prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import pickle import sys from pathlib import Path from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from Bio import pairwise2 from scipy import interp from scipy.stats import linregress from sklearn.metrics import roc_curve, auc, precision_recall_curve import thoipapy import thoipapy.validation.bocurve from thoipapy.utils import make_sure_path_exists def collect_indiv_validation_data(s, df_set, logging, namedict, predictors, THOIPA_predictor_name, subsets): """ Parameters ---------- s df_set logging namedict predictors THOIPA_predictor_name Returns ------- """ logging.info("start collect_indiv_validation_data THOIPA_PREDDIMER_TMDOCK") ROC_AUC_df = pd.DataFrame() PR_AUC_df = pd.DataFrame() mean_o_minus_r_by_sample_df = pd.DataFrame() AUBOC_from_complete_data_ser = pd.Series() AUC_AUBOC_name_list = [] linechar_name_list = [] AUBOC_list = [] df_o_minus_r_mean_df =
pd.DataFrame()
pandas.DataFrame
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import decimal from datetime import datetime from distutils.version import LooseVersion import inspect import sys import unittest from io import StringIO from typing import List import numpy as np import pandas as pd from pandas.tseries.offsets import DateOffset from pyspark import StorageLevel from pyspark.ml.linalg import SparseVector from pyspark.sql.types import StructType from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.exceptions import PandasNotImplementedError from pyspark.pandas.frame import CachedDataFrame from pyspark.pandas.missing.frame import _MissingPandasLikeDataFrame from pyspark.pandas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) from pyspark.testing.pandasutils import ( have_tabulate, PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED, tabulate_requirement_message, ) from pyspark.testing.sqlutils import SQLTestUtils from pyspark.pandas.utils import name_like_string class DataFrameTest(PandasOnSparkTestCase, SQLTestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=np.random.rand(9), ) @property def psdf(self): return ps.from_pandas(self.pdf) @property def df_pair(self): pdf = self.pdf psdf = ps.from_pandas(pdf) return pdf, psdf def test_dataframe(self): pdf, psdf = self.df_pair self.assert_eq(psdf["a"] + 1, pdf["a"] + 1) self.assert_eq(psdf.columns, pd.Index(["a", "b"])) self.assert_eq(psdf[psdf["b"] > 2], pdf[pdf["b"] > 2]) self.assert_eq(-psdf[psdf["b"] > 2], -pdf[pdf["b"] > 2]) self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assert_eq(psdf.a, pdf.a) self.assert_eq(psdf.b.mean(), pdf.b.mean()) self.assert_eq(psdf.b.var(), pdf.b.var()) self.assert_eq(psdf.b.std(), pdf.b.std()) pdf, psdf = self.df_pair self.assert_eq(psdf[["a", "b"]], pdf[["a", "b"]]) self.assertEqual(psdf.a.notnull().rename("x").name, "x") # check ps.DataFrame(ps.Series) pser = pd.Series([1, 2, 3], name="x", index=np.random.rand(3)) psser = ps.from_pandas(pser) self.assert_eq(pd.DataFrame(pser), ps.DataFrame(psser)) # check psdf[pd.Index] pdf, psdf = self.df_pair column_mask = pdf.columns.isin(["a", "b"]) index_cols = pdf.columns[column_mask] self.assert_eq(psdf[index_cols], pdf[index_cols]) def _check_extension(self, psdf, pdf): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(psdf, pdf, check_exact=False) for dtype in psdf.dtypes: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assert_eq(psdf, pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_extension_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1, 2, None, 4], dtype="Int8"), "b": pd.Series([1, None, None, 4], dtype="Int16"), "c": pd.Series([1, 2, None, None], dtype="Int32"), "d": pd.Series([None, 2, None, 4], dtype="Int64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_astype_extension_dtypes(self): pdf = pd.DataFrame( { "a": [1, 2, None, 4], "b": [1, None, None, 4], "c": [1, 2, None, None], "d": [None, 2, None, 4], } ) psdf = ps.from_pandas(pdf) astype = {"a": "Int8", "b": "Int16", "c": "Int32", "d": "Int64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_extension_object_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series(["a", "b", None, "c"], dtype="string"), "b": pd.Series([True, None, False, True], dtype="boolean"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_astype_extension_object_dtypes(self): pdf = pd.DataFrame({"a": ["a", "b", None, "c"], "b": [True, None, False, True]}) psdf = ps.from_pandas(pdf) astype = {"a": "string", "b": "boolean"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_extension_float_dtypes(self): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, None, 4.0], dtype="Float32"), "b": pd.Series([1.0, None, 3.0, 4.0], dtype="Float64"), } ) psdf = ps.from_pandas(pdf) self._check_extension(psdf, pdf) self._check_extension(psdf + 1, pdf + 1) self._check_extension(psdf + psdf, pdf + pdf) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_astype_extension_float_dtypes(self): pdf = pd.DataFrame({"a": [1.0, 2.0, None, 4.0], "b": [1.0, None, 3.0, 4.0]}) psdf = ps.from_pandas(pdf) astype = {"a": "Float32", "b": "Float64"} self._check_extension(psdf.astype(astype), pdf.astype(astype)) def test_insert(self): # # Basic DataFrame # pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psser = ps.Series([4, 5, 6]) self.assertRaises(ValueError, lambda: psdf.insert(0, "y", psser)) self.assertRaisesRegex( ValueError, "cannot insert b, already exists", lambda: psdf.insert(1, "b", 10) ) self.assertRaisesRegex( TypeError, '"column" should be a scalar value or tuple that contains scalar values', lambda: psdf.insert(0, list("abc"), psser), ) self.assertRaisesRegex( TypeError, "loc must be int", lambda: psdf.insert((1,), "b", 10), ) self.assertRaisesRegex( NotImplementedError, "Assigning column name as tuple is only supported for MultiIndex columns for now.", lambda: psdf.insert(0, ("e",), 10), ) self.assertRaises(ValueError, lambda: psdf.insert(0, "e", [7, 8, 9, 10])) self.assertRaises(ValueError, lambda: psdf.insert(0, "f", ps.Series([7, 8]))) self.assertRaises(AssertionError, lambda: psdf.insert(100, "y", psser)) self.assertRaises(AssertionError, lambda: psdf.insert(1, "y", psser, allow_duplicates=True)) # # DataFrame with MultiIndex as columns # pdf = pd.DataFrame({("x", "a", "b"): [1, 2, 3]}) psdf = ps.from_pandas(pdf) psdf.insert(1, "b", 10) pdf.insert(1, "b", 10) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(2, "c", 0.1) pdf.insert(2, "c", 0.1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) psdf.insert(3, "d", psdf.b + 1) pdf.insert(3, "d", pdf.b + 1) self.assert_eq(psdf.sort_index(), pdf.sort_index(), almost=True) self.assertRaisesRegex( ValueError, "cannot insert d, already exists", lambda: psdf.insert(4, "d", 11) ) self.assertRaisesRegex( ValueError, r"cannot insert \('x', 'a', 'b'\), already exists", lambda: psdf.insert(4, ("x", "a", "b"), 11), ) self.assertRaisesRegex( ValueError, '"column" must have length equal to number of column levels.', lambda: psdf.insert(4, ("e",), 11), ) def test_inplace(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["a"] = pdf["a"] + 10 psdf["a"] = psdf["a"] + 10 self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) def test_assign_list(self): pdf, psdf = self.df_pair pser = pdf.a psser = psdf.a pdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] psdf["x"] = [10, 20, 30, 40, 50, 60, 70, 80, 90] self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser, pser) with self.assertRaisesRegex(ValueError, "Length of values does not match length of index"): psdf["z"] = [10, 20, 30, 40, 50, 60, 70, 80] def test_dataframe_multiindex_columns(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["x"], pdf["x"]) self.assert_eq(psdf["y.z"], pdf["y.z"]) self.assert_eq(psdf["x"]["b"], pdf["x"]["b"]) self.assert_eq(psdf["x"]["b"]["2"], pdf["x"]["b"]["2"]) self.assert_eq(psdf.x, pdf.x) self.assert_eq(psdf.x.b, pdf.x.b) self.assert_eq(psdf.x.b["2"], pdf.x.b["2"]) self.assertRaises(KeyError, lambda: psdf["z"]) self.assertRaises(AttributeError, lambda: psdf.z) self.assert_eq(psdf[("x",)], pdf[("x",)]) self.assert_eq(psdf[("x", "a")], pdf[("x", "a")]) self.assert_eq(psdf[("x", "a", "1")], pdf[("x", "a", "1")]) def test_dataframe_column_level_name(self): column = pd.Index(["A", "B", "C"], name="X") pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=column, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) def test_dataframe_multiindex_names_level(self): columns = pd.MultiIndex.from_tuples( [("X", "A", "Z"), ("X", "B", "Z"), ("Y", "C", "Z"), ("Y", "D", "Z")], names=["lvl_1", "lvl_2", "lv_3"], ) pdf = pd.DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], [17, 18, 19, 20]], columns=columns, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.columns.names, pdf.columns.names) self.assert_eq(psdf.to_pandas().columns.names, pdf.columns.names) psdf1 = ps.from_pandas(pdf) self.assert_eq(psdf1.columns.names, pdf.columns.names) self.assertRaises( AssertionError, lambda: ps.DataFrame(psdf1._internal.copy(column_label_names=("level",))), ) self.assert_eq(psdf["X"], pdf["X"]) self.assert_eq(psdf["X"].columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"].to_pandas().columns.names, pdf["X"].columns.names) self.assert_eq(psdf["X"]["A"], pdf["X"]["A"]) self.assert_eq(psdf["X"]["A"].columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf["X"]["A"].to_pandas().columns.names, pdf["X"]["A"].columns.names) self.assert_eq(psdf[("X", "A")], pdf[("X", "A")]) self.assert_eq(psdf[("X", "A")].columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A")].to_pandas().columns.names, pdf[("X", "A")].columns.names) self.assert_eq(psdf[("X", "A", "Z")], pdf[("X", "A", "Z")]) def test_itertuples(self): pdf = pd.DataFrame({"num_legs": [4, 2], "num_wings": [0, 2]}, index=["dog", "hawk"]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( pdf.itertuples(index=False, name="Animal"), psdf.itertuples(index=False, name="Animal") ): self.assert_eq(ptuple, ktuple) for ptuple, ktuple in zip(pdf.itertuples(name=None), psdf.itertuples(name=None)): self.assert_eq(ptuple, ktuple) pdf.index = pd.MultiIndex.from_arrays( [[1, 2], ["black", "brown"]], names=("count", "color") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf.columns = pd.MultiIndex.from_arrays( [["CA", "WA"], ["age", "children"]], names=("origin", "info") ) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="Animal"), psdf.itertuples(name="Animal")): self.assert_eq(ptuple, ktuple) pdf = pd.DataFrame([1, 2, 3]) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip( (pdf + 1).itertuples(name="num"), (psdf + 1).itertuples(name="num") ): self.assert_eq(ptuple, ktuple) # DataFrames with a large number of columns (>254) pdf = pd.DataFrame(np.random.random((1, 255))) psdf = ps.from_pandas(pdf) for ptuple, ktuple in zip(pdf.itertuples(name="num"), psdf.itertuples(name="num")): self.assert_eq(ptuple, ktuple) def test_iterrows(self): pdf = pd.DataFrame( { ("x", "a", "1"): [1, 2, 3], ("x", "b", "2"): [4, 5, 6], ("y.z", "c.d", "3"): [7, 8, 9], ("x", "b", "4"): [10, 11, 12], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) for (pdf_k, pdf_v), (psdf_k, psdf_v) in zip(pdf.iterrows(), psdf.iterrows()): self.assert_eq(pdf_k, psdf_k) self.assert_eq(pdf_v, psdf_v) def test_reset_index(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index().index, pdf.reset_index().index) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.index.name = "a" psdf.index.name = "a" with self.assertRaisesRegex(ValueError, "cannot insert a, already exists"): psdf.reset_index() self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) # inplace pser = pdf.a psser = psdf.a pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) pdf.columns = ["index", "b"] psdf.columns = ["index", "b"] self.assert_eq(psdf.reset_index(), pdf.reset_index()) def test_reset_index_with_default_index_types(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) with ps.option_context("compute.default_index_type", "sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed-sequence"): self.assert_eq(psdf.reset_index(), pdf.reset_index()) with ps.option_context("compute.default_index_type", "distributed"): # the index is different. self.assert_eq(psdf.reset_index().to_pandas().reset_index(drop=True), pdf.reset_index()) def test_reset_index_with_multiindex_columns(self): index = pd.MultiIndex.from_tuples( [("bird", "falcon"), ("bird", "parrot"), ("mammal", "lion"), ("mammal", "monkey")], names=["class", "name"], ) columns = pd.MultiIndex.from_tuples([("speed", "max"), ("species", "type")]) pdf = pd.DataFrame( [(389.0, "fly"), (24.0, "fly"), (80.5, "run"), (np.nan, "jump")], index=index, columns=columns, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(level="class"), pdf.reset_index(level="class")) self.assert_eq( psdf.reset_index(level="class", col_level=1), pdf.reset_index(level="class", col_level=1), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="species"), pdf.reset_index(level="class", col_level=1, col_fill="species"), ) self.assert_eq( psdf.reset_index(level="class", col_level=1, col_fill="genus"), pdf.reset_index(level="class", col_level=1, col_fill="genus"), ) with self.assertRaisesRegex(IndexError, "Index has only 2 levels, not 3"): psdf.reset_index(col_level=2) pdf.index.names = [("x", "class"), ("y", "name")] psdf.index.names = [("x", "class"), ("y", "name")] self.assert_eq(psdf.reset_index(), pdf.reset_index()) with self.assertRaisesRegex(ValueError, "Item must have length equal to number of levels."): psdf.reset_index(col_level=1) def test_index_to_frame_reset_index(self): def check(psdf, pdf): self.assert_eq(psdf.reset_index(), pdf.reset_index()) self.assert_eq(psdf.reset_index(drop=True), pdf.reset_index(drop=True)) pdf.reset_index(drop=True, inplace=True) psdf.reset_index(drop=True, inplace=True) self.assert_eq(psdf, pdf) pdf, psdf = self.df_pair check(psdf.index.to_frame(), pdf.index.to_frame()) check(psdf.index.to_frame(index=False), pdf.index.to_frame(index=False)) check(psdf.index.to_frame(name="a"), pdf.index.to_frame(name="a")) check(psdf.index.to_frame(index=False, name="a"), pdf.index.to_frame(index=False, name="a")) check(psdf.index.to_frame(name=("x", "a")), pdf.index.to_frame(name=("x", "a"))) check( psdf.index.to_frame(index=False, name=("x", "a")), pdf.index.to_frame(index=False, name=("x", "a")), ) def test_multiindex_column_access(self): columns = pd.MultiIndex.from_tuples( [ ("a", "", "", "b"), ("c", "", "d", ""), ("e", "", "f", ""), ("e", "g", "", ""), ("", "", "", "h"), ("i", "", "", ""), ] ) pdf = pd.DataFrame( [ (1, "a", "x", 10, 100, 1000), (2, "b", "y", 20, 200, 2000), (3, "c", "z", 30, 300, 3000), ], columns=columns, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf["a"], pdf["a"]) self.assert_eq(psdf["a"]["b"], pdf["a"]["b"]) self.assert_eq(psdf["c"], pdf["c"]) self.assert_eq(psdf["c"]["d"], pdf["c"]["d"]) self.assert_eq(psdf["e"], pdf["e"]) self.assert_eq(psdf["e"][""]["f"], pdf["e"][""]["f"]) self.assert_eq(psdf["e"]["g"], pdf["e"]["g"]) self.assert_eq(psdf[""], pdf[""]) self.assert_eq(psdf[""]["h"], pdf[""]["h"]) self.assert_eq(psdf["i"], pdf["i"]) self.assert_eq(psdf[["a", "e"]], pdf[["a", "e"]]) self.assert_eq(psdf[["e", "a"]], pdf[["e", "a"]]) self.assert_eq(psdf[("a",)], pdf[("a",)]) self.assert_eq(psdf[("e", "g")], pdf[("e", "g")]) # self.assert_eq(psdf[("i",)], pdf[("i",)]) self.assert_eq(psdf[("i", "")], pdf[("i", "")]) self.assertRaises(KeyError, lambda: psdf[("a", "b")]) def test_repr_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df.__repr__() df["a"] = df["id"] self.assertEqual(df.__repr__(), df.to_pandas().__repr__()) def test_repr_html_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. df = ps.range(10) df._repr_html_() df["a"] = df["id"] self.assertEqual(df._repr_html_(), df.to_pandas()._repr_html_()) def test_empty_dataframe(self): pdf = pd.DataFrame({"a": pd.Series([], dtype="i1"), "b": pd.Series([], dtype="str")}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_all_null_dataframe(self): pdf = pd.DataFrame( { "a": [None, None, None, "a"], "b": [None, None, None, 1], "c": [None, None, None] + list(np.arange(1, 2).astype("i1")), "d": [None, None, None, 1.0], "e": [None, None, None, True], "f": [None, None, None] + list(pd.date_range("20130101", periods=1)), }, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.iloc[:-1], pdf.iloc[:-1]) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(psdf.iloc[:-1], pdf.iloc[:-1]) pdf = pd.DataFrame( { "a": pd.Series([None, None, None], dtype="float64"), "b": pd.Series([None, None, None], dtype="str"), }, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_nullable_object(self): pdf = pd.DataFrame( { "a": list("abc") + [np.nan, None], "b": list(range(1, 4)) + [np.nan, None], "c": list(np.arange(3, 6).astype("i1")) + [np.nan, None], "d": list(np.arange(4.0, 7.0, dtype="float64")) + [np.nan, None], "e": [True, False, True, np.nan, None], "f": list(pd.date_range("20130101", periods=3)) + [np.nan, None], }, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_assign(self): pdf, psdf = self.df_pair psdf["w"] = 1.0 pdf["w"] = 1.0 self.assert_eq(psdf, pdf) psdf.w = 10.0 pdf.w = 10.0 self.assert_eq(psdf, pdf) psdf[1] = 1.0 pdf[1] = 1.0 self.assert_eq(psdf, pdf) psdf = psdf.assign(a=psdf["a"] * 2) pdf = pdf.assign(a=pdf["a"] * 2) self.assert_eq(psdf, pdf) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "w"), ("y", "v")]) pdf.columns = columns psdf.columns = columns psdf[("a", "c")] = "def" pdf[("a", "c")] = "def" self.assert_eq(psdf, pdf) psdf = psdf.assign(Z="ZZ") pdf = pdf.assign(Z="ZZ") self.assert_eq(psdf, pdf) psdf["x"] = "ghi" pdf["x"] = "ghi" self.assert_eq(psdf, pdf) def test_head(self): pdf, psdf = self.df_pair self.assert_eq(psdf.head(2), pdf.head(2)) self.assert_eq(psdf.head(3), pdf.head(3)) self.assert_eq(psdf.head(0), pdf.head(0)) self.assert_eq(psdf.head(-3), pdf.head(-3)) self.assert_eq(psdf.head(-10), pdf.head(-10)) with option_context("compute.ordered_head", True): self.assert_eq(psdf.head(), pdf.head()) def test_attributes(self): psdf = self.psdf self.assertIn("a", dir(psdf)) self.assertNotIn("foo", dir(psdf)) self.assertRaises(AttributeError, lambda: psdf.foo) psdf = ps.DataFrame({"a b c": [1, 2, 3]}) self.assertNotIn("a b c", dir(psdf)) psdf = ps.DataFrame({"a": [1, 2], 5: [1, 2]}) self.assertIn("a", dir(psdf)) self.assertNotIn(5, dir(psdf)) def test_column_names(self): pdf, psdf = self.df_pair self.assert_eq(psdf.columns, pdf.columns) self.assert_eq(psdf[["b", "a"]].columns, pdf[["b", "a"]].columns) self.assert_eq(psdf["a"].name, pdf["a"].name) self.assert_eq((psdf["a"] + 1).name, (pdf["a"] + 1).name) self.assert_eq((psdf.a + psdf.b).name, (pdf.a + pdf.b).name) self.assert_eq((psdf.a + psdf.b.rename("a")).name, (pdf.a + pdf.b.rename("a")).name) self.assert_eq((psdf.a + psdf.b.rename()).name, (pdf.a + pdf.b.rename()).name) self.assert_eq((psdf.a.rename() + psdf.b).name, (pdf.a.rename() + pdf.b).name) self.assert_eq( (psdf.a.rename() + psdf.b.rename()).name, (pdf.a.rename() + pdf.b.rename()).name ) def test_rename_columns(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) psdf.columns = ["x", "y"] pdf.columns = ["x", "y"] self.assert_eq(psdf.columns, pd.Index(["x", "y"])) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["x", "y"]) self.assert_eq(psdf.to_spark().columns, ["x", "y"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "x", "y"]) columns = pdf.columns columns.name = "lvl_1" psdf.columns = columns self.assert_eq(psdf.columns.names, ["lvl_1"]) self.assert_eq(psdf, pdf) msg = "Length mismatch: Expected axis has 2 elements, new values have 4 elements" with self.assertRaisesRegex(ValueError, msg): psdf.columns = [1, 2, 3, 4] # Multi-index columns pdf = pd.DataFrame( {("A", "0"): [1, 2, 2, 3], ("B", "1"): [1, 2, 3, 4]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) columns = pdf.columns self.assert_eq(psdf.columns, columns) self.assert_eq(psdf, pdf) pdf.columns = ["x", "y"] psdf.columns = ["x", "y"] self.assert_eq(psdf.columns, pd.Index(["x", "y"])) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["x", "y"]) self.assert_eq(psdf.to_spark().columns, ["x", "y"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "x", "y"]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.columns, columns) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark().columns, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "(A, 0)", "(B, 1)"]) columns.names = ["lvl_1", "lvl_2"] psdf.columns = columns self.assert_eq(psdf.columns.names, ["lvl_1", "lvl_2"]) self.assert_eq(psdf, pdf) self.assert_eq(psdf._internal.data_spark_column_names, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark().columns, ["(A, 0)", "(B, 1)"]) self.assert_eq(psdf.to_spark(index_col="index").columns, ["index", "(A, 0)", "(B, 1)"]) def test_rename_dataframe(self): pdf1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) psdf1 = ps.from_pandas(pdf1) self.assert_eq( psdf1.rename(columns={"A": "a", "B": "b"}), pdf1.rename(columns={"A": "a", "B": "b"}) ) result_psdf = psdf1.rename(index={1: 10, 2: 20}) result_pdf = pdf1.rename(index={1: 10, 2: 20}) self.assert_eq(result_psdf, result_pdf) # inplace pser = result_pdf.A psser = result_psdf.A result_psdf.rename(index={10: 100, 20: 200}, inplace=True) result_pdf.rename(index={10: 100, 20: 200}, inplace=True) self.assert_eq(result_psdf, result_pdf) self.assert_eq(psser, pser) def str_lower(s) -> str: return str.lower(s) self.assert_eq( psdf1.rename(str_lower, axis="columns"), pdf1.rename(str_lower, axis="columns") ) def mul10(x) -> int: return x * 10 self.assert_eq(psdf1.rename(mul10, axis="index"), pdf1.rename(mul10, axis="index")) self.assert_eq( psdf1.rename(columns=str_lower, index={1: 10, 2: 20}), pdf1.rename(columns=str_lower, index={1: 10, 2: 20}), ) idx = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C"), ("Y", "D")]) pdf2 = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=idx) psdf2 = ps.from_pandas(pdf2) self.assert_eq(psdf2.rename(columns=str_lower), pdf2.rename(columns=str_lower)) self.assert_eq( psdf2.rename(columns=str_lower, level=0), pdf2.rename(columns=str_lower, level=0) ) self.assert_eq( psdf2.rename(columns=str_lower, level=1), pdf2.rename(columns=str_lower, level=1) ) pdf3 = pd.DataFrame([[1, 2], [3, 4], [5, 6], [7, 8]], index=idx, columns=list("ab")) psdf3 = ps.from_pandas(pdf3) self.assert_eq(psdf3.rename(index=str_lower), pdf3.rename(index=str_lower)) self.assert_eq( psdf3.rename(index=str_lower, level=0), pdf3.rename(index=str_lower, level=0) ) self.assert_eq( psdf3.rename(index=str_lower, level=1), pdf3.rename(index=str_lower, level=1) ) pdf4 = pdf2 + 1 psdf4 = psdf2 + 1 self.assert_eq(psdf4.rename(columns=str_lower), pdf4.rename(columns=str_lower)) pdf5 = pdf3 + 1 psdf5 = psdf3 + 1 self.assert_eq(psdf5.rename(index=str_lower), pdf5.rename(index=str_lower)) msg = "Either `index` or `columns` should be provided." with self.assertRaisesRegex(ValueError, msg): psdf1.rename() msg = "`mapper` or `index` or `columns` should be either dict-like or function type." with self.assertRaisesRegex(ValueError, msg): psdf1.rename(mapper=[str_lower], axis=1) msg = "Mapper dict should have the same value type." with self.assertRaisesRegex(ValueError, msg): psdf1.rename({"A": "a", "B": 2}, axis=1) msg = r"level should be an integer between \[0, column_labels_level\)" with self.assertRaisesRegex(ValueError, msg): psdf2.rename(columns=str_lower, level=2) def test_rename_axis(self): index = pd.Index(["A", "B", "C"], name="index") columns = pd.Index(["numbers", "values"], name="cols") pdf = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], index=index, columns=columns) psdf = ps.from_pandas(pdf) for axis in [0, "index"]: self.assert_eq( pdf.rename_axis("index2", axis=axis).sort_index(), psdf.rename_axis("index2", axis=axis).sort_index(), ) self.assert_eq( pdf.rename_axis(["index2"], axis=axis).sort_index(), psdf.rename_axis(["index2"], axis=axis).sort_index(), ) for axis in [1, "columns"]: self.assert_eq( pdf.rename_axis("cols2", axis=axis).sort_index(), psdf.rename_axis("cols2", axis=axis).sort_index(), ) self.assert_eq( pdf.rename_axis(["cols2"], axis=axis).sort_index(), psdf.rename_axis(["cols2"], axis=axis).sort_index(), ) pdf2 = pdf.copy() psdf2 = psdf.copy() pdf2.rename_axis("index2", axis="index", inplace=True) psdf2.rename_axis("index2", axis="index", inplace=True) self.assert_eq(pdf2.sort_index(), psdf2.sort_index()) self.assertRaises(ValueError, lambda: psdf.rename_axis(["index2", "index3"], axis=0)) self.assertRaises(ValueError, lambda: psdf.rename_axis(["cols2", "cols3"], axis=1)) self.assertRaises(TypeError, lambda: psdf.rename_axis(mapper=["index2"], index=["index3"])) self.assert_eq( pdf.rename_axis(index={"index": "index2"}, columns={"cols": "cols2"}).sort_index(), psdf.rename_axis(index={"index": "index2"}, columns={"cols": "cols2"}).sort_index(), ) self.assert_eq( pdf.rename_axis(index={"missing": "index2"}, columns={"missing": "cols2"}).sort_index(), psdf.rename_axis( index={"missing": "index2"}, columns={"missing": "cols2"} ).sort_index(), ) self.assert_eq( pdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), psdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), ) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) columns = pd.MultiIndex.from_tuples( [("numbers", "first"), ("values", "second")], names=["cols1", "cols2"] ) pdf = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], index=index, columns=columns) psdf = ps.from_pandas(pdf) for axis in [0, "index"]: self.assert_eq( pdf.rename_axis(["index3", "index4"], axis=axis).sort_index(), psdf.rename_axis(["index3", "index4"], axis=axis).sort_index(), ) for axis in [1, "columns"]: self.assert_eq( pdf.rename_axis(["cols3", "cols4"], axis=axis).sort_index(), psdf.rename_axis(["cols3", "cols4"], axis=axis).sort_index(), ) self.assertRaises( ValueError, lambda: psdf.rename_axis(["index3", "index4", "index5"], axis=0) ) self.assertRaises(ValueError, lambda: psdf.rename_axis(["cols3", "cols4", "cols5"], axis=1)) self.assert_eq( pdf.rename_axis(index={"index1": "index3"}, columns={"cols1": "cols3"}).sort_index(), psdf.rename_axis(index={"index1": "index3"}, columns={"cols1": "cols3"}).sort_index(), ) self.assert_eq( pdf.rename_axis(index={"missing": "index3"}, columns={"missing": "cols3"}).sort_index(), psdf.rename_axis( index={"missing": "index3"}, columns={"missing": "cols3"} ).sort_index(), ) self.assert_eq( pdf.rename_axis( index={"index1": "index3", "index2": "index4"}, columns={"cols1": "cols3", "cols2": "cols4"}, ).sort_index(), psdf.rename_axis( index={"index1": "index3", "index2": "index4"}, columns={"cols1": "cols3", "cols2": "cols4"}, ).sort_index(), ) self.assert_eq( pdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), psdf.rename_axis(index=str.upper, columns=str.upper).sort_index(), ) def test_dot(self): psdf = self.psdf with self.assertRaisesRegex(TypeError, "Unsupported type DataFrame"): psdf.dot(psdf) def test_dot_in_column_name(self): self.assert_eq( ps.DataFrame(ps.range(1)._internal.spark_frame.selectExpr("1L as `a.b`"))["a.b"], ps.Series([1], name="a.b"), ) def test_aggregate(self): pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=["A", "B", "C"] ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.agg(["sum", "min"])[["A", "B", "C"]].sort_index(), # TODO?: fix column order pdf.agg(["sum", "min"])[["A", "B", "C"]].sort_index(), ) self.assert_eq( psdf.agg({"A": ["sum", "min"], "B": ["min", "max"]})[["A", "B"]].sort_index(), pdf.agg({"A": ["sum", "min"], "B": ["min", "max"]})[["A", "B"]].sort_index(), ) self.assertRaises(KeyError, lambda: psdf.agg({"A": ["sum", "min"], "X": ["min", "max"]})) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.agg(["sum", "min"])[[("X", "A"), ("X", "B"), ("Y", "C")]].sort_index(), pdf.agg(["sum", "min"])[[("X", "A"), ("X", "B"), ("Y", "C")]].sort_index(), ) self.assert_eq( psdf.agg({("X", "A"): ["sum", "min"], ("X", "B"): ["min", "max"]})[ [("X", "A"), ("X", "B")] ].sort_index(), pdf.agg({("X", "A"): ["sum", "min"], ("X", "B"): ["min", "max"]})[ [("X", "A"), ("X", "B")] ].sort_index(), ) self.assertRaises(TypeError, lambda: psdf.agg({"X": ["sum", "min"], "Y": ["min", "max"]})) # non-string names pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9], [np.nan, np.nan, np.nan]], columns=[10, 20, 30] ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.agg(["sum", "min"])[[10, 20, 30]].sort_index(), pdf.agg(["sum", "min"])[[10, 20, 30]].sort_index(), ) self.assert_eq( psdf.agg({10: ["sum", "min"], 20: ["min", "max"]})[[10, 20]].sort_index(), pdf.agg({10: ["sum", "min"], 20: ["min", "max"]})[[10, 20]].sort_index(), ) columns = pd.MultiIndex.from_tuples([("X", 10), ("X", 20), ("Y", 30)]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.agg(["sum", "min"])[[("X", 10), ("X", 20), ("Y", 30)]].sort_index(), pdf.agg(["sum", "min"])[[("X", 10), ("X", 20), ("Y", 30)]].sort_index(), ) self.assert_eq( psdf.agg({("X", 10): ["sum", "min"], ("X", 20): ["min", "max"]})[ [("X", 10), ("X", 20)] ].sort_index(), pdf.agg({("X", 10): ["sum", "min"], ("X", 20): ["min", "max"]})[ [("X", 10), ("X", 20)] ].sort_index(), ) pdf = pd.DataFrame( [datetime(2019, 2, 2, 0, 0, 0, 0), datetime(2019, 2, 3, 0, 0, 0, 0)], columns=["timestamp"], ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.timestamp.min(), pdf.timestamp.min()) self.assert_eq(psdf.timestamp.max(), pdf.timestamp.max()) self.assertRaises(ValueError, lambda: psdf.agg(("sum", "min"))) def test_droplevel(self): pdf = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) pdf.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) psdf = ps.from_pandas(pdf) self.assertRaises(ValueError, lambda: psdf.droplevel(["a", "b"])) self.assertRaises(ValueError, lambda: psdf.droplevel([1, 1, 1, 1, 1])) self.assertRaises(IndexError, lambda: psdf.droplevel(2)) self.assertRaises(IndexError, lambda: psdf.droplevel(-3)) self.assertRaises(KeyError, lambda: psdf.droplevel({"a"})) self.assertRaises(KeyError, lambda: psdf.droplevel({"a": 1})) self.assertRaises(ValueError, lambda: psdf.droplevel(["level_1", "level_2"], axis=1)) self.assertRaises(IndexError, lambda: psdf.droplevel(2, axis=1)) self.assertRaises(IndexError, lambda: psdf.droplevel(-3, axis=1)) self.assertRaises(KeyError, lambda: psdf.droplevel({"level_1"}, axis=1)) self.assertRaises(KeyError, lambda: psdf.droplevel({"level_1": 1}, axis=1)) self.assert_eq(pdf.droplevel("a"), psdf.droplevel("a")) self.assert_eq(pdf.droplevel(["a"]), psdf.droplevel(["a"])) self.assert_eq(pdf.droplevel(("a",)), psdf.droplevel(("a",))) self.assert_eq(pdf.droplevel(0), psdf.droplevel(0)) self.assert_eq(pdf.droplevel(-1), psdf.droplevel(-1)) self.assert_eq(pdf.droplevel("level_1", axis=1), psdf.droplevel("level_1", axis=1)) self.assert_eq(pdf.droplevel(["level_1"], axis=1), psdf.droplevel(["level_1"], axis=1)) self.assert_eq(pdf.droplevel(("level_1",), axis=1), psdf.droplevel(("level_1",), axis=1)) self.assert_eq(pdf.droplevel(0, axis=1), psdf.droplevel(0, axis=1)) self.assert_eq(pdf.droplevel(-1, axis=1), psdf.droplevel(-1, axis=1)) # Tupled names pdf.columns.names = [("level", 1), ("level", 2)] pdf.index.names = [("a", 10), ("x", 20)] psdf = ps.from_pandas(pdf) self.assertRaises(KeyError, lambda: psdf.droplevel("a")) self.assertRaises(KeyError, lambda: psdf.droplevel(("a", 10))) self.assert_eq(pdf.droplevel([("a", 10)]), psdf.droplevel([("a", 10)])) self.assert_eq( pdf.droplevel([("level", 1)], axis=1), psdf.droplevel([("level", 1)], axis=1) ) # non-string names pdf = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis([10.0, 20.0]) ) pdf.columns = pd.MultiIndex.from_tuples([("c", "e"), ("d", "f")], names=[100.0, 200.0]) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.droplevel(10.0), psdf.droplevel(10.0)) self.assert_eq(pdf.droplevel([10.0]), psdf.droplevel([10.0])) self.assert_eq(pdf.droplevel((10.0,)), psdf.droplevel((10.0,))) self.assert_eq(pdf.droplevel(0), psdf.droplevel(0)) self.assert_eq(pdf.droplevel(-1), psdf.droplevel(-1)) self.assert_eq(pdf.droplevel(100.0, axis=1), psdf.droplevel(100.0, axis=1)) self.assert_eq(pdf.droplevel(0, axis=1), psdf.droplevel(0, axis=1)) def test_drop(self): pdf = pd.DataFrame({"x": [1, 2], "y": [3, 4], "z": [5, 6]}, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) # Assert 'labels' or 'columns' parameter is set expected_error_message = "Need to specify at least one of 'labels' or 'columns'" with self.assertRaisesRegex(ValueError, expected_error_message): psdf.drop() # # Drop columns # # Assert using a str for 'labels' works self.assert_eq(psdf.drop("x", axis=1), pdf.drop("x", axis=1)) self.assert_eq((psdf + 1).drop("x", axis=1), (pdf + 1).drop("x", axis=1)) # Assert using a list for 'labels' works self.assert_eq(psdf.drop(["y", "z"], axis=1), pdf.drop(["y", "z"], axis=1)) self.assert_eq(psdf.drop(["x", "y", "z"], axis=1), pdf.drop(["x", "y", "z"], axis=1)) # Assert using 'columns' instead of 'labels' produces the same results self.assert_eq(psdf.drop(columns="x"), pdf.drop(columns="x")) self.assert_eq(psdf.drop(columns=["y", "z"]), pdf.drop(columns=["y", "z"])) self.assert_eq(psdf.drop(columns=["x", "y", "z"]), pdf.drop(columns=["x", "y", "z"])) self.assert_eq(psdf.drop(columns=[]), pdf.drop(columns=[])) columns = pd.MultiIndex.from_tuples([(1, "x"), (1, "y"), (2, "z")]) pdf.columns = columns psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(columns=1), pdf.drop(columns=1)) self.assert_eq(psdf.drop(columns=(1, "x")), pdf.drop(columns=(1, "x"))) self.assert_eq(psdf.drop(columns=[(1, "x"), 2]), pdf.drop(columns=[(1, "x"), 2])) self.assert_eq( psdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), pdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), ) self.assertRaises(KeyError, lambda: psdf.drop(columns=3)) self.assertRaises(KeyError, lambda: psdf.drop(columns=(1, "z"))) pdf.index = pd.MultiIndex.from_tuples([("i", 0), ("j", 1)]) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), pdf.drop(columns=[(1, "x"), (1, "y"), (2, "z")]), ) # non-string names pdf = pd.DataFrame({10: [1, 2], 20: [3, 4], 30: [5, 6]}, index=np.random.rand(2)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(10, axis=1), pdf.drop(10, axis=1)) self.assert_eq(psdf.drop([20, 30], axis=1), pdf.drop([20, 30], axis=1)) # # Drop rows # pdf = pd.DataFrame({"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["A", "B", "C"]) psdf = ps.from_pandas(pdf) # Given labels (and axis = 0) self.assert_eq(psdf.drop(labels="A", axis=0), pdf.drop(labels="A", axis=0)) self.assert_eq(psdf.drop(labels="A"), pdf.drop(labels="A")) self.assert_eq((psdf + 1).drop(labels="A"), (pdf + 1).drop(labels="A")) self.assert_eq(psdf.drop(labels=["A", "C"], axis=0), pdf.drop(labels=["A", "C"], axis=0)) self.assert_eq( psdf.drop(labels=["A", "B", "C"], axis=0), pdf.drop(labels=["A", "B", "C"], axis=0) ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(labels=["A", "B", "C"], axis=0), pdf.drop(labels=["A", "B", "C"], axis=0) ) # Given index self.assert_eq(psdf.drop(index="A"), pdf.drop(index="A")) self.assert_eq(psdf.drop(index=["A", "C"]), pdf.drop(index=["A", "C"])) self.assert_eq(psdf.drop(index=["A", "B", "C"]), pdf.drop(index=["A", "B", "C"])) self.assert_eq(psdf.drop(index=[]), pdf.drop(index=[])) with ps.option_context("compute.isin_limit", 2): self.assert_eq(psdf.drop(index=["A", "B", "C"]), pdf.drop(index=["A", "B", "C"])) # Non-string names pdf.index = [10, 20, 30] psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(labels=10, axis=0), pdf.drop(labels=10, axis=0)) self.assert_eq(psdf.drop(labels=[10, 30], axis=0), pdf.drop(labels=[10, 30], axis=0)) self.assert_eq( psdf.drop(labels=[10, 20, 30], axis=0), pdf.drop(labels=[10, 20, 30], axis=0) ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(labels=[10, 20, 30], axis=0), pdf.drop(labels=[10, 20, 30], axis=0) ) # MultiIndex pdf.index = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assertRaises(NotImplementedError, lambda: psdf.drop(labels=[("a", "x")])) # # Drop rows and columns # pdf = pd.DataFrame({"X": [1, 2, 3], "Y": [4, 5, 6], "Z": [7, 8, 9]}, index=["A", "B", "C"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.drop(index="A", columns="X"), pdf.drop(index="A", columns="X")) self.assert_eq( psdf.drop(index=["A", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "C"], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), ) with ps.option_context("compute.isin_limit", 2): self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), pdf.drop(index=["A", "B", "C"], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=[], columns=["X", "Z"]), pdf.drop(index=[], columns=["X", "Z"]), ) self.assert_eq( psdf.drop(index=["A", "B", "C"], columns=[]), pdf.drop(index=["A", "B", "C"], columns=[]), ) self.assert_eq( psdf.drop(index=[], columns=[]), pdf.drop(index=[], columns=[]), ) self.assertRaises( ValueError, lambda: psdf.drop(labels="A", axis=0, columns="X"), ) def _test_dropna(self, pdf, axis): psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=axis), pdf.dropna(axis=axis)) self.assert_eq(psdf.dropna(axis=axis, how="all"), pdf.dropna(axis=axis, how="all")) self.assert_eq(psdf.dropna(axis=axis, subset=["x"]), pdf.dropna(axis=axis, subset=["x"])) self.assert_eq(psdf.dropna(axis=axis, subset="x"), pdf.dropna(axis=axis, subset=["x"])) self.assert_eq( psdf.dropna(axis=axis, subset=["y", "z"]), pdf.dropna(axis=axis, subset=["y", "z"]) ) self.assert_eq( psdf.dropna(axis=axis, subset=["y", "z"], how="all"), pdf.dropna(axis=axis, subset=["y", "z"], how="all"), ) self.assert_eq(psdf.dropna(axis=axis, thresh=2), pdf.dropna(axis=axis, thresh=2)) self.assert_eq( psdf.dropna(axis=axis, thresh=1, subset=["y", "z"]), pdf.dropna(axis=axis, thresh=1, subset=["y", "z"]), ) pdf2 = pdf.copy() psdf2 = psdf.copy() pser = pdf2[pdf2.columns[0]] psser = psdf2[psdf2.columns[0]] pdf2.dropna(inplace=True, axis=axis) psdf2.dropna(inplace=True, axis=axis) self.assert_eq(psdf2, pdf2) self.assert_eq(psser, pser) # multi-index columns = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) if axis == 0: pdf.columns = columns else: pdf.index = columns psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=axis), pdf.dropna(axis=axis)) self.assert_eq(psdf.dropna(axis=axis, how="all"), pdf.dropna(axis=axis, how="all")) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "x")]), pdf.dropna(axis=axis, subset=[("a", "x")]) ) self.assert_eq( psdf.dropna(axis=axis, subset=("a", "x")), pdf.dropna(axis=axis, subset=[("a", "x")]) ) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")]), pdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")]), ) self.assert_eq( psdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")], how="all"), pdf.dropna(axis=axis, subset=[("a", "y"), ("b", "z")], how="all"), ) self.assert_eq(psdf.dropna(axis=axis, thresh=2), pdf.dropna(axis=axis, thresh=2)) self.assert_eq( psdf.dropna(axis=axis, thresh=1, subset=[("a", "y"), ("b", "z")]), pdf.dropna(axis=axis, thresh=1, subset=[("a", "y"), ("b", "z")]), ) def test_dropna_axis_index(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self._test_dropna(pdf, axis=0) # empty pdf = pd.DataFrame(index=np.random.rand(6)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(), pdf.dropna()) self.assert_eq(psdf.dropna(how="all"), pdf.dropna(how="all")) self.assert_eq(psdf.dropna(thresh=0), pdf.dropna(thresh=0)) self.assert_eq(psdf.dropna(thresh=1), pdf.dropna(thresh=1)) with self.assertRaisesRegex(ValueError, "No axis named foo"): psdf.dropna(axis="foo") self.assertRaises(KeyError, lambda: psdf.dropna(subset="1")) with self.assertRaisesRegex(ValueError, "invalid how option: 1"): psdf.dropna(how=1) with self.assertRaisesRegex(TypeError, "must specify how or thresh"): psdf.dropna(how=None) def test_dropna_axis_column(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=[str(r) for r in np.random.rand(6)], ).T self._test_dropna(pdf, axis=1) psdf = ps.from_pandas(pdf) with self.assertRaisesRegex( ValueError, "The length of each subset must be the same as the index size." ): psdf.dropna(subset=(["x", "y"]), axis=1) # empty pdf = pd.DataFrame({"x": [], "y": [], "z": []}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.dropna(axis=1), pdf.dropna(axis=1)) self.assert_eq(psdf.dropna(axis=1, how="all"), pdf.dropna(axis=1, how="all")) self.assert_eq(psdf.dropna(axis=1, thresh=0), pdf.dropna(axis=1, thresh=0)) self.assert_eq(psdf.dropna(axis=1, thresh=1), pdf.dropna(axis=1, thresh=1)) def test_dtype(self): pdf = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assertTrue((psdf.dtypes == pdf.dtypes).all()) # multi-index columns columns = pd.MultiIndex.from_tuples(zip(list("xxxyyz"), list("abcdef"))) pdf.columns = columns psdf.columns = columns self.assertTrue((psdf.dtypes == pdf.dtypes).all()) def test_fillna(self): pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({"x": -1, "y": -2, "z": -5}), pdf.fillna({"x": -1, "y": -2, "z": -5}) ) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) self.assert_eq(pdf.fillna(method="ffill", limit=2), psdf.fillna(method="ffill", limit=2)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="bfill", limit=2), psdf.fillna(method="bfill", limit=2)) pdf = pdf.set_index(["x", "y"]) psdf = ps.from_pandas(pdf) # check multi index self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) pser = pdf.z psser = psdf.z pdf.fillna({"x": -1, "y": -2, "z": -5}, inplace=True) psdf.fillna({"x": -1, "y": -2, "z": -5}, inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) s_nan = pd.Series([-1, -2, -5], index=["x", "y", "z"], dtype=int) self.assert_eq(psdf.fillna(s_nan), pdf.fillna(s_nan)) with self.assertRaisesRegex(NotImplementedError, "fillna currently only"): psdf.fillna(-1, axis=1) with self.assertRaisesRegex(NotImplementedError, "fillna currently only"): psdf.fillna(-1, axis="columns") with self.assertRaisesRegex(ValueError, "limit parameter for value is not support now"): psdf.fillna(-1, limit=1) with self.assertRaisesRegex(TypeError, "Unsupported.*DataFrame"): psdf.fillna(pd.DataFrame({"x": [-1], "y": [-1], "z": [-1]})) with self.assertRaisesRegex(TypeError, "Unsupported.*int64"): psdf.fillna({"x": np.int64(-6), "y": np.int64(-4), "z": -5}) with self.assertRaisesRegex(ValueError, "Expecting 'pad', 'ffill', 'backfill' or 'bfill'."): psdf.fillna(method="xxx") with self.assertRaisesRegex( ValueError, "Must specify a fillna 'value' or 'method' parameter." ): psdf.fillna() # multi-index columns pdf = pd.DataFrame( { ("x", "a"): [np.nan, 2, 3, 4, np.nan, 6], ("x", "b"): [1, 2, np.nan, 4, np.nan, np.nan], ("y", "c"): [1, 2, 3, 4, np.nan, np.nan], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), pdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), ) self.assert_eq(pdf.fillna(method="ffill"), psdf.fillna(method="ffill")) self.assert_eq(pdf.fillna(method="ffill", limit=2), psdf.fillna(method="ffill", limit=2)) self.assert_eq(pdf.fillna(method="bfill"), psdf.fillna(method="bfill")) self.assert_eq(pdf.fillna(method="bfill", limit=2), psdf.fillna(method="bfill", limit=2)) self.assert_eq(psdf.fillna({"x": -1}), pdf.fillna({"x": -1})) self.assert_eq( psdf.fillna({"x": -1, ("x", "b"): -2}), pdf.fillna({"x": -1, ("x", "b"): -2}) ) self.assert_eq( psdf.fillna({("x", "b"): -2, "x": -1}), pdf.fillna({("x", "b"): -2, "x": -1}) ) # check multi index pdf = pdf.set_index([("x", "a"), ("x", "b")]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.fillna(-1), pdf.fillna(-1)) self.assert_eq( psdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), pdf.fillna({("x", "a"): -1, ("x", "b"): -2, ("y", "c"): -5}), ) def test_isnull(self): pdf = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=np.random.rand(6) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.notnull(), pdf.notnull()) self.assert_eq(psdf.isnull(), pdf.isnull()) def test_to_datetime(self): pdf = pd.DataFrame( {"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}, index=np.random.rand(2) ) psdf = ps.from_pandas(pdf) self.assert_eq(pd.to_datetime(pdf), ps.to_datetime(psdf)) def test_nunique(self): pdf = pd.DataFrame({"A": [1, 2, 3], "B": [np.nan, 3, np.nan]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) # Assert NaNs are dropped by default self.assert_eq(psdf.nunique(), pdf.nunique()) # Assert including NaN values self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) # Assert approximate counts self.assert_eq( ps.DataFrame({"A": range(100)}).nunique(approx=True), pd.Series([103], index=["A"]), ) self.assert_eq( ps.DataFrame({"A": range(100)}).nunique(approx=True, rsd=0.01), pd.Series([100], index=["A"]), ) # Assert unsupported axis value yet msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.nunique(axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("Y", "B")], names=["1", "2"]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.nunique(), pdf.nunique()) self.assert_eq(psdf.nunique(dropna=False), pdf.nunique(dropna=False)) def test_sort_values(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values("b"), pdf.sort_values("b")) for ascending in [True, False]: for na_position in ["first", "last"]: self.assert_eq( psdf.sort_values("a", ascending=ascending, na_position=na_position), pdf.sort_values("a", ascending=ascending, na_position=na_position), ) self.assert_eq(psdf.sort_values(["a", "b"]), pdf.sort_values(["a", "b"])) self.assert_eq( psdf.sort_values(["a", "b"], ascending=[False, True]), pdf.sort_values(["a", "b"], ascending=[False, True]), ) self.assertRaises(ValueError, lambda: psdf.sort_values(["b", "a"], ascending=[False])) self.assert_eq( psdf.sort_values(["a", "b"], na_position="first"), pdf.sort_values(["a", "b"], na_position="first"), ) self.assertRaises(ValueError, lambda: psdf.sort_values(["b", "a"], na_position="invalid")) pserA = pdf.a psserA = psdf.a self.assert_eq(psdf.sort_values("b", inplace=True), pdf.sort_values("b", inplace=True)) self.assert_eq(psdf, pdf) self.assert_eq(psserA, pserA) # multi-index columns pdf = pd.DataFrame( {("X", 10): [1, 2, 3, 4, 5, None, 7], ("X", 20): [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values(("X", 20)), pdf.sort_values(("X", 20))) self.assert_eq( psdf.sort_values([("X", 20), ("X", 10)]), pdf.sort_values([("X", 20), ("X", 10)]) ) self.assertRaisesRegex( ValueError, "For a multi-index, the label must be a tuple with elements", lambda: psdf.sort_values(["X"]), ) # non-string names pdf = pd.DataFrame( {10: [1, 2, 3, 4, 5, None, 7], 20: [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_values(20), pdf.sort_values(20)) self.assert_eq(psdf.sort_values([20, 10]), pdf.sort_values([20, 10])) def test_sort_index(self): pdf = pd.DataFrame( {"A": [2, 1, np.nan], "B": [np.nan, 0, np.nan]}, index=["b", "a", np.nan] ) psdf = ps.from_pandas(pdf) # Assert invalid parameters self.assertRaises(NotImplementedError, lambda: psdf.sort_index(axis=1)) self.assertRaises(NotImplementedError, lambda: psdf.sort_index(kind="mergesort")) self.assertRaises(ValueError, lambda: psdf.sort_index(na_position="invalid")) # Assert default behavior without parameters self.assert_eq(psdf.sort_index(), pdf.sort_index()) # Assert sorting descending self.assert_eq(psdf.sort_index(ascending=False), pdf.sort_index(ascending=False)) # Assert sorting NA indices first self.assert_eq(psdf.sort_index(na_position="first"), pdf.sort_index(na_position="first")) # Assert sorting descending and NA indices first self.assert_eq( psdf.sort_index(ascending=False, na_position="first"), pdf.sort_index(ascending=False, na_position="first"), ) # Assert sorting inplace pserA = pdf.A psserA = psdf.A self.assertEqual(psdf.sort_index(inplace=True), pdf.sort_index(inplace=True)) self.assert_eq(psdf, pdf) self.assert_eq(psserA, pserA) # Assert multi-indices pdf = pd.DataFrame( {"A": range(4), "B": range(4)[::-1]}, index=[["b", "b", "a", "a"], [1, 0, 1, 0]] ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psdf.sort_index(level=[1, 0]), pdf.sort_index(level=[1, 0])) self.assert_eq(psdf.reset_index().sort_index(), pdf.reset_index().sort_index()) # Assert with multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.sort_index(), pdf.sort_index()) def test_swaplevel(self): # MultiIndex with two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame({"x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"]}, index=pidx) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(), psdf.swaplevel()) self.assert_eq(pdf.swaplevel(0, 1), psdf.swaplevel(0, 1)) self.assert_eq(pdf.swaplevel(1, 1), psdf.swaplevel(1, 1)) self.assert_eq(pdf.swaplevel("number", "color"), psdf.swaplevel("number", "color")) # MultiIndex with more than two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"], ["l", "m", "s", "xs"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pdf = pd.DataFrame({"x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"]}, index=pidx) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(), psdf.swaplevel()) self.assert_eq(pdf.swaplevel(0, 1), psdf.swaplevel(0, 1)) self.assert_eq(pdf.swaplevel(0, 2), psdf.swaplevel(0, 2)) self.assert_eq(pdf.swaplevel(1, 2), psdf.swaplevel(1, 2)) self.assert_eq(pdf.swaplevel(1, 1), psdf.swaplevel(1, 1)) self.assert_eq(pdf.swaplevel(-1, -2), psdf.swaplevel(-1, -2)) self.assert_eq(pdf.swaplevel("number", "color"), psdf.swaplevel("number", "color")) self.assert_eq(pdf.swaplevel("number", "size"), psdf.swaplevel("number", "size")) self.assert_eq(pdf.swaplevel("color", "size"), psdf.swaplevel("color", "size")) self.assert_eq( pdf.swaplevel("color", "size", axis="index"), psdf.swaplevel("color", "size", axis="index"), ) self.assert_eq( pdf.swaplevel("color", "size", axis=0), psdf.swaplevel("color", "size", axis=0) ) pdf = pd.DataFrame( { "x1": ["a", "b", "c", "d"], "x2": ["a", "b", "c", "d"], "x3": ["a", "b", "c", "d"], "x4": ["a", "b", "c", "d"], } ) pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pdf.columns = pidx psdf = ps.from_pandas(pdf) self.assert_eq(pdf.swaplevel(axis=1), psdf.swaplevel(axis=1)) self.assert_eq(pdf.swaplevel(0, 1, axis=1), psdf.swaplevel(0, 1, axis=1)) self.assert_eq(pdf.swaplevel(0, 2, axis=1), psdf.swaplevel(0, 2, axis=1)) self.assert_eq(pdf.swaplevel(1, 2, axis=1), psdf.swaplevel(1, 2, axis=1)) self.assert_eq(pdf.swaplevel(1, 1, axis=1), psdf.swaplevel(1, 1, axis=1)) self.assert_eq(pdf.swaplevel(-1, -2, axis=1), psdf.swaplevel(-1, -2, axis=1)) self.assert_eq( pdf.swaplevel("number", "color", axis=1), psdf.swaplevel("number", "color", axis=1) ) self.assert_eq( pdf.swaplevel("number", "size", axis=1), psdf.swaplevel("number", "size", axis=1) ) self.assert_eq( pdf.swaplevel("color", "size", axis=1), psdf.swaplevel("color", "size", axis=1) ) self.assert_eq( pdf.swaplevel("color", "size", axis="columns"), psdf.swaplevel("color", "size", axis="columns"), ) # Error conditions self.assertRaises(AssertionError, lambda: ps.DataFrame([1, 2]).swaplevel()) self.assertRaises(IndexError, lambda: psdf.swaplevel(0, 9, axis=1)) self.assertRaises(KeyError, lambda: psdf.swaplevel("not_number", "color", axis=1)) self.assertRaises(ValueError, lambda: psdf.swaplevel(axis=2)) def test_swapaxes(self): pdf = pd.DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=["x", "y", "z"], columns=["a", "b", "c"] ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.swapaxes(0, 1), pdf.swapaxes(0, 1)) self.assert_eq(psdf.swapaxes(1, 0), pdf.swapaxes(1, 0)) self.assert_eq(psdf.swapaxes("index", "columns"), pdf.swapaxes("index", "columns")) self.assert_eq(psdf.swapaxes("columns", "index"), pdf.swapaxes("columns", "index")) self.assert_eq((psdf + 1).swapaxes(0, 1), (pdf + 1).swapaxes(0, 1)) self.assertRaises(AssertionError, lambda: psdf.swapaxes(0, 1, copy=False)) self.assertRaises(ValueError, lambda: psdf.swapaxes(0, -1)) def test_nlargest(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.nlargest(n=5, columns="a"), pdf.nlargest(5, columns="a")) self.assert_eq(psdf.nlargest(n=5, columns=["a", "b"]), pdf.nlargest(5, columns=["a", "b"])) def test_nsmallest(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, None, 7], "b": [7, 6, 5, 4, 3, 2, 1]}, index=np.random.rand(7) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.nsmallest(n=5, columns="a"), pdf.nsmallest(5, columns="a")) self.assert_eq( psdf.nsmallest(n=5, columns=["a", "b"]), pdf.nsmallest(5, columns=["a", "b"]) ) def test_xs(self): d = { "num_legs": [4, 4, 2, 2], "num_wings": [0, 0, 2, 2], "class": ["mammal", "mammal", "mammal", "bird"], "animal": ["cat", "dog", "bat", "penguin"], "locomotion": ["walks", "walks", "flies", "walks"], } pdf = pd.DataFrame(data=d) pdf = pdf.set_index(["class", "animal", "locomotion"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.xs("mammal"), pdf.xs("mammal")) self.assert_eq(psdf.xs(("mammal",)), pdf.xs(("mammal",))) self.assert_eq(psdf.xs(("mammal", "dog", "walks")), pdf.xs(("mammal", "dog", "walks"))) self.assert_eq( ps.concat([psdf, psdf]).xs(("mammal", "dog", "walks")), pd.concat([pdf, pdf]).xs(("mammal", "dog", "walks")), ) self.assert_eq(psdf.xs("cat", level=1), pdf.xs("cat", level=1)) self.assert_eq(psdf.xs("flies", level=2), pdf.xs("flies", level=2)) self.assert_eq(psdf.xs("mammal", level=-3), pdf.xs("mammal", level=-3)) msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.xs("num_wings", axis=1) with self.assertRaises(KeyError): psdf.xs(("mammal", "dog", "walk")) msg = r"'Key length \(4\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psdf.xs(("mammal", "dog", "walks", "foo")) msg = "'key' should be a scalar value or tuple that contains scalar values" with self.assertRaisesRegex(TypeError, msg): psdf.xs(["mammal", "dog", "walks", "foo"]) self.assertRaises(IndexError, lambda: psdf.xs("foo", level=-4)) self.assertRaises(IndexError, lambda: psdf.xs("foo", level=3)) self.assertRaises(KeyError, lambda: psdf.xs(("dog", "walks"), level=1)) # non-string names pdf = pd.DataFrame(data=d) pdf = pdf.set_index(["class", "animal", "num_legs", "num_wings"]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.xs(("mammal", "dog", 4)), pdf.xs(("mammal", "dog", 4))) self.assert_eq(psdf.xs(2, level=2), pdf.xs(2, level=2)) self.assert_eq((psdf + "a").xs(("mammal", "dog", 4)), (pdf + "a").xs(("mammal", "dog", 4))) self.assert_eq((psdf + "a").xs(2, level=2), (pdf + "a").xs(2, level=2)) def test_missing(self): psdf = self.psdf missing_functions = inspect.getmembers(_MissingPandasLikeDataFrame, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*DataFrame.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psdf, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*DataFrame.*{}.*is deprecated".format(name) ): getattr(psdf, name)() missing_properties = inspect.getmembers( _MissingPandasLikeDataFrame, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*DataFrame.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psdf, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*DataFrame.*{}.*is deprecated".format(name) ): getattr(psdf, name) def test_to_numpy(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 9, 4, 2, 4], "c": ["one", "three", "six", "seven", "one", "5"], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.to_numpy(), pdf.values) def test_to_pandas(self): pdf, psdf = self.df_pair self.assert_eq(psdf.to_pandas(), pdf) def test_isin(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 9, 4, 2, 4], "c": ["one", "three", "six", "seven", "one", "5"], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.isin([4, "six"]), pdf.isin([4, "six"])) # Seems like pandas has a bug when passing `np.array` as parameter self.assert_eq(psdf.isin(np.array([4, "six"])), pdf.isin([4, "six"])) self.assert_eq( psdf.isin({"a": [2, 8], "c": ["three", "one"]}), pdf.isin({"a": [2, 8], "c": ["three", "one"]}), ) self.assert_eq( psdf.isin({"a": np.array([2, 8]), "c": ["three", "one"]}), pdf.isin({"a": np.array([2, 8]), "c": ["three", "one"]}), ) msg = "'DataFrame' object has no attribute {'e'}" with self.assertRaisesRegex(AttributeError, msg): psdf.isin({"e": [5, 7], "a": [1, 6]}) msg = "DataFrame and Series are not supported" with self.assertRaisesRegex(NotImplementedError, msg): psdf.isin(pdf) msg = "Values should be iterable, Series, DataFrame or dict." with self.assertRaisesRegex(TypeError, msg): psdf.isin(1) pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, None, 9, 4, None, 4], "c": [None, 5, None, 3, 2, 1], }, ) psdf = ps.from_pandas(pdf) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq(psdf.isin([4, 3, 1, 1, None]), pdf.isin([4, 3, 1, 1, None])) else: expected = pd.DataFrame( { "a": [True, False, True, True, False, False], "b": [True, False, False, True, False, True], "c": [False, False, False, True, False, True], } ) self.assert_eq(psdf.isin([4, 3, 1, 1, None]), expected) if LooseVersion(pd.__version__) >= LooseVersion("1.2"): self.assert_eq( psdf.isin({"b": [4, 3, 1, 1, None]}), pdf.isin({"b": [4, 3, 1, 1, None]}) ) else: expected = pd.DataFrame( { "a": [False, False, False, False, False, False], "b": [True, False, False, True, False, True], "c": [False, False, False, False, False, False], } ) self.assert_eq(psdf.isin({"b": [4, 3, 1, 1, None]}), expected) def test_merge(self): left_pdf = pd.DataFrame( { "lkey": ["foo", "bar", "baz", "foo", "bar", "l"], "value": [1, 2, 3, 5, 6, 7], "x": list("abcdef"), }, columns=["lkey", "value", "x"], ) right_pdf = pd.DataFrame( { "rkey": ["baz", "foo", "bar", "baz", "foo", "r"], "value": [4, 5, 6, 7, 8, 9], "y": list("efghij"), }, columns=["rkey", "value", "y"], ) right_ps = pd.Series(list("defghi"), name="x", index=[5, 6, 7, 8, 9, 10]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) right_psser = ps.from_pandas(right_ps) def check(op, right_psdf=right_psdf, right_pdf=right_pdf): k_res = op(left_psdf, right_psdf) k_res = k_res.to_pandas() k_res = k_res.sort_values(by=list(k_res.columns)) k_res = k_res.reset_index(drop=True) p_res = op(left_pdf, right_pdf) p_res = p_res.sort_values(by=list(p_res.columns)) p_res = p_res.reset_index(drop=True) self.assert_eq(k_res, p_res) check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on="value")) check(lambda left, right: left.merge(right, on=("value",))) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey")) check(lambda left, right: left.set_index("lkey").merge(right.set_index("rkey"))) check( lambda left, right: left.set_index("lkey").merge( right, left_index=True, right_on="rkey" ) ) check( lambda left, right: left.merge( right.set_index("rkey"), left_on="lkey", right_index=True ) ) check( lambda left, right: left.set_index("lkey").merge( right.set_index("rkey"), left_index=True, right_index=True ) ) # MultiIndex check( lambda left, right: left.merge( right, left_on=["lkey", "value"], right_on=["rkey", "value"] ) ) check( lambda left, right: left.set_index(["lkey", "value"]).merge( right, left_index=True, right_on=["rkey", "value"] ) ) check( lambda left, right: left.merge( right.set_index(["rkey", "value"]), left_on=["lkey", "value"], right_index=True ) ) # TODO: when both left_index=True and right_index=True with multi-index # check(lambda left, right: left.set_index(['lkey', 'value']).merge( # right.set_index(['rkey', 'value']), left_index=True, right_index=True)) # join types for how in ["inner", "left", "right", "outer"]: check(lambda left, right: left.merge(right, on="value", how=how)) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey", how=how)) # suffix check( lambda left, right: left.merge( right, left_on="lkey", right_on="rkey", suffixes=["_left", "_right"] ) ) # Test Series on the right check(lambda left, right: left.merge(right), right_psser, right_ps) check( lambda left, right: left.merge(right, left_on="x", right_on="x"), right_psser, right_ps ) check( lambda left, right: left.set_index("x").merge(right, left_index=True, right_on="x"), right_psser, right_ps, ) # Test join types with Series for how in ["inner", "left", "right", "outer"]: check(lambda left, right: left.merge(right, how=how), right_psser, right_ps) check( lambda left, right: left.merge(right, left_on="x", right_on="x", how=how), right_psser, right_ps, ) # suffix with Series check( lambda left, right: left.merge( right, suffixes=["_left", "_right"], how="outer", left_index=True, right_index=True, ), right_psser, right_ps, ) # multi-index columns left_columns = pd.MultiIndex.from_tuples([(10, "lkey"), (10, "value"), (20, "x")]) left_pdf.columns = left_columns left_psdf.columns = left_columns right_columns = pd.MultiIndex.from_tuples([(10, "rkey"), (10, "value"), (30, "y")]) right_pdf.columns = right_columns right_psdf.columns = right_columns check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on=[(10, "value")])) check( lambda left, right: (left.set_index((10, "lkey")).merge(right.set_index((10, "rkey")))) ) check( lambda left, right: ( left.set_index((10, "lkey")).merge( right.set_index((10, "rkey")), left_index=True, right_index=True ) ) ) # TODO: when both left_index=True and right_index=True with multi-index columns # check(lambda left, right: left.merge(right, # left_on=[('a', 'lkey')], right_on=[('a', 'rkey')])) # check(lambda left, right: (left.set_index(('a', 'lkey')) # .merge(right, left_index=True, right_on=[('a', 'rkey')]))) # non-string names left_pdf.columns = [10, 100, 1000] left_psdf.columns = [10, 100, 1000] right_pdf.columns = [20, 100, 2000] right_psdf.columns = [20, 100, 2000] check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on=[100])) check(lambda left, right: (left.set_index(10).merge(right.set_index(20)))) check( lambda left, right: ( left.set_index(10).merge(right.set_index(20), left_index=True, right_index=True) ) ) def test_merge_same_anchor(self): pdf = pd.DataFrame( { "lkey": ["foo", "bar", "baz", "foo", "bar", "l"], "rkey": ["baz", "foo", "bar", "baz", "foo", "r"], "value": [1, 1, 3, 5, 6, 7], "x": list("abcdef"), "y": list("efghij"), }, columns=["lkey", "rkey", "value", "x", "y"], ) psdf = ps.from_pandas(pdf) left_pdf = pdf[["lkey", "value", "x"]] right_pdf = pdf[["rkey", "value", "y"]] left_psdf = psdf[["lkey", "value", "x"]] right_psdf = psdf[["rkey", "value", "y"]] def check(op, right_psdf=right_psdf, right_pdf=right_pdf): k_res = op(left_psdf, right_psdf) k_res = k_res.to_pandas() k_res = k_res.sort_values(by=list(k_res.columns)) k_res = k_res.reset_index(drop=True) p_res = op(left_pdf, right_pdf) p_res = p_res.sort_values(by=list(p_res.columns)) p_res = p_res.reset_index(drop=True) self.assert_eq(k_res, p_res) check(lambda left, right: left.merge(right)) check(lambda left, right: left.merge(right, on="value")) check(lambda left, right: left.merge(right, left_on="lkey", right_on="rkey")) check(lambda left, right: left.set_index("lkey").merge(right.set_index("rkey"))) check( lambda left, right: left.set_index("lkey").merge( right, left_index=True, right_on="rkey" ) ) check( lambda left, right: left.merge( right.set_index("rkey"), left_on="lkey", right_index=True ) ) check( lambda left, right: left.set_index("lkey").merge( right.set_index("rkey"), left_index=True, right_index=True ) ) def test_merge_retains_indices(self): left_pdf = pd.DataFrame({"A": [0, 1]}) right_pdf = pd.DataFrame({"B": [1, 2]}, index=[1, 2]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) self.assert_eq( left_psdf.merge(right_psdf, left_index=True, right_index=True), left_pdf.merge(right_pdf, left_index=True, right_index=True), ) self.assert_eq( left_psdf.merge(right_psdf, left_on="A", right_index=True), left_pdf.merge(right_pdf, left_on="A", right_index=True), ) self.assert_eq( left_psdf.merge(right_psdf, left_index=True, right_on="B"), left_pdf.merge(right_pdf, left_index=True, right_on="B"), ) self.assert_eq( left_psdf.merge(right_psdf, left_on="A", right_on="B"), left_pdf.merge(right_pdf, left_on="A", right_on="B"), ) def test_merge_how_parameter(self): left_pdf = pd.DataFrame({"A": [1, 2]}) right_pdf = pd.DataFrame({"B": ["x", "y"]}, index=[1, 2]) left_psdf = ps.from_pandas(left_pdf) right_psdf = ps.from_pandas(right_pdf) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True) pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True) self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="left") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="left") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="right") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="right") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) psdf = left_psdf.merge(right_psdf, left_index=True, right_index=True, how="outer") pdf = left_pdf.merge(right_pdf, left_index=True, right_index=True, how="outer") self.assert_eq( psdf.sort_values(by=list(psdf.columns)).reset_index(drop=True), pdf.sort_values(by=list(pdf.columns)).reset_index(drop=True), ) def test_merge_raises(self): left = ps.DataFrame( {"value": [1, 2, 3, 5, 6], "x": list("abcde")}, columns=["value", "x"], index=["foo", "bar", "baz", "foo", "bar"], ) right = ps.DataFrame( {"value": [4, 5, 6, 7, 8], "y": list("fghij")}, columns=["value", "y"], index=["baz", "foo", "bar", "baz", "foo"], ) with self.assertRaisesRegex(ValueError, "No common columns to perform merge on"): left[["x"]].merge(right[["y"]]) with self.assertRaisesRegex(ValueError, "not a combination of both"): left.merge(right, on="value", left_on="x") with self.assertRaisesRegex(ValueError, "Must pass right_on or right_index=True"): left.merge(right, left_on="x") with self.assertRaisesRegex(ValueError, "Must pass right_on or right_index=True"): left.merge(right, left_index=True) with self.assertRaisesRegex(ValueError, "Must pass left_on or left_index=True"): left.merge(right, right_on="y") with self.assertRaisesRegex(ValueError, "Must pass left_on or left_index=True"): left.merge(right, right_index=True) with self.assertRaisesRegex( ValueError, "len\\(left_keys\\) must equal len\\(right_keys\\)" ): left.merge(right, left_on="value", right_on=["value", "y"]) with self.assertRaisesRegex( ValueError, "len\\(left_keys\\) must equal len\\(right_keys\\)" ): left.merge(right, left_on=["value", "x"], right_on="value") with self.assertRaisesRegex(ValueError, "['inner', 'left', 'right', 'full', 'outer']"): left.merge(right, left_index=True, right_index=True, how="foo") with self.assertRaisesRegex(KeyError, "id"): left.merge(right, on="id") def test_append(self): pdf = pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")) psdf = ps.from_pandas(pdf) other_pdf = pd.DataFrame([[3, 4], [5, 6]], columns=list("BC"), index=[2, 3]) other_psdf = ps.from_pandas(other_pdf) self.assert_eq(psdf.append(psdf), pdf.append(pdf)) self.assert_eq(psdf.append(psdf, ignore_index=True), pdf.append(pdf, ignore_index=True)) # Assert DataFrames with non-matching columns self.assert_eq(psdf.append(other_psdf), pdf.append(other_pdf)) # Assert appending a Series fails msg = "DataFrames.append() does not support appending Series to DataFrames" with self.assertRaises(TypeError, msg=msg): psdf.append(psdf["A"]) # Assert using the sort parameter raises an exception msg = "The 'sort' parameter is currently not supported" with self.assertRaises(NotImplementedError, msg=msg): psdf.append(psdf, sort=True) # Assert using 'verify_integrity' only raises an exception for overlapping indices self.assert_eq( psdf.append(other_psdf, verify_integrity=True), pdf.append(other_pdf, verify_integrity=True), ) msg = "Indices have overlapping values" with self.assertRaises(ValueError, msg=msg): psdf.append(psdf, verify_integrity=True) # Skip integrity verification when ignore_index=True self.assert_eq( psdf.append(psdf, ignore_index=True, verify_integrity=True), pdf.append(pdf, ignore_index=True, verify_integrity=True), ) # Assert appending multi-index DataFrames multi_index_pdf = pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[[2, 3], [4, 5]]) multi_index_psdf = ps.from_pandas(multi_index_pdf) other_multi_index_pdf = pd.DataFrame( [[5, 6], [7, 8]], columns=list("AB"), index=[[2, 3], [6, 7]] ) other_multi_index_psdf = ps.from_pandas(other_multi_index_pdf) self.assert_eq( multi_index_psdf.append(multi_index_psdf), multi_index_pdf.append(multi_index_pdf) ) # Assert DataFrames with non-matching columns self.assert_eq( multi_index_psdf.append(other_multi_index_psdf), multi_index_pdf.append(other_multi_index_pdf), ) # Assert using 'verify_integrity' only raises an exception for overlapping indices self.assert_eq( multi_index_psdf.append(other_multi_index_psdf, verify_integrity=True), multi_index_pdf.append(other_multi_index_pdf, verify_integrity=True), ) with self.assertRaises(ValueError, msg=msg): multi_index_psdf.append(multi_index_psdf, verify_integrity=True) # Skip integrity verification when ignore_index=True self.assert_eq( multi_index_psdf.append(multi_index_psdf, ignore_index=True, verify_integrity=True), multi_index_pdf.append(multi_index_pdf, ignore_index=True, verify_integrity=True), ) # Assert trying to append DataFrames with different index levels msg = "Both DataFrames have to have the same number of index levels" with self.assertRaises(ValueError, msg=msg): psdf.append(multi_index_psdf) # Skip index level check when ignore_index=True self.assert_eq( psdf.append(multi_index_psdf, ignore_index=True), pdf.append(multi_index_pdf, ignore_index=True), ) columns = pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.append(psdf), pdf.append(pdf)) def test_clip(self): pdf = pd.DataFrame( {"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) # Assert list-like values are not accepted for 'lower' and 'upper' msg = "List-like value are not supported for 'lower' and 'upper' at the moment" with self.assertRaises(TypeError, msg=msg): psdf.clip(lower=[1]) with self.assertRaises(TypeError, msg=msg): psdf.clip(upper=[1]) # Assert no lower or upper self.assert_eq(psdf.clip(), pdf.clip()) # Assert lower only self.assert_eq(psdf.clip(1), pdf.clip(1)) # Assert upper only self.assert_eq(psdf.clip(upper=3), pdf.clip(upper=3)) # Assert lower and upper self.assert_eq(psdf.clip(1, 3), pdf.clip(1, 3)) pdf["clip"] = pdf.A.clip(lower=1, upper=3) psdf["clip"] = psdf.A.clip(lower=1, upper=3) self.assert_eq(psdf, pdf) # Assert behavior on string values str_psdf = ps.DataFrame({"A": ["a", "b", "c"]}, index=np.random.rand(3)) self.assert_eq(str_psdf.clip(1, 3), str_psdf) def test_binary_operators(self): pdf = pd.DataFrame( {"A": [0, 2, 4], "B": [4, 2, 0], "X": [-1, 10, 0]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf + psdf.copy(), pdf + pdf.copy()) self.assert_eq(psdf + psdf.loc[:, ["A", "B"]], pdf + pdf.loc[:, ["A", "B"]]) self.assert_eq(psdf.loc[:, ["A", "B"]] + psdf, pdf.loc[:, ["A", "B"]] + pdf) self.assertRaisesRegex( ValueError, "it comes from a different dataframe", lambda: ps.range(10).add(ps.range(10)), ) self.assertRaisesRegex( TypeError, "add with a sequence is currently not supported", lambda: ps.range(10).add(ps.range(10).id), ) psdf_other = psdf.copy() psdf_other.columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) self.assertRaisesRegex( ValueError, "cannot join with no overlapping index names", lambda: psdf.add(psdf_other), ) def test_binary_operator_add(self): # Positive pdf = pd.DataFrame({"a": ["x"], "b": ["y"], "c": [1], "d": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] + psdf["b"], pdf["a"] + pdf["b"]) self.assert_eq(psdf["c"] + psdf["d"], pdf["c"] + pdf["d"]) # Negative ks_err_msg = "Addition can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + psdf["c"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["c"] + "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" + psdf["c"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 + psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] + 1) def test_binary_operator_sub(self): # Positive pdf = pd.DataFrame({"a": [2], "b": [1]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] - psdf["b"], pdf["a"] - pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Subtraction can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] - "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" - psdf["b"]) ks_err_msg = "Subtraction can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 - psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - 1) psdf = ps.DataFrame({"a": ["x"], "b": ["y"]}) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] - psdf["b"]) def test_binary_operator_truediv(self): # Positive pdf = pd.DataFrame({"a": [3], "b": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] / psdf["b"], pdf["a"] / pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "True division can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] / "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" / psdf["b"]) ks_err_msg = "True division can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] / psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 / psdf["a"]) def test_binary_operator_floordiv(self): psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Floor division can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] // psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 // psdf["a"]) ks_err_msg = "Floor division can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] // "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" // psdf["b"]) def test_binary_operator_mod(self): # Positive pdf = pd.DataFrame({"a": [3], "b": [2]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["a"] % psdf["b"], pdf["a"] % pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [1]}) ks_err_msg = "Modulo can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] % "literal") ks_err_msg = "Modulo can not be applied to strings" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] % psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 1 % psdf["a"]) def test_binary_operator_multiply(self): # Positive pdf = pd.DataFrame({"a": ["x", "y"], "b": [1, 2], "c": [3, 4]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["b"] * psdf["c"], pdf["b"] * pdf["c"]) self.assert_eq(psdf["c"] * psdf["b"], pdf["c"] * pdf["b"]) self.assert_eq(psdf["a"] * psdf["b"], pdf["a"] * pdf["b"]) self.assert_eq(psdf["b"] * psdf["a"], pdf["b"] * pdf["a"]) self.assert_eq(psdf["a"] * 2, pdf["a"] * 2) self.assert_eq(psdf["b"] * 2, pdf["b"] * 2) self.assert_eq(2 * psdf["a"], 2 * pdf["a"]) self.assert_eq(2 * psdf["b"], 2 * pdf["b"]) # Negative psdf = ps.DataFrame({"a": ["x"], "b": [2]}) ks_err_msg = "Multiplication can not be applied to given types" self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["b"] * "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["b"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * "literal") self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: psdf["a"] * 0.1) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: 0.1 * psdf["a"]) self.assertRaisesRegex(TypeError, ks_err_msg, lambda: "literal" * psdf["a"]) def test_sample(self): pdf = pd.DataFrame({"A": [0, 2, 4]}) psdf = ps.from_pandas(pdf) # Make sure the tests run, but we can't check the result because they are non-deterministic. psdf.sample(frac=0.1) psdf.sample(frac=0.2, replace=True) psdf.sample(frac=0.2, random_state=5) psdf["A"].sample(frac=0.2) psdf["A"].sample(frac=0.2, replace=True) psdf["A"].sample(frac=0.2, random_state=5) with self.assertRaises(ValueError): psdf.sample() with self.assertRaises(NotImplementedError): psdf.sample(n=1) def test_add_prefix(self): pdf = pd.DataFrame({"A": [1, 2, 3, 4], "B": [3, 4, 5, 6]}, index=np.random.rand(4)) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.add_prefix("col_"), psdf.add_prefix("col_")) columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.add_prefix("col_"), psdf.add_prefix("col_")) def test_add_suffix(self): pdf = pd.DataFrame({"A": [1, 2, 3, 4], "B": [3, 4, 5, 6]}, index=np.random.rand(4)) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.add_suffix("first_series"), psdf.add_suffix("first_series")) columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.add_suffix("first_series"), psdf.add_suffix("first_series")) def test_join(self): # check basic function pdf1 = pd.DataFrame( {"key": ["K0", "K1", "K2", "K3"], "A": ["A0", "A1", "A2", "A3"]}, columns=["key", "A"] ) pdf2 = pd.DataFrame( {"key": ["K0", "K1", "K2"], "B": ["B0", "B1", "B2"]}, columns=["key", "B"] ) psdf1 = ps.from_pandas(pdf1) psdf2 = ps.from_pandas(pdf2) join_pdf = pdf1.join(pdf2, lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) # join with duplicated columns in Series with self.assertRaisesRegex(ValueError, "columns overlap but no suffix specified"): ks1 = ps.Series(["A1", "A5"], index=[1, 2], name="A") psdf1.join(ks1, how="outer") # join with duplicated columns in DataFrame with self.assertRaisesRegex(ValueError, "columns overlap but no suffix specified"): psdf1.join(psdf2, how="outer") # check `on` parameter join_pdf = pdf1.join(pdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) join_pdf = pdf1.set_index("key").join( pdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.set_index("key").join( psdf2.set_index("key"), on="key", lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) # multi-index columns columns1 = pd.MultiIndex.from_tuples([("x", "key"), ("Y", "A")]) columns2 = pd.MultiIndex.from_tuples([("x", "key"), ("Y", "B")]) pdf1.columns = columns1 pdf2.columns = columns2 psdf1.columns = columns1 psdf2.columns = columns2 join_pdf = pdf1.join(pdf2, lsuffix="_left", rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, lsuffix="_left", rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) # check `on` parameter join_pdf = pdf1.join( pdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join( psdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) join_pdf = pdf1.set_index(("x", "key")).join( pdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.set_index(("x", "key")).join( psdf2.set_index(("x", "key")), on=[("x", "key")], lsuffix="_left", rsuffix="_right" ) join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf.reset_index(drop=True), join_psdf.reset_index(drop=True)) # multi-index midx1 = pd.MultiIndex.from_tuples( [("w", "a"), ("x", "b"), ("y", "c"), ("z", "d")], names=["index1", "index2"] ) midx2 = pd.MultiIndex.from_tuples( [("w", "a"), ("x", "b"), ("y", "c")], names=["index1", "index2"] ) pdf1.index = midx1 pdf2.index = midx2 psdf1 = ps.from_pandas(pdf1) psdf2 = ps.from_pandas(pdf2) join_pdf = pdf1.join(pdf2, on=["index1", "index2"], rsuffix="_right") join_pdf.sort_values(by=list(join_pdf.columns), inplace=True) join_psdf = psdf1.join(psdf2, on=["index1", "index2"], rsuffix="_right") join_psdf.sort_values(by=list(join_psdf.columns), inplace=True) self.assert_eq(join_pdf, join_psdf) with self.assertRaisesRegex( ValueError, r'len\(left_on\) must equal the number of levels in the index of "right"' ): psdf1.join(psdf2, on=["index1"], rsuffix="_right") def test_replace(self): pdf = pd.DataFrame( { "name": ["Ironman", "Captain America", "Thor", "Hulk"], "weapon": ["Mark-45", "Shield", "Mjolnir", "Smash"], }, index=np.random.rand(4), ) psdf = ps.from_pandas(pdf) with self.assertRaisesRegex( NotImplementedError, "replace currently works only for method='pad" ): psdf.replace(method="bfill") with self.assertRaisesRegex( NotImplementedError, "replace currently works only when limit=None" ): psdf.replace(limit=10) with self.assertRaisesRegex( NotImplementedError, "replace currently doesn't supports regex" ): psdf.replace(regex="") with self.assertRaisesRegex(ValueError, "Length of to_replace and value must be same"): psdf.replace(to_replace=["Ironman"], value=["Spiderman", "Doctor Strange"]) with self.assertRaisesRegex(TypeError, "Unsupported type function"): psdf.replace("Ironman", lambda x: "Spiderman") with self.assertRaisesRegex(TypeError, "Unsupported type function"): psdf.replace(lambda x: "Ironman", "Spiderman") self.assert_eq(psdf.replace("Ironman", "Spiderman"), pdf.replace("Ironman", "Spiderman")) self.assert_eq( psdf.replace(["Ironman", "Captain America"], ["Rescue", "Hawkeye"]), pdf.replace(["Ironman", "Captain America"], ["Rescue", "Hawkeye"]), ) self.assert_eq( psdf.replace(("Ironman", "Captain America"), ("Rescue", "Hawkeye")), pdf.replace(("Ironman", "Captain America"), ("Rescue", "Hawkeye")), ) # inplace pser = pdf.name psser = psdf.name pdf.replace("Ironman", "Spiderman", inplace=True) psdf.replace("Ironman", "Spiderman", inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) pdf = pd.DataFrame( {"A": [0, 1, 2, 3, np.nan], "B": [5, 6, 7, 8, np.nan], "C": ["a", "b", "c", "d", None]}, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.replace([0, 1, 2, 3, 5, 6], 4), pdf.replace([0, 1, 2, 3, 5, 6], 4)) self.assert_eq( psdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), pdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), ) self.assert_eq(psdf.replace({0: 10, 1: 100, 7: 200}), pdf.replace({0: 10, 1: 100, 7: 200})) self.assert_eq( psdf.replace({"A": [0, np.nan], "B": [5, np.nan]}, 100), pdf.replace({"A": [0, np.nan], "B": [5, np.nan]}, 100), ) self.assert_eq( psdf.replace({"A": {0: 100, 4: 400, np.nan: 700}}), pdf.replace({"A": {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({"X": {0: 100, 4: 400, np.nan: 700}}), pdf.replace({"X": {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq(psdf.replace({"C": ["a", None]}, "e"), pdf.replace({"C": ["a", None]}, "e")) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.replace([0, 1, 2, 3, 5, 6], 4), pdf.replace([0, 1, 2, 3, 5, 6], 4)) self.assert_eq( psdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), pdf.replace([0, 1, 2, 3, 5, 6], [6, 5, 4, 3, 2, 1]), ) self.assert_eq(psdf.replace({0: 10, 1: 100, 7: 200}), pdf.replace({0: 10, 1: 100, 7: 200})) self.assert_eq( psdf.replace({("X", "A"): [0, np.nan], ("X", "B"): 5}, 100), pdf.replace({("X", "A"): [0, np.nan], ("X", "B"): 5}, 100), ) self.assert_eq( psdf.replace({("X", "A"): {0: 100, 4: 400, np.nan: 700}}), pdf.replace({("X", "A"): {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({("X", "B"): {0: 100, 4: 400, np.nan: 700}}), pdf.replace({("X", "B"): {0: 100, 4: 400, np.nan: 700}}), ) self.assert_eq( psdf.replace({("Y", "C"): ["a", None]}, "e"), pdf.replace({("Y", "C"): ["a", None]}, "e"), ) def test_update(self): # check base function def get_data(left_columns=None, right_columns=None): left_pdf = pd.DataFrame( {"A": ["1", "2", "3", "4"], "B": ["100", "200", np.nan, np.nan]}, columns=["A", "B"] ) right_pdf = pd.DataFrame( {"B": ["x", np.nan, "y", np.nan], "C": ["100", "200", "300", "400"]}, columns=["B", "C"], ) left_psdf = ps.DataFrame( {"A": ["1", "2", "3", "4"], "B": ["100", "200", None, None]}, columns=["A", "B"] ) right_psdf = ps.DataFrame( {"B": ["x", None, "y", None], "C": ["100", "200", "300", "400"]}, columns=["B", "C"] ) if left_columns is not None: left_pdf.columns = left_columns left_psdf.columns = left_columns if right_columns is not None: right_pdf.columns = right_columns right_psdf.columns = right_columns return left_psdf, left_pdf, right_psdf, right_pdf left_psdf, left_pdf, right_psdf, right_pdf = get_data() pser = left_pdf.B psser = left_psdf.B left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq(left_pdf.sort_values(by=["A", "B"]), left_psdf.sort_values(by=["A", "B"])) self.assert_eq(psser.sort_index(), pser.sort_index()) left_psdf, left_pdf, right_psdf, right_pdf = get_data() left_pdf.update(right_pdf, overwrite=False) left_psdf.update(right_psdf, overwrite=False) self.assert_eq(left_pdf.sort_values(by=["A", "B"]), left_psdf.sort_values(by=["A", "B"])) with self.assertRaises(NotImplementedError): left_psdf.update(right_psdf, join="right") # multi-index columns left_columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")]) right_columns = pd.MultiIndex.from_tuples([("X", "B"), ("Y", "C")]) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf, overwrite=False) left_psdf.update(right_psdf, overwrite=False) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) right_columns = pd.MultiIndex.from_tuples([("Y", "B"), ("Y", "C")]) left_psdf, left_pdf, right_psdf, right_pdf = get_data( left_columns=left_columns, right_columns=right_columns ) left_pdf.update(right_pdf) left_psdf.update(right_psdf) self.assert_eq( left_pdf.sort_values(by=[("X", "A"), ("X", "B")]), left_psdf.sort_values(by=[("X", "A"), ("X", "B")]), ) def test_pivot_table_dtypes(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [1, 2, 2, 4, 2, 4], "c": [1, 2, 9, 4, 7, 4], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) # Skip columns comparison by reset_index res_df = psdf.pivot_table( index=["c"], columns="a", values=["b"], aggfunc={"b": "mean"} ).dtypes.reset_index(drop=True) exp_df = pdf.pivot_table( index=["c"], columns="a", values=["b"], aggfunc={"b": "mean"} ).dtypes.reset_index(drop=True) self.assert_eq(res_df, exp_df) # Results don't have the same column's name # Todo: self.assert_eq(psdf.pivot_table(columns="a", values="b").dtypes, # pdf.pivot_table(columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['c'], columns="a", values="b").dtypes, # pdf.pivot_table(index=['c'], columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['e', 'c'], columns="a", values="b").dtypes, # pdf.pivot_table(index=['e', 'c'], columns="a", values="b").dtypes) # Todo: self.assert_eq(psdf.pivot_table(index=['e', 'c'], # columns="a", values="b", fill_value=999).dtypes, pdf.pivot_table(index=['e', 'c'], # columns="a", values="b", fill_value=999).dtypes) def test_pivot_table(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [10, 20, 20, 40, 20, 40], "c": [1, 2, 9, 4, 7, 4], "d": [-1, -2, -3, -4, -5, -6], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) # Checking if both DataFrames have the same results self.assert_eq( psdf.pivot_table(columns="a", values="b").sort_index(), pdf.pivot_table(columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values="b").sort_index(), pdf.pivot_table(index=["c"], columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values="b", aggfunc="sum").sort_index(), pdf.pivot_table(index=["c"], columns="a", values="b", aggfunc="sum").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["c"], columns="a", values=["b"], aggfunc="sum").sort_index(), pdf.pivot_table(index=["c"], columns="a", values=["b"], aggfunc="sum").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc="sum" ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc="sum" ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e", "d"], aggfunc="sum" ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e", "d"], aggfunc="sum" ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ).sort_index(), pdf.pivot_table( index=["c"], columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table(index=["e", "c"], columns="a", values="b").sort_index(), pdf.pivot_table(index=["e", "c"], columns="a", values="b").sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=["e", "c"], columns="a", values="b", fill_value=999 ).sort_index(), pdf.pivot_table(index=["e", "c"], columns="a", values="b", fill_value=999).sort_index(), almost=True, ) # multi-index columns columns = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "e"), ("z", "c"), ("w", "d")] ) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pivot_table(columns=("x", "a"), values=("x", "b")).sort_index(), pdf.pivot_table(columns=[("x", "a")], values=[("x", "b")]).