#7A68A6', '#A60628', '#467821', '#CF4457', '#188487', '#E24A33'], 'axes.edgecolor': '#bcbcbc', 'axes.facecolor': '#eeeeee', 'axes.grid': True, 'axes.labelcolor': '#555555', 'axes.labelsize': 'large', 'axes.linewidth': 1.0, 'axes.titlesize': 'x-large', 'figure.edgecolor': 'white', 'figure.facecolor': 'white', 'figure.figsize': (6.0, 4.0), 'figure.subplot.hspace': 0.5, 'font.family': 'monospace', 'font.monospace': ['Andale Mono', 'Nimbus Mono L', 'Courier New', 'Courier', 'Fixed', 'Terminal', 'monospace'], 'font.size': 10, 'interactive': True, 'keymap.all_axes': ['a'], 'keymap.back': ['left', 'c', 'backspace'], 'keymap.forward': ['right', 'v'], 'keymap.fullscreen': ['f'], 'keymap.grid': ['g'], 'keymap.home': ['h', 'r', 'home'], 'keymap.pan': ['p'], 'keymap.save': ['s'], 'keymap.xscale': ['L', 'k'], 'keymap.yscale': ['l'], 'keymap.zoom': ['o'], 'legend.fancybox': True, 'lines.antialiased': True, 'lines.linewidth': 1.0, 'patch.antialiased': True, 'patch.edgecolor': '#EEEEEE', 'patch.facecolor': '#348ABD', 'patch.linewidth': 0.5, 'toolbar': 'toolbar2', 'xtick.color': '#555555', 'xtick.direction': 'in', 'xtick.major.pad': 6.0, 'xtick.major.size': 0.0, 'xtick.minor.pad': 6.0, 'xtick.minor.size': 0.0, 'ytick.color': '#555555', 'ytick.direction': 'in', 'ytick.major.pad': 6.0, 'ytick.major.size': 0.0, 'ytick.minor.pad': 6.0, 'ytick.minor.size': 0.0 } def _get_standard_kind(kind): return {'density': 'kde'}.get(kind, kind) def _get_standard_colors(num_colors=None, colormap=None, color_type='default', color=None): import matplotlib.pyplot as plt if color is None and colormap is not None: if isinstance(colormap, compat.string_types): import matplotlib.cm as cm cmap = colormap colormap = cm.get_cmap(colormap) if colormap is None: raise ValueError("Colormap {0} is not recognized".format(cmap)) colors = lmap(colormap, np.linspace(0, 1, num=num_colors)) elif color is not None: if colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") colors = color else: if color_type == 'default': # need to call list() on the result to copy so we don't # modify the global rcParams below colors = list(plt.rcParams.get('axes.color_cycle', list('bgrcmyk'))) if isinstance(colors, compat.string_types): colors = list(colors) elif color_type == 'random': import random def random_color(column): random.seed(column) return [random.random() for _ in range(3)] colors = lmap(random_color, lrange(num_colors)) else: raise ValueError("color_type must be either 'default' or 'random'") if isinstance(colors, compat.string_types): import matplotlib.colors conv = matplotlib.colors.ColorConverter() def _maybe_valid_colors(colors): try: [conv.to_rgba(c) for c in colors] return True except ValueError: return False # check whether the string can be convertable to single color maybe_single_color = _maybe_valid_colors([colors]) # check whether each character can be convertable to colors maybe_color_cycle = _maybe_valid_colors(list(colors)) if maybe_single_color and maybe_color_cycle and len(colors) > 1: msg = ("'{0}' can be parsed as both single color and " "color cycle. Specify each color using a list " "like ['{0}'] or {1}") raise ValueError(msg.format(colors, list(colors))) elif maybe_single_color: colors = [colors] else: # ``colors`` is regarded as color cycle. # mpl will raise error any of them is invalid pass if len(colors) != num_colors: multiple = num_colors//len(colors) - 1 mod = num_colors % len(colors) colors += multiple * colors colors += colors[:mod] return colors class _Options(dict): """ Stores pandas plotting options. Allows for parameter aliasing so you can just use parameter names that are the same as the plot function parameters, but is stored in a canonical format that makes it easy to breakdown into groups later """ # alias so the names are same as plotting method parameter names _ALIASES = {'x_compat': 'xaxis.compat'} _DEFAULT_KEYS = ['xaxis.compat'] def __init__(self): self['xaxis.compat'] = False def __getitem__(self, key): key = self._get_canonical_key(key) if key not in self: raise ValueError('%s is not a valid pandas plotting option' % key) return super(_Options, self).__getitem__(key) def __setitem__(self, key, value): key = self._get_canonical_key(key) return super(_Options, self).__setitem__(key, value) def __delitem__(self, key): key = self._get_canonical_key(key) if key in self._DEFAULT_KEYS: raise ValueError('Cannot remove default parameter %s' % key) return super(_Options, self).__delitem__(key) def __contains__(self, key): key = self._get_canonical_key(key) return super(_Options, self).__contains__(key) def reset(self): """ Reset the option store to its initial state Returns ------- None """ self.__init__() def _get_canonical_key(self, key): return self._ALIASES.get(key, key) @contextmanager def use(self, key, value): """ Temporarily set a parameter value using the with statement. Aliasing allowed. """ old_value = self[key] try: self[key] = value yield self finally: self[key] = old_value plot_params = _Options() def scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds): """ Draw a matrix of scatter plots. Parameters ---------- frame : DataFrame alpha : float, optional amount of transparency applied figsize : (float,float), optional a tuple (width, height) in inches ax : Matplotlib axis object, optional grid : bool, optional setting this to True will show the grid diagonal : {'hist', 'kde'} pick between 'kde' and 'hist' for either Kernel Density Estimation or Histogram plot in the diagonal marker : str, optional Matplotlib marker type, default '.' hist_kwds : other plotting keyword arguments To be passed to hist function density_kwds : other plotting keyword arguments To be passed to kernel density estimate plot range_padding : float, optional relative extension of axis range in x and y with respect to (x_max - x_min) or (y_max - y_min), default 0.05 kwds : other plotting keyword arguments To be passed to scatter function Examples -------- >>> df = DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D']) >>> scatter_matrix(df, alpha=0.2) """ import matplotlib.pyplot as plt from matplotlib.artist import setp df = frame._get_numeric_data() n = df.columns.size naxes = n * n fig, axes = _subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False) # no gaps between subplots fig.subplots_adjust(wspace=0, hspace=0) mask = com.notnull(df) marker = _get_marker_compat(marker) hist_kwds = hist_kwds or {} density_kwds = density_kwds or {} # workaround because `c='b'` is hardcoded in matplotlibs scatter method kwds.setdefault('c', plt.rcParams['patch.facecolor']) boundaries_list = [] for a in df.columns: values = df[a].values[mask[a].values] rmin_, rmax_ = np.min(values), np.max(values) rdelta_ext = (rmax_ - rmin_) * range_padding / 2. boundaries_list.append((rmin_ - rdelta_ext, rmax_+ rdelta_ext)) for i, a in zip(lrange(n), df.columns): for j, b in zip(lrange(n), df.columns): ax = axes[i, j] if i == j: values = df[a].values[mask[a].values] # Deal with the diagonal by drawing a histogram there. if diagonal == 'hist': ax.hist(values, **hist_kwds) elif diagonal in ('kde', 'density'): from scipy.stats import gaussian_kde y = values gkde = gaussian_kde(y) ind = np.linspace(y.min(), y.max(), 1000) ax.plot(ind, gkde.evaluate(ind), **density_kwds) ax.set_xlim(boundaries_list[i]) else: common = (mask[a] & mask[b]).values ax.scatter(df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds) ax.set_xlim(boundaries_list[j]) ax.set_ylim(boundaries_list[i]) ax.set_xlabel(b) ax.set_ylabel(a) if j!= 0: ax.yaxis.set_visible(False) if i != n-1: ax.xaxis.set_visible(False) if len(df.columns) > 1: lim1 = boundaries_list[0] locs = axes[0][1].yaxis.get_majorticklocs() locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])] adj = (locs - lim1[0]) / (lim1[1] - lim1[0]) lim0 = axes[0][0].get_ylim() adj = adj * (lim0[1] - lim0[0]) + lim0[0] axes[0][0].yaxis.set_ticks(adj) if np.all(locs == locs.astype(int)): # if all ticks are int locs = locs.astype(int) axes[0][0].yaxis.set_ticklabels(locs) _set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0) return axes def _gca(): import matplotlib.pyplot as plt return plt.gca() def _gcf(): import matplotlib.pyplot as plt return plt.gcf() def _get_marker_compat(marker): import matplotlib.lines as mlines import matplotlib as mpl if mpl.__version__ < '1.1.0' and marker == '.': return 'o' if marker not in mlines.lineMarkers: return 'o' return marker def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds): """RadViz - a multivariate data visualization algorithm Parameters: ----------- frame: DataFrame class_column: str Column name containing class names ax: Matplotlib axis object, optional color: list or tuple, optional Colors to use for the different classes colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. kwds: keywords Options to pass to matplotlib scatter plotting method Returns: -------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt import matplotlib.patches as patches def normalize(series): a = min(series) b = max(series) return (series - a) / (b - a) n = len(frame) classes = frame[class_column].drop_duplicates() class_col = frame[class_column] df = frame.drop(class_column, axis=1).apply(normalize) if ax is None: ax = plt.gca(xlim=[-1, 1], ylim=[-1, 1]) to_plot = {} colors = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) for kls in classes: to_plot[kls] = [[], []] m = len(frame.columns) - 1 s = np.array([(np.cos(t), np.sin(t)) for t in [2.0 * np.pi * (i / float(m)) for i in range(m)]]) for i in range(n): row = df.iloc[i].values row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1) y = (s * row_).sum(axis=0) / row.sum() kls = class_col.iat[i] to_plot[kls][0].append(y[0]) to_plot[kls][1].append(y[1]) for i, kls in enumerate(classes): ax.scatter(to_plot[kls][0], to_plot[kls][1], color=colors[i], label=com.pprint_thing(kls), **kwds) ax.legend() ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor='none')) for xy, name in zip(s, df.columns): ax.add_patch(patches.Circle(xy, radius=0.025, facecolor='gray')) if xy[0] < 0.0 and xy[1] < 0.0: ax.text(xy[0] - 0.025, xy[1] - 0.025, name, ha='right', va='top', size='small') elif xy[0] < 0.0 and xy[1] >= 0.0: ax.text(xy[0] - 0.025, xy[1] + 0.025, name, ha='right', va='bottom', size='small') elif xy[0] >= 0.0 and xy[1] < 0.0: ax.text(xy[0] + 0.025, xy[1] - 0.025, name, ha='left', va='top', size='small') elif xy[0] >= 0.0 and xy[1] >= 0.0: ax.text(xy[0] + 0.025, xy[1] + 0.025, name, ha='left', va='bottom', size='small') ax.axis('equal') return ax @deprecate_kwarg(old_arg_name='data', new_arg_name='frame') def andrews_curves(frame, class_column, ax=None, samples=200, color=None, colormap=None, **kwds): """ Parameters: ----------- frame : DataFrame Data to be plotted, preferably normalized to (0.0, 1.0) class_column : Name of the column containing class names ax : matplotlib axes object, default None samples : Number of points to plot in each curve color: list or tuple, optional Colors to use for the different classes colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. kwds: keywords Options to pass to matplotlib plotting method Returns: -------- ax: Matplotlib axis object """ from math import sqrt, pi, sin, cos import matplotlib.pyplot as plt def function(amplitudes): def f(x): x1 = amplitudes[0] result = x1 / sqrt(2.0) harmonic = 1.0 for x_even, x_odd in zip(amplitudes[1::2], amplitudes[2::2]): result += (x_even * sin(harmonic * x) + x_odd * cos(harmonic * x)) harmonic += 1.0 if len(amplitudes) % 2 != 0: result += amplitudes[-1] * sin(harmonic * x) return result return f n = len(frame) class_col = frame[class_column] classes = frame[class_column].drop_duplicates() df = frame.drop(class_column, axis=1) x = [-pi + 2.0 * pi * (t / float(samples)) for t in range(samples)] used_legends = set([]) color_values = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) colors = dict(zip(classes, color_values)) if ax is None: ax = plt.gca(xlim=(-pi, pi)) for i in range(n): row = df.iloc[i].values f = function(row) y = [f(t) for t in x] kls = class_col.iat[i] label = com.pprint_thing(kls) if label not in used_legends: used_legends.add(label) ax.plot(x, y, color=colors[kls], label=label, **kwds) else: ax.plot(x, y, color=colors[kls], **kwds) ax.legend(loc='upper right') ax.grid() return ax def bootstrap_plot(series, fig=None, size=50, samples=500, **kwds): """Bootstrap plot. Parameters: ----------- series: Time series fig: matplotlib figure object, optional size: number of data points to consider during each sampling samples: number of times the bootstrap procedure is performed kwds: optional keyword arguments for plotting commands, must be accepted by both hist and plot Returns: -------- fig: matplotlib figure """ import random import matplotlib.pyplot as plt # random.sample(ndarray, int) fails on python 3.3, sigh data = list(series.values) samplings = [random.sample(data, size) for _ in range(samples)] means = np.array([np.mean(sampling) for sampling in samplings]) medians = np.array([np.median(sampling) for sampling in samplings]) midranges = np.array([(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]) if fig is None: fig = plt.figure() x = lrange(samples) axes = [] ax1 = fig.add_subplot(2, 3, 1) ax1.set_xlabel("Sample") axes.append(ax1) ax1.plot(x, means, **kwds) ax2 = fig.add_subplot(2, 3, 2) ax2.set_xlabel("Sample") axes.append(ax2) ax2.plot(x, medians, **kwds) ax3 = fig.add_subplot(2, 3, 3) ax3.set_xlabel("Sample") axes.append(ax3) ax3.plot(x, midranges, **kwds) ax4 = fig.add_subplot(2, 3, 4) ax4.set_xlabel("Mean") axes.append(ax4) ax4.hist(means, **kwds) ax5 = fig.add_subplot(2, 3, 5) ax5.set_xlabel("Median") axes.append(ax5) ax5.hist(medians, **kwds) ax6 = fig.add_subplot(2, 3, 6) ax6.set_xlabel("Midrange") axes.append(ax6) ax6.hist(midranges, **kwds) for axis in axes: plt.setp(axis.get_xticklabels(), fontsize=8) plt.setp(axis.get_yticklabels(), fontsize=8) return fig @deprecate_kwarg(old_arg_name='colors', new_arg_name='color') @deprecate_kwarg(old_arg_name='data', new_arg_name='frame') def parallel_coordinates(frame, class_column, cols=None, ax=None, color=None, use_columns=False, xticks=None, colormap=None, axvlines=True, **kwds): """Parallel coordinates plotting. Parameters ---------- frame: DataFrame class_column: str Column name containing class names cols: list, optional A list of column names to use ax: matplotlib.axis, optional matplotlib axis object color: list or tuple, optional Colors to use for the different classes use_columns: bool, optional If true, columns will be used as xticks xticks: list or tuple, optional A list of values to use for xticks colormap: str or matplotlib colormap, default None Colormap to use for line colors. axvlines: bool, optional If true, vertical lines will be added at each xtick kwds: keywords Options to pass to matplotlib plotting method Returns ------- ax: matplotlib axis object Examples -------- >>> from pandas import read_csv >>> from pandas.tools.plotting import parallel_coordinates >>> from matplotlib import pyplot as plt >>> df = read_csv('https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv') >>> parallel_coordinates(df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')) >>> plt.show() """ import matplotlib.pyplot as plt n = len(frame) classes = frame[class_column].drop_duplicates() class_col = frame[class_column] if cols is None: df = frame.drop(class_column, axis=1) else: df = frame[cols] used_legends = set([]) ncols = len(df.columns) # determine values to use for xticks if use_columns is True: if not np.all(np.isreal(list(df.columns))): raise ValueError('Columns must be numeric to be used as xticks') x = df.columns elif xticks is not None: if not np.all(np.isreal(xticks)): raise ValueError('xticks specified must be numeric') elif len(xticks) != ncols: raise ValueError('Length of xticks must match number of columns') x = xticks else: x = lrange(ncols) if ax is None: ax = plt.gca() color_values = _get_standard_colors(num_colors=len(classes), colormap=colormap, color_type='random', color=color) colors = dict(zip(classes, color_values)) for i in range(n): y = df.iloc[i].values kls = class_col.iat[i] label = com.pprint_thing(kls) if label not in used_legends: used_legends.add(label) ax.plot(x, y, color=colors[kls], label=label, **kwds) else: ax.plot(x, y, color=colors[kls], **kwds) if axvlines: for i in x: ax.axvline(i, linewidth=1, color='black') ax.set_xticks(x) ax.set_xticklabels(df.columns) ax.set_xlim(x[0], x[-1]) ax.legend(loc='upper right') ax.grid() return ax def lag_plot(series, lag=1, ax=None, **kwds): """Lag plot for time series. Parameters: ----------- series: Time series lag: lag of the scatter plot, default 1 ax: Matplotlib axis object, optional kwds: Matplotlib scatter method keyword arguments, optional Returns: -------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt # workaround because `c='b'` is hardcoded in matplotlibs scatter method kwds.setdefault('c', plt.rcParams['patch.facecolor']) data = series.values y1 = data[:-lag] y2 = data[lag:] if ax is None: ax = plt.gca() ax.set_xlabel("y(t)") ax.set_ylabel("y(t + %s)" % lag) ax.scatter(y1, y2, **kwds) return ax def autocorrelation_plot(series, ax=None, **kwds): """Autocorrelation plot for time series. Parameters: ----------- series: Time series ax: Matplotlib axis object, optional kwds : keywords Options to pass to matplotlib plotting method Returns: ----------- ax: Matplotlib axis object """ import matplotlib.pyplot as plt n = len(series) data = np.asarray(series) if ax is None: ax = plt.gca(xlim=(1, n), ylim=(-1.0, 1.0)) mean = np.mean(data) c0 = np.sum((data - mean) ** 2) / float(n) def r(h): return ((data[:n - h] - mean) * (data[h:] - mean)).sum() / float(n) / c0 x = np.arange(n) + 1 y = lmap(r, x) z95 = 1.959963984540054 z99 = 2.5758293035489004 ax.axhline(y=z99 / np.sqrt(n), linestyle='--', color='grey') ax.axhline(y=z95 / np.sqrt(n), color='grey') ax.axhline(y=0.0, color='black') ax.axhline(y=-z95 / np.sqrt(n), color='grey') ax.axhline(y=-z99 / np.sqrt(n), linestyle='--', color='grey') ax.set_xlabel("Lag") ax.set_ylabel("Autocorrelation") ax.plot(x, y, **kwds) if 'label' in kwds: ax.legend() ax.grid() return ax class MPLPlot(object): """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ _layout_type = 'vertical' _default_rot = 0 orientation = None _pop_attributes = ['label', 'style', 'logy', 'logx', 'loglog', 'mark_right', 'stacked'] _attr_defaults = {'logy': False, 'logx': False, 'loglog': False, 'mark_right': True, 'stacked': False} def __init__(self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, **kwds): self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False if isinstance(self._default_rot, dict): self.rot = self._default_rot[self.kind] else: self.rot = self._default_rot if grid is None: grid = False if secondary_y else self.plt.rcParams['axes.grid'] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop('xerr', None) yerr = kwds.pop('yerr', None) self.errors = {} for kw, err in zip(['xerr', 'yerr'], [xerr, yerr]): self.errors[kw] = self._parse_errorbars(kw, err) if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, Index)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if 'cmap' in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif 'cmap' in kwds: self.colormap = kwds.pop('cmap') else: self.colormap = colormap self.table = table self.kwds = kwds self._validate_color_args() def _validate_color_args(self): if 'color' not in self.kwds and 'colors' in self.kwds: warnings.warn(("'colors' is being deprecated. Please use 'color'" "instead of 'colors'")) colors = self.kwds.pop('colors') self.kwds['color'] = colors if ('color' in self.kwds and self.nseries == 1): # support series.plot(color='green') self.kwds['color'] = [self.kwds['color']] if ('color' in self.kwds or 'colors' in self.kwds) and \ self.colormap is not None: warnings.warn("'color' and 'colormap' cannot be used " "simultaneously. Using 'color'") if 'color' in self.kwds and self.style is not None: if com.is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if re.match('^[a-z]+?', s) is not None: raise ValueError("Cannot pass 'style' string with a color " "symbol and 'color' keyword argument. Please" " use one or the other or pass 'style' " "without a color symbol") def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) if self.sort_columns: columns = com._try_sort(data.columns) else: columns = data.columns for col in columns: if keep_index is True: yield col, data[col] else: yield col, data[col].values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._post_plot_logic() self._adorn_subplots() def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return (len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0) def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, 'right_ax'): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, 'left_ax'): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() new_ax._get_lines.color_cycle = orig_ax._get_lines.color_cycle orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots(naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) if self.logx or self.loglog: [a.set_xscale('log') for a in axes] if self.logy or self.loglog: [a.set_yscale('log') for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not com.is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = (com.is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries) if (sec_true or all_sec): # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, Series): label = self.label if label is None and data.name is None: label = 'None' data = data.to_frame(name=label) numeric_data = data.convert_objects()._get_numeric_data() try: is_empty = numeric_data.empty except AttributeError: is_empty = not len(numeric_data) # no empty frames or series allowed if is_empty: raise TypeError('Empty {0!r}: no numeric data to ' 'plot'.format(numeric_data.__class__.__name__)) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic(self): pass def _adorn_subplots(self): to_adorn = self.axes if len(self.axes) > 0: all_axes = self._get_axes() nrows, ncols = self._get_axes_layout() _handle_shared_axes(axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey) for ax in to_adorn: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: self.fig.suptitle(self.title) else: self.axes[0].set_title(self.title) labels = [com.pprint_thing(key) for key in self.data.index] labels = dict(zip(range(len(self.data.index)), labels)) for ax in self.axes: if self.orientation == 'vertical' or self.orientation is None: if self._need_to_set_index: xticklabels = [labels.get(x, '') for x in ax.get_xticks()] ax.set_xticklabels(xticklabels) self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) elif self.orientation == 'horizontal': if self._need_to_set_index: yticklabels = [labels.get(y, '') for y in ax.get_yticks()] ax.set_yticklabels(yticklabels) self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) def _apply_axis_properties(self, axis, rot=None, fontsize=None): labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not isinstance(self.data.columns, MultiIndex): name = self.data.columns.name if name is not None: name = com.pprint_thing(name) return name else: stringified = map(com.pprint_thing, self.data.columns.names) return ','.join(stringified) def _add_legend_handle(self, handle, label, index=None): if not label is None: if self.mark_right and index is not None: if self.on_right(index): label = label + ' (right)' self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self): ax, leg = self._get_ax_legend(self.axes[0]) handles = [] labels = [] title = '' if not self.subplots: if not leg is None: title = leg.get_title().get_text() handles = leg.legendHandles labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == 'reverse': self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if not self.legend_title is None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc='best', title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): ax.legend(loc='best') def _get_ax_legend(self, ax): leg = ax.get_legend() other_ax = (getattr(ax, 'left_ax', None) or getattr(ax, 'right_ax', None)) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False def _get_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ('datetime', 'date', 'datetime64', 'time') if self.use_index: if convert_period and isinstance(index, PeriodIndex): self.data = self.data.reindex(index=index.order()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data.sort_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = lrange(len(index)) else: x = lrange(len(index)) return x def _is_datetype(self): index = self.data.index return (isinstance(index, (PeriodIndex, DatetimeIndex)) or index.inferred_type in ('datetime', 'date', 'datetime64', 'time')) def _get_plot_function(self): ''' Returns the matplotlib plotting function (plot or errorbar) based on the presence of errorbar keywords. ''' errorbar = any(e is not None for e in self.errors.values()) def plotf(ax, x, y, style=None, **kwds): mask = com.isnull(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if errorbar: return self.plt.Axes.errorbar(ax, x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is unsupported if style is not None: args = (ax, x, y, style) else: args = (ax, x, y) return self.plt.Axes.plot(*args, **kwds) return plotf def _get_index_name(self): if isinstance(self.data.index, MultiIndex): name = self.data.index.names if any(x is not None for x in name): name = ','.join([com.pprint_thing(x) for x in name]) else: name = None else: name = self.data.index.name if name is not None: name = com.pprint_thing(name) return name @classmethod def _get_ax_layer(cls, ax, primary=True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, 'left_ax', ax) else: return getattr(ax, 'right_ax', ax) def _get_ax(self, i): # get the twinx ax if appropriate if self.subplots: ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) self.axes[i] = ax else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax def on_right(self, i): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, Index)): return self.data.columns[i] in self.secondary_y def _get_style(self, i, col_name): style = '' if self.subplots: style = 'k' if self.style is not None: if isinstance(self.style, list): try: style = self.style[i] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(col_name, style) else: style = self.style return style or None def _get_colors(self, num_colors=None, color_kwds='color'): if num_colors is None: num_colors = self.nseries return _get_standard_colors(num_colors=num_colors, colormap=self.colormap, color=self.kwds.get(color_kwds)) def _maybe_add_color(self, colors, kwds, style, i): has_color = 'color' in kwds or self.colormap is not None if has_color and (style is None or re.match('[a-z]+', style) is None): kwds['color'] = colors[i % len(colors)] def _parse_errorbars(self, label, err): ''' Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame ''' if err is None: return None from pandas import DataFrame, Series def match_labels(data, e): e = e.reindex_axis(data.index) return e # key-matched DataFrame if isinstance(err, DataFrame): err = match_labels(self.data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, Series): # broadcast error series across data err = match_labels(self.data, err) err = np.atleast_2d(err) err = np.tile(err, (self.nseries, 1)) # errors are a column in the dataframe elif isinstance(err, string_types): evalues = self.data[err].values self.data = self.data[self.data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (self.nseries, 1)) elif com.is_list_like(err): if com.is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if err.ndim == 3: if (err_shape[0] != self.nseries) or \ (err_shape[1] != 2) or \ (err_shape[2] != len(self.data)): msg = "Asymmetrical error bars should be provided " + \ "with the shape (%u, 2, %u)" % \ (self.nseries, len(self.data)) raise ValueError(msg) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (self.nseries, 1)) elif com.is_number(err): err = np.tile([err], (self.nseries, len(self.data))) else: msg = "No valid %s detected" % label raise ValueError(msg) return err def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True): from pandas import DataFrame errors = {} for kw, flag in zip(['xerr', 'yerr'], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (DataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors def _get_axes(self): return self.axes[0].get_figure().get_axes() def _get_axes_layout(self): axes = self._get_axes() x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class ScatterPlot(MPLPlot): _layout_type = 'single' def __init__(self, data, x, y, c=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError( 'scatter requires and x and y column') if com.is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if com.is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if com.is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.x = x self.y = y self.c = c @property def nseries(self): return 1 def _make_plot(self): import matplotlib as mpl mpl_ge_1_3_1 = str(mpl.