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b")] ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e")] ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e"), ("w", "d")] ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e"), ("w", "d")], ).sort_index(), almost=True, ) self.assert_eq( psdf.pivot_table( index=[("z", "c")], columns=("x", "a"), values=[("x", "b"), ("y", "e")], aggfunc={("x", "b"): "mean", ("y", "e"): "sum"}, ).sort_index(), pdf.pivot_table( index=[("z", "c")], columns=[("x", "a")], values=[("x", "b"), ("y", "e")], aggfunc={("x", "b"): "mean", ("y", "e"): "sum"}, ).sort_index(), almost=True, ) def test_pivot_table_and_index(self): # https://github.com/databricks/koalas/issues/805 pdf = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], }, columns=["A", "B", "C", "D", "E"], index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) ptable = pdf.pivot_table( values="D", index=["A", "B"], columns="C", aggfunc="sum", fill_value=0 ).sort_index() ktable = psdf.pivot_table( values="D", index=["A", "B"], columns="C", aggfunc="sum", fill_value=0 ).sort_index() self.assert_eq(ktable, ptable) self.assert_eq(ktable.index, ptable.index) self.assert_eq(repr(ktable.index), repr(ptable.index)) def test_stack(self): pdf_single_level_cols = pd.DataFrame( [[0, 1], [2, 3]], index=["cat", "dog"], columns=["weight", "height"] ) psdf_single_level_cols = ps.from_pandas(pdf_single_level_cols) self.assert_eq( psdf_single_level_cols.stack().sort_index(), pdf_single_level_cols.stack().sort_index() ) multicol1 = pd.MultiIndex.from_tuples( [("weight", "kg"), ("weight", "pounds")], names=["x", "y"] ) pdf_multi_level_cols1 = pd.DataFrame( [[1, 2], [2, 4]], index=["cat", "dog"], columns=multicol1 ) psdf_multi_level_cols1 = ps.from_pandas(pdf_multi_level_cols1) self.assert_eq( psdf_multi_level_cols1.stack().sort_index(), pdf_multi_level_cols1.stack().sort_index() ) multicol2 = pd.MultiIndex.from_tuples([("weight", "kg"), ("height", "m")]) pdf_multi_level_cols2 = pd.DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=["cat", "dog"], columns=multicol2 ) psdf_multi_level_cols2 = ps.from_pandas(pdf_multi_level_cols2) self.assert_eq( psdf_multi_level_cols2.stack().sort_index(), pdf_multi_level_cols2.stack().sort_index() ) pdf = pd.DataFrame( { ("y", "c"): [True, True], ("x", "b"): [False, False], ("x", "c"): [True, False], ("y", "a"): [False, True], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.stack().sort_index(), pdf.stack().sort_index()) self.assert_eq(psdf[[]].stack().sort_index(), pdf[[]].stack().sort_index(), almost=True) def test_unstack(self): pdf = pd.DataFrame( np.random.randn(3, 3), index=pd.MultiIndex.from_tuples([("rg1", "x"), ("rg1", "y"), ("rg2", "z")]), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.unstack().sort_index(), pdf.unstack().sort_index(), almost=True) self.assert_eq( psdf.unstack().unstack().sort_index(), pdf.unstack().unstack().sort_index(), almost=True ) def test_pivot_errors(self): psdf = ps.range(10) with self.assertRaisesRegex(ValueError, "columns should be set"): psdf.pivot(index="id") with self.assertRaisesRegex(ValueError, "values should be set"): psdf.pivot(index="id", columns="id") def test_pivot_table_errors(self): pdf = pd.DataFrame( { "a": [4, 2, 3, 4, 8, 6], "b": [1, 2, 2, 4, 2, 4], "e": [1, 2, 2, 4, 2, 4], "c": [1, 2, 9, 4, 7, 4], }, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assertRaises(KeyError, lambda: psdf.pivot_table(index=["c"], columns="a", values=5)) msg = "index should be a None or a list of columns." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(index="c", columns="a", values="b") msg = "pivot_table doesn't support aggfunc as dict and without index." with self.assertRaisesRegex(NotImplementedError, msg): psdf.pivot_table(columns="a", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"}) msg = "columns should be one column name." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns=["a"], values=["b"], aggfunc={"b": "mean", "e": "sum"}) msg = "Columns in aggfunc must be the same as values." with self.assertRaisesRegex(ValueError, msg): psdf.pivot_table( index=["e", "c"], columns="a", values="b", aggfunc={"b": "mean", "e": "sum"} ) msg = "values can't be a list without index." with self.assertRaisesRegex(NotImplementedError, msg): psdf.pivot_table(columns="a", values=["b", "e"]) msg = "Wrong columns A." with self.assertRaisesRegex(ValueError, msg): psdf.pivot_table( index=["c"], columns="A", values=["b", "e"], aggfunc={"b": "mean", "e": "sum"} ) msg = "values should be one column or list of columns." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns="a", values=(["b"], ["c"])) msg = "aggfunc must be a dict mapping from column name to aggregate functions" with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(columns="a", values="b", aggfunc={"a": lambda x: sum(x)}) psdf = ps.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], }, columns=["A", "B", "C", "D", "E"], index=np.random.rand(9), ) msg = "values should be a numeric type." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table( index=["C"], columns="A", values=["B", "E"], aggfunc={"B": "mean", "E": "sum"} ) msg = "values should be a numeric type." with self.assertRaisesRegex(TypeError, msg): psdf.pivot_table(index=["C"], columns="A", values="B", aggfunc={"B": "mean"}) def test_transpose(self): # TODO: what if with random index? pdf1 = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}, columns=["col1", "col2"]) psdf1 = ps.from_pandas(pdf1) pdf2 = pd.DataFrame( data={"score": [9, 8], "kids": [0, 0], "age": [12, 22]}, columns=["score", "kids", "age"], ) psdf2 = ps.from_pandas(pdf2) self.assert_eq(pdf1.transpose().sort_index(), psdf1.transpose().sort_index()) self.assert_eq(pdf2.transpose().sort_index(), psdf2.transpose().sort_index()) with option_context("compute.max_rows", None): self.assert_eq(pdf1.transpose().sort_index(), psdf1.transpose().sort_index()) self.assert_eq(pdf2.transpose().sort_index(), psdf2.transpose().sort_index()) pdf3 = pd.DataFrame( { ("cg1", "a"): [1, 2, 3], ("cg1", "b"): [4, 5, 6], ("cg2", "c"): [7, 8, 9], ("cg3", "d"): [9, 9, 9], }, index=pd.MultiIndex.from_tuples([("rg1", "x"), ("rg1", "y"), ("rg2", "z")]), ) psdf3 = ps.from_pandas(pdf3) self.assert_eq(pdf3.transpose().sort_index(), psdf3.transpose().sort_index()) with option_context("compute.max_rows", None): self.assert_eq(pdf3.transpose().sort_index(), psdf3.transpose().sort_index()) def _test_cummin(self, pdf, psdf): self.assert_eq(pdf.cummin(), psdf.cummin()) self.assert_eq(pdf.cummin(skipna=False), psdf.cummin(skipna=False)) self.assert_eq(pdf.cummin().sum(), psdf.cummin().sum()) def test_cummin(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cummin(pdf, psdf) def test_cummin_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cummin(pdf, psdf) def _test_cummax(self, pdf, psdf): self.assert_eq(pdf.cummax(), psdf.cummax()) self.assert_eq(pdf.cummax(skipna=False), psdf.cummax(skipna=False)) self.assert_eq(pdf.cummax().sum(), psdf.cummax().sum()) def test_cummax(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cummax(pdf, psdf) def test_cummax_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cummax(pdf, psdf) def _test_cumsum(self, pdf, psdf): self.assert_eq(pdf.cumsum(), psdf.cumsum()) self.assert_eq(pdf.cumsum(skipna=False), psdf.cumsum(skipna=False)) self.assert_eq(pdf.cumsum().sum(), psdf.cumsum().sum()) def test_cumsum(self): pdf = pd.DataFrame( [[2.0, 1.0], [5, None], [1.0, 0.0], [2.0, 4.0], [4.0, 9.0]], columns=list("AB"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cumsum(pdf, psdf) def test_cumsum_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cumsum(pdf, psdf) def _test_cumprod(self, pdf, psdf): self.assert_eq(pdf.cumprod(), psdf.cumprod(), almost=True) self.assert_eq(pdf.cumprod(skipna=False), psdf.cumprod(skipna=False), almost=True) self.assert_eq(pdf.cumprod().sum(), psdf.cumprod().sum(), almost=True) def test_cumprod(self): pdf = pd.DataFrame( [[2.0, 1.0, 1], [5, None, 2], [1.0, -1.0, -3], [2.0, 0, 4], [4.0, 9.0, 5]], columns=list("ABC"), index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self._test_cumprod(pdf, psdf) def test_cumprod_multiindex_columns(self): arrays = [np.array(["A", "A", "B", "B"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.rand(3, 4), index=["A", "C", "B"], columns=arrays) pdf.at["C", ("A", "two")] = None psdf = ps.from_pandas(pdf) self._test_cumprod(pdf, psdf) def test_drop_duplicates(self): pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) # inplace is False for keep in ["first", "last", False]: with self.subTest(keep=keep): self.assert_eq( pdf.drop_duplicates(keep=keep).sort_index(), psdf.drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates("a", keep=keep).sort_index(), psdf.drop_duplicates("a", keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates(["a", "b"], keep=keep).sort_index(), psdf.drop_duplicates(["a", "b"], keep=keep).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).drop_duplicates(keep=keep).sort_index(), psdf.set_index("a", append=True).drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).drop_duplicates("b", keep=keep).sort_index(), psdf.set_index("a", append=True).drop_duplicates("b", keep=keep).sort_index(), ) columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns # inplace is False for keep in ["first", "last", False]: with self.subTest("multi-index columns", keep=keep): self.assert_eq( pdf.drop_duplicates(keep=keep).sort_index(), psdf.drop_duplicates(keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates(("x", "a"), keep=keep).sort_index(), psdf.drop_duplicates(("x", "a"), keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates([("x", "a"), ("y", "b")], keep=keep).sort_index(), psdf.drop_duplicates([("x", "a"), ("y", "b")], keep=keep).sort_index(), ) # inplace is True subset_list = [None, "a", ["a", "b"]] for subset in subset_list: pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) pser = pdf.a psser = psdf.a pdf.drop_duplicates(subset=subset, inplace=True) psdf.drop_duplicates(subset=subset, inplace=True) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser.sort_index(), pser.sort_index()) # multi-index columns, inplace is True subset_list = [None, ("x", "a"), [("x", "a"), ("y", "b")]] for subset in subset_list: pdf = pd.DataFrame( {"a": [1, 2, 2, 2, 3], "b": ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns pser = pdf[("x", "a")] psser = psdf[("x", "a")] pdf.drop_duplicates(subset=subset, inplace=True) psdf.drop_duplicates(subset=subset, inplace=True) self.assert_eq(psdf.sort_index(), pdf.sort_index()) self.assert_eq(psser.sort_index(), pser.sort_index()) # non-string names pdf = pd.DataFrame( {10: [1, 2, 2, 2, 3], 20: ["a", "a", "a", "c", "d"]}, index=np.random.rand(5) ) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.drop_duplicates(10, keep=keep).sort_index(), psdf.drop_duplicates(10, keep=keep).sort_index(), ) self.assert_eq( pdf.drop_duplicates([10, 20], keep=keep).sort_index(), psdf.drop_duplicates([10, 20], keep=keep).sort_index(), ) def test_reindex(self): index = pd.Index(["A", "B", "C", "D", "E"]) columns = pd.Index(["numbers"]) pdf = pd.DataFrame([1.0, 2.0, 3.0, 4.0, None], index=index, columns=columns) psdf = ps.from_pandas(pdf) columns2 = pd.Index(["numbers", "2", "3"], name="cols2") self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) columns = pd.Index(["numbers"], name="cols") pdf.columns = columns psdf.columns = columns self.assert_eq( pdf.reindex(["A", "B", "C"], columns=["numbers", "2", "3"]).sort_index(), psdf.reindex(["A", "B", "C"], columns=["numbers", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(["A", "B", "C"], index=["numbers", "2", "3"]).sort_index(), psdf.reindex(["A", "B", "C"], index=["numbers", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(index=["A", "B"]).sort_index(), psdf.reindex(index=["A", "B"]).sort_index() ) self.assert_eq( pdf.reindex(index=["A", "B", "2", "3"]).sort_index(), psdf.reindex(index=["A", "B", "2", "3"]).sort_index(), ) self.assert_eq( pdf.reindex(index=["A", "E", "2", "3"], fill_value=0).sort_index(), psdf.reindex(index=["A", "E", "2", "3"], fill_value=0).sort_index(), ) self.assert_eq( pdf.reindex(columns=["numbers"]).sort_index(), psdf.reindex(columns=["numbers"]).sort_index(), ) self.assert_eq( pdf.reindex(columns=["numbers"], copy=True).sort_index(), psdf.reindex(columns=["numbers"], copy=True).sort_index(), ) # Using float as fill_value to avoid int64/32 clash self.assert_eq( pdf.reindex(columns=["numbers", "2", "3"], fill_value=0.0).sort_index(), psdf.reindex(columns=["numbers", "2", "3"], fill_value=0.0).sort_index(), ) columns2 = pd.Index(["numbers", "2", "3"]) self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) columns2 = pd.Index(["numbers", "2", "3"], name="cols2") self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) # Reindexing single Index on single Index pindex2 = pd.Index(["A", "C", "D", "E", "0"], name="index2") kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) pindex2 = pd.DataFrame({"index2": ["A", "C", "D", "E", "0"]}).set_index("index2").index kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) # Reindexing MultiIndex on single Index pindex = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("F", "G")], names=["name1", "name2"] ) kindex = ps.from_pandas(pindex) self.assert_eq( pdf.reindex(index=pindex, fill_value=0.0).sort_index(), psdf.reindex(index=kindex, fill_value=0.0).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["numbers", "2", "3"], axis=1)) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["numbers", "2", "3"], axis=2)) self.assertRaises(TypeError, lambda: psdf.reindex(columns="numbers")) self.assertRaises(TypeError, lambda: psdf.reindex(index=["A", "B", "C"], axis=1)) self.assertRaises(TypeError, lambda: psdf.reindex(index=123)) # Reindexing MultiIndex on MultiIndex pdf = pd.DataFrame({"numbers": [1.0, 2.0, None]}, index=pindex) psdf = ps.from_pandas(pdf) pindex2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["name1", "name2"] ) kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) pindex2 = ( pd.DataFrame({"index_level_1": ["A", "C", "I"], "index_level_2": ["G", "D", "J"]}) .set_index(["index_level_1", "index_level_2"]) .index ) kindex2 = ps.from_pandas(pindex2) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) columns = pd.MultiIndex.from_tuples([("X", "numbers")], names=["cols1", "cols2"]) pdf.columns = columns psdf.columns = columns # Reindexing MultiIndex index on MultiIndex columns and MultiIndex index for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) index = pd.Index(["A", "B", "C", "D", "E"]) pdf = pd.DataFrame(data=[1.0, 2.0, 3.0, 4.0, None], index=index, columns=columns) psdf = ps.from_pandas(pdf) pindex2 = pd.Index(["A", "C", "D", "E", "0"], name="index2") kindex2 = ps.from_pandas(pindex2) # Reindexing single Index on MultiIndex columns and single Index for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex(index=pindex2, fill_value=fill_value).sort_index(), psdf.reindex(index=kindex2, fill_value=fill_value).sort_index(), ) for fill_value in [None, 0.0]: self.assert_eq( pdf.reindex( columns=[("X", "numbers"), ("Y", "2"), ("Y", "3")], fill_value=fill_value ).sort_index(), psdf.reindex( columns=[("X", "numbers"), ("Y", "2"), ("Y", "3")], fill_value=fill_value ).sort_index(), ) columns2 = pd.MultiIndex.from_tuples( [("X", "numbers"), ("Y", "2"), ("Y", "3")], names=["cols3", "cols4"] ) self.assert_eq( pdf.reindex(columns=columns2).sort_index(), psdf.reindex(columns=columns2).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex(columns=["X"])) self.assertRaises(ValueError, lambda: psdf.reindex(columns=[("X",)])) def test_reindex_like(self): data = [[1.0, 2.0], [3.0, None], [None, 4.0]] index = pd.Index(["A", "B", "C"], name="index") columns = pd.Index(["numbers", "values"], name="cols") pdf = pd.DataFrame(data=data, index=index, columns=columns) psdf = ps.from_pandas(pdf) # Reindexing single Index on single Index data2 = [[5.0, None], [6.0, 7.0], [8.0, None]] index2 = pd.Index(["A", "C", "D"], name="index2") columns2 = pd.Index(["numbers", "F"], name="cols2") pdf2 = pd.DataFrame(data=data2, index=index2, columns=columns2) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) pdf2 = pd.DataFrame({"index_level_1": ["A", "C", "I"]}) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2.set_index(["index_level_1"])).sort_index(), psdf.reindex_like(psdf2.set_index(["index_level_1"])).sort_index(), ) # Reindexing MultiIndex on single Index index2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["name3", "name4"] ) pdf2 = pd.DataFrame(data=data2, index=index2) psdf2 = ps.from_pandas(pdf2) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) self.assertRaises(TypeError, lambda: psdf.reindex_like(index2)) self.assertRaises(AssertionError, lambda: psdf2.reindex_like(psdf)) # Reindexing MultiIndex on MultiIndex columns2 = pd.MultiIndex.from_tuples( [("numbers", "third"), ("values", "second")], names=["cols3", "cols4"] ) pdf2.columns = columns2 psdf2.columns = columns2 columns = pd.MultiIndex.from_tuples( [("numbers", "first"), ("values", "second")], names=["cols1", "cols2"] ) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["name1", "name2"] ) pdf = pd.DataFrame(data=data, index=index, columns=columns) psdf = ps.from_pandas(pdf) self.assert_eq( pdf.reindex_like(pdf2).sort_index(), psdf.reindex_like(psdf2).sort_index(), ) def test_melt(self): pdf = pd.DataFrame( {"A": [1, 3, 5], "B": [2, 4, 6], "C": [7, 8, 9]}, index=np.random.rand(3) ) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.melt().sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars="A").sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars="A").sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A", "B"]).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=["A", "B"]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=("A", "B")).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=("A", "B")).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A"], value_vars=["C"]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=["A"], value_vars=["C"]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=["A"], value_vars=["B"], var_name="myVarname", value_name="myValname") .sort_values(["myVarname", "myValname"]) .reset_index(drop=True), pdf.melt( id_vars=["A"], value_vars=["B"], var_name="myVarname", value_name="myValname" ).sort_values(["myVarname", "myValname"]), ) self.assert_eq( psdf.melt(value_vars=("A", "B")) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(value_vars=("A", "B")).sort_values(["variable", "value"]), ) self.assertRaises(KeyError, lambda: psdf.melt(id_vars="Z")) self.assertRaises(KeyError, lambda: psdf.melt(value_vars="Z")) # multi-index columns TEN = 10.0 TWELVE = 20.0 columns = pd.MultiIndex.from_tuples([(TEN, "A"), (TEN, "B"), (TWELVE, "C")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.melt().sort_values(["variable_0", "variable_1", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable_0", "variable_1", "value"]), ) self.assert_eq( psdf.melt(id_vars=[(TEN, "A")]) .sort_values(["variable_0", "variable_1", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[(TEN, "A")]) .sort_values(["variable_0", "variable_1", "value"]) .rename(columns=name_like_string), ) self.assert_eq( psdf.melt(id_vars=[(TEN, "A")], value_vars=[(TWELVE, "C")]) .sort_values(["variable_0", "variable_1", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[(TEN, "A")], value_vars=[(TWELVE, "C")]) .sort_values(["variable_0", "variable_1", "value"]) .rename(columns=name_like_string), ) self.assert_eq( psdf.melt( id_vars=[(TEN, "A")], value_vars=[(TEN, "B")], var_name=["myV1", "myV2"], value_name="myValname", ) .sort_values(["myV1", "myV2", "myValname"]) .reset_index(drop=True), pdf.melt( id_vars=[(TEN, "A")], value_vars=[(TEN, "B")], var_name=["myV1", "myV2"], value_name="myValname", ) .sort_values(["myV1", "myV2", "myValname"]) .rename(columns=name_like_string), ) columns.names = ["v0", "v1"] pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.melt().sort_values(["v0", "v1", "value"]).reset_index(drop=True), pdf.melt().sort_values(["v0", "v1", "value"]), ) self.assertRaises(ValueError, lambda: psdf.melt(id_vars=(TEN, "A"))) self.assertRaises(ValueError, lambda: psdf.melt(value_vars=(TEN, "A"))) self.assertRaises(KeyError, lambda: psdf.melt(id_vars=[TEN])) self.assertRaises(KeyError, lambda: psdf.melt(id_vars=[(TWELVE, "A")])) self.assertRaises(KeyError, lambda: psdf.melt(value_vars=[TWELVE])) self.assertRaises(KeyError, lambda: psdf.melt(value_vars=[(TWELVE, "A")])) # non-string names pdf.columns = [10.0, 20.0, 30.0] psdf.columns = [10.0, 20.0, 30.0] self.assert_eq( psdf.melt().sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt().sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=10.0).sort_values(["variable", "value"]).reset_index(drop=True), pdf.melt(id_vars=10.0).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=[10.0, 20.0]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[10.0, 20.0]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=(10.0, 20.0)) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=(10.0, 20.0)).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(id_vars=[10.0], value_vars=[30.0]) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(id_vars=[10.0], value_vars=[30.0]).sort_values(["variable", "value"]), ) self.assert_eq( psdf.melt(value_vars=(10.0, 20.0)) .sort_values(["variable", "value"]) .reset_index(drop=True), pdf.melt(value_vars=(10.0, 20.0)).sort_values(["variable", "value"]), ) def test_all(self): pdf = pd.DataFrame( { "col1": [False, False, False], "col2": [True, False, False], "col3": [0, 0, 1], "col4": [0, 1, 2], "col5": [False, False, None], "col6": [True, False, None], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.all(), pdf.all()) columns = pd.MultiIndex.from_tuples( [ ("a", "col1"), ("a", "col2"), ("a", "col3"), ("b", "col4"), ("b", "col5"), ("c", "col6"), ] ) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.all(), pdf.all()) columns.names = ["X", "Y"] pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.all(), pdf.all()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.all(axis=1) def test_any(self): pdf = pd.DataFrame( { "col1": [False, False, False], "col2": [True, False, False], "col3": [0, 0, 1], "col4": [0, 1, 2], "col5": [False, False, None], "col6": [True, False, None], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.any(), pdf.any()) columns = pd.MultiIndex.from_tuples( [ ("a", "col1"), ("a", "col2"), ("a", "col3"), ("b", "col4"), ("b", "col5"), ("c", "col6"), ] ) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.any(), pdf.any()) columns.names = ["X", "Y"] pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.any(), pdf.any()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.any(axis=1) def test_rank(self): pdf = pd.DataFrame( data={"col1": [1, 2, 3, 1], "col2": [3, 4, 3, 1]}, columns=["col1", "col2"], index=np.random.rand(4), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) self.assert_eq(pdf.rank().sum(), psdf.rank().sum()) self.assert_eq( pdf.rank(ascending=False).sort_index(), psdf.rank(ascending=False).sort_index() ) self.assert_eq(pdf.rank(method="min").sort_index(), psdf.rank(method="min").sort_index()) self.assert_eq(pdf.rank(method="max").sort_index(), psdf.rank(method="max").sort_index()) self.assert_eq( pdf.rank(method="first").sort_index(), psdf.rank(method="first").sort_index() ) self.assert_eq( pdf.rank(method="dense").sort_index(), psdf.rank(method="dense").sort_index() ) msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'" with self.assertRaisesRegex(ValueError, msg): psdf.rank(method="nothing") # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "col1"), ("y", "col2")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.rank().sort_index(), psdf.rank().sort_index()) def test_round(self): pdf = pd.DataFrame( { "A": [0.028208, 0.038683, 0.877076], "B": [0.992815, 0.645646, 0.149370], "C": [0.173891, 0.577595, 0.491027], }, columns=["A", "B", "C"], index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) pser = pd.Series([1, 0, 2], index=["A", "B", "C"]) psser = ps.Series([1, 0, 2], index=["A", "B", "C"]) self.assert_eq(pdf.round(2), psdf.round(2)) self.assert_eq(pdf.round({"A": 1, "C": 2}), psdf.round({"A": 1, "C": 2})) self.assert_eq(pdf.round({"A": 1, "D": 2}), psdf.round({"A": 1, "D": 2})) self.assert_eq(pdf.round(pser), psdf.round(psser)) msg = "decimals must be an integer, a dict-like or a Series" with self.assertRaisesRegex(TypeError, msg): psdf.round(1.5) # multi-index columns columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B"), ("Y", "C")]) pdf.columns = columns psdf.columns = columns pser = pd.Series([1, 0, 2], index=columns) psser = ps.Series([1, 0, 2], index=columns) self.assert_eq(pdf.round(2), psdf.round(2)) self.assert_eq( pdf.round({("X", "A"): 1, ("Y", "C"): 2}), psdf.round({("X", "A"): 1, ("Y", "C"): 2}) ) self.assert_eq(pdf.round({("X", "A"): 1, "Y": 2}), psdf.round({("X", "A"): 1, "Y": 2})) self.assert_eq(pdf.round(pser), psdf.round(psser)) # non-string names pdf = pd.DataFrame( { 10: [0.028208, 0.038683, 0.877076], 20: [0.992815, 0.645646, 0.149370], 30: [0.173891, 0.577595, 0.491027], }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.round({10: 1, 30: 2}), psdf.round({10: 1, 30: 2})) def test_shift(self): pdf = pd.DataFrame( { "Col1": [10, 20, 15, 30, 45], "Col2": [13, 23, 18, 33, 48], "Col3": [17, 27, 22, 37, 52], }, index=np.random.rand(5), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.shift(3), psdf.shift(3)) self.assert_eq(pdf.shift().shift(-1), psdf.shift().shift(-1)) self.assert_eq(pdf.shift().sum().astype(int), psdf.shift().sum()) # Need the expected result since pandas 0.23 does not support `fill_value` argument. pdf1 = pd.DataFrame( {"Col1": [0, 0, 0, 10, 20], "Col2": [0, 0, 0, 13, 23], "Col3": [0, 0, 0, 17, 27]}, index=pdf.index, ) self.assert_eq(pdf1, psdf.shift(periods=3, fill_value=0)) msg = "should be an int" with self.assertRaisesRegex(TypeError, msg): psdf.shift(1.5) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.shift(3), psdf.shift(3)) self.assert_eq(pdf.shift().shift(-1), psdf.shift().shift(-1)) def test_diff(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [1, 1, 2, 3, 5, 8], "c": [1, 4, 9, 16, 25, 36]}, index=np.random.rand(6), ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.diff(), psdf.diff()) self.assert_eq(pdf.diff().diff(-1), psdf.diff().diff(-1)) self.assert_eq(pdf.diff().sum().astype(int), psdf.diff().sum()) msg = "should be an int" with self.assertRaisesRegex(TypeError, msg): psdf.diff(1.5) msg = 'axis should be either 0 or "index" currently.' with self.assertRaisesRegex(NotImplementedError, msg): psdf.diff(axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "Col1"), ("x", "Col2"), ("y", "Col3")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.diff(), psdf.diff()) def test_duplicated(self): pdf = pd.DataFrame( {"a": [1, 1, 2, 3], "b": [1, 1, 1, 4], "c": [1, 1, 1, 5]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(keep="last").sort_index(), psdf.duplicated(keep="last").sort_index(), ) self.assert_eq( pdf.duplicated(keep=False).sort_index(), psdf.duplicated(keep=False).sort_index(), ) self.assert_eq( pdf.duplicated(subset="b").sort_index(), psdf.duplicated(subset="b").sort_index(), ) self.assert_eq( pdf.duplicated(subset=["b"]).sort_index(), psdf.duplicated(subset=["b"]).sort_index(), ) with self.assertRaisesRegex(ValueError, "'keep' only supports 'first', 'last' and False"): psdf.duplicated(keep="false") with self.assertRaisesRegex(KeyError, "'d'"): psdf.duplicated(subset=["d"]) pdf.index.name = "x" psdf.index.name = "x" self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) # multi-index self.assert_eq( pdf.set_index("a", append=True).duplicated().sort_index(), psdf.set_index("a", append=True).duplicated().sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).duplicated(keep=False).sort_index(), psdf.set_index("a", append=True).duplicated(keep=False).sort_index(), ) self.assert_eq( pdf.set_index("a", append=True).duplicated(subset=["b"]).sort_index(), psdf.set_index("a", append=True).duplicated(subset=["b"]).sort_index(), ) # mutli-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(subset=("x", "b")).sort_index(), psdf.duplicated(subset=("x", "b")).sort_index(), ) self.assert_eq( pdf.duplicated(subset=[("x", "b")]).sort_index(), psdf.duplicated(subset=[("x", "b")]).sort_index(), ) # non-string names pdf = pd.DataFrame( {10: [1, 1, 2, 3], 20: [1, 1, 1, 4], 30: [1, 1, 1, 5]}, index=np.random.rand(4) ) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.duplicated().sort_index(), psdf.duplicated().sort_index()) self.assert_eq( pdf.duplicated(subset=10).sort_index(), psdf.duplicated(subset=10).sort_index(), ) def test_ffill(self): idx = np.random.rand(6) pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=idx, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.ffill(), pdf.ffill()) self.assert_eq(psdf.ffill(limit=1), pdf.ffill(limit=1)) pser = pdf.y psser = psdf.y psdf.ffill(inplace=True) pdf.ffill(inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) self.assert_eq(psser[idx[2]], pser[idx[2]]) def test_bfill(self): idx = np.random.rand(6) pdf = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, np.nan], }, index=idx, ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.bfill(), pdf.bfill()) self.assert_eq(psdf.bfill(limit=1), pdf.bfill(limit=1)) pser = pdf.x psser = psdf.x psdf.bfill(inplace=True) pdf.bfill(inplace=True) self.assert_eq(psdf, pdf) self.assert_eq(psser, pser) self.assert_eq(psser[idx[0]], pser[idx[0]]) def test_filter(self): pdf = pd.DataFrame( { "aa": ["aa", "bd", "bc", "ab", "ce"], "ba": [1, 2, 3, 4, 5], "cb": [1.0, 2.0, 3.0, 4.0, 5.0], "db": [1.0, np.nan, 3.0, np.nan, 5.0], } ) pdf = pdf.set_index("aa") psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) with option_context("compute.isin_limit", 0): self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) self.assert_eq( psdf.filter(items=["ba", "db"], axis=1).sort_index(), pdf.filter(items=["ba", "db"], axis=1).sort_index(), ) self.assert_eq(psdf.filter(like="b", axis="index"), pdf.filter(like="b", axis="index")) self.assert_eq(psdf.filter(like="c", axis="columns"), pdf.filter(like="c", axis="columns")) self.assert_eq( psdf.filter(regex="b.*", axis="index"), pdf.filter(regex="b.*", axis="index") ) self.assert_eq( psdf.filter(regex="b.*", axis="columns"), pdf.filter(regex="b.*", axis="columns") ) pdf = pdf.set_index("ba", append=True) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=[("aa", 1), ("bd", 2)], axis=0).sort_index(), pdf.filter(items=[("aa", 1), ("bd", 2)], axis=0).sort_index(), ) with self.assertRaisesRegex(TypeError, "Unsupported type list"): psdf.filter(items=[["aa", 1], ("bd", 2)], axis=0) with self.assertRaisesRegex(ValueError, "The item should not be empty."): psdf.filter(items=[(), ("bd", 2)], axis=0) self.assert_eq(psdf.filter(like="b", axis=0), pdf.filter(like="b", axis=0)) self.assert_eq(psdf.filter(regex="b.*", axis=0), pdf.filter(regex="b.*", axis=0)) with self.assertRaisesRegex(ValueError, "items should be a list-like object"): psdf.filter(items="b") with self.assertRaisesRegex(ValueError, "No axis named"): psdf.filter(regex="b.*", axis=123) with self.assertRaisesRegex(TypeError, "Must pass either `items`, `like`"): psdf.filter() with self.assertRaisesRegex(TypeError, "mutually exclusive"): psdf.filter(regex="b.*", like="aaa") # multi-index columns pdf = pd.DataFrame( { ("x", "aa"): ["aa", "ab", "bc", "bd", "ce"], ("x", "ba"): [1, 2, 3, 4, 5], ("y", "cb"): [1.0, 2.0, 3.0, 4.0, 5.0], ("z", "db"): [1.0, np.nan, 3.0, np.nan, 5.0], } ) pdf = pdf.set_index(("x", "aa")) psdf = ps.from_pandas(pdf) self.assert_eq( psdf.filter(items=["ab", "aa"], axis=0).sort_index(), pdf.filter(items=["ab", "aa"], axis=0).sort_index(), ) self.assert_eq( psdf.filter(items=[("x", "ba"), ("z", "db")], axis=1).sort_index(), pdf.filter(items=[("x", "ba"), ("z", "db")], axis=1).sort_index(), ) self.assert_eq(psdf.filter(like="b", axis="index"), pdf.filter(like="b", axis="index")) self.assert_eq(psdf.filter(like="c", axis="columns"), pdf.filter(like="c", axis="columns")) self.assert_eq( psdf.filter(regex="b.*", axis="index"), pdf.filter(regex="b.*", axis="index") ) self.assert_eq( psdf.filter(regex="b.*", axis="columns"), pdf.filter(regex="b.*", axis="columns") ) def test_pipe(self): psdf = ps.DataFrame( {"category": ["A", "A", "B"], "col1": [1, 2, 3], "col2": [4, 5, 6]}, columns=["category", "col1", "col2"], ) self.assertRaisesRegex( ValueError, "arg is both the pipe target and a keyword argument", lambda: psdf.pipe((lambda x: x, "arg"), arg="1"), ) def test_transform(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) self.assert_eq( psdf.transform(lambda x, y: x + y, y=2).sort_index(), pdf.transform(lambda x, y: x + y, y=2).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) self.assert_eq( psdf.transform(lambda x, y: x + y, y=1).sort_index(), pdf.transform(lambda x, y: x + y, y=1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.transform(1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.transform(lambda x: x + 1).sort_index(), pdf.transform(lambda x: x + 1).sort_index(), ) def test_apply(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) self.assert_eq( psdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), pdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), ) self.assert_eq( psdf.apply(lambda x, b: x + b, b=1).sort_index(), pdf.apply(lambda x, b: x + b, b=1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) self.assert_eq( psdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), pdf.apply(lambda x, b: x + b, args=(1,)).sort_index(), ) self.assert_eq( psdf.apply(lambda x, b: x + b, b=1).sort_index(), pdf.apply(lambda x, b: x + b, b=1).sort_index(), ) # returning a Series self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) self.assert_eq( psdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), pdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) self.assert_eq( psdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), pdf.apply(lambda x, c: len(x) + c, axis=1, c=100).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.apply(1) with self.assertRaisesRegex(TypeError, "The given function.*1 or 'column'; however"): def f1(_) -> ps.DataFrame[int]: pass psdf.apply(f1, axis=0) with self.assertRaisesRegex(TypeError, "The given function.*0 or 'index'; however"): def f2(_) -> ps.Series[int]: pass psdf.apply(f2, axis=1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: x + 1).sort_index(), pdf.apply(lambda x: x + 1).sort_index() ) # returning a Series self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.apply(lambda x: len(x), axis=1).sort_index(), pdf.apply(lambda x: len(x), axis=1).sort_index(), ) def test_apply_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.apply(identify1, axis=1) expected = pdf.apply(identify1, axis=1) self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.apply(identify2, axis=1) expected = pdf.apply(identify2, axis=1) self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) def test_apply_batch(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf, a: pdf + a, args=(1,)).sort_index(), (pdf + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf: pdf + 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda pdf, b: pdf + b, b=1).sort_index(), (pdf + 1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.pandas_on_spark.apply_batch(1) with self.assertRaisesRegex(TypeError, "The given function.*frame as its type hints"): def f2(_) -> ps.Series[int]: pass psdf.pandas_on_spark.apply_batch(f2) with self.assertRaisesRegex(ValueError, "The given function should return a frame"): psdf.pandas_on_spark.apply_batch(lambda pdf: 1) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index() ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.apply_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) def test_apply_batch_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.pandas_on_spark.apply_batch(identify1) expected = pdf self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.pandas_on_spark.apply_batch(identify2) expected = pdf self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [[e] for e in [4, 5, 6, 3, 2, 1, 0, 0, 0]]}, index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) def identify3(x) -> ps.DataFrame[float, [int, List[int]]]: return x actual = psdf.pandas_on_spark.apply_batch(identify3) actual.columns = ["a", "b"] self.assert_eq(actual, pdf) # For NumPy typing, NumPy version should be 1.21+ and Python version should be 3.8+ if sys.version_info >= (3, 8) and LooseVersion(np.__version__) >= LooseVersion("1.21"): import numpy.typing as ntp psdf = ps.from_pandas(pdf) def identify4( x, ) -> ps.DataFrame[float, [int, ntp.NDArray[int]]]: # type: ignore[name-defined] return x actual = psdf.pandas_on_spark.apply_batch(identify4) actual.columns = ["a", "b"] self.assert_eq(actual, pdf) arrays = [[1, 2, 3, 4, 5, 6, 7, 8, 9], ["a", "b", "c", "d", "e", "f", "g", "h", "i"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [[e] for e in [4, 5, 6, 3, 2, 1, 0, 0, 0]]}, index=idx, ) psdf = ps.from_pandas(pdf) def identify4(x) -> ps.DataFrame[[int, str], [int, List[int]]]: return x actual = psdf.pandas_on_spark.apply_batch(identify4) actual.index.names = ["number", "color"] actual.columns = ["a", "b"] self.assert_eq(actual, pdf) def identify5( x, ) -> ps.DataFrame[ [("number", int), ("color", str)], [("a", int), ("b", List[int])] # noqa: F405 ]: return x actual = psdf.pandas_on_spark.apply_batch(identify5) self.assert_eq(actual, pdf) def test_transform_batch(self): pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6] * 100, "b": [1.0, 1.0, 2.0, 3.0, 5.0, 8.0] * 100, "c": [1, 4, 9, 16, 25, 36] * 100, }, columns=["a", "b", "c"], index=np.random.rand(600), ) psdf = ps.DataFrame(pdf) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.c + 1).sort_index(), (pdf.c + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf + a, 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf.c + a, a=1).sort_index(), (pdf.c + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf + 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.b + 1).sort_index(), (pdf.b + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf + a, 1).sort_index(), (pdf + 1).sort_index(), ) self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda pdf, a: pdf.c + a, a=1).sort_index(), (pdf.c + 1).sort_index(), ) with self.assertRaisesRegex(AssertionError, "the first argument should be a callable"): psdf.pandas_on_spark.transform_batch(1) with self.assertRaisesRegex(ValueError, "The given function should return a frame"): psdf.pandas_on_spark.transform_batch(lambda pdf: 1) with self.assertRaisesRegex( ValueError, "transform_batch cannot produce aggregated results" ): psdf.pandas_on_spark.transform_batch(lambda pdf: pd.Series(1)) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) pdf.columns = columns psdf.columns = columns self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) with option_context("compute.shortcut_limit", 500): self.assert_eq( psdf.pandas_on_spark.transform_batch(lambda x: x + 1).sort_index(), (pdf + 1).sort_index(), ) def test_transform_batch_with_type(self): pdf = self.pdf psdf = ps.from_pandas(pdf) def identify1(x) -> ps.DataFrame[int, int]: return x # Type hints set the default column names, and we use default index for # pandas API on Spark. Here we ignore both diff. actual = psdf.pandas_on_spark.transform_batch(identify1) expected = pdf self.assert_eq(sorted(actual["c0"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["c1"].to_numpy()), sorted(expected["b"].to_numpy())) def identify2(x) -> ps.DataFrame[slice("a", int), slice("b", int)]: # noqa: F405 return x actual = psdf.pandas_on_spark.transform_batch(identify2) expected = pdf self.assert_eq(sorted(actual["a"].to_numpy()), sorted(expected["a"].to_numpy())) self.assert_eq(sorted(actual["b"].to_numpy()), sorted(expected["b"].to_numpy())) def test_transform_batch_same_anchor(self): psdf = ps.range(10) psdf["d"] = psdf.pandas_on_spark.transform_batch(lambda pdf: pdf.id + 1) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) psdf = ps.range(10) def plus_one(pdf) -> ps.Series[np.int64]: return pdf.id + 1 psdf["d"] = psdf.pandas_on_spark.transform_batch(plus_one) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) psdf = ps.range(10) def plus_one(ser) -> ps.Series[np.int64]: return ser + 1 psdf["d"] = psdf.id.pandas_on_spark.transform_batch(plus_one) self.assert_eq( psdf, pd.DataFrame({"id": list(range(10)), "d": list(range(1, 11))}, columns=["id", "d"]), ) def test_empty_timestamp(self): pdf = pd.DataFrame( { "t": [ datetime(2019, 1, 1, 0, 0, 0), datetime(2019, 1, 2, 0, 0, 0), datetime(2019, 1, 3, 0, 0, 0), ] }, index=np.random.rand(3), ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf[psdf["t"] != psdf["t"]], pdf[pdf["t"] != pdf["t"]]) self.assert_eq(psdf[psdf["t"] != psdf["t"]].dtypes, pdf[pdf["t"] != pdf["t"]].dtypes) def test_to_spark(self): psdf = ps.from_pandas(self.pdf) with self.assertRaisesRegex(ValueError, "'index_col' cannot be overlapped"): psdf.to_spark(index_col="a") with self.assertRaisesRegex(ValueError, "length of index columns.*1.*3"): psdf.to_spark(index_col=["x", "y", "z"]) def test_keys(self): pdf = pd.DataFrame( [[1, 2], [4, 5], [7, 8]], index=["cobra", "viper", "sidewinder"], columns=["max_speed", "shield"], ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.keys(), pdf.keys()) def test_quantile(self): pdf, psdf = self.df_pair self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) self.assert_eq(psdf.loc[[]].quantile(0.5), pdf.loc[[]].quantile(0.5)) self.assert_eq( psdf.loc[[]].quantile([0.25, 0.5, 0.75]), pdf.loc[[]].quantile([0.25, 0.5, 0.75]) ) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psdf.quantile(0.5, axis=1) with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): psdf.quantile(accuracy="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): psdf.quantile(q="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): psdf.quantile(q=["a"]) with self.assertRaisesRegex( ValueError, r"percentiles should all be in the interval \[0, 1\]" ): psdf.quantile(q=[1.1]) self.assert_eq( psdf.quantile(0.5, numeric_only=False), pdf.quantile(0.5, numeric_only=False) ) self.assert_eq( psdf.quantile([0.25, 0.5, 0.75], numeric_only=False), pdf.quantile([0.25, 0.5, 0.75], numeric_only=False), ) # multi-index column columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) pdf = pd.DataFrame({"x": ["a", "b", "c"]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.quantile(0.5), pdf.quantile(0.5)) self.assert_eq(psdf.quantile([0.25, 0.5, 0.75]), pdf.quantile([0.25, 0.5, 0.75])) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): psdf.quantile(0.5, numeric_only=False) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): psdf.quantile([0.25, 0.5, 0.75], numeric_only=False) def test_pct_change(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 2], "b": [4.0, 2.0, 3.0, 1.0], "c": [300, 200, 400, 200]}, index=np.random.rand(4), ) pdf.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.pct_change(2), pdf.pct_change(2), check_exact=False) self.assert_eq(psdf.pct_change().sum(), pdf.pct_change().sum(), check_exact=False) def test_where(self): pdf, psdf = self.df_pair # pandas requires `axis` argument when the `other` is Series. # `axis` is not fully supported yet in pandas-on-Spark. self.assert_eq( psdf.where(psdf > 2, psdf.a + 10, axis=0), pdf.where(pdf > 2, pdf.a + 10, axis=0) ) with self.assertRaisesRegex(TypeError, "type of cond must be a DataFrame or Series"): psdf.where(1) def test_mask(self): psdf = ps.from_pandas(self.pdf) with self.assertRaisesRegex(TypeError, "type of cond must be a DataFrame or Series"): psdf.mask(1) def test_query(self): pdf = pd.DataFrame({"A": range(1, 6), "B": range(10, 0, -2), "C": range(10, 5, -1)}) psdf = ps.from_pandas(pdf) exprs = ("A > B", "A < C", "C == B") for expr in exprs: self.assert_eq(psdf.query(expr), pdf.query(expr)) # test `inplace=True` for expr in exprs: dummy_psdf = psdf.copy() dummy_pdf = pdf.copy() pser = dummy_pdf.A psser = dummy_psdf.A dummy_pdf.query(expr, inplace=True) dummy_psdf.query(expr, inplace=True) self.assert_eq(dummy_psdf, dummy_pdf) self.assert_eq(psser, pser) # invalid values for `expr` invalid_exprs = (1, 1.0, (exprs[0],), [exprs[0]]) for expr in invalid_exprs: with self.assertRaisesRegex( TypeError, "expr must be a string to be evaluated, {} given".format(type(expr).__name__), ): psdf.query(expr) # invalid values for `inplace` invalid_inplaces = (1, 0, "True", "False") for inplace in invalid_inplaces: with self.assertRaisesRegex( TypeError, 'For argument "inplace" expected type bool, received type {}.'.format( type(inplace).__name__ ), ): psdf.query("a < b", inplace=inplace) # doesn't support for MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) psdf.columns = columns with self.assertRaisesRegex(TypeError, "Doesn't support for MultiIndex columns"): psdf.query("('A', 'Z') > ('B', 'X')") def test_take(self): pdf = pd.DataFrame( {"A": range(0, 50000), "B": range(100000, 0, -2), "C": range(100000, 50000, -1)} ) psdf = ps.from_pandas(pdf) # axis=0 (default) self.assert_eq(psdf.take([1, 2]).sort_index(), pdf.take([1, 2]).sort_index()) self.assert_eq(psdf.take([-1, -2]).sort_index(), pdf.take([-1, -2]).sort_index()) self.assert_eq( psdf.take(range(100, 110)).sort_index(), pdf.take(range(100, 110)).sort_index() ) self.assert_eq( psdf.take(range(-110, -100)).sort_index(), pdf.take(range(-110, -100)).sort_index() ) self.assert_eq( psdf.take([10, 100, 1000, 10000]).sort_index(), pdf.take([10, 100, 1000, 10000]).sort_index(), ) self.assert_eq( psdf.take([-10, -100, -1000, -10000]).sort_index(), pdf.take([-10, -100, -1000, -10000]).sort_index(), ) # axis=1 self.assert_eq( psdf.take([1, 2], axis=1).sort_index(), pdf.take([1, 2], axis=1).sort_index() ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index() ) self.assert_eq( psdf.take(range(1, 3), axis=1).sort_index(), pdf.take(range(1, 3), axis=1).sort_index(), ) self.assert_eq( psdf.take(range(-1, -3), axis=1).sort_index(), pdf.take(range(-1, -3), axis=1).sort_index(), ) self.assert_eq( psdf.take([2, 1], axis=1).sort_index(), pdf.take([2, 1], axis=1).sort_index(), ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index(), ) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "C")]) psdf.columns = columns pdf.columns = columns # MultiIndex columns with axis=0 (default) self.assert_eq(psdf.take([1, 2]).sort_index(), pdf.take([1, 2]).sort_index()) self.assert_eq(psdf.take([-1, -2]).sort_index(), pdf.take([-1, -2]).sort_index()) self.assert_eq( psdf.take(range(100, 110)).sort_index(), pdf.take(range(100, 110)).sort_index() ) self.assert_eq( psdf.take(range(-110, -100)).sort_index(), pdf.take(range(-110, -100)).sort_index() ) self.assert_eq( psdf.take([10, 100, 1000, 10000]).sort_index(), pdf.take([10, 100, 1000, 10000]).sort_index(), ) self.assert_eq( psdf.take([-10, -100, -1000, -10000]).sort_index(), pdf.take([-10, -100, -1000, -10000]).sort_index(), ) # axis=1 self.assert_eq( psdf.take([1, 2], axis=1).sort_index(), pdf.take([1, 2], axis=1).sort_index() ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index() ) self.assert_eq( psdf.take(range(1, 3), axis=1).sort_index(), pdf.take(range(1, 3), axis=1).sort_index(), ) self.assert_eq( psdf.take(range(-1, -3), axis=1).sort_index(), pdf.take(range(-1, -3), axis=1).sort_index(), ) self.assert_eq( psdf.take([2, 1], axis=1).sort_index(), pdf.take([2, 1], axis=1).sort_index(), ) self.assert_eq( psdf.take([-1, -2], axis=1).sort_index(), pdf.take([-1, -2], axis=1).sort_index(), ) # Checking the type of indices. self.assertRaises(TypeError, lambda: psdf.take(1)) self.assertRaises(TypeError, lambda: psdf.take("1")) self.assertRaises(TypeError, lambda: psdf.take({1, 2})) self.assertRaises(TypeError, lambda: psdf.take({1: None, 2: None})) def test_axes(self): pdf = self.pdf psdf = ps.from_pandas(pdf) self.assert_eq(pdf.axes, psdf.axes) # multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b")]) pdf.columns = columns psdf.columns = columns self.assert_eq(pdf.axes, psdf.axes) def test_udt(self): sparse_values = {0: 0.1, 1: 1.1} sparse_vector = SparseVector(len(sparse_values), sparse_values) pdf = pd.DataFrame({"a": [sparse_vector], "b": [10]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf, pdf) def test_eval(self): pdf = pd.DataFrame({"A": range(1, 6), "B": range(10, 0, -2)}) psdf = ps.from_pandas(pdf) # operation between columns (returns Series) self.assert_eq(pdf.eval("A + B"), psdf.eval("A + B")) self.assert_eq(pdf.eval("A + A"), psdf.eval("A + A")) # assignment (returns DataFrame) self.assert_eq(pdf.eval("C = A + B"), psdf.eval("C = A + B")) self.assert_eq(pdf.eval("A = A + A"), psdf.eval("A = A + A")) # operation between scalars (returns scalar) self.assert_eq(pdf.eval("1 + 1"), psdf.eval("1 + 1")) # complicated operations with assignment self.assert_eq( pdf.eval("B = A + B // (100 + 200) * (500 - B) - 10.5"), psdf.eval("B = A + B // (100 + 200) * (500 - B) - 10.5"), ) # inplace=True (only support for assignment) pdf.eval("C = A + B", inplace=True) psdf.eval("C = A + B", inplace=True) self.assert_eq(pdf, psdf) pser = pdf.A psser = psdf.A pdf.eval("A = B + C", inplace=True) psdf.eval("A = B + C", inplace=True) self.assert_eq(pdf, psdf) self.assert_eq(pser, psser) # doesn't support for multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("y", "b"), ("z", "c")]) psdf.columns = columns self.assertRaises(TypeError, lambda: psdf.eval("x.a + y.b")) @unittest.skipIf(not have_tabulate, tabulate_requirement_message) def test_to_markdown(self): pdf = pd.DataFrame(data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.to_markdown(), psdf.to_markdown()) def test_cache(self): pdf = pd.DataFrame( [(0.2, 0.3), (0.0, 0.6), (0.6, 0.0), (0.2, 0.1)], columns=["dogs", "cats"] ) psdf = ps.from_pandas(pdf) with psdf.spark.cache() as cached_df: self.assert_eq(isinstance(cached_df, CachedDataFrame), True) self.assert_eq( repr(cached_df.spark.storage_level), repr(StorageLevel(True, True, False, True)) ) def test_persist(self): pdf = pd.DataFrame( [(0.2, 0.3), (0.0, 0.6), (0.6, 0.0), (0.2, 0.1)], columns=["dogs", "cats"] ) psdf = ps.from_pandas(pdf) storage_levels = [ StorageLevel.DISK_ONLY, StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_ONLY, StorageLevel.OFF_HEAP, ] for storage_level in storage_levels: with psdf.spark.persist(storage_level) as cached_df: self.assert_eq(isinstance(cached_df, CachedDataFrame), True) self.assert_eq(repr(cached_df.spark.storage_level), repr(storage_level)) self.assertRaises(TypeError, lambda: psdf.spark.persist("DISK_ONLY")) def test_squeeze(self): axises = [None, 0, 1, "rows", "index", "columns"] # Multiple columns pdf = pd.DataFrame([[1, 2], [3, 4]], columns=["a", "b"], index=["x", "y"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Multiple columns with MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X")]) pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with single value pdf = pd.DataFrame([[1]], columns=["a"], index=["x"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with single value with MultiIndex column columns = pd.MultiIndex.from_tuples([("A", "Z")]) pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with multiple values pdf = pd.DataFrame([1, 2, 3, 4], columns=["a"]) psdf = ps.from_pandas(pdf) for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) # Single column with multiple values with MultiIndex column pdf.columns = columns psdf.columns = columns for axis in axises: self.assert_eq(pdf.squeeze(axis), psdf.squeeze(axis)) def test_rfloordiv(self): pdf = pd.DataFrame( {"angles": [0, 3, 4], "degrees": [360, 180, 360]}, index=["circle", "triangle", "rectangle"], columns=["angles", "degrees"], ) psdf = ps.from_pandas(pdf) expected_result = pdf.rfloordiv(10) self.assert_eq(psdf.rfloordiv(10), expected_result) def test_truncate(self): pdf1 = pd.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, -20, -1, 0, 400, 550, 1000], ) psdf1 = ps.from_pandas(pdf1) pdf2 = pd.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[1000, 550, 400, 0, -1, -20, -500], ) psdf2 = ps.from_pandas(pdf2) self.assert_eq(psdf1.truncate(), pdf1.truncate()) self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20)) self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400)) self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False)) self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550)) self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False)) else: expected_psdf = ps.DataFrame( {"A": ["b", "c", "d"], "B": ["i", "j", "k"], "C": ["p", "q", "r"]}, index=[550, 400, 0], ) self.assert_eq(psdf2.truncate(0, 550), expected_psdf) self.assert_eq(psdf2.truncate(0, 550, copy=False), expected_psdf) # axis = 1 self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1)) self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1)) self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1)) self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1)) self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1)) self.assert_eq( psdf1.truncate("B", "C", copy=False, axis=1), pdf1.truncate("B", "C", copy=False, axis=1), ) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X"), ("C", "Z")]) pdf1.columns = columns psdf1.columns = columns pdf2.columns = columns psdf2.columns = columns self.assert_eq(psdf1.truncate(), pdf1.truncate()) self.assert_eq(psdf1.truncate(before=-20), pdf1.truncate(before=-20)) self.assert_eq(psdf1.truncate(after=400), pdf1.truncate(after=400)) self.assert_eq(psdf1.truncate(copy=False), pdf1.truncate(copy=False)) self.assert_eq(psdf1.truncate(-20, 400, copy=False), pdf1.truncate(-20, 400, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psdf2.truncate(0, 550), pdf2.truncate(0, 550)) self.assert_eq(psdf2.truncate(0, 550, copy=False), pdf2.truncate(0, 550, copy=False)) else: expected_psdf.columns = columns self.assert_eq(psdf2.truncate(0, 550), expected_psdf) self.assert_eq(psdf2.truncate(0, 550, copy=False), expected_psdf) # axis = 1 self.assert_eq(psdf1.truncate(axis=1), pdf1.truncate(axis=1)) self.assert_eq(psdf1.truncate(before="B", axis=1), pdf1.truncate(before="B", axis=1)) self.assert_eq(psdf1.truncate(after="A", axis=1), pdf1.truncate(after="A", axis=1)) self.assert_eq(psdf1.truncate(copy=False, axis=1), pdf1.truncate(copy=False, axis=1)) self.assert_eq(psdf2.truncate("B", "C", axis=1), pdf2.truncate("B", "C", axis=1)) self.assert_eq( psdf1.truncate("B", "C", copy=False, axis=1), pdf1.truncate("B", "C", copy=False, axis=1), ) # Exceptions psdf = ps.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, 100, 400, 0, -1, 550, -20], ) msg = "truncate requires a sorted index" with self.assertRaisesRegex(ValueError, msg): psdf.truncate() psdf = ps.DataFrame( { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": ["h", "i", "j", "k", "l", "m", "n"], "C": ["o", "p", "q", "r", "s", "t", "u"], }, index=[-500, -20, -1, 0, 400, 550, 1000], ) msg = "Truncate: -20 must be after 400" with self.assertRaisesRegex(ValueError, msg): psdf.truncate(400, -20) msg = "Truncate: B must be after C" with self.assertRaisesRegex(ValueError, msg): psdf.truncate("C", "B", axis=1) def test_explode(self): pdf = pd.DataFrame({"A": [[-1.0, np.nan], [0.0, np.inf], [1.0, -np.inf]], "B": 1}) pdf.index.name = "index" pdf.columns.name = "columns" psdf = ps.from_pandas(pdf) expected_result1 = pdf.explode("A") expected_result2 = pdf.explode("B") self.assert_eq(psdf.explode("A"), expected_result1, almost=True) self.assert_eq(psdf.explode("B"), expected_result2) self.assert_eq(psdf.explode("A").index.name, expected_result1.index.name) self.assert_eq(psdf.explode("A").columns.name, expected_result1.columns.name) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) # MultiIndex midx = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c")], names=["index1", "index2"] ) pdf.index = midx psdf = ps.from_pandas(pdf) expected_result1 = pdf.explode("A") expected_result2 = pdf.explode("B") self.assert_eq(psdf.explode("A"), expected_result1, almost=True) self.assert_eq(psdf.explode("B"), expected_result2) self.assert_eq(psdf.explode("A").index.names, expected_result1.index.names) self.assert_eq(psdf.explode("A").columns.name, expected_result1.columns.name) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) # MultiIndex columns columns = pd.MultiIndex.from_tuples([("A", "Z"), ("B", "X")], names=["column1", "column2"]) pdf.columns = columns psdf.columns = columns expected_result1 = pdf.explode(("A", "Z")) expected_result2 = pdf.explode(("B", "X")) expected_result3 = pdf.A.explode("Z") self.assert_eq(psdf.explode(("A", "Z")), expected_result1, almost=True) self.assert_eq(psdf.explode(("B", "X")), expected_result2) self.assert_eq(psdf.explode(("A", "Z")).index.names, expected_result1.index.names) self.assert_eq(psdf.explode(("A", "Z")).columns.names, expected_result1.columns.names) self.assert_eq(psdf.A.explode("Z"), expected_result3, almost=True) self.assertRaises(TypeError, lambda: psdf.explode(["A", "B"])) self.assertRaises(ValueError, lambda: psdf.explode("A")) def test_spark_schema(self): psdf = ps.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), }, columns=["a", "b", "c", "d", "e", "f"], ) actual = psdf.spark.schema() expected = ( StructType() .add("a", "string", False) .add("b", "long", False) .add("c", "byte", False) .add("d", "double", False) .add("e", "boolean", False) .add("f", "timestamp", False) ) self.assertEqual(actual, expected) actual = psdf.spark.schema("index") expected = ( StructType() .add("index", "long", False) .add("a", "string", False) .add("b", "long", False) .add("c", "byte", False) .add("d", "double", False) .add("e", "boolean", False) .add("f", "timestamp", False) ) self.assertEqual(actual, expected) def test_print_schema(self): psdf = ps.DataFrame( {"a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("i1")}, columns=["a", "b", "c"], ) prev = sys.stdout try: out = StringIO() sys.stdout = out psdf.spark.print_schema() actual = out.getvalue().strip() self.assertTrue("a: string" in actual, actual) self.assertTrue("b: long" in actual, actual) self.assertTrue("c: byte" in actual, actual) out = StringIO() sys.stdout = out psdf.spark.print_schema(index_col="index") actual = out.getvalue().strip() self.assertTrue("index: long" in actual, actual) self.assertTrue("a: string" in actual, actual) self.assertTrue("b: long" in actual, actual) self.assertTrue("c: byte" in actual, actual) finally: sys.stdout = prev def test_explain_hint(self): psdf1 = ps.DataFrame( {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]}, columns=["lkey", "value"], ) psdf2 = ps.DataFrame( {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]}, columns=["rkey", "value"], ) merged = psdf1.merge(psdf2.spark.hint("broadcast"), left_on="lkey", right_on="rkey") prev = sys.stdout try: out = StringIO() sys.stdout = out merged.spark.explain() actual = out.getvalue().strip() self.assertTrue("Broadcast" in actual, actual) finally: sys.stdout = prev def test_mad(self): pdf = pd.DataFrame( { "A": [1, 2, None, 4, np.nan], "B": [-0.1, 0.2, -0.3, np.nan, 0.5], "C": ["a", "b", "c", "d", "e"], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.mad(), pdf.mad()) self.assert_eq(psdf.mad(axis=1), pdf.mad(axis=1)) with self.assertRaises(ValueError): psdf.mad(axis=2) # MultiIndex columns columns =
pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("A", "Z")])
pandas.MultiIndex.from_tuples
import run_utils as util import options import os, sys try: import pandas as pd except: print("Pandas not available\n") def get_runtime_data(app_name, cmds, platform): util.chdir(platform) try: df = pd.read_csv( "runtimes.csv", names=["input_size", "runtime"], index_col="input_size" ) return df.loc[cmds["ref_input"], "runtime"] except: print("Runtimes not available for " + app_name + "\n") return 0 def get_runtimes(opts, all_plot_data, impl): util.chdir(impl) numba_dir = os.getcwd() for app, cmds in opts.wls.wl_list.items(): if cmds["execute"] is True: plot_data_entry = {} if app in all_plot_data: plot_data_entry = all_plot_data[app] util.chdir(app) app_dir = os.getcwd() if ( opts.platform == options.platform.cpu or opts.platform == options.platform.all ): cpu_perf = get_runtime_data(app, cmds, "CPU") if cpu_perf is not 0: plot_data_entry[impl + "_cpu"] = cpu_perf util.chdir(app_dir) if ( opts.platform == options.platform.gpu or opts.platform == options.platform.all ): gpu_perf = get_runtime_data(app, cmds, "GPU") if gpu_perf is not 0: plot_data_entry[impl + "_gpu"] = gpu_perf util.chdir(numba_dir) all_plot_data[app] = plot_data_entry def check_envvars_tools(opts): if ( opts.analysis is not options.analysis.all and opts.analysis is not options.analysis.perf ): print( "Plotting can be run only with option --analysis(-a) set to all or perf. Exiting" ) sys.exit() try: import pandas except: print("Pandas not available. Plotting disabled\n") sys.exit() def plot_efficiency_graph(all_plot_data): df = pd.DataFrame.from_dict(all_plot_data, orient="index") plot = False try: df["CPU"] = (df["numba_cpu"] / df["native_cpu"]) * 100.00 plot = True df.drop(columns=["native_cpu", "numba_cpu"], inplace=True) except: print("CPU Efficiency data not available\n") try: df["GPU"] = (df["numba_gpu"] / df["native_gpu"]) * 100.00 plot = True df.drop(columns=["native_gpu", "numba_gpu"], inplace=True) except: print("GPU Efficiency data not available\n") if plot: # df.drop(columns=['native_cpu', 'native_gpu', 'numba_cpu', 'numba_gpu'], inplace=True) bar_chart = df.plot.bar(rot=45, fontsize=10) # bar_chart.legend(loc='upper right') bar_chart.set_ylabel("Efficiency in percentage", fontsize=10) bar_chart.set_xlabel("Benchmark", fontsize=10) bar_chart.set_title( "Efficiency of Numba execution relative to OpenMP execution on CPU and GPU", fontsize=10, ) fig = bar_chart.get_figure() fig_filename = "Efficiency_graph.pdf" fig.savefig(fig_filename, bbox_inches="tight") else: print( "Insufficient data to generate Efficiency graph. Verify execution times in runtimes.csv\n" ) def plot_speedup_graph(all_plot_data): df =
pd.DataFrame.from_dict(all_plot_data, orient="index")
pandas.DataFrame.from_dict
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data = pd.read_csv(path) data = pd.DataFrame(data) data.rename(columns = {'Total':'Total_Medals'}, inplace = True) data.head(10) #Code starts here # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path data = pd.read_csv(path) data = pd.DataFrame(data) data['Better_Event'] = None data['Better_Event'] = np.where(data['Total_Summer']>data['Total_Winter'], 'Summer', 'Winter') data['Better_Event'] =np.where(data['Total_Summer'] == data['Total_Winter'],'Both',data['Better_Event']) better_event = data['Better_Event'].value_counts().idxmax() print(better_event) # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file path set1 = [] set2 = [] set3 = [] s1 = [] common = [] data =
pd.read_csv(path)
pandas.read_csv
import pandas as pd import numpy as np from datetime import timedelta import matplotlib.pyplot as plt from scipy.interpolate import griddata class spatial_mapping(): def __init__(self, data, gps, gps_utc=0): df=pd.DataFrame(data) df[0]=pd.to_datetime(df[0]-693962,unit='D',origin=pd.Timestamp('1900-01-01'),utc=True) df=df.rename(columns={0:'Time'}) self.data=df if type(gps)==str: if gps[-3:].lower()=='csv': self.gps=pd.read_csv(gps) if 'time' in self.gps: self.gps.time=pd.to_datetime(self.gps.time)+timedelta(hours=gps_utc) def extract_fragments(self, fragments, mean=True, fragment_method='time'): # fragments: a csv file contains beginning and ending time of recording sessions # Or providing a time interval (seconds) for separating recording sessions if type(fragments)==str: if fragments[-3:].lower()=='csv': slice_df=pd.read_csv(fragments, sep=',') if fragment_method=='time': slice_df['Begin_time']=
pd.to_datetime(slice_df['Begin_time'],utc=True)
pandas.to_datetime
import pandas as pd import math pd.options.mode.chained_assignment = None # default='warn' # import sqlalchemy # import pyodbc ingredients_db = pd.read_csv('data/ingredients.csv') # hard coded (unchanging) MTH_LIST = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] SEASONS_LIST = ['All', 'Spring', 'Summer', 'Autumn', 'Winter'] TAG_LIST = [ 'Indian', 'Vegetarian', 'Slow Cooked', 'Cocotte-Friendly', 'Entree', 'Brunch', 'Quick' ] BOOK_LIST = { 'HH': 'HH Art of Eating Well', 'GS': 'GS Good and Simple', 'EG': 'EG Eat Green', 'GG': 'GG Get the Glow', 'DE': 'DE Deliciously Ella', 'SC': 'SC Slow Cooker 5 Ingr', 'SF': 'SF Super Food Magazine', 'LM': 'LM Custom Recipes', 'BP': 'BP Custom Recipes' } day_map = { 'sat': 'Saturday', 'sun': 'Sunday', 'mon': 'Monday', 'tue': 'Tuesday', 'wed': 'Wednesday', 'thu': 'Thursday', 'fri': 'Friday' } season_map = { 'Winter': ['Dec', 'Jan', 'Feb'], 'Spring': ['Mar', 'Apr', 'May'], 'Summer': ['Jun', 'Jul', 'Aug'], 'Autumn': ['Sep', 'Oct', 'Nov'], 'All': ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] } phdf_shopping_list = pd.DataFrame(data={ 'Location': ['a', 'a'], 'Ingredient': ['ABCD', 'ASDF'], 'Recipe': ['ABCD', 'QWERW'], 'Quantity': [1.0, 2.0], 'Units': ['g', 'g'], 'Sub Group': [0, 0], 'Meals': [1, 1] }) phdf_rec_ingr_tbl = pd.DataFrame(data={ 'Ingredient': ['ABCD'], 'Quantity': [1.0], 'Units': ['g'], 'Sub Group': [0] }) def meal_plan(week='all'): load =
pd.read_csv('data/sl_store.txt')
pandas.read_csv
# coding=utf-8 from datetime import datetime from wit import Wit from string import Template from time import sleep from collections import namedtuple from pathlib import Path import pandas as pd import deepcut import os import glob import pickle import config toq_key = config.toq_key say_key = config.say_key sub_key = config.sub_key sec_key = config.sec_key who_key = config.who_key now_here = os.getcwd() def get_file_name(dir_file): fn = os.path.basename(dir_file) fn_alone = os.path.splitext(fn)[0] return fn_alone # df คือตาราง extend คือคำที่ให้เข้าใจว่าตารางนี้เปลี่ยนไปอย่างไร และเป็นชื่อโฟลเดอร์สำหรับเก็บไฟล์นี้ด้วย def export_file(old_table, new_table, extend): file_name = os.path.basename(old_table) fn_no_extension = os.path.splitext(file_name)[0] path_here = os.getcwd() # ส่งออกตาราง df directory = os.path.join(path_here, extend) if not os.path.exists(directory): os.makedirs(directory) export_file_dir = os.path.join(directory, fn_no_extension + '_{!s}.csv'.format(extend)) new_table.to_csv(export_file_dir, sep='\t', encoding='utf-8') print('ส่งออกไฟล์ {!s} แล้ว'.format(fn_no_extension + '_{!s}.csv'.format(extend))) # เริ่มจากนำเข้า csv ที่ได้จาก txt ที่ export มาจาก line # แล้วนำไปเปลี่ยนแปลงให้ได้ตารางที่ประกอบด้วย เวลาในการส่งข้อความ (time) ชื่อผู้ส่งข้อความ (name) และ ข้อความ (text) def clean_table(file_path): # chat คือ ตารางที่มาจากตาราง csv ที่เราจะ clean chat = pd.read_csv(file_path) # chat_mod คือ ตารางที่มาจาก chat แต่ใส่ชื่อให้คอลัมน์ใหม่ chat_mod = pd.DataFrame({'time': chat.ix[:, 0], 'name': chat.ix[:, 1], 'text': chat.ix[:, 2]}) # ถ้าข้อมูลที่ส่งเข้ามาตัดอักษรห้าตัวข้างหน้าแล้วเป็นวันที่ จะถูกส่งกลับแค่วันที่ # ส่วนข้อมูลอื่น ๆ ที่ไม่ใช่เงื่อนไขนี้ จะไม่ถูกทำอะไร ส่งกลับแบบเดิม def validate(date_text): try: datetime.strptime(date_text[5:], '%d/%m/%Y') b = date_text[5:] return b except ValueError: return date_text # ตรวจสอบข้อมูลที่ส่งเข้ามาว่าอยู่ในรูปแบบ '%H:%M' หรือไม่ def tm(t): try: datetime.strptime(t, '%H:%M') return True except ValueError: return False # ตรวจสอบข้อมูลที่ส่งเข้ามาว่าอยู่ในรูปแบบ '%d/%m/%Y' หรือไม่ def date(d): try: datetime.strptime(d, '%d/%m/%Y') return True except ValueError: return False # เอาข้อมูลในคอลัมน์ time ตัวที่มีชื่อวัน ตัดชื่อวันออก ตัวอื่น ๆ ไม่ทำไร แล้วใส่เป็น list na = [] for vela in chat_mod['time']: k = validate(str(vela)) na.append(k) # เอาข้อมูลในลิสต์ na มาดู for s in na: # ถ้าข้อมูลในลิสต์อยู่ในรูปแบบ '%H:%M' if tm(s): # ถ้าข้อมูลใน na ตำแหน่งที่อยู่ก่อนหน้า s อยู่ในรูปแบบ '%d/%m/%Y' if date(na[na.index(s) - 1]): # ให้เปลี่ยนข้อมูลตำแหน่ง s เป็น ข้อมูลตำแหน่งก่อนหน้า ตามด้วย วรรค ตามด้วย s ตามเดิม na[na.index(s)] = na[na.index(s) - 1] + " " + s # ถ้าข้อมูลใน na ตำแหน่งที่อยู่ก่อนหน้า s ถูกตัดท้าย 6 ตัวอักษร แล้วอยู่ในรูปแบบ '%d/%m/%Y' elif date(na[na.index(s) - 1][:-6]): # ให้เปลี่ยนข้อมูลตำแหน่ง s เป็น ข้อมูลตำแหน่งก่อนหน้า ที่ถูกตัดท้าย 6 ตัวอักษรแล้ว ตามด้วย วรรค # ตามด้วย s ตามเดิม na[na.index(s)] = na[na.index(s) - 1][:-6] + " " + s # ถ้าข้อมูลอยู่ในรูปแบบอื่น ๆ ไม่ต้องทำไร else: pass # เสร็จแล้วจะได้ na ที่มีสมาชิกอยู่ในรูปแบบ %d/%m/%Y %H:%M # time_mod คือคอลัมน์ที่มีวันที่อยู่หน้าเวลา ในรูปแบบ %d/%m/%Y %H:%M chat_mod['time_mod'] = pd.Series(na) # fd เป็นตารางที่มี 3 คอลัมน์ fd = chat_mod[['time_mod', 'name', 'text']] # dfd เป็นตารางที่ลบ row ที่คอลัมน์ text ไม่มีค่า dfd = fd.dropna(subset=['text']) # ลิสต์เหล่านี้มาจากแต่ละคอลัมน์ของ dfd a1 = dfd['time_mod'].tolist() a2 = dfd['name'].tolist() a3 = dfd['text'].tolist() # นำ a1 a2 a3 มาสร้างตารางใหม่ ชื่อ df df = pd.DataFrame({'time': a1, 'name': a2, 'text': a3}) export_file(file_path, df, 'cleaned') return df def time_inter(ct): b1 = pd.Series(ct['time']) b2 = pd.Series(ct['time']) temp_vela = '%d/%m/%Y %H:%M' la = 0 minute_set = [] for _ in b1: try: c1 = datetime.strptime(b1[la - 1], temp_vela) c2 = datetime.strptime(b2[la], temp_vela) d1 = c2 - c1 minute_set.append(d1) la = la + 1 except KeyError: c1 = datetime.strptime(b1[la], temp_vela) d1 = c1 - c1 minute_set.append(d1) la = la + 1 # คอลัมน์ time_ans แสดงเวลาก่อนจะตอบ เป็นหน่วย วันตามด้วยเวลาแบบ 00:00:00 time_ans = pd.Series(minute_set) # คอลัมน์ time_min แสดงเวลาก่อนจะตอบ เป็นหน่วย minute time = pd.DatetimeIndex(time_ans) time_min = (time.day - 1) * 24 * 60 + time.hour * 60 + time.minute return time_min def sender_num(ct): # แปลงชื่อผู้ส่งข้อความเป็นตัวเลข ra = [] name_set = set(ct['name'].tolist()) name_list = list(name_set) for each_name in ct['name']: ra.append(name_list.index(each_name)) return ra def numb_text(ct): sii = 1 yaa = [] x = ct['name'].tolist() lal = 0 # x คือ ลิสต์ของตัวเลขผู้ส่งข้อความ # พิจารณาตัวเลขผู้ส่งข้อความของแต่ละข้อความ for each_name in x: # n คือ เลขผู้ส่งข้อความที่สนใจ # na2 คือ สมาชิกตัวที่อยู่ก่อนหน้าหน้า n na2 = x[lal - 1] # ถ้า เลขผู้ส่งข้อความที่สนใจ เป็นตัวเดียวกับเลขของผู้ส่งข้อความที่อยู่ก่อนหน้า if each_name == na2: # เพิ่มค่า sii เดิม ลงใน yaa yaa.append(sii) # ถ้า เลขผู้ส่งข้อความที่สนใจ ไม่ใช่ตัวเดียวกับตัวเลขของผู้ส่งข้อความที่อยู่ก่อนหน้า elif each_name != na2: # ปรับ sii เป็น 1 แล้วเพิ่มเข้า sii sii = 1 yaa.append(sii) # เปลี่ยนค่า sii สำหรับรอใส่ใน yaa ถ้าประโยคต่อไปเป็นผู้ส่งคนเดียวกัน sii = sii + 1 # เปลี่ยนค่า lal เพื่อเป็นตัวนำไปคำนวณระบุตำแหน่งของตัวเลขผู้ส่งก่อนหน้า lal = lal + 1 return yaa def word_separation(text): # custom_dict = '/Users/bigmorning/Desktop/myword.txt' sep_text = deepcut.tokenize(text) join_sep_text = " ".join(sep_text) return join_sep_text def extract_value(inp_text, wit_token): understanding = Wit(wit_token) deep = understanding.message(inp_text) try: intent_value = deep['data'][0]['__wit__legacy_response']['entities']['intent'][0]['value'] except KeyError: try: intent_value = deep['entities']['intent'][0]['value'] except KeyError: intent_value = deep['entities'] return intent_value def show_progress(mal, l): try: s0 = Template('เพิ่มค่า $value ในเซต $set') s1 = s0.substitute(value=mal, set=l) except TypeError: s0 = Template('เพิ่มค่า $value ในเซต $set') s1 = s0.substitute(value=str(mal), set=l) return print(s1) def load_keep(extend, file_path, sv_wcs, sv_secs, sv_scs, sv_ws, sv_ts, sv_ss): directory = os.path.join(now_here, extend, get_file_name(file_path) + '_keep.txt') if not os.path.exists(directory): with open(directory, "wb") as fp: word_count_set = sv_wcs sen_count_set = sv_secs sub_count_set = sv_scs who_set = sv_ws toq_set = sv_ts say_set = sv_ss pickle.dump((word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set), fp) return word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set else: with open(directory, "rb") as fp: word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set = pickle.load(fp) return word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set def save_keep(extend, file_path, word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set, n): directory = os.path.join(now_here, extend, get_file_name(file_path) + '_keep.txt') if n % 5 == 0: with open(directory, "wb") as fp: pickle.dump((word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set), fp) else: pass def initial_assignment(file_path, ct): ia = namedtuple('type', 'wordCount senCount sAppear menWho senType doType') text = ct['text'].tolist() word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set = load_keep('analyse', file_path, [], [], [], [], [], []) for n, r in enumerate(text): if n == len(word_count_set): print('เริ่มวิเคราะห์ประโยคที่ {!s} : {!s}'.format(str(n), r)) sep_word = word_separation(r) # นับคำใน text box word_count = len(sep_word.split()) word_count_set.append(word_count) show_progress(word_count, 'word_count_set') # การสื่อสารใน text box เป็นกี่ประโยค มี 0, 1, มากกว่า 1 sen_count = extract_value(sep_word, sec_key) sen_count_set.append(sen_count) show_progress(sen_count, 'sen_count_set') # ระบุประธานของประโยคหรือไม่ sub_count = extract_value(sep_word, sub_key) sub_count_set.append(sub_count) show_progress(sub_count, 'sub_count_set') # ประโยคนี้พูดเกี่ยวกับตัวเอง หรือคู่สนทนา หรือทั้งสอง หรืออย่างอื่น who = extract_value(sep_word, who_key) who_set.append(who) show_progress(who, 'who_set') # ประโยคนั้นเป็นบอกเล่าหรือคำถาม toq = extract_value(sep_word, toq_key) toq_set.append(toq) show_progress(toq, 'toq_set') # การกระทำของประโยคนั้น say = extract_value(sep_word, say_key) say_set.append(say) show_progress(say, 'say_set') print("----------เสร็จสิ้นแถวที่ " + str(n) + " ----------") save_keep('analyse', file_path, word_count_set, sen_count_set, sub_count_set, who_set, toq_set, say_set, n) df = pd.DataFrame({'name': ct['name'], 'text': ct['text'], 'wordCount': word_count_set, 'senCount': sen_count_set, 'sAppear': sub_count_set, 'menWho': who_set, 'senType': toq_set, 'doType': say_set}) export_file(file_path, df, 'analyse') return ia(wordCount=word_count_set, senCount=sen_count_set, sAppear=sub_count_set, menWho=who_set, senType=toq_set, doType=say_set) def som(file_path, ct): ia = namedtuple('type', 'wordCount senCount sAppear menWho senType doType') # หาว่าจะเรียกไฟล์ csv ตัวไหนมาซ่อม # เรียกจากไฟล์ที่ติด extend analyse ext = 'analyse' directory = os.path.join(now_here, ext) # path ที่อยู่ของไฟล์ csv ที่จะเรียกมาซ่อม call_csv = os.path.join(directory, get_file_name(file_path) + '_{!s}.csv'.format(ext)) # เปิดไฟล์ last_csv =
pd.read_csv(call_csv, sep='\t')
pandas.read_csv
#!/usr/bin/python3 import sys import pandas as pd import numpy as np import os import concurrent.futures import functools, itertools import sofa_time import statistics import multiprocessing as mp import socket import ipaddress # sys.path.insert(0, '/home/st9540808/Desktop/sofa/bin') import sofa_models, sofa_preprocess import sofa_config import sofa_print colors_send = ['#14f2e0', '#41c8e5', '#6e9eeb'] colors_recv = ['#9a75f0', '#c74bf6', '#f320fa', '#fe2bcc'] color_send = itertools.cycle(colors_send) color_recv = itertools.cycle(colors_recv) sofa_ros2_fieldnames = [ "timestamp", # 0 "event", # 1 "duration", # 2 "deviceId", # 3 "copyKind", # 4 "payload", # 5 "bandwidth", # 6 "pkt_src", # 7 "pkt_dst", # 8 "pid", # 9 "tid", # 10 "name", # 11 "category", # 12 "unit", # 13 "msg_id"] # 14 # @profile def extract_individual_rosmsg(df_send_, df_recv_, *df_others_): """ Return a dictionary with topic name as key and a list of ros message as value. Structure of return value: {topic_name: {(guid, seqnum): log}} where (guid, seqnum) is a msg_id """ # Convert timestamp to unix time # unix_time_off = statistics.median(sofa_time.get_unix_mono_diff() for i in range(100)) # for df in (df_send, df_recv, *df_others): # df['ts'] = df['ts'] + unix_time_off df_send_[1]['ts'] = df_send_[1]['ts'] + df_send_[0].cpu_time_offset + df_send_[0].unix_time_off df_recv_[1]['ts'] = df_recv_[1]['ts'] + df_recv_[0].cpu_time_offset + df_recv_[0].unix_time_off df_others = [] for cfg_to_pass, df_other in df_others_: df_other['ts'] = df_other['ts'] + cfg_to_pass.cpu_time_offset + cfg_to_pass.unix_time_off df_others.append(df_other) df_send = df_send_[1] df_recv = df_recv_[1] # sort by timestamp df_send.sort_values(by=['ts'], ignore_index=True) df_recv.sort_values(by=['ts'], ignore_index=True) # publish side gb_send = df_send.groupby('guid') all_publishers_log = {guid:log for guid, log in gb_send} # subscription side gb_recv = df_recv.groupby('guid') all_subscriptions_log = {guid:log for guid, log in gb_recv} # other logs (assume there's no happen-before relations that needed to be resolved) # every dataframe is a dictionary in `other_log_list` gb_others = [df_other.groupby('guid') for df_other in df_others] other_log_list = [{guid:log for guid, log in gb_other} for gb_other in gb_others] # find guids that are in both subsciption and publisher log interested_guids = all_subscriptions_log.keys() \ & all_publishers_log.keys() res = {} for guid in interested_guids: # get a publisher from log df = all_publishers_log[guid] df_send_partial = all_publishers_log[guid].copy() add_data_calls = df[~pd.isna(df['seqnum'])] # get all non-NaN seqnums in log try: pubaddr, = pd.unique(df['publisher']).dropna() print(pubaddr) except ValueError as e: print('Find a guid that is not associated with a publisher memory address. Error: ' + str(e)) continue # print(add_data_calls) all_RTPSMsg_idx = ((df_send['func'] == '~RTPSMessageGroup') & (df_send['publisher'] == pubaddr)) all_RTPSMsgret_idx = ((df_send['func'] == '~RTPSMessageGroup exit') & (df_send['publisher'] == pubaddr)) all_sendSync_idx = ((df_send['func'] == 'sendSync') & (df_send['publisher'] == pubaddr)) all_nn_xpack_idx = (df['func'] == 'nn_xpack_send1') modified_rows = [] for idx, add_data_call in add_data_calls.iterrows(): ts = add_data_call['ts'] rcl_idx = df.loc[(df['ts'] < ts) & (df['layer'] == 'rcl')]['ts'].idxmax() df_send_partial.loc[rcl_idx, 'seqnum'] = add_data_call.loc['seqnum'] # For grouping RTPSMessageGroup function try: ts_gt = (df_send['ts'] > ts) # ts greater than that of add_data_call RTPSMsg_idx = df_send.loc[ts_gt & all_RTPSMsg_idx]['ts'].idxmin() modified_row = df_send.loc[RTPSMsg_idx] modified_row.at['seqnum'] = add_data_call.loc['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) RTPSMsgret_idx = df_send.loc[ts_gt & all_RTPSMsgret_idx]['ts'].idxmin() modified_row = df_send.loc[RTPSMsgret_idx] modified_row.at['seqnum'] = add_data_call.loc['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) sendSync_idx = df_send.loc[ts_gt & (df_send['ts'] < df_send.loc[RTPSMsgret_idx, 'ts']) & all_sendSync_idx] sendSync = sendSync_idx.copy() sendSync['seqnum'] = add_data_call.loc['seqnum'] modified_rows.extend(row for _, row in sendSync.iterrows()) except ValueError as e: pass if 'rmw_cyclonedds_cpp' in df['implementation'].values: try: df_cls = other_log_list[0][guid] seqnum = add_data_call.loc['seqnum'] max_ts = df_cls[(df_cls['layer'] == 'cls_egress') & (df_cls['seqnum'] == seqnum)]['ts'].max() index = df.loc[(ts < df['ts']) & (df['ts'] < max_ts) & all_nn_xpack_idx].index df_send_partial.loc[index, 'seqnum'] = seqnum except ValueError as e: pass df_send_partial = pd.concat([df_send_partial, pd.DataFrame(modified_rows)]) # get a subscrption from log df = all_subscriptions_log[guid] df_recv_partial = all_subscriptions_log[guid].copy() add_recvchange_calls = df[~pd.isna(df['seqnum'])] # get all not nan seqnums in log if 'cyclonedds' in df['layer'].unique(): add_recvchange_calls = df[df['func'] == 'ddsi_udp_conn_read exit'] all_sub = pd.unique(df['subscriber']) # How many subscribers subscribe to this topic? subs_map = {sub: (df['subscriber'] == sub) & (df['func'] == "rmw_take_with_info exit") for sub in all_sub} all_pid = pd.unique(df_recv['pid']) pid_maps = {pid: (df_recv['pid'] == pid) & (df_recv['func'] == "rmw_wait exit") for pid in all_pid} modified_rows = [] for idx, add_recvchange_call in add_recvchange_calls.iterrows(): ts = add_recvchange_call['ts'] subaddr = add_recvchange_call.at['subscriber'] seqnum = add_recvchange_call.at['seqnum'] # Consider missing `rmw_take_with_info exit` here try: rmw_take_idx = df.loc[(df['ts'] > ts) & subs_map[subaddr]]['ts'].idxmin() if 'cyclonedds' in df['layer'].unique(): free_sample = df.loc[(df['func'] == 'free_sample') & (df['seqnum'] == seqnum)] if len(free_sample) == 0: continue free_sample = free_sample.iloc[0] if free_sample['ts'] > df.at[rmw_take_idx, 'ts']: rmw_take_idx = df.loc[(df['ts'] > free_sample['ts']) & subs_map[subaddr]]['ts'].idxmin() # if 'cyclonedds' in df['layer'].unique(): # free_sample = df_recv.loc[(df_recv['ts'] > ts) & # (df_recv['func'] == 'free_sample') & # (df_recv['pid'] == df.at[rmw_take_idx, 'pid']) & # (df_recv['seqnum'] == seqnum)] # free_sample_idx = free_sample.idxmax() # if len(free_sample) == 0: # rmw_take_idx = df.loc[(df['ts'] > free_sample['ts']) & subs_map[subaddr]]['ts'].idxmin() # print(df.loc[rmw_take_idx]) # free_sample() should be called in rmw_take, therefore # free_sample() happened before rmw_take_with_info returns df_recv_partial.at[rmw_take_idx, 'seqnum'] = seqnum # TODO: Group by ip port in cls_ingress UDPResourceReceive_idx = df.loc[(df['ts'] < ts) & (df['func'] == 'UDPResourceReceive exit') & (df['pid'] == add_recvchange_call.at['pid'])]['ts'].idxmax() df_recv_partial.at[UDPResourceReceive_idx, 'seqnum'] = seqnum except ValueError as e: pass try: # Group rmw_wait exit pid = df_recv_partial.at[rmw_take_idx, 'pid'] rmw_wait_idx = df_recv.loc[(df_recv['ts'] < df_recv_partial.at[rmw_take_idx,'ts']) & pid_maps[pid]]['ts'].idxmax() modified_row = df_recv.loc[rmw_wait_idx] modified_row.at['seqnum'] = add_recvchange_call.at['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) except ValueError as e: pass # Doesn't need to remove duplicates for # a = pd.DataFrame(modified_rows) # print(a[~a.index.duplicated(keep='first')]) df_recv_partial = pd.concat([df_recv_partial, pd.DataFrame(modified_rows)]) # Merge all modified dataframes df_merged = df_send_partial.append(df_recv_partial, ignore_index=True, sort=False) # handle other log files for other_log in other_log_list: df_other = other_log[guid] df_merged = df_merged.append(df_other, ignore_index=True, sort=False) # Avoid `TypeError: boolean value of NA is ambiguous` when calling groupby() df_merged['subscriber'] = df_merged['subscriber'].fillna(np.nan) df_merged['guid'] = df_merged['guid'].fillna(np.nan) df_merged['seqnum'] = df_merged['seqnum'].fillna(np.nan) df_merged.sort_values(by=['ts'], inplace=True) gb_merged = df_merged.groupby(['guid', 'seqnum']) ros_msgs = {msg_id:log for msg_id, log in gb_merged} # msg_id: (guid, seqnum) # get topic name from log topic_name = df_merged['topic_name'].dropna().unique() if len(topic_name) > 1: raise Exception("More than one topic in a log file") topic_name = topic_name[0] if topic_name in res: res[topic_name] = {**res[topic_name], **ros_msgs} else: res[topic_name] = ros_msgs print('finished parsing ' + topic_name) return res def extract_individual_rosmsg2(df_send, df_recv, df_cls): # unix_time_off = statistics.median(sofa_time.get_unix_mono_diff() for i in range(100)) # for df in (df_send, df_recv, df_cls): # df['ts'] = df['ts'] + unix_time_off df_send.sort_values(by=['ts'], ignore_index=True) df_recv.sort_values(by=['ts'], ignore_index=True) df_cls.sort_values(by=['ts'], ignore_index=True) # publish side gb_send = df_send.groupby('guid') all_publishers_log = {guid:log for guid, log in gb_send} # subscription side gb_recv = df_recv.groupby('guid') all_subscriptions_log = {guid:log for guid, log in gb_recv} # in kernel (probably not need it) gb_cls = df_cls.groupby('guid') all_cls_log = {guid:log for guid, log in gb_cls} interested_guids = all_subscriptions_log.keys() \ & all_publishers_log.keys() res = {} for guid in interested_guids: # get a publisher from log df = all_publishers_log[guid].copy() df_send_partial = all_publishers_log[guid].copy() add_data_calls = df[~pd.isna(df['seqnum'])] # get all non-NaN seqnums in log try: pubaddr, = pd.unique(df['publisher']).dropna() except ValueError as e: print('Find a guid that is not associated with a publisher memory address. Error: ' + str(e)) continue print(pubaddr) modified_rows = [] for idx, add_data_call in add_data_calls.iterrows(): seqnum = add_data_call['seqnum'] ts = add_data_call['ts'] rcl_idx = df.loc[(df['ts'] < ts) & (df['layer'] == 'rcl')]['ts'].idxmax() df_send_partial.loc[rcl_idx, 'seqnum'] = add_data_call.loc['seqnum'] # Use the two timestamps to get a slice of dataframe # Here we drop :~RTPSMessageGroup exit" ts_cls = df_cls[(df_cls['guid'] == guid) & (df_cls['seqnum'] == seqnum) & (df_cls['layer'] == 'cls_egress')]['ts'].max() # Get ts upper bound df_send_tgt = df_send[(ts <= df_send['ts']) & (df_send['ts'] <= ts_cls) & (df_send['publisher'] == pubaddr)] modified_row = df_send_tgt.copy() modified_row['guid'] = guid modified_row['seqnum'] = seqnum modified_rows.append(modified_row) df_send_partial = df_send_partial.combine_first(pd.concat(modified_rows)) # get a subscrption from log df = all_subscriptions_log[guid].copy() df_recv_partial = all_subscriptions_log[guid].copy() add_recvchange_calls = df[~pd.isna(df['seqnum'])] # get all not nan seqnums in log all_sub = pd.unique(df['subscriber']) # How many subscribers subscribe to this topic? subs_map = {sub: (df['subscriber'] == sub) & (df['func'] == "rmw_take_with_info exit") for sub in all_sub} all_pid = pd.unique(df_recv['pid']) pid_maps = {pid: (df_recv['pid'] == pid) & (df_recv['func'] == "rmw_wait exit") for pid in all_pid} modified_rows = [] for idx, add_recvchange_call in add_recvchange_calls.iterrows(): ts = add_recvchange_call.at['ts'] subaddr = add_recvchange_call.at['subscriber'] seqnum = add_recvchange_call.at['seqnum'] # Use the two timestamps to get a slice of dataframe ts_cls = df_cls[(df_cls['guid'] == guid) & (df_cls['seqnum'] == seqnum) & (df_cls['layer'] == 'cls_ingress')]['ts'].min() df_recv_tgt = df_recv[(ts_cls < df_recv['ts']) & (df_recv['ts'] < ts)].copy() # Consider missing `rmw_take_with_info exit` here try: rmw_take_idx = df.loc[(df['ts'] > ts) & subs_map[subaddr]]['ts'].idxmin() df_recv_partial.at[rmw_take_idx, 'seqnum'] = seqnum # TODO: Group by ip port in cls_ingress UDPResourceReceive_idx = df_recv_tgt.loc[(df_recv_tgt['func'] == 'UDPResourceReceive exit') & (df_recv_tgt['pid'] == add_recvchange_call.at['pid'])]['ts'].idxmax(); df_recv_partial.at[UDPResourceReceive_idx, 'seqnum'] = seqnum # Group rmw_wait exit pid = df_recv_partial.at[rmw_take_idx, 'pid'] rmw_wait_idx = df_recv.loc[(df_recv['ts'] < df_recv_partial.at[rmw_take_idx,'ts']) & pid_maps[pid]]['ts'].idxmax() modified_row = df_recv.loc[rmw_wait_idx] modified_row.at['seqnum'] = add_recvchange_call.at['seqnum'] modified_row.at['guid'] = guid modified_rows.append(modified_row) except ValueError as e: pass df_recv_partial = pd.concat([df_recv_partial,
pd.DataFrame(modified_rows)
pandas.DataFrame