__version__) >= LooseVersion('1.3.1') import matplotlib.pyplot as plt x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = com.is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop('colorbar', self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'Greys' cmap = plt.cm.get_cmap(cmap) if c is None: c_values = self.plt.rcParams['patch.facecolor'] elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, 'label'): label = self.label else: label = None scatter = ax.scatter(data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] kws = dict(ax=ax) if mpl_ge_1_3_1: kws['label'] = c if c_is_column else '' self.fig.colorbar(img, **kws) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds['ecolor'] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle='none', **err_kwds) def _post_plot_logic(self): ax = self.axes[0] x, y = self.x, self.y ax.set_ylabel(com.pprint_thing(y)) ax.set_xlabel(com.pprint_thing(x)) class HexBinPlot(MPLPlot): _layout_type = 'single' def __init__(self, data, x, y, C=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError('hexbin requires and x and y column') if com.is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if com.is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if com.is_integer(C) and not self.data.columns.holds_integer(): C = self.data.columns[C] self.x = x self.y = y self.C = C @property def nseries(self): return 1 def _make_plot(self): import matplotlib.pyplot as plt x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or 'BuGn' cmap = plt.cm.get_cmap(cmap) cb = self.kwds.pop('colorbar', True) if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: img = ax.collections[0] self.fig.colorbar(img, ax=ax) def _make_legend(self): pass def _post_plot_logic(self): ax = self.axes[0] x, y = self.x, self.y ax.set_ylabel(com.pprint_thing(y)) ax.set_xlabel(com.pprint_thing(x)) class LinePlot(MPLPlot): _default_rot = 0 orientation = 'vertical' def __init__(self, data, **kwargs): MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params['x_compat'] if 'x_compat' in self.kwds: self.x_compat = bool(self.kwds.pop('x_compat')) def _index_freq(self): freq = getattr(self.data.index, 'freq', None) if freq is None: freq = getattr(self.data.index, 'inferred_freq', None) if freq == 'B': weekdays = np.unique(self.data.index.dayofweek) if (5 in weekdays) or (6 in weekdays): freq = None return freq def _is_dynamic_freq(self, freq): if isinstance(freq, DateOffset): freq = freq.rule_code else: freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) return freq is not None and self._no_base(freq) def _no_base(self, freq): # hack this for 0.10.1, creating more technical debt...sigh if isinstance(self.data.index, DatetimeIndex): base = frequencies.get_freq(freq) x = self.data.index if (base <= frequencies.FreqGroup.FR_DAY): return x[:1].is_normalized return Period(x[0], freq).to_timestamp(tz=x.tz) == x[0] return True def _use_dynamic_x(self): freq = self._index_freq() ax = self._get_ax(0) ax_freq = getattr(ax, 'freq', None) if freq is None: # convert irregular if axes has freq info freq = ax_freq else: # do not use tsplot if irregular was plotted first if (ax_freq is None) and (len(ax.get_lines()) > 0): return False return (freq is not None) and self._is_dynamic_freq(freq) def _is_ts_plot(self): # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() def _make_plot(self): self._initialize_prior(len(self.data)) if self._is_ts_plot(): data = self._maybe_convert_index(self.data) x = data.index # dummy, not used plotf = self._get_ts_plot_function() it = self._iter_data(data=data, keep_index=True) else: x = self._get_xticks(convert_period=True) plotf = self._get_plot_function() it = self._iter_data() colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) style = self._get_style(i, label) kwds = self.kwds.copy() self._maybe_add_color(colors, kwds, style, i) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = com.pprint_thing(label) # .encode('utf-8') kwds['label'] = label newlines = plotf(ax, x, y, style=style, column_num=i, **kwds) self._add_legend_handle(newlines[0], label, index=i) lines = _get_all_lines(ax) left, right = _get_xlim(lines) ax.set_xlim(left, right) def _get_stacked_values(self, y, label): if self.stacked: if (y >= 0).all(): return self._pos_prior + y elif (y <= 0).all(): return self._neg_prior + y else: raise ValueError('When stacked is True, each column must be either all positive or negative.' '{0} contains both positive and negative values'.format(label)) else: return y def _get_plot_function(self): f = MPLPlot._get_plot_function(self) def plotf(ax, x, y, style=None, column_num=None, **kwds): # column_num is used to get the target column from protf in line and area plots if column_num == 0: self._initialize_prior(len(self.data)) y_values = self._get_stacked_values(y, kwds['label']) lines = f(ax, x, y_values, style=style, **kwds) self._update_prior(y) return lines return plotf def _get_ts_plot_function(self): from pandas.tseries.plotting import tsplot plotf = self._get_plot_function() def _plot(ax, x, data, style=None, **kwds): # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate lines = tsplot(data, plotf, ax=ax, style=style, **kwds) return lines return _plot def _initialize_prior(self, n): self._pos_prior = np.zeros(n) self._neg_prior = np.zeros(n) def _update_prior(self, y): if self.stacked and not self.subplots: # tsplot resample may changedata length if len(self._pos_prior) != len(y): self._initialize_prior(len(y)) if (y >= 0).all(): self._pos_prior += y elif (y <= 0).all(): self._neg_prior += y def _maybe_convert_index(self, data): # tsplot converts automatically, but don't want to convert index # over and over for DataFrames if isinstance(data.index, DatetimeIndex): freq = getattr(data.index, 'freq', None) if freq is None: freq = getattr(data.index, 'inferred_freq', None) if isinstance(freq, DateOffset): freq = freq.rule_code if freq is None: ax = self._get_ax(0) freq = getattr(ax, 'freq', None) if freq is None: raise ValueError('Could not get frequency alias for plotting') freq = frequencies.get_base_alias(freq) freq = frequencies.get_period_alias(freq) data.index = data.index.to_period(freq=freq) return data def _post_plot_logic(self): df = self.data condition = (not self._use_dynamic_x() and df.index.is_all_dates and not self.subplots or (self.subplots and self.sharex)) index_name = self._get_index_name() for ax in self.axes: if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): def __init__(self, data, **kwargs): kwargs.setdefault('stacked', True) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault('alpha', 0.5) def _get_plot_function(self): if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") else: f = MPLPlot._get_plot_function(self) def plotf(ax, x, y, style=None, column_num=None, **kwds): if column_num == 0: self._initialize_prior(len(self.data)) y_values = self._get_stacked_values(y, kwds['label']) lines = f(ax, x, y_values, style=style, **kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) if (y >= 0).all(): start = self._pos_prior elif (y <= 0).all(): start = self._neg_prior else: start = np.zeros(len(y)) if not 'color' in kwds: kwds['color'] = lines[0].get_color() self.plt.Axes.fill_between(ax, xdata, start, y_values, **kwds) self._update_prior(y) return lines return plotf def _add_legend_handle(self, handle, label, index=None): from matplotlib.patches import Rectangle # Because fill_between isn't supported in legend, # specifically add Rectangle handle here alpha = self.kwds.get('alpha', None) handle = Rectangle((0, 0), 1, 1, fc=handle.get_color(), alpha=alpha) LinePlot._add_legend_handle(self, handle, label, index=index) def _post_plot_logic(self): LinePlot._post_plot_logic(self) if self.ylim is None: if (self.data >= 0).all().all(): for ax in self.axes: ax.set_ylim(0, None) elif (self.data <= 0).all().all(): for ax in self.axes: ax.set_ylim(None, 0) class BarPlot(MPLPlot): _default_rot = {'bar': 90, 'barh': 0} def __init__(self, data, **kwargs): self.bar_width = kwargs.pop('width', 0.5) pos = kwargs.pop('position', 0.5) kwargs.setdefault('align', 'center') self.tick_pos = np.arange(len(data)) self.bottom = kwargs.pop('bottom', 0) self.left = kwargs.pop('left', 0) self.log = kwargs.pop('log',False) MPLPlot.__init__(self, data, **kwargs) if self.stacked or self.subplots: self.tickoffset = self.bar_width * pos if kwargs['align'] == 'edge': self.lim_offset = self.bar_width / 2 else: self.lim_offset = 0 else: if kwargs['align'] == 'edge': w = self.bar_width / self.nseries self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5 self.lim_offset = w * 0.5 else: self.tickoffset = self.bar_width * pos self.lim_offset = 0 self.ax_pos = self.tick_pos - self.tickoffset def _args_adjust(self): if com.is_list_like(self.bottom): self.bottom = np.array(self.bottom) if com.is_list_like(self.left): self.left = np.array(self.left) def _get_plot_function(self): if self.kind == 'bar': def f(ax, x, y, w, start=None, **kwds): start = start + self.bottom return ax.bar(x, y, w, bottom=start, log=self.log, **kwds) elif self.kind == 'barh': def f(ax, x, y, w, start=None, log=self.log, **kwds): start = start + self.left return ax.barh(x, y, w, left=start, log=self.log, **kwds) else: raise ValueError("BarPlot kind must be either 'bar' or 'barh'") return f def _make_plot(self): import matplotlib as mpl colors = self._get_colors() ncolors = len(colors) bar_f = self._get_plot_function() pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries for i, (label, y) in enumerate(self._iter_data(fillna=0)): ax = self._get_ax(i) kwds = self.kwds.copy() kwds['color'] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = com.pprint_thing(label) if (('yerr' in kwds) or ('xerr' in kwds)) \ and (kwds.get('ecolor') is None): kwds['ecolor'] = mpl.rcParams['xtick.color'] start = 0 if self.log and (y >= 1).all(): start = 1 if self.subplots: w = self.bar_width / 2 rect = bar_f(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, **kwds) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) w = self.bar_width / 2 rect = bar_f(ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, **kwds) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = bar_f(ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, **kwds) self._add_legend_handle(rect, label, index=i) def _post_plot_logic(self): for ax in self.axes: if self.use_index: str_index = [com.pprint_thing(key) for key in self.data.index] else: str_index = [com.pprint_thing(key) for key in range(self.data.shape[0])] name = self._get_index_name() s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset if self.kind == 'bar': ax.set_xlim((s_edge, e_edge)) ax.set_xticks(self.tick_pos) ax.set_xticklabels(str_index) if name is not None and self.use_index: ax.set_xlabel(name) elif self.kind == 'barh': # horizontal bars ax.set_ylim((s_edge, e_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(str_index) if name is not None and self.use_index: ax.set_ylabel(name) else: raise NotImplementedError(self.kind) @property def orientation(self): if self.kind == 'bar': return 'vertical' elif self.kind == 'barh': return 'horizontal' else: raise NotImplementedError(self.kind) class HistPlot(LinePlot): def __init__(self, data, bins=10, bottom=0, **kwargs): self.bins = bins # use mpl default self.bottom = bottom # Do not call LinePlot.__init__ which may fill nan MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if com.is_integer(self.bins): # create common bin edge values = self.data.convert_objects()._get_numeric_data() values = np.ravel(values) values = values[~com.isnull(values)] hist, self.bins = np.histogram(values, bins=self.bins, range=self.kwds.get('range', None), weights=self.kwds.get('weights', None)) if com.is_list_like(self.bottom): self.bottom = np.array(self.bottom) def _get_plot_function(self): def plotf(ax, y, style=None, column_num=None, **kwds): if column_num == 0: self._initialize_prior(len(self.bins) - 1) y = y[~com.isnull(y)] bottom = self._pos_prior + self.bottom # ignore style n, bins, patches = self.plt.Axes.hist(ax, y, bins=self.bins, bottom=bottom, **kwds) self._update_prior(n) return patches return plotf def _make_plot(self): plotf = self._get_plot_function() colors = self._get_colors() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) style = self._get_style(i, label) label = com.pprint_thing(label) kwds = self.kwds.copy() kwds['label'] = label self._maybe_add_color(colors, kwds, style, i) if style is not None: kwds['style'] = style artists = plotf(ax, y, column_num=i, **kwds) self._add_legend_handle(artists[0], label, index=i) def _post_plot_logic(self): if self.orientation == 'horizontal': for ax in self.axes: ax.set_xlabel('Frequency') else: for ax in self.axes: ax.set_ylabel('Frequency') @property def orientation(self): if self.kwds.get('orientation', None) == 'horizontal': return 'horizontal' else: return 'vertical' class KdePlot(HistPlot): orientation = 'vertical' def __init__(self, data, bw_method=None, ind=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) self.bw_method = bw_method self.ind = ind def _args_adjust(self): pass def _get_ind(self, y): if self.ind is None: sample_range = max(y) - min(y) ind = np.linspace(min(y) - 0.5 * sample_range, max(y) + 0.5 * sample_range, 1000) else: ind = self.ind return ind def _get_plot_function(self): from scipy.stats import gaussian_kde from scipy import __version__ as spv f = MPLPlot._get_plot_function(self) def plotf(ax, y, style=None, column_num=None, **kwds): y = remove_na(y) if LooseVersion(spv) >= '0.11.0': gkde = gaussian_kde(y, bw_method=self.bw_method) else: gkde = gaussian_kde(y) if self.bw_method is not None: msg = ('bw_method was added in Scipy 0.11.0.' + ' Scipy version in use is %s.' % spv) warnings.warn(msg) ind = self._get_ind(y) y = gkde.evaluate(ind) lines = f(ax, ind, y, style=style, **kwds) return lines return plotf def _post_plot_logic(self): for ax in self.axes: ax.set_ylabel('Density') class PiePlot(MPLPlot): _layout_type = 'horizontal' def __init__(self, data, kind=None, **kwargs): data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError("{0} doesn't allow negative values".format(kind)) MPLPlot.__init__(self, data, kind=kind, **kwargs) def _args_adjust(self): self.grid = False self.logy = False self.logx = False self.loglog = False def _validate_color_args(self): pass def _make_plot(self): self.kwds.setdefault('colors', self._get_colors(num_colors=len(self.data), color_kwds='colors')) for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) if label is not None: label = com.pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return '' else: return label idx = [com.pprint_thing(v) for v in self.data.index] labels = kwds.pop('labels', idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(label, value) for label, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get('autopct', None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for p, l in zip(patches, leglabels): self._add_legend_handle(p, l) class BoxPlot(LinePlot): _layout_type = 'horizontal' _valid_return_types = (None, 'axes', 'dict', 'both') # namedtuple to hold results BP = namedtuple("Boxplot", ['ax', 'lines']) def __init__(self, data, return_type=None, **kwargs): # Do not call LinePlot.__init__ which may fill nan if return_type not in self._valid_return_types: raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}") self.return_type = return_type MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if self.subplots: # Disable label ax sharing. Otherwise, all subplots shows last column label if self.orientation == 'vertical': self.sharex = False else: self.sharey = False def _get_plot_function(self): def plotf(ax, y, column_num=None, **kwds): if y.ndim == 2: y = [remove_na(v) for v in y] # Boxplot fails with empty arrays, so need to add a NaN # if any cols are empty # GH 8181 y = [v if v.size > 0 else np.array([np.nan]) for v in y] else: y =
remove_na(y)
pandas.core.series.remove_na
import copy import os, sys import numpy as np import pandas as pd import matplotlib import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.cm as cm from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.stats.mstats import zscore # loa my modules from src.utils import load_pkl from src.visualise import * import joblib import pickle # Built-in modules # import random # Third party modules # import numpy, scipy, matplotlib, pandas from matplotlib import pyplot import scipy.cluster.hierarchy as sch import scipy.spatial.distance as dist import names model_path = './models/SCCA_Yeo7nodes_revision_4_0.80_0.50.pkl' label_path = '~/yeo7_cluster/names.csv' dat_path = './data/processed/dict_SCCA_data_prepro_revision1.pkl' # load data model = joblib.load(model_path) dataset = load_pkl(dat_path) df_label = pd.read_csv(label_path) #df = pd.read_pickle(df_path) u, v = model.u * [1, 1, -1, 1] , model.v * [1, 1, -1, 1] n = model.n_components # create labels for the nodes seed_names = df_label.iloc[:, 0].apply(str) + '-' + df_label.iloc[:, -2] + '-' + df_label.iloc[:, -3] + ' ' + df_label.iloc[:, -1] # unflatten the functional corr coeff from src.utils import unflatten mat = [] for i in range(4): mat.append(unflatten(u[:, i])) # plot size MY_FIX_SIZE = (13, 10) ############################################################################### # Create Custom Color Gradients # red_black_sky = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.9), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} red_black_blue = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} red_black_green = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} yellow_black_blue = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.1), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.8), (0.5, 0.1, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 1.0), (0.5, 0.1, 0.0), (1.0, 0.0, 0.0))} make_cmap = lambda x: matplotlib.colors.LinearSegmentedColormap('my_colormap', x, 256) color_gradients = {'red_black_sky' : make_cmap(red_black_sky), 'red_black_blue' : make_cmap(red_black_blue), 'red_black_green' : make_cmap(red_black_green), 'yellow_black_blue' : make_cmap(yellow_black_blue), 'red_white_blue' : pyplot.cm.bwr, 'seismic' : pyplot.cm.seismic, 'green_white_purple' : pyplot.cm.PiYG_r, 'coolwarm' : pyplot.cm.coolwarm,} ############################################################################### def plot_hierarchical_heatmap_core(frame): """A common use case for biologists analyzing their gene expression data is to cluster and visualize patterns of expression in the form of a heatmap and associated dendrogram.""" row_method = 'single' # Can be: linkage, single, complete, average, weighted, centroid, median, ward column_method = 'single' # Can be: linkage, single, complete, average, weighted, centroid, median, ward row_metric = 'braycurtis' # Can be: see scipy documentation column_metric = 'braycurtis' # Can be: see scipy documentation gradient_span = 'min_to_max_centered' # Can be: min_to_max, min_to_max_centered, only_max, only_min color_gradient = 'coolwarm' # Can be: see color_gradients dictionary fig_weight = MY_FIX_SIZE[0] fig_height = MY_FIX_SIZE[1] # Names # row_header = frame.index column_header = frame.columns # What color to use # cmap = color_gradients[color_gradient] # Scale the max and min colors # value_min = frame.min().min() value_max = frame.max().max() if gradient_span == 'min_to_max_centered': value_max = max([value_max, abs(value_min)]) value_min = value_max * -1 if gradient_span == 'only_max': value_min = 0 if gradient_span == 'only_min': value_max = 0 norm = matplotlib.colors.Normalize(value_min, value_max) # Scale the figure window size # fig = pyplot.figure(figsize=(fig_weight, fig_height)) # Calculate positions for all elements # # ax1, placement of dendrogram 1, on the left of the heatmap ### The second value controls the position of the matrix relative to the bottom of the view [ax1_x, ax1_y, ax1_w, ax1_h] = [0.05, 0.22, 0.2, 0.6] width_between_ax1_axr = 0.004 ### distance between the top color bar axis and the matrix height_between_ax1_axc = 0.004 ### Sufficient size to show color_bar_w = 0.015 # axr, placement of row side colorbar # ### second to last controls the width of the side color bar - 0.015 when showing [axr_x, axr_y, axr_w, axr_h] = [0.31, 0.1, color_bar_w, 0.6] axr_x = ax1_x + ax1_w + width_between_ax1_axr axr_y = ax1_y; axr_h = ax1_h width_between_axr_axm = 0.004 # axc, placement of column side colorbar # ### last one controls the hight of the top color bar - 0.015 when showing [axc_x, axc_y, axc_w, axc_h] = [0.4, 0.63, 0.5, color_bar_w] axc_x = axr_x + axr_w + width_between_axr_axm axc_y = ax1_y + ax1_h + height_between_ax1_axc height_between_axc_ax2 = 0.004 # axm, placement of heatmap for the data matrix # [axm_x, axm_y, axm_w, axm_h] = [0.4, 0.9, 2.5, 0.5] axm_x = axr_x + axr_w + width_between_axr_axm axm_y = ax1_y; axm_h = ax1_h axm_w = axc_w # ax2, placement of dendrogram 2, on the top of the heatmap # ### last one controls hight of the dendrogram [ax2_x, ax2_y, ax2_w, ax2_h] = [0.3, 0.72, 0.6, 0.15] ax2_x = axr_x + axr_w + width_between_axr_axm ax2_y = ax1_y + ax1_h + height_between_ax1_axc + axc_h + height_between_axc_ax2 ax2_w = axc_w # axcb - placement of the color legend # [axcb_x, axcb_y, axcb_w, axcb_h] = [0.07, 0.88, 0.18, 0.09] # Compute and plot top dendrogram # if column_method: d2 = dist.pdist(frame.transpose()) D2 = dist.squareform(d2) ax2 = fig.add_axes([ax2_x, ax2_y, ax2_w, ax2_h], frame_on=True) Y2 = sch.linkage(D2, method=column_method, metric=column_metric) Z2 = sch.dendrogram(Y2) ind2 = sch.fcluster(Y2, 0.7*max(Y2[:,2]), 'distance') ax2.set_xticks([]) ax2.set_yticks([]) ### apply the clustering for the array-dendrograms to the actual matrix data idx2 = Z2['leaves'] frame = frame.iloc[:,idx2] ### reorder the flat cluster to match the order of the leaves the dendrogram ind2 = ind2[idx2] else: idx2 = range(frame.shape[1]) # Compute and plot left dendrogram # if row_method: d1 = dist.pdist(frame) D1 = dist.squareform(d1) ax1 = fig.add_axes([ax1_x, ax1_y, ax1_w, ax1_h], frame_on=True) Y1 = sch.linkage(D1, method=row_method, metric=row_metric) Z1 = sch.dendrogram(Y1, orientation='right') ind1 = sch.fcluster(Y1, 0.7*max(Y1[:,2]), 'distance') ax1.set_xticks([]) ax1.set_yticks([]) ### apply the clustering for the array-dendrograms to the actual matrix data idx1 = Z1['leaves'] frame = frame.iloc[idx1,:] ### reorder the flat cluster to match the order of the leaves the dendrogram ind1 = ind1[idx1] else: idx1 = range(frame.shape[0]) # Plot distance matrix # axm = fig.add_axes([axm_x, axm_y, axm_w, axm_h]) axm.matshow(frame, aspect='auto', origin='lower', cmap=cmap, norm=norm) axm.set_xticks([]) axm.set_yticks([]) # Add text # new_row_header = [] new_column_header = [] for i in range(frame.shape[0]): axm.text(frame.shape[1]-0.5, i, ' ' + row_header[idx1[i]], verticalalignment="center") new_row_header.append(row_header[idx1[i]] if row_method else row_header[i]) for i in range(frame.shape[1]): axm.text(i, -0.9, ' '+column_header[idx2[i]], rotation=90, verticalalignment="top", horizontalalignment="center") new_column_header.append(column_header[idx2[i]] if column_method else column_header[i]) # Plot column side colorbar # if column_method: axc = fig.add_axes([axc_x, axc_y, axc_w, axc_h]) cmap_c = matplotlib.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm']) dc = numpy.array(ind2, dtype=int) dc.shape = (1,len(ind2)) axc.matshow(dc, aspect='auto', origin='lower', cmap=cmap_c) axc.set_xticks([]) axc.set_yticks([]) # Plot column side colorbar # if row_method: axr = fig.add_axes([axr_x, axr_y, axr_w, axr_h]) dr = numpy.array(ind1, dtype=int) dr.shape = (len(ind1),1) cmap_r = matplotlib.colors.ListedColormap(['r', 'g', 'b', 'y', 'w', 'k', 'm']) axr.matshow(dr, aspect='auto', origin='lower', cmap=cmap_r) axr.set_xticks([]) axr.set_yticks([]) # Plot color legend # ### axes for colorbar axcb = fig.add_axes([axcb_x, axcb_y, axcb_w, axcb_h], frame_on=False) cb = matplotlib.colorbar.ColorbarBase(axcb, cmap=cmap, norm=norm, orientation='horizontal') axcb.set_title("colorkey") max_cb_ticks = 5 axcb.xaxis.set_major_locator(pyplot.MaxNLocator(max_cb_ticks)) # Render the graphic # if len(row_header)>50 or len(column_header)>50: pyplot.rcParams['font.size'] = 5 else: pyplot.rcParams['font.size'] = 8 # Return figure # return fig, axm, axcb, cb ############################################################################### def plot_hierarchical_heatmap(data_matrix, row_names, column_names): df =
pandas.DataFrame(data_matrix, index=row_names, columns=column_names)
pandas.DataFrame
#!/usr/bin/env python """ This is used to select sites with the highest measurement ratios of Qle, Qh and NEE. Sites are selected where all ratios are above 0.9 or 0.8. Also, sites are selected where Qle and Qh are above 0.8 or 0.9.The maps from this script are with zoom. Data generatred by method2.py script. """ __author__ = "<NAME>" __version__ = "1.0 (25.10.2018)" __email__ = "<EMAIL>" # Import packages import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import pandas as pd import matplotlib.patches as mpatches import os import matplotlib from mpl_toolkits.axes_grid.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid.inset_locator import mark_inset def zoommap(vals, title, label): fig = plt.figure(figsize=(12,8)) plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05, wspace=0.15,hspace=0.05) ax = plt.subplot(211) m = Basemap(projection = 'mill', llcrnrlat = -45, llcrnrlon = -160, urcrnrlat= 82, urcrnrlon = 170, resolution = 'c') m.drawcoastlines(linewidth = 0.5) plt.subplots_adjust(left=0.05,right=0.95,top=0.90,bottom=0.05, wspace=0.15,hspace=0.05) for row in vals: x,y = m(vals.lon.values, vals.lat.values) m.scatter(x,y, s = 20, color = vals.color.values) ax.text(0.03,0.95, label, size = 12, horizontalalignment='center', verticalalignment='center', transform=ax.transAxes) plt.title(title, fontsize = 12) #Zoom Europe axins_1 = zoomed_inset_axes(ax, 2, loc=2, bbox_to_anchor=(0.42, 0.48), bbox_transform=ax.figure.transFigure) axins_1.scatter(x, y, s = 20, c = vals.color.values) m.drawcoastlines(linewidth = 0.5) x2,y2 = m(-12,35) x3,y3 = m(40,65) axins_1.set_xlim(x2,x3) axins_1.set_ylim(y2,y3) axes = mark_inset(ax, axins_1, loc1=1, loc2=2, linewidth=1) #Zoom Australia axins_2 = zoomed_inset_axes(ax, 2.2, loc=3, bbox_to_anchor=(0.61, 0.255), bbox_transform=ax.figure.transFigure) axins_2.scatter(x, y, s = 20, c = vals.color.values) m.drawcoastlines(linewidth = 0.5) x2,y2 = m(110,-43) x3,y3 = m(155,-10) axins_2.set_xlim(x2,x3) axins_2.set_ylim(y2,y3) axes = mark_inset(ax, axins_2, loc1=1, loc2=2,linewidth=1) #Zoom US axins_3 = zoomed_inset_axes(ax, 1.6, loc=3, bbox_to_anchor=(0.21, 0.25), bbox_transform=ax.figure.transFigure) axins_3.scatter(x, y, s = 20, c = vals.color.values) m.drawcoastlines(linewidth = 0.5) x2,y2 = m(-130,22) x3,y3 = m(-60,63) axins_3.set_xlim(x2,x3) axins_3.set_ylim(y2,y3) axes = mark_inset(ax, axins_3, loc1=1, loc2=2, linewidth=1) return(fig, axes) with open("../data/processed/results_LH.csv", newline='') as myFile: df_results_LH = pd.read_csv(myFile) for row in df_results_LH: print(row) with open("../data/processed/results_SH.csv", newline='') as myFile: df_results_SH = pd.read_csv(myFile) for row in df_results_SH: print(row) with open("../data/processed/results_NEE.csv", newline='') as myFile: df_results_NEE =