import flask from flask import request from flask import jsonify import numpy as np import pandas as pd app = flask.Flask(__name__) from sklearn.feature_extraction.text import TfidfVectorizer import hdbscan def training(df_train, clf_params): params = {'alpha':1.0, 'min_samples':2, 'min_cluster_size':5, 'cluster_selection_epsilon':0.0} params.update(clf_params) alpha = params['alpha'] min_samples = params['min_samples'] min_cluster_size = params['min_cluster_size'] cluster_selection_epsilon = params['cluster_selection_epsilon'] if 'emb' in df_train.columns: X = df_train['emb'].tolist() else: corpus = df_train['text'].tolist() vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(corpus) clustering = hdbscan.HDBSCAN(alpha=alpha, min_samples=min_samples, min_cluster_size=min_cluster_size, cluster_selection_epsilon=cluster_selection_epsilon).fit(X) df_result = pd.DataFrame(columns=['id','cluster','probability']) df_result['id'] = df_train['id'].copy() df_result['cluster'] = clustering.labels_ df_result['probability'] = clustering.probabilities_ res = {} res['df_res'] = df_result.to_dict() return clustering, res @app.route('/hdbscan/', methods=['POST']) def home(): df_train = request.json['train_data'] df_train =
pd.DataFrame(df_train)
pandas.DataFrame
# -*- coding: utf-8 -*- """ @file @brief Defines a streaming dataframe. """ import pickle import os from io import StringIO, BytesIO from inspect import isfunction import numpy import numpy.random as nrandom import pandas from pandas.testing import assert_frame_equal from pandas.io.json import json_normalize from .dataframe_split import sklearn_train_test_split, sklearn_train_test_split_streaming from .dataframe_io_helpers import enumerate_json_items, JsonIterator2Stream class StreamingDataFrameSchemaError(Exception): """ Reveals an issue with inconsistant schemas. """ pass class StreamingDataFrame: """ Defines a streaming dataframe. The goal is to reduce the memory footprint. The class takes a function which creates an iterator on :epkg:`dataframe`. We assume this function can be called multiple time. As a matter of fact, the function is called every time the class needs to walk through the stream with the following loop: :: for df in self: # self is a StreamingDataFrame # ... The constructor cannot receive an iterator otherwise this class would be able to walk through the data only once. The main reason is it is impossible to :epkg:`*py:pickle` (or :epkg:`dill`) an iterator: it cannot be replicated. Instead, the class takes a function which generates an iterator on :epkg:`DataFrame`. Most of the methods returns either a :epkg:`DataFrame` either a @see cl StreamingDataFrame. In the second case, methods can be chained. By default, the object checks that the schema remains the same between two chunks. This can be disabled by setting *check_schema=False* in the constructor. The user should expect the data to remain stable. Every loop should produce the same data. However, in some situations, it is more efficient not to keep that constraints. Draw a random @see me sample is one of these cases. :param iter_creation: function which creates an iterator or an instance of @see cl StreamingDataFrame :param check_schema: checks that the schema is the same for every :epkg:`dataframe` :param stable: indicates if the :epkg:`dataframe` remains the same whenever it is walked through """ def __init__(self, iter_creation, check_schema=True, stable=True): self._delete_ = [] if isinstance(iter_creation, (pandas.DataFrame, dict, numpy.ndarray, str)): raise TypeError( "Unexpected type %r for iter_creation. It must " "be an iterator." % type(iter_creation)) if isinstance(iter_creation, StreamingDataFrame): self.iter_creation = iter_creation.iter_creation self.stable = iter_creation.stable else: self.iter_creation = iter_creation self.stable = stable self.check_schema = check_schema def is_stable(self, do_check=False, n=10): """ Tells if the :epkg:`dataframe` is supposed to be stable. @param do_check do not trust the value sent to the constructor @param n number of rows used to check the stability, None for all rows @return boolean *do_check=True* means the methods checks the first *n* rows remains the same for two iterations. """ if do_check: for i, (a, b) in enumerate(zip(self, self)): if n is not None and i >= n: break try: assert_frame_equal(a, b) except AssertionError: # pragma: no cover return False return True else: return self.stable def get_kwargs(self): """ Returns the parameters used to call the constructor. """ return dict(check_schema=self.check_schema) def train_test_split(self, path_or_buf=None, export_method="to_csv", names=None, streaming=True, partitions=None, **kwargs): """ Randomly splits a :epkg:`dataframe` into smaller pieces. The function returns streams of file names. It chooses one of the options from module :mod:`dataframe_split <pandas_streaming.df.dataframe_split>`. @param path_or_buf a string, a list of strings or buffers, if it is a string, it must contain ``{}`` like ``partition{}.txt``, if None, the function returns strings. @param export_method method used to store the partitions, by default :epkg:`pandas:DataFrame:to_csv`, additional parameters will be given to that function @param names partitions names, by default ``('train', 'test')`` @param kwargs parameters for the export function and :epkg:`sklearn:model_selection:train_test_split`. @param streaming the function switches to a streaming version of the algorithm. @param partitions splitting partitions @return outputs of the exports functions or two @see cl StreamingDataFrame if path_or_buf is None. The streaming version of this algorithm is implemented by function @see fn sklearn_train_test_split_streaming. Its documentation indicates the limitation of the streaming version and gives some insights about the additional parameters. """ if streaming: if partitions is not None: if len(partitions) != 2: raise NotImplementedError( # pragma: no cover "Only train and test split is allowed, *partitions* " "must be of length 2.") kwargs = kwargs.copy() kwargs['train_size'] = partitions[0] kwargs['test_size'] = partitions[1] return sklearn_train_test_split_streaming(self, **kwargs) return sklearn_train_test_split(self, path_or_buf=path_or_buf, export_method=export_method, names=names, **kwargs) @staticmethod def _process_kwargs(kwargs): """ Filters out parameters for the constructor of this class. """ kw = {} for k in ['check_schema']: if k in kwargs: kw[k] = kwargs[k] del kwargs[k] return kw @staticmethod def read_json(*args, chunksize=100000, flatten=False, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`json` file or buffer as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_json`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc and it must be defined to return an iterator. If *lines* is True, the function falls back into :epkg:`pandas:read_json`, otherwise it used @see fn enumerate_json_items. If *lines* is ``'stream'``, *enumerate_json_items* is called with parameter ``lines=True``. Parameter *flatten* uses the trick described at `Flattening JSON objects in Python <https://towardsdatascience.com/flattening-json-objects-in-python-f5343c794b10>`_. Examples: .. runpython:: :showcode: from io import BytesIO from pandas_streaming.df import StreamingDataFrame data = b'''{"a": 1, "b": 2} {"a": 3, "b": 4}''' it = StreamingDataFrame.read_json(BytesIO(data), lines=True) dfs = list(it) print(dfs) .. runpython:: :showcode: from io import BytesIO from pandas_streaming.df import StreamingDataFrame data = b'''[{"a": 1, "b": 2}, {"a": 3, "b": 4}]''' it = StreamingDataFrame.read_json(BytesIO(data)) dfs = list(it) print(dfs) .. index:: IncompleteJSONError The parsed json must have an empty line at the end otherwise the following exception is raised: `ijson.common.IncompleteJSONError: ` `parse error: unallowed token at this point in JSON text`. """ if not isinstance(chunksize, int) or chunksize <= 0: raise ValueError( # pragma: no cover 'chunksize must be a positive integer') kwargs_create = StreamingDataFrame._process_kwargs(kwargs) if isinstance(args[0], (list, dict)): if flatten: return StreamingDataFrame.read_df( json_normalize(args[0]), **kwargs_create) return StreamingDataFrame.read_df(args[0], **kwargs_create) if kwargs.get('lines', None) == 'stream': del kwargs['lines'] def localf(a0=args[0]): if hasattr(a0, 'seek'): a0.seek(0) return enumerate_json_items( a0, encoding=kwargs.get('encoding', None), lines=True, flatten=flatten) st = JsonIterator2Stream(localf) args = args[1:] if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json( st, *args, chunksize=None, lines=True, **kwargs), **kwargs_create) def fct1(st=st, args=args, chunksize=chunksize, kw=kwargs.copy()): st.seek(0) for r in pandas.read_json( st, *args, chunksize=chunksize, nrows=chunksize, lines=True, **kw): yield r return StreamingDataFrame(fct1, **kwargs_create) if kwargs.get('lines', False): if flatten: raise NotImplementedError( "flatten==True is implemented with option lines='stream'") if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json(*args, chunksize=None, **kwargs), **kwargs_create) def fct2(args=args, chunksize=chunksize, kw=kwargs.copy()): for r in pandas.read_json( *args, chunksize=chunksize, nrows=chunksize, **kw): yield r return StreamingDataFrame(fct2, **kwargs_create) st = JsonIterator2Stream( lambda a0=args[0]: enumerate_json_items( a0, encoding=kwargs.get('encoding', None), flatten=flatten)) args = args[1:] if 'lines' in kwargs: del kwargs['lines'] if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json( st, *args, chunksize=chunksize, lines=True, **kwargs), **kwargs_create) def fct3(st=st, args=args, chunksize=chunksize, kw=kwargs.copy()): if hasattr(st, 'seek'): st.seek(0) for r in pandas.read_json( st, *args, chunksize=chunksize, nrows=chunksize, lines=True, **kw): yield r return StreamingDataFrame(fct3, **kwargs_create) @staticmethod def read_csv(*args, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`csv` file or buffer as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_csv`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc. If not specified, it will be equal to 100000. """ if not kwargs.get('iterator', True): raise ValueError("If specified, iterator must be True.") if not kwargs.get('chunksize', 100000): raise ValueError("If specified, chunksize must not be None.") kwargs_create = StreamingDataFrame._process_kwargs(kwargs) kwargs['iterator'] = True if 'chunksize' not in kwargs: kwargs['chunksize'] = 100000 return StreamingDataFrame(lambda: pandas.read_csv(*args, **kwargs), **kwargs_create) @staticmethod def read_str(text, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`DataFrame` as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_csv`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc. """ if not kwargs.get('iterator', True): raise ValueError("If specified, iterator must be True.") if not kwargs.get('chunksize', 100000): raise ValueError("If specified, chunksize must not be None.") kwargs_create = StreamingDataFrame._process_kwargs(kwargs) kwargs['iterator'] = True if 'chunksize' not in kwargs: kwargs['chunksize'] = 100000 if isinstance(text, str): buffer = StringIO(text) else: buffer = BytesIO(text) return StreamingDataFrame( lambda: pandas.read_csv(buffer, **kwargs), **kwargs_create) @staticmethod def read_df(df, chunksize=None, check_schema=True) -> 'StreamingDataFrame': """ Splits a :epkg:`DataFrame` into small chunks mostly for unit testing purposes. @param df :epkg:`DataFrame` @param chunksize number rows per chunks (// 10 by default) @param check_schema check schema between two iterations @return iterator on @see cl StreamingDataFrame """ if chunksize is None: if hasattr(df, 'shape'): chunksize = df.shape[0] else: raise NotImplementedError( "Cannot retrieve size to infer chunksize for type={0}" ".".format(type(df))) if hasattr(df, 'shape'): size = df.shape[0] else: raise NotImplementedError( # pragma: no cover "Cannot retrieve size for type={0}.".format(type(df))) def local_iterator(): "local iterator" for i in range(0, size, chunksize): end = min(size, i + chunksize) yield df[i:end].copy() return StreamingDataFrame(local_iterator, check_schema=check_schema) def __iter__(self): """ Iterator on a large file with a sliding window. Each windows is a :epkg:`DataFrame`. The method stores a copy of the initial iterator and restores it after the end of the iterations. If *check_schema* was enabled when calling the constructor, the method checks that every :epkg:`DataFrame` follows the same schema as the first chunck. Even with a big chunk size, it might happen that consecutive chunks might detect different type for one particular column. An error message shows up saying ``Column types are different after row`` with more information about the column which failed. In that case, :epkg:`pandas:DataFrame.read_csv` can overwrite the type on one column by specifying ``dtype={column_name: new_type}``. It frequently happens when a string column has many missing values. """ iters = self.iter_creation() sch = None rows = 0 for it in iters: if sch is None: sch = (list(it.columns), list(it.dtypes)) elif self.check_schema: if list(it.columns) != sch[0]: # pylint: disable=E1136 raise StreamingDataFrameSchemaError( # pragma: no cover 'Column names are different after row {0}\nFirst chunk: {1}' '\nCurrent chunk: {2}'.format( rows, sch[0], list(it.columns))) # pylint: disable=E1136 if list(it.dtypes) != sch[1]: # pylint: disable=E1136 errdf = pandas.DataFrame( dict(names=sch[0], schema1=sch[1], # pylint: disable=E1136 schema2=list(it.dtypes))) # pylint: disable=E1136 tdf = StringIO() errdf['diff'] = errdf['schema2'] != errdf['schema1'] errdf = errdf[errdf['diff']] errdf.to_csv(tdf, sep=",", index=False) raise StreamingDataFrameSchemaError( 'Column types are different after row {0}. You may use option ' 'dtype={{"column_name": str}} to force the type on this column.' '\n---\n{1}'.format(rows, tdf.getvalue())) rows += it.shape[0] yield it @property def shape(self): """ This is the kind of operations you do not want to do when a file is large because it goes through the whole stream just to get the number of rows. """ nl, nc = 0, 0 for it in self: nc = max(it.shape[1], nc) nl += it.shape[0] return nl, nc @property def columns(self): """ See :epkg:`pandas:DataFrame:columns`. """ for it in self: return it.columns # The dataframe is empty. return [] @property def dtypes(self): """ See :epkg:`pandas:DataFrame:dtypes`. """ for it in self: return it.dtypes def to_csv(self, path_or_buf=None, **kwargs) -> 'StreamingDataFrame': """ Saves the :epkg:`DataFrame` into string. See :epkg:`pandas:DataFrame.to_csv`. """ if path_or_buf is None: st = StringIO() close = False elif isinstance(path_or_buf, str): st = open( # pylint: disable=R1732 path_or_buf, "w", encoding=kwargs.get('encoding')) close = True else: st = path_or_buf close = False for df in self: df.to_csv(st, **kwargs) kwargs['header'] = False if close: st.close() if isinstance(st, StringIO): return st.getvalue() return path_or_buf def to_dataframe(self) -> pandas.DataFrame: """ Converts everything into a single :epkg:`DataFrame`. """ return pandas.concat(self, axis=0) def to_df(self) -> pandas.DataFrame: """ Converts everything into a single :epkg:`DataFrame`. """ return self.to_dataframe() def iterrows(self): """ See :epkg:`pandas:DataFrame:iterrows`. """ for df in self: for it in df.iterrows(): yield it def head(self, n=5) -> pandas.DataFrame: """ Returns the first rows as a :epkg:`DataFrame`. """ st = [] total = 0 for df in self: h = df.head(n=n) total += h.shape[0] st.append(h) if total >= n: break n -= h.shape[0] if len(st) == 1: return st[0] if len(st) == 0: return None return pandas.concat(st, axis=0) def tail(self, n=5) -> pandas.DataFrame: """ Returns the last rows as a :epkg:`DataFrame`. The size of chunks must be greater than ``n`` to get ``n`` lines. This method is not efficient because the whole dataset must be walked through. """ for df in self: h = df.tail(n=n) return h def where(self, *args, **kwargs) -> 'StreamingDataFrame': """ Applies :epkg:`pandas:DataFrame:where`. *inplace* must be False. This function returns a @see cl StreamingDataFrame. """ kwargs['inplace'] = False return StreamingDataFrame( lambda: map(lambda df: df.where(*args, **kwargs), self), **self.get_kwargs()) def sample(self, reservoir=False, cache=False, **kwargs) -> 'StreamingDataFrame': """ See :epkg:`pandas:DataFrame:sample`. Only *frac* is available, otherwise choose @see me reservoir_sampling. This function returns a @see cl StreamingDataFrame. @param reservoir use `reservoir sampling <https://en.wikipedia.org/wiki/Reservoir_sampling>`_ @param cache cache the sample @param kwargs additional parameters for :epkg:`pandas:DataFrame:sample` If *cache* is True, the sample is cached (assuming it holds in memory). The second time an iterator walks through the """ if reservoir or 'n' in kwargs: if 'frac' in kwargs: raise ValueError( 'frac cannot be specified for reservoir sampling.') return self._reservoir_sampling(cache=cache, n=kwargs['n'], random_state=kwargs.get('random_state')) if cache: sdf = self.sample(cache=False, **kwargs) df = sdf.to_df() return StreamingDataFrame.read_df(df, chunksize=df.shape[0]) return StreamingDataFrame(lambda: map(lambda df: df.sample(**kwargs), self), **self.get_kwargs(), stable=False) def _reservoir_sampling(self, cache=True, n=1000, random_state=None) -> 'StreamingDataFrame': """ Uses the `reservoir sampling <https://en.wikipedia.org/wiki/Reservoir_sampling>`_ algorithm to draw a random sample with exactly *n* samples. @param cache cache the sample @param n number of observations to keep @param random_state sets the random_state @return @see cl StreamingDataFrame .. warning:: The sample is split by chunks of size 1000. This parameter is not yet exposed. """ if not cache: raise ValueError( "cache=False is not available for reservoir sampling.") indices = [] seen = 0 for i, df in enumerate(self): for ir, _ in enumerate(df.iterrows()): seen += 1 if len(indices) < n: indices.append((i, ir)) else: x = nrandom.random() # pylint: disable=E1101 if x * n < (seen - n): k = nrandom.randint(0, len(indices) - 1) indices[k] = (i, ir) # pylint: disable=E1126 indices = set(indices) def reservoir_iterate(sdf, indices, chunksize): "iterator" buffer = [] for i, df in enumerate(self): for ir, row in enumerate(df.iterrows()): if (i, ir) in indices: buffer.append(row) if len(buffer) >= chunksize: yield pandas.DataFrame(buffer) buffer.clear() if len(buffer) > 0: yield pandas.DataFrame(buffer) return StreamingDataFrame( lambda: reservoir_iterate(sdf=self, indices=indices, chunksize=1000)) def apply(self, *args, **kwargs) -> 'StreamingDataFrame': """ Applies :epkg:`pandas:DataFrame:apply`. This function returns a @see cl StreamingDataFrame. """ return StreamingDataFrame( lambda: map(lambda df: df.apply(*args, **kwargs), self), **self.get_kwargs()) def applymap(self, *args, **kwargs) -> 'StreamingDataFrame': """ Applies :epkg:`pandas:DataFrame:applymap`. This function returns a @see cl StreamingDataFrame. """ return StreamingDataFrame( lambda: map(lambda df: df.applymap(*args, **kwargs), self), **self.get_kwargs()) def merge(self, right, **kwargs) -> 'StreamingDataFrame': """ Merges two @see cl StreamingDataFrame and returns @see cl StreamingDataFrame. *right* can be either a @see cl StreamingDataFrame or simply a :epkg:`pandas:DataFrame`. It calls :epkg:`pandas:DataFrame:merge` in a double loop, loop on *self*, loop on *right*. """ if isinstance(right, pandas.DataFrame): return self.merge(StreamingDataFrame.read_df(right, chunksize=right.shape[0]), **kwargs) def iterator_merge(sdf1, sdf2, **kw): "iterate on dataframes" for df1 in sdf1: for df2 in sdf2: df = df1.merge(df2, **kw) yield df return StreamingDataFrame( lambda: iterator_merge(self, right, **kwargs), **self.get_kwargs()) def concat(self, others, axis=0) -> 'StreamingDataFrame': """ Concatenates :epkg:`dataframes`. The function ensures all :epkg:`pandas:DataFrame` or @see cl StreamingDataFrame share the same columns (name and type). Otherwise, the function fails as it cannot guess the schema without walking through all :epkg:`dataframes`. :param others: list, enumeration, :epkg:`pandas:DataFrame` :param axis: concatenate by rows (0) or by columns (1) :return: @see cl StreamingDataFrame """ if axis == 1: return self._concath(others) if axis == 0: return self._concatv(others) raise ValueError("axis must be 0 or 1") # pragma: no cover def _concath(self, others): if not isinstance(others, list): others = [others] def iterateh(self, others): cols = tuple([self] + others) for dfs in zip(*cols): nrows = [_.shape[0] for _ in dfs] if min(nrows) != max(nrows): raise RuntimeError( "StreamingDataFram cannot merge DataFrame with different size or chunksize") yield pandas.concat(list(dfs), axis=1) return StreamingDataFrame(lambda: iterateh(self, others), **self.get_kwargs()) def _concatv(self, others): def iterator_concat(this, lothers): "iterator on dataframes" columns = None dtypes = None for df in this: if columns is None: columns = df.columns dtypes = df.dtypes yield df for obj in lothers: check = True for i, df in enumerate(obj): if check: if list(columns) != list(df.columns): raise ValueError( "Frame others[{0}] do not have the same column names or the same order.".format(i)) if list(dtypes) != list(df.dtypes): raise ValueError( "Frame others[{0}] do not have the same column types.".format(i)) check = False yield df if isinstance(others, pandas.DataFrame): others = [others] elif isinstance(others, StreamingDataFrame): others = [others] def change_type(obj): "change column type" if isinstance(obj, pandas.DataFrame): return StreamingDataFrame.read_df(obj, obj.shape[0]) else: return obj others = list(map(change_type, others)) return StreamingDataFrame( lambda: iterator_concat(self, others), **self.get_kwargs()) def groupby(self, by=None, lambda_agg=None, lambda_agg_agg=None, in_memory=True, **kwargs) -> pandas.DataFrame: """ Implements the streaming :epkg:`pandas:DataFrame:groupby`. We assume the result holds in memory. The out-of-memory is not implemented yet. @param by see :epkg:`pandas:DataFrame:groupby` @param in_memory in-memory algorithm @param lambda_agg aggregation function, *sum* by default @param lambda_agg_agg to aggregate the aggregations, *sum* by default @param kwargs additional parameters for :epkg:`pandas:DataFrame:groupby` @return :epkg:`pandas:DataFrame` As the input @see cl StreamingDataFrame does not necessarily hold in memory, the aggregation must be done at every iteration. There are two levels of aggregation: one to reduce every iterated :epkg:`dataframe`, another one to combine all the reduced :epkg:`dataframes`. This second one is always a **sum**. As a consequence, this function should not compute any *mean* or *count*, only *sum* because we do not know the size of each iterated :epkg:`dataframe`. To compute an average, sum and weights must be aggregated. Parameter *lambda_agg* is ``lambda gr: gr.sum()`` by default. It could also be ``lambda gr: gr.max()`` or ``lambda gr: gr.min()`` but not ``lambda gr: gr.mean()`` as it would lead to incoherent results. .. exref:: :title: StreamingDataFrame and groupby :tag: streaming Here is an example which shows how to write a simple *groupby* with :epkg:`pandas` and @see cl StreamingDataFrame. .. runpython:: :showcode: from pandas import DataFrame from pandas_streaming.df import StreamingDataFrame df = DataFrame(dict(A=[3, 4, 3], B=[5,6, 7])) sdf = StreamingDataFrame.read_df(df) # The following: print(sdf.groupby("A", lambda gr: gr.sum())) # Is equivalent to: print(df.groupby("A").sum()) """ if not in_memory: raise NotImplementedError( "Out-of-memory group by is not implemented.") if lambda_agg is None: def lambda_agg_(gr): "sum" return gr.sum() lambda_agg = lambda_agg_ if lambda_agg_agg is None: def lambda_agg_agg_(gr): "sum" return gr.sum() lambda_agg_agg = lambda_agg_agg_ ckw = kwargs.copy() ckw["as_index"] = False agg = [] for df in self: gr = df.groupby(by=by, **ckw) agg.append(lambda_agg(gr)) conc = pandas.concat(agg, sort=False) return lambda_agg_agg(conc.groupby(by=by, **kwargs)) def groupby_streaming(self, by=None, lambda_agg=None, lambda_agg_agg=None, in_memory=True, strategy='cum', **kwargs) -> pandas.DataFrame: """ Implements the streaming :epkg:`pandas:DataFrame:groupby`. We assume the result holds in memory. The out-of-memory is not implemented yet. :param by: see :epkg:`pandas:DataFrame:groupby` :param in_memory: in-memory algorithm :param lambda_agg: aggregation function, *sum* by default :param lambda_agg_agg: to aggregate the aggregations, *sum* by default :param kwargs: additional parameters for :epkg:`pandas:DataFrame:groupby` :param strategy: ``'cum'``, or ``'streaming'``, see below :return: :epkg:`pandas:DataFrame` As the input @see cl StreamingDataFrame does not necessarily hold in memory, the aggregation must be done at every iteration. There are two levels of aggregation: one to reduce every iterated :epkg:`dataframe`, another one to combine all the reduced :epkg:`dataframes`. This second one is always a **sum**. As a consequence, this function should not compute any *mean* or *count*, only *sum* because we do not know the size of each iterated :epkg:`dataframe`. To compute an average, sum and weights must be aggregated. Parameter *lambda_agg* is ``lambda gr: gr.sum()`` by default. It could also be ``lambda gr: gr.max()`` or ``lambda gr: gr.min()`` but not ``lambda gr: gr.mean()`` as it would lead to incoherent results. Parameter *strategy* allows three scenarios. First one if ``strategy is None`` goes through the whole datasets to produce a final :epkg:`DataFrame`. Second if ``strategy=='cum'`` returns a @see cl StreamingDataFrame, each iteration produces the current status of the *group by*. Last case, ``strategy=='streaming'`` produces :epkg:`DataFrame` which must be concatenated into a single :epkg:`DataFrame` and grouped again to get the results. .. exref:: :title: StreamingDataFrame and groupby :tag: streaming Here is an example which shows how to write a simple *groupby* with :epkg:`pandas` and @see cl StreamingDataFrame. .. runpython:: :showcode: from pandas import DataFrame from pandas_streaming.df import StreamingDataFrame from pandas_streaming.data import dummy_streaming_dataframe df20 = dummy_streaming_dataframe(20).to_dataframe() df20["key"] = df20["cint"].apply(lambda i: i % 3 == 0) sdf20 = StreamingDataFrame.read_df(df20, chunksize=5) sgr = sdf20.groupby_streaming("key", lambda gr: gr.sum(), strategy='cum', as_index=False) for gr in sgr: print() print(gr) """ if not in_memory: raise NotImplementedError( "Out-of-memory group by is not implemented.") if lambda_agg is None: def lambda_agg_(gr): "sum" return gr.sum() lambda_agg = lambda_agg_ if lambda_agg_agg is None: def lambda_agg_agg_(gr): "sum" return gr.sum() lambda_agg_agg = lambda_agg_agg_ ckw = kwargs.copy() ckw["as_index"] = False if strategy == 'cum': def iterate_cum(): agg = None for df in self: gr = df.groupby(by=by, **ckw) gragg = lambda_agg(gr) if agg is None: yield lambda_agg_agg(gragg.groupby(by=by, **kwargs)) agg = gragg else: lagg = pandas.concat([agg, gragg], sort=False) yield lambda_agg_agg(lagg.groupby(by=by, **kwargs)) agg = lagg return StreamingDataFrame(lambda: iterate_cum(), **self.get_kwargs()) if strategy == 'streaming': def iterate_streaming(): for df in self: gr = df.groupby(by=by, **ckw) gragg = lambda_agg(gr) yield lambda_agg(gragg.groupby(by=by, **kwargs)) return StreamingDataFrame(lambda: iterate_streaming(), **self.get_kwargs()) raise ValueError( # pragma: no cover "Unknown strategy '{0}'".format(strategy)) def ensure_dtype(self, df, dtypes): """ Ensures the :epkg:`dataframe` *df* has types indicated in dtypes. Changes it if not. :param df: dataframe :param dtypes: list of types :return: updated? """ ch = False cols = df.columns for i, (has, exp) in enumerate(zip(df.dtypes, dtypes)): if has != exp: name = cols[i] df[name] = df[name].astype(exp) ch = True return ch def __getitem__(self, *args): """ Implements some of the functionalities :epkg:`pandas` offers for the operator ``[]``. """ if len(args) != 1: raise NotImplementedError("Only a list of columns is supported.") cols = args[0] if isinstance(cols, str): # One column. iter_creation = self.iter_creation def iterate_col(): "iterate on one column" one_col = [cols] for df in iter_creation(): yield df[one_col] return StreamingSeries(iterate_col, **self.get_kwargs()) if not isinstance(cols, list): raise NotImplementedError("Only a list of columns is supported.") def iterate_cols(sdf): """Iterate on columns.""" for df in sdf: yield df[cols] return StreamingDataFrame(lambda: iterate_cols(self), **self.get_kwargs()) def __setitem__(self, index, value): """ Limited set of operators are supported. """ if not isinstance(index, str): raise ValueError( "Only column affected are supported but index=%r." % index) if isinstance(value, (int, float, numpy.number, str)): # Is is equivalent to add_column. iter_creation = self.iter_creation def iterate_fct(): "iterate on rows" iters = iter_creation() for df in iters: dfc = df.copy() dfc[index] = value yield dfc self.iter_creation = iterate_fct elif isinstance(value, StreamingSeries): iter_creation = self.iter_creation def iterate_fct(): "iterate on rows" iters = iter_creation() for df, dfs in zip(iters, value): if df.shape[0] != dfs.shape[0]: raise RuntimeError( "Chunksize or shape are different when " "iterating on two StreamDataFrame at the same " "time: %r != %r." % (df.shape[0], dfs.shape[0])) dfc = df.copy() dfc[index] = dfs yield dfc self.iter_creation = iterate_fct else: raise NotImplementedError( "Not implemented for type(index)=%r and type(value)=%r." % ( type(index), type(value))) def add_column(self, col, value): """ Implements some of the functionalities :epkg:`pandas` offers for the operator ``[]``. @param col new column @param value @see cl StreamingDataFrame or a lambda function @return @see cl StreamingDataFrame ..note:: If value is a @see cl StreamingDataFrame, *chunksize* must be the same for both. .. exref:: :title: Add a new column to a StreamingDataFrame :tag: streaming .. runpython:: :showcode: from pandas import DataFrame from pandas_streaming.df import StreamingDataFrame df = DataFrame(data=dict(X=[4.5, 6, 7], Y=["a", "b", "c"])) sdf = StreamingDataFrame.read_df(df) sdf2 = sdf.add_column("d", lambda row: int(1)) print(sdf2.to_dataframe()) sdf2 = sdf.add_column("d", lambda row: int(1)) print(sdf2.to_dataframe()) """ if not isinstance(col, str): raise NotImplementedError( "Only a column as a string is supported.") if isfunction(value): def iterate_fct(self, value, col): "iterate on rows" for df in self: dfc = df.copy() dfc.insert(dfc.shape[1], col, dfc.apply(value, axis=1)) yield dfc return StreamingDataFrame(lambda: iterate_fct(self, value, col), **self.get_kwargs()) if isinstance(value, (pandas.Series, pandas.DataFrame, StreamingDataFrame)): raise NotImplementedError( "Unable set a new column based on a datadframe.") def iterate_cst(self, value, col): "iterate on rows" for df in self: dfc = df.copy() dfc[col] = value yield dfc return StreamingDataFrame( lambda: iterate_cst(self, value, col), **self.get_kwargs()) def fillna(self, **kwargs): """ Replaces the missing values, calls :epkg:`pandas:DataFrame:fillna`. @param kwargs see :epkg:`pandas:DataFrame:fillna` @return @see cl StreamingDataFrame .. warning:: The function does not check what happens at the limit of every chunk of data. Anything but a constant value will probably have an inconsistent behaviour. """ def iterate_na(self, **kwargs): "iterate on rows" if kwargs.get('inplace', True): kwargs['inplace'] = True for df in self: df.fillna(**kwargs) yield df else: for df in self: yield df.fillna(**kwargs) return StreamingDataFrame( lambda: iterate_na(self, **kwargs), **self.get_kwargs()) def describe(self, percentiles=None, include=None, exclude=None, datetime_is_numeric=False): """ Calls :epkg:`pandas:DataFrame:describe` on every piece of the datasets. *percentiles* are not really accurate but just an indication. :param percentiles: see :epkg:`pandas:DataFrame:describe` :param include: see :epkg:`pandas:DataFrame:describe` :param exclude: see :epkg:`pandas:DataFrame:describe` :param datetime_is_numeric: see :epkg:`pandas:DataFrame:describe` :return: :epkg:`pandas:DataFrame:describe` """ merged = None stack = [] notper = ['count', 'mean', 'std'] for df in self: desc = df.describe( percentiles=percentiles, include=include, exclude=exclude, datetime_is_numeric=datetime_is_numeric) count = desc.loc['count', :] rows = [name for name in desc.index if name not in notper] stack.append(desc.loc[rows, :]) if merged is None: merged = desc merged.loc['std', :] = ( merged.loc['std', :] ** 2 + merged.loc['mean', :] ** 2) * count merged.loc['mean', :] *= count else: merged.loc['count', :] += desc.loc['count', :] merged.loc['mean', :] += desc.loc['mean', :] * count merged.loc['std', :] += ( desc.loc['std', :] ** 2 + desc.loc['mean', :] ** 2) * count merged.loc['max', :] = numpy.maximum( merged.loc['max', :], desc.loc['max', :]) merged.loc['min', :] = numpy.maximum( merged.loc['min', :], desc.loc['min', :]) merged.loc['mean', :] /= merged.loc['count', :] merged.loc['std', :] = ( merged.loc['std', :] / merged.loc['count', :] - merged.loc['mean', :] ** 2) ** 0.5 values = pandas.concat(stack) summary = values.describe(percentiles=percentiles, datetime_is_numeric=datetime_is_numeric) merged = merged.loc[notper, :] rows = [name for name in summary.index if name not in notper] summary = summary.loc[rows, :] return
pandas.concat([merged, summary])
pandas.concat
import pandas as pd import numpy as np import os from sim.Bus import Bus from sim.Route import Route from sim.Busstop import Bus_stop from sim.Passenger import Passenger import matplotlib.pyplot as plt pd.options.mode.chained_assignment = None def getBusRoute(data): my_path = os.path.abspath(os.path.dirname(__file__)) path = my_path + "/data/" + data + "/" _path_trips = path + 'trips.txt' _path_st = path + 'stop_times.txt' trips = pd.DataFrame(pd.read_csv(_path_trips)) stop_times = pd.DataFrame(pd.read_csv(_path_st)) stop_times.dropna(subset=['arrival_time'], inplace=True) bus_routes = {} trip_ids = set(stop_times['trip_id']) try: service_id = trips.iloc[np.random.randint(0, trips.shape[0])]['service_id'] trips = trips[trips['service_id'] == service_id] except: pass # each route_id may correspond to multiple trip_id for trip_id in trip_ids: # A completely same route indicates the same shape_id in trip file, but this field is not 100% provided by opendata try: if 'shape_id' in trips.columns: route_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['shape_id']) block_id = '' dir = '' else: route_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['route_id']) block_id = str(trips[trips['trip_id'] == trip_id].iloc[0]['block_id']) dir = str(trips[trips['trip_id'] == trip_id].iloc[0]['trip_headsign']) except: continue # Identifies a set of dates when service is available for one or more routes. trip = stop_times[stop_times['trip_id'] == trip_id] try: trip['arrival_time'] = pd.to_datetime(trip['arrival_time'], format='%H:%M:%S') except: trip['arrival_time'] = pd.to_datetime(trip['arrival_time'], format="%Y-%m-%d %H:%M:%S") trip = trip.sort_values(by='arrival_time') trip_dist = trip.iloc[:]['shape_dist_traveled'].to_list() if len(trip_dist) <= 0 or np.isnan(trip_dist[0]): continue schedule = ((trip.iloc[:]['arrival_time'].dt.hour * 60 + trip.iloc[:]['arrival_time'].dt.minute) * 60 + trip.iloc[:]['arrival_time'].dt.second).to_list() if len(schedule) <= 2 or np.isnan(schedule[0]): continue b = Bus(id=trip_id, route_id=route_id, stop_list=trip.iloc[:]['stop_id'].to_list(), dispatch_time=schedule[0], block_id=block_id, dir=dir) b.left_stop = [] b.speed = (trip_dist[1] - trip_dist[0]) / (schedule[1] - schedule[0]) b.c_speed = b.speed for i in range(len(trip_dist)): if str(b.stop_list[i]) in b.stop_dist: b.left_stop.append(str(b.stop_list[i]) + '_' + str(i)) b.stop_dist[str(b.stop_list[i]) + '_' + str(i)] = trip_dist[i] b.schedule[str(b.stop_list[i]) + '_' + str(i)] = schedule[i] else: b.left_stop.append(str(b.stop_list[i])) b.stop_dist[str(b.stop_list[i])] = trip_dist[i] b.schedule[str(b.stop_list[i])] = schedule[i] b.stop_list = b.left_stop[:] b.set() if route_id in bus_routes: bus_routes[route_id].append(b) else: bus_routes[route_id] = [b] # Do not consider the route with only 1 trip bus_routes_ = {} for k, v in bus_routes.items(): if len(v) > 1: bus_routes_[k] = v return bus_routes_ def getStopList(data, read=0): my_path = os.path.abspath(os.path.dirname(__file__)) path = my_path + "/data/" + data + "/" _path_stops = path + 'stops.txt' _path_st = path + 'stop_times.txt' _path_trips = path + 'trips.txt' stops = pd.DataFrame(pd.read_csv(_path_stops)) stop_times = pd.DataFrame(pd.read_csv(_path_st)) trips = pd.DataFrame(pd.read_csv(_path_trips)) stop_list = {} select_stops =
pd.merge(stops, stop_times, on=['stop_id'], how='left')
pandas.merge
# ---------------------------------------------------------------------------- # Copyright (c) 2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from qiime2.plugin.testing import TestPluginBase from qiime2.plugins import rescript import qiime2 import pandas as pd import pandas.util.testing as pdt from rescript.dereplicate import _backfill_taxonomy import_data = qiime2.Artifact.import_data class TestDerep(TestPluginBase): package = 'rescript.tests' def setUp(self): super().setUp() self.dereplicate = rescript.actions.dereplicate self.seqs = import_data( 'FeatureData[Sequence]', self.get_data_path('derep-test.fasta')) self.taxa = import_data( 'FeatureData[Taxonomy]', self.get_data_path('derep-taxa.tsv')) self.seqsnumericids = import_data( 'FeatureData[Sequence]', self.get_data_path( 'derep-test-numericIDs.fasta')) self.taxanumericids = import_data( 'FeatureData[Taxonomy]', self.get_data_path( 'derep-taxa-numericIDs.tsv')) def test_dereplicate_uniq(self): seqs, taxa, = self.dereplicate( self.seqs, self.taxa, mode='uniq', rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__chondroitinus', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__brevis', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__damnosus', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei', 'C1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Pediococcus; s__acidilacti', 'A3': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B2': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) # use derep_prefix=True; should still obtain same result if the prefix # seqs bear unique taxonomic labels, as seen in this test case seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='uniq', derep_prefix=True, rank_handles='disable') pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_uniq_99_perc(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='uniq', perc_identity=0.99, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__chondroitinus', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__brevis', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__damnosus', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei', 'C1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Pediococcus; s__acidilacti', 'A3': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B2': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) # use derep_prefix=True; should still obtain same result if the prefix # seqs bear unique taxonomic labels, as seen in this test case seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='uniq', perc_identity=0.99, derep_prefix=True, rank_handles='disable') pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_lca(self): seqs, taxa, = self.dereplicate( self.seqs, self.taxa, mode='lca', rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__damnosus', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei', 'C1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_super_lca_majority(self): seqs, taxa, = self.dereplicate( self.seqs, self.taxa, mode='super', rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__damnosus', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei', 'C1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Pediococcus; s__acidilacti'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_super_lca_majority_perc99(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='super', perc_identity=0.99, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__acidilacti', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) # test that LCA taxonomy assignment works when derep_prefix=True # here derep_prefix + LCA leads to collapsed C-group seqs + LCA taxonomy def test_dereplicate_prefix_lca(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='lca', derep_prefix=True, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_lca_99_perc(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='lca', perc_identity=0.99, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_majority(self): seqs, taxa, = self.dereplicate( self.seqs, self.taxa, mode='majority', rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__damnosus', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei', 'C1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Pediococcus; s__acidilacti'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) # test that majority taxonomy assignment works when derep_prefix=True # all C-group seqs should be merged, and P. acidilacti is the majority def test_dereplicate_prefix_majority(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='majority', derep_prefix=True, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__acidilacti', 'B1a': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__vaginalis', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_dereplicate_majority_perc99(self): seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='majority', perc_identity=0.99, rank_handles='disable') exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__alvei', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__casei', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Pediococcus; s__acidilacti', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) # the above tests check actual derep functionality; this test just makes # sure that the same tests/modes above operate on numeric seq IDs, using # the same test data above (with numeric IDs). # See https://github.com/bokulich-lab/RESCRIPt/issues/49 def test_dereplicate_numericIDs(self): self.dereplicate(self.seqsnumericids, self.taxanumericids, mode='uniq') self.assertTrue(True) self.dereplicate(self.seqsnumericids, self.taxanumericids, mode='lca') self.assertTrue(True) self.dereplicate(self.seqsnumericids, self.taxanumericids, mode='majority') self.assertTrue(True) # Now test with backfilling. These parameters were chosen to set up a # variety of backfill levels. def test_dereplicate_lca_99_perc_backfill(self): # note backfills SILVA-style rank handles by default, so we use default seqs, taxa, = self.dereplicate(self.seqs, self.taxa, mode='lca', perc_identity=0.99) exp_taxa = pd.DataFrame({'Taxon': { 'A1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; ' 'f__Paenibacillaceae; g__Paenibacillus; s__', 'B1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__Lactobacillus; s__', 'C1': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales;' ' f__Lactobacillaceae; g__; s__', 'B1b': 'k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales' '; f__Lactobacillaceae; g__Lactobacillus; s__pseudocasei'}}) pdt.assert_frame_equal(taxa.view(pd.DataFrame).sort_index(), exp_taxa.sort_index(), check_names=False) pdt.assert_index_equal(seqs.view(pd.Series).sort_index().index, exp_taxa.sort_index().index, check_names=False) def test_backfill_taxonomy(self): default_rank_handle = "d__; p__; c__; o__; f__; g__; s__" def _backfill_series(series, rank_handles=default_rank_handle): rank_handles = rank_handles.split(';') return series.apply(_backfill_taxonomy, args=([rank_handles])) taxa = self.taxa.view(pd.Series).sort_index() exp_taxa = taxa.copy() # note: taxonomy is unchanged if rank handles are shorter than taxon backfilled_taxa = _backfill_series(taxa, "my;taxonomy;is;too;short") pdt.assert_series_equal(backfilled_taxa, exp_taxa, check_names=False) # manually backfill to match expected exp_taxa.loc['C1b'] += '; g__; s__' # backfill with defaults backfilled_taxa = _backfill_series(taxa) pdt.assert_series_equal(backfilled_taxa, exp_taxa, check_names=False) # trim back arbitrarily to backfill again trimmed_taxa = backfilled_taxa.apply( lambda x: ';'.join(x.split(';')[:3])) # manually backfill exp_taxa = trimmed_taxa.apply(lambda x: x + '; o__; f__; g__; s__') backfilled_taxa = _backfill_series(trimmed_taxa) pdt.assert_series_equal(backfilled_taxa, exp_taxa, check_names=False) # backfill to root # note: taxon labels can never be empty, so this test covers cases # where there is no classification beyond root/domain/kingdom backfilled_taxa = _backfill_series(trimmed_taxa.apply(lambda x: 'd__')) exp_taxa = trimmed_taxa.apply(lambda x: default_rank_handle) pdt.assert_series_equal(backfilled_taxa, exp_taxa, check_names=False) # backfill custom labels custom_rank_handles = "p;e;a;n;u;t;s" exp_taxa = trimmed_taxa.apply(lambda x: x + ';n;u;t;s') backfilled_taxa = _backfill_series(trimmed_taxa, custom_rank_handles)
pdt.assert_series_equal(backfilled_taxa, exp_taxa, check_names=False)
pandas.util.testing.assert_series_equal
import unittest from abc import ABC import numpy as np import pandas as pd from toolbox.ml.ml_factor_calculation import ModelWrapper, calc_ml_factor, generate_indexes from toolbox.utils.slice_holder import SliceHolder class MyTestCase(unittest.TestCase): def examples(self): # index includes non trading days # exactly 60 occurrences of each ticker first = pd.Timestamp(year=2010, month=1, day=1) self.date_index = pd.MultiIndex.from_product( [pd.date_range(start=first, end=pd.Timestamp(year=2010, month=3, day=1)), ['BOB', 'JEFF', 'CARL']], names=['date', 'symbol']) self.expected_index_e5_10_30 = [ (SliceHolder(first, first + pd.Timedelta(days=29)), SliceHolder(first + pd.Timedelta(days=40), first + pd.Timedelta(days=44))), (SliceHolder(first, first + pd.Timedelta(days=34)), SliceHolder(first + pd.Timedelta(days=45), first + pd.Timedelta(days=49))), (SliceHolder(first, first + pd.Timedelta(days=39)), SliceHolder(first + pd.Timedelta(days=50), first + pd.Timedelta(days=54))), (SliceHolder(first, first + pd.Timedelta(days=44)), SliceHolder(first + pd.Timedelta(days=55), first + pd.Timedelta(days=59))) ] self.expected_index_e7_8_30 = [ (SliceHolder(first, first + pd.Timedelta(days=29)), SliceHolder(first + pd.Timedelta(days=37), first + pd.Timedelta(days=44))), (SliceHolder(first, first + pd.Timedelta(days=37)), SliceHolder(first + pd.Timedelta(days=45), first + pd.Timedelta(days=52))), (SliceHolder(first, first + pd.Timedelta(days=45)), SliceHolder(first + pd.Timedelta(days=53), first + pd.Timedelta(days=59))), ] self.expected_index_e5_10_30 = self.turn_to_datetime64(self.expected_index_e5_10_30) self.expected_index_e7_8_30 = self.turn_to_datetime64(self.expected_index_e7_8_30) self.expected_index_r5_10_30 = [ (SliceHolder(first, first + pd.Timedelta(days=29)), SliceHolder(first + pd.Timedelta(days=40), first + pd.Timedelta(days=44))), (SliceHolder(first + pd.Timedelta(days=5), first + pd.Timedelta(days=34)), SliceHolder(first + pd.Timedelta(days=45), first + pd.Timedelta(days=49))), (SliceHolder(first + pd.Timedelta(days=10), first + pd.Timedelta(days=39)), SliceHolder(first + pd.Timedelta(days=50), first + pd.Timedelta(days=54))), (SliceHolder(first + pd.Timedelta(days=15), first + pd.Timedelta(days=44)), SliceHolder(first + pd.Timedelta(days=55), first + pd.Timedelta(days=59))) ] self.expected_index_r7_8_30 = [ (SliceHolder(first, first + pd.Timedelta(days=29)), SliceHolder(first + pd.Timedelta(days=37), first + pd.Timedelta(days=44))), (SliceHolder(first + pd.Timedelta(days=8), first + pd.Timedelta(days=37)), SliceHolder(first +
pd.Timedelta(days=45)
pandas.Timedelta
# Copyright (c) 2019-2020, NVIDIA CORPORATION. import datetime as dt import re import cupy as cp import numpy as np import pandas as pd import pyarrow as pa import pytest from pandas.util.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) import cudf from cudf.core import DataFrame, Series from cudf.core.index import DatetimeIndex from cudf.tests.utils import NUMERIC_TYPES, assert_eq def data1(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def data2(): return pd.date_range("20010101", "20020215", freq="400h", name="times") def timeseries_us_data(): return pd.date_range( "2019-07-16 00:00:00", "2019-07-16 00:00:01", freq="5555us", name="times", ) def timestamp_ms_data(): return pd.Series( [ "2019-07-16 00:00:00.333", "2019-07-16 00:00:00.666", "2019-07-16 00:00:00.888", ] ) def timestamp_us_data(): return pd.Series( [ "2019-07-16 00:00:00.333333", "2019-07-16 00:00:00.666666", "2019-07-16 00:00:00.888888", ] ) def timestamp_ns_data(): return pd.Series( [ "2019-07-16 00:00:00.333333333", "2019-07-16 00:00:00.666666666", "2019-07-16 00:00:00.888888888", ] ) def numerical_data(): return np.arange(1, 10) fields = ["year", "month", "day", "hour", "minute", "second", "weekday"] @pytest.mark.parametrize("data", [data1(), data2()]) def test_series(data): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) assert_eq(pd_data, gdf_data) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_pandas(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) assert_eq(pd_data_1, gdf_data_1.astype("datetime64[ns]")) assert_eq(pd_data_2, gdf_data_2.astype("datetime64[ns]")) assert_eq(pd_data_1 < pd_data_2, gdf_data_1 < gdf_data_2) assert_eq(pd_data_1 > pd_data_2, gdf_data_1 > gdf_data_2) assert_eq(pd_data_1 == pd_data_2, gdf_data_1 == gdf_data_2) assert_eq(pd_data_1 <= pd_data_2, gdf_data_1 <= gdf_data_2) assert_eq(pd_data_1 >= pd_data_2, gdf_data_1 >= gdf_data_2) @pytest.mark.parametrize( "lhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "rhs_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_series_binops_numpy(lhs_dtype, rhs_dtype): pd_data_1 = pd.Series( pd.date_range("20010101", "20020215", freq="400h", name="times") ) pd_data_2 = pd.Series( pd.date_range("20010101", "20020215", freq="401h", name="times") ) gdf_data_1 = Series(pd_data_1).astype(lhs_dtype) gdf_data_2 = Series(pd_data_2).astype(rhs_dtype) np_data_1 = np.array(pd_data_1).astype(lhs_dtype) np_data_2 = np.array(pd_data_2).astype(rhs_dtype) np.testing.assert_equal(np_data_1, gdf_data_1.to_array()) np.testing.assert_equal(np_data_2, gdf_data_2.to_array()) np.testing.assert_equal( np.less(np_data_1, np_data_2), (gdf_data_1 < gdf_data_2).to_array() ) np.testing.assert_equal( np.greater(np_data_1, np_data_2), (gdf_data_1 > gdf_data_2).to_array() ) np.testing.assert_equal( np.equal(np_data_1, np_data_2), (gdf_data_1 == gdf_data_2).to_array() ) np.testing.assert_equal( np.less_equal(np_data_1, np_data_2), (gdf_data_1 <= gdf_data_2).to_array(), ) np.testing.assert_equal( np.greater_equal(np_data_1, np_data_2), (gdf_data_1 >= gdf_data_2).to_array(), ) @pytest.mark.parametrize("data", [data1(), data2()]) def test_dt_ops(data): pd_data = pd.Series(data.copy()) gdf_data = Series(data.copy()) assert_eq(pd_data == pd_data, gdf_data == gdf_data) assert_eq(pd_data < pd_data, gdf_data < gdf_data) assert_eq(pd_data > pd_data, gdf_data > gdf_data) # libgdf doesn't respect timezones @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_series(data, field): pd_data = pd.Series(data.copy()) gdf_data = Series(pd_data) base = getattr(pd_data.dt, field) test = getattr(gdf_data.dt, field).to_pandas().astype("int64") assert_series_equal(base, test) @pytest.mark.parametrize("data", [data1()]) @pytest.mark.parametrize("field", fields) def test_dt_index(data, field): pd_data = data.copy() gdf_data = DatetimeIndex(pd_data) assert_index_equal( getattr(gdf_data, field).to_pandas(), getattr(pd_data, field) ) def test_setitem_datetime(): df = DataFrame() df["date"] = pd.date_range("20010101", "20010105").values assert np.issubdtype(df.date.dtype, np.datetime64) def test_sort_datetime(): df = pd.DataFrame() df["date"] = np.array( [ np.datetime64("2016-11-20"), np.datetime64("2020-11-20"), np.datetime64("2019-11-20"), np.datetime64("1918-11-20"), np.datetime64("2118-11-20"), ] ) df["vals"] = np.random.sample(len(df["date"])) gdf = cudf.from_pandas(df) s_df = df.sort_values(by="date") s_gdf = gdf.sort_values(by="date") assert_eq(s_df, s_gdf) def test_issue_165(): df_pandas = pd.DataFrame() start_date = dt.datetime.strptime("2000-10-21", "%Y-%m-%d") data = [(start_date + dt.timedelta(days=x)) for x in range(6)] df_pandas["dates"] = data df_pandas["num"] = [1, 2, 3, 4, 5, 6] df_cudf = DataFrame.from_pandas(df_pandas) base = df_pandas.query("dates==@start_date") test = df_cudf.query("dates==@start_date") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date base_mask = df_pandas.dates == start_date assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_ts = pd.Timestamp(start_date) test = df_cudf.query("dates==@start_date_ts") base = df_pandas.query("dates==@start_date_ts") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_ts base_mask = df_pandas.dates == start_date_ts assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 start_date_np = np.datetime64(start_date_ts, "ns") test = df_cudf.query("dates==@start_date_np") base = df_pandas.query("dates==@start_date_np") assert_frame_equal(base, test.to_pandas()) assert len(test) > 0 mask = df_cudf.dates == start_date_np base_mask = df_pandas.dates == start_date_np assert_series_equal(mask.to_pandas(), base_mask, check_names=False) assert mask.to_pandas().sum() > 0 @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) def test_typecast_from_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(dtype) gdf_casted = gdf_data.astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [data1(), data2()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_int64_to_datetime(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data) gdf_data = Series(pd_data) np_casted = np_data.astype(np.int64).astype(dtype) gdf_casted = gdf_data.astype(np.int64).astype(dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [timeseries_us_data()]) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_different_datetime_resolutions(data, dtype): pd_data = pd.Series(data.copy()) np_data = np.array(pd_data).astype(dtype) gdf_series = Series(pd_data).astype(dtype) np.testing.assert_equal(np_data, gdf_series.to_array()) @pytest.mark.parametrize( "data", [timestamp_ms_data(), timestamp_us_data(), timestamp_ns_data()] ) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_string_timstamp_typecast_to_different_datetime_resolutions( data, dtype ): pd_sr = data gdf_sr = cudf.Series.from_pandas(pd_sr) expect = pd_sr.values.astype(dtype) got = gdf_sr.astype(dtype).values_host np.testing.assert_equal(expect, got) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype) gdf_casted = gdf_data.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("from_dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_to_from_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_data = Series(np_data) np_casted = np_data.astype(to_dtype).astype(from_dtype) gdf_casted = gdf_data.astype(to_dtype).astype(from_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize( "from_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) @pytest.mark.parametrize( "to_dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_typecast_from_datetime_to_datetime(data, from_dtype, to_dtype): np_data = data.astype(from_dtype) gdf_col = Series(np_data)._column np_casted = np_data.astype(to_dtype) gdf_casted = gdf_col.astype(to_dtype) np.testing.assert_equal(np_casted, gdf_casted.to_array()) @pytest.mark.parametrize("data", [numerical_data()]) @pytest.mark.parametrize("nulls", ["some", "all"]) def test_to_from_pandas_nulls(data, nulls): pd_data = pd.Series(data.copy().astype("datetime64[ns]")) if nulls == "some": # Fill half the values with NaT pd_data[list(range(0, len(pd_data), 2))] = np.datetime64("nat", "ns") elif nulls == "all": # Fill all the values with NaT pd_data[:] = np.datetime64("nat", "ns") gdf_data = Series.from_pandas(pd_data) expect = pd_data got = gdf_data.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize( "dtype", ["datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]"], ) def test_datetime_to_arrow(dtype): timestamp = ( cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={} ) .reset_index()["timestamp"] .reset_index(drop=True) ) gdf = DataFrame({"timestamp": timestamp.astype(dtype)}) assert_eq(gdf, DataFrame.from_arrow(gdf.to_arrow(preserve_index=False))) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize( "nulls", ["none", pytest.param("some", marks=pytest.mark.xfail)] ) def test_datetime_unique(data, nulls): psr = pd.Series(data) print(data) print(nulls) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.unique() got = gsr.unique() assert_eq(pd.Series(expected), got.to_pandas()) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_datetime_nunique(data, nulls): psr = pd.Series(data) if len(data) > 0: if nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = cudf.from_pandas(psr) expected = psr.nunique() got = gsr.nunique() assert_eq(got, expected) testdata = [ ( Series( ["2018-01-01", None, "2019-01-31", None, "2018-01-01"], dtype="datetime64[ms]", ), True, ), ( Series( [ "2018-01-01", "2018-01-02", "2019-01-31", "2018-03-01", "2018-01-01", ], dtype="datetime64[ms]", ), False, ), ( Series( np.array( ["2018-01-01", None, "2019-12-30"], dtype="datetime64[ms]" ) ), True, ), ] @pytest.mark.parametrize("data, expected", testdata) def test_datetime_has_null_test(data, expected): pd_data = data.to_pandas() count = pd_data.notna().value_counts() expected_count = 0 if False in count.keys(): expected_count = count[False] assert_eq(expected, data.has_nulls) assert_eq(expected_count, data.null_count) def test_datetime_has_null_test_pyarrow(): data = Series( pa.array( [0, np.iinfo("int64").min, np.iinfo("int64").max, None], type=pa.timestamp("ns"), ) ) expected = True expected_count = 1 assert_eq(expected, data.has_nulls) assert_eq(expected_count, data.null_count) def test_datetime_dataframe(): data = { "timearray": np.array( [0, 1, None, 2, 20, None, 897], dtype="datetime64[ms]" ) } gdf = cudf.DataFrame(data) pdf = pd.DataFrame(data) assert_eq(pdf, gdf) assert_eq(pdf.dropna(), gdf.dropna()) assert_eq(pdf.isnull(), gdf.isnull()) data = np.array([0, 1, None, 2, 20, None, 897], dtype="datetime64[ms]") gs = cudf.Series(data) ps = pd.Series(data) assert_eq(ps, gs) assert_eq(ps.dropna(), gs.dropna()) assert_eq(ps.isnull(), gs.isnull()) @pytest.mark.parametrize( "data", [ None, [], pd.Series([]), pd.Index([]), pd.Series([1, 2, 3]), pd.Series([0, 1, -1]), pd.Series([0, 1, -1, 100.3, 200, 47637289]), pd.Series(["2012-10-11", "2010-01-01", "2016-07-07", "2014-02-02"]), [1, 2, 3, 100, -123, -1, 0, 1000000000000679367], pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}), pd.DataFrame( {"year": ["2015", "2016"], "month": ["2", "3"], "day": [4, 5]} ), pd.DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0.5], }, index=["a", "b"], ), pd.DataFrame( { "year": [], "month": [], "day": [], "minute": [], "second": [], "hour": [], }, ), ["2012-10-11", "2010-01-01", "2016-07-07", "2014-02-02"], pd.Index([1, 2, 3, 4]), pd.DatetimeIndex( ["1970-01-01 00:00:00.000000001", "1970-01-01 00:00:00.000000002"], dtype="datetime64[ns]", freq=None, ), pd.DatetimeIndex([], dtype="datetime64[ns]", freq=None,), pd.Series([1, 2, 3]).astype("datetime64[ns]"), pd.Series([1, 2, 3]).astype("datetime64[us]"), pd.Series([1, 2, 3]).astype("datetime64[ms]"), pd.Series([1, 2, 3]).astype("datetime64[s]"), pd.Series([1, 2, 3]).astype("datetime64[D]"), 1, 100, 17, 53.638435454, np.array([1, 10, 15, 478925, 2327623467]), np.array([0.3474673, -10, 15, 478925.34345, 2327623467]), ], ) @pytest.mark.parametrize("dayfirst", [True, False]) @pytest.mark.parametrize("infer_datetime_format", [True, False]) def test_cudf_to_datetime(data, dayfirst, infer_datetime_format): pd_data = data if isinstance(pd_data, (pd.Series, pd.DataFrame, pd.Index)): gd_data = cudf.from_pandas(pd_data) else: if type(pd_data).__module__ == np.__name__: gd_data = cp.array(pd_data) else: gd_data = pd_data expected = pd.to_datetime( pd_data, dayfirst=dayfirst, infer_datetime_format=infer_datetime_format ) actual = cudf.to_datetime( gd_data, dayfirst=dayfirst, infer_datetime_format=infer_datetime_format ) assert_eq(actual, expected) @pytest.mark.parametrize( "data", [ "2", ["1", "2", "3"], ["1/1/1", "2/2/2", "1"], pd.DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0], "blablacol": [1, 1], } ), pd.DataFrame( { "month": [2, 3], "day": [4, 5], "minute": [1, 100], "second": [90, 10], "hour": [1, 0], } ), ], ) def test_to_datetime_errors(data): pd_data = data if isinstance(pd_data, (pd.Series, pd.DataFrame, pd.Index)): gd_data = cudf.from_pandas(pd_data) else: gd_data = pd_data try: pd.to_datetime(pd_data) except Exception as e: with pytest.raises(type(e), match=re.escape(str(e))): cudf.to_datetime(gd_data) else: raise AssertionError("Was expecting `pd.to_datetime` to fail") def test_to_datetime_not_implemented(): with pytest.raises(NotImplementedError): cudf.to_datetime([], exact=False) with pytest.raises(NotImplementedError): cudf.to_datetime([], origin="julian") with pytest.raises(NotImplementedError): cudf.to_datetime([], yearfirst=True) @pytest.mark.parametrize( "data", [ 1, [], pd.Series([]), pd.Index([]), pd.Series([1, 2, 3]), pd.Series([1, 2.4, 3]), pd.Series([0, 1, -1]), pd.Series([0, 1, -1, 100, 200, 47637]), [10, 12, 1200, 15003], pd.DatetimeIndex([], dtype="datetime64[ns]", freq=None,), pd.Index([1, 2, 3, 4]), ], ) @pytest.mark.parametrize("unit", ["D", "s", "ms", "us", "ns"]) def test_to_datetime_units(data, unit): pd_data = data if isinstance(pd_data, (pd.Series, pd.DataFrame, pd.Index)): gd_data = cudf.from_pandas(pd_data) else: gd_data = pd_data expected =
pd.to_datetime(pd_data, unit=unit)
pandas.to_datetime
import datetime import random import pandas as pd from cryptofeed_werks.controllers.aggregators.trades.lib import ( aggregate_threshold, aggregate_trades, ) from .utils import get_data_frame, get_trade def get_samples(trades): return aggregate_trades(get_data_frame(trades)) def test_equal_symbols_and_timestamps_and_ticks(): trades = [{"symbol": "A", "is_equal_timestamp": True, "ticks": [1, 1]}] samples = get_samples(trades) assert len(samples) == 1 def test_equal_symbols_and_timestamps_and_not_equal_ticks(): trades = [{"symbol": "A", "is_equal_timestamp": True, "ticks": [1, -1]}] samples = get_samples(trades) assert len(samples) == 2 def test_not_equal_symbols_and_equal_timestamps_and_ticks(): trades = [ {"symbol": "A", "is_equal_timestamp": True, "ticks": [1, 1]}, {"symbol": "B", "is_equal_timestamp": True, "ticks": [1, 1]}, ] samples = get_samples(trades) assert len(samples) == 2 def test_not_equal_symbols_and_timestamps_and_equal_ticks(): trades = [ {"symbol": "A", "is_equal_timestamp": True, "ticks": [1, 1]}, {"symbol": "A", "is_equal_timestamp": False, "ticks": [-1]}, {"symbol": "B", "is_equal_timestamp": True, "ticks": [1, 1]}, {"symbol": "B", "is_equal_timestamp": False, "ticks": [-1]}, ] samples = get_samples(trades) assert len(samples) == 4 def test_equal_ticks_and_equal_timestamp(): trades = [{"ticks": [1, 1], "is_equal_timestamp": True}] samples = get_samples(trades) assert len(samples) == 1 def test_equal_ticks_and_not_equal_timestamp(): trades = [{"ticks": [1, 1], "is_equal_timestamp": False}] samples = get_samples(trades) assert len(samples) == 2 def test_equal_ticks_and_equal_nanoseconds(): trades = [ { "ticks": [1, 1], "is_equal_timestamp": True, "nanoseconds": random.random() * 100, } ] samples = get_samples(trades) assert len(samples) == 1 def test_equal_ticks_and_not_equal_nanoseconds(): trades = [] nanoseconds = random.random() * 100 for index, tick in enumerate([1, 1]): nanoseconds += index trade = { "ticks": [tick], "is_equal_timestamp": True, "nanoseconds": nanoseconds, } trades.append(trade) samples = get_samples(trades) assert len(samples) == 2 def test_aggregate_threshold_four(): now = datetime.datetime.utcnow() trades = [ get_trade(timestamp=now, price=1, notional=1, tick_rule=-1), get_trade( timestamp=now + pd.Timedelta("1s"), price=1, notional=1, tick_rule=-1 ), get_trade( timestamp=now + +pd.Timedelta("2s"), price=1, notional=1, tick_rule=1 ), get_trade( timestamp=now + +pd.Timedelta("2s"), price=1, notional=1, tick_rule=1 ), ] data_frame = pd.DataFrame(trades) df = aggregate_trades(data_frame) data = aggregate_threshold(df, attr="volume", value=2) assert len(data) == 1 assert_significant(data[0]) assert_insignificant(data[0], buy=2, total=4) def test_aggregate_threshold_eight(): now = datetime.datetime.utcnow() trades = [ get_trade(timestamp=now, price=1, notional=1, tick_rule=1), get_trade(timestamp=now, price=1, notional=1, tick_rule=1), get_trade( timestamp=now +
pd.Timedelta("1s")
pandas.Timedelta
# -*- coding: utf-8 -*- """Script for formatting the Fantasia Database The database consists of twenty young and twenty elderly healthy subjects. All subjects remained in a resting state in sinus rhythm while watching the movie Fantasia (Disney, 1940) to help maintain wakefulness. The continuous ECG signals were digitized at 250 Hz. Each heartbeat was annotated using an automated arrhythmia detection algorithm, and each beat annotation was verified by visual inspection. Steps: 1. Download the ZIP database from https://physionet.org/content/fantasia/1.0.0/ 2. Open it with a zip-opener (WinZip, 7zip). 3. Extract the folder of the same name (named 'fantasia-database-1.0.0') to the same folder as this script. 4. Run this script. """ import pandas as pd import numpy as np import wfdb import os files = os.listdir("./fantasia-database-1.0.0/") files = [s.replace('.dat', '') for s in files if ".dat" in s] dfs_ecg = [] dfs_rpeaks = [] for i, participant in enumerate(files): data, info = wfdb.rdsamp("./fantasia-database-1.0.0/" + participant) # Get signal data = pd.DataFrame(data, columns=info["sig_name"]) data = data[["ECG"]] data["Participant"] = "Fantasia_" + participant data["Sample"] = range(len(data)) data["Sampling_Rate"] = info['fs'] data["Database"] = "Fantasia" # Get annotations anno = wfdb.rdann("./fantasia-database-1.0.0/" + participant, 'ecg') anno = anno.sample[np.where(np.array(anno.symbol) == "N")[0]] anno = pd.DataFrame({"Rpeaks": anno}) anno["Participant"] = "Fantasia_" + participant anno["Sampling_Rate"] = info['fs'] anno["Database"] = "Fantasia" # Store with the rest dfs_ecg.append(data) dfs_rpeaks.append(anno) # Save df_ecg =
pd.concat(dfs_ecg)
pandas.concat
# -*- coding: utf-8 -*- # author: ysoftman # python version : 3.x # desc : pandas test import matplotlib.pyplot as plt import numpy as np import pandas as pd # pandas 에는 Timestamp, DatetimeIndex, Period, PeriodIndex 클래스가 있다. # 타임스탬프 형식들 print(pd.Timestamp('2/15/2019 07:20PM')) print(pd.Timestamp('2019-02-15 07:20PM')) # 한달 후 계산 print(pd.Timestamp('2/15/2019 07:20PM') + pd.DateOffset(months=1)) # 1월달로 설정 print(pd.Timestamp('2/15/2019 07:20PM') + pd.DateOffset(month=1)) # 10일 후 계산 print(pd.Timestamp('2/15/2019 07:20PM') + pd.DateOffset(days=10)) # 10일로 설정 print(pd.Timestamp('2/15/2019 07:20PM') + pd.DateOffset(day=10)) # datetime 형식으로 변경 dt = pd.Timestamp('2019-02-15 07:20PM').to_pydatetime() print(dt.year) print(dt.month) print(dt.day) print(dt.hour) print(dt.minute) print(dt.second) print() # period 는 일정 기간을 나타내는 형식으로, 특정 날이나, 달을 나타낸다. # 'M' 달을 나타낸다. print(pd.Period('02/2019')) # 'D' 일을 나타낸다. print(pd.Period('02/15/2019')) print() # timestamp 로 series 를 생성 t1 = pd.Series(list('abc'), [pd.Timestamp( '2016-09-01'),
pd.Timestamp('2016-09-02')
pandas.Timestamp
from typing import List import pandas as pd import geopandas as gpd from pandas import ExcelFile import matplotlib.pyplot as plt import matplotlib.animation as animation def main(): excel_data: ExcelFile = ExcelFile("FMDdata.xlsx") orig_report_years: List[pd.DataFrame] = [] report_years: List[pd.DataFrame] = [] for year in range(7, 17): orig_report_years.append(pd.read_excel(excel_data, sheet_name=f'20{year:02}')) year = 2007 for yearly_report in orig_report_years: yearly_report = yearly_report.rename(columns={"Country name": "NAME"}) yearly_report = yearly_report.groupby(["NAME"], as_index=False).sum() yearly_report['Year'] = year report_years.append(yearly_report) year += 1 world = gpd.read_file("natural_earth_vector/10m_cultural/ne_10m_admin_0_countries.shp") world_fmd_report: List[gpd.GeoDataFrame] = [] for report in report_years: report["NAME"].replace(to_replace="China (People's Rep. of)", value="China", inplace=True) report["NAME"].replace(to_replace="Congo (Dem. Rep. of the)", value="Dem. Rep. Congo", inplace=True) report["NAME"].replace(to_replace="Korea (Dem. People's Rep.)", value="North Korea", inplace=True) report["NAME"].replace(to_replace="Palestinian Auton. Territories", value="Palestine", inplace=True) report["NAME"].replace(to_replace="Chinese Taipei", value="Taiwan", inplace=True) report["NAME"].replace(to_replace="Hong Kong (SAR - PRC)", value="Hong Kong", inplace=True) report["NAME"].replace(to_replace="Korea (Rep. of)", value="South Korea", inplace=True) map: gpd.GeoDataFrame = world.copy() map_disease: gpd.GeoDataFrame =
pd.merge(left=map, right=report, how="outer", on="NAME")
pandas.merge
"""The noisemodels module contains all noisemodels available in Pastas. Author: <NAME>, 2017 """ from abc import ABC from logging import getLogger import numpy as np import pandas as pd from .decorators import set_parameter logger = getLogger(__name__) __all__ = ["NoiseModel", "NoiseModel2"] class NoiseModelBase(ABC): _name = "NoiseModelBase" def __init__(self): self.nparam = 0 self.name = "noise" self.parameters = pd.DataFrame( columns=["initial", "pmin", "pmax", "vary", "name"]) def set_init_parameters(self, oseries=None): if oseries is not None: pinit = oseries.index.to_series().diff() / pd.Timedelta(1, "d") pinit = pinit.median() else: pinit = 14.0 self.parameters.loc["noise_alpha"] = (pinit, 0, 5000, True, "noise") @set_parameter def set_initial(self, name, value): """Internal method to set the initial parameter value Notes ----- The preferred method for parameter setting is through the model. """ if name in self.parameters.index: self.parameters.loc[name, "initial"] = value else: print("Warning:", name, "does not exist") @set_parameter def set_pmin(self, name, value): """Internal method to set the minimum value of the noisemodel. Notes ----- The preferred method for parameter setting is through the model. """ if name in self.parameters.index: self.parameters.loc[name, "pmin"] = value else: print("Warning:", name, "does not exist") @set_parameter def set_pmax(self, name, value): """Internal method to set the maximum parameter values. Notes ----- The preferred method for parameter setting is through the model. """ if name in self.parameters.index: self.parameters.loc[name, "pmax"] = value else: print("Warning:", name, "does not exist") @set_parameter def set_vary(self, name, value): """Internal method to set if the parameter is varied during optimization. Notes ----- The preferred method for parameter setting is through the model. """ self.parameters.loc[name, "vary"] = value def to_dict(self): return {"type": self._name} class NoiseModel(NoiseModelBase): """Noise model with exponential decay of the residual and weighting with the time step between observations. Notes ----- Calculates the noise [1]_ according to: .. math:: v(t1) = r(t1) - r(t0) * exp(- (t1 - t0) / alpha) Note that in the referenced paper, alpha is defined as the inverse of alpha used in Pastas. The unit of the alpha parameter is always in days. Examples -------- It can happen that the noisemodel is used during model calibration to explain most of the variation in the data. A recommended solution is to scale the initial parameter with the model timestep, E.g.:: >>> n = NoiseModel() >>> n.set_initial("noise_alpha", 1.0 * ml.get_dt(ml.freq)) References ---------- .. [1] <NAME>, <NAME>., and <NAME> (2005), Modeling irregularly spaced residual series as a continuous stochastic process, Water Resour. Res., 41, W12404, doi:10.1029/2004WR003726. """ _name = "NoiseModel" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 1 self.set_init_parameters() def simulate(self, res, parameters): """ Parameters ---------- res : pandas.Series The residual series. parameters : array-like, optional Alpha parameters used by the noisemodel. Returns ------- noise: pandas.Series Series of the noise. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values / pd.Timedelta("1d") # res.values is needed else it gets messed up with the dates v = res.values[1:] - np.exp(-odelt / alpha) * res.values[:-1] res.iloc[1:] = v * self.weights(alpha, odelt) res.iloc[0] = 0 res.name = "Noise" return res @staticmethod def weights(alpha, odelt): """Method to calculate the weights for the noise based on the sum of weighted squared noise (SWSI) method. Parameters ---------- alpha odelt: Returns ------- """ # divide power by 2 as nu / sigma is returned power = 1.0 / (2.0 * odelt.size) exp = np.exp(-2.0 / alpha * odelt) # Twice as fast as 2*odelt/alpha w = np.exp(power * np.sum(np.log(1.0 - exp))) / np.sqrt(1.0 - exp) return w class NoiseModel2(NoiseModelBase): """ Noise model with exponential decay of the residual. Notes ----- Calculates the noise according to: .. math:: v(t1) = r(t1) - r(t0) * exp(- (t1 - t0) / alpha) The unit of the alpha parameter is always in days. Examples -------- It can happen that the noisemodel is used during model calibration to explain most of the variation in the data. A recommended solution is to scale the initial parameter with the model timestep, E.g.:: >>> n = NoiseModel() >>> n.set_initial("noise_alpha", 1.0 * ml.get_dt(ml.freq)) """ _name = "NoiseModel2" def __init__(self): NoiseModelBase.__init__(self) self.nparam = 1 self.set_init_parameters() @staticmethod def simulate(res, parameters): """ Parameters ---------- res : pandas.Series The residual series. parameters : array_like, optional Alpha parameters used by the noisemodel. Returns ------- noise: pandas.Series Series of the noise. """ alpha = parameters[0] odelt = (res.index[1:] - res.index[:-1]).values /
pd.Timedelta("1d")
pandas.Timedelta
import sys import numpy as np import pandas as pd import json import os from joblib import Parallel, delayed from gtad_lib import opts def load_json(file): with open(file) as json_file: data = json.load(json_file) return data def get_infer_dict(opt): df =
pd.read_csv(opt["video_info"])
pandas.read_csv
import os import glob import csv import pandas as pd import numpy as np def save_as_csv(): """ Saves all raw txt files as separate csvs to later merge. """ # Biomedical data: read_aliquot = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_aliquot_ov.txt", sep="\t", ) read_aliquot.drop(0, 0, inplace=True) read_aliquot.to_csv(r"./01_csv_data/biomed_aliquot.csv", index=None) no_duplicates_df = read_aliquot.drop_duplicates(subset=["bcr_patient_uuid"]) no_duplicates_df.to_csv("./01_csv_data/biomed_aliquot_short.csv", index=None) read_analyte = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_analyte_ov.txt", sep="\t", ) read_analyte.drop(0, 0, inplace=True) read_analyte.to_csv(r"./01_csv_data/biomed_analyte.csv", index=None) read_diag_slides = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_diagnostic_slides_ov.txt", sep="\t", ) read_diag_slides.drop(0, 0, inplace=True) read_diag_slides.to_csv(r"./01_csv_data/biomed_diag_slides.csv", index=None) read_portion = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_portion_ov.txt", sep="\t", ) read_portion.drop(0, 0, inplace=True) read_portion.to_csv(r"./01_csv_data/biomed_portion.csv", index=None) read_protocol = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_protocol_ov.txt", sep="\t", ) read_protocol.drop(0, 0, inplace=True) read_protocol.to_csv(r"./01_csv_data/biomed_protocol.csv", index=None) read_sample = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_sample_ov.txt", sep="\t", ) read_sample.drop(0, 0, inplace=True) read_sample.to_csv(r"./01_csv_data/biomed_sample.csv", index=None) read_shipment_portion = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_shipment_portion_ov.txt", sep="\t", ) read_shipment_portion.drop(0, 0, inplace=True) read_shipment_portion.to_csv( r"./01_csv_data/biomed_shipment_portion.csv", index=None ) read_slide = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_biospecimen_slide_ov.txt", sep="\t", ) read_slide.drop(0, 0, inplace=True) read_slide.to_csv(r"./01_csv_data/biomed_slide.csv", index=None) read_ssf_norm = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_ssf_normal_controls_ov.txt", sep="\t", ) read_ssf_norm.drop([0, 1], 0, inplace=True) read_ssf_norm.to_csv(r"./01_csv_data/biomed_ssf_norm.csv", index=None) read_ssf_tumor = pd.read_csv( r"./00_raw_data/gdc_download_biomedical_ov/nationwidechildrens.org_ssf_tumor_samples_ov.txt", sep="\t", ) read_ssf_tumor.drop([0, 1], 0, inplace=True) read_ssf_tumor.to_csv(r"./01_csv_data/biomed_ssf_tumor.csv", index=None) # Clinical data: read_drug = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_drug_ov.txt", sep="\t", ) read_drug.drop([0, 1], 0, inplace=True) read_drug.to_csv(r"./01_csv_data/clinical_drug.csv", index=None) read_v1_nte = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_follow_up_v1.0_nte_ov.txt", sep="\t", ) read_v1_nte.drop([0, 1], 0, inplace=True) read_v1_nte.to_csv(r"./01_csv_data/clinical_v1_nte.csv", index=None) read_v1 = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_follow_up_v1.0_ov.txt", sep="\t", ) read_v1.drop([0, 1], 0, inplace=True) read_v1.to_csv(r"./01_csv_data/clinical_v1.csv", index=None) read_nte = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_nte_ov.txt", sep="\t", ) read_nte.drop([0, 1], 0, inplace=True) read_nte.to_csv(r"./01_csv_data/clinical_nte.csv", index=None) read_omf_v4 = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_omf_v4.0_ov.txt", sep="\t", ) read_omf_v4.drop([0, 1], 0, inplace=True) read_omf_v4.to_csv(r"./01_csv_data/clinical_omf_v4.csv", index=None) read_patient = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_patient_ov.txt", sep="\t", ) read_patient.drop([0, 1], 0, inplace=True) read_patient.to_csv(r"./01_csv_data/clinical_patient.csv", index=None) read_radiation = pd.read_csv( r"./00_raw_data/gdc_download_clinical_ov/nationwidechildrens.org_clinical_radiation_ov.txt", sep="\t", ) read_radiation.drop([0, 1], 0, inplace=True) read_radiation.to_csv(r"./01_csv_data/clinical_radiation.csv", index=None) def merge_csv(): """ Concatenates all csvs into a single merged_bioclin_data.csv """ path = "./01_csv_data" all_files = glob.glob(os.path.join(path, "*.csv")) all_df = [] for f in all_files: df =
pd.read_csv(f, sep=",")
pandas.read_csv
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx = period_range("2007-01", periods=20, freq="M") # values is an array of Period, thus can retrieve freq tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) msg = "freq not specified and cannot be inferred" with pytest.raises(ValueError, match=msg): PeriodIndex(idx._ndarray_values) with pytest.raises(ValueError, match=msg): PeriodIndex(list(idx._ndarray_values)) msg = "'Period' object is not iterable" with pytest.raises(TypeError, match=msg): PeriodIndex(data=Period("2007", freq="A")) result = PeriodIndex(iter(idx)) tm.assert_index_equal(result, idx) result = PeriodIndex(idx) tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq="M") tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq=offsets.MonthEnd()) tm.assert_index_equal(result, idx) assert result.freq == "M" result = PeriodIndex(idx, freq="2M") tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq=offsets.MonthEnd(2)) tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq="D") exp = idx.asfreq("D", "e") tm.assert_index_equal(result, exp) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype("M8[us]")) msg = r"Wrong dtype: datetime64\[us\]" with pytest.raises(ValueError, match=msg): PeriodIndex(vals, freq="D") @pytest.mark.parametrize("box", [None, "series", "index"]) def test_constructor_datetime64arr_ok(self, box): # https://github.com/pandas-dev/pandas/issues/23438 data = pd.date_range("2017", periods=4, freq="M") if box is None: data = data._values elif box == "series": data = pd.Series(data) result = PeriodIndex(data, freq="D") expected = PeriodIndex( ["2017-01-31", "2017-02-28", "2017-03-31", "2017-04-30"], freq="D" ) tm.assert_index_equal(result, expected) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = PeriodIndex(["2013-01", "2013-03"], dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-03"], freq="M") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[M]" idx = PeriodIndex(["2013-01-05", "2013-03-05"], dtype="period[3D]") exp = PeriodIndex(["2013-01-05", "2013-03-05"], freq="3D") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[3D]" # if we already have a freq and its not the same, then asfreq # (not changed) idx = PeriodIndex(["2013-01-01", "2013-01-02"], freq="D") res = PeriodIndex(idx, dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-01"], freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" res = PeriodIndex(idx, freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" msg = "specified freq and dtype are different" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex(["2011-01"], freq="M", dtype="period[D]") def test_constructor_empty(self): idx = pd.PeriodIndex([], freq="M") assert isinstance(idx, PeriodIndex) assert len(idx) == 0 assert idx.freq == "M" with pytest.raises(ValueError, match="freq not specified"): pd.PeriodIndex([]) def test_constructor_pi_nat(self): idx = PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")] ) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array([Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")]) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex( [pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M")] ) exp = PeriodIndex(["NaT", "NaT", "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array( [ pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M"), ] ) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex([pd.NaT, pd.NaT, "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex([pd.NaT, pd.NaT]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array([pd.NaT, pd.NaT])) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(["NaT", "NaT"]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array(["NaT", "NaT"])) def test_constructor_incompat_freq(self): msg = "Input has different freq=D from PeriodIndex\\(freq=M\\)" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) ) # first element is pd.NaT with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) ) def test_constructor_mixed(self): idx = PeriodIndex(["2011-01", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex(["NaT", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["NaT", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex([Period("2011-01-01", freq="D"), pd.NaT, "2012-01-01"]) exp = PeriodIndex(["2011-01-01", "NaT", "2012-01-01"], freq="D") tm.assert_index_equal(idx, exp) def test_constructor_simple_new(self): idx = period_range("2007-01", name="p", periods=2, freq="M") result = idx._simple_new(idx, name="p", freq=idx.freq) tm.assert_index_equal(result, idx) result = idx._simple_new(idx.astype("i8"), name="p", freq=idx.freq) tm.assert_index_equal(result, idx) def test_constructor_simple_new_empty(self): # GH13079 idx = PeriodIndex([], freq="M", name="p") result = idx._simple_new(idx, name="p", freq="M") tm.assert_index_equal(result, idx) @pytest.mark.parametrize("floats", [[1.1, 2.1], np.array([1.1, 2.1])]) def test_constructor_floats(self, floats): msg = r"PeriodIndex\._simple_new does not accept floats" with pytest.raises(TypeError, match=msg): pd.PeriodIndex._simple_new(floats, freq="M") msg = "PeriodIndex does not allow floating point in construction" with pytest.raises(TypeError, match=msg): pd.PeriodIndex(floats, freq="M") def test_constructor_nat(self): msg = "start and end must not be NaT" with pytest.raises(ValueError, match=msg): period_range(start="NaT", end="2011-01-01", freq="M") with pytest.raises(ValueError, match=msg): period_range(start="2011-01-01", end="NaT", freq="M") def test_constructor_year_and_quarter(self): year = pd.Series([2001, 2002, 2003]) quarter = year - 2000 idx = PeriodIndex(year=year, quarter=quarter) strs = ["%dQ%d" % t for t in zip(quarter, year)] lops = list(map(Period, strs)) p = PeriodIndex(lops) tm.assert_index_equal(p, idx) @pytest.mark.parametrize( "func, warning", [(PeriodIndex, FutureWarning), (period_range, None)] ) def test_constructor_freq_mult(self, func, warning): # GH #7811 with tm.assert_produces_warning(warning): # must be the same, but for sure... pidx = func(start="2014-01", freq="2M", periods=4) expected = PeriodIndex(["2014-01", "2014-03", "2014-05", "2014-07"], freq="2M") tm.assert_index_equal(pidx, expected) with
tm.assert_produces_warning(warning)
pandas.util.testing.assert_produces_warning
import torch from tqdm import tqdm # for displaying progress bar import os import pandas as pd from models import EmissionModel, TransitionModel, HMM import numpy as np class Trainer: def __init__(self, model, config, lr): self.model = model self.config = config self.lr = lr self.optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=0.00001) self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, 'min') self.train_df = pd.DataFrame(columns=["loss","lr"]) self.valid_df =
pd.DataFrame(columns=["loss","lr"])
pandas.DataFrame
import pandas as pd from flask import Flask from flask_restful import Resource, Api import sqlite3 import json import os app = Flask(__name__) api = Api(app) class AppGenreController(Resource): def get(self): data = pd.read_csv(".\DataFiles\AppleStore.csv") data_music_and_book = data.loc[(data['prime_genre']=='Music') | (data['prime_genre']=='Book')].sort_values(['rating_count_tot'],ascending=False).head(n=10) db = sqlite3.connect('.\DataFiles\db') db.text_factory = str df = pd.DataFrame({'id':data_music_and_book.id, 'track_name': data_music_and_book.track_name, 'n_citacoes':data_music_and_book.rating_count_tot, 'size_bytes':data_music_and_book.rating_count_tot, 'price':data_music_and_book.price, 'prime_genre':data_music_and_book.prime_genre } ) df.to_csv(os.path.join('.\DataFiles', 'rating_genre.csv') , sep=',', encoding='utf-8',index=False) df.to_sql("rating_genre", db, if_exists="replace") dfreader =
pd.read_sql("select id,track_name,n_citacoes,size_bytes,price,prime_genre from rating_genre", db)
pandas.read_sql
import numpy as np import pytest import pandas as pd from pandas.core.sorting import nargsort import pandas.util.testing as tm from .base import BaseExtensionTests class BaseMethodsTests(BaseExtensionTests): """Various Series and DataFrame methods.""" @pytest.mark.parametrize('dropna', [True, False]) def test_value_counts(self, all_data, dropna): all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Series(all_data).value_counts(dropna=dropna).sort_index() expected = pd.Series(other).value_counts( dropna=dropna).sort_index() self.assert_series_equal(result, expected) def test_count(self, data_missing): df = pd.DataFrame({"A": data_missing}) result = df.count(axis='columns') expected = pd.Series([0, 1]) self.assert_series_equal(result, expected) def test_series_count(self, data_missing): # GH#26835 ser = pd.Series(data_missing) result = ser.count() expected = 1 assert result == expected def test_apply_simple_series(self, data): result = pd.Series(data).apply(id) assert isinstance(result, pd.Series) def test_argsort(self, data_for_sorting): result = pd.Series(data_for_sorting).argsort() expected = pd.Series(np.array([2, 0, 1], dtype=np.int64)) self.assert_series_equal(result, expected) def test_argsort_missing(self, data_missing_for_sorting): result = pd.Series(data_missing_for_sorting).argsort() expected = pd.Series(np.array([1, -1, 0], dtype=np.int64)) self.assert_series_equal(result, expected) @pytest.mark.parametrize('na_position, expected', [ ('last', np.array([2, 0, 1], dtype=np.dtype('intp'))), ('first', np.array([1, 2, 0], dtype=np.dtype('intp'))) ]) def test_nargsort(self, data_missing_for_sorting, na_position, expected): # GH 25439 result = nargsort(data_missing_for_sorting, na_position=na_position) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values(self, data_for_sorting, ascending): ser = pd.Series(data_for_sorting) result = ser.sort_values(ascending=ascending) expected = ser.iloc[[2, 0, 1]] if not ascending: expected = expected[::-1] self.assert_series_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values_missing(self, data_missing_for_sorting, ascending): ser = pd.Series(data_missing_for_sorting) result = ser.sort_values(ascending=ascending) if ascending: expected = ser.iloc[[2, 0, 1]] else: expected = ser.iloc[[0, 2, 1]] self.assert_series_equal(result, expected) @pytest.mark.parametrize('ascending', [True, False]) def test_sort_values_frame(self, data_for_sorting, ascending): df = pd.DataFrame({"A": [1, 2, 1], "B": data_for_sorting}) result = df.sort_values(['A', 'B']) expected = pd.DataFrame({"A": [1, 1, 2], 'B': data_for_sorting.take([2, 0, 1])}, index=[2, 0, 1]) self.assert_frame_equal(result, expected) @pytest.mark.parametrize('box', [pd.Series, lambda x: x]) @pytest.mark.parametrize('method', [lambda x: x.unique(), pd.unique]) def test_unique(self, data, box, method): duplicated = box(data._from_sequence([data[0], data[0]])) result = method(duplicated) assert len(result) == 1 assert isinstance(result, type(data)) assert result[0] == duplicated[0] @pytest.mark.parametrize('na_sentinel', [-1, -2]) def test_factorize(self, data_for_grouping, na_sentinel): labels, uniques = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) expected_labels = np.array([0, 0, na_sentinel, na_sentinel, 1, 1, 0, 2], dtype=np.intp) expected_uniques = data_for_grouping.take([0, 4, 7]) tm.assert_numpy_array_equal(labels, expected_labels) self.assert_extension_array_equal(uniques, expected_uniques) @pytest.mark.parametrize('na_sentinel', [-1, -2]) def test_factorize_equivalence(self, data_for_grouping, na_sentinel): l1, u1 = pd.factorize(data_for_grouping, na_sentinel=na_sentinel) l2, u2 = data_for_grouping.factorize(na_sentinel=na_sentinel) tm.assert_numpy_array_equal(l1, l2) self.assert_extension_array_equal(u1, u2) def test_factorize_empty(self, data): labels, uniques = pd.factorize(data[:0]) expected_labels = np.array([], dtype=np.intp) expected_uniques = type(data)._from_sequence([], dtype=data[:0].dtype) tm.assert_numpy_array_equal(labels, expected_labels) self.assert_extension_array_equal(uniques, expected_uniques) def test_fillna_copy_frame(self, data_missing): arr = data_missing.take([1, 1]) df = pd.DataFrame({"A": arr}) filled_val = df.iloc[0, 0] result = df.fillna(filled_val) assert df.A.values is not result.A.values def test_fillna_copy_series(self, data_missing): arr = data_missing.take([1, 1]) ser = pd.Series(arr) filled_val = ser[0] result = ser.fillna(filled_val) assert ser._values is not result._values assert ser._values is arr def test_fillna_length_mismatch(self, data_missing): msg = "Length of 'value' does not match." with pytest.raises(ValueError, match=msg): data_missing.fillna(data_missing.take([1])) def test_combine_le(self, data_repeated): # GH 20825 # Test that combine works when doing a <= (le) comparison orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series([a <= b for (a, b) in zip(list(orig_data1), list(orig_data2))]) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series([a <= val for a in list(orig_data1)]) self.assert_series_equal(result, expected) def test_combine_add(self, data_repeated): # GH 20825 orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) with np.errstate(over='ignore'): expected = pd.Series( orig_data1._from_sequence([a + b for (a, b) in zip(list(orig_data1), list(orig_data2))])) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series( orig_data1._from_sequence([a + val for a in list(orig_data1)])) self.assert_series_equal(result, expected) def test_combine_first(self, data): # https://github.com/pandas-dev/pandas/issues/24147 a = pd.Series(data[:3]) b = pd.Series(data[2:5], index=[2, 3, 4]) result = a.combine_first(b) expected = pd.Series(data[:5]) self.assert_series_equal(result, expected) @pytest.mark.parametrize('frame', [True, False]) @pytest.mark.parametrize('periods, indices', [ (-2, [2, 3, 4, -1, -1]), (0, [0, 1, 2, 3, 4]), (2, [-1, -1, 0, 1, 2]), ]) def test_container_shift(self, data, frame, periods, indices): # https://github.com/pandas-dev/pandas/issues/22386 subset = data[:5] data = pd.Series(subset, name='A') expected = pd.Series(subset.take(indices, allow_fill=True), name='A') if frame: result = data.to_frame(name='A').assign(B=1).shift(periods) expected = pd.concat([ expected, pd.Series([1] * 5, name='B').shift(periods) ], axis=1) compare = self.assert_frame_equal else: result = data.shift(periods) compare = self.assert_series_equal compare(result, expected) @pytest.mark.parametrize('periods, indices', [ [-4, [-1, -1]], [-1, [1, -1]], [0, [0, 1]], [1, [-1, 0]], [4, [-1, -1]] ]) def test_shift_non_empty_array(self, data, periods, indices): # https://github.com/pandas-dev/pandas/issues/23911 subset = data[:2] result = subset.shift(periods) expected = subset.take(indices, allow_fill=True) self.assert_extension_array_equal(result, expected) @pytest.mark.parametrize('periods', [ -4, -1, 0, 1, 4 ]) def test_shift_empty_array(self, data, periods): # https://github.com/pandas-dev/pandas/issues/23911 empty = data[:0] result = empty.shift(periods) expected = empty self.assert_extension_array_equal(result, expected) def test_shift_fill_value(self, data): arr = data[:4] fill_value = data[0] result = arr.shift(1, fill_value=fill_value) expected = data.take([0, 0, 1, 2]) self.assert_extension_array_equal(result, expected) result = arr.shift(-2, fill_value=fill_value) expected = data.take([2, 3, 0, 0]) self.assert_extension_array_equal(result, expected) def test_hash_pandas_object_works(self, data, as_frame): # https://github.com/pandas-dev/pandas/issues/23066 data = pd.Series(data) if as_frame: data = data.to_frame() a = pd.util.hash_pandas_object(data) b = pd.util.hash_pandas_object(data) self.assert_equal(a, b) def test_searchsorted(self, data_for_sorting, as_series): b, c, a = data_for_sorting arr = type(data_for_sorting)._from_sequence([a, b, c]) if as_series: arr = pd.Series(arr) assert arr.searchsorted(a) == 0 assert arr.searchsorted(a, side="right") == 1 assert arr.searchsorted(b) == 1 assert arr.searchsorted(b, side="right") == 2 assert arr.searchsorted(c) == 2 assert arr.searchsorted(c, side="right") == 3 result = arr.searchsorted(arr.take([0, 2])) expected = np.array([0, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
# import libs import pandas as pd import quandl from datetime import timedelta import numpy as np from sklearn.ensemble import GradientBoostingRegressor from datetime import datetime from datetime import timedelta import warnings warnings.filterwarnings("ignore") # main class cryptocast class cryptocast: # method to init def __init__(self): # add coin info to self self.coin = 'btc' # add slot for data self.data = None # method to get the data def get_data(self): # read in api_key with open('cryptocast/api_key.txt') as key_file: api_key = key_file.read() # set quandl config quandl.ApiConfig.api_key = api_key # get the dataset raw_df = quandl.get('BITFINEX/BTCEUR') # store data self.data = raw_df # method to prep data def prep_data(self): # load data prep_df = self.data # reset the index prep_df.reset_index(inplace = True) # select relevant vars prep_df = prep_df[['Date', 'High', 'Volume', 'Ask']] # declare date format prep_df.Date =
pd.to_datetime(prep_df.Date)
pandas.to_datetime
import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall from pandas import ( DataFrame, DatetimeIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.window import ExponentialMovingWindow def test_doc_string(): df =
DataFrame({"B": [0, 1, 2, np.nan, 4]})
pandas.DataFrame
import torch from quilt3 import Package from collections import defaultdict from torch.utils.data import Dataset import pandas as pd import os import json from featuredb import FeatureDatabase from sklearn import preprocessing import numpy as np from sklearn.decomposition import PCA class QuiltAicsFeatures(Dataset): def __init__( self, num_batches, BATCH_SIZE, model_kwargs, shuffle=True, corr=False, train=True, mask=False ): """ Args: num_batches: Number of batches of synthetic data BATCH_SIZE: batchsize of synthetic data model_kwargs: dictionary containing "x_dim" which indicates input data size shuffle: True sets condition vector in input data to 0 for all possible permutations corr: True sets dependent input dimensions via a correlation matrix """ self.num_batches = num_batches self.BATCH_SIZE = BATCH_SIZE self.corr = corr self.shuffle = shuffle self.model_kwargs = model_kwargs self.train = train Batches_C_train, Batches_C_test = torch.empty([0]), torch.empty([0]) Batches_X_train, Batches_X_test = torch.empty([0]), torch.empty([0]) Batches_conds_train, Batches_conds_test = torch.empty([0]), torch.empty([0]) ds = Package.browse( "aics/pipeline_integrated_single_cell", "s3://allencell" ) # Specify path to pre downloaded quilt json files try: path_to_json = model_kwargs['json_quilt_path'] except: path_to_json = "/home/ritvik.vasan/test/" # json_files = [pos_json for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')] meta_to_file_name = [] for f in ds["cell_features"]: meta_to_file_name.append( { "filename": f, **ds["cell_features"][f].meta } ) metas = pd.DataFrame(meta_to_file_name) # Specify path to config file for FeatureDatabase try: db = FeatureDatabase(model_kwargs['config_path']) except: db = FeatureDatabase("/home/ritvik.vasan/config.json") t = db.get_pg_table( "featuresets", "aics-mitosis-classifier-four-stage_v1.0.0" ) semi = metas.merge( t, left_on="CellId", right_on="CellId", suffixes=("_meta", "_mito") ) # Only interphase or no interphase semi['Interphase and Mitotic Stages [stage]'] = semi[ 'Interphase and Mitotic Stages [stage]' ].apply(lambda x: 0 if x == 0.0 else 1) dd = defaultdict(list) for i in range(len(semi['filename'])): this_file = semi['filename'][i] a = json.loads(open(path_to_json + this_file).read()) a = dict( [ (key, value) for key, value in a.items() if key not in [ 'imsize_orig', 'com', 'angle', 'flipdim', 'imsize_registered' ] ] ) a.update({'CellId': semi['CellId'][i]}) for key, value in a.items(): dd[key].append(value) features_plus_cellid = pd.DataFrame(dict(dd)) meta_plus_features = pd.merge( semi, features_plus_cellid, on='CellId' ) i_care_cols = [ c for c in meta_plus_features.columns if c not in [ 'CellId', 'CellIndex', 'FOVId', 'WellId', 'FeatureExplorerURL', 'CellLine', 'Workflow', 'associates', 'filename', 'NucMembSegmentationAlgorithm', 'NucMembSegmentationAlgorithmVersion', 'PlateId' ] ] meta_plus_features = meta_plus_features[i_care_cols] meta_plus_features.dropna(inplace=True) categorical_features = [ 'Gene', 'ProteinDisplayName', 'StructureDisplayName' ] categorical_dataframe = meta_plus_features[categorical_features] non_categorical_dataframe = meta_plus_features[ [ c for c in meta_plus_features.columns if c not in categorical_features ] ] one_hot_categorical_features = pd.get_dummies( categorical_dataframe, prefix=None, drop_first=True ) # num_of_cells = len(non_categorical_dataframe) # This is mean, std normalization non_categorical_dataframe = non_categorical_dataframe.iloc[:, :] # print(non_categorical_dataframe.shape) self._feature_names = [ i for i in non_categorical_dataframe.columns ] + [ i for i in one_hot_categorical_features.columns ] num_training_samples = 33000 x = non_categorical_dataframe.values std_scaler = preprocessing.StandardScaler() # 0 is binary, dont scale that column x_train_and_test_scaled = std_scaler.fit_transform( x[:, 1:model_kwargs["x_dim"]+1] ) x_train_scaled = std_scaler.fit_transform( x[:num_training_samples, 1:model_kwargs["x_dim"]+1] ) x_test_scaled = std_scaler.transform( x[num_training_samples:, 1:model_kwargs["x_dim"]+1] ) if model_kwargs["x_dim"] > 103: non_categorical_train = pd.DataFrame( np.concatenate((x[:num_training_samples, 0:1], x_train_scaled), axis=1) ) non_categorical_test = pd.DataFrame( np.concatenate((x[num_training_samples:, 0:1], x_test_scaled), axis=1) ) non_categorical_train_and_test = pd.DataFrame( np.concatenate((x[:, 0:1], x_train_and_test_scaled), axis=1) ) # print(non_categorical_train.shape, non_categorical_test.shape) # print(len(self._feature_names)) # print(non_categorical_train_and_test.shape) non_categorical_train_and_test.columns = self._feature_names[:103] else: non_categorical_train = pd.DataFrame(x_train_scaled) non_categorical_test =
pd.DataFrame(x_test_scaled)
pandas.DataFrame
from taller1.models import Userid_Profile, Userid_ProfileCalculado import pandas as pd from collections import defaultdict import psycopg2 import sqlalchemy from sqlalchemy import create_engine import pandas as pd import numpy as np import math from scipy.stats import pearsonr from django.db import connection # class CorrelacionPearson(): def listaUsuariosSimilares(self,usuario_activo,perfiles): lista_similares=[] df_perfiles = pd.DataFrame(list(perfiles.values())) genderNumber = SimilitudCoseno.transforGender(self,df_perfiles) countryNumber = SimilitudCoseno.transforCountry(self,df_perfiles) df_perfiles = SimilitudCoseno.procesarDatos(self,df_perfiles,genderNumber,countryNumber) df_usuario_activo=
pd.DataFrame(data=[[usuario_activo.userid, usuario_activo.gender ,usuario_activo.age,usuario_activo.country ,usuario_activo.registered ,genderNumber[usuario_activo.gender],countryNumber[usuario_activo.country] ]], columns=df_perfiles.columns)
pandas.DataFrame
import logging import numpy as np import pandas as pd from transformers import AutoTokenizer from nlstruct.collections import Batcher from nlstruct.dataloaders import load_quaero from nlstruct.environment import cached, root from nlstruct.text import apply_substitutions, huggingface_tokenize from nlstruct.utils import normalize_vocabularies, df_to_csr, encode_ids @cached def preprocess_training_data( bert_name, umls_versions=["2014AB"], add_quaero_splits=None, n_repeat_quaero_corpus=1, source_lat=["FRE"], source_full_lexicon=False, other_lat=["ENG"], other_full_lexicon=False, other_sabs=None, other_additional_labels=None, other_mirror_existing_labels=True, sty_groups=['ANAT', 'CHEM', 'DEVI', 'DISO', 'GEOG', 'LIVB', 'OBJC', 'PHEN', 'PHYS', 'PROC'], filter_before_preprocess=None, subs=None, max_length=100, apply_unidecode=False, prepend_labels=[], mentions=None, vocabularies=None, return_raw_mentions=False, ): """ Build and preprocess the training data Parameters ---------- bert_name: str Name of the bert tokenizer umls_versions: list of str UMLS versions (ex ["2014AB"]) add_quaero_splits: list of str Add the mentions from these quaero splits n_repeat_quaero_corpus: int Number of time the quaero corpus mentions should be repeated source_lat: list of str Source languages source_full_lexicon: bool Add all french umls synonyms other_lat: list of str Other languages other_full_lexicon: bool Add all english umls synonyms other_sabs: list of str Filter only by these sources when querying the english umls other_additional_labels: list of str Query those additional labels in the english umls other_mirror_existing_labels: bool Query previously added concepts (french, quaero, etc) in the english umls sty_groups: list of str If given, filter the lexicons to only keep concepts that are in those groups filter_before_preprocess: str Apply a final filtering before deduplicating the mentions and preprocessing them subs: list of (str, str) Substitutions to perform on mentions apply_unidecode: bool Apply unidecode module on mentions max_length: int Cut mentions that are longer than this number of tokens (not wordpieces) prepend_labels: list of str Add these virtual (?) labels at the beginning of the vocabulary mentions: pd.DataFrame Clean/tokenize these mentions instead of the ones built using this function parameters vocabularies: dict Base vocabularies if any return_raw_mentions: bool Return the untokenized, raw selected mentions only Returns ------- Batcher, Dict[str; np.ndarray], transformers.Tokenizer, pd.DataFrame, pd.DataFrame Training batcher, Vocabularies Huggingface tokenizer Raw mentions Mention ids to unique coded id mapping """ if mentions is None: assert not (other_full_lexicon and other_sabs is None and (other_mirror_existing_labels or other_additional_labels is not None)) mrconso = None if any([source_full_lexicon, other_full_lexicon, other_additional_labels, other_mirror_existing_labels]): sty_groups_mapping = pd.read_csv(root.resource(f"umls/sty_groups.tsv"), sep='|', header=None, index_col=False, names=["group", "sty"]) if sty_groups is not None: sty_groups_mapping = sty_groups_mapping[sty_groups_mapping.group.isin(sty_groups)] ### Load the UMLS extract # MRCONSO logging.info("Loading MRCONSO...") mrconso = [] for version in umls_versions: mrconso_version = pd.read_csv( root.resource(f"umls/{version}/MRCONSO.RRF"), sep="|", header=None, index_col=False, names=["CUI", "LAT", "TS", "LUI", "STT", "SUI", "ISPREF", "AUI", "SAUI", "SCUI", "SDUI", "SAB", "TTY", "CODE", "STR", "SRL", "SUPPRESS", "CVF"], usecols=["CUI", "STR", "LAT", "SAB"], ).rename({"CUI": "label", "STR": "text"}, axis=1) mrsty = pd.read_csv( root.resource(f"umls/{version}/MRSTY.RRF"), sep="|", header=None, index_col=False, names=["CUI", "TUI", "STN", "STY", "ATUI", "CVF"], usecols=["CUI", "STY"], ).rename({"CUI": "label", "STY": "sty"}, axis=1) mrsty = mrsty.merge(sty_groups_mapping, on="sty") mrsty = mrsty.drop_duplicates(['label', 'group']) mrconso_version = mrconso_version.merge(mrsty) mrconso.append(mrconso_version) del mrconso_version, mrsty mrconso =
pd.concat(mrconso)
pandas.concat
"""Build a dataframe in pandas.""" import os import pandas as pd def symbol_to_path(symbol, base_dir="../data/"): """Return CSV file path given ticker symbol.""" return os.path.join(base_dir, "{}.csv".format(str(symbol))) def get_data(symbols, dates): """Read stock data (adjusted close) for given symbols from CSV files.""" df =
pd.DataFrame(index=dates)
pandas.DataFrame
#!/usr/bin/env python # coding=utf-8 """ @version: 0.1 @author: li @file: factor_solvency.py @time: 2019-01-28 11:33 """ import gc, six import json import numpy as np import pandas as pd from pandas.io.json import json_normalize from utilities.calc_tools import CalcTools from utilities.singleton import Singleton # from basic_derivation import app # from ultron.cluster.invoke.cache_data import cache_data @six.add_metaclass(Singleton) class FactorSolvency(object): """ 偿债能力 """ def __init__(self): __str__ = 'factor_solvency' self.name = '财务指标' self.factor_type1 = '财务指标' self.factor_type2 = '偿债能力' self.description = '财务指标的二级指标-偿债能力' @staticmethod def BondsToAsset(tp_solvency, factor_solvency, dependencies=['bonds_payable', 'total_assets']): """ :name: 应付债券与总资产之比 :desc: 应付债券MRQ/资产总计MRQ*100% """ management = tp_solvency.loc[:, dependencies] management['BondsToAsset'] = np.where( CalcTools.is_zero(management.total_assets.values), 0, management.bonds_payable.values / management.total_assets.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def BookLev(tp_solvency, factor_solvency, dependencies=['total_non_current_liability', 'total_assets']): """ :name: 账面杠杆 :desc:非流动负债合计/股东权益合计(含少数股东权益)(MRQ) """ management = tp_solvency.loc[:, dependencies] management['BookLev'] = np.where( CalcTools.is_zero(management.total_assets.values), 0, management.total_non_current_liability.values / management.total_assets.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def CurrentRatio(tp_solvency, factor_solvency, dependencies=['total_current_assets', 'total_current_liability']): """ :name: 流动比率 :desc: 流动资产合计/流动负债合计(MRQ) """ management = tp_solvency.loc[:, dependencies] management['CurrentRatio'] = np.where( CalcTools.is_zero(management.total_current_liability.values), 0, management.total_current_assets.values / management.total_current_liability.values) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, on="security_code") return factor_solvency @staticmethod def DA(tp_solvency, factor_solvency, dependencies=['total_liability', 'total_assets']): """ :name: 债务总资产比 :desc:负债合计MRQ/资产总计MRQ """ contrarian = tp_solvency.loc[:, dependencies] contrarian['DA'] = np.where( CalcTools.is_zero(contrarian['total_assets']), 0, contrarian['total_liability'] / contrarian['total_assets']) contrarian = contrarian.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, contrarian, on="security_code") return factor_solvency @staticmethod def DTE(tp_solvency, factor_solvency, dependencies=['total_liability', 'total_current_liability', 'fixed_assets']): """ :name:有形净值债务率 :desc:负债合计/有形净值(MRQ) """ contrarian = tp_solvency.loc[:, dependencies] contrarian['DTE'] = np.where( CalcTools.is_zero(contrarian['total_current_liability'] + contrarian['fixed_assets']), 0, contrarian['total_current_liability'] / (contrarian['total_current_liability'] + contrarian['fixed_assets']) ) contrarian = contrarian.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, contrarian, on="security_code") return factor_solvency @staticmethod def EquityRatio(tp_solvency, factor_solvency, dependencies=['total_liability', 'equities_parent_company_owners']): """ :name:权益比率 :desc:负债合计/归属母公司股东的权益(MRQ) """ management = tp_solvency.loc[:, dependencies] func = lambda x: x[0] / x[1] if x[1] is not None and x[1] != 0 else None management['EquityRatio'] = management.apply(func, axis=1) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(management, factor_solvency, how='outer', on='security_code') return factor_solvency @staticmethod def EquityPCToIBDebt(tp_solvency, factor_solvency, dependencies=['equities_parent_company_owners', 'shortterm_loan', 'non_current_liability_in_one_year', 'longterm_loan', 'bonds_payable', 'interest_payable']): """ :name:归属母公司股东的权益/带息负债 :desc:归属母公司股东的权益/带息负债(补充 带息负债 = 短期借款+一年内到期的长期负债+长期借款+应付债券+应付利息) """ management = tp_solvency.loc[:, dependencies] management["debt"] = (management.shortterm_loan + management.non_current_liability_in_one_year + management.longterm_loan + management.bonds_payable + management.interest_payable) management['EquityPCToIBDebt'] = np.where( CalcTools.is_zero(management.debt.values), 0, management.equities_parent_company_owners.values / management.debt.values) dependencies = dependencies + ['debt'] management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, how='outer', on="security_code") return factor_solvency @staticmethod def EquityPCToTCap(tp_solvency, factor_solvency, dependencies=['equities_parent_company_owners', 'total_owner_equities', 'shortterm_loan', 'non_current_liability_in_one_year', 'longterm_loan', 'bonds_payable', 'interest_payable']): """ :name:归属母公司股东的权益/全部投入资本 (补充 全部投入资本=所有者权益合计+带息债务) :desc: 归属母公司股东的权益/全部投入资本 (补充 全部投入资本=所有者权益合计+带息债务) """ management = tp_solvency.loc[:, dependencies] management["tc"] = (management.total_owner_equities + management.shortterm_loan + management.non_current_liability_in_one_year + management.longterm_loan + management.bonds_payable + management.interest_payable) management['EquityPCToTCap'] = np.where( CalcTools.is_zero(management.tc.values), 0, management.equities_parent_company_owners.values / management.tc.values) dependencies = dependencies + ['tc'] management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, how='outer', on="security_code") return factor_solvency # InteBearDebtToTotalCapital = 有息负债/总资本 总资本=固定资产+净运营资本 净运营资本=流动资产-流动负债 # InteBearDebtToTotalCapital = 有息负债/(固定资产 + 流动资产 - 流动负债) @staticmethod def IntBDToCap(tp_solvency, factor_solvency, dependencies=['shortterm_loan', 'non_current_liability_in_one_year', 'longterm_loan', 'bonds_payable', 'interest_payable', 'fixed_assets', 'total_current_assets', 'total_current_liability']): """ :name:带息负债/全部投入资本 :desc:带息债务/全部投入资本*100%(MRQ) """ contrarian = tp_solvency.loc[:, dependencies] contrarian['interest_bearing_liability'] = contrarian['shortterm_loan'] + \ contrarian['non_current_liability_in_one_year'] + \ contrarian['longterm_loan'] + \ contrarian['bonds_payable'] + contrarian['interest_payable'] contrarian['IntBDToCap'] = np.where( CalcTools.is_zero(contrarian['fixed_assets'] + contrarian['total_current_assets'] + \ contrarian['total_current_liability']), 0, contrarian['interest_bearing_liability'] / (contrarian['fixed_assets'] + contrarian['total_current_assets'] + contrarian['total_current_liability']) ) dependencies = dependencies + ['interest_bearing_liability'] contrarian = contrarian.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, contrarian, how='outer', on="security_code") return factor_solvency @staticmethod def LDebtToWCap(tp_solvency, factor_solvency, dependencies=['total_current_assets', 'total_current_liability', 'total_non_current_assets']): """ :name:长期负债与营运资金比率 :desc:非流动负债合计/(流动资产合计-流动负债合计) """ management = tp_solvency.loc[:, dependencies] management['LDebtToWCap'] = np.where( CalcTools.is_zero(management.total_current_assets.values - management.total_current_liability.values), 0, management.total_non_current_assets.values / (management.total_current_assets.values - management.total_current_liability.values)) management = management.drop(dependencies, axis=1) factor_solvency = pd.merge(factor_solvency, management, how='outer', on="security_code") return factor_solvency @staticmethod def MktLev(tp_solvency, factor_solvency, dependencies=['total_non_current_liability', 'market_cap']): """ :name:市场杠杆 :desc:非流动负债合计MRQ/(非流动负债台计MRO+总市值) """ management = tp_solvency.loc[:, dependencies] management['MktLev'] = np.where( CalcTools.is_zero(management.market_cap.values), 0, management.total_non_current_liability.values / (management.total_non_current_liability.values + management.market_cap.values)) management = management.drop(dependencies, axis=1) factor_solvency =
pd.merge(factor_solvency, management, how='outer', on="security_code")
pandas.merge
import arcgis import pandas as pd import os import arcpy """-------------------------------------------------------------------------------- Script Name: Clean Street Names Description: This script fixes and cleans a layer with a "FullName" street field. A "FullName" street field includes street name and street prefix. A "FLAG" field is created in the output layer that shows fields with one element in its string or fewer, or 5 elements in the string or more. This field can be used as a inspect field for data integerity. Examples: INPUT OUTPUT --------------------------------------------- walnut blv. ---> WALNUT BLVD MaIn Street. ---> MAIN ST Silver road east ---> E SILVER RD 89 Highway (Eastbound) ---> EB 89 HWY knoll creek ---> KNOLL CR SOUTH / richmond av ---> S RICHMOND AVE An excel sheet is needed in order to run the script. The excel sheet is called "NameABBRVs" and needs to be saved within the same directory as the script. It contains two lists. One with street prefix's and one with street abrvs Created By: <NAME>. Date: 3/25/2019. ------------------------------------------------------------------------------------""" arcpy.env.overwriteOutput = True #inFC, AS PARAMETER, fcName REPRESENTS PATH TO THE FC, GET INFIELD FROM USER, GET OUTFC FROM USER inFC = arcpy.GetParameterAsText(0) fcName = os.path.basename(inFC) inField = arcpy.GetParameterAsText(1) outFC = arcpy.GetParameterAsText(2) fc_df =
pd.DataFrame.spatial.from_featureclass(fcName)
pandas.DataFrame.spatial.from_featureclass
import pandas as pd import numpy as np from .cleanning import delFromVardict # # removed from version 0.0.8, replaced by calculating woe directly inside bitable # def calcWOE(allGoodCnt, allBadCnt, eachGoodCnt, eachBadCnt): # # woe = np.log((eachGoodCnt / eachBadCnt) / (allGoodCnt / allBadCnt)) # # return woe # # removed from version 0.0.8, replaced by calculating iv directly inside bitable # def calcIV(allGoodCnt, allBadCnt, eachGoodCnt, eachBadCnt): # # calcIV(allGoodCnt, allBadCnt, eachGoodCnt, eachBadCnt, label='DEFAULT') # woe = calcWOE(allGoodCnt, allBadCnt, eachGoodCnt, eachBadCnt) # ivcolumn = (eachGoodCnt / allGoodCnt - eachBadCnt / allBadCnt) * woe # iv = sum(ivcolumn) # # return ivcolumn, iv def bivariate(df, col, label, withIV=True, missingvalue='missing', dealMissing=True): df = df.replace(np.nan, missingvalue) gb = df.groupby(col, as_index=False) total = df.shape[0] all = gb.count() bad = gb.sum()[label] good = (all[label] - bad) bitable = pd.DataFrame({col: all[col], 'total': good + bad, 'good': good, 'bad': bad}). \ replace(0, 0.001). \ assign(totalDist=lambda x: x.total / sum(x.total), goodDist=lambda x: x.good / sum(x.good), badDist=lambda x: x.bad / sum(x.bad), goodRate=lambda x: x.good / (x.total), badRate=lambda x: x.bad / (x.total) ). \ assign(woe=lambda x: np.log(x.badDist / x.goodDist)) if withIV: bitable['iv'] = (bitable['badDist'] - bitable['goodDist']) * bitable['woe'] totalIV = sum(bitable['iv']) bitable['totalIV']=totalIV return bitable, totalIV # return a dictionary of results of bivariate analysis def getBiDict(df, label, getiv=False): bidict = {} ivdict = {} for i in df.drop([label], axis=1).columns: tmp = bivariate(df, i, label) bidict[i] = tmp[0] ivdict[i] = tmp[1] ivtable=pd.DataFrame(list(ivdict.items()),columns=['feature','iv']).sort_values('iv',ascending=False) if getiv: return bidict,ivtable else: return bidict ### Transformation ### ###################### # 把woe table转换成字典格式, 生成新的df1包含全部woe以及label def mapWOE(df, bidict, missingvalue='missing'): df1 = df.copy() df1 = df1.replace(np.nan, missingvalue) for i in df1.columns: if i in bidict.keys(): tmp = bidict[i] tmpdict = pd.Series(tmp.woe.values, index=tmp[i]).to_dict() tmplist = [] for j in df1[i]: tmplist.append(tmpdict[j]) df1[i] =
pd.Series(tmplist)
pandas.Series
import json import os import pandas as pd from gender_guesser.detector import Detector from tqdm import tqdm from biorxiv_02_download_articles import ARTICLES_DIRECTORY, BIORXIV_DIRECTORY def main(): detector = Detector(case_sensitive=False) rows = [] for name in tqdm(os.listdir(ARTICLES_DIRECTORY)): if not name.endswith('.json'): continue with open(os.path.join(ARTICLES_DIRECTORY, name)) as file: j = json.load(file) collection = j['collection'] if not collection: tqdm.write(f'Empty collection for {name}') continue i = collection[0] authors = i['authors'].split(';') rows.append(dict( id=i['doi'], title=i['title'], first_author_name=authors[0], first_author_inferred_gender=fix_name(authors[0], detector), license=i['license'], category=i['category'].strip(), posted=i['date'], peer_reviewed=i['published'], )) df =
pd.DataFrame(rows)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.feature_selection import VarianceThreshold from fancyimpute import KNN # , index_col='challengeID') bg = pd.read_csv('../../ff_data/background.csv', low_memory=False) bg.cf4fint = ((pd.to_datetime(bg.cf4fint) - pd.to_datetime('1960-01-01')) / np.timedelta64(1, 'D')).astype(int) # Loading bg such that some bugs in labels are fixed, see https://github.com/fragilefamilieschallenge/open-source-submissions/blob/master/rfjz%20-%2011%20submission/FF%20Pre-Imputation.ipynb # , index_col='challengeID') train =
pd.read_csv('../../ff_data/train.csv', low_memory=False)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # **Author: <NAME>, Data Scientist at [Quantillion](http://quantillion.io/)** # # 0. Fire up # In[ ]: import pandas as pd import numpy as np df =
pd.read_csv('../input/kc_house_data.csv')
pandas.read_csv
import pandas as pd import itertools import pandas_datareader.data as web from pandas.tseries.offsets import BDay from datetime import datetime import random import math import collections # Stocks data tickers = ['FDX', 'GOOGL', 'XOM', 'KO', 'NOK', 'MS', 'IBM'] stocks_df = web.DataReader(tickers, 'yahoo', start=datetime(2010, 1, 1)).High # Descriptors guarantee the type and behavior of variables class Date: """General descriptor for date""" def __init__(self, storage_name): self.storage_name = storage_name def __set__(self, instance, value): if isinstance(value, datetime): instance.__dict__[self.storage_name] = value else: raise ValueError('value must be a datetime') class OneOfStock: """General descriptor for stocks""" def __init__(self, storage_name): self.storage_name = storage_name def __set__(self, instance, value): if value in set(tickers): instance.__dict__[self.storage_name] = value else: raise ValueError("value must be on of 'FDX', 'GOOGL', 'XOM', 'KO', 'NOK', 'MS', 'IBM'") class OneOfMode: """General descriptor for investor mode""" def __init__(self, storage_name): self.storage_name = storage_name def __set__(self, instance, value): if value in {defensive, aggressive, mixed}: instance.__dict__[self.storage_name] = value else: raise ValueError("value must be on of defensive, aggressive, mixed") class Monetary: """General descriptor for monetary entries""" def __init__(self, storage_name): self.storage_name = storage_name def __set__(self, instance, value): if (value is None) or (value >= 0): instance.__dict__[self.storage_name] = value else: raise ValueError('value must be >= 0') class Investment: """Investment is an abstract object. Bonds and Stocks inherit attributes and methods""" pv = Monetary('pv') start_date = Date('start_date') end_date = Date('end_date') def __init__(self, pv, start_date, end_date): self.pv = pv self.start_date = start_date self.end_date = end_date self.term = self.end_date - self.start_date self.cash_flow = None def return_on_investment(self): return round((self.cash_flow.iloc[-1, 0] / self.pv) - 1, 4) def total_return(self): return round(self.cash_flow.iloc[-1, 0] - self.pv, 2) def risk_on_investment(self): return round(self.cash_flow.pct_change().std(), 4) class Bonds(Investment): """All Bonds""" def __init__(self, pv, rate: float, start_date, end_date): super(Bonds, self).__init__(pv, start_date, end_date) self.rate = rate self.rate_flow = pd.Series(itertools.repeat((1 + self.rate) ** (1 / 365) - 1, self.term.days)) self.rate_flow.iloc[0] = 0 cash_flow = pd.DataFrame({'Date': pd.date_range(self.start_date, end=self.end_date, freq="D", closed='left'), 'Value': (1 + self.rate_flow).cumprod() * self.pv}) self.cash_flow = cash_flow.set_index('Date') @classmethod # Call a bond as a short one. Ensure rate, min price and min period def short(cls, start_date, pv=250): if pv < 250: raise ValueError('pv must be >= 250') rate, end_date = 0.015, start_date + pd.DateOffset(years=2) bond = cls(pv, rate, start_date, end_date) return bond @classmethod # Call a bond as a long one. Ensure rate, min price and min period def long(cls, start_date, pv=1000): if pv < 1000: raise ValueError('pv must be >= 1000') rate, end_date = 0.03, start_date +
pd.DateOffset(years=5)
pandas.DateOffset
#!/usr/bin/env python3 import os import sys import pandas as pd import numpy as np import tensorflow as tf from Bio import SeqIO from numpy import array from numpy import argmax from warnings import simplefilter from contextlib import redirect_stderr from keras.preprocessing.text import Tokenizer # Hide warning messages from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False simplefilter(action='ignore', category=FutureWarning) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' with redirect_stderr(open(os.devnull, "w")): from tensorflow.keras.models import load_model from keras.preprocessing.sequence import pad_sequences # Show full array pd.set_option('display.max_rows', None) np.set_printoptions(threshold=sys.maxsize) # IO files INFASTA = sys.argv[1] RESCSV = sys.argv[2] if len(sys.argv) >=3 else None # Get model MODELO = 'model_embedded_order_wb.hdf5' PADVALUE = 38797 def fasta_frame(fasta_file): fids = [] fseq = [] with open(fasta_file) as fasta: for record in SeqIO.parse(fasta, 'fasta'): fids.append(record.id) fseq.append(str(record.seq).lower()) s1 = pd.Series(fids, name = 'id') s2 = pd.Series(fseq, name = 'sequence') data = {'id':s1, 'sequence':s2} df = pd.concat(data, axis=1) return df # Read fasta as dataframe fas_df = fasta_frame(INFASTA) identifiers = fas_df['id'] sequences = fas_df['sequence'] # Labels te_labels = {'te': 1, 'nt': 2} # Tokenize sequences tkz_seq = Tokenizer(num_words = None, split = ' ', char_level = True, lower = True) tkz_seq.fit_on_texts(sequences) x_seq_arrays = tkz_seq.texts_to_sequences(sequences) vocab_size_seq = len(tkz_seq.word_index) + 1 # Pad sequences padded_seqs = pad_sequences(x_seq_arrays, padding='post', maxlen = PADVALUE) # Load model modelo = load_model(MODELO) # Predict labels pred_labels = modelo.predict_classes(padded_seqs, batch_size = 2) mapped_labels = [k for label in pred_labels for k, v in te_labels.items() if v == label] # Results mapped_series = pd.Series(mapped_labels) results_dict = {"id": identifiers, "classification": mapped_series} results_df =
pd.DataFrame(results_dict)
pandas.DataFrame
import os from abc import ABC import json import numpy as np import pandas as pd from odin.classes import DatasetInterface, TaskType from odin.utils import * from odin.utils.utils import encode_segmentation, compute_aspect_ratio_of_segmentation from pycocotools import mask from pycocotools import coco logger = get_root_logger() class DatasetLocalization(DatasetInterface, ABC): annotations = None images = None possible_analysis = set() area_size_computed = False aspect_ratio = False common_properties = {'area', 'bbox', 'category_id', 'id', 'image_id', 'iscrowd', 'segmentation'} supported_types = [TaskType.OBJECT_DETECTION, TaskType.INSTANCE_SEGMENTATION] def __init__(self, dataset_gt_param, task_type, proposal_path=None, images_set_name='test', images_abs_path=None, similar_classes=None, property_names=None, terminal_env=False, properties_file=None, for_analysis=True, match_on_filename=False): if task_type not in self.supported_types: logger.error(f"Task not supported: {task_type}") super().__init__(dataset_gt_param, proposal_path, images_set_name, images_abs_path, similar_classes, property_names, terminal_env, properties_file, match_on_filename) self.objnames_TP_graphs = [] # clear. the TRUE POSITIVE that can be drawn self.possible_analysis = set() # clear. It would be updated according to the dataset provided self.is_segmentation = task_type == TaskType.INSTANCE_SEGMENTATION self.similar_classes = similar_classes self.for_analysis = for_analysis self.load() def dataset_type_name(self): return self.images_set_name def get_annotations_from_class_list(self, classes_to_classify): classes_id_filter = self.get_categories_id_from_names(classes_to_classify) anns_filtered = self.annotations[self.annotations["category_id"].isin(classes_id_filter)] return anns_filtered.to_dict("records") def is_segmentation_ds(self): return self.is_segmentation def __load_proposals(self): counter = 0 issues = 0 proposals = [] for i, cat in self.categories.iterrows(): c = cat["name"] c_id = cat["id"] proposal_path = os.path.join(self.proposal_path, c + ".txt") with open(proposal_path, "r") as file: for line in file: if self.is_segmentation: try: arr = line.split(" ") match_param, confidence = arr[0], float(arr[1]) if not self.match_on_filename: match_param = int(match_param) try: segmentation = [float(v) for v in arr[2:]] except: segmentation = [] counter += 1 proposals.append( {"confidence": confidence, "segmentation": segmentation, self.match_param_props: match_param, "category_id": c_id, "id": counter}) except: issues += 1 else: try: match_param, confidence, x1, y1, x2, y2 = line.split(" ") if not self.match_on_filename: match_param = int(match_param) confidence = float(confidence) x1, y1, x2, y2 = float(x1), float(y1), float(x2), float(y2) counter += 1 proposals.append( {"confidence": confidence, "bbox": [x1, y1, x2, y2], self.match_param_props: match_param, "category_id": c_id, "id": counter}) except: issues += 1 self.__proposals_length = counter logger.info("Loaded {} proposals and failed with {}".format(counter, issues)) return
pd.DataFrame(proposals)
pandas.DataFrame
""" Functions for training classifiers on TCGA data. Some of these functions are adapted from: https://github.com/greenelab/BioBombe/blob/master/9.tcga-classify/scripts/tcga_util.py """ import numpy as np import pandas as pd from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.metrics import ( roc_auc_score, roc_curve, precision_recall_curve, average_precision_score ) from sklearn.model_selection import ( cross_val_predict, GridSearchCV, ) import mpmp.config as cfg def train_classifier(X_train, X_test, y_train, alphas, l1_ratios, seed, n_folds=4, max_iter=1000): """ Build the logic and sklearn pipelines to predict binary y from dataset x Arguments --------- X_train: pandas DataFrame of feature matrix for training data X_test: pandas DataFrame of feature matrix for testing data y_train: pandas DataFrame of processed y matrix (output from align_matrices()) alphas: list of alphas to perform cross validation over l1_ratios: list of l1 mixing parameters to perform cross validation over n_folds: int of how many folds of cross validation to perform max_iter: the maximum number of iterations to test until convergence Returns ------ The full pipeline sklearn object and y matrix predictions for training, testing, and cross validation """ # Setup the classifier parameters clf_parameters = { 'classify__alpha': alphas, 'classify__l1_ratio': l1_ratios, } estimator = Pipeline( steps=[ ( 'classify', SGDClassifier( random_state=seed, class_weight='balanced', loss='log', penalty='elasticnet', max_iter=max_iter, tol=1e-3, ), ) ] ) cv_pipeline = GridSearchCV( estimator=estimator, param_grid=clf_parameters, n_jobs=-1, cv=n_folds, scoring='average_precision', return_train_score=True, ) # Fit the model cv_pipeline.fit(X=X_train, y=y_train.status) # Obtain cross validation results y_cv = cross_val_predict( cv_pipeline.best_estimator_, X=X_train, y=y_train.status, cv=n_folds, method='decision_function', ) # Get all performance results y_predict_train = cv_pipeline.decision_function(X_train) y_predict_test = cv_pipeline.decision_function(X_test) return cv_pipeline, y_predict_train, y_predict_test, y_cv def train_gb_classifier(X_train, X_test, y_train, learning_rates, alphas, lambdas, seed, n_folds=4, max_iter=1000): """ Fit gradient-boosted tree classifier to training data, and generate predictions for test data. Arguments --------- X_train: pandas DataFrame of feature matrix for training data X_test: pandas DataFrame of feature matrix for testing data y_train: pandas DataFrame of processed y matrix (output from align_matrices()) n_folds: int of how many folds of cross validation to perform max_iter: the maximum number of iterations to test until convergence Returns ------ The full pipeline sklearn object and y matrix predictions for training, testing, and cross validation """ from lightgbm import LGBMClassifier clf_parameters = { 'classify__learning_rate': learning_rates, 'classify__reg_alpha': alphas, 'classify__reg_lambda': lambdas, } estimator = Pipeline( steps=[ ( 'classify', LGBMClassifier( random_state=seed, class_weight='balanced', max_depth=5, n_estimators=100, colsample_bytree=0.35 ), ) ] ) cv_pipeline = GridSearchCV( estimator=estimator, param_grid=clf_parameters, n_jobs=-1, cv=n_folds, scoring='average_precision', return_train_score=True, ) # Fit the model cv_pipeline.fit(X=X_train, y=y_train.status) # Obtain cross validation results y_cv = cross_val_predict( cv_pipeline.best_estimator_, X=X_train, y=y_train.status, cv=n_folds, method='predict_proba', )[:, 1] # Get all performance results y_predict_train = cv_pipeline.predict_proba(X_train)[:, 1] y_predict_test = cv_pipeline.predict_proba(X_test)[:, 1] return cv_pipeline, y_predict_train, y_predict_test, y_cv def get_preds(X_test_df, y_test_df, cv_pipeline, fold_no): """Get model-predicted probability of positive class for test data. Also returns true class, to enable quantitative comparisons in analyses. """ # get probability of belonging to positive class y_scores_test = cv_pipeline.decision_function(X_test_df) y_probs_test = cv_pipeline.predict_proba(X_test_df) # make sure we're actually looking at positive class prob assert np.array_equal(cv_pipeline.best_estimator_.classes_, np.array([0, 1])) return pd.DataFrame({ 'fold_no': fold_no, 'true_class': y_test_df.status, 'score': y_scores_test, 'positive_prob': y_probs_test[:, 1] }, index=y_test_df.index) def get_threshold_metrics(y_true, y_pred, drop=False): """ Retrieve true/false positive rates and auroc/aupr for class predictions Arguments --------- y_true: an array of gold standard mutation status y_pred: an array of predicted mutation status drop: boolean if intermediate thresholds are dropped Returns ------- dict of AUROC, AUPR, pandas dataframes of ROC and PR data, and cancer-type """ roc_columns = ["fpr", "tpr", "threshold"] pr_columns = ["precision", "recall", "threshold"] roc_results = roc_curve(y_true, y_pred, drop_intermediate=drop) roc_items = zip(roc_columns, roc_results) roc_df = pd.DataFrame.from_dict(dict(roc_items)) prec, rec, thresh = precision_recall_curve(y_true, y_pred) pr_df = pd.DataFrame.from_records([prec, rec]).T pr_df = pd.concat([pr_df,
pd.Series(thresh)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 5 10:15:25 2021 @author: lenakilian """ import pandas as pd import copy as cp import geopandas as gpd import seaborn as sns import matplotlib.pyplot as plt wd = r'/Users/lenakilian/Documents/Ausbildung/UoLeeds/PhD/Analysis/' years = list(range(2007, 2018, 2)) geog = 'MSOA' yr = 2015 dict_cat = 'category_8' cat_dict =
pd.read_excel(wd + '/data/processed/LCFS/Meta/lcfs_desc_anne&john.xlsx')
pandas.read_excel
import time from utils import utils import argparse import numpy as np import pandas as pd from sklearn import metrics from keras.models import load_model from config.echelon_meta import EchelonMeta #matplotlib.use('Agg') import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description='ECHELON TIER 1 Neural Network') parser.add_argument('--batch_size', type=int, default=10) parser.add_argument('--verbose', type=int, default=0) parser.add_argument('--limit', type=float, default=0.) parser.add_argument('--model_path', type=str, default=None) parser.add_argument('--model_names', type=str, default=['echelon_section']) #'echelon.text', 'echelon.rdata', 'echelon.rsrc', 'echelon.data', 'echelon.pdata', 'echelon.header']) parser.add_argument('--model_ext', type=str, default='.h5') parser.add_argument('--result_path', type=str, default=None) parser.add_argument('--confidence_levels', type=int, default=[99]) #[40, 50, 60, 70]) # Percentage parser.add_argument('--target_confidence', type=int, default=70) parser.add_argument('--csv', type=str, default=None) ''' def predict_by_section(wpartition, spartition, sections, model, fn_list, label, batch_size, verbose): max_len = 0 if len(sections) == 1: max_len = model.input.shape[1] else: max_len = model.input[0].shape[1] pred = model.predict_generator( utils.data_generator_by_section(wpartition, spartition, sections, fn_list, label, max_len, batch_size, shuffle=False), steps=len(fn_list) // batch_size + 1, verbose=verbose ) return pred''' def trigger_predict_by_section(): metaObj = EchelonMeta() metaObj.project_details() args = parser.parse_args() st = time.time() all_sections_pred = [] # read data df = pd.read_csv(args.csv, header=None) fn_list = df[0].values Y = df[1] label = np.zeros((fn_list.shape)) for model_name in args.model_names: sections = ['.header', '.rsrc', '.data']#['.rsrc', '.text', '.rdata'] #model_name.split('.')[1] #sections = ['.header', '.debug', '.idata'] print('\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [PROCESSING SECTION -> ' + str(sections) + '] [MODEL NAME -> ' + model_name + args.model_ext + ']') # load model model = load_model(args.model_path + model_name + args.model_ext) #model.summary() pred = predict_by_section(sections, model, fn_list, label, args.batch_size, args.verbose) for confidence in args.confidence_levels: df['predicted score - rounded ' + str(confidence) + '% confidence'] = pred // (confidence/100) acc = metrics.accuracy_score(Y, pred > (confidence/100)) bacc = metrics.balanced_accuracy_score(Y, pred > (confidence/100)) cm = metrics.confusion_matrix(Y, pred > (confidence/100)) #print('Confusion Matrix:\t\t[Confidence: ' + str(confidence) + '%] [Acc: ' + str(acc) + "] [Balanced Acc: " + str(bacc) + ']\n tn fp fn tp') #print("%5s%5s%5s%5s" % (str(cm[0][0]), str(cm[0][1]), str(cm[1][0]), str(cm[1][1]))) #print("Checking results",acc,bacc,cm) print("%3s" % str(confidence), " & ", str(acc)[:6], " & %5s & %5s & %5s & %5s \\\\\\hline" % (str(cm[0][0]), str(cm[0][1]), str(cm[1][0]), str(cm[1][1])) )#, " \\\\\n \\hline") #roc = metrics.roc_curve(Y, pred > (confidence/100)) # print("ROC Curve : ", roc) #print("\n") #auc = metrics.roc_auc_score(Y, pred) #print("Overall ROC AUC Score : ", auc) fpr, tpr, thds = metrics.roc_curve(Y, pred) #auc = metrics.roc_auc_score(Y, pred) #print("Overall ROC AUC Score : ", auc) # , fpr, tpr) #Malconv roc auc #maldf = pd.read_csv('aucmalconv.csv', header=None) #malfpr = maldf[0] #maltpr = maldf[1] #plt.plot(malfpr, maltpr, label="auc=0.9983861824925196") '''plt.plot(fpr, tpr, label="auc=" + str(auc)) plt.plot([0, 1], [0, 1], linestyle='--') plt.legend(loc=4) plt.show() aucdf = pd.DataFrame() aucdf['fpr'] = fpr aucdf['tpr'] = tpr aucdf['thds'] = thds aucdf.to_csv('aucechelon.csv', header=None, index=False)''' df['predict score'] = pred df[0] = [i.split('/')[-1] for i in fn_list] # os.path.basename df.to_csv(args.result_path + model_name + ".result.csv", header=None, index=False) print('Results writen in', args.result_path + model_name + ".result.csv") malware_list = [] combined_pred = [] all_sections_pred.append(pred // (args.target_confidence/100)) for i in range(0, len(fn_list)): if (all_sections_pred[0][i]) >= 1:# + all_sections_pred[1][i] + all_sections_pred[2][i]) >= 3: combined_pred.append(1) malware_list.append(fn_list[i]) else: combined_pred.append(0) print("\n\nECHELON TIER-2 RESULTS:\n-----------------------\nNumber of files processed: ", len(fn_list)) ''' acc = metrics.accuracy_score(Y, combined_pred) bacc = metrics.balanced_accuracy_score(Y, combined_pred) cm = metrics.confusion_matrix(Y, combined_pred) print('Confusion Matrix:\t\t[Confidence: ' + str(args.target_confidence) + '%] [Acc: ' + str(acc) + "] [Balanced Acc: " + str(bacc) + ']\n tn fp fn tp') tn = cm[0][0] fp = cm[0][1] fn = cm[1][0] tp = cm[1][1] # roc = metrics.roc_curve(Y, pred > (confidence / 100)) print("%5s%5s%5s%5s" % (str(tn), str(fp), str(fn), str(tp)), "FPR: ", fp / (fp + tn), "FNR:", fn / (fn + tp))''' print("\n TOTAL TIME ELAPSED FOR SECTION-WISE PREDICTION - ", str(int(time.time() - st) / 60), " minutes\n") reconcile(True) def reconcile(flag): print("\n\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RECONCILING DATA $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$\n\n\n") t1 = pd.read_csv('echelon.result.csv', header=None) y1 = t1[1] p1 = t1[2] pv1 = t1[3] t2 = pd.read_csv('echelon_section.result.csv', header=None) t2.to_csv("echelon_reconciled.csv", header=None, index=False, mode='w') mfp =
pd.read_csv('malware_fp.csv', header=None)
pandas.read_csv
from Connections.predictor import * import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import accuracy_score from InterpretationTechniques.PlotAndShow import * def featureAnnulation(data, pr, annulationValue = 0): ''' :param data: pandas dataframe with datasets where each row represents a dataset :param resultColumnName: Name of column in data that contains actual results :param pr: Predictor of ML-System :return: ''' resultColumnName = pr.resultColumn accuracies =
pd.Series()
pandas.Series
from datetime import timedelta import operator from typing import Any, Callable, List, Optional, Sequence, Union import numpy as np from pandas._libs.tslibs import ( NaT, NaTType, frequencies as libfrequencies, iNaT, period as libperiod, ) from pandas._libs.tslibs.fields import isleapyear_arr from pandas._libs.tslibs.period import ( DIFFERENT_FREQ, IncompatibleFrequency, Period, get_period_field_arr, period_asfreq_arr, ) from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( _TD_DTYPE, ensure_object, is_datetime64_dtype, is_float_dtype, is_period_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.dtypes.generic import ( ABCIndexClass, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna import pandas.core.algorithms as algos from pandas.core.arrays import datetimelike as dtl import pandas.core.common as com from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick, _delta_to_tick def _field_accessor(name, alias, docstring=None): def f(self): base, mult = libfrequencies.get_freq_code(self.freq) result = get_period_field_arr(alias, self.asi8, base) return result f.__name__ = name f.__doc__ = docstring return property(f) class PeriodArray(dtl.DatetimeLikeArrayMixin, dtl.DatelikeOps): """ Pandas ExtensionArray for storing Period data. Users should use :func:`period_array` to create new instances. Parameters ---------- values : Union[PeriodArray, Series[period], ndarray[int], PeriodIndex] The data to store. These should be arrays that can be directly converted to ordinals without inference or copy (PeriodArray, ndarray[int64]), or a box around such an array (Series[period], PeriodIndex). freq : str or DateOffset The `freq` to use for the array. Mostly applicable when `values` is an ndarray of integers, when `freq` is required. When `values` is a PeriodArray (or box around), it's checked that ``values.freq`` matches `freq`. dtype : PeriodDtype, optional A PeriodDtype instance from which to extract a `freq`. If both `freq` and `dtype` are specified, then the frequencies must match. copy : bool, default False Whether to copy the ordinals before storing. Attributes ---------- None Methods ------- None See Also -------- period_array : Create a new PeriodArray. PeriodIndex : Immutable Index for period data. Notes ----- There are two components to a PeriodArray - ordinals : integer ndarray - freq : pd.tseries.offsets.Offset The values are physically stored as a 1-D ndarray of integers. These are called "ordinals" and represent some kind of offset from a base. The `freq` indicates the span covered by each element of the array. All elements in the PeriodArray have the same `freq`. """ # array priority higher than numpy scalars __array_priority__ = 1000 _typ = "periodarray" # ABCPeriodArray _scalar_type = Period _recognized_scalars = (Period,) _is_recognized_dtype = is_period_dtype # Names others delegate to us _other_ops: List[str] = [] _bool_ops = ["is_leap_year"] _object_ops = ["start_time", "end_time", "freq"] _field_ops = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "weekday", "week", "dayofweek", "dayofyear", "quarter", "qyear", "days_in_month", "daysinmonth", ] _datetimelike_ops = _field_ops + _object_ops + _bool_ops _datetimelike_methods = ["strftime", "to_timestamp", "asfreq"] # -------------------------------------------------------------------- # Constructors def __init__(self, values, freq=None, dtype=None, copy=False): freq = validate_dtype_freq(dtype, freq) if freq is not None: freq = Period._maybe_convert_freq(freq) if isinstance(values, ABCSeries): values = values._values if not isinstance(values, type(self)): raise TypeError("Incorrect dtype") elif isinstance(values, ABCPeriodIndex): values = values._values if isinstance(values, type(self)): if freq is not None and freq != values.freq: raise raise_on_incompatible(values, freq) values, freq = values._data, values.freq values = np.array(values, dtype="int64", copy=copy) self._data = values if freq is None: raise ValueError("freq is not specified and cannot be inferred") self._dtype = PeriodDtype(freq) @classmethod def _simple_new(cls, values: np.ndarray, freq=None, **kwargs): # alias for PeriodArray.__init__ assert isinstance(values, np.ndarray) and values.dtype == "i8" return cls(values, freq=freq, **kwargs) @classmethod def _from_sequence( cls, scalars: Sequence[Optional[Period]], dtype: Optional[PeriodDtype] = None, copy: bool = False, ) -> ABCPeriodArray: if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype, copy) @classmethod def _from_datetime64(cls, data, freq, tz=None): """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): periods = dtl.validate_periods(periods) if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if start is not None or end is not None: if field_count > 0: raise ValueError( "Can either instantiate from fields or endpoints, but not both" ) subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError("Not enough parameters to construct Period range") return subarr, freq # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value: Union[Period, NaTType]) -> int: if value is NaT: return value.value elif isinstance(value, self._scalar_type): if not isna(value): self._check_compatible_with(value) return value.ordinal else: raise ValueError(f"'value' should be a Period. Got '{value}' instead.") def _scalar_from_string(self, value: str) -> Period: return Period(value, freq=self.freq) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return if self.freqstr != other.freqstr: raise raise_on_incompatible(self, other) # -------------------------------------------------------------------- # Data / Attributes @cache_readonly def dtype(self): return self._dtype # error: Read-only property cannot override read-write property [misc] @property # type: ignore def freq(self): """ Return the frequency object for this PeriodArray. """ return self.dtype.freq def __array__(self, dtype=None) -> np.ndarray: # overriding DatetimelikeArray return np.array(list(self), dtype=object) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow from pandas.core.arrays._arrow_utils import ArrowPeriodType if type is not None: if pyarrow.types.is_integer(type): return pyarrow.array(self._data, mask=self.isna(), type=type) elif isinstance(type, ArrowPeriodType): # ensure we have the same freq if self.freqstr != type.freq: raise TypeError( "Not supported to convert PeriodArray to array with different " f"'freq' ({self.freqstr} vs {type.freq})" ) else: raise TypeError( f"Not supported to convert PeriodArray to '{type}' type" ) period_type = ArrowPeriodType(self.freqstr) storage_array = pyarrow.array(self._data, mask=self.isna(), type="int64") return pyarrow.ExtensionArray.from_storage(period_type, storage_array) # -------------------------------------------------------------------- # Vectorized analogues of Period properties year = _field_accessor( "year", 0, """ The year of the period. """, ) month = _field_accessor( "month", 3, """ The month as January=1, December=12. """, ) day = _field_accessor( "day", 4, """ The days of the period. """, ) hour = _field_accessor( "hour", 5, """ The hour of the period. """, ) minute = _field_accessor( "minute", 6, """ The minute of the period. """, ) second = _field_accessor( "second", 7, """ The second of the period. """, ) weekofyear = _field_accessor( "week", 8, """ The week ordinal of the year. """, ) week = weekofyear dayofweek = _field_accessor( "dayofweek", 10, """ The day of the week with Monday=0, Sunday=6. """, ) weekday = dayofweek dayofyear = day_of_year = _field_accessor( "dayofyear", 9, """ The ordinal day of the year. """, ) quarter = _field_accessor( "quarter", 2, """ The quarter of the date. """, ) qyear = _field_accessor("qyear", 1) days_in_month = _field_accessor( "days_in_month", 11, """ The number of days in the month. """, ) daysinmonth = days_in_month @property def is_leap_year(self): """ Logical indicating if the date belongs to a leap year. """ return isleapyear_arr(np.asarray(self.year)) @property def start_time(self): return self.to_timestamp(how="start") @property def end_time(self): return self.to_timestamp(how="end") def to_timestamp(self, freq=None, how="start"): """ Cast to DatetimeArray/Index. Parameters ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod._validate_end_alias(how) end = how == "E" if end: if freq == "B": # roll forward to ensure we land on B date adjust = Timedelta(1, "D") - Timedelta(1, "ns") return self.to_timestamp(how="start") + adjust else: adjust = Timedelta(1, "ns") return (self + self.freq).to_timestamp(how="start") - adjust if freq is None: base, mult = libfrequencies.get_freq_code(self.freq) freq = libfrequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = libfrequencies.get_freq_code(freq) new_data = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) return DatetimeArray._from_sequence(new_data, freq="infer") # -------------------------------------------------------------------- # Array-like / EA-Interface Methods def _values_for_argsort(self): return self._data # -------------------------------------------------------------------- def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None: raise TypeError( "`freq` argument is not supported for " f"{type(self).__name__}._time_shift" ) values = self.asi8 + periods * self.freq.n if self._hasnans: values[self._isnan] = iNaT return type(self)(values, freq=self.freq) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def asfreq(self, freq=None, how="E"): """ Convert the Period Array/Index to the specified frequency `freq`. Parameters ---------- freq : str A frequency. how : str {'E', 'S'} Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- Period Array/Index Constructed with the new frequency. Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[A-DEC]', freq='A-DEC') >>> pidx.asfreq('M') PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]', freq='M') >>> pidx.asfreq('M', how='S') PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]', freq='M') """ how = libperiod._validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = libfrequencies.get_freq_code(self.freq) base2, mult2 = libfrequencies.get_freq_code(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == "E" if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period_asfreq_arr(ordinal, base1, base2, end) if self._hasnans: new_data[self._isnan] = iNaT return type(self)(new_data, freq=freq) # ------------------------------------------------------------------ # Rendering Methods def _formatter(self, boxed=False): if boxed: return str return "'{}'".format def _format_native_types(self, na_rep="NaT", date_format=None, **kwargs): """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: str(dt) if self._hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values # ------------------------------------------------------------------ def astype(self, dtype, copy=True): # We handle Period[T] -> Period[U] # Our parent handles everything else. dtype = pandas_dtype(dtype) if is_period_dtype(dtype): return self.asfreq(dtype.freq) return super().astype(dtype, copy=copy) # ------------------------------------------------------------------ # Arithmetic Methods def _sub_datelike(self, other): assert other is not NaT return NotImplemented def _sub_period(self, other): # If the operation is well-defined, we return an object-Index # of DateOffsets. Null entries are filled with pd.NaT self._check_compatible_with(other) asi8 = self.asi8 new_data = asi8 - other.ordinal new_data = np.array([self.freq * x for x in new_data]) if self._hasnans: new_data[self._isnan] = NaT return new_data def _addsub_int_array( self, other: np.ndarray, op: Callable[[Any, Any], Any], ) -> "PeriodArray": """ Add or subtract array of integers; equivalent to applying `_time_shift` pointwise. Parameters ---------- other : np.ndarray[integer-dtype] op : {operator.add, operator.sub} Returns ------- result : PeriodArray """ assert op in [operator.add, operator.sub] if op is operator.sub: other = -other res_values = algos.checked_add_with_arr(self.asi8, other, arr_mask=self._isnan) res_values = res_values.view("i8") res_values[self._isnan] = iNaT return type(self)(res_values, freq=self.freq) def _add_offset(self, other): assert not isinstance(other, Tick) base = libfrequencies.get_base_alias(other.rule_code) if base != self.freq.rule_code: raise raise_on_incompatible(self, other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. result = super()._add_timedeltalike_scalar(other.n) return type(self)(result, freq=self.freq) def _add_timedeltalike_scalar(self, other): """ Parameters ---------- other : timedelta, Tick, np.timedelta64 Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function assert isinstance(other, (timedelta, np.timedelta64, Tick)) if notna(other): # special handling for np.timedelta64("NaT"), avoid calling # _check_timedeltalike_freq_compat as that would raise TypeError other = self._check_timedeltalike_freq_compat(other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. ordinals = super()._add_timedeltalike_scalar(other) return ordinals def _add_delta_tdi(self, other): """ Parameters ---------- other : TimedeltaArray or ndarray[timedelta64] Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function if not np.all(isna(other)): delta = self._check_timedeltalike_freq_compat(other) else: # all-NaT TimedeltaIndex is equivalent to a single scalar td64 NaT return self + np.timedelta64("NaT") return self._addsub_int_array(delta, operator.add).asi8 def _add_delta(self, other): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray raise raise_on_incompatible(self, other) new_ordinals = super()._add_delta(other) return type(self)(new_ordinals, freq=self.freq) def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function own_offset = frequencies.to_offset(self.freq.rule_code) base_nanos = delta_to_nanoseconds(own_offset) if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == "m" if other.dtype != _TD_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(_TD_DTYPE) nanos = other.view("i8") else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta raise raise_on_incompatible(self, other) def raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : None, DateOffset, Period, ndarray, or timedelta-like Returns ------- IncompatibleFrequency Exception to be raised by the caller. """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, np.ndarray) or right is None: other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, DateOffset)): other_freq = right.freqstr else: other_freq = _delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format( cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq ) return IncompatibleFrequency(msg) # ------------------------------------------------------------------- # Constructor Helpers def period_array( data: Sequence[Optional[Period]], freq: Optional[Union[str, Tick]] = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ if is_datetime64_dtype(data): return PeriodArray._from_datetime64(data, freq) if isinstance(data, (ABCPeriodIndex, ABCSeries, PeriodArray)): return PeriodArray(data, freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple)): data = list(data) data = np.asarray(data) dtype: Optional[PeriodDtype] if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(data) and len(data) > 0: raise TypeError("PeriodIndex does not allow floating point in construction") data = ensure_object(data) return PeriodArray._from_sequence(data, dtype=dtype) def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype =
pandas_dtype(dtype)
pandas.core.dtypes.common.pandas_dtype
#!/usr/bin/env python from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import pandas as pd import re import util import os import entrez as ez import stats import parallel import xgmml import db import random from six.moves import range import setting class Cache(object): DATA_DIR=setting.go['DATA_DIR'] # share by all tax_id CATEGORY={'LOCAL':None, 'GPDB':None, 'L1k':None} GO_DESCRIPTION={'LOCAL':None, 'GPDB':None, 'L1k':None} GO_CATEGORY={'LOCAL':None, 'GPDB':None, 'L1k':None} # per tax_id TOTAL_GENE_COUNT={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} ALL_GENE={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} CATEGORY_COUNT={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GO_GENE_ENRICH={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GO_GENE={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GENE_GO={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} N_TRIVIAL=800 @staticmethod def get(l_use_GPDB=True, tax_id=9606, l_L1k=False): if tax_id==-9606: tax_id=9606 s_key=Cache.key(l_use_GPDB, l_L1k) if l_L1k and tax_id!=9606: util.error_msg('L1k is only for tax_id 9606!') if tax_id not in Cache.TOTAL_GENE_COUNT[s_key]: Cache.load(tax_id=tax_id, l_use_GPDB=l_use_GPDB, l_L1k=l_L1k) #if l_L1k: # Cache.loadL1k() #else: # Cache.load(tax_id=tax_id, l_use_GPDB=l_use_GPDB) return (Cache.CATEGORY[s_key], Cache.GO_DESCRIPTION[s_key], Cache.GO_CATEGORY[s_key], # per tax_id, above are shared across tax_id Cache.TOTAL_GENE_COUNT[s_key][tax_id], Cache.ALL_GENE[s_key][tax_id], Cache.CATEGORY_COUNT[s_key][tax_id], Cache.GO_GENE_ENRICH[s_key][tax_id], Cache.GO_GENE[s_key][tax_id], Cache.GENE_GO[s_key][tax_id] ) @staticmethod def info(): for s_key in ('LOCAL','GPDB', 'L1k'): print(">Databases: %s" % s_key) print("CATEGORY=%d" % (0 if Cache.CATEGORY[s_key] is None else len(Cache.CATEGORY[s_key]))) print("GO_DESCRIPTION=%d" % (0 if Cache.GO_DESCRIPTION[s_key] is None else len(Cache.GO_DESCRIPTION[s_key]))) print("GO_CATEGORY=%d" % (0 if Cache.GO_CATEGORY[s_key] is None else len(Cache.GO_CATEGORY[s_key]))) for tax_id in Cache.TOTAL_GENE_COUNT[s_key].keys(): print("TAX_ID=%d (%s)" % (tax_id, ez.Cache.C_TAX_NAME.get(tax_id, "UNKNOWN"))) print("TOTAL_GENE_COUNT=%d" % Cache.TOTAL_GENE_COUNT[s_key][tax_id]) print("ALL_GENE=%d" % len(Cache.ALL_GENE[s_key][tax_id])) print("CATEGORY_COUNT=%d" % len(Cache.CATEGORY_COUNT[s_key][tax_id])) print("GO_GENE_ENRICH=%d" % len(Cache.GO_GENE_ENRICH[s_key][tax_id])) print("GO_GENE=%d" % len(Cache.GO_GENE[s_key][tax_id])) print("GENE_GO=%d" % len(Cache.GENE_GO[s_key][tax_id])) print("") @staticmethod def unload(tax_id, l_use_GPDB, l_L1k): if tax_id==-9606: tax_id=9606 s_key=Cache.key(l_use_GPDB, l_L1k) if tax_id in Cache.TOTAL_GENE_COUNT[s_key]: del Cache.CATEGORY_COUNT[s_key][tax_id] del Cache.TOTAL_GENE_COUNT[s_key][tax_id] del Cache.ALL_GENE[s_key][tax_id] del Cache.GO_GENE_ENRICH[s_key][tax_id] del Cache.GO_GENE[s_key][tax_id] del Cache.GENE_GO[s_key][tax_id] @staticmethod def key(l_use_GPDB, l_L1k): if l_L1k: return "L1k" return 'GPDB' if l_use_GPDB else 'LOCAL' @staticmethod def load(tax_id=9606, l_use_GPDB=True, user_go=None, l_L1k=False): """tax_id is None, defaults to 9606, if 0, means load all supported species, entrez_gene is only used in local mode to accelerate Symbol retrieval""" if tax_id is None: util.error_msg('tax_id must be an9606 int, or 0 mans all supported species') tax_id=abs(tax_id) s_key=Cache.key(l_use_GPDB, l_L1k=l_L1k) if tax_id!=0 and tax_id in Cache.TOTAL_GENE_COUNT[s_key]: return S_tax_id=[] # performance optimization if l_L1k: return Cache.loadL1k() if not l_use_GPDB: if tax_id not in (0,9606): util.error_msg('Local database only supports human!') tax_id=9606 if tax_id in Cache.TOTAL_GENE_COUNT[s_key]: return S_tax_id=[tax_id] else: mydb=db.DB('METASCAPE') if tax_id>0: S_tax_id=[tax_id] else: t=mydb.from_sql('SELECT DISTINCT tax_id FROM gid2source_id') S_tax_id=[x for x in t.tax_id.astype(int).tolist() if x not in Cache.TOTAL_GENE_COUNT[s_key]] if len(S_tax_id)==0: return s_tax_id=",".join(util.iarray2sarray(S_tax_id)) print("Load %s GO database for tax_id: %s ..." % (s_key, s_tax_id)) if l_use_GPDB: s_where_L1k="term_category_id>=91" if l_L1k else "term_category_id<91" if Cache.CATEGORY[s_key] is None: t=mydb.from_sql("SELECT term_category_id,category_name FROM term_category where "+s_where_L1k) Cache.CATEGORY[s_key] = {t.ix[i,'term_category_id']:t.ix[i,'category_name'] for i in t.index} t=mydb.from_sql("SELECT t.term_id GO,term_name AS DESCRIPTION,term_category_id CATEGORY_ID FROM term t where "+s_where_L1k) X=t.DESCRIPTION.isnull() if sum(X): t.ix[X, 'DESCRIPTION']=t.ix[X, 'GO'] #if not util.is_python3(): # t['DESCRIPTION']=t['DESCRIPTION'].apply(lambda x: unicode(x, encoding="ISO-8859-1", errors='ignore')) # L1000 has micro Mol Cache.GO_DESCRIPTION[s_key]=dict(zip(t.GO, t.DESCRIPTION)) t['CATEGORY_ID']=t['CATEGORY_ID'].astype(int) Cache.GO_CATEGORY[s_key]={re.sub(r'^\d+_', '', row.GO):int(row.CATEGORY_ID) for row in t.itertuples() } if tax_id==0: t=mydb.from_sql("SELECT COUNT(*) as N,tax_id FROM annotation a where a.annotation_type_id=3 AND content='protein-coding' group by tax_id") else: t=mydb.sql_in("SELECT COUNT(*) as N,tax_id FROM annotation a where a.annotation_type_id=3 AND content='protein-coding' and tax_id in (", ") group by tax_id", S_tax_id) Cache.TOTAL_GENE_COUNT[s_key]=dict(zip(t.tax_id, t.N)) if tax_id==0: t=mydb.from_sql("SELECT term_id GO,gids GENES,tax_id FROM term2gids where "+s_where_L1k) else: t=mydb.sql_in("SELECT term_id GO,gids GENES,tax_id FROM term2gids WHERE "+s_where_L1k+" and tax_id in (", ")", S_tax_id) #tmp=t[t.GO.apply(lambda x: x.startswith('6'))] #print tmp[:4] else: DATA_FILE=setting.go['DATA_FILE'] #TAX_ID,GeneID t_gene=pd.read_csv(DATA_FILE) t_gene=t_gene[t_gene.TAX_ID==tax_id] C_GENE=set(t_gene['GeneID'].astype(str).tolist()) Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(C_GENE) if user_go is not None: if os.path.isfile(user_go): if user_go.upper().endswith(".CSV"): t=pd.read_csv(user_go) else: t=pd.read_table(user_go) elif os.path.isfile(Cache.DATA_DIR+"AllAnnotations.tsv"): t=pd.read_csv(Cache.DATA_DIR+"AllAnnotations.tsv", sep='\t') if t is None: util.error_msg('No GO Annotations available.') #GO TYPE GENES DESCRIPTION S=util.unique(t.TYPE) Cache.CATEGORY[s_key] = dict(zip(S, S)) Cache.GO_CATEGORY[s_key]=dict(zip(t.GO, t.TYPE)) Cache.GO_DESCRIPTION[s_key]=dict(zip(t.GO, t.DESCRIPTION)) t['tax_id']=tax_id for x in S_tax_id: Cache.ALL_GENE[s_key][x]=set() Cache.GENE_GO[s_key][x]={} Cache.GO_GENE[s_key][x]={} Cache.CATEGORY_COUNT[s_key][x]={} Cache.GO_GENE_ENRICH[s_key][x]=set() #sw=util.StopWatch("AAAAAAA") for tax_id2,t_v in t.groupby('tax_id'): #t_v=t_v.copy() GENE_GO={} GO_GENE={} GO_GENE_ENRICH=set() ALL_GENE=set() CATEGORY_COUNT={} s_cat=0 S_genes=[ (row.GO, row.GENES.split(",")) for row in t_v.itertuples() ] if not l_use_GPDB: S_genes=[ (x, [y for y in Y if (y in C_GENE)]) for x,Y in S_genes ] GO_GENE={x: set(Y) for x,Y in S_genes if (len(Y)>0 and len(Y)<=Cache.N_TRIVIAL) } GO_GENE_ENRICH=set(GO_GENE.keys()) if l_use_GPDB: for x in GO_GENE_ENRICH: if re.sub(r'^\d+_', '', x) not in Cache.GO_CATEGORY[s_key]: print(">>>>>>>>>>>>>>>>>>>", x, s_key, re.sub(r'^\d+_', '', x)) exit() S_cat=[ Cache.GO_CATEGORY[s_key][re.sub(r'^\d+_','', x)] for x in GO_GENE_ENRICH ] else: S_cat=[ Cache.GO_CATEGORY[s_key][x] for x in GO_GENE_ENRICH ] CATEGORY_COUNT=util.unique_count(S_cat) # reduce is slower #ALL_GENE=reduce(lambda a,b : a|b, GO_GENE.values()) ALL_GENE=set([x for Y in GO_GENE.values() for x in Y]) #for row in t_v.itertuples(): ##for i in t_v.index: # s_go=row.GO #t_v.ix[i, 'GO'] # S_genes=row.GENES.split(",") #t_v.ix[i, 'GENES'].split(",") # if not l_use_GPDB: # ### warning, gene ids not recognized are treated as tax ID 0!!! # S_genes=[s for s in S_genes if s in C_GENE] # if len(S_genes)==0: continue # if len(S_genes)<=Cache.N_TRIVIAL: # GO_GENE_ENRICH.add(s_go) # if l_use_GPDB: # s_cat=Cache.GO_CATEGORY[s_key].get(re.sub(r'^\d+_','',s_go), 0) # CATEGORY_COUNT[s_cat]=CATEGORY_COUNT.get(s_cat, 0)+1 # GO_GENE[s_go]=set(S_genes) # ALL_GENE.update(GO_GENE[s_go]) #sw.check("TTTTTTTTT "+str(tax_id)) for k,v in GO_GENE.items(): for s_gene in v: if s_gene not in GENE_GO: GENE_GO[s_gene]={k} else: GENE_GO[s_gene].add(k) Cache.ALL_GENE[s_key][tax_id2]=ALL_GENE Cache.GENE_GO[s_key][tax_id2]=GENE_GO Cache.TOTAL_GENE_COUNT[s_key][tax_id2]=max(Cache.TOTAL_GENE_COUNT[s_key][tax_id2], len(GENE_GO)) Cache.CATEGORY_COUNT[s_key][tax_id2]=CATEGORY_COUNT Cache.GO_GENE[s_key][tax_id2]=GO_GENE Cache.GO_GENE_ENRICH[s_key][tax_id2]=GO_GENE_ENRICH if l_L1k: s_path=setting.go['L1000_PATH'] S_gene=util.read_list(s_path+'/L1kAllGenes.txt') Cache.ALL_GENE[s_key][tax_id]=set(S_gene) Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(S_gene) @staticmethod def loadL1k(): """Load L1000 terms""" sw=util.StopWatch() print("Loading L1k terms ...") tax_id=9606 s_key="L1k" s_path=setting.go['L1000_PATH'] S_gene=util.read_list(s_path+"/L1kAllGenes.txt") Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(S_gene) t1=pd.read_csv(s_path+"/Term2Gid_L1000_PhaseI.csv") t2=pd.read_csv(s_path+"/Term2Gid_L1000_PhaseII.csv") t=pd.concat([t1, t2], ignore_index=True) t['category_id']=t['category_id'].astype(int) #t=t1[:600000] Cache.ALL_GENE[s_key][tax_id]=set(S_gene) Cache.GENE_GO[s_key][tax_id]={} Cache.GO_GENE[s_key][tax_id]={} Cache.CATEGORY_COUNT[s_key][tax_id]={} Cache.GO_GENE_ENRICH[s_key][tax_id]=set() sw.check('Loaded CSV') s_type='BP' Cache.CATEGORY[s_key]={91:'shRNA',92:'Cpd',93:'cDNA',94:'Lgnd'} Cache.CATEGORY_COUNT[s_key][tax_id]={} Cache.GO_CATEGORY[s_key]={} Cache.GO_DESCRIPTION[s_key]={} CATEGORY_COUNT={} t['GO_ID']=[ str(row.category_id)+"_"+row.term_id for row in t.itertuples() ] Cache.GO_CATEGORY[s_key]=dict(zip(t.GO_ID, t.category_id)) Cache.GO_DESCRIPTION[s_key]=dict(zip(t.GO_ID, t.term_name)) CATEGORY_COUNT=util.unique_count(t.category_id) Cache.GO_GENE[s_key][tax_id]={ row.GO_ID:set(row.gids.split(",")) for row in t.itertuples() } for s_go_id,S_gene in Cache.GO_GENE[s_key].items(): for s_gene in S_gene: if s_gene not in Cache.GENE_GO[s_key][tax_id]: Cache.GENE_GO[s_key][tax_id][s_gene]={s_go_id} else: Cache.GENE_GO[s_key][tax_id][s_gene].add(s_go_id) ##for i in t.index: #for row in t.itertuples(): # i_cat=row.category_id #t.ix[i,'category_id'] # s_go=row.term_id #t.ix[i, 'term_id'] # s_des=row.term_name #t.ix[i,'term_name'] # S_gene=row.gids.split(",") #t.ix[i,'gids'].split(',') # s_go_id=str(i_cat)+"_"+s_go # Cache.GO_CATEGORY[s_key][s_go_id]=i_cat # Cache.GO_DESCRIPTION[s_key][s_go_id]=s_des # CATEGORY_COUNT[i_cat]=CATEGORY_COUNT.get(i_cat, 0)+1 # #if len(S_genes)<=Cache.N_TRIVIAL: # Cache.GO_GENE[s_key][tax_id][s_go_id]=set(S_gene) # for s_gene in S_gene: # if s_gene not in Cache.GENE_GO[s_key][tax_id]: # Cache.GENE_GO[s_key][tax_id][s_gene]={s_go_id} # else: # Cache.GENE_GO[s_key][tax_id][s_gene].add(s_go_id) Cache.CATEGORY_COUNT[s_key][tax_id]=CATEGORY_COUNT Cache.GO_GENE_ENRICH[s_key][tax_id]=set(Cache.GO_GENE[s_key][tax_id].keys()) sw.check("Done L1k") print('Done L1k loading') class GO(object): GO_ROOT={"BP":"GO:0008150","MF":"GO:0003674","CC":"GO:0005575"} #GO_DESCRIPTION={"BP":"Biological Process","MF":"Molecular Function","CC":"Cellular Component"} # used for l_use_GPDB GO Categories # GO: BP:19, MF:21, CC:20 # GeneGo: Pathway Map:27, Go Processes:31, Drug Target:29, Disease:28 # Custom: custom gene sets # KEGG: pathway:24, MF: 26, CC:25 # MSigDB: Pathway:11, BioCarta:15, Hallmark:23, Reactome:6, Onc Set:4, Immu Set:3, Chem/Genetics 13 def get_source_id(self,term_id): return re.sub(r'^\d*_','',term_id) def get_category_id(self,term_id): if re.search(r'^\d+_', term_id): t = term_id.split('_') return int(t[0]) else: return self.GO_CATEGORY.get(term_id, None) #the line below breaks on hsa_M00055 #return int(t[0]) if len(t)>1 else None def get_categories(self): if self.GPDB: mydb=db.DB('METASCAPE') t=mydb.from_sql("SELECT term_category_id,category_name,ds data_source FROM term_category") return t return None @staticmethod def get_go_categories(): mydb=db.DB('METASCAPE') t=mydb.from_sql("select c.term_category_id,c.category_name,c.category_group,c.category_group_name_membership from term_category c where c.used_in_enrichment='Y' order by category_group,term_category_id") return t def __init__(self, tax_id=None, l_use_GPDB=False, entrez=None, l_L1k=False, r_random=0): self.eg=entrez self.GPDB=l_use_GPDB self.tax_id=tax_id self.L1k=l_L1k (self.CATEGORY, self.GO_DESCRIPTION, self.GO_CATEGORY, self.TOTAL_GENE_COUNT, self.ALL_GENE, self.CATEGORY_COUNT, self.GO_GENE_ENRICH, self.GO_GENE, self.GENE_GO)=Cache.get(tax_id=tax_id, l_use_GPDB=l_use_GPDB, l_L1k=l_L1k) if r_random>0: self.GO_GENE_ENRICH=random.sample(self.GO_GENE_ENRICH, int(len(self.GO_GENE_ENRICH)*r_random)) def is_L1000(self): return self.L1k def go_description(self, s_go): if s_go in self.GO_DESCRIPTION: return self.GO_DESCRIPTION[s_go] return s_go def filter_genes_by_go(self, s_go, S_genes): return [ x for x in S_genes if s_go in self.GENE_GO.get(x, []) ] #if s_go in self.GO_GENE: # return list(set(S_genes).intersection(self.GO_GENE[s_go])) #else: # return [] def go_size(self, s_go): #return len([True for v in self.GENE_GO.values() if s_go in v ]) return len(self.GO_GENE.get(s_go, [])) def analysis_go(self, s_go, S_hit, N_total=0, SRC_GENE=None, min_overlap=3, p_cutoff=0.01): c={'GO':s_go, '#TotalGeneInLibrary':N_total, '#GeneInGO':0, '#GeneInHitList':0, '#GeneInGOAndHitList':0, 'LogP':0.0, 'Enrichment':0} #if SRC_GENE is not None: # print "SRC_GENE: "+str(len(SRC_GENE)) S_gene=self.GO_GENE[s_go] if len(S_gene)>=Cache.N_TRIVIAL: return None if not N_total: N_total=len(self.GENE_GO.keys()) #len(self.ALL_GENE), only count genes that has GO annotation if SRC_GENE is not None: S_gene=S_gene.intersection(SRC_GENE) S_hit=set(S_hit).intersection(SRC_GENE) else: S_hit=set(S_hit) S_hit=self.ALL_GENE.intersection(S_hit) c['#GeneInGO']=len(S_gene) c['#GeneInHitList']=len(S_hit) if c['#GeneInGO']<min_overlap or c['#GeneInHitList']<min_overlap: return None S_both=S_gene.intersection(S_hit) c['#GeneInGOAndHitList']=len(S_both) if c['#GeneInGOAndHitList']<min_overlap: return None c['%InGO']=c['#GeneInGOAndHitList']*100.0/c['#GeneInHitList'] q=min(max(c['%InGO']/100, 1.0/c['#GeneInHitList']), 1-1.0/c['#GeneInHitList']) c['STDV %InGO']=np.sqrt(q*(1-q)/c['#GeneInHitList'])*100 c['Enrichment']=c['%InGO']/100.0*N_total/c['#GeneInGO'] S=[int(x) for x in S_both] S.sort() c['GeneID']='|'.join([str(x) for x in S]) c['LogP']=np.log10(max( stats.hyper(c['#GeneInGOAndHitList'], N_total, c['#GeneInGO'], c['#GeneInHitList']), 1e-100)) # GeneGo Z-score definition c['Z-score']=stats.ZScore_GeneGo(c['#GeneInGOAndHitList'], N_total, c['#GeneInGO'], c['#GeneInHitList']) if c['LogP']>np.log10(p_cutoff): return None return c def analysis_go_RSA(self, s_go, S_hit, S_score, N_total=0, SRC_GENE=None, min_overlap=3, p_cutoff=0.01, l_keep_most=True): """Input is a list of hits with scores, the smaller the score, the better! We then iteratively try different score cutoffs and use the cutoff that produce the best P-value (Bonferroni corrected)""" c={'GO':s_go, '#TotalGeneInLibrary':N_total, '#GeneInGO':0, '#GeneInHitList':0, '#GeneInGOAndHitList':0, 'Cutoff':None, '#HitRemain':0, '#HitInGORemain':0, 'LogP':0.0, 'Enrichment':0} #if SRC_GENE is not None: # print "SRC_GENE: "+str(len(SRC_GENE)) S_gene=self.GO_GENE[s_go] if len(S_gene)>=Cache.N_TRIVIAL: return None if not N_total: N_total=len(self.GENE_GO) #len(self.ALL_GENE), only count genes that has GO annotation t_hit=pd.DataFrame(data={'Hit':S_hit, 'Score':S_score}) if SRC_GENE is not None: S_gene=S_gene.intersection(SRC_GENE) t_hit=t_hit[ t_hit.Hit.apply(lambda x: x in SRC_GENE) ] S_hit=set(t_hit.Hit) else: S_hit=set(S_hit) t_hit.sort_values('Score', inplace=True) c['#GeneInGO']=len(S_gene) c['#GeneInHitList']=len(S_hit) if c['#GeneInGO']<min_overlap or c['#GeneInHitList']<min_overlap: return None S_both=S_gene.intersection(S_hit) c['#GeneInGOAndHitList']=len(S_both) if c['#GeneInGOAndHitList']<min_overlap: return None I_index=np.arange(len(t_hit))[t_hit.Hit.apply(lambda x: x in S_gene).values] I_rank=stats.RSA_rank(t_hit.Score.values, I_index) rslt=stats.RSA_score(I_rank, N_total, l_BonferroniCorrection=True, l_keep_most=l_keep_most, p_cutoff=p_cutoff) c['#HitInGORemain']=rslt["cutoff"]+1 if c['#HitInGORemain']<min_overlap: return None c['#HitRemain']=I_rank[rslt["cutoff"]] c['Cutoff']=t_hit.Score.values[rslt["cutoff"]] c['%InGO']=c['#HitInGORemain']*100.0/c['#HitRemain'] q=min(max(c['%InGO']/100, 1.0/c['#HitRemain']), 1-1.0/c['#HitRemain']) c['STDV %InGO']=np.sqrt(q*(1-q)/c['#HitRemain'])*100 c['Enrichment']=c['%InGO']/100.0*N_total/c['#GeneInGO'] S=[int(x) for x in S_both] S.sort() c['GeneID_All']='|'.join([str(x) for x in S]) S=[int(x) for x in list(t_hit.Hit[: rslt["cutoff"]+1])] S.sort() c['GeneID']='|'.join([str(x) for x in S]) c['LogP']=rslt['logP'] return c def go_count(self, S_hit, S_go=None): """return a dict of GO and the number of genes appear in each GO if S_go is provided, only counts for those go terms""" c={} if S_go is not None: S_go=set(S_go) for x in S_hit: Y=self.GENE_GO.get(x, []) if S_go is not None: Y = set(Y).intersection(S_go) for y in Y: c[y]=c.get(y,0)+1 return c def gene_count(self, S_go, S_gene=None): """return a dict of Gene and the number of GOs appear for each gene if S_gene is provided, only counts for those genes """ c={} if S_gene is not None: S_gene=set(S_gene) for x in S_go: Y=self.GO_GENE.get(x, []) if S_gene is not None: Y = set(Y).intersection(S_gene) for y in self.GO_GENE.get(x, []): c[y]=c.get(y,0)+1 return c def membership_count(self, S_go, S_gene): """return a dict of GO and the set of genes fall into those GO""" return self.go_count(S_gene, S_go) #c=self.go_count(S_gene) #if type(S_go)!=set: # S_go=set(S_go) #c={ k:v for k,v in c.items() if k in S_go } #return c def membership_go_genes(self, S_go, S_gene): c={} S_gene=set(S_gene) for x in S_go: S=set(self.GO_GENE.get(x, [])).intersection(S_gene) if len(S): c[x]=list(S) return c #gene_go = { x:self.GENE_GO.get(x, []) for x in S_gene} #c={} #for k,v in gene_go.items(): # for g in v: # if g not in S_go: # continue # if g not in c: # c[g] = [] # c[g].append(k) #return c def analysis(self, S_hit, S_score=None, S_go=None, SRC_GENE=None, min_overlap=3, min_enrichment=0, p_cutoff=0.01, n_CPU=0, l_rsa_keep_most=True, S_go_category=None, l_background_by_ontology=False): """If Score is None, just run GO enrichment test, if Score is provided, the smaller score represents hits are more reliable. An iterative enrichment test, i.e., RSA routine is applied, see analysis_go_RSA is applied. S_go_category: a set of categories to use, useful for gene prioritization project. By default, we recommend [31,19,11,15,27,24] Special usage: both S_hit and S_go are dict, {'a':S_hit1, 'b':S_hit2}, {'a':S_go1, 'b':S_go2} Which is a short cut to run analysis(S_hit1, S_go1) and analysis(S_hit2, S_go2) i.e., we analysis multiple hit lists, each has its own S_go list. We pool them together, so that we can use CPUs more effectively, e.g, len(S_go1)==2 and len(S_go2)==10, we can run them in 12 CPUs once, instead of in two batches. """ def go_filtered(S_go, S_go_category): return [x for x in S_go if self.get_category_id(x) in S_go_category] S_all_go_filtered=[] def all_go_filtered(S_go_category): if len(S_all_go_filtered)==0: S_go=self.GO_GENE_ENRICH S_all_go_filtered.append(go_filtered(S_go, S_go_category)) return S_all_go_filtered[0] N_go=0 if S_go_category is not None and len(S_go_category)>0: # hard code for now, to be fixed later if type(S_go_category) in (int, str): S_go_category=[S_go_category] S_go_category={int(x) for x in S_go_category if self.CATEGORY_COUNT.get(x,0)>0 } for x in S_go_category: N_go+=self.CATEGORY_COUNT[x] else: N_go=sum(self.CATEGORY_COUNT.values()) l_multi_list=type(S_hit) is dict if S_go is None: if l_multi_list: S_go={} for k in S_hit.keys(): S_go[k]=all_go_filtered(S_go_category) else: S_go=all_go_filtered(S_go_category) else: if l_multi_list: for k in S_hit.keys(): if S_go.get(k, None) is None: S_go[k]=all_go_filtered(S_go_category) else: S_go[k]=go_filtered(S_go[k], S_go_category) else: S_go=go_filtered(S_go, S_go_category) if SRC_GENE is not None: if type(SRC_GENE) is list: SRC_GENE=set(SRC_GENE) SRC_GENE=self.ALL_GENE.intersection(SRC_GENE) # remove genes from background, if it is not in self.ALL_GENE N_total=len(SRC_GENE) #self.ALL_GENE.intersection(SRC_GENE)) elif l_background_by_ontology: # GeneGo uses this if l_multi_list: X=set() for x in S_go.values(): X.add(set(x)) src_genes=self.gene_count(list(X)) else: src_genes=self.gene_count(S_go) N_total=len(src_genes) SRC_GENE=set(src_genes.keys()) else: if self.is_L1000(): N_total=len(self.ALL_GENE) else: N_total=len(self.GENE_GO) #len(self.ALL_GENE), only count genes that has GO annotation #N_total=len(self.ALL_GENE) # prefiltering uninteresting GO terms # already converted to multiple hit list situation sw=util.StopWatch() L=[] # list of (S_hit, s_go) def spread_input(S_hit, S_go, key): #S_hit, S_go, key=(X[0], X[1], X[2]) # may not worth it #c_cnt=self.go_count(S_hit, S_go) #S_go=[s_go for s_go in S_go if c_cnt.get(s_go,0)>=min_overlap ] # minimum size MIN_BATCH=2000 S_go2=util.split(S_go, chunk_size=MIN_BATCH) return [(key, S_hit, x) for x in S_go2] #sw.check('To spreadout') if l_multi_list: #mp=parallel.MP() #m=1 if len(S_hit)<=3 else n_CPU #mp.start(f=spread_input, n_CPU=m) #L=[(X, S_go[k], k) for k,X in S_hit.items() if len(X)>=min_overlap] #out=mp.map(L) #L=[y for X in out for y in X] L=[] for k,X in S_hit.items(): if len(X)<min_overlap: continue L.extend(spread_input(X, S_go[k], k)) random.shuffle(L) else: if len(S_hit)>=min_overlap: L=spread_input(S_hit, S_go, 'Default') if self.eg is None: self.eg=ez.EntrezGene(tax_id=self.tax_id, l_use_GPDB=self.GPDB) if n_CPU==0: n_CPU=1 #print ">>>>>>>>>>>>>>", len(L) S_chunk=util.split(L, n_chunk=n_CPU) #sw.check('Spreadout tasks: %d' % len(L)) def analyze(L): """L is a list of [[s_name, S_hit, s_go]], s_go can also be a list""" rslt=[] #p=util.Progress(len(L)) i=0 import multiprocessing s_pid=str(multiprocessing.current_process().pid) for s_name, S_hit, S_go in L: i+=1 #if (i % 50000): p.check(i, s_pid) if type(S_go) is str: S_go=[S_go] for s_go in S_go: if s_go not in self.GO_GENE: continue if S_score is None: c=self.analysis_go(s_go, S_hit, N_total, SRC_GENE=SRC_GENE, min_overlap=min_overlap, p_cutoff=p_cutoff) else: c=self.analysis_go_RSA(s_go, S_hit, S_score, N_total, SRC_GENE=SRC_GENE, min_overlap=min_overlap, p_cutoff=p_cutoff, l_keep_most=l_rsa_keep_most) if c is None: continue c['Name']=s_name if min_enrichment>0 and c['Enrichment']<min_enrichment: continue if p_cutoff<1 and 10**c['LogP']>p_cutoff: continue c['Description']= self.go_description(s_go) S_gene=c['GeneID'].split('|') S_symbol=[self.eg.C_GENENEW[x] if x in self.eg.C_GENENEW else x for x in S_gene] c['Hits']='|'.join(S_symbol) if 'GeneID_All' in c: S_gene=c['GeneID_All'].split('|') S_symbol=[self.eg.C_GENENEW[x] if x in self.eg.C_GENENEW else x for x in S_gene] c['Hits_All']='|'.join(S_symbol) if self.GPDB: c['CategoryID'] = self.get_category_id(c['GO']) c['Category'] = self.CATEGORY.get(self.get_category_id(c['GO'])) c['GO'] = self.get_source_id(c['GO']) rslt.append(c) return rslt out=parallel.parmap(analyze, S_chunk, n_CPU=n_CPU) #if n_CPU>1: # mp=parallel.MP() # mp.start(f=analyze, n_CPU=n_CPU) # out=mp.map(S_chunk) #else: # out=[analyze(x) for x in S_chunk] #mp.start(n_CPU=n_CPU) #sw.check('P-value Calculation') #sw.check('P-value Calculation Done') rslt=[] for x in out: if len(x): rslt.extend(x) if len(rslt): #sw.check('Length: %d' % len(rslt)) t=pd.DataFrame(rslt) #sw.check('Table DONE') if S_score is None: t=t.sort_values(['LogP','Enrichment','#GeneInGOAndHitList'], ascending=[True,False,False]) cols = ['Name','GO','Description','LogP','Enrichment','Z-score','#TotalGeneInLibrary', '#GeneInGO','#GeneInHitList','#GeneInGOAndHitList','%InGO','STDV %InGO','GeneID','Hits'] else: t=t.sort_values(['LogP','Enrichment','#HitInGORemain','#GeneInGOAndHitList'], ascending=[True,False,False,False]) cols = ['Name','GO','Description','LogP','Enrichment','Z-score','#TotalGeneInLibrary', '#GeneInGO','#HitRemain','#HitInGORemain','Cutoff','#GeneInHitList','#GeneInGOAndHitList','%InGO','STDV %InGO','GeneID','Hits','GeneID_All','Hits_All'] if self.GPDB: #cols.insert(1,'field1') cols.insert(1,'CategoryID') cols.insert(1,'Category') #sw.check('sorted DONE') t=t.reindex(columns=cols) # FDR #print ">>> N_go: ", N_go #sw.check('reindex DONE') t['Log(q-value)']=np.log10(np.clip(stats.adjust_p(np.power(10, t.LogP.values), N=N_go), 1e-100, 1.0)) #sw.check('q-value DONE') if not l_multi_list: t.drop('Name', axis=1, inplace=True) return t else: return None def key_terms(self, t_old, t_new, t_union, S_old=None, t_over=None): """Look for terms presented in both list and the p-valeu is even better in the combined list S_old is the set of genes in Old set, if None, set to all genes in t_old table This method is to be used by analyze_key_terms.""" if t_old is None or t_new is None or t_union is None: return None print("Old: %d, New: %d, Union: %d" % (len(t_old), len(t_new), len(t_union))) if S_old is None: S_old=set([y for x in [ t_old.ix[i, 'GeneID'].split("|") for i in t_old.index ] for y in x]) elif type(S_old) is list: S_old=set(S_old) t_old=t_old[["GO","LogP"]] t_old.rename2({"LogP":"LogP_Hit"}) t_new=t_new[["GO","LogP"]] t_new.rename2({"LogP":"LogP_OverConnect"}) #t_old.rename2({"LogP":"LogP_Union"}) t=pd.merge(t_union, t_old, on="GO") if len(t)==0: return None t=