pd.read_csv(myFile)
pandas.read_csv
import pandas as pd import pandas as pd sample1 = pd.read_table('MUT-1_2.annotate.csv', sep='\t', index_col=0)["score"] sample2 = pd.read_table('MUT-2_2.annotate.csv', sep='\t', index_col=0)["score"] sample3 = pd.read_table('MUT-4_2.annotate.csv', sep='\t', index_col=0)["score"] sample4 = pd.read_table('MUT-5_2.annotate.csv', sep='\t', index_col=0)["score"] sample5 = pd.read_table('MUT-6_2.annotate.csv', sep='\t', index_col=0)["score"] sample6 = pd.read_table('WT-1_2.annotate.csv', sep='\t', index_col=0)["score"] sample7 = pd.read_table('WT-2_2.annotate.csv', sep='\t', index_col=0)["score"] sample8 = pd.read_table('WT-3_2.annotate.csv', sep='\t', index_col=0)["score"] sample9 = pd.read_table('WT-4_2.annotate.csv', sep='\t', index_col=0)["score"] sample10 = pd.read_table('WT-5_2.annotate.csv', sep='\t', index_col=0)["score"] # meta1 =
pd.read_table('MUT-1_2.annotate.csv', sep='\t', index_col=0)
pandas.read_table
''' This method uses these features ['dow', 'year', 'month', 'day_of_week', 'holiday_flg', 'min_visitors', 'mean_visitors', 'median_visitors', 'max_visitors', 'count_observations', 'air_genre_name', 'air_area_name', 'latitude', 'longitude', 'rs1_x', 'rv1_x', 'rs2_x', 'rv2_x', 'rs1_y', 'rv1_y', 'rs2_y', 'rv2_y', 'total_reserv_sum', 'total_reserv_mean', 'total_reserv_dt_diff_mean'] RMSE GradientBoostingRegressor: 0.501477019571 RMSE KNeighborsRegressor: 0.421517079307 ''' import glob, re import numpy as np import pandas as pd from sklearn import * from datetime import datetime def RMSLE(y, pred): return metrics.mean_squared_error(y, pred)**0.5 data = { 'tra': pd.read_csv('./data/air_visit_data.csv'), 'as': pd.read_csv('./data/air_store_info.csv'), 'hs': pd.read_csv('./data/hpg_store_info.csv'), 'ar': pd.read_csv('./data/air_reserve.csv'), 'hr': pd.read_csv('./data/hpg_reserve.csv'), 'id': pd.read_csv('./data/store_id_relation.csv'), 'tes': pd.read_csv('./data/sample_submission.csv'), 'hol': pd.read_csv('./data/date_info.csv').rename(columns={'calendar_date':'visit_date'}) } # add 'air_store_id' to the last of data['hr'] data['hr'] = pd.merge(data['hr'], data['id'], how='inner', on=['hpg_store_id']) for df in ['ar', 'hr']: # get year, month, day, get rid of time data[df]['visit_datetime'] = pd.to_datetime(data[df]['visit_datetime']) data[df]['visit_datetime'] = data[df]['visit_datetime'].dt.date data[df]['reserve_datetime'] = pd.to_datetime(data[df]['reserve_datetime']) data[df]['reserve_datetime'] = data[df]['reserve_datetime'].dt.date data[df]['reserve_datetime_diff'] = data[df].apply(lambda r: (r['visit_datetime'] - r['reserve_datetime']).days, axis=1) tmp1 = data[df].groupby(['air_store_id', 'visit_datetime'], as_index=False)[ ['reserve_datetime_diff', 'reserve_visitors']].sum().rename( columns={'visit_datetime': 'visit_date', 'reserve_datetime_diff': 'rs1', 'reserve_visitors': 'rv1'}) tmp2 = data[df].groupby(['air_store_id', 'visit_datetime'], as_index=False)[ ['reserve_datetime_diff', 'reserve_visitors']].mean().rename( columns={'visit_datetime': 'visit_date', 'reserve_datetime_diff': 'rs2', 'reserve_visitors': 'rv2'}) data[df] = pd.merge(tmp1, tmp2, how='inner', on=['air_store_id', 'visit_date']) data['tra']['visit_date'] = pd.to_datetime(data['tra']['visit_date']) data['tra']['dow'] = data['tra']['visit_date'].dt.dayofweek data['tra']['year'] = data['tra']['visit_date'].dt.year data['tra']['month'] = data['tra']['visit_date'].dt.month data['tra']['visit_date'] = data['tra']['visit_date'].dt.date data['tes']['visit_date'] = data['tes']['id'].map(lambda x: str(x).split('_')[2]) data['tes']['air_store_id'] = data['tes']['id'].map(lambda x: '_'.join(x.split('_')[:2])) data['tes']['visit_date'] = pd.to_datetime(data['tes']['visit_date']) data['tes']['dow'] = data['tes']['visit_date'].dt.dayofweek data['tes']['year'] = data['tes']['visit_date'].dt.year data['tes']['month'] = data['tes']['visit_date'].dt.month data['tes']['visit_date'] = data['tes']['visit_date'].dt.date unique_stores = data['tes']['air_store_id'].unique() # count week stores = pd.concat([pd.DataFrame({'air_store_id': unique_stores, 'dow': [i]*len(unique_stores)}) for i in range(7)], axis=0, ignore_index=True).reset_index(drop=True) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].min().rename(columns={'visitors':'week_min_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].mean().rename(columns={'visitors':'week_mean_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].median().rename(columns={'visitors':'week_median_visitors'}) stores = pd.merge(stores, tmp, how='left', on=['air_store_id','dow']) tmp = data['tra'].groupby(['air_store_id','dow'], as_index=False)['visitors'].max().rename(columns={'visitors':'week_max_visitors'}) stores =
pd.merge(stores, tmp, how='left', on=['air_store_id','dow'])
pandas.merge
import numpy as np from pandas import DataFrame, Series from scipy import stats from Common.Measures.Portfolio.AbstractPortfolioMeasure import AbstractPortfolioMeasure from Common.StockMarketIndex.AbstractStockMarketIndex import AbstractStockMarketIndex class PortfolioLinearReg(AbstractPortfolioMeasure): _index: AbstractStockMarketIndex _alpha: float = -1.1 _beta: float = -1.1 _r_val: float = -1.1 _p_val: float = -1.1 _std_err: float = -1.1 def __init__(self, an_index: AbstractStockMarketIndex, portfolio_df_returns: DataFrame =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # ReEDS Scenarios on PV ICE Tool STATES # To explore different scenarios for furture installation projections of PV (or any technology), ReEDS output data can be useful in providing standard scenarios. ReEDS installation projections are used in this journal as input data to the PV ICE tool. # # Current sections include: # # <ol> # <li> ### Reading a standard ReEDS output file and saving it in a PV ICE input format </li> # <li>### Reading scenarios of interest and running PV ICE tool </li> # <li>###Plotting </li> # <li>### GeoPlotting.</li> # </ol> # Notes: # # Scenarios of Interest: # the Ref.Mod, # o 95-by-35.Adv, and # o 95-by-35+Elec.Adv+DR ones # # In[1]: import PV_ICE import numpy as np import pandas as pd import os,sys import matplotlib.pyplot as plt from IPython.display import display plt.rcParams.update({'font.size': 22}) plt.rcParams['figure.figsize'] = (12, 8) # In[2]: import os from pathlib import Path testfolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'SF_States') statedatafolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP' / 'STATEs') print ("Your simulation will be stored in %s" % testfolder) # In[3]: PV_ICE.__version__ # ### Reading REEDS original file to get list of SCENARIOs, PCAs, and STATEs # In[4]: r""" reedsFile = str(Path().resolve().parent.parent.parent / 'December Core Scenarios ReEDS Outputs Solar Futures v2a.xlsx') print ("Input file is stored in %s" % reedsFile) rawdf = pd.read_excel(reedsFile, sheet_name="UPV Capacity (GW)") #index_col=[0,2,3]) #this casts scenario, PCA and State as levels #now set year as an index in place #rawdf.drop(columns=['State'], inplace=True) rawdf.drop(columns=['Tech'], inplace=True) rawdf.set_index(['Scenario','Year','PCA', 'State'], inplace=True) scenarios = list(rawdf.index.get_level_values('Scenario').unique()) PCAs = list(rawdf.index.get_level_values('PCA').unique()) STATEs = list(rawdf.index.get_level_values('State').unique()) simulationname = scenarios simulationname = [w.replace('+', '_') for w in simulationname] simulationname SFscenarios = [simulationname[0], simulationname[4], simulationname[8]] """ # ### Reading GIS inputs # In[5]: r""" GISfile = str(Path().resolve().parent.parent.parent.parent / 'gis_centroid_n.xlsx') GIS = pd.read_excel(GISfile) GIS = GIS.set_index('id') GIS.head() GIS.loc['p1'].long """ # ### Create Scenarios in PV_ICE # #### Downselect to Solar Future scenarios of interest # # Scenarios of Interest: # <li> Ref.Mod # <li> 95-by-35.Adv # <li> 95-by-35+Elec.Adv+DR # In[6]: SFscenarios = ['Reference.Mod', '95-by-35.Adv', '95-by-35_Elec.Adv_DR'] SFscenarios # In[7]: STATEs = ['WA', 'CA', 'VA', 'FL', 'MI', 'IN', 'KY', 'OH', 'PA', 'WV', 'NV', 'MD', 'DE', 'NJ', 'NY', 'VT', 'NH', 'MA', 'CT', 'RI', 'ME', 'ID', 'MT', 'WY', 'UT', 'AZ', 'NM', 'SD', 'CO', 'ND', 'NE', 'MN', 'IA', 'WI', 'TX', 'OK', 'OR', 'KS', 'MO', 'AR', 'LA', 'IL', 'MS', 'AL', 'TN', 'GA', 'SC', 'NC'] # ### Create the 3 Scenarios and assign Baselines # # Keeping track of each scenario as its own PV ICE Object. # In[8]: MATERIALS = ['glass', 'silicon', 'silver','copper','aluminium','backsheet','encapsulant'] # In[9]: #for ii in range (0, 1): #len(scenarios): i = 0 r1 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r1.createScenario(name=STATEs[jj], file=filetitle) r1.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 1 r2 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r2.createScenario(name=STATEs[jj], file=filetitle) r2.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') i = 2 r3 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(STATEs)): filetitle = SFscenarios[i]+'_'+STATEs[jj]+'.csv' filetitle = os.path.join(statedatafolder, filetitle) r3.createScenario(name=STATEs[jj], file=filetitle) r3.scenario[STATEs[jj]].addMaterials(MATERIALS, baselinefolder=r'..\..\baselines\SolarFutures_2021', nameformat=r'\baseline_material_{}_Reeds.csv') # # Calculate Mass Flow # In[10]: r1.scenMod_noCircularity() r2.scenMod_noCircularity() r3.scenMod_noCircularity() IRENA= False PERFECTMFG = False ELorRL = 'RL' if IRENA: r1.scenMod_IRENIFY(ELorRL=ELorRL) r2.scenMod_IRENIFY(ELorRL=ELorRL) r3.scenMod_IRENIFY(ELorRL=ELorRL) if PERFECTMFG: r1.scenMod_PerfectManufacturing() r2.scenMod_PerfectManufacturing() r3.scenMod_PerfectManufacturing() # In[11]: r1.calculateMassFlow() r2.calculateMassFlow() r3.calculateMassFlow() # In[12]: print("STATEs:", r1.scenario.keys()) print("Module Keys:", r1.scenario[STATEs[jj]].data.keys()) print("Material Keys: ", r1.scenario[STATEs[jj]].material['glass'].materialdata.keys()) # # OPEN EI # In[13]: kk=0 SFScenarios = [r1, r2, r3] SFScenarios[kk].name # In[14]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo = pd.DataFrame() for jj in range (0, len(keyw)): if keywdlevel[jj] == 'material': for ii in range (0, len(materials)): sentit = '@value|'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: for ii in range (0, len(materials)): sentit = '@value|Cumulative'+keywprint[jj]+'|'+materials[ii].capitalize() +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].material[materials[ii]].materialdata[keyw[jj]].cumsum()/keywscale[jj] else: sentit = '@value|'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] #sentit = '@value|'+keywprint[jj]+'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]]/keywscale[jj] if keywdcumneed[jj]: sentit = '@value|Cumulative'+keywprint[jj]+'|'+'PV' +'#'+keywunits[jj] foo[sentit] = SFScenarios[kk].scenario[STATEs[zz]].data[keyw[jj]].cumsum()/keywscale[jj] foo['@states'] = STATEs[zz] foo['@scenario|Solar Futures'] = SFScenarios[kk].name foo['@timeseries|Year'] = SFScenarios[kk].scenario[STATEs[zz]].data.year scenariolist = scenariolist.append(foo) cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] cols = [scenariolist.columns[-1]] + [col for col in scenariolist if col != scenariolist.columns[-1]] scenariolist = scenariolist[cols] #scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv('PV ICE OpenEI.csv', index=False) print("Done") # In[15]: # WORK ON THIS FOIR OPENEI keyw=['mat_Virgin_Stock','mat_Total_EOL_Landfilled','mat_Total_MFG_Landfilled', 'mat_Total_Landfilled', 'new_Installed_Capacity_[MW]','Installed_Capacity_[W]'] keywprint = ['VirginMaterialDemand','EOLMaterial', 'ManufacturingScrap','ManufacturingScrapAndEOLMaterial', 'NewInstalledCapacity','InstalledCapacity'] keywunits = ['MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MetricTonnes', 'MW','MW'] keywdcumneed = [True,True,True,True, True,False] keywdlevel = ['material','material','material','material', 'module','module'] keywscale = [1000000, 1000000, 1000000, 1000000, 1,1e6] materials = ['glass', 'silicon', 'silver', 'copper', 'aluminium'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials for zz in range (0, len(STATEs)): foo =
pd.DataFrame()
pandas.DataFrame
import os import random import numpy import pandas as pd import tensorflow as tf import grpc from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 from tensorflow_serving.apis import classification_pb2 from tensorflow_serving.apis import regression_pb2 from grpc.beta import implementations from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc from tensorflow_serving.apis import classification_pb2 from flask import Flask,render_template, request app = Flask(__name__) app.config["UPLOAD_FOLDER"]=os.getcwd() TF_MODEL_SERVER_HOST = os.getenv("TF_MODEL_SERVER_HOST", "127.0.0.1") TF_MODEL_SERVER_PORT = int(os.getenv("TF_MODEL_SERVER_PORT", 9000)) #server="10.111.238.238:9000" server = str(TF_MODEL_SERVER_HOST)+":"+str(TF_MODEL_SERVER_PORT) channel = grpc.insecure_channel(server) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = classification_pb2.ClassificationRequest() request.model_spec.name = 'Model_Blerssi' request.model_spec.signature_name = 'serving_default' try : response = stub.Classify(request, 10.0) except Exception as e: pass server = str(TF_MODEL_SERVER_HOST)+":"+str(TF_MODEL_SERVER_PORT) print(server) #channel = grpc.insecure_channel(server) #stub = helloworld_pb2_grpc.GreeterStub(channel) #response = stub.SayHello(helloworld_pb2.HelloRequest(name='you')) #print(response) label_dict = {'O02': 0, 'P01': 1, 'P02': 2, 'R01': 3, 'R02': 4, 'S01': 5, 'S02': 6, 'T01': 7, 'U02': 8, 'U01': 9, 'J03': 10, 'K03': 11, 'L03': 12, 'M03': 13, 'N03': 14, 'O03': 15, 'P03': 16, 'Q03': 17, 'R03': 18, 'S03': 19, 'T03': 20, 'U03': 21, 'U04': 22, 'T04': 23, 'S04': 24, 'R04': 25, 'Q04': 26, 'P04': 27, 'O04': 28, 'N04': 29, 'M04': 30, 'L04': 31, 'K04': 32, 'J04': 33, 'I04': 34, 'I05': 35, 'J05': 36, 'K05': 37, 'L05': 38, 'M05': 39, 'N05': 40, 'O05': 41, 'P05': 42, 'Q05': 43, 'R05': 44, 'S05': 45, 'T05': 46, 'U05': 47, 'S06': 48, 'R06': 49, 'Q06': 50, 'P06': 51, 'O06': 52, 'N06': 53, 'M06': 54, 'L06': 55, 'K06': 56, 'J06': 57, 'I06': 58, 'F08': 59, 'J02': 60, 'J07': 61, 'I07': 62, 'I10': 63, 'J10': 64, 'D15': 65, 'E15': 66, 'G15': 67, 'J15': 68, 'L15': 69, 'R15': 70, 'T15': 71, 'W15': 72, 'I08': 73, 'I03': 74, 'J08': 75, 'I01': 76, 'I02': 77, 'J01': 78, 'K01': 79, 'K02': 80, 'L01': 81, 'L02': 82, 'M01': 83, 'M02': 84, 'N01': 85, 'N02': 86, 'O01': 87, 'I09': 88, 'D14': 89, 'D13': 90, 'K07': 91, 'K08': 92, 'N15': 93, 'P15': 94, 'I15': 95, 'S15': 96, 'U15': 97, 'V15': 98, 'S07': 99, 'S08': 100, 'L09': 101, 'L08': 102, 'Q02': 103, 'Q01': 104} def get_key(val): for key, value in label_dict.items(): if val == value: return key @app.route('/') def form(): return render_template("login.html") @app.route('/transform', methods=['POST']) def transform_view(): from flask import request csv = request.files['file'] csv.save("iBeacon_RSSI_Unlabeled.csv") BLE_RSSI_UL =
pd.read_csv("iBeacon_RSSI_Unlabeled.csv", encoding='utf8')
pandas.read_csv
import sys sys.path.append('C:\PhD_Chalmers\Python\Lib\site-packages') ## adding directory import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime today = datetime.date.today() from m1_Class_Plants import pp_list,fuel_list,biomass from m2_demand_slices import q0_hr_slice,q0t,availability_levels_solar,availability_levels_wind from m2_slices import slice_hrs from m3_1_availability import fun_availability from m3_2_dispatch_order import fun_rank_dispatch from m4_demand_supply import fun_demand_supply from m5_utilization import fun_pp_utilization from m7_plot_dispatch_slice import func_plot_dispatch_slice from m7_plot_dispatch_yr import func_plot_dispatch_yr from m10_switch_bio import func_switch_bio from m11_func_switch_type import func_switch_type pd.set_option('display.max_columns', 12) pd.options.mode.chained_assignment = None import pdb # ~ pdb.set_trace() ##set breakpoint # ============================================================================= ##1.1import data: installed_capacity. file_path1 = "output/tables/installed/" file_name1 = "installed_capacity_2019-06-17.xlsx" # ~ file_comp0 = "yr_installed_comp0_heter_2019-05-30.xlsx" # ~ file_comp1 = "yr_installed_comp1_heter_2019-05-30.xlsx" # ~ file_comp2 = "yr_installed_comp2_heter_2019-05-30.xlsx" df_installed = pd.read_excel(file_path1+file_name1,header=0,index_col=0) df_installed.fillna(value=0,inplace=True)##fill the NaN vaulue with 0. # ~ print(df_installed) n =len(df_installed.columns)#length of columns. df_installed.set_axis(np.array(['capacity']*n), axis='columns', inplace=True) ##rename column name to 'capacity'. ##on individual agent level. # ~ comp0_installed = pd.read_excel(file_path1+file_comp0,header=0,index_col=0) # ~ comp1_installed = pd.read_excel(file_path1+file_comp1,header=0,index_col=0) # ~ comp2_installed = pd.read_excel(file_path1+file_comp2,header=0,index_col=0) # ~ comp0_installed.fillna(value=0,inplace=True) # ~ comp1_installed.fillna(value=0,inplace=True) # ~ comp2_installed.fillna(value=0,inplace=True) # ~ comp0_installed.set_axis(np.array(['capacity']*n), axis='columns', inplace=True) ##rename column name to 'capacity'. # ~ comp1_installed.set_axis(np.array(['capacity']*n), axis='columns', inplace=True) ##rename column name to 'capacity'. # ~ comp2_installed.set_axis(np.array(['capacity']*n), axis='columns', inplace=True) ##rename column name to 'capacity'. # ============================================================================= ##1.2.concating attributes (running cost, emission intensity)## df_attribute = pd.DataFrame({'running_cost': [pp.running_cost for pp in pp_list], 'emission_intensity': [pp.emission_intensity for pp in pp_list]},index=[pp.plant_type for pp in pp_list]) df_pp_pi = pd.concat([df_attribute,df_installed], axis=1, sort=True, copy=False )##concat two df. # ~ comp0_installed = pd.concat([df_attribute,comp0_installed], axis=1, sort=True, copy=False )##concat two df. # ~ comp1_installed = pd.concat([df_attribute,comp1_installed], axis=1, sort=True, copy=False )##concat two df. # ~ comp2_installed = pd.concat([df_attribute,comp2_installed], axis=1, sort=True, copy=False )##concat two df. df_pp_pi.reset_index(level=0, inplace=True)## reset index # ~ comp0_installed.reset_index(level=0, inplace=True)## reset index # ~ comp1_installed.reset_index(level=0, inplace=True)## reset index # ~ comp2_installed.reset_index(level=0, inplace=True)## reset index df_pp_pi.rename({'index':'plant_type'}, axis='columns',inplace=True) ##rename column. # ~ comp0_installed.rename({'index':'plant_type'}, axis='columns',inplace=True) ##rename column. # ~ comp1_installed.rename({'index':'plant_type'}, axis='columns',inplace=True) ##rename column. # ~ comp2_installed.rename({'index':'plant_type'}, axis='columns',inplace=True) ##rename column. # ~ print(df_pp_pi) # ============================================================================= ##1.3 set-up empty df for plottings. yr_dispatched_series = pd.DataFrame(index=[pp.plant_type for pp in fuel_list]) slice_dispatched_series = pd.DataFrame(index=[pp.plant_type for pp in fuel_list]) # ~ pdb.set_trace() ##set breakpoint ##1.4 set-up list for plottings. sliced_hours = np.reshape(q0_hr_slice, 64, order='C') annual_price_average1 = np.array([]) ## for recording average electricity price of each year. ##average by production. ##1.5 set-up empty df for recording results(profit) yr_revenue_series = pd.DataFrame(index=[pp.plant_type for pp in pp_list]) #system level yr_operate_profit_series = pd.DataFrame(index=[pp.plant_type for pp in pp_list]) ##individual agent level. # ~ yr_operate_profit_comp0_series = pd.DataFrame(index=[pp.plant_type for pp in pp_list]) # ~ yr_operate_profit_comp1_series = pd.DataFrame(index=[pp.plant_type for pp in pp_list]) # ~ yr_operate_profit_comp2_series = pd.DataFrame(index=[pp.plant_type for pp in pp_list]) # ============================================================================ ##2.calculating el. price, dispatch, revenue and ect. for year in range (n): print('\n' +'----- year: '+ str(year)+'----- ') ##2.1 slicing the column, and select capacity of current year. df_pp = df_pp_pi.iloc[:,[0,1,2,year+3]] # ~ df_comp0 = comp0_installed.iloc[:,[0,1,2,year+3]] # ~ df_comp1 = comp1_installed.iloc[:,[0,1,2,year+3]] # ~ df_comp2 = comp2_installed.iloc[:,[0,1,2,year+3]] # =================================================================== # 2.2 set carbon_tax if year <= 10: carbon_tax = 0 ## carbon tax is 0 before year 10. elif 10 <= year <= 50: carbon_tax = 250 * year - 2500 ## from year 10 to 50, carbon tax increases linearly to 10000 cent/ton. else: carbon_tax = 10000 ## after year 50, carbon tax stays at 10000 cent/ton. # ================================================================= # creat empty lists and initial values. eq_price_slice_64 = np.array([]) dispatched_slice_64 = np.array([]) coal_dispatch_slice = np.array([]) slice_nr = 0 df_pp['dispatched_yr'] = 0 df_pp['revenue_yr'] = 0 df_pp['operate_profit_yr'] = 0 # ~ df_comp0 ['operate_profit_yr'] = 0 # ~ df_comp1 ['operate_profit_yr'] = 0 # ~ df_comp2 ['operate_profit_yr'] = 0 df_pp['marginal_cost'] = df_pp['running_cost'] + carbon_tax * df_pp['emission_intensity'] # ~ df_comp0['marginal_cost'] = df_comp0['running_cost'] + carbon_tax * df_comp0['emission_intensity'] # ~ df_comp1['marginal_cost'] = df_comp0['running_cost'] + carbon_tax * df_comp1['emission_intensity'] # ~ df_comp2['marginal_cost'] = df_comp0['running_cost'] + carbon_tax * df_comp2['emission_intensity'] if biomass in fuel_list: ##check whether biofuel is available. ##if natural gas is more expensive than biogas. df_pp = func_switch_bio(df_pp,biomass.running_cost) # ~ df_comp0 = func_switch_bio(df_comp0,biomass.running_cost) # ~ df_comp1 = func_switch_bio(df_comp1,biomass.running_cost) # ~ df_comp2 = func_switch_bio(df_comp2,biomass.running_cost) # ~ print('yes, biomass.') # =============================================================== ##start ex-post analysis. for q0 in range(len(q0t)): ##length is 4, loop through. demand_level = q0t[q0] for solar_index in range(len(availability_levels_solar)):##4 levels of solar availability. avail_solar = availability_levels_solar[solar_index] for wind_index in range(len(availability_levels_wind)): avail_wind = availability_levels_wind[wind_index] allocated_hours = q0_hr_slice[q0][solar_index][wind_index] ## hours in current slice. # ======================================================= df_pp['capacity_available_KW'] = df_pp.apply(lambda row: fun_availability(row.plant_type,avail_solar,avail_wind),axis=1) * df_pp.capacity # ~ df_comp0['capacity_available_KW'] = df_comp0.apply(lambda row: fun_availability(row.plant_type,avail_solar,avail_wind),axis=1) * df_comp0.capacity # ~ df_comp1['capacity_available_KW'] = df_comp1.apply(lambda row: fun_availability(row.plant_type,avail_solar,avail_wind),axis=1) * df_comp1.capacity # ~ df_comp2['capacity_available_KW'] = df_comp2.apply(lambda row: fun_availability(row.plant_type,avail_solar,avail_wind),axis=1) * df_comp2.capacity ranked_dispatch = fun_rank_dispatch(df_pp) eq_production,eq_price,last_supply_type,last_supply_percent = fun_demand_supply(df_pp,ranked_dispatch,demand_level) eq_price_slice_64 = np.append(eq_price_slice_64,[eq_price]) df_pp['utilization'] = df_pp.apply(lambda row: fun_pp_utilization(row.marginal_cost,last_supply_percent,eq_price),axis=1) # ~ df_comp0['utilization'] = df_comp0.apply(lambda row: fun_pp_utilization(row.marginal_cost,last_supply_percent,eq_price),axis=1) # ~ df_comp1['utilization'] = df_comp1.apply(lambda row: fun_pp_utilization(row.marginal_cost,last_supply_percent,eq_price),axis=1) # ~ df_comp2['utilization'] = df_comp2.apply(lambda row: fun_pp_utilization(row.marginal_cost,last_supply_percent,eq_price),axis=1) df_pp['slice_dispatched_KWH'] = df_pp.utilization * df_pp.capacity_available_KW ##one slice, multiplied with allocated_hours df_pp['slice_dispatched_KWHs'] = df_pp.slice_dispatched_KWH *allocated_hours ##one slice, multiplied with allocated_hours # ~ df_comp0['slice_dispatched_KWHs'] = df_comp0.utilization * df_comp0.capacity_available_KW *allocated_hours ##one slice, multiplied with allocated_hours # ~ df_comp1['slice_dispatched_KWHs'] = df_comp1.utilization * df_comp1.capacity_available_KW *allocated_hours ##one slice, multiplied with allocated_hours # ~ df_comp2['slice_dispatched_KWHs'] = df_comp2.utilization * df_comp2.capacity_available_KW *allocated_hours ##one slice, multiplied with allocated_hours df_pp['revenue_slice'] = df_pp.slice_dispatched_KWHs * eq_price df_pp['operating_cost_slice'] = df_pp.slice_dispatched_KWHs * df_pp.marginal_cost df_pp['operate_profit_slice'] = df_pp.revenue_slice - df_pp.operating_cost_slice # ~ df_comp0['operate_profit_slice'] = df_comp0.slice_dispatched_KWHs * (eq_price - df_comp0.marginal_cost) # ~ df_comp1['operate_profit_slice'] = df_comp1.slice_dispatched_KWHs * (eq_price - df_comp1.marginal_cost) # ~ df_comp2['operate_profit_slice'] = df_comp2.slice_dispatched_KWHs * (eq_price - df_comp2.marginal_cost) # ====================================================== # ====================================================== ##recording slice results. ##1. dispatch of each slice. slice_dispatch = df_pp[['plant_type','slice_dispatched_KWH']].set_index('plant_type') slice_dispatched_series[str(slice_nr)] = pd.concat([slice_dispatch], axis=1, sort=True) ##2. sum-up production from all types of pp, for calcuating average price. dispatched_slice_64 = np.append(dispatched_slice_64,[df_pp['slice_dispatched_KWHs'].sum()]) ##3. accumulate slice results. df_pp['dispatched_yr'] += df_pp.slice_dispatched_KWHs df_pp['revenue_yr'] += df_pp.revenue_slice df_pp['operate_profit_yr'] += df_pp.operate_profit_slice # ~ df_comp0['operate_profit_yr'] += df_comp0.operate_profit_slice # ~ df_comp1['operate_profit_yr'] += df_comp1.operate_profit_slice # ~ df_comp2['operate_profit_yr'] += df_comp2.operate_profit_slice # ~ print(df_pp['slice_dispatched_KWHs']) # ~ print(dispatched_slice_64) slice_nr +=1 continue continue continue # =========================================================================# ##record yearly results. #dispatch yr_dispatch = df_pp[['plant_type','dispatched_yr']].set_index('plant_type') yr_dispatched_series[str(year)] = pd.concat([yr_dispatch], axis=1, sort=True) #revenue & profit df_pp = func_switch_type(df_pp,'biomass','gas') # ~ df_comp0 = func_switch_type(df_comp0,'biomass','gas') # ~ df_comp1 = func_switch_type(df_comp1,'biomass','gas') # ~ df_comp2 = func_switch_type(df_comp2,'biomass','gas') # ~ index_biomass = df_pp.loc[df_pp.plant_type == 'biomass'].index # ~ df_pp.at[index_biomass, 'plant_type'] = 'gas' ## switch name of biomass to gas. ##system level yr_revenue = df_pp[['plant_type','revenue_yr']].set_index('plant_type') yr_revenue_series[str(year)] =
pd.concat([yr_revenue], axis=1, sort=True)
pandas.concat
from pandas import Series, Period, PeriodIndex, date_range class create_period_index_from_date_range(object): goal_time = 0.2 def time_period_index(self): # Simulate irregular PeriodIndex PeriodIndex(date_range('1985', periods=1000).to_pydatetime(), freq='D') class period_setitem(object): goal_time = 0.2 def setup(self): self.N = 100000 self.rng = date_range(start='1/1/2000', periods=self.N, freq='T') if hasattr(Series, 'convert'): Series.resample = Series.convert self.ts = Series(np.random.randn(self.N), index=self.rng) self.rng = period_range(start='1/1/1990', freq='S', periods=20000) self.df = DataFrame(index=range(len(self.rng))) def time_period_setitem(self): self.df['col'] = self.rng class period_algorithm(object): goal_time = 0.2 def setup(self): data = [
Period('2011-01', freq='M')
pandas.Period
# -*- coding: utf-8 -*- """ Created on Mon Feb 3 10:50:05 2020 @author: obazgir """ import csv import numpy as np import pandas as pd import os import scipy as sp from scipy.stats import pearsonr import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR import cv2 import pickle from Toolbox import NRMSE, Random_Image_Gen, two_d_norm, two_d_eq, Assign_features_to_pixels, MDS_Im_Gen, Bias_Calc, REFINED_Im_Gen from sklearn.metrics import mean_absolute_error ########################################## # # # # # Data Cleaning # # # ########################################## cell_lines = ["HCC_2998","MDA_MB_435", "SNB_78", "NCI_ADR_RES","DU_145", "786_0", "A498","A549_ATCC","ACHN","BT_549","CAKI_1","DLD_1","DMS_114","DMS_273","CCRF_CEM","COLO_205","EKVX"] #cell_lines = ["HCC_2998"] Results_Dic = {} SAVE_PATH = "/home/obazgir/REFINED/Volumetric_REFINED/Geometric_REFINED/" #%% for SEL_CEL in cell_lines: # Loading the the drug responses and their IDs (NSC) DF =
pd.read_csv("/home/obazgir/REFINED/NCI/NCI60_GI50_normalized_April.csv")
pandas.read_csv
import sys import time sys.path.insert(0, 'src/Utilities') import pandas as pd import tools import ml_utilities as mlu import os import re from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler def run_gender_cor(df, options, n, scoresdf, contrast_name, label): classification = True if label == 'gender': df.drop(['label', 'age'], axis=1, inplace=True) models = ["svm_kernel_default", "svm_kernel_tuned", "naive_bayes", "decision_tree", "rfc", 'logistic_regression'] elif label == 'age': df.drop(['label', 'gender'], axis=1, inplace=True) models = ['linear_reg', 'lasso', 'polynomial_reg'] models = ['svr_kernel_default', 'svr_kernel_tuned', 'gpr_default'] classification = False df = df.rename(columns={label: 'label'}) for i in range(options.number_iterations): train, test = mlu.train_test_split(df) x_train, y_train = mlu.get_features_labels(train) x_test, y_test = mlu.get_features_labels(test) if classification: scaler = StandardScaler() x_train = scaler.fit_transform(x_train, y_train) x_test = scaler.transform(x_test) if options.model == 'all': for model_name in models: train_score, train_balanced_score, trained_model, min_max_scaler = mlu.model_fitting(model_name, x_train, y_train, options.kFold, options.normalize) if options.normalize: x_test_minmax = min_max_scaler.transform(x_test) x_test = x_test_minmax test_score = trained_model.score(x_test, y_test) test_balanced_score = mlu.balanced_accuracy(trained_model.predict(x_test), y_test) if not classification: if model_name == "gpr_default": pred, sigma = trained_model.predict(x_test, return_std=True) else: pred = trained_model.predict(x_test) test_balanced_score = mean_squared_error(y_test, pred, multioutput='raw_values') # print(model_name + " Train:"+ str(train_score) + " Test:" +str(test_score) +" Contrast:" +contrast_name) scoresdf = scoresdf.append( {'Score': train_score, 'Type': 'train', 'Model': model_name, 'Classifier': n, 'Contrast_name': contrast_name, 'Balanced_accuracy': train_balanced_score}, ignore_index=True) scoresdf = scoresdf.append( {'Score': test_score, 'Type': 'test', 'Model': model_name, 'Classifier': n, 'Contrast_name': contrast_name, 'Balanced_accuracy': test_balanced_score}, ignore_index=True) else: train_score, train_balanced_score, trained_model, min_max_scaler = mlu.model_fitting(options.model, x_train, y_train) test_score = trained_model.score(x_test, y_test) test_balanced_score = mlu.balanced_accuracy(trained_model.predict(x_test), y_test) scoresdf = scoresdf.append( {'Score': train_score, 'Type': 'train', 'Model': options.model, 'Classifier': n, 'Contrast_name': contrast_name, 'Balanced_accuracy': train_balanced_score}, ignore_index=True) scoresdf = scoresdf.append( {'Score': test_score, 'Type': 'test', 'Model': options.model, 'Classifier': n, 'Contrast_name': contrast_name, 'Balanced_accuracy': test_balanced_score}, ignore_index=True) return scoresdf def main(): options = tools.parse_options() start = time.time() if os.path.isfile(options.input): scoresdf =
pd.read_csv(options.input)
pandas.read_csv
import cv2 as cv from datetime import datetime import logging import math import numpy as np import os from os import path import pandas as pd import random import requests from timeit import default_timer as timer import tkinter def timeit(method): """ Decorador para medir el tiempo de ejecución de funciones :param method: :return: """ def timed(*args, **kw): ts = timer() result = method(*args, **kw) te = timer() logging.info('Time for method \'{}\': {} ms'.format(method.__name__, te - ts)) return result return timed def warmup(method): """ Decorador para realizar fase de calentamiento antes de cualquier prueba de tiempo. :param method: :return: """ def warm(*args, **kw): print("warming...") for _ in range(10000): random.randint(0, 1000000) result = method(*args, **kw) return result return warm def load_scores(file_path): """ Cargar scores guardados en un fichero de texto, donde cada linea es un score. :param file_path: dirección del fichero de texto. :return: """ f = open(file_path, "r") for line in f: dist = float(line.strip()) yield dist f.close() def date_string(): """ Obtener string con la fecha actual en formato dia-mes-año_hora-minuto-segundo. :return: string con la fecha. """ return datetime.now().strftime("%y-%m-%d_%H-%M-%S") def decompose_seconds(seconds): """ Descomponer una cantidad de segundos en horas, minutos y segundos. :param seconds: :return: """ h = int(seconds // 3600) m = int(seconds % 3600 // 60) s = int(seconds % 60) ms = int((seconds - int(seconds)) * 1000) return h, m, s, ms def time_string(seconds, with_ms=False, sep=':'): """ Devolver un string en formato HH:MM:SS según la cantidad de segundos pasados por parámetro. Si with_ms=True el formato es HH:MM:SS,MS :param seconds: :param with_ms: :param sep: :return: """ h, m, s, ms = decompose_seconds(seconds) if with_ms: return f'{h:02d}{sep}{m:02d}{sep}{s:02d},{ms:03d}' else: return f'{h:02d}{sep}{m:02d}{sep}{s:02d}' def write_xlsx(datas, output_file): """ Escribir una tabla de datos en un archivo xlsx. :param datas: lista de tablas de datos con formato {columna: [valores], ...}. :param output_file: fichero de salida. :return: """ file_dir, _ = path.split(output_file) if file_dir != '' and not path.exists(file_dir): os.makedirs(file_dir) writer = pd.ExcelWriter(output_file, engine='xlsxwriter') sheet_name = 'Sheet1' row = 0 if isinstance(datas, list): for data in datas: df =
pd.DataFrame(data)
pandas.DataFrame
__author__ = "<NAME>" __date__ = "Dec 14, 2010" import csv import json from pathlib import Path from numpy import NaN, concatenate from openpyxl import load_workbook from pandas import DataFrame, ExcelWriter, read_excel from corems.mass_spectrum.output.export import HighResMassSpecExport from corems.molecular_id.calc.SpectralSimilarity import methods_name from corems.encapsulation.constant import Atoms from corems.encapsulation.output import parameter_to_dict from corems.mass_spectrum.factory.MassSpectrumClasses import MassSpecfromFreq from corems import __version__, corems_md5 import uuid class LowResGCMSExport(): def __init__(self, out_file_path, gcms): ''' output_type: str 'excel', 'csv', 'hdf5' or 'pandas' ''' self.output_file = Path(out_file_path) self.gcms = gcms self._init_columns() def _init_columns(self): columns = ['Sample name', 'Peak Index', 'Retention Time', 'Retention Time Ref', 'Peak Height', 'Peak Area', 'Retention index', 'Retention index Ref', 'Retention Index Score', 'Similarity Score', 'Spectral Similarity Score', 'Compound Name', "Chebi ID", "Kegg Compound ID", "Inchi", "Inchi Key", "Smiles", "Molecular Formula", "IUPAC Name", "Traditional Name", "Common Name", 'Derivatization' ] if self.gcms.molecular_search_settings.exploratory_mode: columns.extend(['Weighted Cosine Correlation', 'Cosine Correlation', 'Stein Scott Similarity', 'Pearson Correlation', 'Spearman Correlation', 'Kendall Tau Correlation', 'Euclidean Distance', 'Manhattan Distance', 'Jaccard Distance', 'DWT Correlation', 'DFT Correlation']) columns.extend(list(methods_name.values())) return columns def get_pandas_df(self, id_label="corems:"): columns = self._init_columns() dict_data_list = self.get_list_dict_data(self.gcms) df = DataFrame(dict_data_list, columns=columns) df.name = self.gcms.sample_name return df def get_json(self, nan=False, id_label="corems:"): import json dict_data_list = self.get_list_dict_data(self.gcms) return json.dumps(dict_data_list, sort_keys=False, indent=4, separators=(',', ': ')) def to_pandas(self, write_metadata=True, id_label="corems:"): columns = self._init_columns() dict_data_list = self.get_list_dict_data(self.gcms) df = DataFrame(dict_data_list, columns=columns) df.to_pickle(self.output_file.with_suffix('.pkl')) if write_metadata: self.write_settings(self.output_file.with_suffix('.pkl'), self.gcms, id_label="corems:") def to_excel(self, write_mode='a', write_metadata=True, id_label="corems:"): out_put_path = self.output_file.with_suffix('.xlsx') columns = self._init_columns() dict_data_list = self.get_list_dict_data(self.gcms) df = DataFrame(dict_data_list, columns=columns) if write_mode == 'a' and out_put_path.exists(): writer = ExcelWriter(out_put_path, engine='openpyxl') # try to open an existing workbook writer.book = load_workbook(out_put_path) # copy existing sheets writer.sheets = dict((ws.title, ws) for ws in writer.book.worksheets) # read existing file reader = read_excel(out_put_path) # write out the new sheet df.to_excel(writer, index=False, header=False, startrow=len(reader) + 1) writer.close() else: df.to_excel(self.output_file.with_suffix('.xlsx'), index=False, engine='openpyxl') if write_metadata: self.write_settings(out_put_path, self.gcms, id_label=id_label) def to_csv(self, separate_output=False, write_mode="w", write_metadata=True, id_label="corems:"): if separate_output: # set write mode to write # this mode will overwrite the file without warning write_mode = 'w' else: # set write mode to append write_mode = 'a' columns = self._init_columns() dict_data_list = self.get_list_dict_data(self.gcms) out_put_path = self.output_file.with_suffix('.csv') write_header = not out_put_path.exists() try: with open(out_put_path, write_mode, newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=columns) if write_header: writer.writeheader() for data in dict_data_list: writer.writerow(data) if write_metadata: self.write_settings(out_put_path, self.gcms, id_label=id_label) except IOError as ioerror: print(ioerror) def to_hdf(self, id_label="corems:"): # save sample at a time def add_compound(gc_peak, compound_obj): modifier = compound_obj.classify if compound_obj.classify else "" compound_group = peak_group.create_group(compound_obj.name.replace('/', '') + " " + modifier) compound_group.attrs["retention_time"] = compound_obj.rt compound_group.attrs["retention_index"] = compound_obj.ri compound_group.attrs["retention_index_score"] = compound_obj.ri_score compound_group.attrs["spectral_similarity_score"] = compound_obj.spectral_similarity_score compound_group.attrs["similarity_score"] = compound_obj.similarity_score compond_mz = compound_group.create_dataset('mz', data=np.array(compound_obj.mz), dtype="f8") compond_abundance = compound_group.create_dataset('abundance', data=np.array(compound_obj.abundance), dtype="f8") if self.gcms.molecular_search_settings.exploratory_mode: compound_group.attrs['Spectral Similarities'] = json.dumps(compound_obj.spectral_similarity_scores, sort_keys=False, indent=4, separators=(',',':')) import h5py import json import numpy as np from datetime import datetime, timezone output_path = self.output_file.with_suffix('.hdf5') with h5py.File(output_path, 'w') as hdf_handle: timenow = str(datetime.now(timezone.utc).strftime("%d/%m/%Y %H:%M:%S %Z")) hdf_handle.attrs['time_stamp'] = timenow hdf_handle.attrs['data_structure'] = 'gcms' hdf_handle.attrs['analyzer'] = self.gcms.analyzer hdf_handle.attrs['instrument_label'] = self.gcms.instrument_label hdf_handle.attrs['sample_id'] = "self.gcms.id" hdf_handle.attrs['sample_name'] = self.gcms.sample_name hdf_handle.attrs['input_data'] = str(self.gcms.file_location) hdf_handle.attrs['output_data'] = str(output_path) hdf_handle.attrs['output_data_id'] = id_label + uuid.uuid4().hex hdf_handle.attrs['corems_version'] = __version__ hdf_handle.attrs["Stats"] = json.dumps(self.get_data_stats(self.gcms), sort_keys=False, indent=4, separators=(',', ': ')) hdf_handle.attrs["Calibration"] = json.dumps(self.get_calibration_stats(self.gcms, id_label), sort_keys=False, indent=4, separators=(',', ': ')) hdf_handle.attrs["Blank"] = json.dumps(self.get_blank_stats(self.gcms), sort_keys=False, indent=4, separators=(',', ': ')) corems_dict_setting = parameter_to_dict.get_dict_data_gcms(self.gcms) hdf_handle.attrs["CoreMSParameters"] = json.dumps(corems_dict_setting, sort_keys=False, indent=4, separators=(',', ': ')) scans_dataset = hdf_handle.create_dataset('scans', data=np.array(self.gcms.scans_number), dtype="f8") rt_dataset = hdf_handle.create_dataset('rt', data=np.array(self.gcms.retention_time), dtype="f8") tic_dataset = hdf_handle.create_dataset('tic', data=np.array(self.gcms.tic), dtype="f8") processed_tic_dataset = hdf_handle.create_dataset('processed_tic', data=np.array(self.gcms.processed_tic), dtype="f8") output_score_method = self.gcms.molecular_search_settings.output_score_method for gc_peak in self.gcms: # print(gc_peak.rt) # print(gc_peak.tic) # check if there is a compound candidate peak_group = hdf_handle.create_group(str(gc_peak.rt)) peak_group.attrs["deconvolution"] = int(self.gcms.chromatogram_settings.use_deconvolution) peak_group.attrs["start_index"] = gc_peak.start_index peak_group.attrs["index"] = gc_peak.index peak_group.attrs["final_index"] = gc_peak.final_index peak_group.attrs["retention_index"] = gc_peak.ri peak_group.attrs["retention_time"] = gc_peak.rt peak_group.attrs["area"] = gc_peak.area mz = peak_group.create_dataset('mz', data=np.array(gc_peak.mass_spectrum.mz_exp), dtype="f8") abundance = peak_group.create_dataset('abundance', data=np.array(gc_peak.mass_spectrum.abundance), dtype="f8") if gc_peak: if output_score_method == 'highest_sim_score': compound_obj = gc_peak.highest_score_compound add_compound(gc_peak, compound_obj) elif output_score_method == 'highest_ss': compound_obj = gc_peak.highest_ss_compound add_compound(gc_peak, compound_obj) else: for compound_obj in gc_peak: add_compound(gc_peak, compound_obj) def get_data_stats(self, gcms): matched_peaks = gcms.matched_peaks no_matched_peaks = gcms.no_matched_peaks unique_metabolites = gcms.unique_metabolites peak_matchs_above_0p85 = 0 unique_peak_match_above_0p85 = 0 for match_peak in matched_peaks: gc_peak_above_85 = 0 matches_above_85 = list(filter(lambda m: m.similarity_score >= 0.85, match_peak)) if matches_above_85: peak_matchs_above_0p85 +=1 if len(matches_above_85) == 1: unique_peak_match_above_0p85 += 1 data_stats = {} data_stats['average_signal_noise'] = "ni" data_stats['chromatogram_dynamic_range'] = gcms.dynamic_range data_stats['total_number_peaks'] = len(gcms) data_stats['total_peaks_matched'] = len(matched_peaks) data_stats['total_peaks_without_matches'] = len(no_matched_peaks) data_stats['total_matches_above_similarity_score_0.85'] = peak_matchs_above_0p85 data_stats['single_matches_above_similarity_score_0.85'] = unique_peak_match_above_0p85 data_stats['unique_metabolites'] = len(unique_metabolites) return data_stats def get_calibration_stats(self, gcms, id_label): calibration_parameters = {} calibration_parameters['calibration_rt_ri_pairs_ref'] = gcms.ri_pairs_ref calibration_parameters['data_url'] = str(gcms.cal_file_path) calibration_parameters['has_input'] = id_label + corems_md5(gcms.cal_file_path) calibration_parameters['data_name'] = str(gcms.cal_file_path.stem) calibration_parameters['calibration_method'] = "" return calibration_parameters def get_blank_stats(self, gcms): blank_parameters = {} blank_parameters['data_name'] = "ni" blank_parameters['blank_id'] = "ni" blank_parameters['data_url'] = "ni" blank_parameters['has_input'] = "ni" blank_parameters['common_features_to_blank'] = "ni" return blank_parameters def get_instrument_metadata(self, gcms): instrument_metadata = {} instrument_metadata['analyzer'] = gcms.analyzer instrument_metadata['instrument_label'] = gcms.instrument_label instrument_metadata['instrument_id'] = uuid.uuid4().hex return instrument_metadata def get_data_metadata(self, gcms, id_label, output_path): if isinstance(output_path, str): output_path = Path(output_path) paramaters_path = output_path.with_suffix('.json') if paramaters_path.exists(): with paramaters_path.open() as current_param: metadata = json.load(current_param) data_metadata = metadata.get('Data') else: data_metadata = {} data_metadata['data_name'] = [] data_metadata['input_data_url'] = [] data_metadata['has_input'] = [] data_metadata['data_name'].append(gcms.sample_name) data_metadata['input_data_url'].append(str(gcms.file_location)) data_metadata['has_input'].append(id_label + corems_md5(gcms.file_location)) data_metadata['output_data_name'] = str(output_path.stem) data_metadata['output_data_url'] = str(output_path) data_metadata['has_output'] = id_label + corems_md5(output_path) return data_metadata def get_parameters_json(self, gcms, id_label, output_path): output_parameters_dict = {} output_parameters_dict['Data'] = self.get_data_metadata(gcms, id_label, output_path) output_parameters_dict["Stats"] = self.get_data_stats(gcms) output_parameters_dict["Calibration"] = self.get_calibration_stats(gcms, id_label) output_parameters_dict["Blank"] = self.get_blank_stats(gcms) output_parameters_dict["Instrument"] = self.get_instrument_metadata(gcms) corems_dict_setting = parameter_to_dict.get_dict_data_gcms(gcms) corems_dict_setting['corems_version'] = __version__ output_parameters_dict["CoreMSParameters"] = corems_dict_setting output_parameters_dict["has_metabolite"] = gcms.metabolites_data output = json.dumps(output_parameters_dict, sort_keys=False, indent=4, separators=(',', ': ')) return output def write_settings(self, output_path, gcms, id_label="emsl:"): output = self.get_parameters_json(gcms, id_label, output_path) with open(output_path.with_suffix('.json'), 'w', encoding='utf8', ) as outfile: outfile.write(output) def get_list_dict_data(self, gcms, include_no_match=True, no_match_inline=False): output_score_method = gcms.molecular_search_settings.output_score_method dict_data_list = [] def add_match_dict_data(): derivatization = "{}:{}:{}".format(compound_obj.classify, compound_obj.derivativenum, compound_obj.derivatization) out_dict = {'Sample name': gcms.sample_name, 'Peak Index': gcpeak_index, 'Retention Time': gc_peak.rt, 'Retention Time Ref': compound_obj.rt, 'Peak Height': gc_peak.tic, 'Peak Area': gc_peak.area, 'Retention index': gc_peak.ri, 'Retention index Ref': compound_obj.ri, 'Retention Index Score': compound_obj.ri_score, 'Spectral Similarity Score': compound_obj.spectral_similarity_score, 'Similarity Score': compound_obj.similarity_score, 'Compound Name': compound_obj.name, "Chebi ID": compound_obj.metadata.chebi, "Kegg Compound ID": compound_obj.metadata.kegg, "Inchi": compound_obj.metadata.inchi, "Inchi Key": compound_obj.metadata.inchikey, "Smiles": compound_obj.metadata.smiles, "Molecular Formula": compound_obj.formula, "IUPAC Name": compound_obj.metadata.iupac_name, "Traditional Name": compound_obj.metadata.traditional_name, "Common Name": compound_obj.metadata.common_name, 'Derivatization': derivatization, } if self.gcms.molecular_search_settings.exploratory_mode: out_dict.update({ 'Weighted Cosine Correlation': compound_obj.spectral_similarity_scores.get("weighted_cosine_correlation"), 'Cosine Correlation': compound_obj.spectral_similarity_scores.get("cosine_correlation"), 'Stein Scott Similarity': compound_obj.spectral_similarity_scores.get("stein_scott_similarity"), 'Pearson Correlation': compound_obj.spectral_similarity_scores.get("pearson_correlation"), 'Spearman Correlation': compound_obj.spectral_similarity_scores.get("spearman_correlation"), 'Kendall Tau Correlation': compound_obj.spectral_similarity_scores.get("kendall_tau_correlation"), 'DFT Correlation': compound_obj.spectral_similarity_scores.get("dft_correlation"), 'DWT Correlation': compound_obj.spectral_similarity_scores.get("dwt_correlation"), 'Euclidean Distance': compound_obj.spectral_similarity_scores.get("euclidean_distance"), 'Manhattan Distance': compound_obj.spectral_similarity_scores.get("manhattan_distance"), 'Jaccard Distance': compound_obj.spectral_similarity_scores.get("jaccard_distance") }) for method in methods_name: out_dict[methods_name.get(method)] = compound_obj.spectral_similarity_scores.get(method) dict_data_list.append(out_dict) def add_no_match_dict_data(): dict_data_list.append({'Sample name': gcms.sample_name, 'Peak Index': gcpeak_index, 'Retention Time': gc_peak.rt, 'Peak Height': gc_peak.tic, 'Peak Area': gc_peak.area, 'Retention index': gc_peak.ri, }) for gcpeak_index, gc_peak in enumerate(gcms.sorted_gcpeaks): # check if there is a compound candidate if gc_peak: if output_score_method == 'highest_sim_score': compound_obj = gc_peak.highest_score_compound add_match_dict_data() elif output_score_method == 'highest_ss': compound_obj = gc_peak.highest_ss_compound add_match_dict_data() else: for compound_obj in gc_peak: add_match_dict_data() # add monoisotopic peak else: # include not_match if include_no_match and no_match_inline: add_no_match_dict_data() if include_no_match and not no_match_inline: for gcpeak_index, gc_peak in enumerate(gcms.sorted_gcpeaks): if not gc_peak: add_no_match_dict_data() return dict_data_list class HighResMassSpectraExport(HighResMassSpecExport): ''' ''' def __init__(self, out_file_path, mass_spectra, output_type='excel'): ''' output_type: str 'excel', 'csv', 'hdf5' or 'pandas' ''' self.output_file = Path(out_file_path) self.dir_loc = Path(out_file_path + ".corems") self.dir_loc.mkdir(exist_ok=True) # 'excel', 'csv' or 'pandas' self._output_type = output_type self.mass_spectra = mass_spectra self._init_columns() def get_pandas_df(self): list_df = [] for mass_spectrum in self.mass_spectra: columns = self.columns_label + self.get_all_used_atoms_in_order(mass_spectrum) dict_data_list = self.get_list_dict_data(mass_spectrum) df = DataFrame(dict_data_list, columns=columns) scan_number = mass_spectrum.scan_number df.name = str(self.output_file) + '_' + str(scan_number) list_df.append(df) return list_df def to_pandas(self, write_metadata=True): for mass_spectrum in self.mass_spectra: columns = self.columns_label + self.get_all_used_atoms_in_order(mass_spectrum) dict_data_list = self.get_list_dict_data(mass_spectrum) df =
DataFrame(dict_data_list, columns=columns)
pandas.DataFrame
# Return EHF from multiple simulation results of Operative Temperature import argparse import csv import datetime import glob from multiprocessing import Pool import os import pandas as pd FOLDER_STDRD = 'cluster' LEN_FOLDER_NAME = len(FOLDER_STDRD) +1 NUMBER_OF_DIGITS = 4 BASE_DIR = '/media/marcelo/OS/Cps/TPU' MONTH_MEANS = pd.read_csv('/media/marcelo/OS/LabEEE_1-2/idf-creator/month_means_8760.csv') MAX_THREADS = 10 def process_folder(folder): line = 0 folder_name = folder[len(folder)-LEN_FOLDER_NAME:] os.chdir(folder) # BASE_DIR+'/'+ epjson_files = sorted(glob.glob('*.epJSON')) df_temp = { 'folder': [], 'file': [], 'zone': [], 'temp': [], 'ach': [], 'ehf': [] } for file in epjson_files: file_n = int(file[len(file)-7-NUMBER_OF_DIGITS:len(file)-7]) print(line,' ',file, end='\r') line += 1 csv_file = file[:-7]+'out.csv' df = pd.read_csv(csv_file) n_zones = 6 for zn in range(n_zones): df_temp['file'].append(file[:-7]) df_temp['folder'].append(folder_name) df_temp['zone'].append(zn) df_temp['temp'].append((df['OFFICE_'+'{:02.0f}'.format(zn)+':Zone Operative Temperature [C](Hourly)'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0]).mean()) df_temp['ach'].append((df['OFFICE_'+'{:02.0f}'.format(zn)+':AFN Zone Infiltration Air Change Rate [ach](Hourly)'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0]).mean()) df['E_hot'] = -1 df['sup_lim'] = MONTH_MEANS['mean_temp'] + 3.5 df.loc[df['OFFICE_'+'{:02.0f}'.format(zn)+':Zone Operative Temperature [C](Hourly)'] > df['sup_lim'], 'E_hot'] = 1 df.loc[df['OFFICE_'+'{:02.0f}'.format(zn)+':Zone Operative Temperature [C](Hourly)'] <= df['sup_lim'], 'E_hot'] = 0 df_temp['ehf'].append(df['E_hot'][df['SCH_OCUPACAO:Schedule Value [](Hourly)'] > 0].mean()) df_output =
pd.DataFrame(df_temp)
pandas.DataFrame