pd.merge(t, t_new, on="GO")
pandas.merge
import json import os import geocoder import pandas as pd import plotly.express as px from plotly.colors import label_rgb as rgb import streamlit as st st.title('Oldways Data Analyzer') mode_selection = st.sidebar.selectbox('App Mode:', ('Filtered Analysis', 'Automatic Analysis')) '### Inputs' excel_file = st.file_uploader(label='Excel File to Analyze', type=['xlsx']) sheet_name = 'Student Lifestyle Surveys' header_row = 23 weight_sheet_name = 'Total Weight Loss' # Spreadsheet name for weight data weight_header_row = 8 # Header row for weight data bp_sheet_name = "Blood Pressure" # Spreadsheet name for bp data bp_header_row = 5 # Header row for bp data waist_sheet_name = "Waist Circumference" # Spreadsheet for waist data waist_header_row = 7 # Header row for waist data def mean(data): ''' Compute the average value of the given data ''' return sum(data) / len(data) topics = ['Cooking Frequency', 'Herbs and Spices', 'Greens', 'Whole Grains', 'Beans', 'Tubers', 'Vegetables', 'Fruits', 'Vegetarian-Based Meals', 'Exercise'] def get_df_percentages(df): percentage_increase = [] percentage_same = [] num_students = [] for i in range(len(topics)): # Create header names pre_string = "Pre" pre_name = "Pre - Num" post_name = "Post Num" if i != 0: # artifact of how spreadsheet is formatted pre_name += ("." + str(i)) post_name += ("." + str(i)) pre_string += ("." + str(i)) pre_post = df[[pre_name, post_name, pre_string]] pre_post["Difference"] = pre_post[post_name] - pre_post[pre_name] pre_post.dropna(inplace=True) # drops the blank lines (they didn't answer) total_num = len(pre_post) increase_num = len(pre_post[pre_post['Difference'] > 0]) same_num = len(pre_post[pre_post['Difference'] == 0]) percentage_increase.append(100 * increase_num / total_num) percentage_same.append(100 * same_num / total_num) num_students.append(total_num) return mean(percentage_increase), mean(percentage_same), mean(num_students) def compute_percentage(data, target): ''' Compute the percentage of data points meeting the given target test function ''' count = 0 for point in data: if target(point): count += 1 return 100 * count / len(data) @st.cache def load_sheet(excel_file, sheet_name, header_row): return pd.read_excel(excel_file, sheet_name, header=header_row) if excel_file is not None: df = load_sheet(excel_file, sheet_name, header_row) # Load all dataframes if mode_selection == 'Automatic Analysis': with st.beta_expander('Health Statistics'): # Expandable info about health df_health = load_sheet(excel_file, weight_sheet_name, weight_header_row) df_bp = load_sheet(excel_file, bp_sheet_name, bp_header_row) df_waist = load_sheet(excel_file, waist_sheet_name, waist_header_row) weight_loss_his = mean( df_health["Weight Change lbs."]) # Changes in Weight (Overall, Male, Female) average_weight_loss = f"{weight_loss_his:.2f}" weight_loss_fig = px.histogram(df_health["Weight Change lbs."], title='Changes in Weight (Overall)', labels={'value': 'Weight Lost', 'count': 'Count'}) st.plotly_chart(weight_loss_fig) males = df_health.loc[df_health['Sex'] == 'M'] weight_loss_his_m = px.histogram(males['Weight Change lbs.'], title='Changes in Weight (Male)', labels={'value': 'Weight Lost', 'count': 'Count'}) average_male_loss = mean(males["Weight Change lbs."]) average_male_loss = f"{average_male_loss:.2f}" females = df_health.loc[df_health['Sex'] == 'F'] weight_loss_his_f = px.histogram(females['Weight Change lbs.'], title='Changes in Weight (Female)', labels={'value': 'Weight Lost', 'count': 'Count'}) st.plotly_chart(weight_loss_his_f) st.plotly_chart(weight_loss_his_m) average_female_loss = mean(females["Weight Change lbs."]) average_female_loss = f"{average_female_loss:.2f}" st.success( (f'On average, the **{len(df_health["Weight Change lbs."])}** students lost **{average_weight_loss}** ' f'pounds. Of these, the **{len(females)}** females lost an average of **{average_female_loss}** pounds' f' while the **{len(males)}** males lost an average of **{average_male_loss}** pounds. ')) percent_bp = [] # Changes in Blood Pressure percent_bp_improve = compute_percentage(df_bp["Change in New HPB Rating"], lambda x: x == 'Decrease') percent_bp.append(percent_bp_improve) percent_bp_improve = f"{percent_bp_improve:.2f}" percent_bp_same = compute_percentage(df_bp["Change in New HPB Rating"], lambda x: x == 'No Change') percent_bp.append(percent_bp_same) percent_bp.append(100 - percent_bp[0] - percent_bp[1]) percent_bp_labels = ['Decrease', "No Change", 'Increase'] percent_bp_same = f"{percent_bp_same:.2f}" average_sys_bp = mean(df_bp["Change in Sys BP"]) average_dia_bp = mean(df_bp["Change in Dia BP"]) average_sys_bp = f"{average_sys_bp:.2f}" average_dia_bp = f"{average_dia_bp:.2f}" bp_fig = px.pie(title='Changes in Blood Pressure Stages', values=percent_bp, names=percent_bp_labels) bp_fig.update_traces(textposition='inside', textinfo='label+percent') st.plotly_chart(bp_fig) st.success((f'**{percent_bp_improve}%** of students improved their blood pressure by at least one stage' f' while **{percent_bp_same}%** of students saw no change in blood pressure. On average, students' f' saw an average improvement of **{average_sys_bp}** in systolic blood pressure and **{average_dia_bp}**' f' in diastolic blood pressure')) percent_waist = [] # Changes in Waist waist_lost = compute_percentage(df_waist["Inches Lossed"], lambda x: x > 0) percent_waist.append(waist_lost) waist_lost = f"{waist_lost:.2f}" waist_same = compute_percentage(df_waist["Inches Lossed"], lambda x: x == 0) percent_waist.append(waist_same) percent_waist.append(100 - percent_waist[0] - percent_waist[1]) waist_label = ['Lost', 'No Change', 'Gained'] waist_fig = px.pie(title='Changes in Waist Inches', values=percent_waist, names=waist_label) waist_fig.update_traces(textposition='inside', textinfo='label+percent') st.plotly_chart(waist_fig) waist_same = f"{waist_same:.2f}" average_waist = mean(df_waist["Inches Lossed"]) average_waist = f"{average_waist:.2f}" st.success((f'On average, the **{len(df_waist["Inches Lossed"])}** students lost ' f'**{average_waist}** inches on their waist, with **{waist_lost}%** of students ' f'seeing improved results and **{waist_same}%** of students seeing no changes. ')) with st.beta_expander('Teacher Analysis'): @st.cache(suppress_st_warning=True) def analyze_teachers(): teachers = list(df['Teacher Name'].unique()) teacher_increases = [] teacher_num_students = [] teacher_progress = st.progress(0.) for i, teacher in enumerate(teachers): teacher_df = df[df['Teacher Name'] == teacher] increase, same, num_students = get_df_percentages(teacher_df) teacher_increases.append(increase) teacher_num_students.append(num_students) teacher_progress.progress((i + 1.) / len(teachers)) sort_teachers = [teachers for _, teachers in sorted(zip(teacher_increases, teachers), reverse=True)] sort_num_students = [teachers for _, teachers in sorted(zip(teacher_increases, teacher_num_students), reverse=True)] sort_increases = sorted(teacher_increases, reverse=True) return sort_teachers, sort_num_students, sort_increases sort_teachers, sort_num_students, sort_increases = analyze_teachers() display_df = pd.DataFrame() display_df['Teacher'] = sort_teachers display_df['Average % Increase'] = sort_increases display_df['Average # of Students'] = sort_num_students display_df '*Note:* Average % increase reflects the average improval rate of students in the categories of ' + ', '.join(topics) if mode_selection == 'Filtered Analysis': '### Filters' # Filter Years min_year, max_year = int(df["Class End Date (year)"].min()), int(df["Class End Date (year)"].max()) start_year, end_year = st.slider(label='Class Years', value=(min_year, max_year), min_value=min_year, max_value=max_year) df = df.loc[(start_year <= df['Class End Date (year)']) & (df['Class End Date (year)'] <= end_year)] # Filter Teachers teachers = st.multiselect(default=['All'], label='Teachers', options=['All'] + list(df['Teacher Name'].unique())) if 'All' not in teachers: df = df[df['Teacher Name'].isin(teachers)] locations = df[["Class Type", "Teacher Name", "Class End Date (year)", "Class Location Type", "City", "State"]] locations.drop_duplicates(inplace=True) seen = {} if not os.path.exists('loaction_dump.json') else json.load(open('loaction_dump.json', 'r')) lat = [] lng = [] location_names = [] for city, state in zip(locations['City'], locations['State']): loc_str = f'{city}, {state}' if loc_str not in seen: geocode = geocoder.google(loc_str) seen[loc_str] = {'lat': geocode.latlng[0], 'lng': geocode.latlng[1]} lat.append(seen[loc_str]['lat']) lng.append(seen[loc_str]['lng']) location_names.append(loc_str) try: json.dump(seen, open('loaction_dump.json', 'w')) except PermissionError: pass locations['lat'] = lat locations['lng'] = lng locations['Location'] = location_names locations['# of Classes'] = locations.groupby(['lat', 'lng'])['lat'].transform('count') fig = px.scatter_geo(locations, lat="lat", lon='lng', size='# of Classes', projection='albers usa', hover_data={'lat': False, 'lng': False, '# of Classes': True, 'Location': True}, title='Class Locations', size_max=25) # fig.show() '## Analysis' with st.beta_expander('General Statistics'): st.success(f'There have been **{len(locations)}** classes taught with these filter options.') st.success(f'The classes were taught in **{len(set(location_names))}** different cities.') st.plotly_chart(fig, use_container_width=True) st.success(f'These classes reached **{len(df)}** students.') heritage_counts = df["History & Heritage Positive Motivators?"].str.lower().value_counts() yes = heritage_counts.get('yes', 1) no = heritage_counts.get('no', 0) st.success(f'**{100 * yes / (yes + no):.2f}%** of the ' f'{(yes + no)} students surveyed, said heritage/history ' f'are positive motivators for health.') with st.beta_expander('Improvements'): data_view = st.radio('How would you like to view the data?', ('% of People', '# of People')) topics = ['Cooking Frequency', 'Herbs and Spices', 'Greens', 'Whole Grains', 'Beans', 'Tubers', 'Vegetables', 'Fruits', 'Vegetarian-Based Meals', 'Exercise'] percentages = [] for i in range(len(topics)): # Create header names pre_string = "Pre" pre_name = "Pre - Num" post_name = "Post Num" if i != 0: # artifact of how spreadsheet is formatted pre_name += ("." + str(i)) post_name += ("." + str(i)) pre_string += ("." + str(i)) pre_post = df[[pre_name, post_name, pre_string]] pre_post["Difference"] = pre_post[post_name] - pre_post[pre_name] pre_post.dropna(inplace=True) # drops the blank lines (they didn't answer) total_num = len(pre_post) increase_num = len(pre_post[pre_post['Difference'] > 0]) same_num = len(pre_post[pre_post['Difference'] == 0]) if '#' == data_view[0]: percent_increase = increase_num percent_same = same_num percentages.append([percent_increase, 'Increased', topics[i]]) percentages.append([percent_same, 'No Change', topics[i]]) percentages.append([total_num - percent_increase - percent_same, 'Decreased', topics[i]]) else: percent_increase = round(100 * increase_num / total_num, 2) percent_same = round(100 * same_num / total_num, 2) percentages.append([percent_increase, 'Increased', topics[i]]) percentages.append([percent_same, 'No Change', topics[i]]) percentages.append([100 - percent_increase - percent_same, 'Decreased', topics[i]]) percentage_df =
pd.DataFrame(percentages, columns=[f'{data_view[0]} of People', 'Change', 'Category'])
pandas.DataFrame
"""Objects related to pandas dataframes.""" from typing import Tuple, Union, List, Any, Dict, Optional, cast, Callable import numpy as np import pandas as pd from pandas.api.types import union_categoricals from owid.datautils.common import ExceptionFromDocstring, warn_on_list_of_entities class DataFramesHaveDifferentLengths(ExceptionFromDocstring): """Dataframes cannot be compared because they have different number of rows.""" class ObjectsAreNotDataframes(ExceptionFromDocstring): """Given objects are not dataframes.""" def compare( df1: pd.DataFrame, df2: pd.DataFrame, columns: Optional[List[str]] = None, absolute_tolerance: float = 1e-8, relative_tolerance: float = 1e-8, ) -> pd.DataFrame: """Compare two dataframes element by element to see if they are equal. It assumes that nans are all identical, and allows for certain absolute and relative tolerances for the comparison of floats. NOTE: Dataframes must have the same number of rows to be able to compare them. Parameters ---------- df1 : pd.DataFrame First dataframe. df2 : pd.DataFrame Second dataframe. columns : list or None List of columns to compare (they both must exist in both dataframes). If None, common columns will be compared. absolute_tolerance : float Absolute tolerance to assume in the comparison of each cell in the dataframes. A value a of an element in df1 is considered equal to the corresponding element b at the same position in df2, if: abs(a - b) <= absolute_tolerance relative_tolerance : float Relative tolerance to assume in the comparison of each cell in the dataframes. A value a of an element in df1 is considered equal to the corresponding element b at the same position in df2, if: abs(a - b) / abs(b) <= relative_tolerance Returns ------- compared : pd.DataFrame Dataframe of booleans, with as many rows as df1 and df2, and as many columns as specified by `columns` argument (or as many common columns between df1 and df2, if `columns` is None). The (i, j) element is True if df1 and f2 have the same value (for the given tolerances) at that same position. """ # Ensure dataframes can be compared. if (type(df1) != pd.DataFrame) or (type(df2) != pd.DataFrame): raise ObjectsAreNotDataframes if len(df1) != len(df2): raise DataFramesHaveDifferentLengths # If columns are not specified, assume common columns. if columns is None: columns = sorted(set(df1.columns) & set(df2.columns)) # Compare, column by column, the elements of the two dataframes. compared = pd.DataFrame() for col in columns: if (df1[col].dtype == object) or (df2[col].dtype == object): # Apply a direct comparison for strings. compared_row = df1[col].values == df2[col].values else: # For numeric data, consider them equal within certain absolute and relative tolerances. compared_row = np.isclose( df1[col].values, df2[col].values, atol=absolute_tolerance, rtol=relative_tolerance, ) # Treat nans as equal. compared_row[pd.isnull(df1[col].values) & pd.isnull(df2[col].values)] = True # type: ignore compared[col] = compared_row return compared def are_equal( df1: pd.DataFrame, df2: pd.DataFrame, absolute_tolerance: float = 1e-8, relative_tolerance: float = 1e-8, verbose: bool = True, ) -> Tuple[bool, pd.DataFrame]: """Check whether two dataframes are equal. It assumes that all nans are identical, and compares floats by means of certain absolute and relative tolerances. Parameters ---------- df1 : pd.DataFrame First dataframe. df2 : pd.DataFrame Second dataframe. absolute_tolerance : float Absolute tolerance to assume in the comparison of each cell in the dataframes. A value a of an element in df1 is considered equal to the corresponding element b at the same position in df2, if: abs(a - b) <= absolute_tolerance relative_tolerance : float Relative tolerance to assume in the comparison of each cell in the dataframes. A value a of an element in df1 is considered equal to the corresponding element b at the same position in df2, if: abs(a - b) / abs(b) <= relative_tolerance verbose : bool True to print a summary of the comparison of the two dataframes. Returns ------- are_equal : bool True if the two dataframes are equal (given the conditions explained above). compared : pd.DataFrame Dataframe with the same shape as df1 and df2 (if they have the same shape) that is True on each element where both dataframes have equal values. If dataframes have different shapes, compared will be empty. """ # Initialise flag that is True only if both dataframes are equal. equal = True # Initialise flag that is True if dataframes can be compared cell by cell. can_be_compared = True # Initialise string of messages, which will optionally be printed. summary = "" # Check if all columns in df2 are in df1. missing_in_df1 = sorted(set(df2.columns) - set(df1.columns)) if len(missing_in_df1): summary += f"\n* {len(missing_in_df1)} columns in df2 missing in df1.\n" summary += "\n".join([f" * {col}" for col in missing_in_df1]) equal = False # Check if all columns in df1 are in df2. missing_in_df2 = sorted(set(df1.columns) - set(df2.columns)) if len(missing_in_df2): summary += f"\n* {len(missing_in_df2)} columns in df1 missing in df2.\n" summary += "\n".join([f" * {col}" for col in missing_in_df2]) equal = False # Check if dataframes have the same number of rows. if len(df1) != len(df2): summary += f"\n* {len(df1)} rows in df1 and {len(df2)} rows in df2." equal = False can_be_compared = False # Check for differences in column names or types. common_columns = sorted(set(df1.columns) & set(df2.columns)) all_columns = sorted(set(df1.columns) | set(df2.columns)) if common_columns == all_columns: if df1.columns.tolist() != df2.columns.tolist(): summary += "\n* Columns are sorted differently.\n" equal = False for col in common_columns: if df1[col].dtype != df2[col].dtype: summary += ( f" * Column {col} is of type {df1[col].dtype} for df1, but type" f" {df2[col].dtype} for df2." ) equal = False else: summary += ( f"\n* Only {len(common_columns)} common columns out of" f" {len(all_columns)} distinct columns." ) equal = False if not can_be_compared: # Dataframes cannot be compared. compared = pd.DataFrame() equal = False else: # Check if indexes are equal. if (df1.index != df2.index).any(): summary += ( "\n* Dataframes have different indexes (consider resetting indexes of" " input dataframes)." ) equal = False # Dataframes can be compared cell by cell (two nans on the same cell are considered equal). compared = compare( df1, df2, columns=common_columns, absolute_tolerance=absolute_tolerance, relative_tolerance=relative_tolerance, ) all_values_equal = compared.all().all() if not all_values_equal: summary += ( "\n* Values differ by more than the given absolute and relative" " tolerances." ) # Dataframes are equal only if all previous checks have passed. equal = equal & all_values_equal if equal: summary += ( "Dataframes are identical (within absolute tolerance of" f" {absolute_tolerance} and relative tolerance of {relative_tolerance})." ) if verbose: # Optionally print the summary of the comparison. print(summary) return equal, compared def groupby_agg( df: pd.DataFrame, groupby_columns: Union[List[str], str], aggregations: Union[Dict[str, Any], None] = None, num_allowed_nans: Union[int, None] = 0, frac_allowed_nans: Union[float, None] = None, ) -> pd.DataFrame: """Group dataframe by certain columns, and aggregate using a certain method, and decide how to handle nans. This function is similar to the usual > df.groupby(groupby_columns).agg(aggregations) However, pandas by default ignores nans in aggregations. This implies, for example, that > df.groupby(groupby_columns).sum() will treat nans as zeros, which can be misleading. When both num_allowed_nans and frac_allowed_nans are None, this function behaves like the default pandas behaviour (and nans will be treated as zeros). On the other hand, if num_allowed_nans is not None, then a group will be nan if the number of nans in that group is larger than num_allowed_nans, otherwise nans will be treated as zeros. Similarly, if frac_allowed_nans is not None, then a group will be nan if the fraction of nans in that group is larger than frac_allowed_nans, otherwise nans will be treated as zeros. If both num_allowed_nans and frac_allowed_nans are not None, both conditions are applied. This means that, each group must have a number of nans <= num_allowed_nans, and a fraction of nans <= frac_allowed_nans, otherwise that group will be nan. Note: This function won't work when using multiple aggregations for the same column (e.g. {'a': ('sum', 'mean')}). Parameters ---------- df : pd.DataFrame Original dataframe. groupby_columns : list or str List of columns to group by. It can be given as a string, if it is only one column. aggregations : dict or None Aggregations to apply to each column in df. If None, 'sum' will be applied to all columns. num_allowed_nans : int or None Maximum number of nans that are allowed in a group. frac_allowed_nans : float or None Maximum fraction of nans that are allowed in a group. Returns ------- grouped : pd.DataFrame Grouped dataframe after applying aggregations. """ if type(groupby_columns) == str: groupby_columns = [groupby_columns] if aggregations is None: columns_to_aggregate = [ column for column in df.columns if column not in groupby_columns ] aggregations = {column: "sum" for column in columns_to_aggregate} # Group by and aggregate. grouped = df.groupby(groupby_columns, dropna=False).agg(aggregations) if num_allowed_nans is not None: # Count the number of missing values in each group. num_nans_detected = df.groupby(groupby_columns, dropna=False).agg( lambda x: pd.isnull(x).sum() ) # Make nan any aggregation where there were too many missing values. grouped = grouped[num_nans_detected <= num_allowed_nans] if frac_allowed_nans is not None: # Count the number of missing values in each group. num_nans_detected = df.groupby(groupby_columns, dropna=False).agg( lambda x: pd.isnull(x).sum() ) # Count number of elements in each group (avoid using 'count' method, which ignores nans). num_elements = df.groupby(groupby_columns, dropna=False).size() # Make nan any aggregation where there were too many missing values. grouped = grouped[ num_nans_detected.divide(num_elements, axis="index") <= frac_allowed_nans ] return grouped def multi_merge( dfs: List[pd.DataFrame], on: Union[List[str], str], how: str = "inner" ) -> pd.DataFrame: """Merge multiple dataframes. This is a helper function when merging more than two dataframes on common columns. Parameters ---------- dfs : list Dataframes to be merged. on : list or str Column or list of columns on which to merge. These columns must have the same name on all dataframes. how : str Method to use for merging (with the same options available in pd.merge). Returns ------- merged : pd.DataFrame Input dataframes merged. """ merged = dfs[0].copy() for df in dfs[1:]: merged = pd.merge(merged, df, how=how, on=on) return merged def map_series( series: pd.Series, mapping: Dict[Any, Any], make_unmapped_values_nan: bool = False, warn_on_missing_mappings: bool = False, warn_on_unused_mappings: bool = False, show_full_warning: bool = False, ) -> pd.Series: """Map values of a series given a certain mapping. This function does almost the same as > series.map(mapping) However, map() translates values into nan if those values are not in the mapping, whereas this function allows to optionally keep the original values. This function should do the same as > series.replace(mapping) However .replace() becomes very slow on big dataframes. Parameters ---------- series : pd.Series Original series to be mapped. mapping : dict Mapping. make_unmapped_values_nan : bool If true, values in the series that are not in the mapping will be translated into nan; otherwise, they will keep their original values. warn_on_missing_mappings : bool True to warn if elements in series are missing in mapping. warn_on_unused_mappings : bool True to warn if the mapping contains values that are not present in the series. False to ignore. show_full_warning : bool True to print the entire list of unused mappings (only relevant if warn_on_unused_mappings is True). Returns ------- series_mapped : pd.Series Mapped series. """ # Translate values in series following the mapping. series_mapped = series.map(mapping) if not make_unmapped_values_nan: # Rows that had values that were not in the mapping are now nan. missing = series_mapped.isnull() if missing.any(): # Replace those nans with their original values. series_mapped.loc[missing] = series[missing] if warn_on_missing_mappings: unmapped = set(series) - set(mapping) if len(unmapped) > 0: warn_on_list_of_entities( unmapped, f"{len(unmapped)} missing values in mapping.", show_list=show_full_warning, ) if warn_on_unused_mappings: unused = set(mapping) - set(series) if len(unused) > 0: warn_on_list_of_entities( unused, f"{len(unused)} unused values in mapping.", show_list=show_full_warning, ) return series_mapped def concatenate(dfs: List[pd.DataFrame], **kwargs: Any) -> pd.DataFrame: """Concatenate while preserving categorical columns. Original source code from https://stackoverflow.com/a/57809778/1275818. """ # Iterate on categorical columns common to all dfs for col in set.intersection( *[set(df.select_dtypes(include="category").columns) for df in dfs] ): # Generate the union category across dfs for this column uc =
union_categoricals([df[col] for df in dfs])
pandas.api.types.union_categoricals
#!/usr/bin/env python3 # ============================================================================= # Date: November, 2019 # Author: <NAME>. # Purpose: Creates a csv file with yearly land cover information for every # fire pixel identified during each year. # ============================================================================= import os import numpy as np import pandas as pd from code.functions import create_data_array, get_nodata_value from code.variables import landcovers if __name__ == '__main__': # change directory os.chdir('../../data/tif/MODIS/MCD12Q1/prepared') # create landcover DataArray years = pd.date_range('2002', '2016', freq='AS').year.astype('str') data = create_data_array('.', years) nd = get_nodata_value('.') # create empty DataFrame cols = ['year', 'code', 'pixels', 'proportion'] df = pd.DataFrame(columns=cols) for i, year in enumerate(years): # filter DataArray by year and get pixel count by landcover arr = data.loc[year].values mask = (arr != 0) & (arr != nd) values, counts = np.unique(arr[mask], return_counts=True) # create year's DataFrame year_df =
pd.DataFrame(columns=cols)
pandas.DataFrame
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import MissingPandasLikeIndex, MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0],}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [ pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), pd.DataFrame( np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10) ), pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")).set_index(["a", "b"]), ]: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_index_getattr(self): kidx = self.kdf.index item = "databricks" expected_error_message = "'Index' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_multi_index_getattr(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) kidx = kdf.index item = "databricks" expected_error_message = "'MultiIndex' object has no attribute '{}'".format(item) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) # With name pidx.name = "Koalas" kidx.name = "Koalas" self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name=("x", "a"))), repr(pidx.to_series(name=("x", "a")))) # With tupled name pidx.name = ("x", "a") kidx.name = ("x", "a") self.assert_eq(repr(kidx.to_series()), repr(pidx.to_series())) self.assert_eq(repr(kidx.to_series(name="a")), repr(pidx.to_series(name="a"))) self.assert_eq((kidx + 1).to_series(), (pidx + 1).to_series()) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name="a"), pidx.to_series(name="a")) def test_to_frame(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) pidx.name = "a" kidx.name = "a" self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name="x")), repr(pidx.to_frame(name="x"))) self.assert_eq( repr(kidx.to_frame(index=False, name="x")), repr(pidx.to_frame(index=False, name="x")), ) pidx = self.pdf.set_index("b", append=True).index kidx = self.kdf.set_index("b", append=True).index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `name` argument is added in pandas 0.24. self.assert_eq( repr(kidx.to_frame(name=["x", "y"])), repr(pidx.to_frame(name=["x", "y"])) ) self.assert_eq( repr(kidx.to_frame(index=False, name=["x", "y"])), repr(pidx.to_frame(index=False, name=["x", "y"])), ) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") pdf = pd.DataFrame(np.random.randn(10, 5), index=idx, columns=list("abcde")) kdf = ks.from_pandas(pdf) pser = pdf.a kser = kdf.a self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.name = "renamed" kidx.name = "renamed" self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) pidx.name = None kidx.name = None self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) self.assertEqual(kser.index.names, pser.index.names) with self.assertRaisesRegex(ValueError, "Names must be a list-like"): kidx.names = "hi" expected_error_message = "Length of new names must be {}, got {}".format( len(kdf._internal.index_map), len(["0", "1"]) ) with self.assertRaisesRegex(ValueError, expected_error_message): kidx.names = ["0", "1"] def test_multi_index_names(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.names = ["renamed_number", "renamed_color"] kidx.names = ["renamed_number", "renamed_color"] self.assertEqual(kidx.names, pidx.names) pidx.names = ["renamed_number", None] kidx.names = ["renamed_number", None] self.assertEqual(kidx.names, pidx.names) if LooseVersion(pyspark.__version__) < LooseVersion("2.4"): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({"spark.sql.execution.arrow.enabled": False}): self.assert_eq(kidx, pidx) else: self.assert_eq(kidx, pidx) with self.assertRaises(PandasNotImplementedError): kidx.name with self.assertRaises(PandasNotImplementedError): kidx.name = "renamed" def test_index_rename(self): pdf = pd.DataFrame( np.random.randn(10, 5), index=pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") ) kdf = ks.from_pandas(pdf) pidx = pdf.index kidx = kdf.index self.assert_eq(kidx.rename("y"), pidx.rename("y")) self.assert_eq(kdf.index.names, pdf.index.names) kidx.rename("z", inplace=True) pidx.rename("z", inplace=True) self.assert_eq(kidx, pidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kidx.rename(None), pidx.rename(None)) self.assert_eq(kdf.index.names, pdf.index.names) def test_multi_index_rename(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) pmidx = pdf.index kmidx = kdf.index self.assert_eq(kmidx.rename(["n", "c"]), pmidx.rename(["n", "c"])) self.assert_eq(kdf.index.names, pdf.index.names) kmidx.rename(["num", "col"], inplace=True) pmidx.rename(["num", "col"], inplace=True) self.assert_eq(kmidx, pmidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kmidx.rename([None, None]), pmidx.rename([None, None])) self.assert_eq(kdf.index.names, pdf.index.names) self.assertRaises(TypeError, lambda: kmidx.rename("number")) self.assertRaises(ValueError, lambda: kmidx.rename(["number"])) def test_multi_index_levshape(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) kidx = ks.from_pandas(pidx) self.assertEqual(pidx.levshape, kidx.levshape) def test_index_unique(self): kidx = self.kdf.index # here the output is different than pandas in terms of order expected = [0, 1, 3, 5, 6, 8, 9] self.assert_eq(expected, sorted(kidx.unique().to_pandas())) self.assert_eq(expected, sorted(kidx.unique(level=0).to_pandas())) expected = [1, 2, 4, 6, 7, 9, 10] self.assert_eq(expected, sorted((kidx + 1).unique().to_pandas())) with self.assertRaisesRegex(IndexError, "Too many levels*"): kidx.unique(level=1) with self.assertRaisesRegex(KeyError, "Requested level (hi)*"): kidx.unique(level="hi") def test_multi_index_copy(self): arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] idx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index.copy(), pdf.index.copy()) def test_drop_duplicates(self): pidx = pd.Index([4, 2, 4, 1, 4, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.drop_duplicates().sort_values(), pidx.drop_duplicates().sort_values()) self.assert_eq( (kidx + 1).drop_duplicates().sort_values(), (pidx + 1).drop_duplicates().sort_values() ) def test_dropna(self): pidx = pd.Index([np.nan, 2, 4, 1, np.nan, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.dropna(), pidx.dropna()) self.assert_eq((kidx + 1).dropna(), (pidx + 1).dropna()) def test_index_symmetric_difference(self): pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([2, 3, 4, 5]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq( kidx1.symmetric_difference(kidx2).sort_values(), pidx1.symmetric_difference(pidx2).sort_values(), ) self.assert_eq( (kidx1 + 1).symmetric_difference(kidx2).sort_values(), (pidx1 + 1).symmetric_difference(pidx2).sort_values(), ) pmidx1 = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pmidx2 = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq( kmidx1.symmetric_difference(kmidx2).sort_values(), pmidx1.symmetric_difference(pmidx2).sort_values(), ) idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): idx.symmetric_difference(midx) def test_multi_index_symmetric_difference(self): idx = ks.Index(["a", "b", "c"]) midx = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) midx_ = ks.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) self.assert_eq( midx.symmetric_difference(midx_), midx.to_pandas().symmetric_difference(midx_.to_pandas()), ) with self.assertRaisesRegex(NotImplementedError, "Doesn't support*"): midx.symmetric_difference(idx) def test_missing(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) # Index functions missing_functions = inspect.getmembers(MissingPandasLikeIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name)() # MultiIndex functions missing_functions = inspect.getmembers(MissingPandasLikeMultiIndex, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name)() # Index properties missing_properties = inspect.getmembers( MissingPandasLikeIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index("a").index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index("a").index, name) # MultiIndex properties missing_properties = inspect.getmembers( MissingPandasLikeMultiIndex, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.set_index(["a", "b"]).index, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name) ): getattr(kdf.set_index(["a", "b"]).index, name) def test_index_has_duplicates(self): indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)] names = [None, "ks", "ks", None] has_dup = [False, True, True, False] for idx, name, expected in zip(indexes, names, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name)) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multiindex_has_duplicates(self): indexes = [ [list("abc"), list("edf")], [list("aac"), list("edf")], [list("aac"), list("eef")], [[1, 4, 4], [4, 6, 6]], ] has_dup = [False, False, True, True] for idx, expected in zip(indexes, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multi_index_not_supported(self): kdf = ks.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) with self.assertRaisesRegex(TypeError, "cannot perform any with this index type"): kdf.set_index(["a", "b"]).index.any() with self.assertRaisesRegex(TypeError, "cannot perform all with this index type"): kdf.set_index(["a", "b"]).index.all() def test_index_nlevels(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(["a", "b", "c"])) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 1) def test_multiindex_nlevel(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=[list("abc"), list("def")]) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 2) def test_multiindex_from_arrays(self): arrays = [["a", "a", "b", "b"], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays) kidx = ks.MultiIndex.from_arrays(arrays) self.assert_eq(pidx, kidx) def test_multiindex_swaplevel(self): pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", "number"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([["a", "b"], [1, 2]], names=["word", None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.swaplevel(-2, -1), kidx.swaplevel(-2, -1)) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) self.assert_eq(pidx.swaplevel("word", 1), kidx.swaplevel("word", 1)) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(-3, "word") with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, 2) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, -3) with self.assertRaisesRegex(KeyError, "Level work not found"): kidx.swaplevel(0, "work") def test_multiindex_droplevel(self): pidx = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2)], names=["level1", "level2", "level3"] ) kidx = ks.from_pandas(pidx) with self.assertRaisesRegex(IndexError, "Too many levels: Index has only 3 levels, not 5"): kidx.droplevel(4) with self.assertRaisesRegex(KeyError, "Level level4 not found"): kidx.droplevel("level4") with self.assertRaisesRegex(KeyError, "Level.*level3.*level4.*not found"): kidx.droplevel([("level3", "level4")]) with self.assertRaisesRegex( ValueError, "Cannot remove 4 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: at least one " "level must be left.", ): kidx.droplevel([0, 1, 2]) self.assert_eq(pidx.droplevel(0), kidx.droplevel(0)) self.assert_eq(pidx.droplevel([0, 1]), kidx.droplevel([0, 1])) self.assert_eq(pidx.droplevel([0, "level2"]), kidx.droplevel([0, "level2"])) def test_index_fillna(self): pidx = pd.Index([1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.fillna(0), kidx.fillna(0)) self.assert_eq(pidx.rename("name").fillna(0), kidx.rename("name").fillna(0)) with self.assertRaisesRegex(TypeError, "Unsupported type <class 'list'>"): kidx.fillna([1, 2]) def test_index_drop(self): pidx = pd.Index([1, 2, 3]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop(1), kidx.drop(1)) self.assert_eq(pidx.drop([1, 2]), kidx.drop([1, 2])) def test_multiindex_drop(self): pidx = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z")], names=["level1", "level2"] ) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop("a"), kidx.drop("a")) self.assert_eq(pidx.drop(["a", "b"]), kidx.drop(["a", "b"])) self.assert_eq(pidx.drop(["x", "y"], level=1), kidx.drop(["x", "y"], level=1)) self.assert_eq(pidx.drop(["x", "y"], level="level2"), kidx.drop(["x", "y"], level="level2")) pidx.names = ["lv1", "lv2"] kidx.names = ["lv1", "lv2"] self.assert_eq(pidx.drop(["x", "y"], level="lv2"), kidx.drop(["x", "y"], level="lv2")) self.assertRaises(IndexError, lambda: kidx.drop(["a", "b"], level=2)) self.assertRaises(KeyError, lambda: kidx.drop(["a", "b"], level="level")) kidx.names = ["lv", "lv"] self.assertRaises(ValueError, lambda: kidx.drop(["x", "y"], level="lv")) def test_sort_values(self): pidx = pd.Index([-10, -100, 200, 100]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx.name = "koalas" kidx.name = "koalas" self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx.names = ["hello", "koalas", "goodbye"] kidx.names = ["hello", "koalas", "goodbye"] self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) def test_index_drop_duplicates(self): pidx = pd.Index([1, 1, 2]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) pidx = pd.MultiIndex.from_tuples([(1, 1), (1, 1), (2, 2)], names=["level1", "level2"]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) def test_index_sort(self): idx = ks.Index([1, 2, 3, 4, 5]) midx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2)]) with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): idx.sort() with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead" ): midx.sort() def test_multiindex_isna(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isna() with self.assertRaisesRegex(NotImplementedError, "isna is not defined for MultiIndex"): kidx.isnull() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notna() with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_index_nunique(self): pidx = pd.Index([1, 1, 2, None]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.nunique(), kidx.nunique()) self.assert_eq(pidx.nunique(dropna=True), kidx.nunique(dropna=True)) def test_multiindex_nunique(self): kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_multiindex_rename(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.rename(list("ABC")) kidx = kidx.rename(list("ABC")) self.assert_eq(pidx, kidx) pidx = pidx.rename(["my", "name", "is"]) kidx = kidx.rename(["my", "name", "is"]) self.assert_eq(pidx, kidx) def test_multiindex_set_names(self): pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.from_pandas(pidx) pidx = pidx.set_names(["set", "new", "names"]) kidx = kidx.set_names(["set", "new", "names"]) self.assert_eq(pidx, kidx) pidx.set_names(["set", "new", "names"], inplace=True) kidx.set_names(["set", "new", "names"], inplace=True) self.assert_eq(pidx, kidx) pidx = pidx.set_names("first", level=0) kidx = kidx.set_names("first", level=0) self.assert_eq(pidx, kidx) pidx = pidx.set_names("second", level=1) kidx = kidx.set_names("second", level=1) self.assert_eq(pidx, kidx) pidx = pidx.set_names("third", level=2) kidx = kidx.set_names("third", level=2) self.assert_eq(pidx, kidx) pidx.set_names("first", level=0, inplace=True) kidx.set_names("first", level=0, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("second", level=1, inplace=True) kidx.set_names("second", level=1, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names("third", level=2, inplace=True) kidx.set_names("third", level=2, inplace=True) self.assert_eq(pidx, kidx) def test_multiindex_from_tuples(self): tuples = [(1, "red"), (1, "blue"), (2, "red"), (2, "blue")] pidx = pd.MultiIndex.from_tuples(tuples) kidx = ks.MultiIndex.from_tuples(tuples) self.assert_eq(pidx, kidx) def test_multiindex_from_product(self): iterables = [[0, 1, 2], ["green", "purple"]] pidx = pd.MultiIndex.from_product(iterables) kidx = ks.MultiIndex.from_product(iterables) self.assert_eq(pidx, kidx) def test_multiindex_tuple_column_name(self): column_labels = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z")]) pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=column_labels) pdf.set_index(("a", "x"), append=True, inplace=True) kdf = ks.from_pandas(pdf) self.assert_eq(pdf, kdf) def test_len(self): pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(len(pidx), len(kidx)) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(len(pidx), len(kidx)) def test_delete(self): pidx = pd.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) kidx = ks.Index([10, 9, 8, 7, 6, 7, 8, 9, 10]) self.assert_eq(pidx.delete(5).sort_values(), kidx.delete(5).sort_values()) self.assert_eq(pidx.delete(-5).sort_values(), kidx.delete(-5).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) with self.assertRaisesRegex(IndexError, "index 10 is out of bounds for axis 0 with size 9"): kidx.delete(10) pidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) self.assert_eq(pidx.delete(1).sort_values(), kidx.delete(1).sort_values()) self.assert_eq(pidx.delete(-1).sort_values(), kidx.delete(-1).sort_values()) if LooseVersion(np.__version__) < LooseVersion("1.19"): self.assert_eq( pidx.delete([0, 10000]).sort_values(), kidx.delete([0, 10000]).sort_values() ) self.assert_eq( pidx.delete([10000, 20000]).sort_values(), kidx.delete([10000, 20000]).sort_values() ) else: self.assert_eq(pidx.delete([0]).sort_values(), kidx.delete([0, 10000]).sort_values()) self.assert_eq(pidx.delete([]).sort_values(), kidx.delete([10000, 20000]).sort_values()) def test_append(self): # Index pidx = pd.Index(range(10000)) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.append(pidx), kidx.append(kidx)) # Index with name pidx1 = pd.Index(range(10000), name="a") pidx2 = pd.Index(range(10000), name="b") kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["a", "b", "c"]) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}, index=["x", "y", "z"]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index("a").index pidx2 = pdf2.set_index("d").index kidx1 = kdf1.set_index("a").index kidx2 = kdf2.set_index("d").index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame with MultiIndex columns pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) pdf2 = pd.DataFrame({"a": [7, 8, 9], "d": [10, 11, 12]}) pdf1.columns = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y")]) pdf2.columns = pd.MultiIndex.from_tuples([("a", "x"), ("d", "y")]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index(("a", "x")).index pidx2 = pdf2.set_index(("d", "y")).index kidx1 = kdf1.set_index(("a", "x")).index kidx2 = kdf2.set_index(("d", "y")).index self.assert_eq(pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq(pidx2.append(pidx1), kidx2.append(kidx1)) # MultiIndex pmidx = pd.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) kmidx = ks.from_pandas(pmidx) self.assert_eq(pmidx.append(pmidx), kmidx.append(kmidx)) # MultiIndex with names pmidx1 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["x", "y", "z"] ) pmidx2 = pd.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["p", "q", "r"] ) kmidx1 = ks.from_pandas(pmidx1) kmidx2 = ks.from_pandas(pmidx2) self.assert_eq(pmidx1.append(pmidx2), kmidx1.append(kmidx2)) self.assert_eq(pmidx2.append(pmidx1), kmidx2.append(kmidx1)) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) self.assert_eq(pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) # Index & MultiIndex currently is not supported expected_error_message = r"append\(\) between Index & MultiIndex currently is not supported" with self.assertRaisesRegex(NotImplementedError, expected_error_message): kidx.append(kmidx) with self.assertRaisesRegex(NotImplementedError, expected_error_message): kmidx.append(kidx) def test_argmin(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmin(), kidx.argmin()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmin' not allowed for this dtype" ): kidx.argmin() def test_argmax(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.from_pandas(pidx) self.assert_eq(pidx.argmax(), kidx.argmax()) # MultiIndex kidx = ks.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmax' not allowed for this dtype" ): kidx.argmax() def test_monotonic(self): # test monotonic_increasing & monotonic_decreasing for MultiIndex. # Since the Behavior for null value was changed in pandas >= 1.0.0, # several cases are tested differently. datas = [] # increasing / decreasing ordered each index level with string datas.append([("w", "a"), ("x", "b"), ("y", "c"), ("z", "d")]) datas.append([("w", "d"), ("x", "c"), ("y", "b"), ("z", "a")]) datas.append([("z", "a"), ("y", "b"), ("x", "c"), ("w", "d")]) datas.append([("z", "d"), ("y", "c"), ("x", "b"), ("w", "a")]) # mixed order each index level with string datas.append([("z", "a"), ("x", "b"), ("y", "c"), ("w", "d")]) datas.append([("z", "a"), ("y", "c"), ("x", "b"), ("w", "d")]) # increasing / decreasing ordered each index level with integer datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 500), (2, 400), (3, 300), (4, 200), (5, 100)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 500), (4, 400), (3, 300), (2, 200), (1, 100)]) # mixed order each index level with integer datas.append([(1, 500), (3, 400), (2, 300), (4, 200), (5, 100)]) datas.append([(1, 100), (2, 300), (3, 200), (4, 400), (5, 500)]) # integer / negative mixed tests datas.append([("a", -500), ("b", -400), ("c", -300), ("d", -200), ("e", -100)]) datas.append([("e", -500), ("d", -400), ("c", -300), ("b", -200), ("a", -100)]) datas.append([(-5, "a"), (-4, "b"), (-3, "c"), (-2, "d"), (-1, "e")]) datas.append([(-5, "e"), (-4, "d"), (-3, "c"), (-2, "b"), (-1, "a")]) datas.append([(-5, "e"), (-3, "d"), (-2, "c"), (-4, "b"), (-1, "a")]) datas.append([(-5, "e"), (-4, "c"), (-3, "b"), (-2, "d"), (-1, "a")]) # None type tests (None type is treated as the smallest value) datas.append([(1, 100), (2, 200), (None, 300), (4, 400), (5, 500)]) datas.append([(5, None), (4, 200), (3, 300), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, None), (2, 400), (1, 500)]) datas.append([(5, 100), (4, 200), (3, 300), (2, 400), (1, None)]) datas.append([(1, 100), (2, 200), (None, None), (4, 400), (5, 500)]) datas.append([(-5, None), (-4, None), (-3, None), (-2, None), (-1, None)]) datas.append([(None, "e"), (None, "c"), (None, "b"), (None, "d"), (None, "a")]) datas.append([(None, None), (None, None), (None, None), (None, None), (None, None)]) # duplicated index value tests datas.append([("x", "d"), ("y", "c"), ("y", "b"), ("z", "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", None), ("y", None), ("z", "a")]) datas.append([("x", "d"), ("y", "c"), ("y", "b"), (None, "a")]) datas.append([("x", "d"), ("y", "b"), ("y", "c"), (None, "a")]) # more depth tests datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", "q"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "q"), ("y", "c", "p"), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", "p"), ("y", "c", None), ("z", "a", "r")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", None), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.is_monotonic_increasing, pmidx.is_monotonic_increasing) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) # The datas below are showing different result depends on pandas version. # Because the behavior of handling null values is changed in pandas >= 1.0.0. datas = [] datas.append([(None, 100), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, 500)]) datas.append([(None, None), (2, 200), (3, 300), (4, 400), (5, 500)]) datas.append([(1, 100), (2, 200), (3, 300), (4, 400), (None, None)]) datas.append([("x", "d"), ("y", None), ("y", "c"), ("z", "a")]) datas.append([("x", "d", "o"), ("y", "c", None), ("y", "c", "q"), ("z", "a", "r")]) for data in datas: with self.subTest(data=data): pmidx = pd.MultiIndex.from_tuples(data) kmidx = ks.from_pandas(pmidx) expected_increasing_result = pmidx.is_monotonic_increasing if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): expected_increasing_result = not expected_increasing_result self.assert_eq(kmidx.is_monotonic_increasing, expected_increasing_result) self.assert_eq(kmidx.is_monotonic_decreasing, pmidx.is_monotonic_decreasing) def test_difference(self): # Index kidx1 = ks.Index([1, 2, 3, 4], name="koalas") kidx2 = ks.Index([3, 4, 5, 6], name="koalas") pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference([3, 4, 5, 6]).sort_values(), pidx1.difference([3, 4, 5, 6]).sort_values(), ) self.assert_eq( kidx1.difference((3, 4, 5, 6)).sort_values(), pidx1.difference((3, 4, 5, 6)).sort_values(), ) self.assert_eq( kidx1.difference({3, 4, 5, 6}).sort_values(), pidx1.difference({3, 4, 5, 6}).sort_values(), ) self.assert_eq( kidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), pidx1.difference({3: 1, 4: 2, 5: 3, 6: 4}).sort_values(), ) # Exceptions for Index with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference("1234") with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(1234) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(12.34) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(None) with self.assertRaisesRegex(TypeError, "Input must be Index or array-like"): kidx1.difference(np.nan) with self.assertRaisesRegex( ValueError, "The 'sort' keyword only takes the values of None or True; 1 was passed." ): kidx1.difference(kidx2, sort=1) # MultiIndex kidx1 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "y", 2), ("c", "z", 3)], names=["hello", "koalas", "world"] ) kidx2 = ks.MultiIndex.from_tuples( [("a", "x", 1), ("b", "z", 2), ("k", "z", 3)], names=["hello", "koalas", "world"] ) pidx1 = kidx1.to_pandas() pidx2 = kidx2.to_pandas() self.assert_eq(kidx1.difference(kidx2).sort_values(), pidx1.difference(pidx2).sort_values()) self.assert_eq( kidx1.difference({("a", "x", 1)}).sort_values(), pidx1.difference({("a", "x", 1)}).sort_values(), ) self.assert_eq( kidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), pidx1.difference({("a", "x", 1): [1, 2, 3]}).sort_values(), ) # Exceptions for MultiIndex with self.assertRaisesRegex(TypeError, "other must be a MultiIndex or a list of tuples"): kidx1.difference(["b", "z", "2"]) def test_repeat(self): pidx = pd.Index(["a", "b", "c"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.repeat(3).sort_values(), pidx.repeat(3).sort_values()) self.assert_eq(kidx.repeat(0).sort_values(), pidx.repeat(0).sort_values()) self.assert_eq((kidx + "x").repeat(3).sort_values(), (pidx + "x").repeat(3).sort_values()) self.assertRaises(ValueError, lambda: kidx.repeat(-1)) self.assertRaises(ValueError, lambda: kidx.repeat("abc")) pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c")]) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.repeat(3).sort_values(), pmidx.repeat(3).sort_values()) self.assert_eq(kmidx.repeat(0).sort_values(), pmidx.repeat(0).sort_values()) self.assertRaises(ValueError, lambda: kmidx.repeat(-1)) self.assertRaises(ValueError, lambda: kmidx.repeat("abc")) def test_unique(self): pidx = pd.Index(["a", "b", "a"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.unique().sort_values(), pidx.unique().sort_values()) self.assert_eq(kidx.unique().sort_values(), pidx.unique().sort_values()) pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "a")]) kmidx = ks.from_pandas(pmidx) self.assert_eq(kmidx.unique().sort_values(), pmidx.unique().sort_values()) self.assert_eq(kmidx.unique().sort_values(), pmidx.unique().sort_values()) def test_asof(self): # Increasing values pidx = pd.Index(["2013-12-31", "2014-01-02", "2014-01-03"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.asof("2014-01-01"), pidx.asof("2014-01-01")) self.assert_eq(kidx.asof("2014-01-02"), pidx.asof("2014-01-02")) self.assert_eq(repr(kidx.asof("1999-01-02")), repr(pidx.asof("1999-01-02"))) # Decreasing values pidx = pd.Index(["2014-01-03", "2014-01-02", "2013-12-31"]) kidx = ks.from_pandas(pidx) self.assert_eq(kidx.asof("2014-01-01"), pidx.asof("2014-01-01")) self.assert_eq(kidx.asof("2014-01-02"), pidx.asof("2014-01-02")) self.assert_eq(kidx.asof("1999-01-02"), pidx.asof("1999-01-02")) self.assert_eq(repr(kidx.asof("2015-01-02")), repr(pidx.asof("2015-01-02"))) # Not increasing, neither decreasing (ValueError) kidx = ks.Index(["2013-12-31", "2015-01-02", "2014-01-03"]) self.assertRaises(ValueError, lambda: kidx.asof("2013-12-31")) kmidx = ks.MultiIndex.from_tuples([("a", "a"), ("a", "b"), ("a", "c")]) self.assertRaises(NotImplementedError, lambda: kmidx.asof(("a", "b"))) def test_union(self): # Index pidx1 = pd.Index([1, 2, 3, 4]) pidx2 = pd.Index([3, 4, 5, 6]) kidx1 = ks.from_pandas(pidx1) kidx2 = ks.from_pandas(pidx2) self.assert_eq(kidx1.union(kidx2), pidx1.union(pidx2)) self.assert_eq(kidx2.union(kidx1), pidx2.union(pidx1)) self.assert_eq( kidx1.union([3, 4, 5, 6]), pidx1.union([3, 4, 5, 6]), ) self.assert_eq( kidx2.union([1, 2, 3, 4]), pidx2.union([1, 2, 3, 4]), ) self.assert_eq( kidx1.union(ks.Series([3, 4, 5, 6])), pidx1.union(pd.Series([3, 4, 5, 6])), ) self.assert_eq( kidx2.union(ks.Series([1, 2, 3, 4])), pidx2.union(
pd.Series([1, 2, 3, 4])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_PO Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #t-C #source: van Beijma et al. (2018) initAGB_min = 233-72 #t-C initAGB_max = 233 + 72 #t-C #parameters for oil palm plantation. Source: Khasanah et al. (2015) tf_palmoil = 26 #years a_nucleus = 2.8167 b_nucleus = 6.8648 a_plasma = 2.5449 b_plasma = 5.0007 c_cont_po_nucleus = 0.5448 #fraction of carbon content in biomass c_cont_po_plasma = 0.5454 #fraction of carbon content in biomass tf = 201 #years a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) c_firewood_energy_S2nu = df2nu['Firewood_other_energy_use'].values c_firewood_energy_S2pl = df2pl['Firewood_other_energy_use'].values c_firewood_energy_Enu = df3nu['Firewood_other_energy_use'].values c_firewood_energy_Epl = df3pl['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') c_pellets_Enu = dfEnu['Wood_pellets'].values c_pellets_Epl = dfEpl['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) decomp_emissions = df['C_remainAGB'].values #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') df3nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') df3pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') #product lifetime #building materials B = 35 TestDSM2nu = DynamicStockModel(t = df2nu['Year'].values, i = df2nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM2pl = DynamicStockModel(t = df2pl['Year'].values, i = df2pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3nu = DynamicStockModel(t = df3nu['Year'].values, i = df3nu['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) TestDSM3pl = DynamicStockModel(t = df3pl['Year'].values, i = df3pl['Input_PF'].values, lt = {'Type': 'Normal', 'Mean': np.array([B]), 'StdDev': np.array([0.3*B])}) CheckStr2nu, ExitFlag2nu = TestDSM2nu.dimension_check() CheckStr2pl, ExitFlag2pl = TestDSM2pl.dimension_check() CheckStr3nu, ExitFlag3nu = TestDSM3nu.dimension_check() CheckStr3pl, ExitFlag3pl = TestDSM3pl.dimension_check() Stock_by_cohort2nu, ExitFlag2nu = TestDSM2nu.compute_s_c_inflow_driven() Stock_by_cohort2pl, ExitFlag2pl = TestDSM2pl.compute_s_c_inflow_driven() Stock_by_cohort3nu, ExitFlag3nu = TestDSM3nu.compute_s_c_inflow_driven() Stock_by_cohort3pl, ExitFlag3pl = TestDSM3pl.compute_s_c_inflow_driven() S2nu, ExitFlag2nu = TestDSM2nu.compute_stock_total() S2pl, ExitFlag2pl = TestDSM2pl.compute_stock_total() S3nu, ExitFlag3nu = TestDSM3nu.compute_stock_total() S3pl, ExitFlag3pl = TestDSM3pl.compute_stock_total() O_C2nu, ExitFlag2nu = TestDSM2nu.compute_o_c_from_s_c() O_C2pl, ExitFlag2pl = TestDSM2pl.compute_o_c_from_s_c() O_C3nu, ExitFlag3nu = TestDSM3nu.compute_o_c_from_s_c() O_C3pl, ExitFlag3pl = TestDSM3pl.compute_o_c_from_s_c() O2nu, ExitFlag2nu = TestDSM2nu.compute_outflow_total() O2pl, ExitFlag2pl = TestDSM2pl.compute_outflow_total() O3nu, ExitFlag3nu = TestDSM3nu.compute_outflow_total() O3pl, ExitFlag3pl = TestDSM3pl.compute_outflow_total() DS2nu, ExitFlag2nu = TestDSM2nu.compute_stock_change() DS2pl, ExitFlag2pl = TestDSM2pl.compute_stock_change() DS3nu, ExitFlag3nu = TestDSM3nu.compute_stock_change() DS3pl, ExitFlag3pl = TestDSM3pl.compute_stock_change() Bal2nu, ExitFlag2nu = TestDSM2nu.check_stock_balance() Bal2pl, ExitFlag2pl = TestDSM2pl.check_stock_balance() Bal3nu, ExitFlag3nu = TestDSM3nu.check_stock_balance() Bal3pl, ExitFlag3pl = TestDSM3pl.check_stock_balance() #print output flow print(TestDSM2nu.o) print(TestDSM2pl.o) print(TestDSM3nu.o) print(TestDSM3pl.o) #%% #Step (5): Biomass growth #Model I Oil Palm Biomass Growth (Khasanah et al. (2015)) A = range(0,tf_palmoil,1) #calculate the biomass and carbon content of palm oil trees over time def Y_nucleus(A): return (44/12*1000*c_cont_po_nucleus*(a_nucleus*A + b_nucleus)) output_Y_nucleus = np.array([Y_nucleus(Ai) for Ai in A]) print(output_Y_nucleus) def Y_plasma(A): return (44/12*1000*c_cont_po_plasma*(a_plasma*A + b_plasma)) output_Y_plasma = np.array([Y_plasma(Ai) for Ai in A]) print(output_Y_plasma) ##8 times 25-year cycle of new AGB of oil palm, one year gap between the cycle #nucleus counter = range(0,8,1) y_nucleus = [] for i in counter: y_nucleus.append(output_Y_nucleus) flat_list_nucleus = [] for sublist in y_nucleus: for item in sublist: flat_list_nucleus.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_nucleus = flat_list_nucleus[:len(flat_list_nucleus)-7] #plasma y_plasma = [] for i in counter: y_plasma.append(output_Y_plasma) flat_list_plasma = [] for sublist in y_plasma: for item in sublist: flat_list_plasma.append(item) #the length of the list is now 208, so we remove the last 7 elements of the list to make the len=tf flat_list_plasma = flat_list_plasma[:len(flat_list_plasma)-7] #plotting t = range (0,tf,1) plt.xlim([0, 200]) plt.plot(t, flat_list_nucleus) plt.plot(t, flat_list_plasma, color='seagreen') plt.fill_between(t, flat_list_nucleus, flat_list_plasma, color='darkseagreen', alpha=0.4) plt.xlabel('Time (year)') plt.ylabel('AGB (tCO2-eq/ha)') plt.show() ###Yearly Sequestration ###Nucleus #find the yearly sequestration by calculating the differences between elements in list 'flat_list_nucleus(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_nucleus = [p - q for q, p in zip(flat_list_nucleus, flat_list_nucleus[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_nuclues' with 0 values flat_list_nucleus = [0 if i < 0 else i for i in flat_list_nucleus] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_nucleus.insert(0,var) #make 'flat_list_nucleus' elements negative numbers to denote sequestration flat_list_nucleus = [ -x for x in flat_list_nucleus] print(flat_list_nucleus) #Plasma #find the yearly sequestration by calculating the differences between elements in list 'flat_list_plasma(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) flat_list_plasma = [t - u for u, t in zip(flat_list_plasma, flat_list_plasma[1:])] #since there is no sequestration between the replanting year (e.g., year 25 to 26), we have to replace negative numbers in 'flat_list_plasma' with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) flat_list_plasma = [0 if i < 0 else i for i in flat_list_plasma] #insert 0 value to the list as the first element, because there is no sequestration in year 0 var = 0 flat_list_plasma.insert(0,var) #make 'flat_list_plasma' elements negative numbers to denote sequestration flat_list_plasma = [ -x for x in flat_list_plasma] print(flat_list_plasma) #%% #Step(6): post-harvest processing of wood/palm oil #post-harvest wood processing df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_HWP_S2nu = df2nu['PH_Emissions_HWP'].values PH_Emissions_HWP_S2pl = df2pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Enu = df3pl['PH_Emissions_HWP'].values PH_Emissions_HWP_Epl = df3pl['PH_Emissions_HWP'].values #post-harvest palm oil processing df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') t = range(0,tf,1) PH_Emissions_PO_S2nu = df2nu['PH_Emissions_PO'].values PH_Emissions_PO_S2pl = df2pl['PH_Emissions_PO'].values PH_Emissions_PO_Enu = df3pl['PH_Emissions_PO'].values PH_Emissions_PO_Epl = df3pl['PH_Emissions_PO'].values #%% #Step (7_1): landfill gas decomposition (CH4) #CH4 decomposition hl = 20 #half-live k = (np.log(2))/hl #S2nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) def decomp_CH4_S2nu(t,remainAGB_CH4_S2nu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S2nu #set zero matrix output_decomp_CH4_S2nu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S2nu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S2nu[i:,i] = decomp_CH4_S2nu(t[:len(t)-i],remain_part_CH4_S2nu) print(output_decomp_CH4_S2nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S2nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S2nu[:,i] = np.diff(output_decomp_CH4_S2nu[:,i]) i = i + 1 print(subs_matrix_CH4_S2nu[:,:4]) print(len(subs_matrix_CH4_S2nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S2nu = subs_matrix_CH4_S2nu.clip(max=0) print(subs_matrix_CH4_S2nu[:,:4]) #make the results as absolute values subs_matrix_CH4_S2nu = abs(subs_matrix_CH4_S2nu) print(subs_matrix_CH4_S2nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S2nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S2nu) subs_matrix_CH4_S2nu = np.vstack((zero_matrix_CH4_S2nu, subs_matrix_CH4_S2nu)) print(subs_matrix_CH4_S2nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S2nu = (tf,1) decomp_tot_CH4_S2nu = np.zeros(matrix_tot_CH4_S2nu) i = 0 while i < tf: decomp_tot_CH4_S2nu[:,0] = decomp_tot_CH4_S2nu[:,0] + subs_matrix_CH4_S2nu[:,i] i = i + 1 print(decomp_tot_CH4_S2nu[:,0]) #S2pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') tf = 201 t = np.arange(tf) def decomp_CH4_S2pl(t,remainAGB_CH4_S2pl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_S2pl #set zero matrix output_decomp_CH4_S2pl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_S2pl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_S2pl[i:,i] = decomp_CH4_S2pl(t[:len(t)-i],remain_part_CH4_S2pl) print(output_decomp_CH4_S2pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_S2pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_S2pl[:,i] = np.diff(output_decomp_CH4_S2pl[:,i]) i = i + 1 print(subs_matrix_CH4_S2pl[:,:4]) print(len(subs_matrix_CH4_S2pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_S2pl = subs_matrix_CH4_S2pl.clip(max=0) print(subs_matrix_CH4_S2pl[:,:4]) #make the results as absolute values subs_matrix_CH4_S2pl = abs(subs_matrix_CH4_S2pl) print(subs_matrix_CH4_S2pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_S2pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_S2pl) subs_matrix_CH4_S2pl = np.vstack((zero_matrix_CH4_S2pl, subs_matrix_CH4_S2pl)) print(subs_matrix_CH4_S2pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_S2pl = (tf,1) decomp_tot_CH4_S2pl = np.zeros(matrix_tot_CH4_S2pl) i = 0 while i < tf: decomp_tot_CH4_S2pl[:,0] = decomp_tot_CH4_S2pl[:,0] + subs_matrix_CH4_S2pl[:,i] i = i + 1 print(decomp_tot_CH4_S2pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CH4_Enu(t,remainAGB_CH4_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Enu #set zero matrix output_decomp_CH4_Enu = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Enu in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Enu[i:,i] = decomp_CH4_Enu(t[:len(t)-i],remain_part_CH4_Enu) print(output_decomp_CH4_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Enu[:,i] = np.diff(output_decomp_CH4_Enu[:,i]) i = i + 1 print(subs_matrix_CH4_Enu[:,:4]) print(len(subs_matrix_CH4_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Enu = subs_matrix_CH4_Enu.clip(max=0) print(subs_matrix_CH4_Enu[:,:4]) #make the results as absolute values subs_matrix_CH4_Enu = abs(subs_matrix_CH4_Enu) print(subs_matrix_CH4_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Enu) subs_matrix_CH4_Enu = np.vstack((zero_matrix_CH4_Enu, subs_matrix_CH4_Enu)) print(subs_matrix_CH4_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Enu = (tf,1) decomp_tot_CH4_Enu= np.zeros(matrix_tot_CH4_Enu) i = 0 while i < tf: decomp_tot_CH4_Enu[:,0] = decomp_tot_CH4_Enu[:,0] + subs_matrix_CH4_Enu[:,i] i = i + 1 print(decomp_tot_CH4_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CH4_Epl(t,remainAGB_CH4_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CH4_Epl #set zero matrix output_decomp_CH4_Epl = np.zeros((len(t),len(df['Landfill_decomp_CH4'].values))) for i,remain_part_CH4_Epl in enumerate(df['Landfill_decomp_CH4'].values): #print(i,remain_part) output_decomp_CH4_Epl[i:,i] = decomp_CH4_Epl(t[:len(t)-i],remain_part_CH4_Epl) print(output_decomp_CH4_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CH4_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CH4'].values-1))) i = 0 while i < tf: subs_matrix_CH4_Epl[:,i] = np.diff(output_decomp_CH4_Epl[:,i]) i = i + 1 print(subs_matrix_CH4_Epl[:,:4]) print(len(subs_matrix_CH4_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CH4_Epl = subs_matrix_CH4_Epl.clip(max=0) print(subs_matrix_CH4_Epl[:,:4]) #make the results as absolute values subs_matrix_CH4_Epl = abs(subs_matrix_CH4_Epl) print(subs_matrix_CH4_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CH4_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CH4'].values))) print(zero_matrix_CH4_Epl) subs_matrix_CH4_Epl = np.vstack((zero_matrix_CH4_Epl, subs_matrix_CH4_Epl)) print(subs_matrix_CH4_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CH4_Epl = (tf,1) decomp_tot_CH4_Epl = np.zeros(matrix_tot_CH4_Epl) i = 0 while i < tf: decomp_tot_CH4_Epl[:,0] = decomp_tot_CH4_Epl[:,0] + subs_matrix_CH4_Epl[:,i] i = i + 1 print(decomp_tot_CH4_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CH4_S2nu,label='CH4_S2nu') plt.plot(t,decomp_tot_CH4_S2pl,label='CH4_S2pl') plt.plot(t,decomp_tot_CH4_Enu,label='CH4_Enu') plt.plot(t,decomp_tot_CH4_Epl,label='CH4_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (7_2): landfill gas decomposition (CO2) #CO2 decomposition hl = 20 #half-live k = (np.log(2))/hl #S2nu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') tf = 201 t = np.arange(tf) def decomp_CO2_S2nu(t,remainAGB_CO2_S2nu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S2nu #set zero matrix output_decomp_CO2_S2nu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S2nu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S2nu[i:,i] = decomp_CO2_S2nu(t[:len(t)-i],remain_part_CO2_S2nu) print(output_decomp_CO2_S2nu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S2nu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S2nu[:,i] = np.diff(output_decomp_CO2_S2nu[:,i]) i = i + 1 print(subs_matrix_CO2_S2nu[:,:4]) print(len(subs_matrix_CO2_S2nu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S2nu = subs_matrix_CO2_S2nu.clip(max=0) print(subs_matrix_CO2_S2nu[:,:4]) #make the results as absolute values subs_matrix_CO2_S2nu = abs(subs_matrix_CO2_S2nu) print(subs_matrix_CO2_S2nu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S2nu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S2nu) subs_matrix_CO2_S2nu = np.vstack((zero_matrix_CO2_S2nu, subs_matrix_CO2_S2nu)) print(subs_matrix_CO2_S2nu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S2nu = (tf,1) decomp_tot_CO2_S2nu = np.zeros(matrix_tot_CO2_S2nu) i = 0 while i < tf: decomp_tot_CO2_S2nu[:,0] = decomp_tot_CO2_S2nu[:,0] + subs_matrix_CO2_S2nu[:,i] i = i + 1 print(decomp_tot_CO2_S2nu[:,0]) #S2pl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') tf = 201 t = np.arange(tf) def decomp_CO2_S2pl(t,remainAGB_CO2_S2pl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_S2pl #set zero matrix output_decomp_CO2_S2pl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_S2pl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_S2pl[i:,i] = decomp_CO2_S2pl(t[:len(t)-i],remain_part_CO2_S2pl) print(output_decomp_CO2_S2pl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_S2pl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_S2pl[:,i] = np.diff(output_decomp_CO2_S2pl[:,i]) i = i + 1 print(subs_matrix_CO2_S2pl[:,:4]) print(len(subs_matrix_CO2_S2pl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_S2pl = subs_matrix_CO2_S2pl.clip(max=0) print(subs_matrix_CO2_S2pl[:,:4]) #make the results as absolute values subs_matrix_CO2_S2pl = abs(subs_matrix_CO2_S2pl) print(subs_matrix_CO2_S2pl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_S2pl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_S2pl) subs_matrix_CO2_S2pl = np.vstack((zero_matrix_CO2_S2pl, subs_matrix_CO2_S2pl)) print(subs_matrix_CO2_S2pl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_S2pl = (tf,1) decomp_tot_CO2_S2pl = np.zeros(matrix_tot_CO2_S2pl) i = 0 while i < tf: decomp_tot_CO2_S2pl[:,0] = decomp_tot_CO2_S2pl[:,0] + subs_matrix_CO2_S2pl[:,i] i = i + 1 print(decomp_tot_CO2_S2pl[:,0]) #Enu df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') tf = 201 t = np.arange(tf) def decomp_CO2_Enu(t,remainAGB_CO2_Enu): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Enu #set zero matrix output_decomp_CO2_Enu = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Enu in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Enu[i:,i] = decomp_CO2_Enu(t[:len(t)-i],remain_part_CO2_Enu) print(output_decomp_CO2_Enu[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Enu = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Enu[:,i] = np.diff(output_decomp_CO2_Enu[:,i]) i = i + 1 print(subs_matrix_CO2_Enu[:,:4]) print(len(subs_matrix_CO2_Enu)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Enu = subs_matrix_CO2_Enu.clip(max=0) print(subs_matrix_CO2_Enu[:,:4]) #make the results as absolute values subs_matrix_CO2_Enu = abs(subs_matrix_CO2_Enu) print(subs_matrix_CO2_Enu[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Enu = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Enu) subs_matrix_CO2_Enu = np.vstack((zero_matrix_CO2_Enu, subs_matrix_CO2_Enu)) print(subs_matrix_CO2_Enu[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Enu = (tf,1) decomp_tot_CO2_Enu= np.zeros(matrix_tot_CO2_Enu) i = 0 while i < tf: decomp_tot_CO2_Enu[:,0] = decomp_tot_CO2_Enu[:,0] + subs_matrix_CO2_Enu[:,i] i = i + 1 print(decomp_tot_CO2_Enu[:,0]) #Epl df = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') tf = 201 t = np.arange(tf) def decomp_CO2_Epl(t,remainAGB_CO2_Epl): return (1-(1-np.exp(-k*t)))*remainAGB_CO2_Epl #set zero matrix output_decomp_CO2_Epl = np.zeros((len(t),len(df['Landfill_decomp_CO2'].values))) for i,remain_part_CO2_Epl in enumerate(df['Landfill_decomp_CO2'].values): #print(i,remain_part) output_decomp_CO2_Epl[i:,i] = decomp_CO2_Epl(t[:len(t)-i],remain_part_CO2_Epl) print(output_decomp_CO2_Epl[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_CO2_Epl = np.zeros((len(t)-1,len(df['Landfill_decomp_CO2'].values-1))) i = 0 while i < tf: subs_matrix_CO2_Epl[:,i] = np.diff(output_decomp_CO2_Epl[:,i]) i = i + 1 print(subs_matrix_CO2_Epl[:,:4]) print(len(subs_matrix_CO2_Epl)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_CO2_Epl = subs_matrix_CO2_Epl.clip(max=0) print(subs_matrix_CO2_Epl[:,:4]) #make the results as absolute values subs_matrix_CO2_Epl = abs(subs_matrix_CO2_Epl) print(subs_matrix_CO2_Epl[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_CO2_Epl = np.zeros((len(t)-200,len(df['Landfill_decomp_CO2'].values))) print(zero_matrix_CO2_Epl) subs_matrix_CO2_Epl = np.vstack((zero_matrix_CO2_Epl, subs_matrix_CO2_Epl)) print(subs_matrix_CO2_Epl[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_CO2_Epl = (tf,1) decomp_tot_CO2_Epl = np.zeros(matrix_tot_CO2_Epl) i = 0 while i < tf: decomp_tot_CO2_Epl[:,0] = decomp_tot_CO2_Epl[:,0] + subs_matrix_CO2_Epl[:,i] i = i + 1 print(decomp_tot_CO2_Epl[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_CO2_S2nu,label='CO2_S2nu') plt.plot(t,decomp_tot_CO2_S2pl,label='CO2_S2pl') plt.plot(t,decomp_tot_CO2_Enu,label='CO2_Enu') plt.plot(t,decomp_tot_CO2_Epl,label='CO2_Epl') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (8): Sum the emissions and sequestration (net carbon balance), CO2 and CH4 are separated #https://stackoverflow.com/questions/52703442/python-sum-values-from-multiple-lists-more-than-two #C_loss + C_remainAGB + C_remainHWP + PH_Emissions_PO Emissions_PF_PO_S2nu = [c_firewood_energy_S2nu, decomp_emissions, TestDSM2nu.o, PH_Emissions_PO_S2nu, PH_Emissions_HWP_S2nu, decomp_tot_CO2_S2nu[:,0]] Emissions_PF_PO_S2pl = [c_firewood_energy_S2pl, decomp_emissions, TestDSM2pl.o, PH_Emissions_PO_S2pl, PH_Emissions_HWP_S2pl, decomp_tot_CO2_S2pl[:,0]] Emissions_PF_PO_Enu = [c_firewood_energy_Enu, c_pellets_Enu, decomp_emissions, TestDSM3nu.o, PH_Emissions_PO_Enu, PH_Emissions_HWP_Enu, decomp_tot_CO2_Enu[:,0]] Emissions_PF_PO_Epl = [c_firewood_energy_Epl, c_pellets_Epl, decomp_emissions, TestDSM3pl.o, PH_Emissions_PO_Epl, PH_Emissions_HWP_Epl, decomp_tot_CO2_Epl[:,0]] Emissions_PF_PO_S2nu = [sum(x) for x in zip(*Emissions_PF_PO_S2nu)] Emissions_PF_PO_S2pl = [sum(x) for x in zip(*Emissions_PF_PO_S2pl)] Emissions_PF_PO_Enu = [sum(x) for x in zip(*Emissions_PF_PO_Enu)] Emissions_PF_PO_Epl = [sum(x) for x in zip(*Emissions_PF_PO_Epl)] #CH4_S2nu Emissions_CH4_PF_PO_S2nu = decomp_tot_CH4_S2nu[:,0] #CH4_S2pl Emissions_CH4_PF_PO_S2pl = decomp_tot_CH4_S2pl[:,0] #CH4_Enu Emissions_CH4_PF_PO_Enu = decomp_tot_CH4_Enu[:,0] #CH4_Epl Emissions_CH4_PF_PO_Epl = decomp_tot_CH4_Epl[:,0] #%% #Step (9): Generate the excel file (emissions_seq_scenarios.xlsx) from Step (8) calculation #print year column year = [] for x in range (0, tf): year.append(x) print (year) #print CH4 emission column import itertools lst = [0] Emissions_CH4 = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst)) print(Emissions_CH4) #print emission ref lst1 = [0] Emission_ref = list(itertools.chain.from_iterable(itertools.repeat(x, tf) for x in lst1)) print(Emission_ref) #replace the first element with 1 to denote the emission reference as year 0 (for dynGWP calculation) Emission_ref[0] = 1 print(Emission_ref) Col1 = year Col2_S2nu = Emissions_PF_PO_S2nu Col2_S2pl = Emissions_PF_PO_S2pl Col2_Enu = Emissions_PF_PO_Enu Col2_Epl = Emissions_PF_PO_Epl Col3_S2nu = Emissions_CH4_PF_PO_S2nu Col3_S2pl = Emissions_CH4_PF_PO_S2pl Col3_Enu = Emissions_CH4_PF_PO_Enu Col3_Epl = Emissions_CH4_PF_PO_Epl Col4 = flat_list_nucleus Col5 = Emission_ref Col6 = flat_list_plasma #S2 df2_nu = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S2nu,'kg_CH4':Col3_S2nu,'kg_CO2_seq':Col4,'emission_ref':Col5}) df2_pl = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_S2pl,'kg_CH4':Col3_S2pl,'kg_CO2_seq':Col6,'emission_ref':Col5}) #E df3_nu = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_Enu,'kg_CH4':Col3_Enu,'kg_CO2_seq':Col4,'emission_ref':Col5}) df3_pl = pd.DataFrame.from_dict({'Year':Col1,'kg_CO2':Col2_Epl,'kg_CH4':Col3_Epl,'kg_CO2_seq':Col6,'emission_ref':Col5}) writer = pd.ExcelWriter('emissions_seq_PF_PO_RB.xlsx', engine = 'xlsxwriter') df2_nu.to_excel(writer, sheet_name = 'S2_nucleus', header=True, index=False) df2_pl.to_excel(writer, sheet_name = 'S2_plasma', header=True, index=False) df3_nu.to_excel(writer, sheet_name = 'E_nucleus', header=True, index=False) df3_pl.to_excel(writer, sheet_name = 'E_plasma', header=True, index=False) writer.save() writer.close() #%% ## DYNAMIC LCA - wood-based scenarios # Step (10): Set General Parameters for Dynamic LCA calculation aCH4 = 0.129957e-12; # methane - instantaneous radiative forcing per unit mass [W/m2 /kgCH4] TauCH4 = 12; # methane - lifetime (years) aCO2 = 0.0018088e-12; # CO2 - instantaneous radiative forcing per unit mass [W/m2 /kgCO2] TauCO2 = [172.9, 18.51, 1.186]; # CO2 parameters according to Bern carbon cycle-climate model aBern = [0.259, 0.338, 0.186]; # CO2 parameters according to Bern carbon cycle-climate model a0Bern = 0.217; # CO2 parameters according to Bern carbon cycle-climate model tf = 202 #until 202 because we want to get the DCF(t-i) until DCF(201) to determine the impact from the emission from the year 200 (There is no DCF(0)) #%% #Step (11): Bern 2.5 CC Model, determine atmospheric load (C(t)) for GHG (CO2 and CH4) t = range(0,tf,1) ## CO2 calculation formula # time dependant atmospheric load for CO2, Bern model def C_CO2(t): return a0Bern + aBern[0]*np.exp(-t/TauCO2[0]) + aBern[1]*np.exp(-t/TauCO2[1]) + aBern[2]*np.exp(-t/TauCO2[2]) output_CO2 = np.array([C_CO2(ti) for ti in t]) print(output_CO2) ## CH4 calculation formula # time dependant atmospheric load for non-CO2 GHGs (Methane) def C_CH4(t): return np.exp(-t/TauCH4) output_CH4 = np.array([C_CH4(ti) for ti in t]) plt.xlim([0, 200]) plt.ylim([0,1.1]) plt.plot(t, output_CO2, output_CH4) plt.xlabel('Time (year)') plt.ylabel('Fraction of CO$_2$') plt.show() output_CH4.size #%% #determine the C(t) for CO2 s = [] t = np.arange(0,tf,1) for i in t: s.append(quad(C_CO2,i-1,i)) res_list_CO2 = [x[0] for x in s] len(res_list_CO2) #%% #determine the C(t) for CH4 s = [] for i in t: s.append(quad(C_CH4,i-1,i)) res_list_CH4 = [p[0] for p in s] #plot plt.xlim([0, 200]) plt.ylim([0,1.5]) plt.plot(t, res_list_CO2, res_list_CH4) plt.show() #%% #Step (12): Determine dynamic characterization factors (DCF) for CO2 and CH4 DCF_inst_CO2 = aCO2 * np.array(res_list_CO2) print(DCF_inst_CO2) DCF_inst_CH4 = aCH4 * np.array(res_list_CH4) plt.xlim([0, 200]) plt.ylim([0,4e-15]) plt.plot(t, DCF_inst_CO2, DCF_inst_CH4) plt.xlabel('Time (year)') plt.ylabel('DCF_inst (10$^{-15}$ W/m$^2$.kg CO$_2$)') plt.show() len(DCF_inst_CO2) #%% #Step (13): import emission data from emissions_seq_scenarios.xlsx (Step (9)) ##wood-based #read S2_nucleus df = pd.read_excel('emissions_seq_PF_PO_RB.xlsx', 'S2_nucleus') # can also index sheet by name or fetch all sheets emission_CO2_S2nu = df['kg_CO2'].tolist() emission_CH4_S2nu = df['kg_CH4'].tolist() emission_CO2_seq_S2nu = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read S2_plasma df = pd.read_excel('emissions_seq_PF_PO_RB.xlsx', 'S2_plasma') emission_CO2_S2pl = df['kg_CO2'].tolist() emission_CH4_S2pl = df['kg_CH4'].tolist() emission_CO2_seq_S2pl = df['kg_CO2_seq'].tolist() #read E_nucleus df = pd.read_excel('emissions_seq_PF_PO_RB.xlsx', 'E_nucleus') # can also index sheet by name or fetch all sheets emission_CO2_Enu = df['kg_CO2'].tolist() emission_CH4_Enu = df['kg_CH4'].tolist() emission_CO2_seq_Enu = df['kg_CO2_seq'].tolist() #read E_plasma df = pd.read_excel('emissions_seq_PF_PO_RB.xlsx', 'E_plasma') emission_CO2_Epl = df['kg_CO2'].tolist() emission_CH4_Epl = df['kg_CH4'].tolist() emission_CO2_seq_Epl = df['kg_CO2_seq'].tolist() #%% #Step (14): import emission data from the counter-use of non-renewable materials/energy scenarios (NR) #read S2_nucleus df = pd.read_excel('NonRW_PF_PO.xlsx', 'PF_PO_S2nu') # can also index sheet by name or fetch all sheets emission_NonRW_S2nu = df['NonRW_emissions'].tolist() emission_Diesel_S2nu = df['Diesel_emissions'].tolist() emission_NonRW_seq_S2nu = df['kg_CO2_seq'].tolist() emission_CO2_ref = df['emission_ref'].tolist() #read S2_plasma df = pd.read_excel('NonRW_PF_PO.xlsx', 'PF_PO_S2pl') emission_NonRW_S2pl = df['NonRW_emissions'].tolist() emission_Diesel_S2pl = df['Diesel_emissions'].tolist() emission_NonRW_seq_S2pl = df['kg_CO2_seq'].tolist() #read E_nucleus df = pd.read_excel('NonRW_PF_PO.xlsx', 'PF_PO_Enu') # can also index sheet by name or fetch all sheets emission_NonRW_Enu = df['NonRW_emissions'].tolist() emission_Diesel_Enu = df['Diesel_emissions'].tolist() emission_NonRW_seq_Enu = df['kg_CO2_seq'].tolist() #read E_plasma df = pd.read_excel('NonRW_PF_PO.xlsx', 'PF_PO_Epl') emission_NonRW_Epl = df['NonRW_emissions'].tolist() emission_Diesel_Epl = df['Diesel_emissions'].tolist() emission_NonRW_seq_Epl = df['kg_CO2_seq'].tolist() #%% #Step (15): Determine the time elapsed dynamic characterization factors, DCF(t-ti), for CO2 and CH4 #DCF(t-i) CO2 matrix = (tf-1,tf-1) DCF_CO2_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CO2_ti[i+1,t] = DCF_inst_CO2[t-i] i = i + 1 print(DCF_CO2_ti) #sns.heatmap(DCF_CO2_ti) DCF_CO2_ti.shape #DCF(t-i) CH4 matrix = (tf-1,tf-1) DCF_CH4_ti = np.zeros(matrix) for t in range(0,tf-1): i = -1 while i < t: DCF_CH4_ti[i+1,t] = DCF_inst_CH4[t-i] i = i + 1 print(DCF_CH4_ti) #sns.heatmap(DCF_CH4_ti) DCF_CH4_ti.shape #%% #Step (16): Calculate instantaneous global warming impact (GWI) ##wood-based #S2_nucleus t = np.arange(0,tf-1,1) matrix_GWI_S2nu = (tf-1,3) GWI_inst_S2nu = np.zeros(matrix_GWI_S2nu) for t in range(0,tf-1): GWI_inst_S2nu[t,0] = np.sum(np.multiply(emission_CO2_S2nu,DCF_CO2_ti[:,t])) GWI_inst_S2nu[t,1] = np.sum(np.multiply(emission_CH4_S2nu,DCF_CH4_ti[:,t])) GWI_inst_S2nu[t,2] = np.sum(np.multiply(emission_CO2_seq_S2nu,DCF_CO2_ti[:,t])) matrix_GWI_tot_S2nu = (tf-1,1) GWI_inst_tot_S2nu = np.zeros(matrix_GWI_tot_S2nu) GWI_inst_tot_S2nu[:,0] = np.array(GWI_inst_S2nu[:,0] + GWI_inst_S2nu[:,1] + GWI_inst_S2nu[:,2]) print(GWI_inst_tot_S2nu[:,0]) #S2_plasma t = np.arange(0,tf-1,1) matrix_GWI_S2pl = (tf-1,3) GWI_inst_S2pl = np.zeros(matrix_GWI_S2pl) for t in range(0,tf-1): GWI_inst_S2pl[t,0] = np.sum(np.multiply(emission_CO2_S2pl,DCF_CO2_ti[:,t])) GWI_inst_S2pl[t,1] = np.sum(np.multiply(emission_CH4_S2pl,DCF_CH4_ti[:,t])) GWI_inst_S2pl[t,2] = np.sum(np.multiply(emission_CO2_seq_S2pl,DCF_CO2_ti[:,t])) matrix_GWI_tot_S2pl = (tf-1,1) GWI_inst_tot_S2pl = np.zeros(matrix_GWI_tot_S2pl) GWI_inst_tot_S2pl[:,0] = np.array(GWI_inst_S2pl[:,0] + GWI_inst_S2pl[:,1] + GWI_inst_S2pl[:,2]) print(GWI_inst_tot_S2pl[:,0]) #E_nucleus t = np.arange(0,tf-1,1) matrix_GWI_Enu = (tf-1,3) GWI_inst_Enu = np.zeros(matrix_GWI_Enu) for t in range(0,tf-1): GWI_inst_Enu[t,0] = np.sum(np.multiply(emission_CO2_Enu,DCF_CO2_ti[:,t])) GWI_inst_Enu[t,1] = np.sum(np.multiply(emission_CH4_Enu,DCF_CH4_ti[:,t])) GWI_inst_Enu[t,2] = np.sum(np.multiply(emission_CO2_seq_Enu,DCF_CO2_ti[:,t])) matrix_GWI_tot_Enu = (tf-1,1) GWI_inst_tot_Enu = np.zeros(matrix_GWI_tot_Enu) GWI_inst_tot_Enu[:,0] = np.array(GWI_inst_Enu[:,0] + GWI_inst_Enu[:,1] + GWI_inst_Enu[:,2]) print(GWI_inst_tot_Enu[:,0]) #E_plasma t = np.arange(0,tf-1,1) matrix_GWI_Epl = (tf-1,3) GWI_inst_Epl = np.zeros(matrix_GWI_Epl) for t in range(0,tf-1): GWI_inst_Epl[t,0] = np.sum(np.multiply(emission_CO2_Epl,DCF_CO2_ti[:,t])) GWI_inst_Epl[t,1] = np.sum(np.multiply(emission_CH4_Epl,DCF_CH4_ti[:,t])) GWI_inst_Epl[t,2] = np.sum(np.multiply(emission_CO2_seq_Epl,DCF_CO2_ti[:,t])) matrix_GWI_tot_Epl = (tf-1,1) GWI_inst_tot_Epl = np.zeros(matrix_GWI_tot_Epl) GWI_inst_tot_Epl[:,0] = np.array(GWI_inst_Epl[:,0] + GWI_inst_Epl[:,1] + GWI_inst_Epl[:,2]) print(GWI_inst_tot_Epl[:,0]) ## NonRW #GWI_inst for all gases #S2_nucleus t = np.arange(0,tf-1,1) matrix_GWI_NonRW_S2nu = (tf-1,3) GWI_inst_NonRW_S2nu = np.zeros(matrix_GWI_NonRW_S2nu) for t in range(0,tf-1): GWI_inst_NonRW_S2nu[t,0] = np.sum(np.multiply(emission_NonRW_S2nu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S2nu[t,1] = np.sum(np.multiply(emission_Diesel_S2nu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S2nu[t,2] = np.sum(np.multiply(emission_NonRW_seq_S2nu,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_S2nu = (tf-1,1) GWI_inst_tot_NonRW_S2nu = np.zeros(matrix_GWI_tot_NonRW_S2nu) GWI_inst_tot_NonRW_S2nu[:,0] = np.array(GWI_inst_NonRW_S2nu[:,0] + GWI_inst_NonRW_S2nu[:,1] + GWI_inst_NonRW_S2nu[:,2]) print(GWI_inst_tot_NonRW_S2nu[:,0]) #S2_plasma t = np.arange(0,tf-1,1) matrix_GWI_NonRW_S2pl = (tf-1,3) GWI_inst_NonRW_S2pl = np.zeros(matrix_GWI_NonRW_S2pl) for t in range(0,tf-1): GWI_inst_NonRW_S2pl[t,0] = np.sum(np.multiply(emission_NonRW_S2pl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S2pl[t,1] = np.sum(np.multiply(emission_Diesel_S2pl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_S2pl[t,2] = np.sum(np.multiply(emission_NonRW_seq_S2pl,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_S2pl = (tf-1,1) GWI_inst_tot_NonRW_S2pl = np.zeros(matrix_GWI_tot_NonRW_S2pl) GWI_inst_tot_NonRW_S2pl[:,0] = np.array(GWI_inst_NonRW_S2pl[:,0] + GWI_inst_NonRW_S2pl[:,1] + GWI_inst_NonRW_S2pl[:,2]) print(GWI_inst_tot_NonRW_S2pl[:,0]) #E_nucleus t = np.arange(0,tf-1,1) matrix_GWI_NonRW_Enu = (tf-1,3) GWI_inst_NonRW_Enu = np.zeros(matrix_GWI_NonRW_Enu) for t in range(0,tf-1): GWI_inst_NonRW_Enu[t,0] = np.sum(np.multiply(emission_NonRW_Enu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Enu[t,1] = np.sum(np.multiply(emission_Diesel_Enu,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Enu[t,2] = np.sum(np.multiply(emission_NonRW_seq_Enu,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_Enu = (tf-1,1) GWI_inst_tot_NonRW_Enu = np.zeros(matrix_GWI_tot_NonRW_Enu) GWI_inst_tot_NonRW_Enu[:,0] = np.array(GWI_inst_NonRW_Enu[:,0] + GWI_inst_NonRW_Enu[:,1] + GWI_inst_NonRW_Enu[:,2]) print(GWI_inst_tot_NonRW_Enu[:,0]) #E_plasma t = np.arange(0,tf-1,1) matrix_GWI_NonRW_Epl = (tf-1,3) GWI_inst_NonRW_Epl = np.zeros(matrix_GWI_NonRW_Epl) for t in range(0,tf-1): GWI_inst_NonRW_Epl[t,0] = np.sum(np.multiply(emission_NonRW_Epl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Epl[t,1] = np.sum(np.multiply(emission_Diesel_Epl,DCF_CO2_ti[:,t])) GWI_inst_NonRW_Epl[t,2] = np.sum(np.multiply(emission_NonRW_seq_Epl,DCF_CO2_ti[:,t])) matrix_GWI_tot_NonRW_Epl = (tf-1,1) GWI_inst_tot_NonRW_Epl = np.zeros(matrix_GWI_tot_NonRW_Epl) GWI_inst_tot_NonRW_Epl[:,0] = np.array(GWI_inst_NonRW_Epl[:,0] + GWI_inst_NonRW_Epl[:,1] + GWI_inst_NonRW_Epl[:,2]) print(GWI_inst_tot_NonRW_Epl[:,0]) t = np.arange(0,tf-1,1) #create zero list to highlight the horizontal line for 0 def zerolistmaker(n): listofzeros = [0] * (n) return listofzeros #convert to flat list GWI_inst_tot_NonRW_S2nu = np.array([item for sublist in GWI_inst_tot_NonRW_S2nu for item in sublist]) GWI_inst_tot_NonRW_S2pl = np.array([item for sublist in GWI_inst_tot_NonRW_S2pl for item in sublist]) GWI_inst_tot_NonRW_Enu = np.array([item for sublist in GWI_inst_tot_NonRW_Enu for item in sublist]) GWI_inst_tot_NonRW_Epl = np.array([item for sublist in GWI_inst_tot_NonRW_Epl for item in sublist]) GWI_inst_tot_S2nu = np.array([item for sublist in GWI_inst_tot_S2nu for item in sublist]) GWI_inst_tot_S2pl = np.array([item for sublist in GWI_inst_tot_S2pl for item in sublist]) GWI_inst_tot_Enu = np.array([item for sublist in GWI_inst_tot_Enu for item in sublist]) GWI_inst_tot_Epl = np.array([item for sublist in GWI_inst_tot_Epl for item in sublist]) plt.plot(t, GWI_inst_tot_NonRW_S2nu, color='lightcoral', label='NR_M_nucleus', ls='--') plt.plot(t, GWI_inst_tot_NonRW_S2pl, color='deeppink', label='NR_M_plasma', ls='--') plt.plot(t, GWI_inst_tot_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') plt.plot(t, GWI_inst_tot_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') plt.plot(t, GWI_inst_tot_S2nu, color='lightcoral', label='M_nucleus') plt.plot(t, GWI_inst_tot_S2pl, color='deeppink', label='M_plasma') plt.plot(t, GWI_inst_tot_Enu, color='royalblue', label='E_nucleus') plt.plot(t, GWI_inst_tot_Epl, color='deepskyblue', label='E_plasma') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWI_inst_tot_NonRW_Enu, GWI_inst_tot_NonRW_S2pl, color='lightcoral', alpha=0.3) plt.grid(True) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.xlim(0,200) plt.ylim(-0.5e-9,1.4e-9) plt.title('Instantaneous GWI, PF_PO') plt.xlabel('Time (year)') #plt.ylabel('GWI_inst (10$^{-13}$ W/m$^2$)') plt.ylabel('GWI_inst (W/m$^2$)') plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_inst_NonRW_PF_PO', dpi=300) plt.show() #%% #Step (17): Calculate cumulative global warming impact (GWI) ##wood-based GWI_cum_S2nu = np.cumsum(GWI_inst_tot_S2nu) GWI_cum_S2pl = np.cumsum(GWI_inst_tot_S2pl) GWI_cum_Enu = np.cumsum(GWI_inst_tot_Enu) GWI_cum_Epl = np.cumsum(GWI_inst_tot_Epl) ##NonRW GWI_cum_NonRW_S2nu = np.cumsum(GWI_inst_tot_NonRW_S2nu) GWI_cum_NonRW_S2pl = np.cumsum(GWI_inst_tot_NonRW_S2pl) GWI_cum_NonRW_Enu = np.cumsum(GWI_inst_tot_NonRW_Enu) GWI_cum_NonRW_Epl = np.cumsum(GWI_inst_tot_NonRW_Epl) plt.xlabel('Time (year)') #plt.ylabel('GWI_cum (10$^{-11}$ W/m$^2$)') plt.ylabel('GWI_cum (W/m$^2$)') plt.xlim(0,200) plt.ylim(-0.3e-7,2e-7) plt.title('Cumulative GWI, PF_PO') plt.plot(t, GWI_cum_NonRW_S2nu, color='lightcoral', label='NR_M_nucleus', ls='--') plt.plot(t, GWI_cum_NonRW_S2pl, color='deeppink', label='NR_M_plasma', ls='--') plt.plot(t, GWI_cum_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') plt.plot(t, GWI_cum_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') plt.plot(t, GWI_cum_S2nu, color='lightcoral', label='M_nucleus') plt.plot(t, GWI_cum_S2pl, color='deeppink', label='M_plasma') plt.plot(t, GWI_cum_Enu, color='royalblue', label='E_nucleus') plt.plot(t, GWI_cum_Epl, color='deepskyblue', label='E_plasma') plt.