import numpy as np #import matplotlib #import matplotlib.pyplot as plt #import seaborn as sns import networkx as nx import pandas as pd import random import string import scipy.stats import network_prop import sys #import visJS2jupyter.visJS_module #import visJS2jupyter.visualizations def main(num_reps=10,int_name='GIANT_p3',rand_method = 'degree_ks_test',single_or_double='single'): ''' Calculate z-scores for heat propagation example: python AWS_zscore_jamieson.py 1000 STRING degree_binning single ''' print('number of randomizations = '+str(num_reps)) print('background interactome = ' + int_name) print('randomization method = ' + rand_method) print('single or double = ' + single_or_double) num_reps = int(num_reps) # load interactomes and select focal interactome Gint = nx.Graph() if int_name=='GIANT_p3': G_giant = nx.read_gpickle('interactomes/G_giant_.3.gpickle') Gint = G_giant elif int_name=='GIANT_p25': G_giant = nx.read_gpickle('interactomes/G_giant_.25.gpickle') Gint = G_giant elif int_name=='GIANT_p2': G_giant = nx.read_gpickle('../interactomes/G_giant_.2.gpickle') Gint = G_giant elif int_name=='GIANT_p15': G_giant = nx.read_gpickle('interactomes/G_giant_.15.gpickle') Gint = G_giant elif int_name=='GIANT_full_p2': G_giant = nx.read_gpickle('interactomes/G_giant_full.2.gpickle') Gint = G_giant elif int_name=='GIANT_kidney_p2': G_giant = nx.read_gpickle('interactomes/kidney_0.2.gpickle') Gint = G_giant elif int_name=='GIANT_heart_p2': G_giant = nx.read_gpickle('interactomes/G_giant_heart.2.gpickle') Gint = G_giant elif int_name=='GIANT_neuron_p3': G_giant = nx.read_gpickle('interactomes/G_giant_neuron.3.gpickle') Gint = G_giant elif int_name=='STRING': G_str = nx.read_gpickle('../interactomes/G_str_181022.gpickle') Gint = G_str elif int_name=='Menche': G_menche = nx.read_gpickle('interactomes/G_menche.gpickle') Gint = G_menche elif int_name=='inBIO': G_inbio = nx.read_gpickle('interactomes/G_inbio.gpickle') Gint = G_inbio elif int_name=='PCnet': G_pcnet = nx.read_gpickle('../interactomes/G_PCnet.gpickle') Gint = G_pcnet elif int_name=='PCnet_pruned': G_pcnet = nx.read_gpickle('../interactomes/PCnet_pruned_5MB.gpickle') Gint = G_pcnet elif int_name=='G_coexp_preA_p8': G_coexp = nx.read_gpickle('../interactomes/G_coexp_preA.8.gpickle') Gint = G_coexp elif int_name=='G_coexp_preU_p8': G_coexp = nx.read_gpickle('../interactomes/G_coexp_preU.8.gpickle') Gint = G_coexp if 'None' in Gint.nodes(): Gint.remove_node('None') # load HC genes # AMLvsAN_genes = pd.read_csv('AMLvsAN_seed_genes_190417.tsv',sep='\t',index_col='Unnamed: 0') # MFvsAN_genes = pd.read_csv('MFvsAN_seed_genes_190417.tsv',sep='\t',index_col='Unnamed: 0') # AMLvsMF_genes = pd.read_csv('AMLvsMF_seed_genes_190417.tsv',sep='\t',index_col='Unnamed: 0') # updated 5/9/19 AMLvsAN_genes = pd.read_csv('AMLvsAN_seed_genes_190509.tsv',sep='\t',index_col='Unnamed: 0') MFvsAN_genes = pd.read_csv('MFvsAN_seed_genes_190509.tsv',sep='\t',index_col='Unnamed: 0') AMLvsMF_genes = pd.read_csv('AMLvsMF_seed_genes_190509.tsv',sep='\t',index_col='Unnamed: 0') seed_AMLvsAN = AMLvsAN_genes['seed_genes'].tolist()[0].translate(None,string.punctuation).split(' ') print(len(seed_AMLvsAN)) seed_AMLvsAN = list(np.intersect1d(seed_AMLvsAN,Gint.nodes())) # only keep seed genes in the interactome print(len(seed_AMLvsAN)) seed_MFvsAN = MFvsAN_genes['seed_genes'].tolist()[0].translate(None,string.punctuation).split(' ') print(len(seed_MFvsAN)) seed_MFvsAN = list(np.intersect1d(seed_MFvsAN,Gint.nodes())) # only keep seed genes in the interactome print(len(seed_MFvsAN)) seed_AMLvsMF = AMLvsMF_genes['seed_genes'].tolist()[0].translate(None,string.punctuation).split(' ') print(len(seed_AMLvsMF)) seed_AMLvsMF = list(np.intersect1d(seed_AMLvsMF,Gint.nodes())) # only keep seed genes in the interactome print(len(seed_AMLvsMF)) # calculate the z-score # calc Wprime from Gint Wprime = network_prop.normalized_adj_matrix(Gint,conserve_heat=True) if single_or_double=='single': # calculate z-scores from a single set of seed genes print('calculating z-scores AMLvsAN') z_seed_AMLvsAN,Fnew_rand_AMLvsAN = calc_zscore_heat(Gint,Wprime,seed_AMLvsAN,num_reps=num_reps,rand_method=rand_method) z_seed_AMLvsAN.to_csv('z_seed_AMLvsAN'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') print('calculating z-scores MFvsAN') z_seed_MFvsAN,Fnew_rand_MFvsAN = calc_zscore_heat(Gint,Wprime,seed_MFvsAN,num_reps=num_reps,rand_method=rand_method) z_seed_MFvsAN.to_csv('z_seed_MFvsAN'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') print('calculating z-scores AMLvsMF') z_seed_AMLvsMF,Fnew_rand_AMLvsMF = calc_zscore_heat(Gint,Wprime,seed_AMLvsMF,num_reps=num_reps,rand_method=rand_method) z_seed_AMLvsMF.to_csv('z_seed_AMLvsMF'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') # ----- this part is obsolete ----- # elif single_or_double=='double': # calculate z-scores from two sets of seed genes: # --- CNV-DIFF_SPLICE and CNV-METH temorarily commented out ---- # print('calculating CNV-DIFF_SPLICE z-scores') # z_CNV_DIFF_SPLICE,Fnew_rand_CNV_DIFF_SPLICE = calc_zscore_heat_double(Gint,Wprime,CNV_HC,DIFF_SPLICE_HC,num_reps=num_reps,rand_method = rand_method) # z_CNV_DIFF_SPLICE.to_csv('z_CNV_DIFF_SPLICE'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') # # print('calculating CNV-METH z-scores') # z_CNV_METH,Fnew_rand_CNV_METH = calc_zscore_heat_double(Gint,Wprime,CNV_HC,METH_HC,num_reps=num_reps,rand_method = rand_method) # z_CNV_METH.to_csv('z_CNV_METH'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') # print('calculating METH-DIFF_SPLICE z-scores') # z_METH_DIFF_SPLICE,Fnew_rand_METH_DIFF_SPLICE = calc_zscore_heat_double(Gint,Wprime,METH_HC,DIFF_SPLICE_HC,num_reps=num_reps,rand_method = rand_method) # z_METH_DIFF_SPLICE.to_csv('z_METH_DIFF_SPLICE'+str(num_reps)+'_reps'+int_name+'_'+rand_method+'.tsv',sep='\t') def calc_zscore_heat(Gint,Wprime,genes_D1,num_reps=10,ks_sig = 0.3,rand_method = 'degree_ks_test'): ''' Helper function to calculate the z-score of heat values from one input seet of genes rand_method = 'degree_ks_test', or 'degree_binning'. select the type of randomization ''' seed_D1 = list(np.intersect1d(list(genes_D1),Gint.nodes())) Fnew_D1 = network_prop.network_propagation(Gint,Wprime,seed_D1,alpha=.5,num_its=20) Fnew_rand_D1 = np.zeros([num_reps,len(Fnew_D1)]) if rand_method == 'degree_ks_test': for r in range(num_reps): if (r%50)==0: print(r) # UPDATE 8/23/17 -- replace with randomly selecting seed nodes, checking for degree distribution equivalence p=0 # resample until degree distributions are not significantly different while p<ks_sig: seed_D1_random = Gint.nodes() np.random.shuffle(seed_D1_random) seed_D1_random = seed_D1_random[0:len(seed_D1)] ks_stat,p=scipy.stats.ks_2samp(pd.Series(Gint.degree(seed_D1)),pd.Series(Gint.degree(seed_D1_random))) Fnew_rand_tmp = network_prop.network_propagation(Gint,Wprime,seed_D1_random,alpha=.5,num_its=20) Fnew_rand_tmp.loc[seed_D1_random]=np.nan # set seeds to nan so they don't bias results Fnew_rand_D1[r] = Fnew_rand_tmp.loc[Fnew_D1.index.tolist()] elif rand_method == 'degree_binning': bins = get_degree_binning(Gint,10) min_degree, max_degree, genes_binned = zip(*bins) bin_df =
pd.DataFrame({'min_degree':min_degree,'max_degree':max_degree,'genes_binned':genes_binned})
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 =
date_range("2012-01-01", periods=3, tz=tz)
pandas.date_range
import os import pandas as pd import argparse mainAppRepo = os.path.dirname(os.path.abspath(__file__)) + '/' # SITE NAME def get_site_name_from_site_number(site_number): sites = pd.read_csv(mainAppRepo + 'data/study_sites.txt', sep=',', header=0, index_col=0) #\\s+ site_name = sites.index._data[site_number] return site_name # H ind CSV FILE def get_csv_file_with_indicator_for_a_context(site_number, chronicle, approx, folder): indicator = "H" site_name = get_site_name_from_site_number(site_number) file_name = "Exps_" + indicator + "_Indicator_" + site_name + "_Chronicle"+ str(chronicle) + "_Approx" + str(approx) + ".csv" indicator_file = folder + "/" + site_name + "/" + file_name try: dfp = pd.read_csv(indicator_file, sep=",") except: print("File does not exist") dfp = pd.DataFrame() return dfp def get_csv_file_with_steady_features_for_a_context(site_number, chronicle, folder): site_name = get_site_name_from_site_number(site_number) model_name = "model_time_0_geo_0_thick_1_K_86.4_Sy_0.1_Step1_site" + str(site_number) + "_Chronicle" + str(chronicle) + "_SteadyState" file_name = model_name + "_extracted_features.csv" steady_file = folder + "/" + site_name + "/" + model_name + "/" + file_name try: df = pd.read_csv(steady_file, sep=";") except: print("File for site " + site_name + " (number : " + str(site_number) + " & chronicle " + str(chronicle) + ") does not exist") df =
pd.DataFrame()
pandas.DataFrame
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[Term('labels=l1'), Term('items=ItemA'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = ['ItemA'], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) # non-existant partial selection result = self.store.select('p4d',[Term('labels=l1'), Term('items=Item1'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = [], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) def test_append_with_strings(self): wp = tm.makePanel() wp2 = wp.rename_axis(dict([ (x,"%s_extra" % x) for x in wp.minor_axis ]), axis = 2) self.store.append('s1', wp, min_itemsize = 20) self.store.append('s1', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s1'], expected) # test dict format self.store.append('s2', wp, min_itemsize = { 'minor_axis' : 20 }) self.store.append('s2', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s2'], expected) # apply the wrong field (similar to #1) self.store.append('s3', wp, min_itemsize = { 'major_axis' : 20 }) self.assertRaises(Exception, self.store.append, 's3') # test truncation of bigger strings self.store.append('s4', wp) self.assertRaises(Exception, self.store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123,'asdqwerty'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big',df, min_itemsize = { 'values' : 1024 }) tm.assert_frame_equal(self.store.select('df_big'), df) # appending smaller string ok df2 = DataFrame([[124,'asdqy'], [346,'dggnhefbdfb']]) self.store.append('df_big',df2) expected = concat([ df, df2 ]) tm.assert_frame_equal(self.store.select('df_big'), expected) # avoid truncation on elements df = DataFrame([[123,'as<PASSWORD>'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big2',df, min_itemsize = { 'values' : 10 }) tm.assert_frame_equal(self.store.select('df_big2'), df) # bigger string on next append self.store.append('df_new',df, min_itemsize = { 'values' : 16 }) df_new = DataFrame([[124,'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) self.assertRaises(Exception, self.store.append, 'df_new',df_new) def test_create_table_index(self): wp = tm.makePanel() self.store.append('p5', wp) self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.is_indexed == True) assert(self.store.handle.root.p5.table.cols.minor_axis.is_indexed == False) # default optlevels assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') # let's change the indexing scheme self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', optlevel=9) assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', kind='full') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'full') self.store.create_table_index('p5', optlevel=1, kind='light') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 1) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'light') df = tm.makeTimeDataFrame() self.store.append('f', df[:10]) self.store.append('f', df[10:]) self.store.create_table_index('f') # try to index a non-table self.store.put('f2', df) self.assertRaises(Exception, self.store.create_table_index, 'f2') # try to change the version supports flag from pandas.io import pytables pytables._table_supports_index = False self.assertRaises(Exception, self.store.create_table_index, 'f') # test out some versions original = tables.__version__ for v in ['2.2','2.2b']: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.assertRaises(Exception, self.store.create_table_index, 'f') for v in ['2.3.1','2.3.1b','2.4dev','2.4',original]: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.store.create_table_index('f') pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = original def test_big_table(self): raise nose.SkipTest('no big table') # create and write a big table wp = Panel(np.random.randn(20, 1000, 1000), items= [ 'Item%s' % i for i in xrange(20) ], major_axis=date_range('1/1/2000', periods=1000), minor_axis = [ 'E%s' % i for i in xrange(1000) ]) wp.ix[:,100:200,300:400] = np.nan try: store = HDFStore(self.scratchpath) store._debug_memory = True store.append('wp',wp) recons = store.select('wp') finally: store.close() os.remove(self.scratchpath) def test_append_diff_item_order(self): raise nose.SkipTest('append diff item order') wp = tm.makePanel() wp1 = wp.ix[:, :10, :] wp2 = wp.ix[['ItemC', 'ItemB', 'ItemA'], 10:, :] self.store.put('panel', wp1, table=True) self.assertRaises(Exception, self.store.put, 'panel', wp2, append=True) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) self.store.put('frame', df1, table=True) self.assertRaises(Exception, self.store.put, 'frame', df2, table=True, append=True) def test_table_values_dtypes_roundtrip(self): df1 = DataFrame({'a': [1, 2, 3]}, dtype = 'f8') self.store.append('df1', df1) assert df1.dtypes == self.store['df1'].dtypes df2 = DataFrame({'a': [1, 2, 3]}, dtype = 'i8') self.store.append('df2', df2) assert df2.dtypes == self.store['df2'].dtypes # incompatible dtype self.assertRaises(Exception, self.store.append, 'df2', df1) def test_table_mixed_dtypes(self): # frame def _make_one_df(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one_df() self.store.append('df1_mixed', df1) tm.assert_frame_equal(self.store.select('df1_mixed'), df1) # panel def _make_one_panel(): wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p1 = _make_one_panel() self.store.append('p1_mixed', p1) tm.assert_panel_equal(self.store.select('p1_mixed'), p1) # ndim def _make_one_p4d(): wp = tm.makePanel4D() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['l1'] > 0 wp['bool2'] = wp['l2'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p4d = _make_one_p4d() self.store.append('p4d_mixed', p4d) tm.assert_panel4d_equal(self.store.select('p4d_mixed'), p4d) def test_remove(self): ts = tm.makeTimeSeries() df = tm.makeDataFrame() self.store['a'] = ts self.store['b'] = df self.store.remove('a') self.assertEquals(len(self.store), 1) tm.assert_frame_equal(df, self.store['b']) self.store.remove('b') self.assertEquals(len(self.store), 0) # pathing self.store['a'] = ts self.store['b/foo'] = df self.store.remove('foo') self.store.remove('b/foo') self.assertEquals(len(self.store), 1) self.store['a'] = ts self.store['b/foo'] = df self.store.remove('b') self.assertEquals(len(self.store), 1) # __delitem__ self.store['a'] = ts self.store['b'] = df del self.store['a'] del self.store['b'] self.assertEquals(len(self.store), 0) def test_remove_where(self): # non-existance crit1 = Term('index','>','foo') self.store.remove('a', where=[crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel() self.store.put('wp', wp, table=True) self.store.remove('wp', [('minor_axis', ['A', 'D'])]) rs = self.store.select('wp') expected = wp.reindex(minor_axis = ['B','C']) tm.assert_panel_equal(rs,expected) # empty where self.store.remove('wp') self.store.put('wp', wp, table=True) # deleted number (entire table) n = self.store.remove('wp', []) assert(n == 120) # non - empty where self.store.remove('wp') self.store.put('wp', wp, table=True) self.assertRaises(Exception, self.store.remove, 'wp', ['foo']) # selectin non-table with a where #self.store.put('wp2', wp, table=False) #self.assertRaises(Exception, self.store.remove, # 'wp2', [('column', ['A', 'D'])]) def test_remove_crit(self): wp = tm.makePanel() # group row removal date4 = wp.major_axis.take([ 0,1,2,4,5,6,8,9,10 ]) crit4 = Term('major_axis',date4) self.store.put('wp3', wp, table=True) n = self.store.remove('wp3', where=[crit4]) assert(n == 36) result = self.store.select('wp3') expected = wp.reindex(major_axis = wp.major_axis-date4) tm.assert_panel_equal(result, expected) # upper half self.store.put('wp', wp, table=True) date = wp.major_axis[len(wp.major_axis) // 2] crit1 = Term('major_axis','>',date) crit2 = Term('minor_axis',['A', 'D']) n = self.store.remove('wp', where=[crit1]) assert(n == 56) n = self.store.remove('wp', where=[crit2]) assert(n == 32) result = self.store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) tm.assert_panel_equal(result, expected) # individual row elements self.store.put('wp2', wp, table=True) date1 = wp.major_axis[1:3] crit1 = Term('major_axis',date1) self.store.remove('wp2', where=[crit1]) result = self.store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis-date1) tm.assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = Term('major_axis',date2) self.store.remove('wp2', where=[crit2]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])) tm.assert_panel_equal(result, expected) date3 = [wp.major_axis[7],wp.major_axis[9]] crit3 = Term('major_axis',date3) self.store.remove('wp2', where=[crit3]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])-Index(date3)) tm.assert_panel_equal(result, expected) # corners self.store.put('wp4', wp, table=True) n = self.store.remove('wp4', where=[Term('major_axis','>',wp.major_axis[-1])]) result = self.store.select('wp4') tm.assert_panel_equal(result, wp) def test_terms(self): wp = tm.makePanel() p4d = tm.makePanel4D() self.store.put('wp', wp, table=True) self.store.put('p4d', p4d, table=True) # some invalid terms terms = [ [ 'minor', ['A','B'] ], [ 'index', ['20121114'] ], [ 'index', ['20121114', '20121114'] ], ] for t in terms: self.assertRaises(Exception, self.store.select, 'wp', t) self.assertRaises(Exception, Term.__init__) self.assertRaises(Exception, Term.__init__, 'blah') self.assertRaises(Exception, Term.__init__, 'index') self.assertRaises(Exception, Term.__init__, 'index', '==') self.assertRaises(Exception, Term.__init__, 'index', '>', 5) # panel result = self.store.select('wp',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']) ]) expected = wp.truncate(after='20000108').reindex(minor=['A', 'B']) tm.assert_panel_equal(result, expected) # p4d result = self.store.select('p4d',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']), Term('items', '=', ['ItemA','ItemB']) ]) expected = p4d.truncate(after='20000108').reindex(minor=['A', 'B'],items=['ItemA','ItemB']) tm.assert_panel4d_equal(result, expected) # valid terms terms = [ dict(field = 'major_axis', op = '>', value = '20121114'), ('major_axis', '20121114'), ('major_axis', '>', '20121114'), (('major_axis', ['20121114','20121114']),), ('major_axis', datetime(2012,11,14)), 'major_axis>20121114', 'major_axis>20121114', 'major_axis>20121114', (('minor_axis', ['A','B']),), (('minor_axis', ['A','B']),), ((('minor_axis', ['A','B']),),), (('items', ['ItemA','ItemB']),), ('items=ItemA'), ] for t in terms: self.store.select('wp', t) self.store.select('p4d', t) # valid for p4d only terms = [ (('labels', '=', ['l1','l2']),), Term('labels', '=', ['l1','l2']), ] for t in terms: self.store.select('p4d', t) def test_series(self): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip(ts3, tm.assert_series_equal) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.ix[3:5, 1:3] = np.nan s.ix[8:10, -2] = np.nan ss = s.to_sparse() self._check_double_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_double_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_double_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_sparse_panel(self): items = ['x', 'y', 'z'] p = Panel(dict((i, tm.makeDataFrame().ix[:2, :2]) for i in items)) sp = p.to_sparse() self._check_double_roundtrip(sp, tm.assert_panel_equal, check_panel_type=True) sp2 = p.to_sparse(kind='integer') self._check_double_roundtrip(sp2, tm.assert_panel_equal, check_panel_type=True) sp3 = p.to_sparse(fill_value=0) self._check_double_roundtrip(sp3, tm.assert_panel_equal, check_panel_type=True) def test_float_index(self): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal) def test_tuple_index(self): # GH #492 col = np.arange(10) idx = [(0.,1.), (2., 3.), (4., 5.)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) self._check_roundtrip(DF, tm.assert_frame_equal) def test_index_types(self): values = np.random.randn(2) func = lambda l, r : tm.assert_series_equal(l, r, True, True, True) ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) ser = Series(values, [datetime.today(), 0]) self._check_roundtrip(ser, func) ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) from datetime import date ser = Series(values, [date.today(), 'a']) self._check_roundtrip(ser, func) ser = Series(values, [1.23, 'b']) self._check_roundtrip(ser, func) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func) ser = Series(values, [datetime(2012, 1, 1), datetime(2012, 1, 2)]) self._check_roundtrip(ser, func) def test_timeseries_preepoch(self): if sys.version_info[0] == 2 and sys.version_info[1] < 7: raise nose.SkipTest dr = bdate_range('1/1/1940', '1/1/1960') ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal) except OverflowError: raise nose.SkipTest('known failer on some windows platforms') def test_frame(self): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table(df, tm.assert_frame_equal) self._check_roundtrip(df, tm.assert_frame_equal) self._check_roundtrip_table(df, tm.assert_frame_equal, compression=True) self._check_roundtrip(df, tm.assert_frame_equal, compression=True) tdf = tm.makeTimeDataFrame() self._check_roundtrip(tdf, tm.assert_frame_equal) self._check_roundtrip(tdf, tm.assert_frame_equal, compression=True) # not consolidated df['foo'] = np.random.randn(len(df)) self.store['df'] = df recons = self.store['df'] self.assert_(recons._data.is_consolidated()) # empty self._check_roundtrip(df[:0], tm.assert_frame_equal) def test_empty_series_frame(self): s0 = Series() s1 = Series(name='myseries') df0 = DataFrame() df1 =
DataFrame(index=['a', 'b', 'c'])
pandas.DataFrame
from timeUtils import clock, elapsed from listUtils import getFlatList from ioUtils import getFile, saveFile from pandas import Series, DataFrame class masterDBMatchClass: def __init__(self, maindb, mdbmaps): self.maindb = maindb self.mdbmaps = mdbmaps self.finalArtistName = maindb.artistColumnName print("Loading Artist Names") self.artistData = {db: self.getArtistNameDB(db) for db in maindb.dbdata.keys()} #self.matchData = {db: self.getDBMatchData(db) for db in maindb.dbdata.keys()} self.clean() self.knownCounter = None self.initFuncs = {} self.knownDBs = ['Discogs', 'AllMusic', 'MusicBrainz', 'RateYourMusic', 'Deezer', 'LastFM', 'Genius', 'AlbumOfTheYear','KWorbiTunes', 'KWorbSpotify'] self.knownDBs = ['Discogs', 'AllMusic', 'MusicBrainz'] def setKnownDBs(self, knownDBs=['Discogs', 'AllMusic', 'MusicBrainz']): self.knownDBs = knownDBs def getArtistNameDB(self, db): return self.maindb.dbdata[db]["Disc"].getMasterDBArtistDataFrame() def getArtistAlbumsDB(self, db): return self.maindb.dbdata[db]["Disc"].getMasterDBArtistAlbumsDataFrame() def clean(self): self.matchData = {db: None for db in self.maindb.dbdata.keys()} def setDBMatchData(self, dbName, matchData): print(" Setting matchData for {0}".format(dbName)) self.matchData[dbName] = matchData def getDF(self, dbName): matchData = self.getDBMatchData(dbName, returnData=True) df = DataFrame({primaryKey: {"Artist": artistData["ArtistName"], "Albums": len(artistData["ArtistAlbums"])} for primaryKey,artistData in matchData.items()}).T return df def getMasterDF(self, dbName): df = self.getDF(dbName) amDF = self.mdbmaps[dbName].getDF() mergeDF = df.join(amDF).copy(deep=True) mergeDF["DBMatches"][mergeDF["DBMatches"].isna()] = 0 mergeDF = mergeDF.sort_values("Albums", ascending=False) return mergeDF def getDBMatchData(self, dbName, returnData=True): if self.matchData.get(dbName) is not None: return self.matchData[dbName] print("Loading Artist Albums") try: artistsDF = self.artistData[dbName] albumsDF = self.getArtistAlbumsDB(dbName) except: raise ValueError("Could not get artist/albums for DB {0} from [{1}]".format(dbName, list(self.artistData.keys()))) dbArtistAlbums = artistsDF[[self.finalArtistName]].join(albumsDF) dbArtistAlbums["Albums"] = dbArtistAlbums["Albums"].apply(lambda x: getFlatList([albums.values() for media,albums in x.items()])) matchData = {self.mdbmaps[dbName].getPrimaryKey(artistName=dbArtistData[self.finalArtistName], artistID=dbArtistID): {"ArtistName": dbArtistData[self.finalArtistName], "ArtistAlbums": dbArtistData["Albums"]} for dbArtistID,dbArtistData in dbArtistAlbums.T.to_dict().items() if dbArtistID is not None and len(dbArtistData[self.finalArtistName]) > 0} self.setDBMatchData(dbName, matchData) if returnData: return matchData def getArtistNameFromID(self, db, dbID): print("Do I call this also???") 1/0 df = self.artistData[db] adf = df[df.index == dbID] if adf.shape[0] == 1: retval = list(adf[self.finalArtistName])[0] return retval else: return None def getDBPrimaryKeys(self, db): print("Do I call this???") 1/0 if self.matchData.get(db) is not None: matchData = self.matchData[db] else: matchData = self.getDBMatchData(db) dbPrimaryKeys = {primKey[1]: (primKey[0],primKey[1]) for primKey in matchData} return dbPrimaryKeys ############################################################################# ## Master Call To Get Data To Match ############################################################################# def getKnownCounter(self): return self.knownCounter def printCuts(self, cuts, debug=False): if debug is False: return for k,v in cuts.items(): print("{0: <20} -> {1}".format(k,v)) def initialzeData(self, db): ################################################################################################################ # Get Match Data ################################################################################################################ if self.matchData.get(db) is not None: matchData = self.matchData[db] else: matchData = self.getDBMatchData(db) self.initFuncs["initialzeData"] = False return matchData def initialzeMatchData(self, db): ################################################################################################################ # Initialize Artists/DBs To Get ################################################################################################################ initArtistsData = Series(dict(zip(knownDBs, [0]*len(knownDBs)))) retvalArtistData = {primaryKey: initArtistsData.copy(deep=True) for primaryKey,artistData in matchData.items()} retvalArtistData =
DataFrame(retvalArtistData)
pandas.DataFrame
import copy import gc import os import pickle import sys from functools import partial from warnings import simplefilter import seaborn as sns import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim from IPython.display import display from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.dummy import DummyClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score, precision_score, recall_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.tree import DecisionTreeClassifier from torch.utils.data import DataLoader from tqdm.notebook import tqdm from Evaluation import evaluate_df, correlation_vs_landmark, token_remotion_delta_performance from FeatureContribution import FeatureContribution from FeatureExtractor import FeatureExtractor from Finetune import finetune_BERT from Modelling import feature_importance from Net import DatasetAccoppiate, NetAccoppiate, train_model from WordEmbedding import WordEmbedding from WordPairGenerator import WordPairGenerator, WordPairGeneratorEdit class Routine: @staticmethod def plot_token_contribution(el_df, score_col='token_contribution', cut=0.0): sns.set(rc={'figure.figsize': (10, 10)}) tmp_df = el_df.copy() tmp_df = tmp_df.set_index(['left_word', 'right_word']) tmp_df = tmp_df[tmp_df[score_col].abs() >= cut] # colors = ['orange' ] * tmp_df.shape[0] colors = np.where(tmp_df[score_col] >= 0, 'green', 'red') g = tmp_df.plot(y=score_col, kind='barh', color=colors, alpha=.5, legend='') # plt.xlim(-0.5, 0.5) for p in g.patches: offset = -10 if p.get_width() > 0 else 10 g.annotate(format(p.get_width(), '.3f'), (p.get_width(), p.get_y()), ha='right' if p.get_width() > 0 else 'left', va='center', xytext=(offset, 2.5), textcoords='offset points') plt.ylabel('') g.axes.set_yticklabels(g.axes.get_yticklabels(), fontsize=14) plt.tight_layout() plt.show() # g.get_figure().savefig(os.path.join(model_files_path,'examples',"microsoft.pdf"), dpi=400) def __init__(self, dataset_name, dataset_path, project_path, reset_files=False, model_name='BERT', device=None, reset_networks=False, clean_special_char=True, col_to_drop=[], model_files_path=None, softlab_path='./content/drive/Shareddrives/SoftLab/', verbose=True, we_finetuned=False, we_finetune_path=None, num_epochs=10, sentence_embedding=True, we=None): if device is None: device = 'cuda' if torch.cuda.is_available() else 'cpu' self.device = device simplefilter(action='ignore', category=FutureWarning) simplefilter(action='ignore') pd.options.display.float_format = '{:.4f}'.format pd.options.display.max_rows = 150 pd.options.display.max_columns = 150 pd.options.display.max_colwidth = 100 pd.options.display.precision = 15 pd.options.display.max_info_columns = 150 plt.rcParams["figure.figsize"] = (18, 6) self.softlab_path = os.path.join(softlab_path) self.reset_files = reset_files # @ param {type:"boolean"} self.reset_networks = reset_networks # @ param {type:"boolean"} self.dataset_name = dataset_name self.model_name = model_name self.feature_extractor = FeatureExtractor() self.verbose = verbose self.sentence_embedding_dict = None self.word_pair_model = None self.word_pairing_kind = None self.additive_only = False self.cos_sim = None self.feature_kind = None if dataset_path is None: self.dataset_path = os.path.join(softlab_path, 'Dataset', 'Entity Matching', dataset_name) else: self.dataset_path = dataset_path self.project_path = os.path.join(softlab_path, 'Projects', 'Concept level EM (exclusive-inclluse words)') if model_files_path is None: self.model_files_path = os.path.join(self.project_path, 'dataset_files', dataset_name, model_name) else: self.model_files_path = model_files_path try: os.makedirs(self.model_files_path) except Exception as e: print(e) pass try: os.makedirs(os.path.join(self.model_files_path, 'results')) except Exception as e: print(e) pass self.experiments = {} sys.path.append(os.path.join(project_path, 'common_functions')) sys.path.append(os.path.join(project_path, 'src')) pd.options.display.max_colwidth = 130 self.train = pd.read_csv(os.path.join(dataset_path, 'train_merged.csv')) self.test = pd.read_csv(os.path.join(dataset_path, 'test_merged.csv')) self.valid = pd.read_csv(os.path.join(dataset_path, 'valid_merged.csv')) if not hasattr(self, 'table_A'): self.table_A = pd.read_csv(os.path.join(dataset_path, 'tableA.csv')).drop(col_to_drop, 1) if not hasattr(self, 'table_B'): self.table_B = pd.read_csv(os.path.join(dataset_path, 'tableB.csv')).drop(col_to_drop, 1) if dataset_name == 'BeerAdvo-RateBeer': table_A = pd.read_csv(os.path.join(dataset_path, 'tableA.csv')) table_B = pd.read_csv(os.path.join(dataset_path, 'tableB.csv')) for col in table_A.columns: if table_A.dtypes[col] == object: for c, to_replace in [(' _ ™ ', '\''), ('äº _', '\xE4\xBA\xAC'), ('_ œ', ''), (' _', ''), ('à ', 'Ã'), ('»', ''), ('$', '¤'), (' _ ™ ', '\''), ('1/2', '½'), ('1/4', '¼'), ('3/4', '¾'), ('Ãa', '\xC3\xADa'), ('Ä `` ', '\xC4\xAB'), (r'Ã$', '\xC3\xADa'), ('\. \.', '\.'), ('Å ¡', '\xC5\xA1'), ('Ã\'\' ', '\xC3\xBB'), ('_', '\xC3\x80'), ('À œ', ''), ('à ¶ ', '\xC3\xB6'), ('û¶ ', '\xC3\xB6'), (' \.', ''), ('&#40; ', ''), (' \&\#41; ', ''), ]: table_A[col] = table_A[col].str.replace(c, to_replace) table_B[col] = table_B[col].str.replace(c, to_replace) pat = r"(?P<one>Ã)(?P<two>. )" repl = lambda m: f'Ã{m.group("two")[0]}' table_A[col] = table_A[col].str.replace(pat, repl) table_A['Brew_Factory_Name'] = table_A['Brew_Factory_Name'].str.encode('latin-1').str.decode('utf-8') self.table_A = table_A self.table_B = table_B left_ids = [] right_ids = [] for df in [self.train, self.valid, self.test]: left_ids.append(df.left_id.values) right_ids.append(df.right_id.values) left_ids = np.unique(np.concatenate(left_ids)) right_ids = np.unique(np.concatenate(right_ids)) self.table_A[~self.table_A.id.isin(left_ids)] = None self.table_B[~self.table_B.id.isin(right_ids)] = None self.cols = np.setdiff1d(self.table_A.columns, ['id']) self.lp = 'left_' self.rp = 'right_' if clean_special_char: spec_chars = ["!", '"', "#", "%", "&", "'", "(", ")", "*", "+", ",", "-", "/", ":", ";", "<", "=", ">", "?", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~", "–", "´"] for col in np.setdiff1d(self.table_A.columns, ['id']): self.table_A[col] = self.table_A[col].astype(str). \ str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode( 'utf-8') + ' ' self.table_B[col] = self.table_B[col].astype(str). \ str.normalize('NFKD').str.encode('ascii', errors='ignore').str.decode( 'utf-8') + ' ' for char in spec_chars: self.table_A[col] = self.table_A[col].str.replace(' \\' + char + ' ', ' ') self.table_B[col] = self.table_B[col].str.replace(' \\' + char + ' ', ' ') for char in ['-', '/', '\\']: self.table_A[col] = self.table_A[col].str.replace(char, ' ') self.table_B[col] = self.table_B[col].str.replace(char, ' ') self.table_A[col] = self.table_A[col].str.split().str.join(" ").str.lower() self.table_B[col] = self.table_B[col].str.split().str.join(" ").str.lower() self.table_A = self.table_A.replace('^None$', np.nan, regex=True).replace('^nan$', np.nan, regex=True) self.table_B = self.table_B.replace('^None$', np.nan, regex=True).replace('^nan$', np.nan, regex=True) self.words_divided = {} tmp_path = os.path.join(self.model_files_path, 'words_maps.pickle') try: assert self.reset_files == False, 'Reset_files' with open(tmp_path, 'rb') as file: self.words_divided = pickle.load(file) print('Loaded ' + tmp_path) except Exception as e: print(e) for name, df in zip(['table_A', 'table_B'], [self.table_A, self.table_B]): self.words_divided[name] = WordPairGenerator.map_word_to_attr(df, self.cols, verbose=self.verbose) with open(tmp_path, 'wb') as file: pickle.dump(self.words_divided, file) tmp_cols = ['id', 'left_id', 'right_id', 'label'] self.train_merged = pd.merge( pd.merge(self.train[tmp_cols], self.table_A.add_prefix('left_'), on='left_id'), self.table_B.add_prefix('right_'), on='right_id').sort_values('id').reset_index(drop='True') self.test_merged = pd.merge( pd.merge(self.test[tmp_cols], self.table_A.add_prefix('left_'), on='left_id'), self.table_B.add_prefix('right_'), on='right_id').sort_values('id').reset_index(drop='True') self.valid_merged = pd.merge( pd.merge(self.valid[tmp_cols], self.table_A.add_prefix('left_'), on='left_id'), self.table_B.add_prefix('right_'), on='right_id').sort_values('id').reset_index(drop='True') for col, type in zip(['id', 'label'], ['UInt32', 'UInt8']): self.train_merged[col] = self.train_merged[col].astype(type) self.valid_merged[col] = self.valid_merged[col].astype(type) self.test_merged[col] = self.test_merged[col].astype(type) self.train = self.train_merged self.valid = self.valid_merged self.test = self.test_merged self.sentence_embedding = sentence_embedding if we is not None: self.we = we elif we_finetuned: if we_finetune_path is not None: finetuned_path = we_finetune_path elif we_finetuned == 'SBERT': model_save_path = os.path.join(self.model_files_path, 'sBERT') if reset_files or os.path.isdir(model_save_path) is False: finetuned_path = finetune_BERT(self, num_epochs=num_epochs, model_save_path=model_save_path) else: finetuned_path = model_save_path else: finetuned_path = os.path.join(self.project_path, 'dataset_files', 'finetuned_models', dataset_name) self.we = WordEmbedding(device=self.device, verbose=verbose, model_path=finetuned_path, sentence_embedding=sentence_embedding) else: self.we = WordEmbedding(device=self.device, verbose=verbose, sentence_embedding=sentence_embedding) # def __del__(self): # try: # for value, key in self.embeddings.items(): # value.cpu() # except Exception as e: # print(e) # pass # try: # self.we.mode.to('cpu') # except Exception as e: # print(e) # pass # gc.collect() # torch.cuda.empty_cache() # return super(Routine, self).__del__() def generate_df_embedding(self, chunk_size=100): self.embeddings = {} if self.sentence_embedding: self.sentence_embedding_dict = {} self.words = {} try: assert self.reset_files == False, 'Reset_files' for df_name in ['table_A', 'table_B']: tmp_path = os.path.join(self.model_files_path, 'emb_' + df_name + '.csv') with open(tmp_path, 'rb') as file: self.embeddings[df_name] = torch.load(file, map_location=torch.device(self.device)) tmp_path = os.path.join(self.model_files_path, 'words_list_' + df_name + '.csv') with open(tmp_path, 'rb') as file: self.words[df_name] = pickle.load(file) if self.sentence_embedding: tmp_path = os.path.join(self.model_files_path, 'sentence_emb_' + df_name + '.csv') with open(tmp_path, 'rb') as file: self.sentence_embedding_dict[df_name] = torch.load(file, map_location=torch.device(self.device)) print('Loaded embeddings.') except Exception as e: print(e) self.we.verbose = self.verbose we = self.we for name, df in [('table_A', self.table_A), ('table_B', self.table_B)]: gc.collect() torch.cuda.empty_cache() if self.sentence_embedding: emb, words, sentence_emb = we.generate_embedding(df, chunk_size=chunk_size) self.sentence_embedding_dict[name] = sentence_emb tmp_path = os.path.join(self.model_files_path, 'sentence_emb_' + name + '.csv') with open(tmp_path, 'wb') as file: torch.save(sentence_emb, file) else: emb, words = we.generate_embedding(df, chunk_size=chunk_size) self.embeddings[name] = emb self.words[name] = words tmp_path = os.path.join(self.model_files_path, 'emb_' + name + '.csv') with open(tmp_path, 'wb') as file: torch.save(emb, file) tmp_path = os.path.join(self.model_files_path, 'words_list_' + name + '.csv') with open(tmp_path, 'wb') as file: pickle.dump(words, file) if self.sentence_embedding: assert self.sentence_embedding_dict['table_A'][0].shape == torch.Size( [ 768]), f'Sentence emb has shape: {self.sentence_embedding_dict["table_A"][0].shape}. It must be [768]!' def get_processed_data(self, df, chunk_size=500, verbose=False): we = self.we res = {} for side in ['left', 'right']: gc.collect() torch.cuda.empty_cache() if verbose: print(f'Embedding {side} side') prefix = self.lp if side == 'left' else self.rp cols = [prefix + col for col in self.cols] tmp_df = df.loc[:, cols] res[side + '_word_map'] = WordPairGenerator.map_word_to_attr(tmp_df, self.cols, prefix=prefix, verbose=self.verbose) if self.sentence_embedding: emb, words, sentence_emb = we.generate_embedding(tmp_df, chunk_size=chunk_size) res[side + '_sentence_emb'] = sentence_emb else: emb, words = we.generate_embedding(tmp_df, chunk_size=chunk_size) res[side + '_emb'] = emb res[side + '_words'] = words return res def compute_word_pair(self, use_schema=True, **kwargs): word_sim = self.word_pairing_kind == 'word_similarity' words_pairs_dict, emb_pairs_dict = {}, {} if self.sentence_embedding: self.sentence_emb_pairs_dict = {} try: assert self.reset_files == False, 'Reset_files' for df_name in ['train', 'valid', 'test']: tmp_path = os.path.join(self.model_files_path, df_name + 'word_pairs.csv') words_pairs_dict[df_name] = pd.read_csv(tmp_path, keep_default_na=False) tmp_path = os.path.join(self.model_files_path, df_name + 'emb_pairs.csv') with open(tmp_path, 'rb') as file: emb_pairs_dict[df_name] = pickle.load(file) if self.sentence_embedding: tmp_path = os.path.join(self.model_files_path, df_name + 'sentence_emb_pairs.csv') with open(tmp_path, 'rb') as file: self.sentence_emb_pairs_dict[df_name] = pickle.load(file) print('Loaded word pairs') except Exception as e: print(e) if word_sim: word_pair_generator = WordPairGeneratorEdit(df=self.test, use_schema=use_schema, device=self.device, verbose=self.verbose, words_divided=self.words_divided, sentence_embedding_dict=self.sentence_embedding_dict, **kwargs) else: word_pair_generator = WordPairGenerator(self.words, self.embeddings, words_divided=self.words_divided, df=self.test, use_schema=use_schema, device=self.device, verbose=self.verbose, sentence_embedding_dict=self.sentence_embedding_dict, **kwargs) for df_name, df in zip(['train', 'valid', 'test'], [self.train, self.valid, self.test]): if word_sim: word_pairs = word_pair_generator.process_df(df) else: if self.sentence_embedding: word_pairs, emb_pairs, sentence_emb_pairs = word_pair_generator.process_df(df) self.sentence_emb_pairs_dict[df_name] = sentence_emb_pairs else: word_pairs, emb_pairs = word_pair_generator.process_df(df) emb_pairs_dict[df_name] = emb_pairs tmp_path = os.path.join(self.model_files_path, df_name + 'word_pairs.csv') pd.DataFrame(word_pairs).to_csv(tmp_path, index=False) tmp_path = os.path.join(self.model_files_path, df_name + 'emb_pairs.csv') with open(tmp_path, 'wb') as file: pickle.dump(emb_pairs, file) if self.sentence_embedding: tmp_path = os.path.join(self.model_files_path, df_name + 'sentence_emb_pairs.csv') with open(tmp_path, 'wb') as file: pickle.dump(self.sentence_emb_pairs_dict, file) words_pairs_dict[df_name] = pd.DataFrame(word_pairs) self.words_pairs_dict = words_pairs_dict if not word_sim: self.emb_pairs_dict = emb_pairs_dict if self.sentence_embedding: return self.words_pairs_dict, self.emb_pairs_dict, self.sentence_emb_pairs_dict else: return words_pairs_dict, emb_pairs_dict def get_word_pairs(self, df, data_dict, use_schema=True, # parallel=False, **kwargs): if self.word_pairing_kind is not None and self.word_pairing_kind == 'word_similarity': wp = WordPairGeneratorEdit(df=df, use_schema=use_schema, device=self.device, verbose=self.verbose, sentence_embedding_dict=self.sentence_embedding_dict, **kwargs) res = wp.get_word_pairs(df, data_dict) return res else: wp = WordPairGenerator(df=df, use_schema=use_schema, device=self.device, verbose=self.verbose, sentence_embedding_dict=self.sentence_embedding_dict, **kwargs) # if parallel: # res = wp.get_word_pairs_parallel(df, data_dict) # else: res = wp.get_word_pairs(df, data_dict) # empty lost if self.sentence_embedding: word_pairs, emb_pairs, sent_emb_pairs = res else: word_pairs, emb_pairs = res word_pairs = pd.DataFrame(word_pairs) if self.sentence_embedding: return word_pairs, emb_pairs, sent_emb_pairs else: return word_pairs, emb_pairs def net_train(self, num_epochs=40, lr=3e-5, batch_size=256, word_pairs=None, emb_pairs=None, sentence_emb_pairs=None, valid_pairs=None, valid_emb=None, valid_sentence_emb_pairs=None): if word_pairs is None or emb_pairs is None: word_pairs = self.words_pairs_dict['train'] emb_pairs = self.emb_pairs_dict['train'] if self.sentence_embedding: sentence_emb_pairs = self.sentence_emb_pairs_dict['train'] else: sentence_emb_pairs = None if valid_pairs is None or valid_emb is None: valid_pairs = self.words_pairs_dict['valid'] valid_emb = self.emb_pairs_dict['valid'] if self.sentence_embedding: valid_sententce_emb_pairs = self.sentence_emb_pairs_dict['valid'] else: valid_sententce_emb_pairs = None data_loader = DatasetAccoppiate(word_pairs, emb_pairs, sentence_embedding_pairs=sentence_emb_pairs) self.train_data_loader = data_loader best_model = NetAccoppiate(sentence_embedding=self.sentence_embedding, ) device = self.device tmp_path = os.path.join(self.model_files_path, 'net0.pickle') try: assert self.reset_networks == False, 'resetting networks' best_model.load_state_dict(torch.load(tmp_path, map_location=torch.device(device))) except Exception as e: print(e) net = NetAccoppiate(sentence_embedding=self.sentence_embedding) net.to(device) criterion = nn.BCELoss().to(device) # optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=.9) optimizer = optim.Adam(net.parameters(), lr=lr) train_dataset = data_loader valid_dataset = copy.deepcopy(train_dataset) valid_dataset.__init__(valid_pairs, valid_emb, sentence_embedding_pairs=valid_sententce_emb_pairs) dataloaders_dict = {'train': DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4), 'valid': DataLoader(valid_dataset, batch_size=batch_size, shuffle=True, num_workers=4)} best_model, score_history, last_model = train_model(net, dataloaders_dict, criterion, optimizer, nn.MSELoss().to(device), num_epochs=num_epochs, device=device) # optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=.9) # best_model, score_history, last_model = train_model(net,dataloaders_dict, criterion, optimizer,nn.MSELoss().to(device), num_epochs=150, device=device) out = net(valid_dataset.X.to(device)) print(f'best_valid --> mean:{out.mean():.4f} std: {out.std():.4f}') out = last_model(valid_dataset.X.to(device)) print(f'last_model --> mean:{out.mean():.4f} std: {out.std():.4f}') print('Save...') torch.save(best_model.state_dict(), tmp_path) self.word_pair_model = best_model return best_model def preprocess_word_pairs(self, **kwargs): features_dict = {} words_pairs_dict = {} for name in ['train', 'valid', 'test']: if self.sentence_embedding: sentence_emb_pairs = self.sentence_emb_pairs_dict[name] else: sentence_emb_pairs = None if self.word_pairing_kind == 'word_similarity': feat, word_pairs = self.extract_features(None, self.words_pairs_dict[name], None, None, sentence_emb_pairs=sentence_emb_pairs, additive_only=self.additive_only, **kwargs) else: feat, word_pairs = self.extract_features(self.word_pair_model, self.words_pairs_dict[name], self.emb_pairs_dict[name], self.train_data_loader, sentence_emb_pairs=sentence_emb_pairs, additive_only=self.additive_only, **kwargs) features_dict[name] = feat words_pairs_dict[name] = word_pairs self.features_dict, self.words_pairs_dict = features_dict, words_pairs_dict return features_dict, words_pairs_dict def extract_features(self, model: NetAccoppiate, word_pairs, emb_pairs, train_data_loader, sentence_emb_pairs=None, **kwargs): if self.cos_sim is not None or self.word_pairing_kind == 'word_similarity': if self.cos_sim == 'binary': word_pair_corrected = word_pairs word_pair_corrected['pred'] = np.where(word_pair_corrected['cos_sim'] > 0, 1, 0) else: word_pair_corrected = word_pairs word_pair_corrected['pred'] = word_pair_corrected['cos_sim'] else: model.eval() model.to(self.device) data_loader = train_data_loader data_loader.__init__(word_pairs, emb_pairs, sentence_emb_pairs) word_pair_corrected = data_loader.word_pairs_corrected with torch.no_grad(): word_pair_corrected['pred'] = model(data_loader.X.to(self.device)).cpu().detach().numpy() # features = self.feature_extractor.extract_features(word_pair_corrected, **kwargs) if self.feature_kind == 'min': features = self.feature_extractor.extract_features_min(word_pair_corrected, **kwargs) else: features = self.feature_extractor.extract_features_by_attr(word_pair_corrected, self.cols, **kwargs) return features, word_pair_corrected def EM_modelling(self, *args, do_evaluation=False, do_feature_selection=False, results_path='results'): if self.additive_only and results_path == 'results': results_path = 'results_additive' if hasattr(self, 'models') == False: mmScaler = MinMaxScaler() mmScaler.clip = False self.models = [ ('LR', Pipeline([('mm', copy.copy(mmScaler)), ('LR', LogisticRegression(max_iter=200, random_state=0))])), ('LR_std', Pipeline( [('mm', copy.copy(StandardScaler())), ('LR', LogisticRegression(max_iter=200, random_state=0))])), ('LDA', Pipeline([('mm', copy.copy(mmScaler)), ('LDA', LinearDiscriminantAnalysis())])), ('LDA_std', Pipeline([('mm', copy.copy(StandardScaler())), ('LDA', LinearDiscriminantAnalysis())])), ('KNN', Pipeline([('mm', copy.copy(mmScaler)), ('KNN', KNeighborsClassifier())])), ('CART', DecisionTreeClassifier(random_state=0)), ('NB', GaussianNB()), # ('SVM', Pipeline([('mm', copy.copy(mmScaler)), ('SVM', SVC(probability=True, random_state=0))])), # ('AB', AdaBoostClassifier(random_state=0)), ('GBM', GradientBoostingClassifier(random_state=0)), ('RF', RandomForestClassifier(random_state=0)), # ('ET', ExtraTreesClassifier(random_state=0)), ('dummy', DummyClassifier(strategy='stratified', random_state=0)), ] # models.append(('Vote', VotingClassifier(models[:-1], voting='soft'))) model_names = [x[0] for x in self.models] X_train, y_train = self.features_dict['train'].to_numpy(), self.train.label.astype(int) X_valid, y_valid = self.features_dict['valid'].to_numpy(), self.valid.label.astype(int) X_test, y_test = self.features_dict['test'].to_numpy(), self.test.label.astype(int) res = {(x, y): [] for x in ['train', 'valid', 'test'] for y in ['f1', 'precision', 'recall']} df_pred = {} for name, model in tqdm(self.models): model.fit(X_train, y_train) for turn_name, turn_df, turn_y in zip(['train', 'valid', 'test'], [X_train, X_valid, X_test], [y_train, y_valid, y_test]): df_pred[turn_name] = model.predict(turn_df) for score_name, scorer in [['f1', f1_score], ['precision', precision_score], ['recall', recall_score]]: score_value = scorer(turn_y, df_pred[turn_name]) res[(turn_name, score_name)].append(score_value) if turn_name == 'test' and score_name == 'f1': print(f'{name:<10}-{score_name} {score_value}') print('before feature selection') res_df = pd.DataFrame(res, index=model_names) res_df.index.name = 'model_name' try: os.makedirs(os.path.join(self.model_files_path, results_path)) except Exception as e: print(e) pass res_df.to_csv(os.path.join(self.model_files_path, results_path, 'performances.csv')) display(res_df) best_f1 = res_df[('test', 'f1')].max() best_features = self.features_dict['train'].columns best_model_name = res_df.iloc[[res_df[('test', 'f1')].argmax()]].index.values[0] for x in self.models: if x[0] == best_model_name: best_model = x[1] # Feature selection if do_feature_selection: print('running feature score') score_df = {'feature': [], 'score': []} X_train, y_train = self.features_dict['train'], self.train.label.astype(int) X_valid, y_valid = self.features_dict['valid'], self.valid.label.astype(int) X_test, y_test = self.features_dict['test'], self.test.label.astype(int) cols = self.features_dict['train'].columns new_cols = cols different = True iter = 0 while different and iter <= 2: cols = new_cols score_df, res_df, new_cols = feature_importance(X_train, y_train, X_valid, y_valid, cols) different = len(cols) != len(new_cols) iter += 1 self.score_df = score_df self.res_df = res_df selected_features = new_cols res = {(x, y): [] for x in ['train', 'valid', 'test'] for y in ['f1', 'precision', 'recall']} print('Running models') for name, model in tqdm(self.models): model.fit(X_train, y_train) for turn_name, turn_df, turn_y in zip(['train', 'valid', 'test'], [X_train, X_valid, X_test], [y_train, y_valid, y_test]): df_pred[turn_name] = model.predict(turn_df) for score_name, scorer in [['f1', f1_score], ['precision', precision_score], ['recall', recall_score]]: res[(turn_name, score_name)].append(scorer(turn_y, df_pred[turn_name])) self.models = self.models res_df = pd.DataFrame(res, index=model_names) res_df.index.name = 'model_name' display(res_df) if best_f1 < res_df[('test', 'f1')].max(): best_f1 = res_df[('test', 'f1')].max() best_features = selected_features best_model_name = res_df.iloc[[res_df[('test', 'f1')].argmax()]].index.values[0] for x in self.models: if x[0] == best_model_name: best_model = x[1] res_df.to_csv(os.path.join(self.model_files_path, results_path, 'performances.csv')) X_train, y_train = self.features_dict['train'][best_features].to_numpy(), self.train.label.astype(int) best_model.fit(X_train, y_train) model_data = {'features': best_features, 'model': best_model} tmp_path = os.path.join(self.model_files_path, 'best_feature_model_data.pickle') self.best_model_data = model_data with open(tmp_path, 'wb') as file: pickle.dump(model_data, file) linear_model = Pipeline([('LR', LogisticRegression(max_iter=200, random_state=0))]) # LogisticRegression(max_iter=200, random_state=0) X_train, y_train = self.features_dict['train'][best_features].to_numpy(), self.train.label.astype(int) linear_model.fit(X_train, y_train) model_data = {'features': best_features, 'model': linear_model} tmp_path = os.path.join(self.model_files_path, 'linear_model.pickle') with open(tmp_path, 'wb') as file: pickle.dump(model_data, file) # save unit_contribution # co = linear_model['LR'].coef_ # co_df = pd.DataFrame(co, columns=self.features_dict['valid'].columns).T # for name in ['train','valid'] # turn_contrib = FeatureContribution.extract_features_by_attr(word_relevance, routine.cols) # for x in co_df.index: # turn_contrib[x] = turn_contrib[x] * co_df.loc[x, 0] # data = turn_contrib.sum(1).to_numpy().reshape(-1, 1) # word_relevance['token_contribution'] = data if do_evaluation: self.evaluation(self.valid_merged) return res_df def get_match_score(self, features_df, lr=False, reload=False): if lr is True: tmp_path = os.path.join(self.model_files_path, 'linear_model.pickle') else: tmp_path = os.path.join(self.model_files_path, 'best_feature_model_data.pickle') if not hasattr(self, 'best_model_data') or reload: with open(tmp_path, 'rb') as file: model_data = pickle.load(file) self.best_model_data = model_data self.model = self.best_model_data['model'] X = features_df[self.best_model_data['features']].to_numpy() if isinstance(self.model, Pipeline) and isinstance(self.model[0], MinMaxScaler): self.model[0].clip = False return self.model.predict_proba(X)[:, 1] def plot_rf(self, rf, columns): pd.DataFrame([rf.feature_importances_], columns=columns).T.plot.bar(figsize=(25, 5)); def get_relevance_scores(self, word_pairs, emb_pairs, sentence_emb_pairs=None, **kwargs): # m2 feat, word_pairs = self.extract_features(emb_pairs=emb_pairs, word_pairs=word_pairs, model=self.word_pair_model, train_data_loader=self.train_data_loader, sentence_emb_pairs=sentence_emb_pairs, additive_only=self.additive_only, **kwargs) return feat, word_pairs def get_predictor(self): self.reset_networks = False self.net_train() def predictor(df_to_process, routine, return_data=False, lr=False, chunk_size=500, reload=False, additive_only=self.additive_only): df_to_process = df_to_process.copy() if 'id' not in df_to_process.columns: df_to_process = df_to_process.reset_index(drop=True) df_to_process['id'] = df_to_process.index gc.collect() torch.cuda.empty_cache() data_dict = routine.get_processed_data(df_to_process, chunk_size=chunk_size) res = routine.get_word_pairs(df_to_process, data_dict) features, word_relevance = routine.get_relevance_scores(*res) if lr: match_score = routine.get_match_score(features, lr=lr, reload=reload) else: match_score = routine.get_match_score(features, reload=reload) match_score_series = pd.Series(0.5, index=df_to_process.id) match_score_series[features.index] = match_score match_score = match_score_series.values if return_data: if lr: lr = routine.model['LR'] co = lr.coef_ co_df = pd.DataFrame(co, columns=routine.features_dict['test'].columns).T turn_contrib = FeatureContribution.extract_features_by_attr(word_relevance, routine.cols, additive_only=additive_only) for x in co_df.index: turn_contrib[x] = turn_contrib[x] * co_df.loc[x, 0] data = turn_contrib.sum(1).to_numpy().reshape(-1, 1) word_relevance['token_contribution'] = data return match_score, data_dict, res, features, word_relevance else: return match_score return partial(predictor, routine=self) def get_calculated_data(self, df_name): features = self.features_dict[df_name] word_relevance = self.words_pairs_dict[df_name] pred = self.get_match_score(features, lr=True, reload=True) lr = self.model['LR'] co = lr.coef_ co_df =
pd.DataFrame(co, columns=self.features_dict[df_name].columns)
pandas.DataFrame