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWI_cum_NonRW_Enu, GWI_cum_NonRW_S2pl, color='lightcoral', alpha=0.3) plt.grid(True) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWI_cum_NonRW_PF_PO', dpi=300) plt.show() #%% #Step (18): Determine the Instantenous and Cumulative GWI for the emission reference (1 kg CO2 emission at time zero) before performing dynamic GWP calculation #determine the GWI inst for the emission reference (1 kg CO2 emission at time zero) t = np.arange(0,tf-1,1) matrix_GWI_ref = (tf-1,1) GWI_inst_ref = np.zeros(matrix_GWI_S2nu) for t in range(0,tf-1): GWI_inst_ref[t,0] = np.sum(np.multiply(emission_CO2_ref,DCF_CO2_ti[:,t])) #print(GWI_inst_ref[:,0]) len(GWI_inst_ref) #determine the GWI cumulative for the emission reference t = np.arange(0,tf-1,1) GWI_cum_ref = np.cumsum(GWI_inst_ref[:,0]) #print(GWI_cum_ref) plt.xlabel('Time (year)') plt.ylabel('GWI_cum_ref (10$^{-13}$ W/m$^2$.kgCO$_2$)') plt.plot(t, GWI_cum_ref) len(GWI_cum_ref) #%% #Step (19): Calculate dynamic global warming potential (GWPdyn) #convert the GWPdyn to tCO2 (divided by 1000) ##wood-based GWP_dyn_cum_S2nu = [x/(y*1000) for x,y in zip(GWI_cum_S2nu, GWI_cum_ref)] GWP_dyn_cum_S2pl = [x/(y*1000) for x,y in zip(GWI_cum_S2pl, GWI_cum_ref)] GWP_dyn_cum_Enu = [x/(y*1000) for x,y in zip(GWI_cum_Enu, GWI_cum_ref)] GWP_dyn_cum_Epl = [x/(y*1000) for x,y in zip(GWI_cum_Epl, GWI_cum_ref)] ##NonRW GWP_dyn_cum_NonRW_S2nu = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_S2nu, GWI_cum_ref)] GWP_dyn_cum_NonRW_S2pl = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_S2pl, GWI_cum_ref)] GWP_dyn_cum_NonRW_Enu = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_Enu, GWI_cum_ref)] GWP_dyn_cum_NonRW_Epl = [x/(y*1000) for x,y in zip(GWI_cum_NonRW_Epl, GWI_cum_ref)] fig=plt.figure() fig.show() ax=fig.add_subplot(111) ax.plot(t, GWP_dyn_cum_NonRW_S2nu, color='lightcoral', label='NR_M_nucleus', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_S2pl, color='deeppink', label='NR_M_plasma', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_Enu, color='royalblue', label='NR_E_nucleus', ls='--') ax.plot(t, GWP_dyn_cum_NonRW_Epl, color='deepskyblue', label='NR_E_plasma', ls='--') ax.plot(t, GWP_dyn_cum_S2nu, color='lightcoral', label='M_nucleus') ax.plot(t, GWP_dyn_cum_S2pl, color='deeppink', label='M_plasma') ax.plot(t, GWP_dyn_cum_Enu, color='royalblue', label='E_nucleus') ax.plot(t, GWP_dyn_cum_Epl, color='deepskyblue', label='E_plasma') ax.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) #plt.fill_between(t, GWP_dyn_cum_NonRW_Enu, GWP_dyn_cum_NonRW_S2pl, color='lightcoral', alpha=0.3) plt.grid(True) ax.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax.set_xlabel('Time (year)') ax.set_ylabel('GWP$_{dyn}$ (t-CO$_2$-eq)') ax.set_xlim(0,200) ax.set_ylim(-250,1400) ax.set_title('Dynamic GWP, PF_PO') plt.draw() plt.savefig('C:\Work\Data\ID Future Scenarios\Hectare-based\Fig\GWP_dyn_cum_NonRW_PF_PO', dpi=300) #%% #Step (20): Exporting the data behind result graphs to Excel year = [] for x in range (0, 201): year.append(x) ### Create Column Col1 = year ##GWI_Inst #GWI_inst from wood-based scenarios Col_GI_3 = GWI_inst_tot_S2nu Col_GI_4 = GWI_inst_tot_S2pl Col_GI_5 = GWI_inst_tot_Enu Col_GI_6 = GWI_inst_tot_Epl #print(Col_GI_1) #print(np.shape(Col_GI_1)) #GWI_inst from counter use scenarios Col_GI_9 = GWI_inst_tot_NonRW_S2nu Col_GI_10 = GWI_inst_tot_NonRW_S2pl Col_GI_11 = GWI_inst_tot_NonRW_Enu Col_GI_12 = GWI_inst_tot_NonRW_Epl #print(Col_GI_7) #print(np.shape(Col_GI_7)) #create column results ##GWI_cumulative #GWI_cumulative from wood-based scenarios Col_GC_3 = GWI_cum_S2nu Col_GC_4 = GWI_cum_S2pl Col_GC_5 = GWI_cum_Enu Col_GC_6 = GWI_cum_Epl #GWI_cumulative from counter use scenarios Col_GC_9 = GWI_cum_NonRW_S2nu Col_GC_10 = GWI_cum_NonRW_S2pl Col_GC_11 = GWI_cum_NonRW_Enu Col_GC_12 = GWI_cum_NonRW_Epl #create column results ##GWPdyn #GWPdyn from wood-based scenarios Col_GWP_3 = GWP_dyn_cum_S2nu Col_GWP_4 = GWP_dyn_cum_S2pl Col_GWP_5 = GWP_dyn_cum_Enu Col_GWP_6 = GWP_dyn_cum_Epl #GWPdyn from counter use scenarios Col_GWP_9 = GWP_dyn_cum_NonRW_S2nu Col_GWP_10 = GWP_dyn_cum_NonRW_S2pl Col_GWP_11 = GWP_dyn_cum_NonRW_Enu Col_GWP_12 = GWP_dyn_cum_NonRW_Epl #Create colum results dfM_GI = pd.DataFrame.from_dict({'Year':Col1,'M_nucleus (W/m2)':Col_GI_3, 'M_plasma (W/m2)':Col_GI_4, 'E_nucleus (W/m2)':Col_GI_5, 'E_plasma (W/m2)':Col_GI_6, 'NR_M_nucleus (W/m2)':Col_GI_9, 'NR_M_plasma (W/m2)':Col_GI_10, 'NR_E_nucleus (W/m2)':Col_GI_11, 'NR_E_plasma (W/m2)':Col_GI_12}) dfM_GC = pd.DataFrame.from_dict({'Year':Col1,'M_nucleus (W/m2)':Col_GC_3, 'M_plasma (W/m2)':Col_GC_4, 'E_nucleus (W/m2)':Col_GC_5, 'E_plasma (W/m2)':Col_GC_6, 'NR_M_nucleus (W/m2)':Col_GC_9, 'NR_M_plasma (W/m2)':Col_GC_10, 'NR_E_nucleus (W/m2)':Col_GC_11, 'NR_E_plasma (W/m2)':Col_GC_12}) dfM_GWPdyn = pd.DataFrame.from_dict({'Year':Col1,'M_nucleus (t-CO2eq)':Col_GWP_3, 'M_plasma (t-CO2eq)':Col_GWP_4, 'E_nucleus (t-CO2eq)':Col_GWP_5, 'E_plasma (t-CO2eq)':Col_GWP_6, 'NR_M_nucleus (t-CO2eq)':Col_GWP_9, 'NR_M_plasma (t-CO2eq)':Col_GWP_10, 'NR_E_nucleus (t-CO2eq)':Col_GWP_11, 'NR_E_plasma (t-CO2eq)':Col_GWP_12}) #Export to excel writer = pd.ExcelWriter('GraphResults_PF_PO_RB.xlsx', engine = 'xlsxwriter') #GWI_inst dfM_GI.to_excel(writer, sheet_name = 'GWI_Inst_PF_PO', header=True, index=False) #GWI cumulative dfM_GC.to_excel(writer, sheet_name = 'Cumulative GWI_PF_PO', header=True, index=False) #GWP_dyn dfM_GWPdyn.to_excel(writer, sheet_name = 'GWPdyn_PF_PO', header=True, index=False) writer.save() writer.close() #%% #Step (21): Generate the excel file for the individual carbon emission and sequestration flows #print year column year = [] for x in range (0, 201): year.append(x) print (year) print(len(year)) division = 1000*44/12 division_CH4 = 1000*16/12 #M_nu c_firewood_energy_S2nu = [x/division for x in c_firewood_energy_S2nu] decomp_emissions = [x/division for x in decomp_emissions] TestDSM2nu.o = [x/division for x in TestDSM2nu.o] PH_Emissions_PO_S2nu = [x/division for x in PH_Emissions_PO_S2nu] PH_Emissions_HWP_S2nu = [x/division for x in PH_Emissions_HWP_S2nu] #OC_storage_S2nu = [x/division for x in OC_storage_S2nu] flat_list_nucleus = [x/division for x in flat_list_nucleus] decomp_tot_CO2_S2nu[:,0] = [x/division for x in decomp_tot_CO2_S2nu[:,0]] decomp_tot_CH4_S2nu[:,0] = [x/division_CH4 for x in decomp_tot_CH4_S2nu[:,0]] #M_pl c_firewood_energy_S2pl = [x/division for x in c_firewood_energy_S2pl] TestDSM2pl.o = [x/division for x in TestDSM2pl.o] PH_Emissions_PO_S2pl = [x/division for x in PH_Emissions_PO_S2pl] PH_Emissions_HWP_S2pl = [x/division for x in PH_Emissions_HWP_S2pl] #OC_storage_S2pl = [x/division for x in OC_storage_S2pl] flat_list_plasma = [x/division for x in flat_list_plasma] decomp_tot_CO2_S2pl[:,0] = [x/division for x in decomp_tot_CO2_S2pl[:,0]] decomp_tot_CH4_S2pl[:,0] = [x/division_CH4 for x in decomp_tot_CH4_S2pl[:,0]] #Enu c_firewood_energy_Enu = [x/division for x in c_firewood_energy_Enu] c_pellets_Enu = [x/division for x in c_pellets_Enu] TestDSM3nu.o = [x/division for x in TestDSM3nu.o] PH_Emissions_PO_Enu = [x/division for x in PH_Emissions_PO_Enu] PH_Emissions_HWP_Enu = [x/division for x in PH_Emissions_HWP_Enu] #OC_storage_Enu = [x/division for x in OC_storage_Enu] decomp_tot_CO2_Enu[:,0] = [x/division for x in decomp_tot_CO2_Enu[:,0]] decomp_tot_CH4_Enu[:,0] = [x/division_CH4 for x in decomp_tot_CH4_Enu[:,0]] #Epl c_firewood_energy_Epl = [x/division for x in c_firewood_energy_Epl] c_pellets_Epl = [x/division for x in c_pellets_Epl] TestDSM3pl.o = [x/division for x in TestDSM3pl.o] PH_Emissions_PO_Epl = [x/division for x in PH_Emissions_PO_Epl] PH_Emissions_HWP_Epl = [x/division for x in PH_Emissions_HWP_Epl] #OC_storage_Epl = [x/division for x in OC_storage_Epl] decomp_tot_CO2_Epl[:,0] = [x/division for x in decomp_tot_CO2_Epl[:,0]] decomp_tot_CH4_Epl[:,0] = [x/division_CH4 for x in decomp_tot_CH4_Epl[:,0]] #landfill aggregate flows Landfill_decomp_PF_PO_S2nu = decomp_tot_CH4_S2nu, decomp_tot_CO2_S2nu Landfill_decomp_PF_PO_S2pl = decomp_tot_CH4_S2pl, decomp_tot_CO2_S2pl Landfill_decomp_PF_PO_Enu = decomp_tot_CH4_Enu, decomp_tot_CO2_Enu Landfill_decomp_PF_PO_Epl = decomp_tot_CH4_Epl, decomp_tot_CO2_Epl Landfill_decomp_PF_PO_S2nu = [sum(x) for x in zip(*Landfill_decomp_PF_PO_S2nu)] Landfill_decomp_PF_PO_S2pl = [sum(x) for x in zip(*Landfill_decomp_PF_PO_S2pl)] Landfill_decomp_PF_PO_Enu = [sum(x) for x in zip(*Landfill_decomp_PF_PO_Enu)] Landfill_decomp_PF_PO_Epl = [sum(x) for x in zip(*Landfill_decomp_PF_PO_Epl)] Landfill_decomp_PF_PO_S2nu = [item for sublist in Landfill_decomp_PF_PO_S2nu for item in sublist] Landfill_decomp_PF_PO_S2pl = [item for sublist in Landfill_decomp_PF_PO_S2pl for item in sublist] Landfill_decomp_PF_PO_Enu = [item for sublist in Landfill_decomp_PF_PO_Enu for item in sublist] Landfill_decomp_PF_PO_Epl = [item for sublist in Landfill_decomp_PF_PO_Epl for item in sublist] #Wood processing aggregate flows OpProcessing_PF_PO_S2nu = [x + y for x, y in zip(PH_Emissions_PO_S2nu, PH_Emissions_HWP_S2nu)] OpProcessing_PF_PO_S2pl = [x + y for x, y in zip(PH_Emissions_PO_S2pl, PH_Emissions_HWP_S2pl)] OpProcessing_PF_PO_Enu = [x + y for x, y in zip(PH_Emissions_PO_Enu, PH_Emissions_HWP_Enu)] OpProcessing_PF_PO_Epl = [x + y for x, y in zip(PH_Emissions_PO_Epl, PH_Emissions_HWP_Epl)] #M_nu Column1 = year Column2 = c_firewood_energy_S2nu Column3 = decomp_emissions Column4 = TestDSM2nu.o Column5 = OpProcessing_PF_PO_S2nu #Column7_1 = OC_storage_S2nu Column7 = Landfill_decomp_PF_PO_S2nu Column8 = flat_list_nucleus #M_pl Column9 = c_firewood_energy_S2pl Column10 = TestDSM2pl.o Column11 = OpProcessing_PF_PO_S2pl #Column13_1 = OC_storage_S2pl Column13 = Landfill_decomp_PF_PO_S2pl Column14 = flat_list_plasma #E_nu Column15 = c_firewood_energy_Enu Column15_1 = c_pellets_Enu Column16 = TestDSM3nu.o Column17 = OpProcessing_PF_PO_Enu #Column19_1 = OC_storage_Enu Column19 = Landfill_decomp_PF_PO_Enu #E_pl Column20 = c_firewood_energy_Epl Column20_1 = c_pellets_Epl Column21 = TestDSM3pl.o Column22 = OpProcessing_PF_PO_Epl #Column24_1 = OC_storage_Epl Column24 = Landfill_decomp_PF_PO_Epl #M dfM_nu = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column8, #'9: Landfill storage (t-C)':Column7_1, 'F1-0: Residue decomposition (t-C)':Column3, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column2, 'F8-0: Operational stage/processing emissions (t-C)':Column5, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column4, 'F7-0: Landfill gas decomposition (t-C)':Column7}) dfM_pl = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column14, #'9: Landfill storage (t-C)':Column13_1, 'F1-0: Residue decomposition (t-C)':Column3, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column9, 'F8-0: Operational stage/processing emissions (t-C)':Column11, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column10, 'F7-0: Landfill gas decomposition (t-C)':Column13}) #E dfE_nu = pd.DataFrame.from_dict({'Year':Column1,'F0-1: Biomass C sequestration (t-C)':Column8, #'9: Landfill storage (t-C)':Column19_1, 'F1-0: Residue decomposition (t-C)':Column3, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column15, 'F8-0: Operational stage/processing emissions (t-C)':Column17, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column16, 'F4-0: Emissions from wood pellets use (t-C)':Column15_1, 'F7-0: Landfill gas decomposition (t-C)':Column19}) dfE_pl = pd.DataFrame.from_dict({'Year':Column1, 'F0-1: Biomass C sequestration (t-C)':Column14, #'9: Landfill storage (t-C)':Column24_1, 'F1-0: Residue decomposition (t-C)':Column3, 'F6-0-1: Emissions from firewood/other energy use (t-C)':Column20, 'F8-0: Operational stage/processing emissions (t-C)':Column22, 'F6-0-2: Energy use emissions from in-use stocks outflow (t-C)':Column21, 'F4-0: Emissions from wood pellets use (t-C)':Column20_1, 'F7-0: Landfill gas decomposition (t-C)':Column24}) writer = pd.ExcelWriter('C_flows_PF_PO_RB.xlsx', engine = 'xlsxwriter') dfM_nu.to_excel(writer, sheet_name = 'PF_PO_M_nu', header=True, index=False) dfM_pl.to_excel(writer, sheet_name = 'PF_PO_M_pl', header=True, index=False) dfE_nu.to_excel(writer, sheet_name = 'PF_PO_E_nu', header=True, index=False) dfE_pl.to_excel(writer, sheet_name = 'PF_PO_E_pl', header=True, index=False) writer.save() writer.close() #%% #Step (22): Plot of the individual carbon emission and sequestration flows for normal and symlog-scale graphs #PF_PO_M_nu fig=plt.figure() fig.show() ax1=fig.add_subplot(111) # plot ax1.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax1.plot(t, OC_storage_S2nu, color='darkturquoise', label='9: Landfill storage') ax1.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax1.plot(t, c_firewood_energy_S2nu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax1.plot(t, OpProcessing_PF_PO_S2nu, color='orange', label='F8-0: Operational stage/processing emissions') ax1.plot(t, TestDSM2nu.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax1.plot(t, Landfill_decomp_PF_PO_S2nu, color='yellow', label='F7-0: Landfill gas decomposition') ax1.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax1.set_xlim(-1,200) ax1.set_yscale('symlog') ax1.set_xlabel('Time (year)') ax1.set_ylabel('C flows (t-C) (symlog)') ax1.set_title('Carbon flow, PF_PO_M_nucleus (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_M_nu f, (ax_a, ax_b) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_a.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_a.plot(t, OC_storage_S2nu, color='darkturquoise', label='9: Landfill storage') ax_a.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax_a.plot(t, c_firewood_energy_S2nu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_a.plot(t, OpProcessing_PF_PO_S2nu, color='orange', label='F8-0: Operational stage/processing emissions') ax_a.plot(t, TestDSM2nu.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax_a.plot(t, Landfill_decomp_PF_PO_S2nu, color='yellow', label='F7-0: Landfill gas decomposition') ax_b.plot(t, c_firewood_energy_S2nu, color='mediumseagreen') ax_b.plot(t, decomp_emissions, color='lightcoral') #ax_b.plot(t, OC_storage_S2nu, color='darkturquoise') ax_b.plot(t, TestDSM2nu.o, color='royalblue') ax_b.plot(t, OpProcessing_PF_PO_S2nu, color='orange') ax_b.plot(t, Landfill_decomp_PF_PO_S2nu, color='yellow') ax_b.plot(t, flat_list_nucleus, color='darkkhaki') #ax_a.set_yscale('log') #ax_b.set_yscale('log') # zoom-in / limit the view to different portions of the data ax_a.set_xlim(-1,200) ax_a.set_ylim(60, 75) ax_b.set_ylim(-25, 35) #ax_b.set_ylim(-0.3, 0.5) # hide the spines between ax and ax2 ax_a.spines['bottom'].set_visible(False) ax_b.spines['top'].set_visible(False) ax_a.xaxis.tick_top() ax_a.tick_params(labeltop=False) # don't put tick labels at the top ax_b.xaxis.tick_bottom() ax_a.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_a.transAxes, color='k', clip_on=False) ax_a.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_a.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_b.transAxes) # switch to the bottom axes ax_b.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_b.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_b.set_xlabel('Time (year)') ax_b.set_ylabel('C flows (t-C)') ax_a.set_ylabel('C flows (t-C)') ax_a.set_title('Carbon flow, PF_PO_M_nucleus') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - symlog-scale graphs #PF_PO_M_pl fig=plt.figure() fig.show() ax2=fig.add_subplot(111) # plot ax2.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax2.plot(t, OC_storage_S2pl, color='darkturquoise', label='9: Landfill storage') ax2.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax2.plot(t, c_firewood_energy_S2pl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax2.plot(t, OpProcessing_PF_PO_S2pl, color='orange', label='F8-0: Operational stage/processing emissions') ax2.plot(t, TestDSM2pl.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax2.plot(t, Landfill_decomp_PF_PO_S2pl, color='yellow', label='F7-0: Landfill gas decomposition') ax2.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax2.set_xlim(-1,200) ax2.set_yscale('symlog') ax2.set_xlabel('Time (year)') ax2.set_ylabel('C flows (t-C) (symlog)') ax2.set_title('Carbon flow, PF_PO_M_plasma (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_M_pl f, (ax_c, ax_d) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_c.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_c.plot(t, OC_storage_S2pl, color='darkturquoise', label='9: Landfill storage') ax_c.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax_c.plot(t, c_firewood_energy_S2pl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_c.plot(t, OpProcessing_PF_PO_S2pl, color='orange', label='F8-0: Operational stage/processing emissions') ax_c.plot(t, TestDSM2pl.o, color='royalblue', label='F6-0-2: Energy use emissions from in-use stocks outflow') ax_c.plot(t, Landfill_decomp_PF_PO_S2pl, color='yellow', label='F7-0: Landfill gas decomposition') ax_d.plot(t, c_firewood_energy_S2pl, color='mediumseagreen') ax_d.plot(t, decomp_emissions, color='lightcoral') #ax_d.plot(t, OC_storage_S2pl, color='darkturquoise') ax_d.plot(t, TestDSM2pl.o, color='royalblue') ax_d.plot(t, OpProcessing_PF_PO_S2pl, color='orange') ax_d.plot(t, Landfill_decomp_PF_PO_S2pl, color='yellow') ax_d.plot(t, flat_list_plasma, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_c.set_xlim(-1,200) ax_c.set_ylim(60, 75) ax_d.set_ylim(-25, 35) # hide the spines between ax and ax2 ax_c.spines['bottom'].set_visible(False) ax_d.spines['top'].set_visible(False) ax_c.xaxis.tick_top() ax_c.tick_params(labeltop=False) # don't put tick labels at the top ax_d.xaxis.tick_bottom() ax_c.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_c.transAxes, color='k', clip_on=False) ax_c.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_c.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_d.transAxes) # switch to the bottom axes ax_d.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_d.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_d.set_xlabel('Time (year)') ax_d.set_ylabel('C flows (t-C)') ax_c.set_ylabel('C flows (t-C)') ax_c.set_title('Carbon flow, PF_PO_M_plasma') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - symlog-scale graphs #PF_PO_E_nu fig=plt.figure() fig.show() ax3=fig.add_subplot(111) # plot ax3.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax3.plot(t, OC_storage_Enu, color='darkturquoise', label='9: Landfill storage') ax3.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax3.plot(t, c_firewood_energy_Enu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax3.plot(t, OpProcessing_PF_PO_Enu, color='orange', label='F8-0: Operational stage/processing emissions') ax3.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow', label='F7-0: Landfill gas decomposition') ax3.plot(t, c_pellets_Enu, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax3.plot(t, TestDSM3nu.o, color='royalblue', label='in-use stock output') ax3.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax3.set_xlim(-1,200) ax3.set_yscale('symlog') ax3.set_xlabel('Time (year)') ax3.set_ylabel('C flows (t-C) (symlog)') ax3.set_title('Carbon flow, PF_PO_E_nucleus (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_E_nu f, (ax_e, ax_f) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_e.plot(t, flat_list_nucleus, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_e.plot(t, OC_storage_Enu, color='darkturquoise', label='9: Landfill storage') ax_e.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax_e.plot(t, c_firewood_energy_Enu, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_e.plot(t, OpProcessing_PF_PO_Enu, color='orange', label='F8-0: Operational stage/processing emissions') ax_e.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow', label='F7-0: Landfill gas decomposition') ax_e.plot(t, c_pellets_Enu, color='slategrey', label='F4-0: Emissions from wood pellets use') #ax_e.plot(t, TestDSM3nu.o, color='royalblue', label='in-use stock output') ax_f.plot(t, c_firewood_energy_Enu, color='mediumseagreen') ax_f.plot(t, decomp_emissions, color='lightcoral') ax_f.plot(t, c_pellets_Enu, color='slategrey') #ax_f.plot(t, TestDSM3nu.o, color='royalblue') #ax_f.plot(t, OC_storage_Enu, color='darkturquoise') ax_f.plot(t, OpProcessing_PF_PO_Enu, color='orange') ax_f.plot(t, Landfill_decomp_PF_PO_Enu, color='yellow') ax_f.plot(t, flat_list_nucleus, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_e.set_xlim(-1,200) ax_e.set_ylim(170, 190) ax_f.set_ylim(-25, 30) # hide the spines between ax and ax2 ax_e.spines['bottom'].set_visible(False) ax_f.spines['top'].set_visible(False) ax_e.xaxis.tick_top() ax_e.tick_params(labeltop=False) # don't put tick labels at the top ax_f.xaxis.tick_bottom() ax_e.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_e.transAxes, color='k', clip_on=False) ax_e.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_e.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_f.transAxes) # switch to the bottom axes ax_f.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_f.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_f.set_xlabel('Time (year)') ax_f.set_ylabel('C flows (t-C)') ax_e.set_ylabel('C flows (t-C)') ax_e.set_title('Carbon flow, PF_PO_E_nucleus') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #plot for the individual carbon flows - symlog-scale graphs #PF_PO_E_pl fig=plt.figure() fig.show() ax4=fig.add_subplot(111) # plot ax4.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax4.plot(t, OC_storage_Epl, color='darkturquoise', label='9: Landfill storage') ax4.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax4.plot(t, c_firewood_energy_Epl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax4.plot(t, OpProcessing_PF_PO_Epl, color='orange', label='F8-0: Operational stage/processing emissions') ax4.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow', label='F7-0: Landfill gas decomposition') #ax4.plot(t, TestDSM3pl.o, color='royalblue', label='in-use stock output') ax4.plot(t, c_pellets_Epl, color='slategrey', label='F4-0: Emissions from wood pellets use') ax4.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax4.set_xlim(-1,200) ax4.set_yscale('symlog') ax4.set_xlabel('Time (year)') ax4.set_ylabel('C flows (t-C) (symlog)') ax4.set_title('Carbon flow, PF_PO_E_plasma (symlog-scale)') plt.show() #%% #plotting the individual C flows #PF_PO_E_pl f, (ax_g, ax_h) = plt.subplots(2, 1, sharex=True) # plot the same data on both axes ax_g.plot(t, flat_list_plasma, color='darkkhaki', label='F0-1: Biomass C sequestration') #ax_g.plot(t, OC_storage_Epl, color='darkturquoise', label='9: Landfill storage') ax_g.plot(t, decomp_emissions, color='lightcoral', label='F1-0: Residue decomposition') ax_g.plot(t, c_firewood_energy_Epl, color='mediumseagreen', label='F6-0-1: Emissions from firewood/other energy use') ax_g.plot(t, OpProcessing_PF_PO_Epl, color='orange', label='F8-0: Operational stage/processing emissions') ax_g.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow', label='F7-0: Landfill gas decomposition') #ax_g.plot(t, TestDSM3pl.o, color='royalblue', label='in-use stock output') ax_g.plot(t, c_pellets_Epl, color='slategrey', label='F4-0: Emissions from wood pellets use') ax_h.plot(t, c_firewood_energy_Epl, color='mediumseagreen') ax_h.plot(t, c_pellets_Epl, color='slategrey') ax_h.plot(t, decomp_emissions, color='lightcoral') #ax_h.plot(t, TestDSM3pl.o, color='royalblue') ax_h.plot(t, OpProcessing_PF_PO_Epl, color='orange') #ax_h.plot(t, OC_storage_Epl, color='darkturquoise') ax_h.plot(t, Landfill_decomp_PF_PO_Epl, color='yellow') ax_h.plot(t, flat_list_plasma, color='darkkhaki') # zoom-in / limit the view to different portions of the data ax_g.set_xlim(-1,200) ax_g.set_ylim(170, 190) ax_h.set_ylim(-25, 30) # hide the spines between ax and ax2 ax_g.spines['bottom'].set_visible(False) ax_h.spines['top'].set_visible(False) ax_g.xaxis.tick_top() ax_g.tick_params(labeltop=False) # don't put tick labels at the top ax_h.xaxis.tick_bottom() ax_g.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_g.transAxes, color='k', clip_on=False) ax_g.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_g.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax_h.transAxes) # switch to the bottom axes ax_h.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_h.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_h.set_xlabel('Time (year)') ax_h.set_ylabel('C flows (t-C)') ax_g.set_ylabel('C flows (t-C)') ax_g.set_title('Carbon flow, PF_PO_E_plasma') #plt.plot(t, Cflow_PF_SF_S1) #plt.plot(t, Cflow_PF_SF_S2) #plt.plot(t, Cflow_PF_SF_E) #plt.xlim([0, 200]) plt.show() #%% #Step (23): Generate the excel file for the net carbon balance Agg_Cflow_PF_PO_S2nu = [c_firewood_energy_S2nu, decomp_emissions, TestDSM2nu.o, OpProcessing_PF_PO_S2nu, Landfill_decomp_PF_PO_S2nu, flat_list_nucleus] Agg_Cflow_PF_PO_S2pl = [c_firewood_energy_S2pl, decomp_emissions, TestDSM2pl.o, OpProcessing_PF_PO_S2pl, Landfill_decomp_PF_PO_S2pl, flat_list_plasma] Agg_Cflow_PF_PO_Enu = [c_firewood_energy_Enu, c_pellets_Enu, decomp_emissions, TestDSM3nu.o, OpProcessing_PF_PO_Enu, Landfill_decomp_PF_PO_Enu, flat_list_nucleus] Agg_Cflow_PF_PO_Epl = [c_firewood_energy_Epl, c_pellets_Epl, decomp_emissions, TestDSM3pl.o, OpProcessing_PF_PO_Epl, Landfill_decomp_PF_PO_Epl, flat_list_plasma] Agg_Cflow_PF_PO_S2nu = [sum(x) for x in zip(*Agg_Cflow_PF_PO_S2nu)] Agg_Cflow_PF_PO_S2pl = [sum(x) for x in zip(*Agg_Cflow_PF_PO_S2pl)] Agg_Cflow_PF_PO_Enu = [sum(x) for x in zip(*Agg_Cflow_PF_PO_Enu)] Agg_Cflow_PF_PO_Epl = [sum(x) for x in zip(*Agg_Cflow_PF_PO_Epl)] fig=plt.figure() fig.show() ax5=fig.add_subplot(111) # plot ax5.plot(t, Agg_Cflow_PF_PO_S2nu, color='orange', label='M_nucleus') ax5.plot(t, Agg_Cflow_PF_PO_S2pl, color='darkturquoise', label='M_plasma') ax5.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral', label='E_nucleus') ax5.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen', label='E_plasma') ax5.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) ax5.set_xlim(-0.3,85) #ax5.set_yscale('symlog') ax5.set_xlabel('Time (year)') ax5.set_ylabel('C flows (t-C)') ax5.set_title('Net carbon balance, PF_PO') plt.show() #create column year year = [] for x in range (0, 201): year.append(x) print (year) #Create colum results dfM_PF_PO = pd.DataFrame.from_dict({'Year':year,'M_nucleus (t-C)':Agg_Cflow_PF_PO_S2nu, 'M_plasma (t-C)':Agg_Cflow_PF_PO_S2pl, 'E_nucleus (t-C)':Agg_Cflow_PF_PO_Enu, 'E_plasma (t-C)':Agg_Cflow_PF_PO_Epl}) #Export to excel writer = pd.ExcelWriter('AggCFlow_PF_PO_RB.xlsx', engine = 'xlsxwriter') dfM_PF_PO.to_excel(writer, sheet_name = 'PF_PO', header=True, index=False) writer.save() writer.close() #%% #Step (24): Plot the net carbon balance ##Net carbon balance for M and E (axis break) f, (ax5a, ax5b) = plt.subplots(2, 1, sharex=True) ax5a.plot(t, Agg_Cflow_PF_PO_S2nu, color='orange', label='M_nucleus') ax5a.plot(t, Agg_Cflow_PF_PO_S2pl, color='darkturquoise', label='M_plasma') ax5a.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral', label='E_nucleus') ax5a.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen', label='E_plasma') ax5a.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) ax5b.plot(t, Agg_Cflow_PF_PO_S2nu, color='orange') ax5b.plot(t, Agg_Cflow_PF_PO_S2pl, color='darkturquoise') ax5b.plot(t, Agg_Cflow_PF_PO_Enu, color='lightcoral') ax5b.plot(t, Agg_Cflow_PF_PO_Epl, color='mediumseagreen') ax5b.plot(t, zerolistmaker(tf-1), color='black', label='Zero line', ls='--', alpha=0.75) # zoom-in / limit the view to different portions of the data ax5a.set_xlim(-0.35,85) #ax5a.set_xlim(-1,200) ax5a.set_ylim(210, 230) ax5b.set_xlim(-0.35,85) #ax5b.set_xlim(-1,200) ax5b.set_ylim(-5, 50) # hide the spines between ax and ax2 ax5a.spines['bottom'].set_visible(False) ax5b.spines['top'].set_visible(False) ax5a.xaxis.tick_top() ax5a.tick_params(labeltop=False) # don't put tick labels at the top ax5b.xaxis.tick_bottom() ax5a.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) d = .012 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax5a.transAxes, color='k', clip_on=False) ax5a.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax5a.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal kwargs.update(transform=ax5b.transAxes) # switch to the bottom axes ax5b.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax5b.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax5b.set_xlabel('Time (year)') ax5b.set_ylabel('C flows (t-C)') ax5a.set_ylabel('C flows (t-C)') ax5a.set_title('Net carbon balance, PF_PO') plt.show() #%% #Step (25): Generate the excel file for documentation of individual carbon flows in the system definition (Fig. 1) #print year column year = [] for x in range (0, 201): year.append(x) print (year) df2nu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2nu') df2pl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_S2pl') dfEnu = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Enu') dfEpl = pd.read_excel('C:\\Work\\Programming\\Practice\\PF_PO.xlsx', 'PF_PO_Epl') Column1 = year division = 1000*44/12 division_CH4 = 1000*16/12 ## S2nu ## define the input flow for the landfill (F5-7) OC_storage_S2nu = df2nu['Other_C_storage'].values OC_storage_S2nu = [x/division for x in OC_storage_S2nu] OC_storage_S2nu = [abs(number) for number in OC_storage_S2nu] C_LF_S2nu = [x*1/0.82 for x in OC_storage_S2nu] ## define the input flow from the logging/harvesting to wood materials/pellets processing (F2-3) HWP_S2nu = [x/division for x in df2nu['Input_PF'].values] HWP_S2nu_energy = [x*1/3 for x in c_firewood_energy_S2nu] HWP_S2nu_landfill = [x*1/0.82 for x in OC_storage_S2nu] HWP_S2nu_sum = [HWP_S2nu, HWP_S2nu_energy, HWP_S2nu_landfill] HWP_S2nu_sum = [sum(x) for x in zip(*HWP_S2nu_sum)] #in-use stocks (S-4) TestDSM2nu.s = [x/division for x in TestDSM2nu.s] #TestDSM2nu.i = [x/division for x in TestDSM2nu.i] # calculate C stocks in landfill (S-7) tf = 201 zero_matrix_stocks_S2nu = (tf,1) stocks_S2nu = np.zeros(zero_matrix_stocks_S2nu) i = 0 stocks_S2nu[0] = C_LF_S2nu[0] - Landfill_decomp_PF_PO_S2nu[0] while i < tf-1: stocks_S2nu[i+1] = np.array(C_LF_S2nu[i+1] - Landfill_decomp_PF_PO_S2nu[i+1] + stocks_S2nu[i]) i = i + 1 ## calculate aggregate flow of logged wood (F1-2) HWP_logged_S2nu = [x1+x2 for (x1,x2) in zip(HWP_S2nu_sum, [x*2/3 for x in c_firewood_energy_S2nu])] ## calculate the stocks in the forest (AGB + undecomposed residue) (S-1a+S-1c) tf = 201 zero_matrix_ForCstocks_S2nu = (tf,1) ForCstocks_S2nu = np.zeros(zero_matrix_ForCstocks_S2nu) i = 0 ForCstocks_S2nu[0] = initAGB - flat_list_nucleus[0] - decomp_emissions[0] - HWP_logged_S2nu[0] while i < tf-1: ForCstocks_S2nu[i+1] = np.array(ForCstocks_S2nu[i] - flat_list_nucleus[i+1] - decomp_emissions[i+1] - HWP_logged_S2nu[i+1]) i = i + 1 ##NonRW materials/energy amount (F9-0-1) df2nu_amount = pd.read_excel('C:\\Work\\Programming\\Practice\\NonRW_PF_PO.xlsx', 'PF_PO_S2nu') NonRW_amount_S2nu = df2nu_amount['NonRW_amount'].values NonRW_amount_S2nu = [x/1000 for x in NonRW_amount_S2nu] ##NonRW emissions (F9-0-2) emission_NonRW_S2nu = [x/division for x in emission_NonRW_S2nu] #create columns dfM_nu = pd.DataFrame.from_dict({'Year':Column1, 'F0-1 (t-C)': flat_list_nucleus, 'F1-0 (t-C)': decomp_emissions, #'F1a-2 (t-C)': PF_PO_S2nu, #'F1c-2 (t-C)': FP_PO_S2nu, 'F1-2 (t-C)': HWP_logged_S2nu, 'St-1 (t-C)':ForCstocks_S2nu[:,0], 'F2-3 (t-C)': HWP_S2nu_sum, 'F2-6 (t-C)': [x*2/3 for x in c_firewood_energy_S2nu], 'SM/E (t-C)': [x1-x2-x3 for (x1,x2,x3) in zip(HWP_S2nu_sum, [x*1/0.82 for x in OC_storage_S2nu], [x*1/3 for x in c_firewood_energy_S2nu])], 'F3-5 (t-C)':[x*1/0.82 for x in OC_storage_S2nu], 'F3-6 (t-C)': [x*1/3 for x in c_firewood_energy_S2nu], # 'F4-0 (t-C)':, 'St-4 (t-C)': TestDSM2nu.s, #'S-4-i (t-C)': TestDSM2nu.i, 'F4-5 (t-C)': TestDSM2nu.o, 'F5-6 (t-C)': TestDSM2nu.o, 'F5-7 (t-C)': C_LF_S2nu, 'F6-0-1 (t-C)': c_firewood_energy_S2nu, 'F6-0-2 (t-C)': TestDSM2nu.o, 'St-7 (t-C)': stocks_S2nu[:,0], 'F7-0 (t-C)': Landfill_decomp_PF_PO_S2nu, 'F8-0 (t-C)': OpProcessing_PF_PO_S2nu, 'S9-0 (t)': NonRW_amount_S2nu, 'F9-0 (t-C)': emission_NonRW_S2nu, }) ##S2pl ## define the input flow for the landfill (F5-7) OC_storage_S2pl = df2pl['Other_C_storage'].values OC_storage_S2pl = [x/division for x in OC_storage_S2pl] OC_storage_S2pl = [abs(number) for number in OC_storage_S2pl] C_LF_S2pl = [x*1/0.82 for x in OC_storage_S2pl] ## define the input flow from the logging/harvesting to wood materials/pellets processing (F2-3) HWP_S2pl = [x/division for x in df2pl['Input_PF'].values] HWP_S2pl_energy = [x*1/3 for x in c_firewood_energy_S2pl] HWP_S2pl_landfill = [x*1/0.82 for x in OC_storage_S2pl] HWP_S2pl_sum = [HWP_S2pl, HWP_S2pl_energy, HWP_S2pl_landfill] HWP_S2pl_sum = [sum(x) for x in zip(*HWP_S2pl_sum)] #in-use stocks (S-4) TestDSM2pl.s = [x/division for x in TestDSM2pl.s] #TestDSM2pl.i = [x/division for x in TestDSM2pl.i] # calculate C stocks in landfill (S-7) tf = 201 zero_matrix_stocks_S2pl = (tf,1) stocks_S2pl = np.zeros(zero_matrix_stocks_S2pl) i = 0 stocks_S2pl[0] = C_LF_S2pl[0] - Landfill_decomp_PF_PO_S2pl[0] while i < tf-1: stocks_S2pl[i+1] = np.array(C_LF_S2pl[i+1] - Landfill_decomp_PF_PO_S2pl[i+1] + stocks_S2pl[i]) i = i + 1 ## calculate aggregate flow of logged wood (F1-2) HWP_logged_S2pl = [x1+x2 for (x1,x2) in zip(HWP_S2pl_sum, [x*2/3 for x in c_firewood_energy_S2pl])] ## calculate the stocks in the forest (AGB + undecomposed residue) (S-1a+S-1c) tf = 201 zero_matrix_ForCstocks_S2pl = (tf,1) ForCstocks_S2pl = np.zeros(zero_matrix_ForCstocks_S2pl) i = 0 ForCstocks_S2pl[0] = initAGB - flat_list_plasma[0] - decomp_emissions[0] - HWP_logged_S2pl[0] while i < tf-1: ForCstocks_S2pl[i+1] = np.array(ForCstocks_S2pl[i] - flat_list_plasma[i+1] - decomp_emissions[i+1] - HWP_logged_S2pl[i+1]) i = i + 1 ##NonRW materials/energy amount (F9-0-1) df2pl_amount = pd.read_excel('C:\\Work\\Programming\\Practice\\NonRW_PF_PO.xlsx', 'PF_PO_S2pl') NonRW_amount_S2pl = df2pl_amount['NonRW_amount'].values NonRW_amount_S2pl = [x/1000 for x in NonRW_amount_S2pl] ##NonRW emissions (F9-0-2) emission_NonRW_S2pl = [x/division for x in emission_NonRW_S2pl] #create columns dfM_pl = pd.DataFrame.from_dict({'Year':Column1, 'F0-1 (t-C)': flat_list_plasma, 'F1-0 (t-C)': decomp_emissions, #'F1a-2 (t-C)': PF_PO_S2pl, #'F1c-2 (t-C)': FP_PO_S2pl, 'F1-2 (t-C)': HWP_logged_S2pl, 'St-1 (t-C)':ForCstocks_S2pl[:,0], 'F2-3 (t-C)': HWP_S2pl_sum, 'F2-6 (t-C)': [x*2/3 for x in c_firewood_energy_S2pl], 'SM/E (t-C)': [x1-x2-x3 for (x1,x2,x3) in zip(HWP_S2pl_sum, [x*1/0.82 for x in OC_storage_S2pl], [x*1/3 for x in c_firewood_energy_S2pl])], 'F3-5 (t-C)':[x*1/0.82 for x in OC_storage_S2pl], 'F3-6 (t-C)': [x*1/3 for x in c_firewood_energy_S2pl], # 'F4-0 (t-C)':, 'St-4 (t-C)': TestDSM2pl.s, #'S-4-i (t-C)': TestDSM2pl.i, 'F4-5 (t-C)': TestDSM2pl.o, 'F5-6 (t-C)': TestDSM2pl.o, 'F5-7 (t-C)': C_LF_S2pl, 'F6-0-1 (t-C)': c_firewood_energy_S2pl, 'F6-0-2 (t-C)': TestDSM2pl.o, 'St-7 (t-C)': stocks_S2pl[:,0], 'F7-0 (t-C)': Landfill_decomp_PF_PO_S2pl, 'F8-0 (t-C)': OpProcessing_PF_PO_S2pl, 'S9-0 (t)': NonRW_amount_S2pl, 'F9-0 (t-C)': emission_NonRW_S2pl, }) ##Enu ## define the input flow for the landfill (F5-7) OC_storage_Enu = dfEnu['Other_C_storage'].values OC_storage_Enu = [x/division for x in OC_storage_Enu] OC_storage_Enu = [abs(number) for number in OC_storage_Enu] C_LF_Enu = [x*1/0.82 for x in OC_storage_Enu] ## define the input flow from the logging/harvesting to wood materials/pellets processing (F2-3) HWP_Enu = [x/division for x in dfEnu['Wood_pellets'].values] HWP_Enu_energy = [x*1/3 for x in c_firewood_energy_Enu] HWP_Enu_landfill = [x*1/0.82 for x in OC_storage_Enu] HWP_Enu_sum = [HWP_Enu, HWP_Enu_energy, HWP_Enu_landfill] HWP_Enu_sum = [sum(x) for x in zip(*HWP_Enu_sum)] #in-use stocks (S-4) TestDSM3nu.s = [x/division for x in TestDSM3nu.s] #TestDSM3nu.i = [x/division for x in TestDSM3nu.i] # calculate C stocks in landfill (S-7) tf = 201 zero_matrix_stocks_Enu = (tf,1) stocks_Enu = np.zeros(zero_matrix_stocks_Enu) i = 0 stocks_Enu[0] = C_LF_Enu[0] - Landfill_decomp_PF_PO_Enu[0] while i < tf-1: stocks_Enu[i+1] = np.array(C_LF_Enu[i+1] - Landfill_decomp_PF_PO_Enu[i+1] + stocks_Enu[i]) i = i + 1 ## calculate aggregate flow of logged wood (F1-2) HWP_logged_Enu = [x1+x2 for (x1,x2) in zip(HWP_Enu_sum, [x*2/3 for x in c_firewood_energy_Enu])] ## calculate the stocks in the forest (AGB + undecomposed residue) (S-1a+S-1c) tf = 201 zero_matrix_ForCstocks_Enu = (tf,1) ForCstocks_Enu = np.zeros(zero_matrix_ForCstocks_Enu) i = 0 ForCstocks_Enu[0] = initAGB - flat_list_nucleus[0] - decomp_emissions[0] - HWP_logged_Enu[0] while i < tf-1: ForCstocks_Enu[i+1] = np.array(ForCstocks_Enu[i] - flat_list_nucleus[i+1] - decomp_emissions[i+1] - HWP_logged_Enu[i+1]) i = i + 1 ##NonRW materials/energy amount (F9-0-1) dfEnu_amount =
pd.read_excel('C:\\Work\\Programming\\Practice\\NonRW_PF_PO.xlsx', 'PF_PO_Enu')
pandas.read_excel
import pandas as pd import math import sys import numpy as np from process.validate_csv_data import check_yearly_records, check_range_records, mapping_id def create_csv_population_populationUnit(read_path, output_path, yearly_file, range_file): """ create population_人口.csv, populationUnit_人口单位.csv that will be loaded into database. Process data in "Population and Migration - Range.csv", "Population and Migration - Yearly.csv" files to "population_人口.csv", "populationUnit_人口单位.csv" Categories for population table is read from "Database Data" directory Categories are predefined and created. If categories are changed, population categories in Category.py should be changed first. :param read_path: path to directory contains "Population and Migration - Range.csv", "Population and Migration - Yearly.csv" :param output_path: path to directory stores "population_人口.csv", "populationUnit_人口单位.csv" :param yearly_file: file contains population yearly data :param range_file: file contains population range data """ yearly_df = pd.read_csv(read_path + "/" + yearly_file) range_df = pd.read_csv(read_path + "/" + range_file) yearly_df = yearly_df.dropna(axis=0, how='all') range_df = range_df.dropna(axis=0, how='all') yearly_df.drop_duplicates(inplace=True) range_df.drop_duplicates(inplace=True) # validate data print("Validate Population Yearly data") correct = check_yearly_records(yearly_df, range(1949, 2020)) print("Validate Population Range data") correct = check_range_records(range_df) if not correct: sys.exit("Correct records first.") else: print("Finish validate.") # create level1 and level2 category for column in ['Division1', 'Division2', 'Division3', 'Division4']: yearly_df[column] = yearly_df[column].where(yearly_df[column].notnull(), "") range_df[column] = range_df[column].where(range_df[column].notnull(), "") yearly_df['level1'] = yearly_df['Category'] yearly_df['level2'] = yearly_df['Division1'] + yearly_df['Division2'] + yearly_df['Division3'] + yearly_df['Division4'] range_df['level1'] = range_df['Category'] range_df['level2'] = range_df['Division1'] + range_df['Division2'] + range_df['Division3'] + range_df['Division4'] # add "Unit" column to the yearly_df # df.iloc[col][] count = 0 # count number of rows yearly_df["Unit"] = None # create a new empty column "Unit" unit_temp = [] for row in yearly_df['level1'].values.tolist(): if row == "人口 Population": unit_temp.append("人数 number of people") elif (row == "农转非 Agricultural to Non-Agricultural Hukou / Change of Residency Status") and (yearly_df['level2'][count] == "人数 number of people"): unit_temp.append("人数 number of people") elif (row == "农转非 Agricultural to Non-Agricultural Hukou / Change of Residency Status") and (yearly_df['level2'][count] == "户数 number of households"): unit_temp.append("户数 number of households") elif row == "出生人数 Number of Births": unit_temp.append("人数 number of people") elif row == "户数 number of households": unit_temp.append("户数 number of households") elif row == "死亡人数 Number of Deaths": unit_temp.append("人数 number of people") elif row == "死亡率 Death Rate (%)": unit_temp.append("百分比 percentage") elif row == "死亡率 Death Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "残疾人数 Disabled Population": unit_temp.append("人数 number of people") elif row == "流动人口/暂住人口 Migratory/Temporary Population": unit_temp.apend("人数 number of people") elif row == "自然出生率 Birth Rate (%)": unit_temp.append("百分比 percentage") elif row == "自然出生率 Birth Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "自然增长率 Natural Population Growth Rate (%)": unit_temp.append("百分比 percentage") elif row == "自然增长率 Natural Population Growth Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "迁入 Migration In": unit_temp.append("人数 number of people") else: # set default unit to number of people unit_temp.append("人数 number of people") yearly_df["Unit"] = unit_temp print("added unit column to population yearly table.") #yearly_df.to_csv(output_path + "test.csv",encoding='utf-8-sig') # add "Unit" column to the range_df count = 0 # count number of rows range_df["Unit"] = None # create a new empty column "Unit" unit_temp = [] for row in range_df['level1'].values.tolist(): if row == "人口 Population": unit_temp.append("人数 number of people") elif (row == "农转非 Agricultural to Non-Agricultural Hukou / Change of Residency Status") and (yearly_df['level2'][count] == "人数 number of people"): unit_temp.append("人数 number of people") elif (row == "农转非 Agricultural to Non-Agricultural Hukou / Change of Residency Status") and (yearly_df['level2'][count] == "户数 number of households"): unit_temp.append("户数 number of households") elif row == "出生人数 Number of Births": unit_temp.append("人数 number of people") elif row == "户数 number of households": unit_temp.append("户数 number of households") elif row == "死亡人数 Number of Deaths": unit_temp.append("人数 number of people") elif row == "死亡率 Death Rate (%)": unit_temp.append("百分比 percentage") elif row == "死亡率 Death Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "残疾人数 Disabled Population": unit_temp.append("人数 number of people") elif row == "流动人口/暂住人口 Migratory/Temporary Population": unit_temp.apend("人数 number of people") elif row == "自然出生率 Birth Rate (%)": unit_temp.append("百分比 percentage") elif row == "自然出生率 Birth Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "自然增长率 Natural Population Growth Rate (%)": unit_temp.append("百分比 percentage") elif row == "自然增长率 Natural Population Growth Rate (‰)": unit_temp.append("千分比 perthousand") elif row == "迁入 Migration In": unit_temp.append("人数 number of people") else: # set default unit to number of people unit_temp.append("人数 number of people") range_df["Unit"] = unit_temp print("added unit column to population range_df table.") #range_df.to_csv(output_path + "test.csv",encoding='utf-8-sig') # transfer yearly_df to dictionary yearly_data = {} for column in yearly_df.columns: yearly_data[column] = yearly_df[column].values.tolist() # transfer range_df to dictionary range_data = {} for column in range_df.columns: range_data[column] = range_df[column].values.tolist() # merge yearly_df and range_df into df_yearly_range yearly_and_range = { '村志代码 Gazetteer Code': [], 'level1': [], 'level2': [], 'Start Year': [], 'End Year': [], 'Data': [], 'Unit': []} print("process {} records in {} file".format(len(yearly_data['村志代码 Gazetteer Code']), yearly_file)) # select and store not null records at yearly for i in range(len(yearly_data['村志代码 Gazetteer Code'])): for year in range(1949, 2020): # skip null records if math.isnan(yearly_data[str(year)][i]): continue # store gazetteer code, categories, unit for key in ['村志代码 Gazetteer Code', 'level1', 'level2', 'Unit']: yearly_and_range[key].append(yearly_data[key][i]) # store data yearly_and_range['Data'].append(yearly_data[str(year)][i]) # store start year, end year yearly_and_range['Start Year'].append(year) yearly_and_range['End Year'].append(year) print("process {} records in {} file".format(len(range_data['村志代码 Gazetteer Code']), range_file)) # store range records for i in range(len(range_data['村志代码 Gazetteer Code'])): # store gazetteer code, categories, unit, start year, end year, data for key in ['村志代码 Gazetteer Code', 'level1', 'level2', 'Start Year', 'End Year', 'Data', 'Unit']: yearly_and_range[key].append(range_data[key][i]) # create df stores yearly and range data yearly_and_range_df = pd.DataFrame(yearly_and_range) # --- append category id --- # group by categories groupby_categories = yearly_and_range_df.groupby(['level1', 'level2']) population_df = pd.DataFrame() category_df = pd.read_csv("Database data/populationcategory_人口类.csv") for group, frame in groupby_categories: level1_category = group[0] level2_category = group[1] parent_id = math.nan if level1_category != "": category_id = mapping_id(level1_category, parent_id, category_df) parent_id = category_id frame['category_id'] = [category_id] * len(frame) if level2_category != "": category_id = mapping_id(level2_category, parent_id, category_df) parent_id = category_id frame['category_id'] = [category_id] * len(frame) population_df =
pd.concat([population_df, frame])
pandas.concat
import json from datetime import datetime as dt import math import pandas as pd from schemas.TableSchema import TableSchema from games.LAKELAND.LakelandExtractor import LakelandExtractor from realtime.ModelManager import ModelManager from schemas.GameSchema import GameSchema dump = pd.read_csv( "tests/test_data/LAKELAND_20200828_to_20200828 2/LAKELAND_20200828_to_20200828_d45ae97_dump.tsv", sep='\t') dump = dump.rename( columns={'sess_id':'session_id', 'client_secs_ms':'client_time_ms', 'persistent_sess_id':'persistent_session_id'}) proc = pd.read_csv("tests/test_data/LAKELAND_20200828_to_20200828/LAKELAND_20200828_to_20200828_d45ae97_proc.csv") # print(df.columns) model_name = 'PopAchVelocityModel' file_version = 'v18' schema = GameSchema("LAKELAND", "schemas/JSON/") model_mgr = ModelManager(game_name="LAKELAND") col_names = list(dump.columns) game_id = dump['app_id'][0] min_level = dump['level'].min() max_level = dump['level'].max() table = TableSchema(game_id=game_id, column_names=col_names, max_level=max_level, min_level=min_level) #table = TableSchema.FromCSV(dump) session_id_list = dump.session_id.unique() model = model_mgr.LoadModel(model_name) test_outfile = open('test_outfile.csv', 'w+') next_session_result = [] ids = [] session_result_list = [] def isfloat(x): try: a = float(x) except (TypeError, ValueError): return False else: return True def isint(x): try: a = float(x) b = int(a) except (TypeError, ValueError, OverflowError): return False else: return a == b def parse_nums(x): for k, v in x.items(): neg, p = False, "" if len(v.split('-')) == 2: neg = True if neg: p = v.split("-")[1] else: p = v if isint(p): x[k] = int(float(p)) if not neg else -1 * int(float(p)) elif isfloat(p): x[k] = float(p) if not neg else -1 * float(p) return x def get_time(x): return dt.strptime(x, '%Y-%m-%d %H:%M:%S') session_result_list = [] for session in session_id_list: slice = 300 next_session_result = [] dump_session_data = dump.loc[dump['session_id'] == session].to_dict('records') extractor = LakelandExtractor(session, table, schema, test_outfile) for i in range(0, len(dump_session_data), slice): next_slice = dump_session_data[(i-slice):i] # print(i, len(next_slice)) print(len(dump_session_data), i) for row in next_slice: row = list(row.values()) col = row[table.complex_data_index] complex_data_parsed = json.loads(col) if (col is not None) else {"event_custom": row[table.event_custom_index]} if "event_custom" not in complex_data_parsed.keys(): complex_data_parsed["event_custom"] = row[table.event_custom_index] row[table.client_time_index] = dt.strptime(row[table.client_time_index], '%Y-%m-%d %H:%M:%S') row[table.complex_data_index] = complex_data_parsed extractor.extractFromRow(row_with_complex_parsed=row, game_table=table) extractor.CalculateAggregateFeatures() all_features = dict(zip(extractor.getFeatureNames(game_table=table, game_schema=schema), extractor.GetCurrentFeatures())) all_features = parse_nums(all_features) result = model.Eval([all_features])[0] if result is None: break next_session_result.append(model.Eval([all_features])[0]) print("next_sess_result", next_session_result) next_session_result.insert(0, session) session_result_list.append(next_session_result) out_df =
pd.DataFrame(session_result_list)
pandas.DataFrame
#Rule - No content in brackets should be there in VOICE_ONLY column. ''' Example: To complete the Master Promissory Note (M.P.N) and entrance counseling, students must go to the Federal Student Aid website. ----- Incorrect To complete the Master Promissory Note and entrance counseling, students must go to the Federal Student Aid website. ------------- Correct. ''' def no_content_in_brackets(fle, fleName, target): import re import os import sys import json import openpyxl import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile configFile = 'https://s3.us-east.cloud-object-storage.appdomain.cloud/sharad-saurav-bucket/Configuration.xlsx' rule="No_content_in_brackets" config=pd.read_excel(configFile) newdf=config[config['RULE']==rule] to_check='' for index,row in newdf.iterrows(): to_check=row['TO_CHECK'] to_check=json.loads(to_check) files_to_apply=to_check['files_to_apply'] columns_to_apply=to_check['columns_to_apply'] regex = r'\[(.+)\]|\((.+)\)|\{(.+)\}' def check_content_in_bracket(string): if(re.search(regex,string)): return True else: return False if(files_to_apply=='ALL' or fleName in files_to_apply): data=[] df =
pd.read_excel(fle)
pandas.read_excel
import numpy as np import pandas as pd import pickle as pkl import proj_utils as pu from os.path import isdir, join from os import mkdir from copy import deepcopy from imblearn.over_sampling import RandomOverSampler, SMOTE from imblearn.under_sampling import RandomUnderSampler from sklearn import ensemble, feature_selection, model_selection, preprocessing, svm, metrics, neighbors from sklearn.utils.testing import ignore_warnings from sklearn.utils import shuffle from sklearn.exceptions import ConvergenceWarning seed = 13 def calc_scores(y_test, predicted): balanced = metrics.balanced_accuracy_score(y_test, predicted) chance = metrics.balanced_accuracy_score(y_test, predicted, adjusted=True) f1 = metrics.f1_score(y_test, predicted, average=None) return balanced, chance, f1 def save_scores(f1_scores, balanced_scores, chance_scores, class_labels): # Calculate average performance and tack it onto the end of the score list, save to nice df n_folds = len(balanced_scores) f1_array = np.asarray(f1_scores) if n_folds != f1_array.shape[0]: raise ValueError("Number of folds does not match") rownames = ['Fold %02d' % (n+1) for n in range(n_folds)] rownames.append('Average') f1_class_averages = np.mean(f1_array, axis=0) f1_data = np.vstack((f1_array, f1_class_averages)) f1_df = pd.DataFrame(f1_data, index=rownames, columns=class_labels) balanced_scores.append(np.mean(balanced_scores)) chance_scores.append(np.mean(chance_scores)) accuracy_data = np.asarray([balanced_scores, chance_scores]).T score_df = pd.DataFrame(data=accuracy_data, index=rownames, columns=['Balanced accuracy', 'Chance accuracy']) return f1_df, score_df def svmc(x_train, y_train, x_test, cleaned_features): clf = svm.LinearSVC(fit_intercept=False, random_state=seed) clf.fit(x_train, y_train) target_classes = clf.classes_ target_classes = [str(c) for c in target_classes] predicted = clf.predict(x_test) if len(target_classes) == 2: idx_label = ['coefficients'] else: idx_label = target_classes coef_df = pd.DataFrame(clf.coef_, index=idx_label, columns=cleaned_features) return predicted, coef_df, clf def extra_trees(x_train, y_train, x_test, cleaned_features): clf = ensemble.ExtraTreesClassifier(random_state=seed) clf.fit(x_train, y_train) predicted = clf.predict(x_test) feature_df = pd.DataFrame(columns=cleaned_features) feature_df.loc['feature_importances'] = clf.feature_importances_ return predicted, feature_df, clf def knn(x_train, y_train, x_test): clf = neighbors.KNeighborsClassifier() clf.fit(x_train, y_train) predicted = clf.predict(x_test) return predicted, clf def convert_hads_to_single_label(hads_array): hads_array = hads_array.astype(int) vartypes = ['anxiety', 'depression'] hads_single_label = [] for row in range(hads_array.shape[0]): str_combos = [] for col in range(hads_array.shape[1]): val = hads_array[row, col] if val == 0: str_convert = '%s_normal' % vartypes[col] elif val == 1: str_convert = '%s_borderline' % vartypes[col] elif val == 2: str_convert = '%s_abnormal' % vartypes[col] str_combos.append(str_convert) hads_combined = '%s-%s' % (str_combos[0], str_combos[1]) hads_single_label.append(hads_combined) return hads_single_label def feature_selection_with_covariates(x_train, x_test, y_train, continuous_indices, categorical_indices, feature_names): # Split data for continuous, categorical preprocessing x_train_cont, x_test_cont = x_train[:, continuous_indices], x_test[:, continuous_indices] x_train_cat, x_test_cat = x_train[:, categorical_indices], x_test[:, categorical_indices] # Standardization for continuous data preproc = preprocessing.StandardScaler().fit(x_train_cont) x_train_z = preproc.transform(x_train_cont) x_test_z = preproc.transform(x_test_cont) # Variance threshold for categorical data varthresh = feature_selection.VarianceThreshold(threshold=0).fit(x_train_cat) x_train_v = varthresh.transform(x_train_cat) x_test_v = varthresh.transform(x_test_cat) x_train_data = np.hstack((x_train_z, x_train_v)) x_test_data = np.hstack((x_test_z, x_test_v)) # Feature selection with extra trees extra_tree_fs = ensemble.ExtraTreesClassifier(random_state=seed) feature_model = feature_selection.SelectFromModel(extra_tree_fs, threshold="2*mean") # Transform train and test data with feature selection model x_train_feature_selected = feature_model.fit_transform(x_train_data, y_train) x_test_feature_selected = feature_model.transform(x_test_data) feature_indices = feature_model.get_support(indices=True) cleaned_features = [feature_names[i] for i in feature_indices] return x_train_feature_selected, x_test_feature_selected, cleaned_features def feature_selection_without_covariates(x_train, x_test, y_train, feature_names): # Standardization for continuous data preproc = preprocessing.StandardScaler().fit(x_train) x_train_z = preproc.transform(x_train) x_test_z = preproc.transform(x_test) # Feature selection with extra trees extra_tree_fs = ensemble.ExtraTreesClassifier(random_state=seed) feature_model = feature_selection.SelectFromModel(extra_tree_fs, threshold="2*mean") # Transform train and test data with feature selection model x_train_feature_selected = feature_model.fit_transform(x_train_z, y_train) x_test_feature_selected = feature_model.transform(x_test_z) feature_indices = feature_model.get_support(indices=True) cleaned_features = [feature_names[i] for i in feature_indices] return x_train_feature_selected, x_test_feature_selected, cleaned_features @ignore_warnings(category=ConvergenceWarning) def eeg_classify(eeg_data, target_data, target_type, model, outdir=None, resample='SMOTE'): feature_names = list(eeg_data) if "categorical_sex_male" in feature_names: cv_check = 'with_covariates' else: cv_check = 'without_covariates' if resample is 'no_resample': class NoResample: # for convenience @staticmethod def fit_resample(a, b): return a.values, np.asarray(b) resampler = NoResample() elif resample is 'ROS': resampler = RandomOverSampler(sampling_strategy='not majority', random_state=seed) elif resample is 'SMOTE': resampler = SMOTE(sampling_strategy='not majority', random_state=seed) elif resample is 'RUS': resampler = RandomUnderSampler(sampling_strategy='not minority', random_state=seed) x_res, y_res = resampler.fit_resample(eeg_data, target_data) if outdir is not None: model_outdir = join(outdir, '%s %s %s %s' % (target_type, model, cv_check, resample)) if not isdir(model_outdir): mkdir(model_outdir) print('%s: Running classification - %s %s %s %s' % (pu.ctime(), target_type, model, cv_check, resample)) # Apply k-fold splitter n_splits = 50 skf = model_selection.StratifiedKFold(n_splits=n_splits, random_state=seed) skf.get_n_splits(x_res, y_res) fold_count = 0 classifier_objects, classifier_coefficients, cm_dict, norm_cm_dict = {}, {}, {}, {} balanced_acc, chance_acc, f1_scores = [], [], [] for train_idx, test_idx in skf.split(x_res, y_res): fold_count += 1 print('%s: Running FOLD %d for %s' % (pu.ctime(), fold_count, target_type)) foldname = 'Fold %02d' % fold_count # Stratified k-fold splitting x_train, x_test = x_res[train_idx], x_res[test_idx] y_train, y_test = y_res[train_idx], y_res[test_idx] if "categorical_sex_male" in feature_names: continuous_features = [f for f in feature_names if 'categorical' not in f] continuous_indices = [eeg_data.columns.get_loc(cont) for cont in continuous_features] categorical_features = [f for f in feature_names if 'categorical' in f] categorical_indices = [eeg_data.columns.get_loc(cat) for cat in categorical_features] x_train_fs, x_test_fs, cleaned_features = feature_selection_with_covariates( x_train, x_test, y_train, continuous_indices, categorical_indices, feature_names) else: x_train_fs, x_test_fs, cleaned_features = feature_selection_without_covariates( x_train, x_test, y_train, feature_names) if model is 'svm': predicted, coef_df, clf = svmc(x_train_fs, y_train, x_test_fs, cleaned_features) classifier_coefficients[foldname] = coef_df elif model is 'extra_trees': predicted, feature_importances, clf = extra_trees(x_train_fs, y_train, x_test_fs, cleaned_features) classifier_coefficients[foldname] = feature_importances elif model is 'knn': predicted, clf = knn(x_train_fs, y_train, x_test_fs) classifier_objects[foldname] = clf # Calculating fold performance scores balanced, chance, f1 = calc_scores(y_test, predicted) balanced_acc.append(balanced) chance_acc.append(chance) f1_scores.append(f1) # Calculating fold confusion matrix cm = metrics.confusion_matrix(y_test, predicted) normalized_cm = cm.astype('float')/cm.sum(axis=1)[:, np.newaxis] cm_dict[foldname] = pd.DataFrame(cm, index=clf.classes_, columns=clf.classes_) norm_cm_dict[foldname] = pd.DataFrame(normalized_cm, index=clf.classes_, columns=clf.classes_) # Saving performance scores f1_df, score_df = save_scores(f1_scores, balanced_acc, chance_acc, class_labels=clf.classes_) scores_dict = {'accuracy scores': score_df, 'f1 scores': f1_df} try: pu.save_xls(scores_dict, join(model_outdir, 'performance.xlsx')) # Saving coefficients if bool(classifier_coefficients): pu.save_xls(classifier_coefficients, join(model_outdir, 'coefficients.xlsx')) pu.save_xls(cm_dict, join(model_outdir, 'confusion_matrices.xlsx')) pu.save_xls(norm_cm_dict, join(model_outdir, 'confusion_matrices_normalized.xlsx')) # Saving classifier object with open(join(model_outdir, 'classifier_object.pkl'), 'wb') as file: pkl.dump(classifier_objects, file) except Exception: pass return scores_dict def side_classification_drop_asym(ml_data, behavior_data, output_dir, models=None): print('%s: Running classification on tinnitus side, dropping asymmetrical subjects' % pu.ctime()) ml_copy = deepcopy(ml_data) if models is None: models = ['extra_trees'] resample_methods = [None, 'over', 'under'] t = pu.convert_tin_to_str(behavior_data['tinnitus_side'].values.astype(float), 'tinnitus_side') t_df =
pd.DataFrame(t, index=ml_copy.index)
pandas.DataFrame
""" Filter and combine various peptide/MHC datasets to derive a composite training set, optionally including eluted peptides identified by mass-spec. """ import sys import argparse import os import json import collections from six.moves import StringIO import pandas from mhcflurry.common import normalize_allele_name def normalize_allele_name_or_return_unknown(s): return normalize_allele_name( s, raise_on_error=False, default_value="UNKNOWN") parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "--ms-item", nargs="+", action="append", metavar="PMID FILE, ... FILE", default=[], help="Mass spec item to curate: PMID and list of files") parser.add_argument( "--expression-item", nargs="+", action="append", metavar="LABEL FILE, ... FILE", default=[], help="Expression data to curate: dataset label and list of files") parser.add_argument( "--ms-out", metavar="OUT.csv", help="Out file path (MS data)") parser.add_argument( "--expression-out", metavar="OUT.csv", help="Out file path (RNA-seq expression)") parser.add_argument( "--expression-metadata-out", metavar="OUT.csv", help="Out file path for expression metadata, i.e. which samples used") parser.add_argument( "--debug", action="store_true", default=False, help="Leave user in pdb if PMID is unsupported") PMID_HANDLERS = {} EXPRESSION_HANDLERS = {} def load(filenames, **kwargs): result = {} for filename in filenames: if filename.endswith(".csv"): result[filename] = pandas.read_csv(filename, **kwargs) elif filename.endswith(".xlsx") or filename.endswith(".xls"): result[filename] = pandas.read_excel(filename, **kwargs) else: result[filename] = filename return result def debug(*filenames): loaded = load(filenames) import ipdb ipdb.set_trace() def handle_pmid_27600516(filename): """Gloger, ..., Neri Cancer Immunol Immunother 2016 [PMID 27600516]""" df = pandas.read_csv(filename) sample_to_peptides = {} current_sample = None for peptide in df.peptide: if peptide.startswith("#"): current_sample = peptide[1:] sample_to_peptides[current_sample] = [] else: assert current_sample is not None sample_to_peptides[current_sample].append(peptide.strip().upper()) rows = [] for (sample, peptides) in sample_to_peptides.items(): for peptide in sorted(set(peptides)): rows.append([sample, peptide]) result_df = pandas.DataFrame(rows, columns=["sample_id", "peptide"]) result_df["sample_type"] = "melanoma_cell_line" result_df["cell_line"] = result_df.sample_id result_df["mhc_class"] = "I" result_df["pulldown_antibody"] = "W6/32" result_df["format"] = "multiallelic" result_df["hla"] = result_df.sample_id.map({ "FM-82": "HLA-A*02:01 HLA-A*01:01 HLA-B*08:01 HLA-B*15:01 HLA-C*03:04 HLA-C*07:01", "FM-93/2": "HLA-A*02:01 HLA-A*26:01 HLA-B*40:01 HLA-B*44:02 HLA-C*03:04 HLA-C*05:01", "Mel-624": "HLA-A*02:01 HLA-A*03:01 HLA-B*07:02 HLA-B*14:01 HLA-C*07:02 HLA-C*08:02", "MeWo": "HLA-A*02:01 HLA-A*26:01 HLA-B*14:02 HLA-B*38:01 HLA-C*08:02 HLA-C*12:03", "SK-Mel-5": "HLA-A*02:01 HLA-A*11:01 HLA-B*40:01 HLA-C*03:03", }) return result_df def handle_pmid_23481700(filename): """Hassan, ..., <NAME> Mol Cell Proteomics 2015 [PMID 23481700]""" df = pandas.read_excel(filename, skiprows=10) assert df["Peptide sequence"].iloc[0] == "TPSLVKSTSQL" assert df["Peptide sequence"].iloc[-1] == "LPHSVNSKL" hla = { "JY": "HLA-A*02:01 HLA-B*07:02 HLA-C*07:02", "HHC": "HLA-A*02:01 HLA-B*07:02 HLA-B*44:02 HLA-C*05:01 HLA-C*07:02", } results = [] for sample_id in ["JY", "HHC"]: hits_df = df.loc[ df["Int %s" % sample_id].map( lambda x: {"n.q.": 0, "n.q": 0}.get(x, x)).astype(float) > 0 ] result_df = pandas.DataFrame({ "peptide": hits_df["Peptide sequence"].dropna().values, }) result_df["sample_id"] = sample_id result_df["cell_line"] = "B-LCL-" + sample_id result_df["hla"] = hla[sample_id] result_df["sample_type"] = "B-LCL" result_df["mhc_class"] = "I" result_df["format"] = "multiallelic" result_df["pulldown_antibody"] = "W6/32" results.append(result_df) result_df = pandas.concat(results, ignore_index=True) # Rename samples to avoid a collision with the JY sample in PMID 25576301. result_df.sample_id = result_df.sample_id.map({ "JY": "JY.2015", "HHC": "HHC.2015", }) return result_df def handle_pmid_24616531(filename): """Mommen, ..., Heck PNAS 2014 [PMID 24616531]""" df = pandas.read_excel(filename, sheet_name="EThcD") peptides = df.Sequence.values assert peptides[0] == "APFLRIAF" assert peptides[-1] == "WRQAGLSYIRYSQI" result_df = pandas.DataFrame({ "peptide": peptides, }) result_df["sample_id"] = "24616531" result_df["sample_type"] = "B-LCL" result_df["cell_line"] = "GR" result_df["pulldown_antibody"] = "W6/32" # Note: this publication lists hla as "HLA-A*01,-03, B*07,-27, and -C*02,-07" # we are guessing the exact 4 digit alleles based on this. result_df["hla"] = "HLA-A*01:01 HLA-A*03:01 HLA-B*07:02 HLA-B*27:05 HLA-C*02:02 HLA-C*07:01" result_df["mhc_class"] = "I" result_df["format"] = "multiallelic" return result_df def handle_pmid_25576301(filename): """Bassani-Sternberg, ..., Mann Mol Cell Proteomics 2015 [PMID 25576301]""" df = pandas.read_excel(filename, sheet_name="Peptides") peptides = df.Sequence.values assert peptides[0] == "AAAAAAAQSVY" assert peptides[-1] == "YYYNGKAVY" column_to_sample = {} for s in [c for c in df if c.startswith("Intensity ")]: assert s[-2] == "-" column_to_sample[s] = s.replace("Intensity ", "")[:-2].strip() intensity_columns = list(column_to_sample) rows = [] for _, row in df.iterrows(): x1 = row[intensity_columns] x2 = x1[x1 > 0].index.map(column_to_sample).value_counts() x3 = x2[x2 >= 2] # require at least two replicates for each peptide for sample in x3.index: rows.append((row.Sequence, sample)) result_df = pandas.DataFrame(rows, columns=["peptide", "sample_id"]) result_df["pulldown_antibody"] = "W6/32" result_df["mhc_class"] = "I" result_df["format"] = "multiallelic" allele_map = { 'Fib': "HLA-A*03:01 HLA-A*23:01 HLA-B*08:01 HLA-B*15:18 HLA-C*07:02 HLA-C*07:04", 'HCC1937': "HLA-A*23:01 HLA-A*24:02 HLA-B*07:02 HLA-B*40:01 HLA-C*03:04 HLA-C*07:02", 'SupB15WT': None, # four digit alleles unknown, will drop sample 'SupB15RT': None, 'HCT116': "HLA-A*01:01 HLA-A*02:01 HLA-B*45:01 HLA-B*18:01 HLA-C*05:01 HLA-C*07:01", # Homozygous at HLA-A: 'HCC1143': "HLA-A*31:01 HLA-A*31:01 HLA-B*35:08 HLA-B*37:01 HLA-C*04:01 HLA-C*06:02", # Homozygous everywhere: 'JY': "HLA-A*02:01 HLA-A*02:01 HLA-B*07:02 HLA-B*07:02 HLA-C*07:02 HLA-C*07:02", } sample_type = { 'Fib': "fibroblast", 'HCC1937': "basal like breast cancer", 'SupB15WT': None, 'SupB15RT': None, 'HCT116': "colon carcinoma", 'HCC1143': "basal like breast cancer", 'JY': "B-cell", } cell_line = { 'Fib': None, 'HCC1937': "HCC1937", 'SupB15WT': None, 'SupB15RT': None, 'HCT116': "HCT116", 'HCC1143': "HCC1143", 'JY': "JY", } result_df["hla"] = result_df.sample_id.map(allele_map) print("Entries before dropping samples with unknown alleles", len(result_df)) result_df = result_df.loc[~result_df.hla.isnull()] print("Entries after dropping samples with unknown alleles", len(result_df)) result_df["sample_type"] = result_df.sample_id.map(sample_type) result_df["cell_line"] = result_df.sample_id.map(cell_line) print(result_df.head(3)) return result_df def handle_pmid_26992070(*filenames): """Ritz, ..., Fugmann Proteomics 2016 [PMID 26992070]""" # Although this publication seems to suggest that HEK293 are C*07:02 # (figure 3B), in a subsequent publication [PMID 28834231] this group # gives the HEK293 HLA type as HLA‐A*03:01, HLA‐B*07:02, and HLA‐C*07:01. # We are therefore using the HLA‐C*07:01 (i.e. the latter) typing results # here. allele_text = """ Cell line HLA-A 1 HLA-A 2 HLA-B 1 HLA-B 2 HLA-C 1 HLA-C 2 HEK293 03:01 03:01 07:02 07:02 07:01 07:01 HL-60 01:01 01:01 57:01 57:01 06:02 06:02 RPMI8226 30:01 68:02 15:03 15:10 02:10 03:04 MAVER-1 24:02 26:01 38:01 44:02 05:01 12:03 THP-1 02:01 24:02 15:11 35:01 03:03 03:03 """ allele_info = pandas.read_csv( StringIO(allele_text), sep="\t", index_col=0) allele_info.index = allele_info.index.str.strip() for gene in ["A", "B", "C"]: for num in ["1", "2"]: allele_info[ "HLA-%s %s" % (gene, num) ] = "HLA-" + gene + "*" + allele_info["HLA-%s %s" % (gene, num)] cell_line_to_allele = allele_info.apply(" ".join, axis=1) sheets = {} for f in filenames: if f.endswith(".xlsx"): d = pandas.read_excel(f, sheet_name=None, skiprows=1) sheets.update(d) dfs = [] for cell_line in cell_line_to_allele.index: # Using data from DeepQuanTR, which appears to be a consensus between # two other methods used. sheet = sheets[cell_line + "_DeepQuanTR"] replicated = sheet.loc[ sheet[[c for c in sheet if "Sample" in c]].fillna(0).sum(1) > 1 ] df = pandas.DataFrame({ 'peptide': replicated.Sequence.values }) df["sample_id"] = cell_line df["hla"] = cell_line_to_allele.get(cell_line) dfs.append(df) result_df = pandas.concat(dfs, ignore_index=True) result_df["pulldown_antibody"] = "W6/32" result_df["cell_line"] = result_df["sample_id"] result_df["sample_type"] = result_df.sample_id.map({ "HEK293": "hek", "HL-60": "neutrophil", "RPMI8226": "b-cell", "MAVER-1": "b-LCL", "THP-1": "monocyte", }) result_df["mhc_class"] = "I" result_df["format"] = "multiallelic" return result_df def handle_pmid_27412690(filename): """Shraibman, ..., Admon Mol Cell Proteomics 2016 [PMID 27412690]""" hla_types = { "U-87": "HLA-A*02:01 HLA-B*44:02 HLA-C*05:01", "T98G": "HLA-A*02:01 HLA-B*39:06 HLA-C*07:02", "LNT-229": "HLA-A*03:01 HLA-B*35:01 HLA-C*04:01", } sample_id_to_cell_line = { "U-87": "U-87", "T98G": "T98G", "LNT-229": "LNT-229", "U-87+DAC": "U-87", "T98G+DAC": "T98G", "LNT-229+DAC": "LNT-229", } df = pandas.read_excel(filename) assert df.Sequence.iloc[0] == "AAAAAAGSGTPR" intensity_col_to_sample_id = {} for col in df: if col.startswith("Intensity "): sample_id = col.split()[1] assert sample_id in sample_id_to_cell_line, (col, sample_id) intensity_col_to_sample_id[col] = sample_id dfs = [] for (sample_id, cell_line) in sample_id_to_cell_line.items(): intensity_cols = [ c for (c, v) in intensity_col_to_sample_id.items() if v == sample_id ] hits_df = df.loc[ (df[intensity_cols] > 0).sum(1) > 1 ] result_df = pandas.DataFrame({ "peptide": hits_df.Sequence.values, }) result_df["sample_id"] = sample_id result_df["cell_line"] = cell_line result_df["hla"] = hla_types[cell_line] dfs.append(result_df) result_df = pandas.concat(dfs, ignore_index=True) result_df["sample_type"] = "glioblastoma" result_df["pulldown_antibody"] = "W6/32" result_df["mhc_class"] = "I" result_df["format"] = "multiallelic" return result_df def handle_pmid_28832583(*filenames): """Bassani-Sternberg, ..., Gfeller PLOS Comp. Bio. 2017 [PMID 28832583]""" # This work also reanalyzes data from # Pearson, ..., <NAME> Invest 2016 [PMID 27841757] (filename_dataset1, filename_dataset2) = sorted(filenames) dataset1 = pandas.read_csv(filename_dataset1, sep="\t") dataset2 =
pandas.read_csv(filename_dataset2, sep="\t")
pandas.read_csv
from __future__ import absolute_import, division, print_function, unicode_literals import pandas as pd import tensorflow as tf from keras.models import Sequential from keras.optimizers import SGD, RMSprop, Adam from keras.layers import Dense, Activation, Dropout, BatchNormalization import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split # imputer for missing data imputer = Imputer(missing_values=np.nan, strategy='mean') # load training data from csv file in the directory train_test_data = pd.read_csv('train.csv', index_col=0) #read data train_test_data['is_dev'] = 0 #add an extra column to specify that this is not #for dev. This is important because later on, we will concatenate all the data, #and process it and we want all the data to be processed the same way. dev_data = pd.read_csv('test.csv', index_col=0) #read "dev" data dev_data['is_dev'] = 1 #add an extra column that this is dev data #concatenate both dataframes all_data =
pd.concat((train_test_data, dev_data), axis=0)
pandas.concat