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import backend as K from tensorflow.keras.layers import Dense, Activation, Dropout, Conv2D, MaxPooling2D, BatchNormalization, Flatten from tensorflow.keras.optimizers import Adam, Adamax from tensorflow.keras.metrics import categorical_crossentropy from tensorflow.keras import regularizers from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.models import Model, load_model, Sequential import numpy as np import pandas as pd # 高级文件操作库 import shutil import time import cv2 as cv2 from tqdm import tqdm from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from matplotlib.pyplot import imshow import seaborn as sns sns.set_style('darkgrid') from PIL import Image from sklearn.metrics import confusion_matrix, classification_report from IPython.core.display import display, HTML # stop annoying tensorflow warning messages import logging plt.rcParams['font.sans-serif'] = ['SimHei'] logging.getLogger("tensorflow").setLevel(logging.ERROR) print('modules loaded') # 显示数据集图片 def show_image_samples(gen): t_dict = gen.class_indices print(t_dict) classes = list(t_dict.keys()) images, labels = next(gen) # get a sample batch from the generator plt.figure(figsize=(20, 20)) length = len(labels) if length < 25: # show maximum of 25 images r = length else: r = 25 for i in range(r): plt.subplot(5, 5, i + 1) image = images[i] / 255 plt.imshow(image) index = np.argmax(labels[i]) class_name = classes[index] plt.title(class_name, color='blue', fontsize=12) plt.axis('off') plt.show() # 显示图片 def show_images(tdir): classlist = os.listdir(tdir) length = len(classlist) columns = 5 rows = int(np.ceil(length / columns)) plt.figure(figsize=(20, rows * 4)) for i, klass in enumerate(classlist): classpath = os.path.join(tdir, klass) imgpath = os.path.join(classpath, '1.jpg') img = plt.imread(imgpath) plt.subplot(rows, columns, i + 1) plt.axis('off') plt.title(klass, color='blue', fontsize=12) plt.imshow(img) # 输出颜色 def print_in_color(txt_msg, fore_tupple, back_tupple): # prints the text_msg in the foreground color specified by fore_tupple with the background specified by back_tupple # text_msg is the text, fore_tupple is foregroud color tupple (r,g,b), back_tupple is background tupple (r,g,b) rf, gf, bf = fore_tupple rb, gb, bb = back_tupple msg = '{0}' + txt_msg mat = '\33[38;2;' + str(rf) + ';' + str(gf) + ';' + str(bf) + ';48;2;' + str(rb) + ';' + str(gb) + ';' + str( bb) + 'm' print(msg.format(mat), flush=True) print('\33[0m', flush=True) # returns default print color to back to black return # print_in_color("wow", (244, 252, 3), (55, 65, 80)) # 定义自定义回调的代码 class LRA(keras.callbacks.Callback): def __init__(self, model, base_model, patience, stop_patience, threshold, factor, dwell, batches, initial_epoch, epochs, ask_epoch): super(LRA, self).__init__() self.model = model self.base_model = base_model # 指定在未调整学习率之前的遍历次数 self.patience = patience # 指定调整学习率之前的训练次数后停止 self.stop_patience = stop_patience # 指定当需要进行学习率调整时的训练准确率阈值 self.threshold = threshold # 学习率降低的程度 self.factor = factor self.dwell = dwell # 每个时期运行的训练批次数 self.batches = batches self.initial_epoch = initial_epoch self.epochs = epochs self.ask_epoch = ask_epoch # 保存训练结果,以在训练重新开始时恢复 self.ask_epoch_initial = ask_epoch # 回调变量 记录 lr减少了多少次的情况下,算法性能 没能得到改善 self.count = 0 self.stop_count = 0 # 记录损失最低的那一次迭代的次数 self.best_epoch = 1 # 获取初始学习率并保存 self.initial_lr = float( tf.keras.backend.get_value(model.optimizer.lr)) # 将最高训练精度初始化为0 self.highest_tracc = 0.0 # 将最低验证精度设置为无穷大 self.lowest_vloss = np.inf # 将最佳权重设置为初始权重(后面会进行更新) self.best_weights = self.model.get_weights() # 如果必须恢复,请保存初始权重 self.initial_weights = self.model.get_weights() # 训练开始时:记录和输出一些提示信息 def on_train_begin(self, logs=None): if self.base_model != None: status = self.base_model.trainable if status: msg = 'base_model是可训练的' else: msg = 'base_model是不可训练的' else: msg = 'base_model不存在' print_in_color(msg, (244, 252, 3), (55, 65, 80)) msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}' \ '{8:10s}{9:^8s}'.format('Epoch', 'Loss', 'Accuracy', 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor', '% Improv', 'Duration') print_in_color(msg, (244, 252, 3), (55, 65, 80)) self.start_time = time.time() # 训练结束时:记录和输出一些提示信息 def on_train_end(self, logs=None): self.stop_time = time.time() # 获取训练时间 tr_duration = self.stop_time - self.start_time # 计算共多少小时 hours = tr_duration // 3600 # 计算多余时间是几分钟 minutes = (tr_duration - (hours * 3600)) // 60 # 计算多余秒是几秒 seconds = tr_duration - ((hours * 3600) + (minutes * 60)) # 设置模型的权重为之前记录的最好的权重 self.model.set_weights(self.best_weights) # 训练完成,模型权重设置为最好的那次训练结果的权重 msg = f'训练完成,模型权重设置为最好的第 {self.best_epoch} 次训练结果的权重' print_in_color(msg, (0, 255, 0), (55, 65, 80)) msg = f'训练花费时间: {str(hours)} 时, {minutes:4.1f} 分, {seconds:4.2f} 秒)' print_in_color(msg, (0, 255, 0), (55, 65, 80)) # 一个小批次训练结束 def on_train_batch_end(self, batch, logs=None): # 获取训练准确率 acc = logs.get('accuracy') * 100 loss = logs.get('loss') msg = '{0:20s}processing batch {1:4s} of {2:5s} accuracy= {3:8.3f}' \ ' loss: {4:8.5f}'.format('', str(batch), str(self.batches), acc, loss) # 在同一行上打印以显示正在运行的批次 print(msg, '\r', end='') # 一个训练次开始 def on_epoch_begin(self, epoch, logs=None): self.now = time.time() # def on_epoch_end(self, epoch, logs=None): # self.later = time.time() # # duration 是期间的意思 # duration = self.later - self.now # # 获取当前学习率 # lr = float(tf.keras.backend.get_value(self.model.optimizer.lr)) # # current_lr = lr # v_loss = logs.get('val_loss') # # 获取训练准确率 # acc = logs.get('accuracy') # v_acc = logs.get('val_accuracy') # loss = logs.get('loss') # # # 如果训练精度低于阈值,则根据训练精度调整lr # if acc < self.threshold: # monitor = 'accuracy' # if epoch == 0: # pimprov = 0.0 # else: # pimprov = (acc - self.highest_tracc) * 100 / self.highest_tracc # # # 提高了训练精度 # if acc > self.highest_tracc: # # 设置新的最高训练精度 # self.highest_tracc = acc # # 将最好的权重保存到变量中 # self.best_weights = self.model.get_weights() # # # 将训练精度没有提升的次数计次 归零 # self.count = 0 # self.stop_count = 0 # # if v_loss < self.lowest_vloss: # self.lowest_vloss = v_loss # color = (0, 255, 0) # # self.best_epoch = epoch + 1 # else: # # 训练准确性没有提高检查是否超出了耐心数 # if self.count > self.patience - 1: # color = (245, 170, 66) # lr = lr * self.factor # # 在优化器中设置学习率 # tf.keras.backend.set_value(self.model.optimizer.lr, lr) # self.count = 0 # # 统计lr调整的次数 # self.stop_count = self.stop_count + 1 # # if self.dwell: # self.model.set_weights(self.best_weights) # else: # if v_loss < self.lowest_vloss: # self.lowest_vloss = v_loss # # else: # # 增加已用耐心次数 # self.count = self.count + 1 # # 训练准确率高于阈值,因此根据验证损失调整学习率 # else: # # 监视 # monitor = 'val_loss' # if epoch == 0: # pimprov = 0.0 # # else: # pimprov = (self.lowest_vloss - v_loss) * 100 / self.lowest_vloss # # 检查验证损失是否有改进 # if v_loss < self.lowest_vloss: # # 用新的验证损失代替旧的最低损失 # self.lowest_vloss = v_loss # # 更换权重,该权重为最好的权重 # self.best_weights = self.model.get_weights() # # 更换无进度统计 # self.count = 0 # self.stop_count = 0 # color = (0, 255, 0) # # 记录这次迭代是目前为止最好的迭代 # self.best_epoch = epoch + 1 # # 损失无改进 # else: # # 耐心耗尽,需要更新学习率 # if self.count >= self.patience - 1: # color = (245, 170, 66) # # 修改学习率 # lr = lr * self.factor # self.stop_count = self.stop_count + 1 # # self.count = 0 # # 修改优化器中的学习率 # keras.backend.set_value(self.model.optimizer.lr, lr) # # if self.dwell: # # 返回最好的权重 # self.model.set_weights(self.best_weights) # else: # # 还有耐心,继续迭代 # self.count = self.count + 1 # # if acc > self.highest_tracc: # self.highest_tracc = acc # # msg = f'{str(epoch + 1):^3s}/{str(self.epochs):4s}' \ # f' {loss:^9.3f}{acc * 100:^9.3f}{v_loss:^9.5f}{v_acc * 100:^9.3f}' \ # f'{current_lr:^9.5f}{lr:^9.5f}{monitor:^11s}{pimprov:^10.2f}{duration:^8.2f}' # # print_in_color(msg, color, (55, 65, 80)) # if self.stop_count > self.stop_patience - 1: # # 检查学习率是否已调整 stop_count 次而没有改善学习效果 # msg = f' 训练在 {epoch + 1}' \ # f' 次后停止了, {self.stop_patience} 次调整学习率没有改进效果' # print_in_color(msg, (0, 255, 255), (55, 65, 80)) # # 停止训练 # self.model.stop_training = True # else: # if self.ask_epoch != None: # if epoch + 1 >= self.ask_epoch: # if self.base_model.trainable: # msg = '输入一个H以停止训练,或者输入一个整数以继续尝试训练' # else: # msg = '输入一个H以停止训练,F微调模型,输入一个整数以继续尝试训练' # # print_in_color(msg, (0, 255, 255), (55, 65, 80)) # ans = input('') # if ans == 'H' or ans == 'h': # msg = f'训练已在epoch {epoch + 1} 停止' # print_in_color(msg, (0, 255, 255), (55, 65, 80)) # self.model.stop_training = True # stop training # elif ans == 'F' or ans == 'f': # if self.base_model.trainable: # msg = 'base_model 一直允许训练' # else: # msg = '将base_model 设置为可训练以进行微调' # self.base_model.trainable = True # print_in_color(msg, (0, 255, 255), (55, 65, 80)) # msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}{8:^8s}'.format( # 'Epoch', 'Loss', 'Accuracy', # 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor', '% Improv', 'Duration') # print_in_color(msg, (244, 252, 3), (55, 65, 80)) # self.count = 0 # self.stop_count = 0 # self.ask_epoch = epoch + 1 + self.ask_epoch_initial # # else: # ans = int(ans) # self.ask_epoch += ans # msg = f'训练将继续' + str(self.ask_epoch) # print_in_color(msg, (0, 255, 255), (55, 65, 80)) # # msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}{8:10s}{9:^8s}'.format( # 'Epoch', 'Loss', 'Accuracy', # 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor', '% Improv', 'Duration') # print_in_color(msg, (244, 252, 3), (55, 65, 80)) def on_epoch_end(self, epoch, logs=None): # method runs on the end of each epoch later = time.time() duration = later - self.now lr = float(tf.keras.backend.get_value(self.model.optimizer.lr)) # get the current learning rate current_lr = lr v_loss = logs.get('val_loss') # get the validation loss for this epoch acc = logs.get('accuracy') # get training accuracy v_acc = logs.get('val_accuracy') loss = logs.get('loss') if acc < self.threshold: # if training accuracy is below threshold adjust lr based on training accuracy monitor = 'accuracy' if epoch == 0: pimprov = 0.0 else: pimprov = (acc - self.highest_tracc) * 100 / self.highest_tracc if acc > self.highest_tracc: # training accuracy improved in the epoch self.highest_tracc = acc # set new highest training accuracy self.best_weights = self.model.get_weights() # traing accuracy improved so save the weights self.count = 0 # set count to 0 since training accuracy improved self.stop_count = 0 # set stop counter to 0 if v_loss < self.lowest_vloss: self.lowest_vloss = v_loss color = (0, 255, 0) self.best_epoch = epoch + 1 # set the value of best epoch for this epoch else: # training accuracy did not improve check if this has happened for patience number of epochs # if so adjust learning rate if self.count >= self.patience - 1: # lr should be adjusted color = (245, 170, 66) lr = lr * self.factor # adjust the learning by factor tf.keras.backend.set_value(self.model.optimizer.lr, lr) # set the learning rate in the optimizer self.count = 0 # reset the count to 0 self.stop_count = self.stop_count + 1 # count the number of consecutive lr adjustments self.count = 0 # reset counter if self.dwell: self.model.set_weights( self.best_weights) # return to better point in N space else: if v_loss < self.lowest_vloss: self.lowest_vloss = v_loss else: self.count = self.count + 1 # increment patience counter else: # training accuracy is above threshold so adjust learning rate based on validation loss monitor = 'val_loss' if epoch == 0: pimprov = 0.0 else: pimprov = (self.lowest_vloss - v_loss) * 100 / self.lowest_vloss if v_loss < self.lowest_vloss: # check if the validation loss improved self.lowest_vloss = v_loss # replace lowest validation loss with new validation loss self.best_weights = self.model.get_weights() # validation loss improved so save the weights self.count = 0 # reset count since validation loss improved self.stop_count = 0 color = (0, 255, 0) self.best_epoch = epoch + 1 # set the value of the best epoch to this epoch else: # validation loss did not improve if self.count >= self.patience - 1: # need to adjust lr color = (245, 170, 66) lr = lr * self.factor # adjust the learning rate self.stop_count = self.stop_count + 1 # increment stop counter because lr was adjusted self.count = 0 # reset counter tf.keras.backend.set_value(self.model.optimizer.lr, lr) # set the learning rate in the optimizer if self.dwell: self.model.set_weights(self.best_weights) # return to better point in N space else: self.count = self.count + 1 # increment the patience counter if acc > self.highest_tracc: self.highest_tracc = acc msg = f'{str(epoch + 1):^3s}/{str(self.epochs):4s} {loss:^9.3f}{acc * 100:^9.3f}{v_loss:^9.5f}{v_acc * 100:^9.3f}{current_lr:^9.5f}{lr:^9.5f}{monitor:^11s}{pimprov:^10.2f}{duration:^8.2f}' print_in_color(msg, color, (55, 65, 80)) if self.stop_count > self.stop_patience - 1: # check if learning rate has been adjusted stop_count times with no improvement msg = f' training has been halted at epoch {epoch + 1} after {self.stop_patience} adjustments of learning rate with no improvement' print_in_color(msg, (0, 255, 255), (55, 65, 80)) self.model.stop_training = True # stop training else: if self.ask_epoch != None: if epoch + 1 >= self.ask_epoch: if base_model.trainable: msg = 'enter H to halt training or an integer for number of epochs to run then ask again' else: msg = 'enter H to halt training ,F to fine tune model, or an integer for number of epochs to run then ask again' print_in_color(msg, (0, 255, 255), (55, 65, 80)) ans = input('') if ans == 'H' or ans == 'h': msg = f'training has been halted at epoch {epoch + 1} due to user input' print_in_color(msg, (0, 255, 255), (55, 65, 80)) self.model.stop_training = True # stop training elif ans == 'F' or ans == 'f': if base_model.trainable: msg = 'base_model is already set as trainable' else: msg = 'setting base_model as trainable for fine tuning of model' self.base_model.trainable = True print_in_color(msg, (0, 255, 255), (55, 65, 80)) msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}{8:^8s}'.format('Epoch', 'Loss', 'Accuracy', 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor', '% Improv', 'Duration') print_in_color(msg, (244, 252, 3), (55, 65, 80)) self.count = 0 self.stop_count = 0 self.ask_epoch = epoch + 1 + self.ask_epoch_initial else: ans = int(ans) self.ask_epoch += ans msg = f' training will continue until epoch ' + str(self.ask_epoch) print_in_color(msg, (0, 255, 255), (55, 65, 80)) msg = '{0:^8s}{1:^10s}{2:^9s}{3:^9s}{4:^9s}{5:^9s}{6:^9s}{7:^10s}{8:10s}{9:^8s}'.format('Epoch', 'Loss', 'Accuracy', 'V_loss', 'V_acc', 'LR', 'Next LR', 'Monitor', '% Improv', 'Duration') print_in_color(msg, (244, 252, 3), (55, 65, 80)) # 定义一个函数绘制训练数据 def tr_plot(tr_data, start_epoch): # 绘制训练数据和验证数据 tacc = tr_data.history["accuracy"] tloss = tr_data.history["loss"] vacc = tr_data.history["val_accuracy"] vloss = tr_data.history["val_loss"] # 计算最终迭代了多少次 Epoch_count = len(tacc) + start_epoch Epochs = [i + 1 for i in range(start_epoch, Epoch_count)] index_loss = np.argmin(vloss) val_lowest = vloss[index_loss] index_acc = np.argmax(vacc) acc_highest = vacc[index_acc] sc_label = 'best epoch=' + str(index_loss + 1 + start_epoch) vc_label = 'best epoch=' + str(index_acc + 1 + start_epoch) # 创建图表 fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8)) axes[0].plot(Epochs, tloss, 'r', label='训练损失') axes[0].plot(Epochs, vloss, 'g', label='验证损失') axes[0].scatter(index_loss + 1 + start_epoch, val_lowest, s=150, c="blue", label=sc_label) axes[0].set_title('训练和验证损失') axes[0].set_xlabel("迭代次数") axes[0].set_ylabel("损失") axes[0].legend() axes[1].plot(Epochs, tacc, 'r', label='训练准确率') axes[1].plot(Epochs, vacc, 'g', label='验证准确率') axes[1].scatter(index_acc + 1 + start_epoch, acc_highest, s=150, c='blue', label=val_lowest) axes[1].set_title("训练和验证损失") axes[1].set_xlabel("迭代次数") axes[1].set_ylabel("准确率") axes[1].legend() plt.tight_layout plt.show() # 定义一个函数创建混淆矩阵和分类报告 def print_info(test_gen, preds, print_code, save_dir, subject): """ :param test_gen: 测试集数据集生成器(其指定了生成方式,通常是指向本地图片库) :param preds: 预测结果 :param print_code: :param save_dir: 保存目录 :param subject: :return: """ # 获取类名及下标字典 class_dict = test_gen.class_indices # 获取所有类名 labels = test_gen.labels # 获取所有文件名称 file_names = test_gen.filenames error_list = [] true_class = [] pred_class = [] prob_list = [] # 按下标为key 类名为value创建一个新的字典 new_dict = {} error_indies = [] # 实际预测值数组 y_pred = [] for key, value in class_dict.items(): new_dict[value] = key # 将所有类名作为目录存储在save_dir下 classes = list(new_dict.values()) # 记录错误的分类次数 errors = 0 for i, p in enumerate(preds): # 预测值 pred_index = np.argmax(p) # 实际值 true_index = labels[i] # 如果预测错误 if pred_index != true_index: error_list.append(file_names[i]) true_class.append(new_dict[true_index]) pred_class.append(new_dict[pred_index]) # 预测的最高概率装进prob prob_list.append(p[pred_index]) error_indies.append(true_index) errors = errors + 1 y_pred.append(pred_index) if print_code != 0: if errors > 0: if print_code > errors: r = errors else: r = print_code msg = '{0:^28s}{1:^28s}{2:^28s}{3:^16s}' \ .format('Filename', 'Predicted Class', 'True Class', 'Probability') print_in_color(msg, (0, 255, 0), (55, 65, 80)) for i in range(r): # TODO 暂时不知道这几行代码干嘛的 split1 = os.path.split(error_list[i]) split2 = os.path.split(split1[0]) fname = split2[1] + '/' + split1[1] msg = '{0:^28s}{1:^28s}{2:^28s}{3:4s}{4:^6.4f}'.format(fname, pred_class[i], true_class[i], ' ', prob_list[i]) print_in_color(msg, (255, 255, 255), (55, 65, 60)) else: msg = '精度为100%,没有错误' print_in_color(msg, (0, 255, 0), (55, 65, 80)) if errors > 0: plot_bar = [] plot_class = [] for key, value in new_dict.items(): # 获得被错误分类的类型的计数(例如:假设 丹顶鹤的下标是11,则下面的操作将获得实际为丹顶鹤的鸟被错误分类的数量) count = error_indies.count(key) if count != 0: plot_bar.append(count) plot_class.append(value) fig = plt.figure() fig.set_figheight(len(plot_class) / 3) fig.set_figwidth(10) for i in range(0, len(plot_class)): c = plot_class[i] x = plot_bar[i] plt.barh(c, x, ) plt.title("测试集错误分类") y_true = np.array(labels) y_pred = np.array(y_pred) # 最多显示分类错误的30个分类 if len(classes) <= 30: # 创建混淆矩阵 cm = confusion_matrix(y_true, y_pred) length = len(classes) if length < 8: fig_width = 8 fig_height = 8 else: fig_width = int(length * 0.5) fig_height = int(length * 0.5) plt.figure(figsize=(fig_width, fig_height)) plt.xticks(np.array(length) + 0.5, classes, rotation=90) plt.yticks(np.array(length) + 0.5, classes, rotation=0) plt.xlabel("预测的") plt.ylabel("真实的") plt.title("混淆矩阵") plt.show() clr = classification_report(y_true, y_pred, target_names=classes) print("Classification Report:\n----------------------\n", clr) # 定义一个函数用于保存模型及关联csv文件 def saver(save_path, model, model_name, subject, accuracy, img_size, scalar, generator): """ :param save_path: 保存路径 :param model: 模型 :param model_name: 模型名称 :param subject: :param accuracy: 准确率 :param img_size: 图片大小 :param scalar: :param generator: :return: """ print("保存路径是:", save_path) # 保存model (保存准确率的3位小数) save_id = str(model_name + '-' + subject + '-' + str(accuracy)[:str(accuracy).rfind('.') + 3] + '.h5') model_save_loc = os.path.join(save_path, save_id) model.save(model_save_loc) print_in_color('model was saved as' + model_save_loc, (0, 255, 0), (55, 65, 80)) # 现在创建 class_df 并转换为csv文件 class_dict = generator.class_indices height = [] width = [] scale = [] for i in range(len(class_dict)): height.append(img_size[0]) width.append(img_size[1]) scale.append(scalar) # TODO 这是一个pands对象,但目前还不了解其结构 Index_series = pd.Series(list(class_dict.values()), name='class_index') Class_series = pd.Series(list(class_dict.keys()), name='class') Height_series = pd.Series(height, name="height") Width_series = pd.Series(width, name='width') Scale_series = pd.Series(scale, name='scale by') class_df = pd.concat([Index_series, Class_series, Height_series, Width_series, Scale_series], axis=1) csv_name = 'class_dict_by_GERRY.csv' csv_save_loc = os.path.join(save_path, csv_name) class_df.to_csv(csv_save_loc, index=False) print_in_color('类文件已存储 ' + csv_save_loc, (0, 255, 0), (55, 65, 80)) return model_save_loc, csv_save_loc # 定义一个使用训练模型的函数和 csv 文件来预测图像 def predictor(sdir, csv_path, model_path, averaged=True, verbose=True): """ :param sdir: 图片根目录 :param csv_path: csv保存地址 :param model_path: model保存地址 :param averaged: :param verbose: :return: """ # 读取 csv 文件 class_df = pd.read_csv(csv_path) class_count = len(class_df['class'].unique()) img_height = int(class_df['height'].iloc[0]) img_width = int(class_df['width'].iloc[0]) img_size = (img_width, img_height) scale = class_df['scale by'].iloc[0] try: s = int(scale) s2 = 1 s1 = 0 except: split = scale.split('-') s1 = float(split[1]) s2 = float(split[0].split('*')[1]) path_list = [] paths = os.listdir(sdir) for f in paths: path_list.append(os.path.join(sdir, f)) if verbose: print('10秒后加载模型') model = load_model(model_path) image_count = len(path_list) image_list = [] file_list = [] good_image_count = 0 for i in range(image_count): try: img = cv2.imread(path_list[i]) img = cv2.resize(img, img_size) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) good_image_count += 1 # TODO 暂时没有理解 img = img * s2 - s1 image_list.append(img) file_name = os.path.split(path_list[i])[1] file_list.append(file_name) except: if verbose: print(path_list[i], 'is an invalid image file') # 如果只有单张图片需要扩张尺寸 if good_image_count == 1: averaged = True image_array = np.array(image_list) # 对图像进行预测,对每个类别求和,然后找到最高概率的类索引 preds = model.predict(image_array) if averaged: psum = [] # 创造一个0数组 for i in range(class_count): psum.append(0) # 获取其中一个预测值(是一个数组) for p in preds: for i in range(class_count): # TODO 这里究竟是把所有预测值放入psum,还是对概率求和? psum[i] = psum[i] + p[i] # 找到具有最高概率总和的类索引 index = np.argmax(psum) # 获取该下标的类名 klass = class_df['class'].iloc[index] # 获取概率的均值 prob = psum[index] / good_image_count * 100 for img in image_array: # 该方法可以修改图片的维度,原本图片的维度为(x,y),现在为(1,x,y) test_img = np.expand_dims(img, axis=0) # 找到类别概率最高的下标 test_index = np.argmax(model.predict(test_img)) if test_index == index: # 展示图片输出结果 if verbose: plt.axis('off') # 显示这张图片 plt.imshow(img) print(f'预测为{klass},概率为{prob:6.4f}%') break return klass, prob, img, None # 为每个图像创建单独的预测 else: pred_class = [] prob_list = [] for i, p in enumerate(preds): index = np.argmax(p) klass = class_df['class'].iloc[index] image_file = file_list[i] pred_class.append(klass) prob_list.append(p[index]) Fseries = pd.Series(file_list, name='图片文件') Lseries = pd.Series(pred_class, name='??') Pseries =
pd.Series(prob_list, name='概率')
pandas.Series
import numpy as np import pandas as pd from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree # https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph.minimum_spanning_tree.html # Euclidean distance def dist(p1, p2): return np.sqrt(sum([(a - b) ** 2 for a, b in zip(p1, p2)])) # liste of points dico = { 1:(0, 0, 0), 2:(0, -1, 0), 3:(0, 1, 1), 4:(5, 1, 1), 5:(6, 0, 1), 6:(6, 1, 1) } # upper triangular matrix containing the distance between each point mat = {i:[dist(dico[i], p2) for p2 in list(dico.values())] for i in list(dico)} df =
pd.DataFrame(mat)
pandas.DataFrame
# Zipline API from zipline.api import order, symbol from zipline import run_algorithm # Data frames import pandas as pd # Logging from websocket import create_connection # Data frame To JSON from ..api.create_response import create_json_response def apple_run(shares_per_day, capital_base, start_date, end_date, log_channel): ws = create_connection("ws://alpharithmic.herokuapp.com/ws/logs/%s/" % log_channel) msg_placeholder = "{\"message\": \"%s\"}" ws.send(msg_placeholder % "Link Start") def init(context): ws.send(msg_placeholder % "Simulation Start") pass def handle(context, data): order(symbol('AAPL'), shares_per_day) ws.send(msg_placeholder % ("Ordered %s shares of Apple" % str(shares_per_day))) start =
pd.to_datetime(start_date)
pandas.to_datetime
# Dataframe manipulation library import pandas as pd # Math functions, we'll only need the sqrt function so let's import only that from math import sqrt import numpy as np import matplotlib.pyplot as plt # %matplotlib inline # Storing the movie information into a pandas dataframe movies_df = pd.read_csv('movies.csv') # Storing the user information into a pandas dataframe ratings_df =
pd.read_csv('ratings.csv')
pandas.read_csv
""" Class for creating datasets for training a supervised translation classifier and for crosslingual information retrieval. """ import pandas as pd from tqdm import tqdm from src.features.embedding_features import cosine_similarity_vector from src.utils.timer import timer class DataSet: """ Class for creating datasets for training a supervised translation classifier and for crosslingual information retrieval. Attributes: preprocessed_dataframe (dataframe): Preprocessed parallel translations dataframe. model_subset (dataframe): Subset of preprocessed_dataframe for training a supervised translation classifier. retrieval_subset (dataframe): Subset of preprocessed_datafram for testing crosslingual retrieval models. model_dataset (dataframe):Generated dataset for training a supervised translation classifier. retrieval_dataset (dataframe): Dataset for testing crosslingual retrieval models. """ @timer def __init__(self, preprocessed_data): """ Initialize class by importing preprocessed data. Args: preprocessed_data (dataframe): Preprocessed dataframe of parallel translations. """ self.preprocessed_dataframe = preprocessed_data self.model_subset = pd.DataFrame() self.retrieval_subset = pd.DataFrame() self.model_dataset_index = pd.DataFrame() self.model_dataset = pd.DataFrame() self.retrieval_dataset = pd.DataFrame() self.retrieval_dataset_index = pd.DataFrame() @timer def split_model_retrieval(self, n_model=20000, n_retrieval=5000): """ Split data into model dataset and retrieval dataset. Args: n_model (int): Number of preprocessed datapoints used for supervised modelling. n_retrieval (int): Number of preprocessed datapoints used for the retrieval task. """ try: self.model_subset = self.preprocessed_dataframe.iloc[0:n_model] self.retrieval_subset = self.preprocessed_dataframe.iloc[n_model:(n_model + n_retrieval)] except IndexError: print("n_model + n_retrieval must be smaller than the dataset size.") def create_model_index(self, n_model=5000, k=5, sample_size_k=100, embedding_source="sentence_embedding_tf_idf_proc_5k_source", embedding_target="sentence_embedding_tf_idf_proc_5k_target"): """ Generate dataset for modelling a supervised classifier. Args: n_model (int): Number of preprocessed datapoints used for supervised modelling. k (int): Number of false translated sentences pair for training a supervised classifier. sample_size_k (int): Number of samples from target per source sentence for searching nearest sentences. embedding_source (str): Name of source embeddings embedding_target (str): Name of source embeddings """ preprocessed_source = self.model_subset[["id_source", embedding_source]] preprocessed_target = self.model_subset[["id_target", embedding_target]] random_sample_right = self.model_subset[["id_source", "id_target"]] multiplied_source = pd.concat([preprocessed_source] * sample_size_k, ignore_index=True).reset_index( drop=True) sample_target = preprocessed_target.sample(n_model * sample_size_k, replace=True, random_state=42).reset_index( drop=True) random_sample_wrong = pd.concat([multiplied_source, sample_target], axis=1) # Select only the 2*k closest sentence embeddings for training to increase the complexity of the task for # the supervised classifier. random_sample_wrong["cosine_similarity"] = cosine_similarity_vector( random_sample_wrong["sentence_embedding_tf_idf_proc_5k_source"], random_sample_wrong["sentence_embedding_tf_idf_proc_5k_target"]) random_sample_k_index = random_sample_wrong.groupby("id_source")['cosine_similarity'].nlargest(k) rows = [] for i in tqdm(range(n_model)): for key in random_sample_k_index[i].keys(): rows.append(key) random_sample_k = random_sample_wrong.iloc[rows].reset_index(drop=True)[["id_source", "id_target"]] self.model_dataset_index =
pd.concat([random_sample_right, random_sample_k], axis=0)
pandas.concat
from drop import utils import pandas as pd from pathlib import Path from collections import defaultdict from snakemake.logging import logger import warnings warnings.filterwarnings("ignore", 'This pattern has match groups') class SampleAnnotation: FILE_TYPES = ["RNA_BAM_FILE", "DNA_VCF_FILE", "GENE_COUNTS_FILE"] SAMPLE_ANNOTATION_COLUMNS = FILE_TYPES + [ "RNA_ID", "DNA_ID", "DROP_GROUP", "GENE_ANNOTATION", "PAIRED_END", "COUNT_MODE", "COUNT_OVERLAPS", "STRAND", "GENOME" ] def __init__(self, file, root, genome): """ sa_file: sample annotation file location from config root: output location for file mapping """ self.root = Path(root) self.file = file self.genome = genome self.annotationTable = self.parse() self.idMapping = self.createIdMapping() self.sampleFileMapping = self.createSampleFileMapping() self.rnaIDs = self.createGroupIds(file_type="RNA_BAM_FILE", sep=',') self.dnaIDs = self.createGroupIds(file_type="DNA_VCF_FILE", sep=',') # external counts self.extGeneCountIDs = self.createGroupIds(file_type="GENE_COUNTS_FILE", sep=',') def parse(self, sep='\t'): """ read and check sample annotation for missing columns clean columns and set types """ data_types = { "RNA_ID": str, "DNA_ID": str, "DROP_GROUP": str, "GENE_ANNOTATION": str, "PAIRED_END": bool, "COUNT_MODE": str, "COUNT_OVERLAPS": bool, "STRAND": str, "GENOME": str } sa =
pd.read_csv(self.file, sep=sep, index_col=False)
pandas.read_csv
import pandas as pd melb_df = pd.read_csv('data/melb_data_fe.csv') print(melb_df.head()) print(melb_df.info) melb_df['Date'] = pd.to_datetime(melb_df['Date']) quarters = melb_df['Date'].dt.quarter print(quarters.value_counts().iloc[1]) cols_to_exclude = ['Date', 'Rooms', 'Bathroom', 'Bedroom', 'Car'] max_unique_count = 150 for col in melb_df.columns: if melb_df[col].nunique( ) < max_unique_count and col not in cols_to_exclude: melb_df[col] = melb_df[col].astype('category') print(melb_df.info) print(round(melb_df.sort_values(by='AreaRatio', ignore_index=True, ascending=False).loc[1558, 'BuildingArea'])) mask1 = melb_df['Type'] == 'townhouse' mask2 = melb_df['Rooms'] > 2 print(round(melb_df[mask1 & mask2].sort_values( by=['Rooms', 'MeanRoomsSquare'], ascending=[ True, False], ignore_index=True).loc[18, 'Price'])) print(melb_df.groupby('Rooms')['Price'].mean().sort_values(ascending=False)) print(melb_df.groupby('Regionname')['Lattitude'].std().sort_values()) date1 =
pd.to_datetime('2017-05-01')
pandas.to_datetime