# -*- coding: utf-8 -*- # # Copyright (c) 2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). ''' Created on 30 jun 2016 @author: a001985 ''' import codecs import re import os import datetime import time import sys try: import pandas as pd except: pass odv_directory_path = os.path.dirname(os.path.abspath(__file__)) # from .. import mappinglib as mapping from sharkpylib import mappinglib as mapping """ =============================================================================== =============================================================================== """ class SpreadsheetFile(): """ Class to hande vocabulary things in ODV spreadsheet file """ #========================================================================== def __init__(self, file_path=None): self.file_path = file_path def get_edited_flags(self, qf_prefix='QF_', qf_suffix=''): def is_header_row(row): if row.startswith('Cruise\t'): return True return False def is_data_row(row): if any([is_header_row(row), is_comment_row(row)]): return False return True def row_has_metadata(row): if not is_data_row(row): return False if row.startswith('\t'): return False return True def is_comment_row(row): if row.startswith('//'): return True return False def is_flag_row(row): if 'EDITFLAGS' in row: return True return False def get_key(cdata): time_object = datetime.datetime.strptime(cdata[time_par], time_format) if data_type == 'Profiles': return (time_object, cdata[header[7]]) else: return (time_object, time_object) time_format = '%Y-%m-%dT%H:%M:%S' time_par = 'yyyy-mm-ddThh:mm:ss.sss' data = {} with codecs.open(self.file_path) as fid: header = None metadata = None line_data = None current_data = {} key = None data_type = '' for i, line in enumerate(fid): if '<DataType>' in line: data_type = line.split('<')[1].split('>')[1] continue split_line = [item.strip() for item in line.split('\t')] if is_header_row(line): header = split_line continue if row_has_metadata(line): metadata = split_line[:7] if is_data_row(line): line_data = metadata + split_line[7:] if is_comment_row(line): metadata = None line_data = None if line_data: current_data = {} h0 = '' for h, d in zip(header, line_data): h1 = h # if h == 'QF': # h1 = qf_prefix + h0 + qf_suffix # else: # h0 = h current_data[h1] = d # current_data = dict(zip(header, line_data)) # key = ';'.join([current_data['yyyy-mm-ddThh:mm:ss.sss'], # current_data['Longitude [degrees_east]'], # current_data['Latitude [degrees_north]'], # current_data[header[7]]]) key = get_key(current_data) data.setdefault(key, {}) for col, value in current_data.items(): data[key][col] = value if is_flag_row(line): data[key].setdefault('flags', {}) all_info = line.split('\t')[3] par = all_info.split('@')[0].strip() flag = all_info.split('->')[-1].split('<')[0].strip() data[key]['flags'][par] = flag for key in list(data.keys()): if not data[key].get('flags'): data.pop(key) fdata = {} for key, value in data.items(): d = key[0] for par, f in value['flags'].items(): fdata.setdefault(par, {}) fdata[par].setdefault(f, []) fdata[par][f].append(key) return fdata #========================================================================== def set_negative_value_to_zero(self, output_file_path): re_string = '\t-.+?\t' fid = codecs.open(self.file_path, 'r') fid_out = codecs.open(output_file_path, 'w') for line in fid: fid_out.write(re.sub(re_string, u'\t0\t', line)) fid.close() fid_out.close() #========================================================================== def get_local_cdi_list(self, print_to_file='', show_process_every=100000): """ Created: 20180523 Updated: 20180613 Returns a list of all local_cdi_id:s found in the spreadseet file """ t0 = time.time() cdi_set = set() print('='*50) print(self.file_path) print('-'*50) with codecs.open(self.file_path) as fid: for k, line in enumerate(fid): if show_process_every: if not k%show_process_every: print('Working on line {} as time {}'.format(k, time.time()-t0)) if line.startswith('//'): continue elif line.startswith('Cruise'): continue else: split_line = line.split('\t') if split_line[0].strip(): # added by MW 20180613 cdi_set.add(split_line[6]) if show_process_every: print('Number of lines: {}'.format(k)) print('Number of local_cdi_id is: {}'.format(len(cdi_set))) sorted_cdi_set = sorted(cdi_set) if print_to_file: with codecs.open(print_to_file, 'w') as fid: fid.write('\n'.join(sorted_cdi_set)) return sorted_cdi_set #========================================================================== def get_odv_station_count(self, show_process_every=100000): """ Created: 20180613 Updated: Returns the number of stations acording to odv. A station is identified as a non comment (or Cruise) row having value in first column (Cruise). """ t0 = time.time() nr_stations = 0 print('='*50) print(self.file_path) print('-'*50) with codecs.open(self.file_path) as fid: for k, line in enumerate(fid): if show_process_every: if not k%show_process_every: print('Working on line {} as time {}'.format(k, time.time()-t0)) if line.startswith('//'): continue elif line.startswith('Cruise'): continue else: split_line = line.split('\t') if split_line[0].strip(): nr_stations += 1 if show_process_every: print('Number of lines: {}'.format(k)) return nr_stations #========================================================================== def get_unique_list(self, col, print_to_file='', show_process_every=100000, **kwargs): """ Created: 20180605 Updated: 20181010 Returns a list of all unique values of the given column in the spreadseet file """ t0 = time.time() data_set = set() if show_process_every: print('='*50) print(self.file_path) print('-'*50) with codecs.open(self.file_path, encoding=kwargs.get('encoding', 'utf8')) as fid: for k, line in enumerate(fid): if show_process_every: if not k%show_process_every: print('Working on line {} as time {}'.format(k, time.time()-t0)) if line.startswith('//'): continue elif line.startswith('Cruise'): header = line.split('\t') if col == 'id': continue else: if col not in header: print('Column "{}" not in header!'.format(col)) return False index = header.index(col) continue else: split_line = line.split('\t') if kwargs.get('metadata') and not split_line[0]: continue if col == 'id': # Combine several columns data_set_list = [] time_string = split_line[header.index('yyyy-mm-ddThh:mm:ss.sss')] if not time_string.strip(): continue try: time_object = get_datetime_object(time_string) except: print(self.file_path) print('k', k) print(time_string) data_set_list.append(time_object.strftime('%Y-%m-%d')) if kwargs.get('include_time', True): data_set_list.append(time_object.strftime('%H:%M')) else: data_set_list.append('') # print(header.index('Latitude [degrees_north]')) # print(split_line[header.index('Latitude [degrees_north]')]) # print(split_line) lat = str(mapping.to_decmin(mapping.sdate_from_odv_time_string(split_line[header.index('Latitude [degrees_north]')])))[:kwargs.get('id_pos_precision', 6)] lon = str(mapping.to_decmin(mapping.sdate_from_odv_time_string(split_line[header.index('Longitude [degrees_east]')])))[:kwargs.get('id_pos_precision', 6)] # lat = geography.decdeg_to_decmin(split_line[header.index('Latitude [degrees_north]')], string_type=True)[:kwargs.get('id_pos_precision', 6)] # lon = geography.decdeg_to_decmin(split_line[header.index('Longitude [degrees_east]')], string_type=True)[:kwargs.get('id_pos_precision', 6)] data_set_list.append(lat) data_set_list.append(lon) data_set.add('_'.join(data_set_list)) else: if not split_line[index]: print(k) data_set.add(split_line[index]) if show_process_every: print('Number of lines: {}'.format(k)) print('Number of "{}" is: {}'.format(col, len(data_set))) sorted_data_set = sorted(data_set) if print_to_file: with codecs.open(print_to_file, 'w') as fid: fid.write('\n'.join(sorted_data_set)) return sorted_data_set # ========================================================================== def get_vocab_list(self, vocab='P01', sort=False, save_file_path=None, **kwargs): """ Function to create P01 list from txt-files. """ vocab_code_list = [] with codecs.open(self.file_path, 'r', encoding=kwargs.get('encoding', 'utf8')) as fid: for line in fid: if line.startswith(u'Cruise'): break try: re_string = '(?<={}::)[ ]*[A-Z0-9]+'.format(vocab.upper()) vocab_string = re.findall(re_string, line)[0].strip() vocab_code = vocab_string.split(u':')[-1] if not vocab_code: print(line) vocab_code_list.append(vocab_code) except: pass vocab_code_list = list(set(vocab_code_list)) if sort: vocab_code_list = sorted(vocab_code_list) if save_file_path: with codecs.open(save_file_path, 'w') as fid: fid.write('\n'.join(vocab_code_list)) return vocab_code_list #========================================================================== def create_row_data(self, print_to_file='', show_process_every=1000, **kwargs): """ Created: 20180831 Updated: Extracts data in a row data format. """ t0 = time.time() metadata_dict = {} data_dict = {} data = [] current_metadata_list = [] current_metadata_dict = {} keep_pars = kwargs.get('keep_as_id', []) if type(keep_pars) != list: keep_pars = [keep_pars] vocab_dict = {} with codecs.open(self.file_path, encoding='utf8') as fid: for k, line in enumerate(fid): if show_process_every: if not k%show_process_every: print('Working on line {} as time {}'.format(k, time.time()-t0)) if line.startswith('//<MetaVariable>'): par = line.split('="')[1].split('"')[0] metadata_dict[par] = False metadata_dict['yyyy-mm-ddThh:mm:ss.sss'] = False elif line.startswith('//<DataVariable>'): par = line.split('="')[1].split('"')[0] # Check primary variable if 'is_primary_variable="T"' in line: metadata_dict[par] = False else: data_dict[par] = False vocab_dict[par] = get_vocabs_from_string(line) # nr_metadata_rows += 1 elif line.startswith('//'): continue elif line.startswith('Cruise'): header = line.split('\t') # header_dict = dict((item, k) for k, item in enumerate(header)) # Find columns for data and metadata # for key in metadata_dict.keys(): # metadata_dict[key] = header_dict[key] # for key in data_dict.keys(): # data_dict[key] = header_dict[key] # Check which vocabularies to add. Needs to be done after Data variable check vocab_set = set() for par in vocab_dict: vocab_set.update(vocab_dict[par].keys()) vocab_list = sorted(vocab_set) else: split_line = line.split('\t') line_dict = dict(zip(header, split_line)) # Save metadata line if split_line[3]: # time for item in metadata_dict: current_metadata_dict[item] = line_dict[item] else: for item in metadata_dict: line_dict[item] = current_metadata_dict[item] # print(split_line) # # Update metadata. If metadata variable is missing the previos metadata is used # for item in metadata_dict: # print(item) # if not line_dict[item]: # line_dict[item] = current_metadata_dict[item] # else: # current_metadata_dict[item] = line_dict[item] # # Add keep parameters. They will be unique for each row # for par in keep_pars: # data_line.append(line_dict[par]) # if split_line[metadata_dict['Station']]: # # First row for station. Add information to be used on the rest of the lines # current_metadata_list = split_line[:len(metadata_dict)] # Add data for par in sorted(data_dict): data_line = [] # Add metadata for item in header: # To get the right order if item in metadata_dict: data_line.append(line_dict[item]) # Add data from line # # Metadata first # data_line = current_metadata_list[:] # Then vocabulary for voc in vocab_list: data_line.append(vocab_dict.get(par, {}).get(voc, '')) # Then data data_line.append(par) # Parameter data_line.append(split_line[data_dict[par]]) # Value data_line.append(split_line[data_dict[par]+1]) # QF # Add line to data # print(len(data_line)) data.append(data_line) # Create dataframe data_header = [item for item in header if item in metadata_dict] + vocab_list + ['parameter', 'value', 'qflag'] # print(len(data_header), len(data[0])) self.row_df = pd.DataFrame(data, columns=data_header) # Map header mapping_file_path = os.path.join(odv_directory_path, 'odv_parameter_mapping.txt') parameter_mapping = mapping.ParameterMapping(mapping_file_path, from_col='ODV', to_col='SMHI') new_header = [parameter_mapping.get_mapping(item) for item in self.row_df.columns] self.row_df.columns = new_header # for par in sorted(self.row_df.columns): # print(par) # Refine data for key in kwargs: if key in self.row_df.columns: value = kwargs[key] if type(value) == str: value = [value] self.row_df = self.row_df.loc[self.row_df[key].isin(value), :] self.data_dict = data_dict self.metadata_dict = metadata_dict # Add columns self.row_df['SDATE'] = self.row_df['odv_time_string'].apply(mapping.sdate_from_odv_time_string) self.row_df['STIME'] = self.row_df['odv_time_string'].apply(mapping.stime_from_odv_time_string) # Convert lat lon self.row_df['LATIT'] = self.row_df['LATIT'].apply(mapping.to_decmin) self.row_df['LONGI'] = self.row_df['LONGI'].apply(mapping.to_decmin) # Add MYEAR if kwargs.get('add_myear'): self.row_df['MYEAR'] = self.row_df['SDATE'].apply(lambda x: int(x[:4])) # Add source column self.row_df['source'] = kwargs.get('source', kwargs.get('source_column', 'odv')) self._add_id_column() if print_to_file: kw = {'sep': '\t', 'encoding': 'cp1252', 'index': False} for k in kw: if k in kwargs: kw[k] = kwargs[k] self.row_df.to_csv(print_to_file, **kw) #========================================================================== def _add_id_column(self): self.row_df['id'] = self.row_df['SDATE'].astype(str) + '_' + \ self.row_df['STIME'].astype(str) + '_' + \ self.row_df['LATIT'].apply(lambda x: x[:7]).astype(str) + '_' + \ self.row_df['LONGI'].apply(lambda x: x[:7]).astype(str) # astype(str) ??? """ =============================================================================== =============================================================================== """ class SpreadsheetFileColumns(): """ Class takes an ODV spreadsheet file, removes all comment lines and reads as pandas dataframe. OBS! Make sure NOT to "Use compact output". """ # ========================================================================== def __init__(self, file_path=None, **kwargs): self.file_path = file_path self._load_data() self._add_columns(**kwargs) def _load_data(self): if type(self.file_path) == list: self._load_several_files() return data_lines = [] print('utf8') with codecs.open(self.file_path, encoding='utf8') as fid: for line in fid: if line.startswith('//'): continue else: split_line = line.strip().split('\t') if line.startswith('Cruise'): # Header header = split_line else: # Data line data_lines.append(split_line) self.df = pd.DataFrame(data_lines, columns=header) def _load_several_files(self): dfs = {} headers = {} for file_path in self.file_path: data_lines = [] with codecs.open(file_path, encoding='utf8') as fid: for line in fid: if line.startswith('//'): continue else: split_line = line.strip().split('\t') if line.startswith('Cruise'): # Header header = split_line new_header = [] latest = None for h in header: if h == 'QV:SEADATANET': new_header.append(' - '.join([latest, h])) else: latest = h new_header.append(h) headers[file_path] = new_header else: # Data line data_lines.append(split_line) dfs[file_path] =
pd.DataFrame(data_lines, columns=new_header)
pandas.DataFrame
import pandas as pd from functools import reduce from fooltrader.contract.files_contract import * import re import json class agg_future_dayk(object): funcs={} def __init__(self): self.funcs['shfeh']=self.getShfeHisData self.funcs['shfec']=self.getShfeCurrentYearData self.funcs['ineh']=self.getIneHisData self.funcs['inec']=self.getIneCurrentYearData self.funcs['dceh']=self.getDceHisData self.funcs['dcec']=self.getDceCurrentYearData self.funcs['czceh']=self.getCzceHisData self.funcs['czcec']=self.getCzceCurrentYearData self.funcs['cffexh']=self.getCffexHisData self.funcs['cffexc']=self.getCffexCurrentYearData def getCurrentYearAllData(self,exchange=None): if exchange is None: exchanges=['cffex','dce','czce','shfe',"ine"] pds = list(map(lambda x:self.getCurrentYearData(x),exchanges)) finalpd = pd.concat(pds) else: finalpd= pd.concat([self.getCurrentYearData(exchange)]) for i in ['volume','inventory']: finalpd[i]=finalpd[i].apply(lambda x:pd.to_numeric(str(x).replace(",", ""))) finalpd.set_index(['date','fproduct','symbol'], inplace=True) finalpd.sort_index(inplace=True) return finalpd def getAllData(self,exchange=None): if exchange is None: exchanges=['cffex','dce','czce','shfe',"ine"] pds = list(map(lambda x:self.getHisData(x),exchanges))+list(map(lambda x:self.getCurrentYearData(x),exchanges)) finalpd = pd.concat(pds) else: finalpd= pd.concat([self.getHisData(exchange),self.getCurrentYearData(exchange)]) for i in ['volume','inventory']: finalpd[i]=finalpd[i].apply(lambda x:pd.to_numeric(str(x).replace(",", ""))) finalpd.set_index(['date','fproduct','symbol'], inplace=True) finalpd.sort_index(inplace=True) return finalpd def getHisData(self,exchange): return self.funcs[exchange+'h']() def getCurrentYearData(self,exchange): return self.funcs[exchange+'c']() def getShfeHisData(self): pattern = re.compile(r'(\D{1,3})(\d{3,4}).*') dfs=[] dir = get_exchange_cache_dir(security_type='future',exchange='shfe')+"/his/" for j in os.listdir(dir): a = pd.read_excel(dir+j, header=2, skipfooter=5, usecols=list(range(0, 14))).fillna(method='ffill') dfs.append(a) totaldf = reduce(lambda x,y:x.append(y),dfs) totaldf['日期']=pd.to_datetime(totaldf['日期'],format='%Y%m%d') totaldf=totaldf[pd.isnull(totaldf['合约'])==False] totaldf['fproduct'] = totaldf['合约'].apply(lambda x:pattern.match(x).groups()[0]) totaldf['settleDate'] = totaldf['合约'].apply(lambda x:pd.to_datetime('20'+pattern.match(x).groups()[1],format='%Y%m')) renameMap={ '合约':'symbol', '日期':'date', '前收盘':'preClose', '前结算':'preSettle', '开盘价':'open', '最高价':'high', '最低价':'low', '收盘价':'close', '结算价':'settle', '涨跌1':'range', '涨跌2':'range2', '成交量':'volume', '成交金额':'amount', '持仓量':'inventory' } totaldf.rename(index=str,columns=renameMap,inplace=True) totaldf=totaldf[['symbol','date','open','high','low','close','settle','range','range2','volume','inventory','fproduct','settleDate']] print("done") # totaldf.to_pickle('testdf.pickle') return totaldf def getShfeCurrentYearData(self): dir = os.path.join(get_exchange_cache_dir(security_type='future',exchange='shfe'),"2020_day_kdata") file_list=os.listdir(dir) tempdfs=[] for file in file_list: if len(file)==8: with open(os.path.join(dir,file)) as f: load_dict = json.load(f) temp_df = pd.DataFrame(data=load_dict['o_curinstrument']) temp_df['date'] = file temp_df['date'] = pd.to_datetime(temp_df['date'],format="%Y%m%d") tempdfs.append(temp_df) aggdf=pd.concat(tempdfs) aggdf= aggdf[aggdf['DELIVERYMONTH']!='小计' ] aggdf= aggdf[aggdf['DELIVERYMONTH']!='合计' ] aggdf= aggdf[aggdf['DELIVERYMONTH']!=""] aggdf= aggdf[aggdf['DELIVERYMONTH']!="efp"] aggdf['symbol']=aggdf['PRODUCTID'].apply(lambda x:x.strip().replace("_f",""))+aggdf['DELIVERYMONTH'] aggdf['fproduct']=aggdf['PRODUCTID'].apply(lambda x:x.strip().replace("_f","")) aggdf['settleDate']=aggdf['DELIVERYMONTH'].apply(lambda x:pd.to_datetime('20'+x,format='%Y%m')) renameMap={ 'OPENPRICE':'open', 'HIGHESTPRICE':'high', 'LOWESTPRICE':'low', 'CLOSEPRICE':'close', 'SETTLEMENTPRICE':'settle', 'ZD1_CHG':'range', 'ZD2_CHG':'range2', 'VOLUME':'volume', 'OPENINTEREST':'inventory' } aggdf.rename(index=str,columns=renameMap,inplace=True) aggdf=aggdf[['symbol','date','open','high','low','close','settle','range','range2','volume','inventory','fproduct','settleDate']] return aggdf def getIneHisData(self): pattern = re.compile(r'(\D{1,3})(\d{3,4}).*') dfs=[] dir = get_exchange_cache_dir(security_type='future',exchange='ine')+"/his/" for j in os.listdir(dir): a = pd.read_excel(dir+j, header=2, skipfooter=5, usecols=list(range(0, 14))).fillna(method='ffill') dfs.append(a) totaldf = reduce(lambda x,y:x.append(y),dfs) totaldf['日期']=pd.to_datetime(totaldf['日期'],format='%Y%m%d') totaldf=totaldf[pd.isnull(totaldf['合约'])==False] totaldf['fproduct'] = totaldf['合约'].apply(lambda x:pattern.match(x).groups()[0]) totaldf['settleDate'] = totaldf['合约'].apply(lambda x:pd.to_datetime('20'+pattern.match(x).groups()[1],format='%Y%m')) renameMap={ '合约':'symbol', '日期':'date', '前收盘':'preClose', '前结算':'preSettle', '开盘价':'open', '最高价':'high', '最低价':'low', '收盘价':'close', '结算价':'settle', '涨跌1':'range', '涨跌2':'range2', '成交量':'volume', '成交金额':'amount', '持仓量':'inventory' } totaldf.rename(index=str,columns=renameMap,inplace=True) totaldf=totaldf[['symbol','date','open','high','low','close','settle','range','range2','volume','inventory','fproduct','settleDate']] print("done") # totaldf.to_pickle('testdf.pickle') return totaldf def getIneCurrentYearData(self): dir = os.path.join(get_exchange_cache_dir(security_type='future',exchange='ine'),"2020_day_kdata") file_list=os.listdir(dir) tempdfs=[] for file in file_list: if len(file)==8: with open(os.path.join(dir,file)) as f: load_dict = json.load(f) temp_df = pd.DataFrame(data=load_dict['o_curinstrument']) temp_df['date'] = file temp_df['date'] = pd.to_datetime(temp_df['date'],format="%Y%m%d") tempdfs.append(temp_df) aggdf=
pd.concat(tempdfs)
pandas.concat
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=
pd.DataFrame(k)
pandas.DataFrame
# coding: utf-8 # In[ ]: #### 標準化などの処理 import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler, Normalizer def get_standardized( X_train, X_test = None ) : #あとで dataframeに変換するときむけの列名 X_columns = X_train.columns scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) if X_test is not None : #scaler.fit(X_test) X_test = scaler.transform(X_test) #dataframeに変換 X_train = pd.DataFrame(X_train, columns=X_columns) if X_test is not None : X_test = pd.DataFrame(X_test, columns=X_columns) return {'train' : X_train, 'test' : X_test} def get_min_max( X_train, X_test = None ) : #あとで dataframeに変換するときむけの列名 X_columns = X_train.columns scaler = MinMaxScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) if X_test is not None : #scaler.fit(X_test) X_test = scaler.transform(X_test) #dataframeに変換 X_train = pd.DataFrame(X_train, columns=X_columns) if X_test is not None : X_test = pd.DataFrame(X_test, columns=X_columns) return {'train' : X_train, 'test' : X_test} def get_robust( X_train, X_test = None, X_predict = None, has_column = True ) : #あとで dataframeに変換するときむけの列名 if has_column : X_columns = X_train.columns scaler = RobustScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) if X_test is not None : #scaler.fit(X_test) X_test = scaler.transform(X_test) if X_predict is not None : #scaler.fit(X_test) X_predict = scaler.transform(X_predict) #dataframeに変換 if has_column : X_train = pd.DataFrame(X_train, columns=X_columns) if X_test is not None and has_column : X_test =
pd.DataFrame(X_test, columns=X_columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: Faron """ import pandas as pd import numpy as np import xgboost as xgb import gc DATA_DIR = "/media/ubuntu/新加卷2/Kaggle/Featured/Bosch" ID_COLUMN = 'Id' TARGET_COLUMN = 'Response' SEED = 0 CHUNKSIZE = 10000 NROWS = 250000 TRAIN_NUMERIC = "{0}/train_numeric.csv".format(DATA_DIR) TRAIN_DATE = "{0}/train_date.csv".format(DATA_DIR) TEST_NUMERIC = "{0}/test_numeric.csv".format(DATA_DIR) TEST_DATE = "{0}/test_date.csv".format(DATA_DIR) FILENAME = "etimelhoods" train = pd.read_csv(TRAIN_NUMERIC, usecols=[ID_COLUMN, TARGET_COLUMN]) test =
pd.read_csv(TEST_NUMERIC, usecols=[ID_COLUMN])
pandas.read_csv
import xml.etree.ElementTree as ET import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import calendar import time from datetime import datetime import pytz from scipy import stats from os.path import exists # an instance of apple Health # fname is the name of data file to be parsed must be an XML files # flags for cache class AppleHealth: def __init__(self, fname = 'export.xml', pivotIndex = 'endDate', readCache = False, writeCache = False): #check cache flag and cache accordingly if readCache: a = time.time() self.readCache(fname) e = time.time() self.runtime = e-a print("Cache parsing Time = {}".format(e-a)) if writeCache: self.cacheAll(fname) return # create element tree object a = time.time() s = time.time() tree = ET.parse(fname) e = time.time() print("Tree parsing Time = {}".format(e-s)) # for every health record, extract the attributes into a dictionary (columns). Then create a list (rows). s = time.time() root = tree.getroot() record_list = [x.attrib for x in root.iter('Record')] workout_list = [x.attrib for x in root.iter('Workout')] e = time.time() print("record list Time = {}".format(e-s)) # create DataFrame from a list (rows) of dictionaries (columns) s = time.time() self.record_data = pd.DataFrame(record_list) self.workout_data = pd.DataFrame(workout_list) e = time.time() print("creating DF Time = {}".format(e-s)) format = '%Y-%m-%d %H:%M:%S' # proper type to dates def get_split_date(strdt): split_date = strdt.split() str_date = split_date[1] + ' ' + split_date[2] + ' ' + split_date[5] + ' ' + split_date[3] return str_date s = time.time() for col in ['creationDate', 'startDate', 'endDate']: self.record_data[col] = pd.to_datetime(self.record_data[col], format=format) if not self.workout_data.empty: self.workout_data[col] =
pd.to_datetime(self.workout_data[col], format=format)
pandas.to_datetime
from flask import Flask, request, jsonify, g, render_template from flask_json import FlaskJSON, JsonError, json_response, as_json import plotly.graph_objects as go from datetime import datetime from datetime import timedelta import glob import requests from app import db from app.models import * from app.plots import bp import pandas as pd import io from app.api import vis from sqlalchemy import sql import numpy as np from app.tools.curvefit.core.model import CurveModel from app.tools.curvefit.core.functions import gaussian_cdf, gaussian_pdf PHU = {'the_district_of_algoma':'The District of Algoma Health Unit', 'brant_county':'Brant County Health Unit', 'durham_regional':'Durham Regional Health Unit', 'grey_bruce':'Grey Bruce Health Unit', 'haldimand_norfolk':'Haldimand-Norfolk Health Unit', 'haliburton_kawartha_pine_ridge_district':'Haliburton, Kawartha, Pine Ridge District Health Unit', 'halton_regional':'Halton Regional Health Unit', 'city_of_hamilton':'City of Hamilton Health Unit', 'hastings_and_prince_edward_counties':'Hastings and Prince Edward Counties Health Unit', 'huron_county':'Huron County Health Unit', 'chatham_kent':'Chatham-Kent Health Unit', 'kingston_frontenac_and_lennox_and_addington':'Kingston, Frontenac, and Lennox and Addington Health Unit', 'lambton':'Lambton Health Unit', 'leeds_grenville_and_lanark_district':'Leeds, Grenville and Lanark District Health Unit', 'middlesex_london':'Middlesex-London Health Unit', 'niagara_regional_area':'Niagara Regional Area Health Unit', 'north_bay_parry_sound_district':'North Bay Parry Sound District Health Unit', 'northwestern':'Northwestern Health Unit', 'city_of_ottawa':'City of Ottawa Health Unit', 'peel_regional':'Peel Regional Health Unit', 'perth_district':'Perth District Health Unit', 'peterborough_county_city':'Peterborough County–City Health Unit', 'porcupine':'Porcupine Health Unit', 'renfrew_county_and_district':'Renfrew County and District Health Unit', 'the_eastern_ontario':'The Eastern Ontario Health Unit', 'simcoe_muskoka_district':'Simcoe Muskoka District Health Unit', 'sudbury_and_district':'Sudbury and District Health Unit', 'thunder_bay_district':'Thunder Bay District Health Unit', 'timiskaming':'Timiskaming Health Unit', 'waterloo':'Waterloo Health Unit', 'wellington_dufferin_guelph':'Wellington-Dufferin-Guelph Health Unit', 'windsor_essex_county':'Windsor-Essex County Health Unit', 'york_regional':'York Regional Health Unit', 'southwestern':'Southwestern Public Health Unit', 'city_of_toronto':'City of Toronto Health Unit', 'huron_perth_county':'Huron Perth Public Health Unit'} def get_dir(data, today=datetime.today().strftime('%Y-%m-%d')): source_dir = 'data/' + data['classification'] + '/' + data['stage'] + '/' load_dir = source_dir + data['source_name'] + '/' + data['table_name'] file_name = data['table_name'] + '_' + today + '.' + data['type'] file_path = load_dir + '/' + file_name return load_dir, file_path def get_file(data): load_dir, file_path = get_dir(data) files = glob.glob(load_dir + "/*." + data['type']) files = [file.split('_')[-1] for file in files] files = [file.split('.csv')[0] for file in files] dates = [datetime.strptime(file, '%Y-%m-%d') for file in files] max_date = max(dates).strftime('%Y-%m-%d') load_dir, file_path = get_dir(data, max_date) return file_path ## Tests def new_tests_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['New tests'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['New tests'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['New tests'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['New tests'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['New tests'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Tests<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="new tests").first() p.html = div db.session.add(p) db.session.commit() return def total_tests_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Total tested'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['Total tested'].tail(1).values[0], number = {'font': {'size': 60}}, )) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['Total tested'],line=dict(color='#5E5AA1',dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['Total tested'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Total tested'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True,'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Tested<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="tests").first() p.html = div db.session.add(p) db.session.commit() return def tested_positve_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['New Positive pct'].notna()] temp = df.loc[df['New Positive pct'] > 0] fig.add_trace(go.Indicator( mode = "number+delta", value = df['New Positive pct'].tail(1).values[0]*100, number = {'font': {'size': 60}} )) fig.add_trace(go.Scatter(x=temp.Date,y=temp['New Positive pct'],line=dict(color='#FFF', dash='dot'),visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['New Positive pct'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['New Positive pct'].iloc[-2]*100, 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text': f"Percent Positivity<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="tested positive").first() p.html = div db.session.add(p) db.session.commit() return def under_investigation_plot(): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Total tested'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = df['Under Investigation'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['Under Investigation'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=temp['Under Investigation'].rolling(7).mean(),line=dict(color='red',width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Under Investigation'].iloc[-2], 'increasing': {'color':'grey'}, 'decreasing': {'color':'grey'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Under Investigation<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="under investigation").first() p.html = div db.session.add(p) db.session.commit() return ## Hospital def in_hospital_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Hospitalized'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['Hospitalized'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['Hospitalized'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['ICU'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Hospitalized'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"COVID-19 Patients In Hospital<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) div = fig.to_json() p = Viz.query.filter_by(header="in hospital", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def in_icu_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['ICU'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['ICU'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['ICU'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['ICU'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['ICU'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"COVID-19 Patients In ICU<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h",) else: df = vis.get_icu_capacity_phu() df = df.loc[df.PHU == PHU[region]] df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="in icu", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() temp = df.loc[df['confirmed_positive'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['confirmed_positive'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['confirmed_positive'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['confirmed_positive'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'title' : {"text": f"COVID-19 Patients In ICU<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>"}, 'mode' : "number+delta+gauge", 'delta' : {'reference': df['confirmed_positive'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':"", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="in icu", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def on_ventilator_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() temp = df.loc[df['Ventilator'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['Ventilator'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['Ventilator'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['Ventilator'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['Ventilator'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True,'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':False}, title={'text':f"COVID-19 Patients On Ventilator<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: df = vis.get_icu_capacity_phu() df = df.loc[df.PHU == PHU[region]] df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="on ventilator", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() temp = df.loc[df['confirmed_positive_ventilator'].notna()] fig.add_trace(go.Indicator( mode = "number+delta", value = temp['confirmed_positive_ventilator'].tail(1).values[0],number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=temp.Date,y=temp['confirmed_positive_ventilator'],line=dict(color='red', width=3),visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=temp.Date,y=temp['confirmed_positive_ventilator'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['confirmed_positive_ventilator'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"COVID-19 Patients On Ventilator<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="on ventilator", phu=region).first() p.html = div db.session.add(p) db.session.commit() return ## Cases def new_cases_plot(region='ontario'): if region == 'ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['New positives'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d",'reference': df['New positives'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['New positives'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['New positives'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h") else: df = vis.get_phus() df = df.loc[df.region == PHU[region]] df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="new cases", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['value'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d",'reference': df['value'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['value'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['value'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="new cases",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def active_cases_plot(region='ontario'): if region == 'ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) df = df.loc[df['Active'].notna()] fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['Active'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['Active'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['Active'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['Active'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Active Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h") div = fig.to_json() p = Viz.query.filter_by(header="active cases",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def total_cases_plot(region='ontario'): if region=='ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['Positives'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['Positives'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['Positives'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['Positives'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: df = vis.get_phus() df = df.loc[df.region == PHU[region]] df['value'] = df.value.cumsum() df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="cases", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['value'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['value'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['value'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['value'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() print(region) p = Viz.query.filter_by(header="cases",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def recovered_plot(region='ontario'): df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['Resolved'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['Resolved'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['Resolved'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['Resolved'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Recovered Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h") div = fig.to_json() p = Viz.query.filter_by(header="recovered", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def total_deaths_plot(region='ontario'): if region == 'ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['Deaths'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['Deaths'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['Deaths'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['Deaths'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: df = vis.get_phudeath() df = df.loc[df.region == PHU[region]] df['value'] = df.value.cumsum() df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="deaths", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['value'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['value'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['value'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['value'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="deaths",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def new_deaths_plot(region='ontario'): if region == 'ontario': df = vis.get_testresults() df['Date'] = pd.to_datetime(df['Date']) fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['New deaths'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['New deaths'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['New deaths'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['New deaths'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: df = vis.get_phudeath() df = df.loc[df.region == PHU[region]] df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="new deaths", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['value'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['value'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['value'],line=dict(color='#FFF', dash='dot'), visible=True, opacity=0.5, name="Value")) fig.add_trace(go.Scatter(x=df.Date,y=df['value'].rolling(7).mean(),line=dict(color='red', width=3), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"New Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="new deaths", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def ltc_cases_plot(region='ontario'): if region == 'ontario': url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=0" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.dropna(how='any') fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['LTC Cases Total'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['LTC Cases Total'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Cases Total'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Cases Total'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total LTC Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=689073638" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.loc[df.PHU == PHU[region]] if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="long term care cases", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number", value = df.groupby('Date')['Confirmed Resident Cases'].sum().tail(1).values[0], number = {'font': {'size': 60}},)) fig.update_layout( showlegend=False, template = {'data' : {'indicator': [{ 'mode' : "number", }, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Confirmed Resident Cases<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="long term care cases", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def ltc_deaths_plot(region='ontario'): if region == 'ontario': url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=0" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.dropna(how='any') fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['LTC Deaths'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['LTC Deaths'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Deaths'],line=dict(color='red', width=3), visible=True, opacity=0.5,name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Deaths'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Total LTC Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=689073638" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.loc[df.PHU == PHU[region]] if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="long term care deaths", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number", value = df.groupby('Date')['Resident Deaths'].sum().tail(1).values[0], number = {'font': {'size': 60}},)) fig.update_layout( showlegend=False, template = {'data' : {'indicator': [{ 'mode' : "number", }, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Confirmed Resident Deaths<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="long term care deaths", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def ltc_outbreaks_plot(region='ontario'): if region == 'ontario': url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=0" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.dropna(how='any') fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['LTC Homes'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d", 'reference': df['LTC Homes'].iloc[-2], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Homes'],line=dict(color='red', width=3), visible=True, opacity=0.5,name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['LTC Homes'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"# of LTC Homes with Outbreaks<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) else: url = "https://docs.google.com/spreadsheets/d/1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U/export?format=csv&id=1pWmFfseTzrTX06Ay2zCnfdCG0VEJrMVWh-tAU9anZ9U&gid=689073638" s=requests.get(url).content df = pd.read_csv(io.StringIO(s.decode('utf-8'))) df['Date'] = pd.to_datetime(df['Date']) df = df.loc[df.PHU == PHU[region]] if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="long term care outbreaks", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number", value = df.groupby('Date')['LTC Home'].count().tail(1).values[0], number = {'font': {'size': 60}},)) fig.update_layout( showlegend=False, template = {'data' : {'indicator': [{ 'mode' : "number", }, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"# of LTC Homes with Outbreaks<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.Date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="long term care outbreaks", phu=region).first() p.html = div db.session.add(p) db.session.commit() return def rt_analysis_plot(region='Ontario'): url = "https://docs.google.com/spreadsheets/d/19LFZWy85MVueUm2jYmXXE6EC3dRpCPGZ05Bqfv5KyGA/export?format=csv&id=19LFZWy85MVueUm2jYmXXE6EC3dRpCPGZ05Bqfv5KyGA&gid=428679599" df = pd.read_csv(url) df['date'] = pd.to_datetime(df['date']) if region=='Ontario': df = df.loc[df.phu == region] else: df = df.loc[df.phu == PHU[region]] if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="rt analysis", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['ML'].tail(1).values[0], number = {'font': {'size': 60}},)) fig.add_trace(go.Scatter(x=df.date,y=df.ML,line=dict(color='red', width=3),visible=True,opacity=0.5)) fig.add_trace(go.Scatter(x=df.date,y=df.Low, fill=None, mode='lines', line_color='grey',opacity=0.1 )) fig.add_trace(go.Scatter(x=df.date,y=df.High, fill='tonexty', mode='lines', line_color='grey',opacity=0.1)) fig.update_layout( showlegend=False, template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'reference': df['ML'].tail(2).values[0], 'increasing': {'color':'red'}, 'decreasing': {'color':'green'}}}, ] }}) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"R<sub>t</sub> value</span><br><span style='font-size:0.5em;color:gray'>Last Updated: {df.date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.add_shape( type="line", xref="paper", yref="y", x0=0, y0=1, x1=1, y1=1, line=dict( color="white", width=2, ), ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="rt analysis",phu=region.lower()).first() p.html = div db.session.add(p) db.session.commit() return ## Mobility def apple_mobility_plot(region='ontario'): df = vis.get_mobility_transportation() df = df.loc[df.region=='Ontario'] fig = go.Figure() df = df.loc[df.transportation_type == 'driving'] df['date'] = pd.to_datetime(df['date']) df = df.sort_values(['date']) fig.add_trace(go.Scatter(x=df.date,y=df['value'],line=dict(color='#FFF', dash='dot'),opacity=0.5,name="Value")) fig.add_trace(go.Scatter(x=df.date,y=df['value'].rolling(7).mean(),line=dict(color='red', width=3),opacity=1,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'tickformat':'%d-%b'}, yaxis = {'showgrid': False}, title={'text':f"Driving Mobility<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.add_shape( type="line", xref="paper", yref="y", x0=0, y0=100, x1=1, y1=100, line=dict( color="white", width=2, ), ) fig.update_layout( margin=dict(l=0, r=20, t=40, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="transit mobility").first() p.html = div db.session.add(p) db.session.commit() return def retail_mobility_plot(region='ontario'): df = vis.get_mobility() df = df.loc[df.region == 'Ontario'] df = df.loc[df.category == "Retail & recreation"] df['date'] = pd.to_datetime(df['date']) df['day'] = df['date'].dt.day_name() df = df.sort_values(['date']) date_include = datetime.strptime("2020-02-18","%Y-%m-%d") df = df.loc[df['date'] > date_include] fig = go.Figure() df = df.loc[df.category == "Retail & recreation"] fig.add_trace(go.Scatter(x=df.date,y=df['value'],line=dict(color='red', width=3),visible=True,opacity=0.5,name="Value")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Retail and Recreation<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=10, t=30, b=50), plot_bgcolor='#343332', paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="retail mobility",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def work_mobility_plot(region='ontario'): df = vis.get_mobility() df = df.loc[df.region == 'Ontario'] df['date'] = pd.to_datetime(df['date']) df['day'] = df['date'].dt.day_name() df = df.loc[df.category == "Workplace"] df = df.loc[~df.day.isin(["Saturday", "Sunday"])] df = df.sort_values(['date']) date_include = datetime.strptime("2020-02-18","%Y-%m-%d") df = df.loc[df['date'] > date_include] fig = go.Figure() fig.add_trace(go.Scatter(x=df.date,y=df['value'],line=dict(color='red', width=3),visible=True,opacity=0.5,name="Value")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"Workplaces<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=10, t=30, b=50), plot_bgcolor='#343332', paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="work mobility",phu=region).first() p.html = div db.session.add(p) db.session.commit() return ## Capacity def icu_ontario_plot(region='ontario'): if region == 'ontario': df = vis.get_icu_capacity_province() df['Date'] = pd.to_datetime(df['date']) else: df = vis.get_icu_capacity_phu() df = df.loc[df.PHU == PHU[region]] df['Date'] = pd.to_datetime(df['date']) if len(df) <= 0: div = sql.null() p = Viz.query.filter_by(header="residual beds", phu=region).first() p.html = div db.session.add(p) db.session.commit() return fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = df['residual_beds'].tail(1).values[0], number = {'font': {'size': 60}} ), ) fig.update_layout( template = {'data' : {'indicator': [{ 'mode' : "number+delta+gauge", 'delta' : {'valueformat':"d",'reference': df['residual_beds'].iloc[-2], 'increasing': {'color':'green'}, 'decreasing': {'color':'red'}}}, ] }}) fig.add_trace(go.Scatter(x=df.date,y=df['residual_beds'],line=dict(color='red', width=3), visible=True, opacity=0.5, name="Value")) # fig.add_trace(go.Scatter(x=df.Date,y=df['residual_beds'].rolling(7).mean(),line=dict(color='#FFF', dash='dot'), opacity=0.5,name="7 Day Average")) fig.update_layout( xaxis = {'showgrid': False,'visible':True, 'tickformat':'%d-%b'}, yaxis = {'showgrid': False,'visible':True}, title={'text':f"ICU Beds Left<br><span style='font-size:0.5em;color:gray'>Last Updated: {df.date.tail(1).values[0].astype('M8[D]')}</span><br>", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, font=dict( family="Roboto", color="#FFF" ) ) fig.update_layout( margin=dict(l=0, r=20, t=30, b=50), plot_bgcolor="#343332", paper_bgcolor="#343332", legend_orientation="h", ) div = fig.to_json() p = Viz.query.filter_by(header="residual beds",phu=region).first() p.html = div db.session.add(p) db.session.commit() return def ventilator_ontario_plot(region='ontario'): if region == 'ontario': df = vis.get_icu_capacity_province() df['Date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
import pytest from ..dataset import ( magnitude_and_scale, get_type, _try_import, indent, get_df_type, cast_and_clean_df, sql_dataset, ) import pandas as pd import numpy as np import datetime import pyodbc import requests CMD_DROP_TEST_TABLE_IF_EXISTS = "IF OBJECT_ID('test_table', 'U') IS NOT NULL DROP TABLE test_table;" CMD_CREATE_TEST_TABLE = """ CREATE TABLE test_table ( [dt] datetime NULL, [dt2] date NOT NULL, [uid] nvarchar(10) NOT NULL, [strcol] nvarchar(max) NOT NULL, [name] nvarchar(10) NULL, [empty_col] nvarchar(100) NULL, [float] decimal(22,3) NULL, [float_k] decimal(22,3) NULL, [float_m] decimal(22,13) NULL, [float_b] decimal(22,9) NULL, [float_na] decimal(22,3) NULL, [bit] bit NULL, [bit_na] bit NULL, [tinyint] tinyint NULL, [tinyint_na] tinyint NULL, [smallint] smallint NOT NULL, [smallint_na] smallint NULL, [int] int NOT NULL, [int_na] int NULL, [bigint] bigint NULL, [bigint_na] bigint NULL, [bool] bit NULL, [bool_na] bit NULL, [empty_str_col] nvarchar(100) NULL ); """ expected_schema = [ ['dt', 'datetime', [], True, ''], ['dt2', 'date', [], False, ''], ['uid', 'nvarchar', [10], False, ''], ['strcol', 'nvarchar', ['max'], False, ''], ['name', 'nvarchar', [10], True, ''], ['empty_col', 'nvarchar', [100], True, ''], ['float', 'decimal', [22,3], True, ''], ['float_k', 'decimal', [22,3], True, ''], ['float_m', 'decimal', [22,13], True, ''], ['float_b', 'decimal', [22,9], True, ''], ['float_na', 'decimal', [22,3], True, ''], ['bit', 'bit', [], True, ''], ['bit_na', 'bit', [], True, ''], ['tinyint', 'tinyint', [], True, ''], ['tinyint_na', 'tinyint', [], True, ''], ['smallint', 'smallint', [], False, ''], ['smallint_na', 'smallint', [], True, ''], ['int', 'int', [], False, ''], ['int_na', 'int', [], True, ''], ['bigint', 'bigint', [], True, ''], ['bigint_na', 'bigint', [], True, ''], ['bool', 'bit', [], True, ''], ['bool_na', 'bit', [], True, ''], ['empty_str_col', 'nvarchar', [100], True, ''], ] # dataset.magnitude_and_scale def test_magnitude_and_scale_int(): mag, scale = magnitude_and_scale(pd.Series([1, 2, 3]).astype(int)) assert mag == 1 assert scale == 0 def test_magnitude_and_scale_float_type_int(): mag, scale = magnitude_and_scale(pd.Series([123.0, 1.0, 1234.0, np.nan])) assert mag == 4 assert scale == 0 def test_magnitude_and_scale_float_with_inf(): mag, scale = magnitude_and_scale(pd.Series([1.0, 2.0, np.inf, -np.inf])) assert mag == 1 assert scale == 0 def test_magnitude_and_scale_zero(): mag, scale = magnitude_and_scale(pd.Series([0])) assert mag == 1 assert scale == 0 def test_magnitude_and_scale_float(): mag, scale = magnitude_and_scale(pd.Series([123.1234, 12345.1234567, 12.1234567800])) assert mag == 5 assert scale == 8 def test_magnitude_and_scale_only_frac_part(): mag, scale = magnitude_and_scale(pd.Series([0.12345, 0.123456, 0.123])) assert mag == 1 assert scale == 6 def test_magnitude_and_scale_empty_raises_error(): with pytest.raises(ValueError) as e_info: mag, scale = magnitude_and_scale(pd.Series([], dtype='float64')) def test_magnitude_and_scale_nan_raises_error(): with pytest.raises(ValueError) as e_info: mag, scale = magnitude_and_scale(pd.Series([np.nan])) def test_magnitude_and_scale_inf_raises_error(): with pytest.raises(ValueError) as e_info: mag, scale = magnitude_and_scale(pd.Series([np.inf])) # dataset.get_type def test_get_type_decimal(): dtype, params, has_null, comment = get_type(pd.Series([1.1, 2.1, 3.0])) assert dtype == 'decimal' assert params == [2, 1] assert has_null == False assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([123.1234, 12345.1234567, 12.1234567800])) assert dtype == 'decimal' assert params == [19, 12] assert has_null == False assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([0.12345, 0.123456, 0.123])) assert dtype == 'decimal' assert params == [10, 9] assert has_null == False assert comment == '' def test_get_type_decimal_na_inf(): dtype, params, has_null, comment = get_type(pd.Series([1.1, 2.1, 3.0, np.nan])) assert dtype == 'decimal' assert params == [2, 1] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([1.1, 2.1, 3.0, np.nan, np.inf])) assert dtype == 'decimal' assert params == [2, 1] assert has_null == True assert comment == '' def test_get_type_str(): dtype, params, has_null, comment = get_type(pd.Series(['123'])) assert dtype == 'nvarchar' assert params == [6] assert has_null == False assert comment == '' dtype, params, has_null, comment = get_type(pd.Series(['a' * 1000])) assert dtype == 'nvarchar' assert params == [2000] assert has_null == False assert comment == '' dtype, params, has_null, comment = get_type(pd.Series(['a' * 2001])) assert dtype == 'nvarchar' assert params == [4000] assert has_null == False assert comment == '' def test_get_type_str_max(): with pytest.warns(None): dtype, params, has_null, comment = get_type(pd.Series(['a' * 4001])) assert dtype == 'nvarchar' assert params == ['max'] assert has_null == False assert comment == 'Maximum string length is 4001. Using nvarchar(max).' def test_get_type_str_na(): dtype, params, has_null, comment = get_type(pd.Series(['a', 'b', 'c', 'def', np.nan])) assert dtype == 'nvarchar' assert params == [6] assert has_null == True assert comment == '' def test_get_type_str_empty(): dtype, params, has_null, comment = get_type(pd.Series(['', '', '', '', ''])) assert dtype == 'nvarchar' assert params == [255] assert has_null == False assert comment == 'zero-length string column, defaulting to nvarchar(255)' def test_get_type_bool(): dtype, params, has_null, comment = get_type(pd.Series([True, False])) assert dtype == 'bit' assert params == [] assert has_null == False assert comment == '' def test_get_type_bool_na(): dtype, params, has_null, comment = get_type(pd.Series([True, False, np.nan])) assert dtype == 'bit' assert params == [] assert has_null == True assert comment == '' def test_get_type_bit(): dtype, params, has_null, comment = get_type(pd.Series([0, 1, 0.0, 1.00])) assert dtype == 'bit' assert params == [] assert has_null == False assert comment == '' def test_get_type_tinyint(): dtype, params, has_null, comment = get_type(pd.Series([0, 1, 2, 3, 3.0, 4.0])) assert dtype == 'tinyint' assert params == [] assert has_null == False assert comment == '' def test_get_type_smallint(): dtype, params, has_null, comment = get_type(pd.Series([-2.0, -1, 0.000, 1, 2.0])) assert dtype == 'smallint' assert params == [] assert has_null == False assert comment == '' def test_get_type_int(): dtype, params, has_null, comment = get_type(pd.Series([-60000, 0.000, 60000])) assert dtype == 'int' assert params == [] assert has_null == False assert comment == '' def test_get_type_int_zeros(): # if the entire column is 0, default to int dtype, params, has_null, comment = get_type(pd.Series([0, 0, 0])) assert dtype == 'int' assert params == [] assert has_null == False assert comment == 'column contains only zeros; defaulting to int' def test_get_type_int_zeros_na(): # if the entire column is 0 and null, default to int dtype, params, has_null, comment = get_type(pd.Series([0, 0, 0, np.nan])) assert dtype == 'int' assert params == [] assert has_null == True assert comment == 'column contains only zeros; defaulting to int' def test_get_type_bigint(): dtype, params, has_null, comment = get_type(pd.Series([-2147490000, 0.000, 2147490000])) assert dtype == 'bigint' assert params == [] assert has_null == False assert comment == '' def test_get_type_mixed(): # test different orders of the same mixed values; these should all return nvarchar. # this is to guard against naively detecting types by the first non-empty value in object dtype columns dtype, params, has_null, comment = get_type(pd.Series([1, 2.0, 3.1, 'abc', pd.Timestamp('2020-01-01 00:00:00'), np.nan])) assert dtype == 'nvarchar' assert params == [38] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([pd.Timestamp('2020-01-01 00:00:00'), 1, 2.0, 3.1, 'abc', np.nan])) assert dtype == 'nvarchar' assert params == [38] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([datetime.date(2020, 1, 1), 1, 2.0, 3.1, 'abc', np.nan])) assert dtype == 'nvarchar' assert params == [20] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([datetime.datetime(2020, 1, 1, 0, 0, 0), 1, 2.0, 3.1, 'abc', np.nan])) assert dtype == 'nvarchar' assert params == [38] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([1, 2.0, 3.1, pd.Timestamp('2020-01-01 00:00:00'), 'abc', np.nan])) assert dtype == 'nvarchar' assert params == [38] assert has_null == True assert comment == '' dtype, params, has_null, comment = get_type(pd.Series([2.0, 1, 3.1, pd.Timestamp('2020-01-01 00:00:00'), 'abc', np.nan])) assert dtype == 'nvarchar' assert params == [38] assert has_null == True assert comment == '' def test_get_type_datetime(): dtype, params, has_null, comment = get_type(pd.to_datetime(['2020-01-01', '2020-01-02'])) assert dtype == 'datetime' assert params == [] assert has_null == False assert comment == '' def test_get_type_date(): dtype, params, has_null, comment = get_type(pd.to_datetime(['2020-01-01', '2020-01-02']).date) assert dtype == 'date' assert params == [] assert has_null == False assert comment == '' def test_get_type_empty(): dtype, params, has_null, comment = get_type(pd.Series([], dtype=object)) assert dtype == 'nvarchar' assert params == [255] assert has_null == True assert comment == 'empty column, defaulting to nvarchar(255)' def test_get_type_empty_only_na(): dtype, params, has_null, comment = get_type(pd.Series([np.nan])) assert dtype == 'nvarchar' assert params == [255] assert has_null == True assert comment == 'empty column, defaulting to nvarchar(255)' def test_try_import(): package = _try_import('numpy') assert package is np module = _try_import('numpy.abs') assert module is np.abs from pandas.tseries import offsets module = _try_import('pandas.tseries.offsets') assert module is offsets from pandas.tseries.offsets import DateOffset method = _try_import('pandas.tseries.offsets.DateOffset') assert method is DateOffset def test_indent(): assert indent(['blah']) == [' blah'] df = pd.DataFrame({ 'intcol': pd.Series([1,2,3]), 'intcol2': pd.Series([1,2,np.nan]), 'strcol': pd.Series(['a', 'b', 'c']), 'strcol2': pd.Series(['a'*10, 'b'*10, 'c'*10]), 'strcol3':
pd.Series(['a'*4001, 'b'*4001, 'c'*4001])
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True])
tm.assert_series_equal(result, exp)
pandas.util.testing.assert_series_equal
import argparse import numpy as np import os import pandas as pd import pdb def add_dataset_info(results_raw: pd.DataFrame, task_metadata: pd.DataFrame): results_raw['tid'] = [int(x.split('/')[-1]) for x in results_raw['id']] task_metadata['ClassRatio'] = task_metadata['MinorityClassSize'] / task_metadata['NumberOfInstances'] results_raw = results_raw.merge(task_metadata, on=['tid']) return results_raw def mean_score(df: pd.DataFrame, column: str = 'result'): return round(df[column].mean(), 4) def filter_type(df: pd.DataFrame): return df[df['type'] == 'binary'].append(df[df['type'] == 'multiclass']) #df[df['type'] == 'regression'] def filter_samples(df, samples=100000, lower=True): return df[df['NumberOfInstances'] < samples] if lower else df[df['NumberOfInstances'] >= samples] def filter_features(df, features=100, lower=True): return df[df['NumberOfFeatures'] < features] if lower else df[df['NumberOfFeatures'] >= features] def filter_duration(df, duration=40000): return df[df['duration'] < duration] def compute_win_lose(base, tie, pseudo_label): total = max(len(base) + len(pseudo_label) + len(tie), 1) return round((len(pseudo_label) + 0.5 * len(tie)) / total, 4), round((len(base) + 0.5 * len(tie)) / total, 4) def print_inference_speedup(df1, df2): relative_speedups = [] absolute_speedups = [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1['predict_duration'].isna().item() or row2['predict_duration'].isna().item(): continue df1_time, df2_time = row1['predict_duration'].item(), row2['predict_duration'].item() if df1_time == 0 or df2_time == 0: continue relative_speedups.append((df1_time - df2_time)/min(df1_time, df2_time)) absolute_speedups.append(df1_time - df2_time) print(f"Average Relative Speedup: {round(np.mean(relative_speedups), 4)}, Average Absolute Speedup: {round(np.mean(absolute_speedups), 4)}") def compare_dfs_improvement(df1, df2): metric = "acc" binary, multiclass, regression = [], [], [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1[metric].isna().item() or row2[metric].isna().item(): continue df1_score, df2_score = row1[metric].item(), row2[metric].item() problem_type = df1_rows.iloc[0]['type'] try: if problem_type == "binary": score = (df2_score - df1_score) / df1_score if df1_score > df2_score else (df2_score - df1_score) / df2_score binary.append(score) elif problem_type == "multiclass": score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score multiclass.append(score) else: score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score regression.append(score) except: pass binary_improvement = round(np.mean(binary), 4) multiclass_improvement = round(np.mean(multiclass), 4) regression_improvement = round(np.mean(regression), 4) total_improvement = round(np.mean(binary + multiclass + regression), 4) return total_improvement, binary_improvement, multiclass_improvement, regression_improvement def compare_dfs(df1, df2, grouped=False): df1_better, equal_performance, df2_better = [], [], [] metric = "acc" for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] if grouped: if len(df1_rows) > 0: df1_score = df1_rows[metric].dropna().mean() if df1_score != df1_score: continue else: continue if len(df2_rows) > 0: df2_score = df2_rows[metric].dropna().mean() if df2_score != df2_score: continue else: continue if df1_score > df2_score: df1_better.append(task) elif df1_score < df2_score: df2_better.append(task) else: equal_performance.append(task) else: for fold in df1_rows["fold"].unique(): row1, row2 = df1_rows[df1_rows["fold"] == fold], df2_rows[df2_rows["fold"] == fold] if len(row1) == 0 or len(row2) == 0 or row1[metric].isna().item() or row2[metric].isna().item(): continue score1, score2 = row1[metric].item(), row2[metric].item() if score1 > score2: df1_better.append(task+f"_{fold}") elif score1 < score2: df2_better.append(task+f"_{fold}") else: equal_performance.append(task+f"_{fold}") return df1_better, equal_performance, df2_better def print_miscellaneous(df1, df2): metric = "acc" score_diffs = [] for task in df1['task'].unique(): df1_rows = df1[df1["task"] == task] df2_rows = df2[df2["task"] == task] if len(df1_rows) > 0: df1_score = df1_rows[metric].dropna().mean() if df1_score != df1_score: continue else: continue if len(df2_rows) > 0: df2_score = df2_rows[metric].dropna().mean() if df2_score != df2_score: continue else: continue problem_type = df1_rows.iloc[0]['type'] if problem_type == "binary": score = (df2_score - df1_score) / df1_score if df1_score > df2_score else (df2_score - df1_score) / df2_score elif problem_type == "multiclass": score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score else: score = (df1_score - df2_score) / df1_score if df1_score < df2_score else (df1_score - df2_score) / df2_score score_diffs.append((task, score)) score_diffs = sorted(score_diffs, key=lambda info: info[1]) score_diffs = [diff[1] for diff in score_diffs] print(f"Relative Error Reduction Info: {round(np.mean(score_diffs), 4)} ± {round(np.std(score_diffs), 4)}, ({round(score_diffs[0], 4)}, {round(score_diffs[-1], 4)})") lower_quantile, upper_quantile = np.quantile(score_diffs, 0.025), np.quantile(score_diffs, 0.975) score_diffs = [diff for diff in score_diffs if lower_quantile < diff < upper_quantile] print(f"Relative Error Reduction Info (mean ± 2 * sigma): {round(np.mean(score_diffs), 4)} ± {round(np.std(score_diffs), 4)}, ({round(score_diffs[0], 4)}, {round(score_diffs[-1], 4)})") print(f"Number of Errored Runs (Base/pseudo_label): {len(base[~base['info'].isna()])}/{len(pseudo_label[~pseudo_label['info'].isna()])}") def print_automl_comparisons(base: pd.DataFrame, pseudo_label: pd.DataFrame, others: pd.DataFrame): print("==============================================================================") rows = [] for framework in others['framework'].unique(): other = others[others['framework'] == framework] first_better, equal_performance, second_better = compare_dfs(other, base) base_win, base_lose = compute_win_lose(first_better, equal_performance, second_better) first_better, equal_performance, second_better = compare_dfs(other, pseudo_label) pseudo_label_win, pseudo_label_lose = compute_win_lose(first_better, equal_performance, second_better) base_improvement, _, _, _ = compare_dfs_improvement(other, base) pseudo_label_improvement, _, _, _ = compare_dfs_improvement(other, pseudo_label) rows.append({'Framework': framework, 'Base Win Rate': base_win, 'pseudo_label Win Rate': pseudo_label_win, 'Base Error Reduction': base_improvement, 'pseudo_label Error Reduction': pseudo_label_improvement, 'Win Rate Improvement': pseudo_label_win - base_win, 'Error Reduction Improvement': pseudo_label_improvement - base_improvement}) df = pd.DataFrame(rows) print(df) print("==============================================================================") def print_suite_result(base: pd.DataFrame, pseudo_label: pd.DataFrame, indepth=True, grouped=False): baselow = filter_samples(base, samples=args.sample_low) pseudo_labellow = filter_samples(pseudo_label, samples=args.sample_low) basemed = filter_samples(filter_samples(base, samples=args.sample_low, lower=False), samples=args.sample_med) pseudo_labelmed = filter_samples(filter_samples(pseudo_label, samples=args.sample_low, lower=False), samples=args.sample_med) basehigh = filter_samples(base, samples=args.sample_med, lower=False) pseudo_labelhigh = filter_samples(pseudo_label, samples=args.sample_med, lower=False) first_better, equal_performance, second_better = compare_dfs(base, pseudo_label, grouped=grouped) num_total = len(first_better) + len(second_better) + len(equal_performance) print("==============================================================================") print(f"Mean Improvement Ratio: {compare_dfs_improvement(base, pseudo_label)[0]}") print(f"Win Rate: {round((len(second_better) + 0.5 * len(equal_performance))/ num_total, 4)}, Lose Rate: {round((len(first_better) + 0.5 * len(equal_performance)) / num_total, 4)}") print(f"All Run Base Win: {len(first_better)}, pseudo_label Win: {len(second_better)}, Tie: {len(equal_performance)}") rows = [] win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'ALL', 'Feature Size': 'ALL', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) ss_base = filter_features(baselow, features=args.feature_low) ss_pseudo_label = filter_features(pseudo_labellow, features=args.feature_low) first_better, equal_performance, second_better = compare_dfs(ss_base, ss_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'S', 'Feature Size': 'S', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) sm_base = filter_features(filter_features(baselow, features=args.feature_low, lower=False), features=args.feature_med) sm_pseudo_label = filter_features(filter_features(pseudo_labellow, features=args.feature_low, lower=False), features=args.feature_med) first_better, equal_performance, second_better = compare_dfs(sm_base, sm_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'S', 'Feature Size': 'M', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) sl_base = filter_features(baselow, features=args.feature_med, lower=False) sl_pseudo_label = filter_features(pseudo_labellow, features=args.feature_med, lower=False) first_better, equal_performance, second_better = compare_dfs(sl_base, sl_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'S', 'Feature Size': 'L', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) ms_base = filter_features(basemed, features=args.feature_low) ms_pseudo_label = filter_features(pseudo_labelmed, features=args.feature_low) first_better, equal_performance, second_better = compare_dfs(ms_base, ms_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'M', 'Feature Size': 'S', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) mm_base = filter_features(filter_features(basemed, features=args.feature_low, lower=False), features=args.feature_med) mm_pseudo_label = filter_features(filter_features(pseudo_labelmed, features=args.feature_low, lower=False), features=args.feature_med) first_better, equal_performance, second_better = compare_dfs(mm_base, mm_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'M', 'Feature Size': 'M', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) ml_base = filter_features(basemed, features=args.feature_med, lower=False) ml_pseudo_label = filter_features(pseudo_labelmed, features=args.feature_med, lower=False) first_better, equal_performance, second_better = compare_dfs(ml_base, ml_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'M', 'Feature Size': 'L', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) ls_base = filter_features(basehigh, features=args.feature_low) ls_pseudo_label = filter_features(pseudo_labelhigh, features=args.feature_low) first_better, equal_performance, second_better = compare_dfs(ls_base, ls_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'L', 'Feature Size': 'S', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) lm_base = filter_features(filter_features(basehigh, features=args.feature_low, lower=False), features=args.feature_med) lm_pseudo_label = filter_features(filter_features(pseudo_labelhigh, features=args.feature_low, lower=False), features=args.feature_med) first_better, equal_performance, second_better = compare_dfs(lm_base, lm_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'L', 'Feature Size': 'M', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) ll_base = filter_features(basehigh, features=args.feature_med, lower=False) ll_pseudo_label = filter_features(pseudo_labelhigh, features=args.feature_med, lower=False) first_better, equal_performance, second_better = compare_dfs(ll_base, ll_pseudo_label, grouped=grouped) win, lose = compute_win_lose(first_better, equal_performance, second_better) rows.append({'Sample Size': 'L', 'Feature Size': 'L', 'Base Win': len(first_better), 'pseudo_label Win': len(second_better), 'Tie': len(equal_performance), 'Win Rate': win, 'Lose Rate': lose}) df = pd.DataFrame(rows) print(df) print("==============================================================================") # ======= NEW ======= # # 1h # base = "result/baseline/1hmed/results_automlbenchmark_1h8c_autogluon.ag.1h8c.aws.20210827T163031.csv" # pseudo_label = "result/best/1hmed/results_automlbenchmark_1h8c_pseudo_label_med.ag.1h8c.aws.20210828T182000.csv" # base = "result/baseline/1hhigh/results_automlbenchmark_1h8c_autogluon_high.ag.1h8c.aws.20210829T224457.csv" # pseudo_label = "result/best/1hhigh/results_automlbenchmark_1h8c_pseudo_label_high.ag.1h8c.aws.20210829T224459.csv" # base = "result/baseline/1hnorepeat/results_automlbenchmark_1h8c_autogluon_norepeat.ag.1h8c.aws.20210827T202558.csv" # pseudo_label = "result/best/1hnorepeat/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210829T224516.csv" # base = "result/baseline/1hbest/results_automlbenchmark_1h8c_autogluon_bestquality.ag.1h8c.aws.20210830T230714.csv" # base = "~/Downloads/results_automlbenchmark_1h8c_2021_08_29_knn.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_autogluon_bestquality.ag.1h8c.aws.20210902T175142.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210902T175139.csv" # norepeat # base = "~/Downloads/results_automlbenchmark_1h8c_autogluon_norepeat.ag.1h8c.aws.20210908T151458.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210905T230349.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210906T213059.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210908T035241.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210909T090238.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_norepeat.ag.1h8c.aws.20210909T202902.csv" # full base = "~/Downloads/4h8c_best_temp/results_automlbenchmark_10_19_AG_best_quality.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210904T011959(1).csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210905T192540.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210906T202118.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_minimprovement.ag.1h8c.aws.20210906T213112.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210907T084943.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_stoppinground.ag.1h8c.aws.20210907T104958.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210907T175902.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_replacebag.ag.1h8c.aws.20210907T175858.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210907T221927.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_replacebag.ag.1h8c.aws.20210907T222005.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210908T012205.csv" # slide result # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label_minimprovement.ag.1h8c.aws.20210908T094645.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210908T182233.csv" # no 300 cap # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210908T235902.csv" # removed feature metadata bug # pseudo_label = "~/Downloads/results_automlbenchmark_1h8c_pseudo_label.ag.1h8c.aws.20210909T070228.csv" # experimental pseudo_label = "~/Downloads/4h8c_best_temp/results_automlbenchmark_10_25_temp_best_4h8c.csv" # final # 4h # base = "result/baseline/4hmed/results_automlbenchmark_4h8c_autogluon.ag.4h8c.aws.20210827T163032.csv" # pseudo_label = "result/best/4hmed/results_automlbenchmark_4h8c_pseudo_label_med.ag.4h8c.aws.20210828T210007.csv" # base = "result/baseline/4hhigh/results_automlbenchmark_4h8c_autogluon_high.ag.4h8c.aws.20210830T073353.csv" # pseudo_label = "result/best/4hhigh/results_automlbenchmark_4h8c_pseudo_label_high.ag.4h8c.aws.20210830T073352.csv" # base = "result/baseline/4hnorepeat/results_automlbenchmark_4h8c_autogluon_norepeat.ag.4h8c.aws.20210827T062721.csv" # pseudo_label = "result/best/4hnorepeat/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210828T210006.csv" # pseudo_label = "result/best/4hnorepeat/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210829T060616.csv" # base = "result/baseline/4hbest/results_automlbenchmark_4h8c_autogluon_bestquality.ag.4h8c.aws.20210827T062731.csv" # base = "result/best/4hbest/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210828T210005.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_improvementthreshold.ag.4h8c.aws.20210829T060617.csv" # # norepeat # base = "~/Downloads/results_automlbenchmark_4h8c_autogluon_norepeat.ag.4h8c.aws.20210908T145253.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210905T230350.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210907T001718.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210908T062913.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_norepeat.ag.4h8c.aws.20210909T090240.csv" # # full # base = "~/Downloads/results_automlbenchmark_4h8c_2021_09_02.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210902T062359(1).csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210905T192543.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210906T095323.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210906T202121.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210907T131305.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210908T012206.csv" # slide result # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label_minimprovement.ag.4h8c.aws.20210908T074624.csv" # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210908T182235.csv" # no 300 cap # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210908T235905.csv" # no feature metadata bag # pseudo_label = "~/Downloads/results_automlbenchmark_4h8c_pseudo_label.ag.4h8c.aws.20210909T070232.csv" # experimental if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-a', '--sample_low', help='upper boundary that determines whether a dataset is small sized', default=5000, type=int) parser.add_argument('-b', '--sample_med', help='upper boundary that determines whether a dataset is medium sized', default=50000, type=int) parser.add_argument('-c', '--feature_low', help='upper boundary that determines whether a dataset feature space is small sized', default=20, type=int) parser.add_argument('-d', '--feature_med', help='upper boundary that determines whether a dataset feature space is medium sized', default=50, type=int) parser.add_argument('-e', '--duration', help='determines before what hour the job must have finished', default=4, type=float) parser.add_argument('-f', '--framework', help='whether to compare against other frameworks', default=False, type=bool) parser.add_argument('-g', '--done_only', help='whether to display results for only datasets that finished', default=False, type=bool) args = parser.parse_args() print(f"{os.path.basename(base)} vs {os.path.basename(pseudo_label)}") base = filter_type(pd.read_csv(base)) pseudo_label = filter_type(pd.read_csv(pseudo_label)) # base = base[base['framework'] == 'AutoGluon_bestquality'] # FIXME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # pseudo_label = pseudo_label[pseudo_label['framework'] == 'AutoGluon_bestquality'] # FIXME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # pseudo_label = pseudo_label[pseudo_label['framework'] == 'AutoGluon_bestquality_pseudo_label'] # FIXME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # pseudo_label TRIGGERED ONLY # # import pdb; pdb.set_trace() # debug = pd.read_csv('~/Downloads/debug_info(166).csv') # untriggered_rows = debug[(~debug['pseudo_labeld']) & (debug['total_pseudo_label_time'] == 0)] # untriggered_task_fold = untriggered_rows['name'] + untriggered_rows['fold'].astype(str) # base['taskfold'] = base['task'] + base['fold'].astype(str) # pseudo_label['taskfold'] = pseudo_label['task'] + pseudo_label['fold'].astype(str) # base = base[~base['taskfold'].isin(untriggered_task_fold)] # pseudo_label = pseudo_label[~pseudo_label['taskfold'].isin(untriggered_task_fold)] # others = pd.read_csv(f"result/baseline/{int(args.duration)}hbest/other_systems.csv") task_metadata =
pd.read_csv('~/Downloads/task_metadata.csv')
pandas.read_csv
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces_and_case(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, {"a": "Hi", "b": "hI ", "expected": True}, {"a": "HI", "b": "HI ", "expected": True}, {"a": "hi", "b": "hi ", "expected": True}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True, ignore_case=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_compare_df_setter_bad(): df = pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}]) with raises(TypeError, match="df1 must be a pandas DataFrame"): compare = datacompy.Compare("a", "a", ["a"]) with raises(ValueError, match="df1 must have all columns from join_columns"): compare = datacompy.Compare(df, df.copy(), ["b"]) with raises(ValueError, match="df1 must have unique column names"): compare = datacompy.Compare(df, df.copy(), ["a"]) df_dupe = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 3}]) assert datacompy.Compare(df_dupe, df_dupe.copy(), ["a", "b"]).df1.equals(df_dupe) def test_compare_df_setter_good(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"A": 1, "B": 2}, {"A": 2, "B": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a"] compare = datacompy.Compare(df1, df2, ["A", "b"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a", "b"] def test_compare_df_setter_different_cases(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 =
pd.DataFrame([{"A": 1, "b": 2}, {"A": 2, "b": 3}])
pandas.DataFrame
#%% import numpy as np import pandas as pd import altair as alt from altair_saver import save import futileprot as fp colors, palette = fp.viz.altair_style() data = pd.read_csv('../../../../data/spectrophotometry/2021-06-24_growth_curves/2021-06-24_growth_curves.csv') tidy, params, opts = fp.growth.infer_growth_rate(data, groupby=['growth_medium', 'strain'], od_bounds=[0.04, 0.4], print_params=False) # %% # Rename the strains in the data and parameter dataframes tidy['strain'] = [s.replace('delta_', 'Δ') for s in tidy['strain'].values] params['strain'] = [s.replace('delta_', 'Δ') for s in params['strain'].values] points = alt.Chart(tidy, width=200, height=200 ).mark_line( point=True, opacity=0.75 ).encode( x=alt.X('elapsed_time_hr:Q', title='elapsed time [hr]'), y=alt.Y('od_600nm:Q', title='optical density', scale=alt.Scale(type='log')), color=alt.Color('strain:N', title='strain', scale=alt.Scale(scheme='tableau10')) ).facet(column=alt.Column('growth_medium:N', header=alt.Header(labelFontSize=15)), row=alt.Row('strain:N', header=alt.Header(labelFontSize=15)) ).resolve_scale(x='independent') save(points, '2021-06-24_KO_growth_curves.pdf') # %% # Make a plot of the growth rates for each medium growth_rates = params[params['parameter']=='growth_rate'] plots = [] for g, d in growth_rates.groupby(['growth_medium']): min_val = 0.9 * d['map_val'].min() max_val = 1.1 * d['map_val'].max() lam_base= alt.Chart(d, width=400, height=200, ).transform_calculate( ymin='datum.map_val-datum.cred_int', ymax='datum.map_val+datum.cred_int' ).encode( x=alt.X( 'strain:N', title='strain'), color=alt.Color( 'strain:N', title='strain', scale=alt.Scale(scheme='tableau10'))) lam_points = lam_base.mark_point(size=80, opacity=0.75 ).encode( y=alt.Y('map_val:Q', title='growth rate [inv. hr]', scale=alt.Scale(domain=[min_val, max_val])), ) lam_lines = lam_base.mark_errorbar( ).encode( y='ymin:Q', y2='ymax:Q' ) _plot = (lam_points + lam_lines).properties(title=g) plots.append(_plot) plot = plots[0] & plots[1] save(plot, '2021-06-24_KO_growth_rates.pdf') #%% # Plot the fits plots = 0 for g, d in params.groupby(['strain']): _plots = 0 for _g, _d in d.groupby(['growth_medium']): # Get the data _data = tidy[(tidy['growth_medium'] == _g) & (tidy['strain'] == g)] points = alt.Chart( data=_data, width=200, height=200 ).mark_point( size=80, opacity=0.75 ).encode( x=alt.X('elapsed_time_hr:Q', title='elapsed time [hr]'), y=alt.Y('od_600nm:Q', title='optical density [a.u.]', scale=alt.Scale(type='log')), ) # Compute the fit od_init = _d[_d['parameter']=='od_init']['map_val'].values[0] lam = _d[_d['parameter']=='growth_rate']['map_val'].values[0] time_range = np.linspace(0, _data['elapsed_time_hr'].max(), 200) fit = od_init * np.exp(lam * time_range) __df =
pd.DataFrame([])
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: jupyter_scripts//ipynb,scripts//py # text_representation: # extension: .py # format_name: light # format_version: '1.3' # jupytext_version: 1.0.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # series_tools: # # set of tools that work with streamflow records. # - Identify events. # - Identidy baseflow and runoff. # import pandas as pd import numpy as np # ## Digital filters # # Collection of functions to separate runoff from baseflow. # + def DigitalFilters(Q,tipo = 'Eckhart', a = 0.98, BFI = 0.8): '''Digital filters to separate baseflow from runoff in a continuos time series. Parameters: - tipo: type of filter to be used. - Eckhart o 1. - Nathan o 2. - Chapman o 3. - Q: pandas series with the streamflow records. - a: paramter for the filter. - Eckhart: 0.98. - Nathan: 0.8. - Chapman: 0.8. - BFI: 0.8 only applies for Eckhart filter. Returns: - Pandas DataFrame with the Runoff, Baseflow.''' #Functions definitions. def Nathan1990(Q, a = 0.8): '''One parameter digital filter of Nathan and McMahon (1990)''' R = np.zeros(Q.size) c = 1 for q1,q2 in zip(Q[:-1], Q[1:]): R[c] = a*R[c-1] + ((1+a)/2.)*(q2-q1) if R[c]<0: R[c] = 0 elif R[c]>q2: R[c] = q2 c += 1 B = Q - R return R, B def Eckhart2005(Q, BFI=0.8, a = 0.98): '''Two parameter Eckhart digital filter Parameters: - Q: np.ndarray with the streamflow records. - BFI: The maximum amount of baseflow (%). - a: parameter alpha (0.98) Output: - R: total runoff. - B: total baseflow.''' #SEparation B = np.zeros(Q.size) B[0] = Q[0] c = 1 for q in Q[1:]: #SEparation equation B[c] = ((1.0-BFI)*a*B[c-1]+(1.0-a)*BFI*q)/(1.0-a*BFI) #Constrains if B[c] > q: B[c] = q c+=1 R = Q - B return R, B def ChapmanMaxwell1996(Q, a = 0.98): '''Digital filter proposed by chapman and maxwell (1996)''' B = np.zeros(Q.size) c = 1 for q in Q[1:]: B[c] = (a / (2.-a))*B[c-1] + ((1.-a)/(2.-a))*q c+=1 R = Q-B return R,B #Cal the filter if tipo == 'Eckhart' or tipo == 1: R,B = Eckhart2005(Q.values, a, BFI) elif tipo =='Nathan' or tipo == 2: R,B = Nathan1990(Q.values, a,) elif tipo == 'Chapman' or tipo ==3: R,B = ChapmanMaxwell1996(Q.values, a) #Returns the serie return pd.DataFrame(np.vstack([R,B]).T, index = Q.index, columns = ['Runoff','Baseflow']) # - # ## Events selection functions # # Collection of functions to identify peaks in a series and the end of each peak recession. # + def Events_Get_Peaks(Q, Qmin = None, tw = pd.Timedelta('12h')): '''Find the peack values of the hydrographs of a serie Params: - Q: Pandas serie with the records. - Qmin: The minimum value of Q to be considered a peak. if None takes the 99th percentile of the series as the min - tw: size of the ime window used to eliminate surrounding maximum values''' if Qmin is None: Qmin = np.percentile(Q.values[np.isfinite(Q.values)], 99) #Find the maximum Qmax = Q[Q>Qmin] QmaxCopy = Qmax.copy() #Search the maxium maximorums Flag = True PosMax = [] while Flag: MaxIdx = Qmax.idxmax() PosMax.append(MaxIdx) Qmax[MaxIdx-tw:MaxIdx+tw] = -9 if Qmax.max() < Qmin: Flag = False #Return the result return QmaxCopy[PosMax].sort_index() def Events_Get_End(Q, Qmax, minDif = 0.04, minDistance = None,maxSearch = 10, Window = '1h'): '''Find the end of each selected event in order to know the longitude of each recession event. Parameters: - Q: Pandas series with the records. - Qmax: Pandas series with the peak streamflows. - minDif: The minimum difference to consider that a recession is over. Optional: - minDistance: minimum temporal distance between the peak and the end. - maxSearch: maximum number of iterations to search for the end. - Widow: Size of the temporal window used to smooth the streamflow records before the difference estimation (pandas format). Returns: - Qend: The point indicating the en of the recession.''' #Obtains the difference X = Q.resample('1h').mean() dX = X.values[1:] - X.values[:-1] dX = pd.Series(dX, index=X.index[:-1]) #Obtains the points. DatesEnds = [] Correct = [] for peakIndex in Qmax.index: try: a = dX[dX.index > peakIndex] if minDistance is None: DatesEnds.append(a[a>minDif].index[0]) else: Dates = a[a>minDif].index flag = True c = 0 while flag: distancia = Dates[c] - peakIndex if distancia > minDistance: DatesEnds.append(Dates[c]) flag= False c += 1 if c>maxSearch: flag = False Correct.append(0) except: DatesEnds.append(peakIndex) Correct.append(1) #Returns the pandas series with the values and end dates Correct = np.array(Correct) return pd.Series(Q[DatesEnds], index=DatesEnds), Qmax[Correct == 0] # - # ## Runoff analysis # + def Runoff_SeparateBaseflow(Qobs, Qsim): '''From observed records obtain the baseflow and runoff streamflow records. Parameters: - Qobs: Observed record dt < 1h. - Qsim: Simulated records dt < 1h. Returns: - Qh: Observed records at hourly scale. - Qsh: Simulated records at a hourly scale. - Qsep: Observed separated records at hourly scale''' #Observed series to hourly scale. Qh = Qobs.resample('1h').mean() Qh[np.isnan(Qh)] = Qh.mean() Qh[Qh<0] = Qh.mean() Qsep = DigitalFilters(Qh, tipo = 'Nathan', a = 0.998) #Pre-process of simulated series to hourly scale. Qsh = Qsim.resample('1h').mean() Qsh[np.isnan(Qsh)] = 0.0 #Return results return Qh, Qsh, Qsep def Runoff_FindEvents(Qobs, Qsim, minTime = 1, minConcav = None, minPeak = None): '''Separates runoff from baseflow and finds the events. Parameters: - Qobs: Hourly obseved streamflow. - Qsim: Hourly simulated streamflow. - minTime: minimum duration of the event. - minConcav: minimum concavity of the event. - minPeak: minimum value of the peakflows. Returns: - pos1: pandas index lists with the initial positions. - pos2: pandas index lists with the end positions.''' #Obtain the positions of the start and pos1, pos2 = __Runoff_Get_Events__(Qsim, np.percentile(Qobs, 20)) pos1, pos2 = __Runoff_Del_Events__(Qobs, pos1, pos2, minTime=1, minConcav=minConcav, minPeak = minPeak) #Returns results return pos1, pos2 def Runoff_CompleteAnalysis(Area, Qobs, Rain, Qsep, pos1, pos2, N=None, Nant = None): '''Obtains the DataFrame with the resume of the RC analysis. Parameters: - Area: the area of the basin in km2. - Qobs: Hourly observed streamflow. - Rain: Hourly rainfall. - Qsep: Hourly dataFrame with the separated flows. - pos1: pandas index lists with the initial positions. - pos2: pandas index lists with the end positions. - N: Number of days to eval the rainfall between p1-N: p2. - Nant: Number of antecedent days to eval the rainfall between p1-Nant : p1-N. Results: - DataFrame with the columns: RC, RainEvent, RainBefore, RainInt, Qmax''' #Search for N if N is None: #Time window based on the basin area. N = Area**0.2 N = np.floor(N) // 2 * 2 + 1 if N<3: N = 3 if N>11: N = 11 Ndays = pd.Timedelta(str(N)+'d') if Nant is None: Nant = pd.Timedelta(str(N+3)+'d') else: Ndays = N if Nant is None: Nant = N +
pd.Timedelta('3d')
pandas.Timedelta
import numpy as np import argparse import os import abc from os import path import pandas as pd from torch.utils.data import Dataset import torch import torch.optim import torch.utils.data import torchvision import torchvision.transforms as transforms from torchvision.transforms import ToTensor, Normalize, Compose, Lambda FILENAME_TYPE = {'full': '_T1w_space-MNI152NLin2009cSym_res-1x1x1_T1w', 'cropped': '_T1w_space-MNI152NLin2009cSym_desc-Crop_res-1x1x1_T1w', 'skull_stripped': '_space-Ixi549Space_desc-skullstripped_T1w'} class ToTensor(object): """Convert image type to Tensor and diagnosis to diagnosis code""" def __call__(self, image): np.nan_to_num(image, copy=False) image = image.astype(float) return torch.from_numpy(image[np.newaxis, :]).float() class MinMaxNormalization(object): """Normalizes a tensor between 0 and 1""" def __call__(self, image): return (image - image.min()) / (image.max() - image.min()) def load_data(train_val_path, diagnoses_list, baseline=True): train_df = pd.DataFrame() valid_df = pd.DataFrame() test_df = pd.DataFrame() train_path = path.join(train_val_path, 'train') valid_path = path.join(train_val_path, 'validation') test_path = path.join(train_val_path, 'test') for diagnosis in diagnoses_list: if baseline: train_diag_path = path.join( train_path, diagnosis + '_baseline.tsv') else: train_diag_path = path.join(train_path, diagnosis + '.tsv') valid_diag_path = path.join(valid_path, diagnosis + '_baseline.tsv') test_diag_path = path.join(test_path, diagnosis + '_baseline.tsv') train_diag_df = pd.read_csv(train_diag_path, sep='\t') valid_diag_df =
pd.read_csv(valid_diag_path, sep='\t')
pandas.read_csv