# Copyright 2022 Microsoft Corporation. ''' Helper functions for performing coord check. ''' import os from copy import copy from itertools import product import numpy as np import pandas as pd import torch import torch.nn.functional as F def cov(x): '''Treat `x` as a collection of vectors and its Gram matrix. Input: x: If it has shape [..., d], then it's treated as a collection of d-dimensional vectors Output: cov: a matrix of size N x N where N is the product of the non-last dimensions of `x`. ''' if x.nelement() == 1: width = 1 xx = x.reshape(1, 1) else: width = x.shape[-1] xx = x.reshape(-1, x.shape[-1]) return xx @ xx.T / width def covoffdiag(x): '''Get off-diagonal entries of `cov(x)` in a vector. Input: x: If it has shape [..., d], then it's treated as a collection of d-dimensional vectors Output: Off-diagonal entries of `cov(x)` in a vector.''' c = cov(x) return c[~torch.eye(c.shape[0], dtype=bool)] #: dict of provided functions for use in coord check FDICT = { 'l1': lambda x: torch.abs(x).mean(), 'l2': lambda x: (x**2).mean()**0.5, 'mean': lambda x: x.mean(), 'std': lambda x: x.std(), 'covl1': lambda x: torch.abs(cov(x)).mean(), 'covl2': lambda x: (cov(x)**2).mean()**0.5, 'covoffdiagl1': lambda x: torch.abs(covoffdiag(x)).mean(), 'covoffdiagl2': lambda x: (covoffdiag(x)**2).mean()**0.5 } def convert_fdict(d): '''convert a dict `d` with string values to function values. Input: d: a dict whose values are either strings or functions Output: a new dict, with the same keys as `d`, but the string values are converted to functions using `FDICT`. ''' return dict([ ((k, FDICT[v]) if isinstance(v, str) else (k, v)) for k, v in d.items()]) def _record_coords(records, width, modulename, t, output_fdict=None, input_fdict=None, param_fdict=None): '''Returns a forward hook that records coordinate statistics. Returns a forward hook that records statistics regarding the output, input, and/or parameters of a `nn.Module`. This hook is intended to run only once, on the timestep specified by `t`. On forward pass, the returned hook calculates statistics specified in `output_fdict`, `input_fdict`, and `param_fdict`, such as the normalized l1 norm, of output, input, and/or parameters of the module. The statistics are recorded along with the `width`, `modulename`, and `t` (the time step) as a dict and inserted into `records` (which should be a list). More precisely, for each output, input, and/or parameter, the inserted dict is of the form { 'width': width, 'module': modified_modulename, 't': t, # keys are keys in fdict 'l1': 0.241, 'l2': 0.420, 'mean': 0.0, ... } where `modified_modulename` is a string that combines the `modulename` with an indicator of which output, input, or parameter tensor is the statistics computed over. The `*_fdict` inputs should be dictionaries with string keys and whose values can either be functions or strings. The string values are converted to functions via `convert_fdict`. The default values of `*_dict` inputs are converted to `output_fdict = dict(l1=FDICT['l1'])`, `input_fdict = {}`, `param_fdict = {}`, i.e., only the average coordinate size (`l1`) of the output activations are recorded. Inputs: records: list to append coordinate data to width: width of the model. This is used only for plotting coord check later on, so it can be any notion of width. modulename: string name of the module. This is used only for plotting coord check. t: timestep of training. This is used only for plotting coord check. output_fdict, input_fdict, param_fdict: dicts with string keys and whose values can either be functions or strings. The string values are converted to functions via `convert_fdict` Output: a forward hook that records statistics regarding the output, input, and/or parameters of a `nn.Module`, as discussed above. ''' if output_fdict is None: output_fdict = dict(l1=FDICT['l1']) else: output_fdict = convert_fdict(output_fdict) if input_fdict is None: input_fdict = {} else: input_fdict = convert_fdict(input_fdict) if param_fdict is None: param_fdict = {} else: param_fdict = convert_fdict(param_fdict) def f(module, input, output): def get_stat(d, x, fdict): if isinstance(x, (tuple, list)): for i, _x in enumerate(x): _d = copy(d) _d['module'] += f'[{i}]' get_stat(_d, _x, fdict) elif isinstance(x, dict): for name, _x in x.items(): _d = copy(d) _d['module'] += f'[{name}]' get_stat(_d, _x, fdict) elif isinstance(x, torch.Tensor): _d = copy(d) for fname, f in fdict.items(): _d[fname] = f(x).item() records.append(_d) else: raise NotImplemented(f'Unexpected output type: {type(x)}') with torch.no_grad(): ret = { 'width': width, 'module': modulename, 't': t } # output stats if isinstance(output, (tuple, list)): for i, out in enumerate(output): _ret = copy(ret) _ret['module'] += f':out[{i}]' get_stat(_ret, out, output_fdict) elif isinstance(output, dict): for name, out in output.items(): _ret = copy(ret) _ret['module'] += f':out[{name}]' get_stat(_ret, out, output_fdict) elif isinstance(output, torch.Tensor): _ret = copy(ret) for fname, f in output_fdict.items(): _ret[fname] = f(output).item() records.append(_ret) else: raise NotImplemented(f'Unexpected output type: {type(output)}') # input stats if input_fdict: if isinstance(input, (tuple, list)): for i, out in enumerate(input): _ret = copy(ret) _ret['module'] += f':in[{i}]' get_stat(_ret, out, input_fdict) elif isinstance(input, dict): for name, out in input.items(): _ret = copy(ret) _ret['module'] += f':in[{name}]' get_stat(_ret, out, input_fdict) elif isinstance(input, torch.Tensor): _ret = copy(ret) for fname, f in input_fdict.items(): _ret[fname] = f(input).item() records.append(_ret) else: raise NotImplemented(f'Unexpected output type: {type(input)}') # param stats if param_fdict: for name, p in module.named_parameters(): _ret = copy(ret) _ret['module'] += f':param[{name}]' for fname, f in param_fdict.items(): _ret[fname] = f(p).item() records.append(_ret) return f def _get_coord_data(models, dataloader, optcls, nsteps=3, dict_in_out=False, flatten_input=False, flatten_output=False, output_name='loss', lossfn='xent', filter_module_by_name=None, fix_data=True, cuda=True, nseeds=1, output_fdict=None, input_fdict=None, param_fdict=None, show_progress=True): '''Inner method for `get_coord_data`. Train the models in `models` with optimizer given by `optcls` and data from `dataloader` for `nsteps` steps, and record coordinate statistics specified by `output_fdict`, `input_fdict`, `param_fdict`. By default, only `l1` is computed for output activations of each module. Inputs: models: a dict of lazy models, where the keys are numbers indicating width. Each entry of `models` is a function that instantiates a model given nothing. dataloader: an iterator whose elements are either Huggingface style dicts, if `dict_in_out` is True, or (input, label). If `fix_data` is True (which is the default), then only the first element of `dataloader` is used in a loop and the rest of `dataloder` is ignored. optcls: a function so that `optcls(model)` gives an optimizer used to train the model. nsteps: number of steps to train the model dict_in_out: whether the data loader contains Huggingface-style dict input and output. Default: False flatten_input: if not `dict_in_out`, reshape the input to be `input.view(input.shape[0], -1)`. Typically used for testing MLPs. flatten_output: if not `dict_in_out`, reshape the label to be `label.view(-1, input.shape[-1])`. output_name: if `dict_in_out`, this is the key for the loss value if the output is a dict. If the output is not a dict, then we assume the first element of the output is the loss. lossfn: loss function to use if not `dict_in_out`. Default is `xent` for cross entropy loss. Other choices are ['mse', 'nll'] filter_module_by_name: a function that returns a bool given module names (from `model.named_modules()`), or None. If not None, then only modules whose name yields True will be recorded. cuda: whether to use cuda or not. Default: True nseeds: number of times to repeat the training, each with different seeds. output_fdict, input_fdict, param_fdict: function dicts to be used in `_record_coords`. By default, only `l1` is computed for output activations of each module. show_progress: show progress using tqdm. Output: a pandas DataFrame containing recorded results. The column names are `'width', 'module', 't'` as well as names of statistics recorded, such as `'l1'` (see `FDICT` for other premade statistics that can be collected). ''' df = [] if fix_data: batch = next(iter(dataloader)) dataloader = [batch] * nsteps if show_progress: from tqdm import tqdm pbar = tqdm(total=nseeds * len(models)) for i in range(nseeds): torch.manual_seed(i) for width, model in models.items(): model = model() model = model.train() if cuda: model = model.cuda() optimizer = optcls(model) for batch_idx, batch in enumerate(dataloader, 1): remove_hooks = [] # add hooks for name, module in model.named_modules(): if filter_module_by_name and not filter_module_by_name(name): continue remove_hooks.append(module.register_forward_hook( _record_coords(df, width, name, batch_idx, output_fdict=output_fdict, input_fdict=input_fdict, param_fdict=param_fdict))) if dict_in_out: if cuda: for k, v in batch.items(): if isinstance(v, torch.Tensor): batch[k] = v.cuda() outputs = model(**batch) loss = outputs[output_name] if isinstance(outputs, dict) else outputs[0] else: (data, target) = batch if cuda: data, target = data.cuda(), target.cuda() if flatten_input: data = data.view(data.size(0), -1) output = model(data) if flatten_output: output = output.view(-1, output.shape[-1]) if lossfn == 'xent': loss = F.cross_entropy(output, target) elif lossfn == 'mse': loss = F.mse_loss(output, F.one_hot(target, num_classes=output.size(-1)).float()) elif lossfn == 'nll': loss = F.nll_loss(output, target) else: raise NotImplementedError() optimizer.zero_grad() loss.backward() optimizer.step() # remove hooks for handle in remove_hooks: handle.remove() if batch_idx == nsteps: break if show_progress: pbar.update(1) if show_progress: pbar.close() return
pd.DataFrame(df)
pandas.DataFrame
from dateutil import parser import numpy as np import pandas as pd import urllib3 import json import datetime as dt import time import warnings import math ####################################################################### # drops invalid data from our history def dropDirty(history, exWeekends): history = history[(history.Open != 0) & (history.High != 0) & (history.Low != 0) & (history.Close != 0)] history = history[(
pd.isnull(history.Open)
pandas.isnull
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @file: abnormal_detection_gaussian.py @time: 2019-04-18 18:03 """ import pandas as pd from mayiutils.file_io.pickle_wrapper import PickleWrapper as picklew from feature_selector import FeatureSelector if __name__ == '__main__': mode = 4 if mode == 4: """ feature selector """ # df1 = pd.read_excel('data.xlsx').iloc[:, 1:] # print(df1.info()) df = pd.read_excel('/Users/luoyonggui/Documents/work/dataset/0/data.xlsx') # print(df.info())# 查看df字段和缺失值信息 label = df['理赔结论'] df = df.drop(columns=['理赔结论']) fs = FeatureSelector(data=df, labels=label) # 缺失值处理 fs.identify_missing(missing_threshold=0.6) if mode == 3: """ 合并参保人基本信息 """ df1 = pd.read_excel('data.xlsx', 'Sheet2').dropna(axis=1, how='all') # print(df1.info()) """ 归并客户号 528 non-null int64 性别 528 non-null object 出生年月日 528 non-null datetime64[ns] 婚姻状况 432 non-null object 职业 484 non-null float64 职业危险等级 484 non-null float64 年收入 528 non-null int64 年交保费 528 non-null float64 犹豫期撤单次数 528 non-null int64 既往理赔次数 528 non-null int64 既往拒保次数 528 non-null int64 既往延期承保次数 528 non-null int64 非标准体承保次数 528 non-null int64 既往调查标识 528 non-null object 既往体检标识 528 non-null object 累积寿险净风险保额 528 non-null float64 累积重疾净风险保额 528 non-null float64 投保人年收入与年交保费比值 437 non-null float64 被保险人有效重疾防癌险保单件数 528 non-null int64 被保险人有效短期意外险保单件数 528 non-null int64 被保险人有效短期健康险保单件数 528 non-null int64 被保险人90天内生效保单件数 528 non-null int64 被保险人180天内生效保单件数 528 non-null int64 被保险人365天内生效保单件数 528 non-null int64 被保险人730天内生效保单件数 528 non-null int64 客户黑名单标识 528 non-null object 保单失效日期 11 non-null datetime64[ns] 保单复效日期 7 non-null datetime64[ns] 受益人变更日期 12 non-null datetime64[ns] """ cols = list(df1.columns) cols.remove('保单失效日期') cols.remove('保单复效日期') cols.remove('受益人变更日期') cols.remove('客户黑名单标识')#只有一个值 df1['出生年'] = df1['出生年月日'].apply(lambda x: int(str(x)[:4])) cols.append('出生年') cols.remove('出生年月日') t = pd.get_dummies(df1['婚姻状况'], prefix='婚姻状况') df2 = pd.concat([df1, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('婚姻状况') t = pd.get_dummies(df2['性别'], prefix='性别') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('性别') t = pd.get_dummies(df2['既往调查标识'], prefix='既往调查标识') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('既往调查标识') t = pd.get_dummies(df2['既往体检标识'], prefix='既往体检标识') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('既往体检标识') # print(df2['职业'].value_counts()) """ 取前四位 分类 """ df2['职业'] = df2['职业'].apply(lambda x: str(x)[:1]) # print(df2['职业'].value_counts()) t = pd.get_dummies(df2['职业'], prefix='职业') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('职业') print(df2['职业危险等级'].value_counts()) t = pd.get_dummies(df2['职业危险等级'], prefix='职业危险等级') df2 = pd.concat([df2, t], axis=1) print(df2.shape) cols.extend(list(t.columns)) cols.remove('职业危险等级') df2['投保人年收入与年交保费比值'] = df2['投保人年收入与年交保费比值'].fillna(0) """ 归并客户号有重复的,取重复值的第一条 """ df2 = df2.drop_duplicates(subset=['归并客户号'], keep='first') print(df2['归并客户号'].value_counts()) df2 = df2.rename(columns={'归并客户号': '被保人归并客户号'}) cols.remove('归并客户号') cols.append('被保人归并客户号') # print(df2[cols].info()) #合并 train_df = picklew.loadFromFile('train_data1.pkl') print(train_df.shape) train_df = pd.merge(train_df, df2[cols], how='left', on='被保人归并客户号') del train_df['营销员工号'] del train_df['被保人核心客户号'] del train_df['保人归并客户号'] del train_df['被保人归并客户号'] print(train_df.shape) # (562, 30) print(train_df.info()) del train_df['理赔金额'] picklew.dump2File(train_df, 'train_data2.pkl') if mode == 2: """ 合并销售人员信息 """ df1 = pd.read_excel('data.xlsx', 'Sheet1') # print(df1.info()) """ RangeIndex: 532 entries, 0 to 531 Data columns (total 7 columns): 营销员工号 532 non-null int64 营销员黑名单标记 326 non-null object 营销员入司时间 326 non-null datetime64[ns] 营销员离职时间 97 non-null datetime64[ns] 营销员所售保单数量 532 non-null int64 营销员所售保单标准体数量 532 non-null int64 营销员所售保单出险数量 532 non-null int64 """ cols = list(df1.columns) # print(df1['营销员黑名单标记'].value_counts()) """ 全部都是N, 没有意义, 删除 """ cols.remove('营销员离职时间') df2 = df1[cols].dropna() cols.remove('营销员黑名单标记') cols.remove('营销员入司时间') df2 = df2[cols] # print(df2.info()) """ 营销员工号 326 non-null int64 营销员所售保单数量 326 non-null int64 营销员所售保单标准体数量 326 non-null int64 营销员所售保单出险数量 326 non-null int64 """ # print(df2['营销员工号'].value_counts()) # print(df2.info()) #合并df train_df = picklew.loadFromFile('train_data.pkl') train_df = train_df.rename(columns={'(SELECTDISTINCTLJ.AGENTCODEFRO销售人员工号':'营销员工号'}) print(train_df.shape) # train_df = pd.merge(train_df, df2, how='left', on='营销员工号') print(train_df.shape)#(562, 30) print(train_df.info()) picklew.dump2File(train_df, 'train_data1.pkl') if mode == 1: """ 主表 """ df1 = pd.read_excel('data.xlsx').iloc[:, 1:] # print(df1.shape)#(562, 41) # print(df1.columns) """ ['平台流水号', '保单管理机构', '保单号', '指定受益人标识', '受益人与被保险人关系', '交费方式', '交费期限', '核保标识', '核保结论', '投保时年龄', '基本保额与体检保额起点比例', '生调保额起点', '投保保额临近核保体检临界点标识', '投保保额', '临近核保生调临界点标识', '理赔金额', '累计已交保费', '理赔结论', 'Unnamed: 19', '生效日期', '出险前最后一次复效日期', '承保后最小借款日期', '出险日期', '报案时间', '申请日期', '出险减生效天数', '出险减最后一次复效天数', '重疾保单借款减生效日期天数', '申请时间减出险时间', '报案时间减出险时间', '出险原因1', '出险原因2', '出险原因3', '出险结果', '保单借款展期未还次数', '失复效记录次数', '销售渠道', '(SELECTDISTINCTLJ.AGENTCODEFRO销售人员工号', '被保人核心客户号', '保人归并客户号', '被保人归并客户号'] """ # 删除全部为null的列 df2 = df1.dropna(axis=1, how='all') # print(df2.shape)#(562, 33) # print(df2.columns) """ ['平台流水号', '保单管理机构', '保单号', '指定受益人标识', '受益人与被保险人关系', '交费方式', '交费期限', '核保标识', '核保结论', '投保时年龄', '投保保额', '理赔金额', '累计已交保费', '理赔结论', 'Unnamed: 19', '生效日期', '出险前最后一次复效日期', '承保后最小借款日期', '出险日期', '报案时间', '申请日期', '出险减生效天数', '出险减最后一次复效天数', '申请时间减出险时间', '报案时间减出险时间', '出险原因1', '出险结果', '失复效记录次数', '销售渠道', '(SELECTDISTINCTLJ.AGENTCODEFRO销售人员工号', '被保人核心客户号', '保人归并客户号', '被保人归并客户号'] """ # print(df2.info()) """ 平台流水号 562 non-null int64 保单管理机构 562 non-null int64 保单号 562 non-null int64 指定受益人标识 562 non-null object 受益人与被保险人关系 538 non-null object 交费方式 562 non-null object 交费期限 562 non-null int64 核保标识 562 non-null object 核保结论 544 non-null object 投保时年龄 562 non-null int64 投保保额 562 non-null float64 理赔金额 562 non-null float64 累计已交保费 562 non-null float64 理赔结论 562 non-null object Unnamed: 19 562 non-null int64 生效日期 562 non-null datetime64[ns] 出险前最后一次复效日期 6 non-null datetime64[ns] 承保后最小借款日期 2 non-null datetime64[ns] 出险日期 562 non-null datetime64[ns] 报案时间 119 non-null datetime64[ns] 申请日期 562 non-null datetime64[ns] 出险减生效天数 562 non-null int64 出险减最后一次复效天数 6 non-null float64 申请时间减出险时间 562 non-null int64 报案时间减出险时间 119 non-null float64 出险原因1 562 non-null object 出险结果 552 non-null object 失复效记录次数 562 non-null int64 销售渠道 562 non-null object (SELECTDISTINCTLJ.AGENTCODEFRO销售人员工号 562 non-null int64 被保人核心客户号 562 non-null int64 保人归并客户号 562 non-null int64 被保人归并客户号 562 non-null int64 """ train_col = list(df2.columns) train_col.remove('平台流水号') train_col.remove('Unnamed: 19') train_col.remove('生效日期') train_col.remove('出险日期') train_col.remove('报案时间') train_col.remove('申请日期') train_col.remove('出险减最后一次复效天数') train_col.remove('报案时间减出险时间') train_col.remove('出险前最后一次复效日期') train_col.remove('承保后最小借款日期') # print(df2[train_col].info()) """ 保单管理机构 562 non-null int64 保单号 562 non-null int64 指定受益人标识 562 non-null object 受益人与被保险人关系 538 non-null object 交费方式 562 non-null object 交费期限 562 non-null int64 核保标识 562 non-null object 核保结论 544 non-null object 投保时年龄 562 non-null int64 投保保额 562 non-null float64 理赔金额 562 non-null float64 累计已交保费 562 non-null float64 出险减生效天数 562 non-null int64 申请时间减出险时间 562 non-null int64 出险原因1 562 non-null object 出险结果 552 non-null object 失复效记录次数 562 non-null int64 销售渠道 562 non-null object (SELECTDISTINCTLJ.AGENTCODEFRO销售人员工号 562 non-null int64 被保人核心客户号 562 non-null int64 保人归并客户号 562 non-null int64 被保人归并客户号 562 non-null int64 """ label = df2['理赔结论'] train_col.remove('理赔结论')#删除label # print(label.value_counts()) """ 正常给付 432 全部拒付 107 协议给付 15 部分给付 8 """ # print(df1['保单号'].value_counts()) train_col.remove('保单号') # print(df1['保单管理机构'].value_counts()) """ 取前4位 """ df2['保单管理机构'] = df2['保单管理机构'].copy().apply(lambda x: str(x)[:4]) # print(df2['保单管理机构'].value_counts()) """ 8603 280 8602 163 8605 65 8604 34 8606 16 8608 4 """ t = pd.get_dummies(df2['指定受益人标识'], prefix='指定受益人标识') print(df2.shape) df2 = pd.concat([df2, t], axis=1) print(df2.shape) train_col.extend(list(t.columns)) train_col.remove('指定受益人标识') t = pd.get_dummies(df2['交费方式'], prefix='交费方式') print(df2.shape) df2 = pd.concat([df2, t], axis=1) print(df2.shape) train_col.extend(list(t.columns)) train_col.remove('交费方式') t = pd.get_dummies(df2['核保标识'], prefix='核保标识') print(df2.shape) df2 = pd.concat([df2, t], axis=1) print(df2.shape) train_col.extend(list(t.columns)) train_col.remove('核保标识') t = pd.get_dummies(df2['保单管理机构'], prefix='保单管理机构') print(df2.shape) df2 =
pd.concat([df2, t], axis=1)
pandas.concat
######################################################################## # Required packages ######################################################################## import argparse import sys import os import pandas as pd import numpy as np from tqdm.auto import tqdm import tomotopy as tp from pyteomics import mgf, auxiliary from rdkit import Chem import scipy.spatial ######################################################################## # Parse arguments ######################################################################## parser = argparse.ArgumentParser() def file_choices(choices,fname, argname): ext = os.path.splitext(fname)[1] if ext not in choices: parser.error(f"{argname} must be one of the following filetypes ({choices})") return fname parser.add_argument('--Q', required = True, type = float) parser.add_argument('--B', required = True, type = float) parser.add_argument('--out_dir', required = True) parser.add_argument('--train_mgf', required = True) parser.add_argument('--test_mgf', required = True) parser.add_argument('--documents_dir', required = True) parser.add_argument('--df_substructs', type=lambda s:file_choices((".tsv"),s, '--df_substructs'), required = True) parser.add_argument('--df_labels', type=lambda s:file_choices((".tsv"),s, '--df_labels'), required = True) parser.add_argument('--num_iterations', required = True) parser.add_argument('--mz_cutoff', type = float, default = 30.0) parser.add_argument('--loss_types', choices = ['none', 'parent', 'all'], type = str, default = 'all') args = parser.parse_args() os.system(f"mkdir -p {args.out_dir}") with open(os.path.join(args.out_dir, 'log.txt'), 'w') as f: print(f"{' '.join(sys.argv)}\n", file = f) print(args, file = f) ######################################################################## df_substructs = pd.read_csv(args.df_substructs, sep = '\t') def get_mes_vec(s): mol = Chem.MolFromSmiles(s) vec = np.array([mol.HasSubstructMatch(Chem.MolFromSmarts(patt)) for patt in df_substructs['smarts']]).astype(int) return(vec) def get_mes_labels(s): v = get_mes_vec(s) return(df_substructs.iloc[np.where(v > 0)]['index'].values) ######################################################################## def glf(Q, B, x, v = 0.5, A = 0, K = 100, C = 1): res = (K - A) / np.power(C + Q * np.exp(-B * x), (1 / v)) return(res) ######################################################################## doc_indices = [] doc_fnames = [] doc_smiles = [] doc_sids = [] mdl = tp.LLDAModel(seed = 2010) print('Generating documents...') sys.stdout.flush() def make_doc(spec, documents_dir): in_fname = os.path.join(documents_dir, spec['params']['id'] + '.tsv') df = pd.read_csv(in_fname, sep = '\t') if 'mz' not in df.columns: df['mz'] = df['m/z'] df['mz_rounded'] = df['mz'].round(2) df['rel_intensity'] = df['intensity'] / df['intensity'].max() * 100 df['rel_intensity_rounded'] = df['rel_intensity'].round(0).astype(int) df = df[df['mz'] >= args.mz_cutoff] # filter by m/z df['intensity'] = df['intensity'].astype(int) df['glf_intensity'] = glf(Q = args.Q, B = args.B, x = df['rel_intensity']) doc_frags = np.concatenate([[w for _ in range(round(c))] for w, c in df[df['index'].str.contains('frag_')][['formula', 'glf_intensity']].values]).astype(str) if args.loss_types == 'parent': parent_index = df[df['index'].str.contains('frag_')].sort_values(by = 'mz', ascending = False).iloc[0]['index'] df = df[(df['index'].str.contains('loss_')) & (df['from_index'] == parent_index)] if np.any(df['index'].str.contains('loss_')) and (not args.loss_types != 'none'): doc_losses = np.concatenate([[f"loss_{w}" for _ in range(round(c))] for w, c in df[df['index'].str.contains('loss_')][['formula', 'glf_intensity']].values]).astype(str) else: doc_losses = np.array([]) doc = np.concatenate([doc_frags, doc_losses]) return(doc) for n_train_spectra, _ in enumerate(mgf.MGF(args.train_mgf)): continue n_train_spectra += 1 f = mgf.MGF(args.train_mgf) for spec in tqdm(f, total = n_train_spectra): try: doc = make_doc(spec, args.documents_dir) s = spec['params']['smiles'] sid = spec['params']['id'] s_fname = os.path.join(args.documents_dir, sid + '.tsv') labs = get_mes_labels(s) di = mdl.add_doc(doc, labels = labs) doc_indices.append(di) doc_smiles.append(s) doc_fnames.append(s_fname) doc_sids.append(sid + '_train') except: s_fname = os.path.join(args.documents_dir, sid + '.tsv') print(s_fname) sys.stdout.flush() continue os.system(f'mkdir -p {args.out_dir}') df_out =
pd.DataFrame({'doc_index' : doc_indices, 'fname' : doc_fnames, 'smiles' : doc_smiles})
pandas.DataFrame
from pathlib import Path from unittest import TestCase import pandas as pd from src.data.datasets import employment_rate_by_age_csv, job_market_xlsx from src.data.entities import prop_industrial_section, prop_employment_status, prop_ishealthcare, \ Gender from src.features import EmploymentParams, Employment from src.generation.population_generator_for_cities import age_gender_generation_population_from_files, age_range_to_age class TestEmployment(TestCase): def setUp(self) -> None: project_dir = Path(__file__).resolve().parents[2] city = 'DW' self.data_folder = project_dir / 'data' / 'processed' / 'poland' / city self.resources_folder = Path(__file__).resolve().parent / 'resources' self.population = age_gender_generation_population_from_files(self.data_folder) self.population = age_range_to_age(self.population) def test_employment(self): population = Employment().generate(EmploymentParams(self.data_folder), self.population) population_columns = population.columns.tolist() self.assertIn(prop_industrial_section, population_columns) self.assertIn(prop_employment_status, population_columns) self.assertIn(prop_ishealthcare, population_columns) def test_split_population_by_age(self): people_by_age = Employment()._split_shuffle_population_by_age(self.population, Gender.FEMALE) self.assertEqual(3, len(people_by_age)) expected_eligible_to_work = len(self.population[(self.population.age >= 15) & (self.population.age < 65) & (self.population.gender == Gender.FEMALE.value)].index) self.assertEqual(expected_eligible_to_work, sum([len(x) for x in people_by_age.values()])) def _prepare_gender_by_age(self, young, middle, middle_immobile): return {Employment.young_adults_class: list(range(young)), Employment.middle_aged_class: list(range(middle)), Employment.middle_aged_immobile_class: list(range(middle_immobile))} def test_get_job_market_per_age_group(self): employment_feature = Employment() employment_rate_per_age = pd.read_csv(str(self.resources_folder / employment_rate_by_age_csv.file_name)) job_market_df = pd.read_excel(str(self.resources_folder / job_market_xlsx.file_name), sheet_name=job_market_xlsx.sheet_name) gender_by_age = self._prepare_gender_by_age(100, 300, 100) gender_column = Employment.females_col result = employment_feature._get_job_market_per_age_group(employment_rate_per_age, gender_by_age, job_market_df, gender_column) class_1 = [3, 6, 9, 2] class_2 = [40, 79, 119, 32] class_3 = [7, 15, 22, 6] expected_result =
pd.DataFrame(data={1: class_1, 2: class_2, 3: class_3, 'id': ['A', 'B', 'C', 'D']})
pandas.DataFrame
import numpy as np import pandas as pd from tqdm import tqdm """ @author (Brian) <NAME> Our data has classes [0,4], yet there is significant class imbalance. To resolve this, model is pretrained on 2019 data with classes balanced by data from 2015 competition. e.g. classes 1,3,4 that are low in frequency received more samples. In this script data from 2015 are randomly selected to resolve the class imbalance, and save the labels to a new CSV file. """ balancing_limit = 2000 old_df =
pd.read_csv("/nas-homes/joonl4/blind_2015/trainLabels.csv")
pandas.read_csv
# coding: utf-8 import json import re import pandas as pd import numpy as np from os.path import dirname, abspath from six import string_types import cobra from kappmax_prediction_scripts.proteomics_helper_functions import \ get_all_protein_localizations, get_metabolic_reactions_from_gene, \ get_membrane_transport_genes, get_rna_modfication_genes, \ get_sum_of_metabolic_fluxes_of_gene import kappmax_prediction_scripts scripts_dir = dirname(abspath(kappmax_prediction_scripts.__file__)) home_dir = dirname(scripts_dir) resource_dir = home_dir + '/data/' ijo = cobra.io.load_json_model('%s/iJO1366.json' % scripts_dir) with open('%s/gene_name_to_bnum.json' % resource_dir, 'r') as f: bnum_to_gene = json.load(f) def get_sim_raw_df(model, sim_filename): with open(sim_filename, 'r') as f: me_sim = json.load(f) series_dict = dict() model.solution = cobra.core.Solution(me_sim['biomass_dilution'], x_dict=me_sim, status='optimal') for key, value in model.get_translation_flux().items(): gene = key.replace('translation_', '') series_dict[gene] = value sim_series = pd.Series(series_dict) return sim_series def get_old_sim_raw_df(model, media, old_me_sims_filename): media = media.map_media_to_old_me_df[media] old_sim_df = pd.read_pickle(old_me_sims_filename) sim_df_filtered = old_sim_df[media] series_dict = {} for gene in sim_df_filtered.index: protein_id = 'protein_' + gene if protein_id not in model.metabolites: continue series_dict[gene] = sim_df_filtered[gene] old_sim_series = pd.Series(series_dict) return old_sim_series def get_proteomics_data_raw_df(model, media, proteomics_data_path): # Load proteomics data and filter genes not modeled in ME-model data_df = pd.read_excel(proteomics_data_path) data_df = data_df.set_index('Gene').rename(index=bnum_to_gene) data_series = data_df[media].copy() cog_column = ['Annotated functional COG group (description)'] data_dict = {} cog_dict = {} genes = [i.id.replace('RNA_', '') for i in model.metabolites.query(re.compile('RNA_b[0-9]'))] for gene in genes: protein_id = 'protein_' + gene # Some RNAs do not code proteins, skip these if protein_id not in model.metabolites: continue if gene in data_series.index: # Some genes have two entries. Take the average of these data_dict[gene] = data_series[gene].mean() # Handle genes with duplicate entries cog_value = data_df.loc[gene, cog_column] if isinstance(cog_value, pd.DataFrame): cog_value = cog_value.values[0] if isinstance(cog_value, pd.Series): cog_value = cog_value.values[0] if isinstance(cog_value, np.ndarray): cog_value = cog_value[0] if type(cog_value) == list: cog_value = cog_value[0] if not isinstance(cog_value, string_types) and \ type(cog_value) != float: raise UserWarning('Cog is bad', cog_value, type(cog_value)) cog_dict[gene] = cog_value filtered_data_series = pd.Series(data_dict) cog_series =
pd.Series(cog_dict)
pandas.Series