__author__ = 'jlu96' import numpy as np from sklearn.model_selection import LeaveOneOut import matplotlib as mpl import importlib mpl.use('Agg') import matplotlib.pyplot as plt import pandas as pd import pickle import collections import fit_methods as fm import geneTSmunging as gtm import copy global test2fit_method test2fit_method = {'e': fm.fit_enet, "l": fm.fit_lasso, "r": fm.fit_ridge} global args2stratify_by args2stratify_by = {"e": "effect", "n": "none"} def cross_validate(X_matr, lag, fit_method, hyperlist, rows=None, has_reps=False, **kwargs): """ X_matr: n x T matrix of genes lag fit_method hyperlist: list of settings of "hyper" rows: optional restriction to a certain list of response variables For each hyperparam setting, use that hyperparam in fitting the whole data and evaluating prediction error Take the hyperparam with least avg mse. Return results from each hyperparam setting and the best hyperparam Return: best_hyper, best, hyper_df """ n = X_matr.shape[0] T = X_matr.shape[1] if rows == None: rows = list(range(n)) hyper_fit_dfs = [] for hyper in hyperlist: fit_results = [] loo = LeaveOneOut().split(X_matr) # Iterate over all the genes for train_index, test_index in loo: # Only test the responses in the appropriate row if test_index in rows: _, X_test = X_matr[train_index], X_matr[test_index] # there is a 3rd axis if has_reps: Y_test = np.reshape(X_test, (1, T, X_test.shape[2])) else: Y_test = np.reshape(X_test, (1, T)) fit_result = collections.OrderedDict() fit_result["hyper"] = hyper fit_result["row"] = test_index[0] # Since Y_test is not in X_train, replace_rows is None fit_result.update(fm.perform_loto_cv(X_matr=X_matr, Y_matr=Y_test, lag=lag, fit_method=fit_method, hyper=hyper, replace_row=test_index, has_reps=has_reps, **kwargs)) fit_results.append(fit_result) fit_result_df = pd.DataFrame(fit_results) hyper_fit_dfs.append(fit_result_df) print("Hyper: ", hyper) print(fit_result_df.head(n=20)) return hyper_fit_dfs def summarize_hyper_fit_dfs(hyper_fit_dfs, hyperlist): """ :param hyper_fit_dfs: Result of fit per ttimepoint :param hyperlist: Hyperparameters :return: hyper_df: Summary of overall performance for each hyper_df """ total_sselist = [] avg_dflist = [] std_dflist =[] avg_r2list = [] std_r2list = [] avg_nlist = [] avg_mselist = [] std_mselist = [] for fit_result_df in hyper_fit_dfs: stats_df = fit_result_df[["sse", "avg_df", "r2", "n", "mse"]] total_df = stats_df.sum() avg_df = total_df / stats_df.shape[0] std_df = stats_df.std() total_sselist.append(total_df["sse"]) avg_dflist.append(avg_df["avg_df"]) std_dflist.append(std_df["avg_df"]) avg_r2list.append(avg_df["r2"]) std_r2list.append(std_df["r2"]) avg_nlist.append(avg_df["n"]) avg_mselist.append(avg_df["mse"]) std_mselist.append(std_df["mse"]) summary_dict = collections.OrderedDict() summary_dict["hyper"] = hyperlist summary_dict["n_avg"] = avg_nlist summary_dict["mse_avg"] = avg_mselist summary_dict["mse_std"] = std_mselist summary_dict["df_avg"] = avg_dflist summary_dict["df_std"] = std_dflist summary_dict["r2_avg"] = avg_r2list summary_dict["r2_std"] = std_r2list summary_dict["sse_total"] = total_sselist hyper_df = pd.DataFrame(summary_dict) return hyper_df def get_best_hyper(hyper_df, sort_by="mse_avg", ascending=True): """ :param hyper_df: :param sort_by: :param ascending: :return: the best hyper params """ hyper_df.sort_values(sort_by, inplace=True, ascending=ascending) best = hyper_df.head(n=1) best_hyper = best["hyper"].values[0] return best_hyper, best, hyper_df def run_cross_validate(geneTS, fit_method=fm.fit_lasso, hyperlist=10**(-1 * np.arange(0, 4, 1.0)), lag=2, rows=None, sort_by="mse_avg", save_prefix=None, has_reps=False): """ Writes out the results for a given hyper-parameter list """ print("Hyper-parameters for cross-validation") print(hyperlist) # Cross-validate hyper_fit_dfs = cross_validate(geneTS, lag, fit_method, hyperlist, rows=rows, has_reps=has_reps) hyper_df = summarize_hyper_fit_dfs(hyper_fit_dfs, hyperlist) best_hyper, best, hyper_df = get_best_hyper(hyper_df, sort_by=sort_by) print("Hypers results:") print(hyper_df) return best_hyper, best, hyper_df, hyper_fit_dfs def float_to_label(value): assert isinstance(value, float) or isinstance(value, int) return "%.0E" % value def tuple_to_label(value): assert isinstance(value, tuple) return "(" + ", ".join([float_to_label(x) for x in value]) + ")" def hyper_to_label(hyper): """ :param hyper: hyperparameter :return: the corresponding label """ if isinstance(hyper, float) or isinstance(hyper, int): return float_to_label(hyper) elif isinstance(hyper, tuple): return tuple_to_label(hyper) def hyperlist_to_labellist(hyperlist): """ :param hyperlist: :return: labellist, labels to use for plotting """ return [hyper_to_label(hyper) for hyper in hyperlist] def run_to_label(run): """ :param run: string containing parameters :return: string designed for labels """ label = run[:] replacedict = collections.OrderedDict() replacedict["original"] = "orig" replacedict["integration"] = "int" replacedict["0mean-unnormalized"] = "ZU" replacedict["0mean-1var"] = "ZS" for key in replacedict: label = label.replace(key, replacedict[key]) return label # # def hyperlist_to_namelist(hyperlist): # """ # :param hyperlist: # :return: labellist, labels to use for plotting # """ # hyper_value = hyperlist[0] # # if isinstance(hyper_value, float) or isinstance(hyper_value, int): # return hyperlist_to_labellist(hyperlist) # # elif isinstance(hyper_value, tuple): # return [hyper.replace(" ", "") for hyper in hyperlist_to_labellist(hyperlist)] def plot_hyper_boxplot(hyperlist, fit_result_dfs, fit_result_key, xlabel="Hyperparameters", ylabel="Output parameter", title="Hyperparameters VS Output parameters",filename=None, horizontal_line_color_labels=None, hyper_color_labels=None, hyper_color_label_margin=0.4): """ hyperlist: the list of hyperparameters fit_result_dfs: each a dataframe, assume ordered as hyperlist fit_result_key: the column name of fit_result_df to plot Plots the boxplot with 1.5 IQR """ assert len(hyperlist) == len(fit_result_dfs) hyper_value = hyperlist[0] try: # Get length of the hyperparam label_length = len(hyper_value) plot_height = 5 + label_length * 0.2 except TypeError: plot_height = 5 if len(hyperlist) > 10: figsize = (len(hyperlist), plot_height) else: figsize = (8, plot_height) fig, axes = plt.subplots(nrows=1, ncols=1, figsize=figsize) data = [fit_result_df[fit_result_key].values for fit_result_df in fit_result_dfs] pos = list(range(1, len(hyperlist) + 1)) plt.boxplot(data, positions=pos, showmeans=True) axes.yaxis.grid(True) # avg = np.average(data, axis=1) # std = np.std(data, axis=1) # df = np.array([len(fit_result_df) - 1 for fit_result_df in fit_result_dfs ]) # min_val = np.min(data) # plt.errorbar(pos, avg, yerr=stats.t.ppf(0.95, df) * std, color='r') plt.xlabel(xlabel, fontsize=20) plt.ylabel(ylabel,fontsize=20) plt.title(title, fontsize=20) plt.xticks(pos, hyperlist) plt.yticks(fontsize=15) labels = axes.get_xticklabels() plt.setp(labels, rotation=90, fontsize=15) if hyper_color_labels != None: for hyper, color, label in hyper_color_labels: assert hyper in hyperlist loc = pos[hyperlist.index(hyper)] left_loc = loc - hyper_color_label_margin right_loc = loc + hyper_color_label_margin plt.axvline(left_loc, color=color, label=label) plt.axvline(right_loc, color=color) # plt.axvline(left_loc, color=color, label=label, linestyle='dashed') # plt.axvline(right_loc, color=color, linestyle='dashed') if horizontal_line_color_labels !=None: for line, color, label in horizontal_line_color_labels: plt.axhline(line, color=color, label=label) # plt.axhline(line, color=color,label=label, linestyle='dashed') plt.legend(loc='best') plt.tight_layout() if filename: fig.savefig(filename) print("Plot saved to ", filename) plt.show() plt.close() def plot_corr_matrix(corr_matr, labels, ylabels=None, title='Correlation matrix', cmap=copy.deepcopy(plt.cm.Blues), xlabel="Hyperparameters", ylabel="Hyperparameters", filename=None, min_thresh=0, max_thresh=1, figsize=None, change_bad_col=True, bad_col=(1, 0.7, 0.4, 1), change_over_col=False, over_col='k', xticksize=12, yticksize=12, titlesize=20, xlabelsize=20, ylabelsize=20, rotate_x=True, rotate_x_by=90, colorbar_label="", colorbar_ticksize=12, colorbar_labelsize=12, change_x_pad=False, x_pad=10, change_y_pad=False, y_pad=10, do_special_marker=False, special_marker_rows=[], special_marker_columns=[], special_marker_color='k', special_marker_type='*', special_marker_size=80, ): """ :param corr_matr: :param labels: For the x-axis. Can also be for y-axis :param ylabels: For y-axis :param title: :param cmap: :param xlabel: :param ylabel: :param filename: :param min_thresh: :param max_thresh: :return: """ if len(labels) != corr_matr.shape[1]: raise ValueError("X Labels must have same shape as # corr matrix cols") try: len(ylabels) except TypeError: if ylabels == None: ylabels = labels if len(ylabels) != corr_matr.shape[0]: raise ValueError("Y labels must have same shape as # corr matrix rows") if figsize == None: if corr_matr.shape[0] < 16: figsize = ((8,8)) else: figsize = ((corr_matr.shape[1]/2), (corr_matr.shape[0]/2)) fig, axes = plt.subplots(nrows=1, ncols=1, figsize=figsize) if change_bad_col: cmap.set_bad(bad_col) if change_over_col: cmap.set_over(over_col) if do_special_marker: print("Doing special marker. Be wary of wrong turns.") assert len(special_marker_rows) == len(special_marker_columns) plt.scatter(special_marker_columns, special_marker_rows, color=special_marker_color, s=special_marker_size, marker=special_marker_type) plt.xlim((-0.5, len(labels) - 0.5)) plt.ylim((-0.5, len(ylabels) -0.5)) plt.gca().invert_yaxis() plt.imshow(corr_matr, interpolation='nearest', cmap=cmap) cb = plt.colorbar(extend='both') plt.clim(min_thresh, max_thresh) cb.ax.tick_params(labelsize=colorbar_ticksize) cb.set_label(colorbar_label, rotation=90, fontsize=colorbar_labelsize) # # axes.set_yticklabels(ylabels, ha='right') # axes.set_xticklabels(labels, va='top') # if do_special_marker: # print "Doing special marker. Be wary of wrong turns." # assert len(special_marker_rows) == len(special_marker_columns) # plt.scatter(special_marker_columns, special_marker_rows, color=special_marker_color, # s=special_marker_size, marker=special_marker_type) # plt.xlim((-0.5, len(labels) - 0.5)) # plt.ylim((-0.5, len(ylabels)-0.5)) # plt.imshow(corr_matr, interpolation='nearest', cmap=cmap) xtick_marks = np.arange(len(labels)) plt.xticks(xtick_marks, labels, fontsize=xticksize, va='top') if rotate_x: plabels = axes.get_xticklabels() plt.setp(plabels, rotation=rotate_x_by, fontsize=xticksize, va='top', ha='center') ytick_marks = np.arange(len(ylabels)) plt.yticks(ytick_marks, ylabels, fontsize=yticksize, ha='right', va='center') plt.title(title, fontsize=titlesize) plt.xlabel(xlabel, fontsize=xlabelsize) plt.ylabel(ylabel, fontsize=ylabelsize) # position = fig.add_axes([1, 0.01, 0.02, 0.85]) # # cax, kw = mpl.colorbar.make_axes(fig_ax) # mpl.colorbar.colorbar_factory(position, im) plt.tight_layout() if change_x_pad: axes.tick_params(axis='x', which='major', pad=x_pad) if change_y_pad: axes.tick_params(axis='y', which='major', pad=y_pad) if filename: fig.savefig(filename, bbox_inches="tight", pad_inches=0.5) print("Plot saved to ", filename) plt.show() plt.close() def plot_coef(df, cause_gene, effect_gene, lag, coef, savefile=True, file_prefix="", title=None, cause_label=None, effect_label=None, legend_fontsize=None, ylabel=None, is_ensg=False, file_type=".pdf", **kwargs): if title == None: title = "Cause-Effect pair: (" + cause_gene + ", " + effect_gene + ")" if savefile == True: filename = file_prefix + cause_gene.replace(".", ",") + "-" + effect_gene.replace(".", ",") + "-lag-" + str(int(lag)) + "-coef-" + float_to_label(coef) + file_type print("Filename: ", filename) else: filename = None # if is_ensg: # label_spacing = 20 # else: # label_spacing = 10 pco = np.round(coef, 2) if cause_label == None: cause_label = "Cause: " + cause_gene+ " (Coef = " + str(pco) + ", Lag = " + str(lag) + ")" # cause_label = "Cause: " + ("{0:>" + str(label_spacing) + "}").format(cause_gene) + " (Coef = " + str(pco) + ", Lag = " + str(lag) + ")" if effect_label == None: effect_label = "Effect: " + effect_gene # effect_label = "Effect: " + ("{0:>" + str(label_spacing) + "}").format( effect_gene) gtm.plot_genes(df, [cause_gene, effect_gene], title=title, filename=filename, gene_labels=[cause_label, effect_label], plot_outside=False, legend_fontsize=legend_fontsize, ylabel=ylabel, **kwargs) def plot_all_coef(acoefs, df, genes, min_coef=0.01, file_prefix=None, savefile=True, verbose=False, **kwargs): """ acoefs: lag x n x n matrix, causes are rows, effets are columns df: original gene df to plot genes: list of genes min_coef: min entry size to be plotted """ if verbose: print("Min Coef to plot: ", min_coef) # iterate down the coefs of each effect gene. This is one effect gene per column. for j in range(acoefs.shape[2]): out_gene = genes[j] # acoef is a lag x n causes matrix acoef = acoefs[:, :, j] # preds is a lag x n index matrix of the good coefficients preds = np.where(np.absolute(acoef) > min_coef) pcoefs = acoef[preds] cause_num = len(preds[0]) if verbose: if cause_num > 0: print("Out gene: ", out_gene) print("Causes: ", cause_num) for i in range(cause_num): # the lag lag = preds[0][i] + 1 cause_gene = genes[preds[1][i]] effect_gene = out_gene coef = pcoefs[i] plot_coef(df, cause_gene, effect_gene, lag, coef, savefile=savefile, file_prefix=file_prefix, **kwargs) # # the lags are encoded in the first index of acoefs # lags = preds[0] + 1 # cgenes = genes[preds[1]] # cos = np.round(acoef, 2)[preds] # # if verbose: # print "Out gene: ", out_gene # # for i in range(len(preds)): # # plag = lags[i] # cause_gene = cgenes[i] # effect_gene = out_gene # coef = cos[i] # # plot_coef(df, cause_gene, effect_gene, plag, coef, savefile=savefile, file_prefix=file_prefix, **kwargs) # def plot_all_coefs(acoefs, df, genes, lag, min_coef=0.01, num_per_plot=3, file_prefix=None, title_prefix="Causal genes for ", verbose=False, # **kwargs): # """ # acoefs: aligned coefs, of form (lag x n x n), acoefs[i] is lag_i+1 # df: Original TS # genes: list of all genes # """ # # # iterate down the coefs of each effect gene. This is one effect gene per column. # for j in range(acoefs.shape[2]): # out_gene = genes[j] # # acoef = acoefs[:, :, j] # preds = np.where(np.absolute(acoef) > min_coef) # # lags = preds[0] + 1 # cgenes = genes[preds[1]] # cos = np.round(acoef, 2)[preds] # # num_plots = int(np.ceil(len(cgenes) * 1.0 / num_per_plot)) # # if verbose: # print "Out gene: ", out_gene # # for i in range(num_plots): # plags = lags[i * len(cgenes)/num_plots: (i+ 1) * len(cgenes)/num_plots] # pgenes = cgenes[i * len(cgenes)/num_plots: (i+ 1) * len(cgenes)/num_plots] # pcos = cos[i * len(cgenes)/num_plots: (i+ 1) * len(cgenes)/num_plots] # labels = ["{0:>20}".format(out_gene + ":") + " Coef, Lag" ] + ["{0:>20}".format(pgene + ":") + " " + str(pco) + ", " + str(plag) for pgene, pco, plag in zip(pgenes, pcos, plags)] # # if verbose: # print "Part: ", i + 1 # print "Lag points: ", plags # print "Pred genes:", pgenes # print "Pred coefs: ", pcos # print "Labels are ", labels # # plot_genes(df, [out_gene] + list(pgenes), title=title_prefix + out_gene + " , Part " + str(i+1), # filename=None if file_prefix == None else file_prefix + out_gene.replace(".", ",") + "_lag-" + str(lag) + \ # "-" + "-".join([x.replace(".", ",") for x in list(pgenes)]), # gene_labels=labels, plot_outside=False, # **kwargs) def fit_all(X_matr, Y_matr, rows, lag, fit_method, save_prefix=None, save_XY=True, verbose=False, has_reps=False, bootstrap=False, seed=None, only_array=False, **kwargs): """ X_matr: m x T of X's Y_matr: n x T of Y's rows: rows of X to replace in Y. There should be as many rows to replace in X_matr as there are in Y_matr lag: fit_method: bootstrap: seed: only_array: If True, return coefs as a matrix instead Perform the fit for each Y_matr Save each X_t and Y_t? Return: coefs: (m*(lag), m) with the columns n (corresponding w/ rows in X_matr) filled in, intercepts: (1, m), fit_result_df: (n, num_results) """ assert len(rows) == Y_matr.shape[0] assert X_matr.shape[1] == Y_matr.shape[1] if has_reps: assert X_matr.shape[2] == Y_matr.shape[2] # m: number of predictor genes # n: number of response gene m = X_matr.shape[0] n = Y_matr.shape[0] T = X_matr.shape[1] coefs = np.zeros((m*lag, m)) intercepts = np.zeros((1, m)) fit_results = [] for i, row in zip(list(range(Y_matr.shape[0])), rows): if has_reps: Y = np.reshape(Y_matr[i,], (1, T, Y_matr.shape[2])) else: Y = np.reshape(Y_matr[i,], (1, T)) fit_result_dict = collections.OrderedDict() fit_result_dict["row"] = row if "hyper" in kwargs: fit_result_dict["hyper"] = kwargs["hyper"] X_t, Y_t, Y_pred, coef, intercept, fit_result = fm.perform_test(X_matr=X_matr, Y_matr=Y, lag=lag, fit_method=fit_method, replace_row=row, has_reps=has_reps, bootstrap=bootstrap, seed=seed, **kwargs) fit_result_dict.update(fit_result) # These are cause by effect coefs[:, row] = coef.flatten() intercepts[:, row] = intercept fit_results.append(fit_result_dict) if verbose: print(i, row) print("X: ", X_matr) print("Y: ", Y) print("X_t: ", X_t) print("Y_t: ", Y_t) print("Y_pred: ", Y_pred) print("Checking Y_pred: ", fm.compute_fit(X_t, Y_t, coef, intercept)) print("coef: ", coef) print("intercept: ", intercept) print("fit result: ", fit_result) fit_result_df = pd.DataFrame(fit_results) print("Finished fitting all") # remember coefs are cause-by-effect. if only_array: return coefs[:, rows], intercepts[:, rows], fit_result_df else: return coefs, intercepts, fit_result_df def fit_all_random(X_matr, rand_X_matr, Y_matr, rows, lag, fit_method, save_prefix=None, save_XY=True, verbose=False, has_reps=False, bootstrap=False, seed=None, only_array=False, **kwargs): """ X_matr: m x T (x r) of X's rand_X_matr: m x T ( x r) of X's. Same as X_matr except each row (within each replicate) is permuted independently and randomly Y_matr: n x T (x r) of Y's rows: rows of X to replace in Y. There should be as many rows to replace in X_matr as there are in Y_matr lag: fit_method: only_array: just return the relevant rows of the array Perform the fit for each Y_matr Save each X_t and Y_t? Return: coefs: (m*(lag), m) with the columns n (corresponding w/ rows in X_matr) filled in, intercepts: (1, m), fit_result_df: (n, num_results) """ assert len(rows) == Y_matr.shape[0] assert X_matr.shape[1] == Y_matr.shape[1] assert rand_X_matr.shape[1] == X_matr.shape[1] if has_reps: assert X_matr.shape[2] == Y_matr.shape[2] assert rand_X_matr.shape[2] == X_matr.shape[2] m = X_matr.shape[0] n = Y_matr.shape[0] T = X_matr.shape[1] coefs = np.zeros((m*lag, m)) # We keep no intercepts # intercepts = np.zeros((1, m, m)) fit_results = [] for i, row in zip(list(range(n)), rows): if has_reps: Y = np.reshape(Y_matr[i,], (1, T, Y_matr.shape[2])) else: Y = np.reshape(Y_matr[i,], (1, T)) fit_result_dict = collections.OrderedDict() fit_result_dict["row"] = row if "hyper" in kwargs: fit_result_dict["hyper"] = kwargs["hyper"] coef, fit_result, coef_temp, coef_temps, intercept_temps = fm.perform_test_random(X_matr=X_matr, rand_X_matr=rand_X_matr, Y_matr=Y, lag=lag, fit_method=fit_method, replace_row=row, has_reps=has_reps, bootstrap=bootstrap, seed=seed, **kwargs) fit_result_dict.update(fit_result) # These are cause by effect coefs[:, row] = coef.flatten() fit_results.append(fit_result_dict) if verbose: print(i, row) print("X: ", X_matr) print("Y: ", Y) # print "X_t: ", X_t # print "Y_t: ", Y_t # print "Y_pred: ", Y_pred # print "Checking Y_pred: ", fm.compute_fit(X_t, Y_t, coef, intercept) print("coef: ", coef) print("fit result: ", fit_result) fit_result_df =
pd.DataFrame(fit_results)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 9 11:51:21 2019 @author: mahparsa """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 6 13:57:17 2019 @author: mahparsa This aim to calculate the similairty between sentenses of an interview. It has all features """ import nltk import numpy as np from nltk.corpus import PlaintextCorpusReader from nltk.corpus import gutenberg import pandas as pd import nltk import gensim import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) from gensim import corpora, models from gensim.models.coherencemodel import CoherenceModel from gensim.models.ldamodel import LdaModel import nltk nltk.download('wordnet') import nltk from gensim import utils from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from gensim.models import Word2Vec from nltk.tokenize import word_tokenize from gensim.parsing.preprocessing import stem_text from nltk.stem import PorterStemmer import collections from collections import Counter from stemming.porter2 import stem from gensim import corpora, models from gensim.models.coherencemodel import CoherenceModel from gensim.models.ldamodel import LdaModel from numpy import array nltk.download('averaged_perceptron_tagger') stop_words = set(stopwords.words('english')) #from nltk.stem import LancasterStemmer from nltk.probability import FreqDist from nltk.tokenize import word_tokenize from difflib import SequenceMatcher from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() def percentage(count, total): return 100 * count / total def similar(a, b): return SequenceMatcher(None, a, b).ratio() import matplotlib.pyplot as plt from nltk.corpus import stopwords def lexical_diversity(text): return len(set(text)) / len(text) def READ_INT( parameters ): "use the root and read files and make a list of that" corpus_root = parameters # Mac users should leave out C: corpus = PlaintextCorpusReader(corpus_root, '.*txt') # doc = pd.DataFrame(columns=['string_values']) for filename in corpus.fileids(): value1=corpus.raw(filename) doc = doc.append({'string_values': value1}, ignore_index=True) docs=doc.values.tolist() return [docs] def Pre_Word( doc ): #provide a list of words. from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() m=str(doc) mm=m.lower() mmm=lemmatizer.lemmatize(mm) return [mmm] from nltk import sent_tokenize from collections import Counter from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity def get_cosine_sim(*strs): vectors = [t for t in get_vectors(*strs)] return cosine_similarity(vectors) docs_A=READ_INT('SZ_A_7') def Coherence_M_2(docs_A): #ambigous pronouns #We can count how often a pronouns occurs in a text, and compute what percentage of the text is taken up by a specific pronouns #Measure the percentage of the third pronouns to all words. Pronunce_words = set('he him his himself she her hers herself it its itself they them their theirs themselves'.split()) Coh_M = np.array([]) MyDoc = docs_A Sim_Sent_Doc = [] for k in range(len(MyDoc)): doc=[] doc=str(MyDoc[k]) Sent_doc=sent_tokenize(doc) tokenized_word=word_tokenize(doc) word_tokens = [w for w in tokenized_word if w.isalpha()] Third_Pronouns = [w for w in word_tokens if w in Pronunce_words] U_Third_Pronouns=list(set(Third_Pronouns)) U_word_tokens=list(set(word_tokens)) Co_3=len(U_Third_Pronouns)/len(U_word_tokens) Coh_M=np.append( Coh_M, Co_3) return[Coh_M] # def Coherence_M_3(docs_A): #ratio of the first pronouns to all pronouns. import pandas as pd A_Pronunce_words = set('I my myself mine we us ourselves ours'.split()) Coh_M = np.array([]) MyDoc = docs_A Sim_Sent_Doc = [] for k in range(len(MyDoc)): doc=[] doc=str(MyDoc[k]) tokenized_word=[] tokenized_word=word_tokenize(doc) word_tokens=[] word_tokens = [w for w in tokenized_word if w.isalpha()] tagg = pd.DataFrame() tagg=pd.DataFrame(nltk.pos_tag(word_tokens)) Index_NP = list(np.where( tagg[1] == "PRP" )) First_Pronouns = [w for w in word_tokens if w in A_Pronunce_words] N_P=len( First_Pronouns) N_N = len(Index_NP) Co_5=N_P/N_N Coh_M=np.append( Coh_M, Co_5) return[Coh_M] def Coherence_M_4(docs_A): #ratio of the third pronouns to names of persons. import pandas as pd A_Pronunce_words = set('he him his himself she her hers herself they them their theirs themselves'.split()) Coh_M = np.array([]) MyDoc = docs_A Sim_Sent_Doc = [] for k in range(len(MyDoc)): doc=[] doc=str(MyDoc[k]) tokenized_word=[] tokenized_word=word_tokenize(doc) word_tokens=[] word_tokens = [w for w in tokenized_word if w.isalpha()] tagg =
pd.DataFrame()
pandas.DataFrame
import math from tqdm import tqdm import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder, QuantileTransformer from sklearn.neighbors import NearestNeighbors from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline ''' In this file we have all the preprocessing methods 1- Intrinsic dimensionality 2- define feature and target 3- identify numeric and categorical features ''' """ Python Implementation of 'Maximum Likelihood Estimation of Intrinsic Dimension' <NAME> and <NAME>, Advances in neural information processing systems, 2005 ---------- The goal is to estimate intrinsic dimensionality of data, the estimation of dimensionality is scale dependent (depending on how much you zoom into the data distribution you can find different dimesionality), so they propose to average it over different scales, the interval of the scales [k1, k2] are the only parameters of the algorithm. This code also provides a way to repeat the estimation with bootstrapping to estimate uncertainty. """ def load_data(data, filetype): """ loads data from CSV file into dataframe. Parameters ---------- data : String path to input dataset filetype : String type of file Returns ---------- df_Data : dataframe dataframe with data """ if filetype == "csv": df_Data = pd.read_csv(data) else: df_Data = pd.read_excel(data) df_Data = df_Data.sample(1000) df_Data.reset_index(inplace = True) return df_Data def intrinsic_dim_sample_wise(X, k=5): """ Computes intrinsic dimensionality based on sample. Parameters ---------- X : dataframe, dataset k : integer, number of neighbors Returns ---------- intdim_sample : integer, intrinsic dimensionality based on sample """ neighb = NearestNeighbors(n_neighbors=k + 1).fit(X) dist, ind = neighb.kneighbors(X) dist = dist[:, 1:] dist = dist[:, 0:k] assert dist.shape == (X.shape[0], k) assert np.all(dist > 0) d = np.log(dist[:, k - 1: k] / dist[:, 0:k-1]) d = d.sum(axis=1) / (k - 2) d = 1. / d intdim_sample = d return intdim_sample def intrinsic_dim_scale_interval(X, k1=10, k2=20): """ Computes intrinsic dimensionality for a given scale interval. Parameters ---------- X : dataframe, dataset k1 : integer, number of neighbors (start of range) k2 : integer, number of neighbors (end of range) Returns ---------- intdim_k : integer, intrinsic dimensionality for a given scale interval """ X =
pd.DataFrame(X)
pandas.DataFrame
# -*- coding: utf-8 -*- # author:zhengk import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdate from matplotlib.font_manager import FontProperties def timeline_plot(): df_ori =
pd.read_csv('articles.csv', sep=';', header=None)
pandas.read_csv
import numpy as __np import pandas as __pd import ruptures as __rpt import matplotlib.pyplot as __plt from sklearn.preprocessing import LabelEncoder as __LabelEncoder def create_roll(ser_, nb_roll=100): ser_ = ser_.rolling(nb_roll, min_periods=1).mean() min_ser = min(ser_) max_ser = max(ser_ * 1.3) return ser_, min_ser, max_ser def iqr_detect_outlier(data): """ Detect outliers in data given Boxplot rule: X is an outlier <=> X>q3+1.5*IQR or X<q1-1.5*IQR Args: data (Array): list of values to check outliers """ q1, q3 = __np.percentile(data, [25, 75]) iqr = q3 - q1 cut_off = iqr * 1.5 lower_bound, upper_bound = q1 - cut_off, q3 + cut_off return data[(data <= lower_bound) | (data >= upper_bound)] def zscore_detect_outlier(data): """ Detect outliers in data given Zscore rule: X is an outlier <=> |X|>E(X)+3*S(X) Args: data (Array): list of values to check outliers """ threshold = 3 mean = __np.mean(data) std = __np.std(data) z_score = __np.abs((data - mean) / std) outliers_idx = z_score[z_score > threshold].index return data.iloc[outliers_idx] def shift_detect(data, model="l2", width=40, noise_std=4, debug=False): """ Shift detection using window based method (see gitlab wiki for more info) Args: data (Array) : list of values to check outliers model (String) : which distance to use width (int) : Window width noise_std(float): std for estimated noise debug (Bool) : to display shift in data Returns: List: shift starting points """ n = len(data) pen = __np.log(n) * noise_std ** 2 algo = __rpt.Window(width=width, model=model).fit(data) shifts = algo.predict(pen=pen) if debug: __rpt.show.display(data, shifts, figsize=(10, 6)) __plt.show() return shifts[:-1] def get_normalized_serie(df, col): normalized = ((df[col] - df[col].min()) / (df[col].max() - df[col].min()) + 1) return normalized def encode_serie(serie): lbl = __LabelEncoder() lbl.fit(serie.apply(str).values) serie = lbl.transform(list(serie.apply(str).values)) # Ajout du str (sinon fonctionne pas sur nombre) return serie, lbl # /Users/thibaud/Documents/Python_scripts/02_Projects/SNCF/open_data/sncf_utils.py def transform_category_to_color(df, col_name, colors=None): if colors is None: colors = ['red', 'blue', 'green', 'yellow', 'orange'] * 50 ser = df[col_name] ser, _ = encode_serie(ser) ser = __pd.Series(ser).apply(lambda x: colors[int(x)]) return ser def min_max_date(df): min_date = df['Year'].min() max_date = df['Year'].max() if min_date > max_date: tmp = min_date min_date = max_date max_date = tmp return min_date, max_date def get_dummy(df, col): """ Transform a pandas Series into dummies col """ ser_ = df[col] dummies_data = __pd.get_dummies(ser_, drop_first=False) dummies_data.columns = ['{}_{}'.format(col, i) for i in dummies_data.columns] df =
__pd.concat([df, dummies_data], axis=1)
pandas.concat
###### # Author: <NAME> # this file loads and organizes # Foundation data for further use ###### import numpy as np import networkx as nx import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np from datetime import datetime,timedelta from tqdm import tqdm import matplotlib.gridspec as gridspec import seaborn as sns import warnings warnings.filterwarnings('ignore') import copy # function to load the data def load_data(): print("loading data...") art_metadata_df = pd.read_csv("data/nft_metadata.csv") bidding_df = pd.read_csv("data/bid_data.csv") bidding_df['bidding_dt'] = bidding_df.bid_date.apply(lambda x: datetime.utcfromtimestamp(int(x))) bidding_df['bidding_d'] = bidding_df.bidding_dt.apply(lambda x: x.date()) listing_df = pd.read_csv("data/list_data.csv") listing_df['list_dt'] = listing_df.listing_date.apply(lambda x: datetime.utcfromtimestamp(int(x))) listing_df['listing_d'] = listing_df.list_dt.apply(lambda x: x.date()) minting_df = pd.read_csv("data/mint_data.csv") minting_df['mint_dt'] = minting_df.mint_date.apply(lambda x: datetime.utcfromtimestamp(int(x))) minting_df['minting_date'] = minting_df.mint_dt.apply(lambda x: x.date()) daily_ether_price = pd.read_csv("data/daily-usd-ether-data.csv") daily_ether_price['d'] = daily_ether_price['Date(UTC)'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y')) daily_ether_price['d'] = daily_ether_price.d.apply(lambda x: x.date()) # map ether price bidding_df = pd.merge(bidding_df, daily_ether_price[['Value','d']], how='left', left_on='bidding_d', right_on='d') bidding_df['cost_at_time'] = bidding_df.bidding_amt*bidding_df.Value bidding_df = bidding_df[['token_id','bidding_amt','bid_date','bidding_dt','bidding_d', 'creator','bidder_id','cost_at_time']] listing_df = pd.merge(listing_df, daily_ether_price[['Value','d']], how='left', left_on='listing_d', right_on='d') listing_df['cost_at_time'] = listing_df.listing_amt*listing_df.Value listing_df = listing_df[['token_id','listing_amt','creator', 'listing_date','list_dt','listing_d','cost_at_time']] ## reselling second_list_dt = [] token_id_list = [] for i in tqdm(listing_df.token_id.unique()): if len(listing_df[listing_df.token_id == i].list_dt.tolist()) >1: t = listing_df[listing_df.token_id == i].sort_values('list_dt') second_list_dt.append(t.list_dt.tolist()[1]) token_id_list.append(i) second_list_df = pd.DataFrame({'token_id':token_id_list,'second_list_dt':second_list_dt}) print("N art re-listed:", second_list_df.token_id.nunique()) tmp = pd.merge(bidding_df, second_list_df, how='left',on='token_id') tmp['second_list_dt'] = tmp.second_list_dt.fillna(datetime.strptime('2021-9-28','%Y-%m-%d')) print("N art resold:", tmp[tmp.bidding_dt >tmp.second_list_dt].token_id.nunique()) tmp = tmp[tmp.bidding_dt < tmp.second_list_dt] # retain the primary art bids bidding_df = copy.deepcopy(tmp) #### # note the listing also shows re-selling dates # for this we only filter the primary market #### first_list_df = listing_df.groupby('token_id').list_dt.min().to_frame() first_list_df['token_id'] = first_list_df.index first_list_df.index = range(len(first_list_df)) first_list_df = pd.merge(first_list_df,listing_df, how='left', on=['token_id','list_dt']) # retain the first listing date listing_df = copy.deepcopy(first_list_df) final_bid_df = bidding_df.groupby('token_id').bidding_dt.max().to_frame() final_bid_df['token_id'] = final_bid_df.index final_bid_df.index = range(len(final_bid_df)) final_bid_df['final_d_bidding'] = final_bid_df.bidding_dt.apply(lambda x: x.date()) final_bid_df['final_t_bidding'] = final_bid_df.bidding_dt.apply(lambda x: datetime.strftime(x, '%H:%M')) final_bid_df.columns = ['final_dt_bidding','token_id','final_d_bidding','final_t_bidding'] max_bid_df = bidding_df.groupby('token_id').cost_at_time.max().to_frame() max_bid_df['art'] = max_bid_df.index max_bid_df.index = range(len(max_bid_df)) max_bid_df.columns = ['selling_price_usd','token_id'] max_bid_df_2 = bidding_df.groupby('token_id').bidding_amt.max().to_frame() max_bid_df_2['art'] = max_bid_df_2.index max_bid_df_2.index = range(len(max_bid_df_2)) max_bid_df_2.columns = ['selling_price_eth','token_id'] max_bid_df = pd.merge(max_bid_df, max_bid_df_2, how='inner') max_bid_df = pd.merge(max_bid_df, listing_df[['token_id','list_dt','creator']]) max_bid_df =
pd.merge(max_bid_df, final_bid_df[['token_id','final_t_bidding','final_d_bidding','final_dt_bidding']])
pandas.merge
#!/usr/bin/env python # coding: utf-8 ''' s0_copyAttr.py Copies attributes from Wei's request, e.g. ACCTYPE (accident type) Sorts dataframe attributes in the pre-defined order ''' import os import pandas as pd from collections import defaultdict from s0_xlsx2csv import convert_xlsx2csv def match(first, second): """ Tell if two strings match, regardless of letter capitalization input ----- first : string first string second : string second string output ----- flag : bool if the two strings are approximately the same """ if len(first) != len(second): return False for s in range(len(first)): fir = first[s] sec = second[s] if fir.lower() != sec and fir.upper() != sec: return False return True def find_match(col, ref_list): """ Tell if a string col has an approximate match in ref_list input ----- col : string the string to be searched for ref_list : array_like the list where the search takes place output ----- If there is a match in the list for the col """ for ref_col in ref_list: if match(col, ref_col): if col == 'ACCTYPE': print(ref_col) return True return False def rename_col(col, ref_list): """ find the match and rename the col to the matched in the ref_list input ----- col : string the string to be searched for ref_list : array_like the list where the search takes place output ----- remapped name """ for ref_col in ref_list: if match(col, ref_col): return ref_col return None def read_defined_order(request_form='../yin_hsis_data_request.xlsx'): """ Read the request form and the pre-defined ordered list of attributes input ----- request_form : string the data request form made by Shuyi output ----- attributes : dic of array_like dictionary of ordered attribute lists for each file """ attributes = {} for tab in ['acc', 'curv', 'grad', 'occ', 'peds', 'road', 'veh']: curr =
pd.read_excel(request_form, tab)
pandas.read_excel
from datetime import datetime from functools import reduce import logging from multiprocessing import cpu_count from multiprocessing import Pool import os from bs4 import BeautifulSoup import urllib import pandas as pd import numpy as np NCORES = cpu_count() logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.DEBUG) def retrieve_general_data(url_page): """Scraping items from search page. :param url_page: url of webpage to make the scraping. :type url_page: str :return: Dataframe with information of each item :rtype: pandas.DataFrame :Example: >>> from scraping_details import retrieve_general_data >>> url_page = 'https://www.infocasas.com.uy/venta/inmuebles/montevideo/pagina3' >>> retrieve_general_data(url_page) """ logging.debug('%s', url_page) url_base = '/'.join(url_page.split('/')[:3]) try: page = urllib.request.urlopen(url_page) except urllib.error.HTTPError as e: print('HTTPError: {}'.format(e.code)) return pd.DataFrame([]) except urllib.error.URLError as e: print('URLError: {}'.format(e.reason)) return pd.DataFrame([]) soup = BeautifulSoup(page, 'html.parser') next_page = (soup.find('div', attrs={'id': 'paginado'}) .find('a', attrs={'class': 'next'})) if next_page and (url_page < next_page.attrs['href']): result = pd.DataFrame({}) else: table = soup.find_all('div', attrs={'class': 'propiedades-slider'}) neighborhood = [ [k.text for k in p.find_all('p')] for t in table for p in t.find_all('div') if 'singleLineDots' in p['class'] ] price = [p.text.split()[-1] for t in table for p in t.find_all('div') if 'precio' in p['class']] desc = [[k.text for k in p.find_all('p')] for t in table for p in t.find_all('div') if 'inDescription' in p['class']] desc = [k[0] for k in desc] details = [[d.find_all('span')[0].text for d in p.find_all('div')] for t in table for p in t.find_all('div') if 'contentIcons' in p['class']] details = pd.DataFrame(details, columns=['rooms', 'bathrooms', 'area_m2']) data_id = [k.get('data-id', '') for k in table] data_idproject = [k.get('data-idproyecto', '') for k in table] link = [url_base + k.find('a')['href'] for k in table] proyecto_label = [ k.find(class_='proyectoLabel').get_text() if k.find( class_='proyectoLabel') else None for k in table] df = pd.DataFrame(neighborhood, columns=['neighborhood', 'type']) df['price'] = price df['desc'] = desc df['url'] = link df['id'] = data_id df['idproject'] = data_idproject df['project_label'] = proyecto_label df['page'] = url_page result = pd.concat([details, df], axis=1) return result def retrieve_property_details(url_page): """Scraping details of a item from its web page. :param url_page: url of webpage to make the scraping. :type url_page: str :return: Dataframe with information of each item :rtype: pandas.DataFrame :Example: >>> from scraping_details import retrieve_property_details >>> url_page = 'https://www.infocasas.com.uy/venta-edificio-o-local-jacinto-vera-ideal-colegios-o-empresa-1554m/185865494?v' >>> retrieve_property_details(url_page) """ logging.debug('%s', url_page) try: page = urllib.request.urlopen(url_page) except urllib.error.HTTPError as e: print('HTTPError: {}'.format(e.code)) return pd.Series({'uri': url_page}) except urllib.error.URLError as e: print('URLError: {}'.format(e.reason)) return pd.Series({'uri': url_page}) soup = BeautifulSoup(page, 'html.parser') ficha_tecnica = soup.find_all(class_='ficha-tecnica') amenities = soup.find_all(id='amenities') description = soup.find(id='descripcion') agency = soup.find('p', class_='titulo-inmobiliaria') price = soup.find('p', class_='precio-final') title = soup.find('h1', class_='likeh2 titulo one-line-txt') kind = soup.find('p', class_='venta') # visitation = soup.find_all(class_='allContentVisitation') details = {item.find('p').get_text()[:-1].replace(' ', '_'): item.find('div').get_text() for item in ficha_tecnica[0].find_all(class_='lista')} if ficha_tecnica else {} details['extra'] = ','.join( [key.find('p').get_text() for key in amenities[0].find_all(class_='lista active')]) if amenities else '' details['descripcion'] = '. '.join([p.get_text() for p in description.find_all('p')]) if description else '' details['url'] = url_page details['inmobiliaria'] = agency.get_text() if agency else '' details['precio'] = price.get_text() if price else '' details['titulo_publicacion'] = title.get_text() if title else '' details['tipo_propiedad'] = kind.get_text() if kind else '' return
pd.Series(details)
pandas.Series
import thunderbolt import unittest from unittest.mock import patch from mock import MagicMock from contextlib import ExitStack import pandas as pd from thunderbolt.client.local_directory_client import LocalDirectoryClient from thunderbolt.client.gcs_client import GCSClient from thunderbolt.client.s3_client import S3Client class TestThunderbolt(unittest.TestCase): def setUp(self): def get_tasks(): return [] module_path = 'thunderbolt.client' with ExitStack() as stack: for module in ['local_directory_client.LocalDirectoryClient', 'gcs_client.GCSClient', 's3_client.S3Client']: stack.enter_context(patch('.'.join([module_path, module, 'get_tasks']), side_effect=get_tasks)) self.tb = thunderbolt.Thunderbolt(None, use_cache=False) def test_get_client(self): source_workspace_directory = ['s3://', 'gs://', 'gcs://', './local', 'hoge'] source_filters = [] source_tqdm_disable = False target = [S3Client, GCSClient, GCSClient, LocalDirectoryClient, LocalDirectoryClient] for s, t in zip(source_workspace_directory, target): output = self.tb._get_client(s, source_filters, source_tqdm_disable, False) self.assertEqual(type(output), t) def test_get_tasks_dic(self): tasks_list = [{ 'task_name': 'task', 'last_modified': 'last_modified_2', 'task_params': 'task_params_1', 'task_hash': 'task_hash_1', 'task_log': 'task_log_1' }, { 'task_name': 'task', 'last_modified': 'last_modified_1', 'task_params': 'task_params_1', 'task_hash': 'task_hash_1', 'task_log': 'task_log_1' }] target = { 0: { 'task_name': 'task', 'last_modified': 'last_modified_1', 'task_params': 'task_params_1', 'task_hash': 'task_hash_1', 'task_log': 'task_log_1' }, 1: { 'task_name': 'task', 'last_modified': 'last_modified_2', 'task_params': 'task_params_1', 'task_hash': 'task_hash_1', 'task_log': 'task_log_1' } } output = self.tb._get_tasks_dic(tasks_list=tasks_list) self.assertDictEqual(output, target) def test_get_task_df(self): self.tb.tasks = { 'Task1': { 'task_name': 'task_name_1', 'last_modified': 'last_modified_1', 'task_params': 'task_params_1', 'task_hash': 'task_hash_1', 'task_log': 'task_log_1' } } target = pd.DataFrame({ 'task_id': ['Task1'], 'task_name': ['task_name_1'], 'last_modified': ['last_modified_1'], 'task_params': ['task_params_1'], 'task_hash': ['task_hash_1'], 'task_log': ['task_log_1'] }) output = self.tb.get_task_df(all_data=True) pd.testing.assert_frame_equal(output, target) target = pd.DataFrame({ 'task_id': ['Task1'], 'task_name': ['task_name_1'], 'last_modified': ['last_modified_1'], 'task_params': ['task_params_1'], }) output = self.tb.get_task_df(all_data=False)
pd.testing.assert_frame_equal(output, target)
pandas.testing.assert_frame_equal
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24:
pd.Timestamp("2013-05-25 00:00:00")
pandas.Timestamp
import numpy as np import pandas as pd import seaborn as sns; sns.set(style="white", color_codes=True) import matplotlib.pyplot as plt import os import sys if not os.path.exists('input_file'): print('*'*30) print('Run this Python code in the outputs directory \n E.g. python ../make_joint_distribution_plots.py') print('*'*30) sys.exit(0) batch_col = 0 for line in open('input_file'): if not (line[0] == '#' or line == '\n'): if line.split()[0].upper() == 'Data_file'.upper(): Data_filename = line.split()[1].rstrip(); if line.split()[0].upper() == 'File_format'.upper(): id, age_col, d_age_col, F_col, dF_col, Strat_col = int(line.split()[1]),int(line.split()[2]),int(line.split()[3]),int(line.split()[4]), int(line.split()[5]), int(line.split()[6]) if line.split()[0].upper() == 'Intensity_prior'.upper(): I_min,I_max = float(line.split()[1]),float(line.split()[2]) if line.split()[0].upper() == 'True_data'.upper(): true_behaviour_file = line.split()[1] if line.split()[0].upper() == 'Plotting_intensity_range'.upper(): I_min,I_max = float(line.split()[1]),float(line.split()[2]) if line.split()[0].upper() == 'Batch_generate_joint_distributions'.upper(): batch_col = int(line.split()[1]) if batch_col == 0: print('Batch column not specified in inputfile') sys.exit(0) # Here is the filename of the (noisy) data file filename = os.path.join(os.pardir,Data_filename) # Number of bins for plotting num_bins=30 # load the data data = np.loadtxt(filename,usecols=(age_col, d_age_col, F_col, dF_col, batch_col), unpack=False, comments='#') label = np.loadtxt(filename,usecols=(id), unpack=False, comments='#',dtype=np.str) for index in range(0,data.shape[0]): if data[index,4] == 1: #make a plot print("Making joint plot for sample " + str(index)) noisy_pt = [data[index-1,0], data[index-1,2]] errs = [data[index-1,1], data[index-1,3]] # load the (true) data file if available if 'true_behaviour_file' in locals(): data = np.loadtxt(os.path.join(os.pardir,true_behaviour_file), usecols=(0,2)) true_pt = [data[index-1,0], data[index-1,1]] # load the relevant joint distribution file dist = np.loadtxt('Joint_distribution_data/Sample_'+str('{:04}'.format(index))+'.dat') joint_data =
pd.DataFrame(data=dist,columns=["age","intensity"])
pandas.DataFrame
import datetime import logging import pathlib import typing import xml.parsers.expat from dataclasses import dataclass from multiprocessing.dummy import Pool as ThreadPool import pandas as pd import pyetrade import pytz import requests.exceptions from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type, ) log = logging.getLogger(__name__) VALID_INCREMENTS = [1, 2.5, 5, 10, 50, 100] PUT_INFO_TO_INCLUDE = [ "bid", "ask", "lastPrice", "volume", "openInterest", "OptionGreeks", "strikePrice", "symbol", "optionType", "netChange", ] @dataclass class MarketData: ticker: str company_name: str market_price: float high_52: float low_52: float percentile_52: float beta: float next_earnings_date: str class OptionsManager: def __init__( self, consumer_key: str, consumer_secret: str, oauth_token: str, oauth_secret: str, ): self.consumer_key = consumer_key self.consumer_secret = consumer_secret self.oauth_token = oauth_token self.oauth_secret = oauth_secret self.market = pyetrade.ETradeMarket( self.consumer_key, self.consumer_secret, self.oauth_token, self.oauth_secret, dev=False, ) self.accounts = pyetrade.ETradeAccounts( self.consumer_key, self.consumer_secret, self.oauth_token, self.oauth_secret, dev=False, ) def get_csv_df(self): sector_path = pathlib.Path(__file__).parent / "data" / "sectors.csv" csv_df =
pd.read_csv(sector_path)
pandas.read_csv
# Load libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import random from sklearn import linear_model from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import train_test_split, cross_val_score, KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error # Init settings from sklearn.neighbors import KNeighborsRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import LabelEncoder from sklearn.svm import SVR, LinearSVR from sklearn.tree import DecisionTreeRegressor seed = 309 random.seed(seed) np.random.seed(seed) train_test_split_test_size = 0.3 # load data def load_part_one(): df = pd.read_csv("../../data/Part 1 - regression/diamonds.csv") return df def data_preprocess(data): """ Data preprocess: 1. Split the entire dataset into train and test 2. Split outputs and inputs 3. Standardize train and test 4. Add intercept dummy for computation convenience :param data: the given dataset (format: panda DataFrame) :return: train_data train data contains only inputs train_labels train data contains only labels test_data test data contains only inputs test_labels test data contains only labels train_data_full train data (full) contains both inputs and labels test_data_full test data (full) contains both inputs and labels """ # Categorical conversion lb_make = LabelEncoder() data['cut'] = lb_make.fit_transform(data['cut']) data['color'] = lb_make.fit_transform(data['color']) data['clarity'] = lb_make.fit_transform(data['clarity']) # Split the data into train and test train_data, test_data = train_test_split(data, test_size=train_test_split_test_size) # Pre-process data (both train and test) train_data_full = train_data.copy() train_data = train_data.drop(["price"], axis=1) train_data = train_data.drop(["depth"], axis=1) train_data = train_data.drop(["table"], axis=1) train_data = train_data.drop(["Unnamed: 0"], axis=1) train_labels = train_data_full["price"] test_data_full = test_data.copy() test_data = test_data.drop(["price"], axis=1) test_data = test_data.drop(["depth"], axis=1) test_data = test_data.drop(["table"], axis=1) test_data = test_data.drop(["Unnamed: 0"], axis=1) test_labels = test_data_full["price"] # Standardize the inputs train_mean = train_data.mean() train_std = train_data.std() train_data = (train_data - train_mean) / train_std test_data = (test_data - train_mean) / train_std # Tricks: add dummy intercept to both train and test train_data['intercept_dummy'] =
pd.Series(1.0, index=train_data.index)
pandas.Series
import pandas as pd import matplotlib.pyplot as plt import kmertools as kt transitions_path = '/Users/simonelongo/Documents/QuinlanLabFiles/kmer_data/results/kp_21oct2019/bp_counts_per3mer.csv' counts_path = '/Users/simonelongo/Documents/QuinlanLabFiles/kmer_data/data/ref_genome_kmer_freq.csv' counts = pd.read_csv(counts_path, index_col=0) counts.columns = ['count'] transitions = pd.read_csv(transitions_path, index_col=0) merged = transitions.join(counts, how='inner') freq = merged.iloc[:, 0:4].div(merged['count'], axis=0) flank_count_AG = pd.DataFrame() flank_count_CT =
pd.DataFrame()
pandas.DataFrame
import glob import pandas as pd import numpy as np files = glob.glob("*.csv") print(len) results =[] for file in files: df = pd.read_csv(file,index_col=None,header=None,dtype=float) results.append([file.replace("Gridsearch_","").replace(".csv","")] +df.iloc[int(df[5].idxmax()),:].values.tolist()) df1 = pd.DataFrame(results) len(df) files = glob.glob("results_full/*.csv") results =[] for file in files: df = pd.read_csv(file,index_col=None,header=None,dtype=float) results.append([file.replace("Gridsearch_","").replace(".csv","")] +df.iloc[int(df[5].idxmax()),:].values.tolist()) df2 = pd.DataFrame(results) results = [] for one,two in zip(df1.values,df2.values): if one[-1] < two[-1]: results.append(two) else: results.append(one) df =
pd.DataFrame(results)
pandas.DataFrame
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays.numpy_ import PandasDtype from .base import BaseExtensionTests class BaseSetitemTests(BaseExtensionTests): def test_setitem_scalar_series(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[0] = data[1] assert data[0] == data[1] def test_setitem_sequence(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[[0, 1]] = [data[1], data[0]] assert data[0] == original[1] assert data[1] == original[0] def test_setitem_sequence_mismatched_length_raises(self, data, as_array): ser = pd.Series(data) original = ser.copy() value = [data[0]] if as_array: value = data._from_sequence(value) xpr = "cannot set using a {} indexer with a different length" with pytest.raises(ValueError, match=xpr.format("list-like")): ser[[0, 1]] = value # Ensure no modifications made before the exception self.assert_series_equal(ser, original) with pytest.raises(ValueError, match=xpr.format("slice")): ser[slice(3)] = value self.assert_series_equal(ser, original) def test_setitem_empty_indxer(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[np.array([], dtype=int)] = [] self.assert_equal(data, original) def test_setitem_sequence_broadcasts(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[[0, 1]] = data[2] assert data[0] == data[2] assert data[1] == data[2] @pytest.mark.parametrize("setter", ["loc", "iloc"]) def test_setitem_scalar(self, data, setter): arr = pd.Series(data) setter = getattr(arr, setter) operator.setitem(setter, 0, data[1]) assert arr[0] == data[1] def test_setitem_loc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.loc[0, "B"] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_loc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_loc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.iloc[0, 1] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_iloc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.iloc[10, 0] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.iloc[10, 1] = data[1] assert df.loc[10, "B"] == data[1] @pytest.mark.parametrize( "mask", [ np.array([True, True, True, False, False]), pd.array([True, True, True, False, False], dtype="boolean"), pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"), ], ids=["numpy-array", "boolean-array", "boolean-array-na"], ) def test_setitem_mask(self, data, mask, box_in_series): arr = data[:5].copy() expected = arr.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[mask] = data[0] self.assert_equal(expected, arr) def test_setitem_mask_raises(self, data, box_in_series): # wrong length mask = np.array([True, False]) if box_in_series: data = pd.Series(data) with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] mask = pd.array(mask, dtype="boolean") with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] def test_setitem_mask_boolean_array_with_na(self, data, box_in_series): mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") mask[:3] = True mask[3:5] = pd.NA if box_in_series: data = pd.Series(data) data[mask] = data[0] assert (data[:3] == data[0]).all() @pytest.mark.parametrize( "idx", [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])], ids=["list", "integer-array", "numpy-array"], ) def test_setitem_integer_array(self, data, idx, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr =
pd.Series(arr)
pandas.Series
import random from remi import App, start import os import remi.gui as tk from creators import C import datetime import matplotlib.pyplot as plt import seaborn as sns from getbankdata import GetBankData import glob import pandas as pd from user import User from threading import Thread from run_saved_model import load_test_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' pd.options.display.max_rows = 500 pd.options.display.max_columns = 40 ''' MAIN_V4.PY Main_v2 was last stable build. Main_v3 was copy of 2, but was not being tracked on git, 4 is created. - Swap DR with CR in Kotak - Check Dropdown of Banklist feasibility and add Kotak - Modify code to add new frame for filtering options - Use the choosefile to choose file instead of hardcoded path - Add Axis Bank - Add Kotak Bank - Add HDFC - Clean out Directory - Retrain Model - Add Filters to view graphs on transaction TYPES and PRED_CAT + Do the hashlib for password or pickling + Revert to not having the entire code in main but modularize it. ''' class BankStatementAnalyzer(App): def __init__(self, *args): super(BankStatementAnalyzer, self).__init__(*args, static_file_path={'path': './resx/'}) self.bank_list = ['Select Bank', 'Axis Bank', 'HDFC Bank', 'Kotak Mahindra Bank', 'ICICI Bank'] self.date = datetime.date.today().strftime('%d-%m-%Y') self.time = datetime.datetime.now().time() self.model_name = 'model_ann_98.h5' self.cv_name = 'vectorizer.sav' self.le_name = 'target_label_encoder.sav' def idle(self): pass def main(self): '''All the inits will happen in main function if the entire GUI is being rendered from the BankStatementAnalyzer class, else the Init of the new class can be created as a separte py file and it's class must be initialized in this main, with self as its argument.''' self.date = datetime.date.today().strftime('%d-%m-%Y') self.time = datetime.datetime.now().time() self.listview = tk.ListView() self.frame_left = tk.Container() self.frame_filter = tk.Container() self.frame_right = tk.Container() self.frame_header = tk.Container() self.frame_right_2 = tk.Container() self.master_user = pd.DataFrame() self.window = tk.Container() self.window.css_background_color = "azure" self.window.css_height = "100%" self.window.css_width = "100%" self.window.css_left = "0.0px" self.window.css_top = "0.0px" self.window.css_position = "absolute" self.frame_header_color = 'cornflowerblue' self.frame_left_color = 'ivory' self.frame_filter_color = 'whitesmoke' self.frame_footer_left_color = 'honeydew' self.frame_right_color = 'whitesmoke' self.frame_right_2_color = 'seashell' self.frame_login_register_color = 'azure' self.selected_bank = [] self.registry_info = {} self.login_info = {} self.dt = pd.DataFrame() self.dx = pd.DataFrame() self.dr =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Utility functions for the RBM Created on Fri May 10 2019 @author: <NAME>, IST version: 1.0 """ import numpy as np import pandas as pd import subprocess import torch from torch.utils.data import SubsetRandomSampler import argparse def parse_general_file(filepath, n_features, n_time_points, task, input_feat_values=0, ref_col_name=0, sep_symbol=',', label_column=-1): '''Parse a general file to comply to the default format to be used in the RBM-tDBN model. Parameters ---------- filepath : String Path of the file to be parsed. n_features: int Number of features of the dataset. n_time_points: int Number of time points in the dataset. task: char Task to be performed by the model, learning, classification or prediction. Both classification and prediction require the existence of labels. input_feat_values: list, default 0 Values of the different features present in the dataset. ref_col_name : string, default 0 Name of the reference column, 'subject_id' if possible. sep_symbol: char, default ',' Separation symbol on the file to be parsed. label_column: int, default -1 Column referring to the labels. Returns ------- df : dataframe Dataframe of the parsed file. labels: list Different labels present on the dataset. feat_values: list Set of values taken by the features present in the dataset. ''' if input_feat_values == 0: feat_values = [] label_values = [] for i in range(n_features): feat_values.append([]) else: feat_values=input_feat_values if ref_col_name == 0: df = pd.read_csv(filepath+'.csv', index_col=False, sep=sep_symbol, header=0) else: df = pd.read_csv(filepath+'.csv', index_col=ref_col_name, sep=sep_symbol,header=0) df.index.name = 'subject_id' labels = pd.DataFrame(data=df.values[:,label_column], # values index=df.index, # 1st column as index columns=['label']) labels.index.name = 'subject_id' if task == 'c': df.rename(columns={df.columns[label_column]: 'label'}, inplace=True) labels.index.name = 'subject_id' df.drop(columns=['label'], inplace=True) i=1 time=0 for y in range(len(df.columns)): df.rename(columns={df.columns[y]: 'X'+str(i)+'__'+str(time)}, inplace=True) i+=1 if i >= n_features+1: i=0 time+=1 i=0 for x in df: for y in range(len(df[x])): if input_feat_values == 0: if df[x][y] not in feat_values[i]: feat_values[i].append(df[x][y]) df[x][y]=feat_values[i].index(df[x][y]) i+=1 if i >= n_features: i=0 if task == 'c': for y in range(len(labels)): if labels['label'][y] not in label_values: label_values.append(labels['label'][y]) labels['label'][y] = label_values.index(labels['label'][y]) labels.to_csv(filepath+'_target.csv',quoting=1) df.to_csv(filepath+'_parsed.csv',quoting=1) outF = open(filepath+'_dic.txt', "w") for i in range(1, n_features+1): outF.write('Feature ' + str(i) + ' has ' + str(len(feat_values[i])) + ' different values\n') for j in range(len(feat_values[i])): outF.write(str(j) + ': ' + str(feat_values[i][j]) + '\n') if task=='c': outF.write('Labels have ' + str(len(label_values)) + ' different values\n') for j in range(len(label_values)): outF.write(str(j) + ': ' + str(label_values[j]) + '\n') outF.close() return df, labels, feat_values def create_parser(*args): ''' Creates a parser to analyze information given by the user when running the program from terminal. Returns ---------- parser: argparse.ArgumentParser Parser which will be use to extract the information. ''' parser = argparse.ArgumentParser() parser.add_argument('task') parser.add_argument('filepath') parser.add_argument('-tdbnp','--tdbn_parents', type=int, default=1, help='set the number of parent nodes to be considered by tDBN') parser.add_argument('-hu','--hidden_units', type=int, default=3, help='set the number of hidden units') parser.add_argument('-bs','--batch_size_ratio', type=float, default = 0.1, help='set the batch size ratio') parser.add_argument('-cd','--contrastive_divergence', type=int, default=1, help='set k in cd-k') parser.add_argument('-e','--epochs', type=int, default = 100, help='set the number of epochs') parser.add_argument('-lr','--learning_rate', type=float, default = 0.05, help='set the learning rate') parser.add_argument('-wd','--weight_decay', type=float, default = 1e-4, help='set the weight decay') parser.add_argument('-tsr','--test_set_ratio', type=float, default = 0.2, help='set the ratio for the test set') parser.add_argument('-vsr','--validation_set_ratio', type=float, default = 0.1, help='set the ratio for the validation set') parser.add_argument('-pcd','--persistent_cd', type=bool, default = False, help='activate persistent contrastive divergence') parser.add_argument('-v','--version',action='version', version='%(prog)s 2.0') parser.add_argument('-vb','--verbose',dest='verbose', default = False, action='store_true',help='enables additional printing') parser.add_argument('-nr','--number_runs', type=int, default = 10, help='number of repetitions') parser.add_argument('-vr','--validation_runs', type=int, default = 5, help='number of repetitions on the validation cycle') parser.add_argument('-er','--extraction_runs', type=int, default = 5, help='number of extractions in each validation cycle') parser.add_argument('-nrbm','--no_rbm', type=bool, default = False, help='if True, RBM is not used') return parser def count_labels(filepath): ''' Reads the file containing the labels and returns some information. Parameters ---------- filepath : string Path to the label file. Returns ---------- labels: dataframe Dataframe containing all the label information. label_values: list List with the different label values. label_indices: Different subject indices corresponding to each label. ''' labels = pd.read_csv(filepath + '_target.csv', index_col= 'subject_id', header=0) label_values = [] label_indices = [] for y in labels.index: if labels['label'][y] not in label_values: label_values.append(labels['label'][y]) label_indices.append([]) label_indices[label_values.index(labels['label'][y])].append(y) else: label_indices[label_values.index(labels['label'][y])].append(y) return labels, label_values, label_indices def parse_file_one_hot(df, n_features, n_time_points, labels=None, n_diff = None): ''' Performs one-hot encoding on a dataset. Parameters ---------- df : dataframe Dataframe with the dataset to be encoded. n_features: int Number of features. n_time_points: int Number of time points. labels: list, default None Labels corresponding to each subject. n_diff: list, default None Different values for each feature. Returns ---------- labels: dataframe Dataframe containing all the label information. label_values: list List with the different label values. label_indices: Different subject indices corresponding to each label. ''' if n_diff is None: v_max=np.zeros(n_features) v_min=np.zeros(n_features) i=0 for x in df: if max(df[x]) > v_max[i]: v_max[i] = max(df[x]) i+=1 if i >= n_features: i=0 v_max = v_max.astype(int) v_min = v_min.astype(int) v_diff = v_max-v_min #different values for the features v_diff = v_diff.astype(int) n_diff = (v_diff + 1) subjects = df.shape[0] encoded_data = np.zeros((subjects*n_time_points,sum(n_diff))) ext_labels = np.zeros((subjects*n_time_points)) col_aux=0 time=0 for x in df: #iterate on the features and time for y in df.index: #iterate on the subjects encoded_data[subjects*time+y-df.index[0]][sum(p for p in n_diff[0:col_aux])+df[x][y].astype(int)]=1 if labels is not None: ext_labels[subjects*time+y-df.index[0]] = labels[y-df.index[0]] #training_data[subjects*time_step+y][sum(p for p in n_diff[0:col_aux])+df[x][y]]=1 col_aux+=1 if col_aux >= n_features: col_aux = 0 time +=1 return encoded_data, n_diff, ext_labels def create_train_sets(dataset, label_indices=0, test_train_ratio=0.2, validation_ratio=0.1, batch_size=32, get_indices=True, random_seed=42, shuffle_dataset=True, label_ratio = False): '''Distributes the data into train, validation and test sets and returns the respective data loaders. Parameters ---------- dataset : torch.utils.data.Dataset Dataset object which will be used to train, validate and test the model. test_train_ratio : float, default 0.2 Number from 0 to 1 which indicates the percentage of the data which will be used as a test set. The remaining percentage is used in the training and validation sets. validation_ratio : float, default 0.1 Number from 0 to 1 which indicates the percentage of the data from the training set which is used for validation purposes. A value of 0.0 corresponds to not using validation. batch_size : integer, default 32 Defines the batch size, i.e. the number of samples used in each training iteration to update the model's weights. get_indices : bool, default True If set to True, the function returns the dataloader objects of the train, validation and test sets and also the indices of the sets' data. Otherwise, it only returns the data loaders. random_seed : integer, default 42 Seed used when shuffling the data. shuffle_dataset : bool, default True If set to True, the data of which set is shuffled. label_indices: array, default 0 Data indices for the different labels. label_ratio: bool, default False Whether to maintain or not the each label's ratio when creating the sets. Returns ------- train_data : torch.Tensor Data which will be used during training. val_data : torch.Tensor Data which will be used to evaluate the model's performance on a validation set during training. test_data : torch.Tensor Data which will be used to evaluate the model's performance on a test set, after finishing the training process. ''' # Create data indices for training and test splits if label_ratio: test_split = [] val_split = [] for label in range(len(label_indices)): test_split.append([]) val_split.append([]) test_split[label] = int(np.floor(test_train_ratio * len(label_indices[label]))) val_split[label] = int(np.floor(validation_ratio * (1-test_train_ratio) * len(label_indices[label]))) if shuffle_dataset: #np.random.seed(random_seed) for label in range(len(label_indices)): np.random.shuffle(label_indices[label]) for label in range(len(label_indices)): if label == 0: train_indices = label_indices[label][test_split[label]+val_split[label]:] val_indices = label_indices[label][test_split[label]:test_split[label]+val_split[label]] test_indices = label_indices[label][:test_split[label]] else: train_indices.extend(label_indices[label][test_split[label]:]) val_indices.extend(label_indices[label][test_split[label]:test_split[label]+val_split[label]]) test_indices.extend(label_indices[label][:test_split[label]]) if shuffle_dataset: np.random.shuffle(test_indices) np.random.shuffle(train_indices) np.random.shuffle(val_indices) else: dataset_size = len(dataset) indices = list(range(dataset_size)) test_split = int(np.floor(test_train_ratio * dataset_size)) if shuffle_dataset: #np.random.seed(random_seed) np.random.shuffle(indices) train_indices, test_indices = indices[test_split:], indices[:test_split] # Create data indices for training and validation splits train_dataset_size = len(train_indices) val_split = int(np.floor(validation_ratio * train_dataset_size)) if shuffle_dataset: #np.random.seed(random_seed) np.random.shuffle(train_indices) np.random.shuffle(test_indices) train_indices, val_indices = train_indices[val_split:], train_indices[:val_split] # Create data samplers train_sampler = SubsetRandomSampler(train_indices) val_sampler = SubsetRandomSampler(val_indices) test_sampler = SubsetRandomSampler(test_indices) # Create dataloaders for each set, which will allow loading batches train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) val_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=val_sampler) test_dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=test_sampler) if get_indices: # Return the data loaders and the indices of the sets return train_dataloader, val_dataloader, test_dataloader, train_indices, val_indices, test_indices else: # Just return the data loaders of each set return train_dataloader, val_dataloader, test_dataloader def weight_analyzer(weights, feat_values, threshold): ''' Analyze the weights of the restriced Boltzmann machine Parameters ---------- weights : list Weights learned for the RBM feat_values : list Values of each feature, used for representation and helping the user interpretation. threshold: float Percentage of the maximum in order to consider that a feature is important for that hidden unit. ''' n_features = len(feat_values) print('Units in the same group have higher probability of being active together,'+ 'while units in different groups have lower probability of being active together \n') max_weight = float(np.absolute(weights).max()) for j in range(0,weights.shape[1]): pos_result = [] neg_result = [] #max_weight = max(np.absolute(weights[:,j])) for i in range(0,weights.shape[0]): if np.absolute(weights[i,j]) > max_weight*threshold: if weights[i,j] > 0: pos_result.append(i) else: neg_result.append(i) print('\nH' + str(j)) print('+') for i in pos_result: print(str(i) + ': X' + str(i%n_features) + '=' + str(feat_values[i%n_features][int(np.floor(i/n_features))])) print('-') for i in neg_result: print(str(i) + ': X' + str(i%n_features) + '=' + str(feat_values[i%n_features][int(np.floor(i/n_features))])) def jarWrapper(*args): ''' Method used to run a Java program from a Python script and get its results. Returns ---------- ret: String Results given by the Java program executed. ''' process = subprocess.Popen(['java', '-jar']+list(args), stdout=subprocess.PIPE, stderr=subprocess.PIPE) ret = [] while process.poll() is None: line = process.stdout.readline() line = line.decode("utf-8") if line != '' and line.endswith('\n'): ret.append(line[:-1]) stdout, stderr = process.communicate() stdout = stdout.decode("utf-8") stderr = stderr.decode("utf-8") ret += stdout.split('\n') if stderr != '': ret += stderr.split('\n') ret.remove('') return ret def check_int(c): try: int(c) return True except ValueError: return False def parse_dic(filepath): dic = open(filepath+'_dic.txt','r') feat_values = [] for line in dic: if line[0] == '0': line_feat=[] feat_values.append(line_feat) value = line.split(': ')[1][:-1] line_feat.append(value) elif check_int(line[0]): value = line.split(': ')[1][:-1] line_feat.append(value) elif line[0] == 'L': break return feat_values def reverse_one_hot(data, feat_values): if len(data.shape)==2: ret=[[] for x in range(data.shape[0])] n_instances= data.shape[0] else: ret=[] n_instances= 1 i=0 for feature in feat_values: j=0 for value in feature: if n_instances > 1: for k in range(n_instances): if data[k][i*len(feature)+j] == 1: ret[k].append(value) else: if data[i*len(feature)+j] == 1: ret.append(value) j+=1 i+=1 return ret def parse_labels(filepath): df =
pd.read_csv(filepath+'_class.csv', index_col="subject_id", sep=',', header=0)
pandas.read_csv
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days']))
tm.assert_series_equal(expected, td * other)
pandas.util.testing.assert_series_equal
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result =
concat([df, df], axis=0)
pandas.concat
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 = Period('1Q05') self.assertEquals(i1, i2) lower = Period('1q05') self.assertEquals(i1, lower) i1 = Period('4Q1984') self.assertEquals(i1.year, 1984) lower = Period('4q1984') self.assertEquals(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEquals(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEquals(i1, i2) def test_freq_str(self): i1 = Period('1982', freq='Min') self.assert_(i1.freq[0] != '1') i2 = Period('11/30/2005', freq='2Q') self.assertEquals(i2.freq[0], '2') def test_to_timestamp(self): intv = Period('1982', freq='A') start_ts = intv.to_timestamp(which_end='S') aliases = ['s', 'StarT', 'BEGIn'] for a in aliases: self.assertEquals(start_ts, intv.to_timestamp(which_end=a)) end_ts = intv.to_timestamp(which_end='E') aliases = ['e', 'end', 'FINIsH'] for a in aliases: self.assertEquals(end_ts, intv.to_timestamp(which_end=a)) from_lst = ['A', 'Q', 'M', 'W', 'B', 'D', 'H', 'Min', 'S'] for i, fcode in enumerate(from_lst): intv = Period('1982', freq=fcode) result = intv.to_timestamp().to_period(fcode) self.assertEquals(result, intv) self.assertEquals(intv.start_time(), intv.to_timestamp('S')) self.assertEquals(intv.end_time(), intv.to_timestamp('E')) def test_properties_annually(self): # Test properties on Periods with annually frequency. a_date = Period(freq='A', year=2007) assert_equal(a_date.year, 2007) def test_properties_quarterly(self): # Test properties on Periods with daily frequency. qedec_date = Period(freq="Q-DEC", year=2007, quarter=1) qejan_date = Period(freq="Q-JAN", year=2007, quarter=1) qejun_date = Period(freq="Q-JUN", year=2007, quarter=1) # for x in range(3): for qd in (qedec_date, qejan_date, qejun_date): assert_equal((qd + x).qyear, 2007) assert_equal((qd + x).quarter, x + 1) def test_properties_monthly(self): # Test properties on Periods with daily frequency. m_date = Period(freq='M', year=2007, month=1) for x in range(11): m_ival_x = m_date + x assert_equal(m_ival_x.year, 2007) if 1 <= x + 1 <= 3: assert_equal(m_ival_x.quarter, 1) elif 4 <= x + 1 <= 6: assert_equal(m_ival_x.quarter, 2) elif 7 <= x + 1 <= 9: assert_equal(m_ival_x.quarter, 3) elif 10 <= x + 1 <= 12: assert_equal(m_ival_x.quarter, 4) assert_equal(m_ival_x.month, x + 1) def test_properties_weekly(self): # Test properties on Periods with daily frequency. w_date = Period(freq='WK', year=2007, month=1, day=7) # assert_equal(w_date.year, 2007) assert_equal(w_date.quarter, 1) assert_equal(w_date.month, 1) assert_equal(w_date.week, 1) assert_equal((w_date - 1).week, 52) def test_properties_daily(self): # Test properties on Periods with daily frequency. b_date = Period(freq='B', year=2007, month=1, day=1) # assert_equal(b_date.year, 2007) assert_equal(b_date.quarter, 1) assert_equal(b_date.month, 1) assert_equal(b_date.day, 1) assert_equal(b_date.weekday, 0) assert_equal(b_date.day_of_year, 1) # d_date = Period(freq='D', year=2007, month=1, day=1) # assert_equal(d_date.year, 2007) assert_equal(d_date.quarter, 1) assert_equal(d_date.month, 1) assert_equal(d_date.day, 1) assert_equal(d_date.weekday, 0) assert_equal(d_date.day_of_year, 1) def test_properties_hourly(self): # Test properties on Periods with hourly frequency. h_date = Period(freq='H', year=2007, month=1, day=1, hour=0) # assert_equal(h_date.year, 2007) assert_equal(h_date.quarter, 1) assert_equal(h_date.month, 1) assert_equal(h_date.day, 1) assert_equal(h_date.weekday, 0) assert_equal(h_date.day_of_year, 1) assert_equal(h_date.hour, 0) # def test_properties_minutely(self): # Test properties on Periods with minutely frequency. t_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) # assert_equal(t_date.quarter, 1) assert_equal(t_date.month, 1) assert_equal(t_date.day, 1) assert_equal(t_date.weekday, 0) assert_equal(t_date.day_of_year, 1) assert_equal(t_date.hour, 0) assert_equal(t_date.minute, 0) def test_properties_secondly(self): # Test properties on Periods with secondly frequency. s_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0, second=0) # assert_equal(s_date.year, 2007) assert_equal(s_date.quarter, 1) assert_equal(s_date.month, 1) assert_equal(s_date.day, 1) assert_equal(s_date.weekday, 0) assert_equal(s_date.day_of_year, 1) assert_equal(s_date.hour, 0) assert_equal(s_date.minute, 0) assert_equal(s_date.second, 0) def noWrap(item): return item class TestFreqConversion(TestCase): "Test frequency conversion of date objects" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='WK', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) assert_equal(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) assert_equal(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) assert_equal(ival_A.asfreq('M', 's'), ival_A_to_M_start) assert_equal(ival_A.asfreq('M', 'E'), ival_A_to_M_end) assert_equal(ival_A.asfreq('WK', 'S'), ival_A_to_W_start) assert_equal(ival_A.asfreq('WK', 'E'), ival_A_to_W_end) assert_equal(ival_A.asfreq('B', 'S'), ival_A_to_B_start) assert_equal(ival_A.asfreq('B', 'E'), ival_A_to_B_end) assert_equal(ival_A.asfreq('D', 'S'), ival_A_to_D_start) assert_equal(ival_A.asfreq('D', 'E'), ival_A_to_D_end) assert_equal(ival_A.asfreq('H', 'S'), ival_A_to_H_start) assert_equal(ival_A.asfreq('H', 'E'), ival_A_to_H_end) assert_equal(ival_A.asfreq('min', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('min', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('T', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('T', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('S', 'S'), ival_A_to_S_start) assert_equal(ival_A.asfreq('S', 'E'), ival_A_to_S_end) assert_equal(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) assert_equal(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) assert_equal(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) assert_equal(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) assert_equal(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) assert_equal(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) assert_equal(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='WK', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) assert_equal(ival_Q.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) assert_equal(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) assert_equal(ival_Q.asfreq('WK', 'S'), ival_Q_to_W_start) assert_equal(ival_Q.asfreq('WK', 'E'), ival_Q_to_W_end) assert_equal(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) assert_equal(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) assert_equal(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) assert_equal(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) assert_equal(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) assert_equal(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) assert_equal(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) assert_equal(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) assert_equal(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) assert_equal(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) assert_equal(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) assert_equal(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) assert_equal(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) assert_equal(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) assert_equal(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='WK', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) assert_equal(ival_M.asfreq('A'), ival_M_to_A) assert_equal(ival_M_end_of_year.asfreq('A'), ival_M_to_A) assert_equal(ival_M.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M.asfreq('WK', 'S'), ival_M_to_W_start) assert_equal(ival_M.asfreq('WK', 'E'), ival_M_to_W_end) assert_equal(ival_M.asfreq('B', 'S'), ival_M_to_B_start) assert_equal(ival_M.asfreq('B', 'E'), ival_M_to_B_end) assert_equal(ival_M.asfreq('D', 'S'), ival_M_to_D_start) assert_equal(ival_M.asfreq('D', 'E'), ival_M_to_D_end) assert_equal(ival_M.asfreq('H', 'S'), ival_M_to_H_start) assert_equal(ival_M.asfreq('H', 'E'), ival_M_to_H_end) assert_equal(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) assert_equal(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) assert_equal(ival_M.asfreq('S', 'S'), ival_M_to_S_start) assert_equal(ival_M.asfreq('S', 'E'), ival_M_to_S_end) assert_equal(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='WK', year=2007, month=1, day=1) ival_WSUN = Period(freq='WK', year=2007, month=1, day=7) ival_WSAT = Period(freq='WK-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='WK-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='WK-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='WK-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='WK-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='WK-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq='D', year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq='D', year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq='D', year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq='D', year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq='D', year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq='D', year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq='D', year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq='D', year=2007, month=1, day=1) ival_W_end_of_year = Period(freq='WK', year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq='WK', year=2007, month=3, day=31) ival_W_end_of_month = Period(freq='WK', year=2007, month=1, day=31) ival_W_to_A = Period(freq='A', year=2007) ival_W_to_Q = Period(freq='Q', year=2007, quarter=1) ival_W_to_M = Period(freq='M', year=2007, month=1) if Period(freq='D', year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq='A', year=2007) else: ival_W_to_A_end_of_year = Period(freq='A', year=2008) if Period(freq='D', year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=2) if Period(freq='D', year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=2) ival_W_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_W_to_B_end = Period(freq='B', year=2007, month=1, day=5) ival_W_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_W_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_W_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_W_to_T_end = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_W_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_W_to_S_end = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) assert_equal(ival_W.asfreq('A'), ival_W_to_A) assert_equal(ival_W_end_of_year.asfreq('A'), ival_W_to_A_end_of_year) assert_equal(ival_W.asfreq('Q'), ival_W_to_Q) assert_equal(ival_W_end_of_quarter.asfreq('Q'), ival_W_to_Q_end_of_quarter) assert_equal(ival_W.asfreq('M'), ival_W_to_M) assert_equal(ival_W_end_of_month.asfreq('M'), ival_W_to_M_end_of_month) assert_equal(ival_W.asfreq('B', 'S'), ival_W_to_B_start) assert_equal(ival_W.asfreq('B', 'E'), ival_W_to_B_end) assert_equal(ival_W.asfreq('D', 'S'), ival_W_to_D_start) assert_equal(ival_W.asfreq('D', 'E'), ival_W_to_D_end) assert_equal(ival_WSUN.asfreq('D', 'S'), ival_WSUN_to_D_start) assert_equal(ival_WSUN.asfreq('D', 'E'), ival_WSUN_to_D_end) assert_equal(ival_WSAT.asfreq('D', 'S'), ival_WSAT_to_D_start) assert_equal(ival_WSAT.asfreq('D', 'E'), ival_WSAT_to_D_end) assert_equal(ival_WFRI.asfreq('D', 'S'), ival_WFRI_to_D_start) assert_equal(ival_WFRI.asfreq('D', 'E'), ival_WFRI_to_D_end) assert_equal(ival_WTHU.asfreq('D', 'S'), ival_WTHU_to_D_start) assert_equal(ival_WTHU.asfreq('D', 'E'), ival_WTHU_to_D_end) assert_equal(ival_WWED.asfreq('D', 'S'), ival_WWED_to_D_start) assert_equal(ival_WWED.asfreq('D', 'E'), ival_WWED_to_D_end) assert_equal(ival_WTUE.asfreq('D', 'S'), ival_WTUE_to_D_start) assert_equal(ival_WTUE.asfreq('D', 'E'), ival_WTUE_to_D_end) assert_equal(ival_WMON.asfreq('D', 'S'), ival_WMON_to_D_start) assert_equal(ival_WMON.asfreq('D', 'E'), ival_WMON_to_D_end) assert_equal(ival_W.asfreq('H', 'S'), ival_W_to_H_start) assert_equal(ival_W.asfreq('H', 'E'), ival_W_to_H_end) assert_equal(ival_W.asfreq('Min', 'S'), ival_W_to_T_start) assert_equal(ival_W.asfreq('Min', 'E'), ival_W_to_T_end) assert_equal(ival_W.asfreq('S', 'S'), ival_W_to_S_start) assert_equal(ival_W.asfreq('S', 'E'), ival_W_to_S_end) assert_equal(ival_W.asfreq('WK'), ival_W) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq='B', year=2007, month=1, day=1) ival_B_end_of_year = Period(freq='B', year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq='B', year=2007, month=3, day=30) ival_B_end_of_month = Period(freq='B', year=2007, month=1, day=31) ival_B_end_of_week = Period(freq='B', year=2007, month=1, day=5) ival_B_to_A = Period(freq='A', year=2007) ival_B_to_Q = Period(freq='Q', year=2007, quarter=1) ival_B_to_M =
Period(freq='M', year=2007, month=1)
pandas.tseries.period.Period
# Provides code to perform multiclustering #TODO was just messing around, nothing crazy here from sklearn.cluster import KMeans import data_processing.dataUtils as dataUtils import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import pandas as pd pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.set_option
""" Function and classes used to identify barcodes """ from typing import * import pandas as pd import numpy as np import pickle import logging from sklearn.neighbors import NearestNeighbors # from pynndescent import NNDescent from pathlib import Path from itertools import groupby from pysmFISH.logger_utils import selected_logger from pysmFISH.data_models import Output_models from pysmFISH.errors import Registration_errors class simplify_barcodes_reference(): """Utility Class use to convert excels files with codebook info in smaller size pandas dataframe/parquet files to pass to dask workers during the processing. This utility function must be run before running the experiment analysis. The pipeline require the output of this function. """ def __init__(self, barcode_fpath: str): """Class initialization Args: barcode_fpath (str): Path to the xlsx file with the codebook """ self.barcode_fpath = Path(barcode_fpath) self.barcode_fname = self.barcode_fpath.stem @staticmethod def format_codeword(codeword: str): """[summary] Args: codeword (str): codeword representing a gene Returns: byte: codeword converted in byte representation """ str_num = codeword.split('[')[-1].split(']')[0] converted_codeword = np.array([int(el) for el in list(str_num)]).astype(np.int8) converted_codeword = converted_codeword.tobytes() return converted_codeword def convert_codebook(self): used_gene_codebook_df = pd.read_excel(self.barcode_fpath) # used_gene_codebook_df = pd.read_parquet(self.barcode_fpath) self.codebook_df = used_gene_codebook_df.loc[:,['Barcode','Gene']] self.codebook_df.rename(columns = {'Barcode':'Code'}, inplace = True) self.codebook_df.Code = self.codebook_df.Code.apply(lambda x: self.format_codeword(x)) self.codebook_df.to_parquet(self.barcode_fpath.parent / (self.barcode_fname + '.parquet')) def dots_hoods(coords: np.ndarray,pxl: int)->np.ndarray: """Function that calculate the coords of the peaks searching neighborhood for identifying the barcodes. Args: coords (np.ndarray): coords of the identified peaks pxl (int): size of the neighborhood in pixel Returns: np.ndarray: coords that define the neighborhood (r_tl,r_br,c_tl,c_tr) """ r_tl = coords[:,0]-pxl r_br = coords[:,0]+pxl c_tl = coords[:,1]-pxl c_tr = coords[:,1]+pxl r_tl = r_tl[:,np.newaxis] r_br = r_br[:,np.newaxis] c_tl = c_tl[:,np.newaxis] c_tr = c_tr[:,np.newaxis] chunks_coords = np.hstack((r_tl,r_br,c_tl,c_tr)) chunks_coords = chunks_coords.astype(int) return chunks_coords def extract_dots_images(barcoded_df: pd.DataFrame,registered_img_stack: np.ndarray, experiment_fpath: str, metadata: dict): """Function used to extract the images corresponding to a barcode after running the decoding identification. It can save the images but to avoid increasing too much the space occupied by a processed experiment an array with the maximum intensity value of the pxl in each round is calculated and saved Args: barcoded_df (pd.DataFrame): Dataframe with decoded barcodes for a specific field of view. registered_img_stack (np.ndarray): Preprocessed image of a single field of view the imaging round correspond to the z-stack position experiment_fpath (str): Path to the folder of the experiment to process metadata (dict): Overall experiment info """ round_intensity_labels = ['bit_' + str(el) +'_intensity' for el in np.arange(1,int(metadata['total_rounds'])+1)] if isinstance(registered_img_stack, np.ndarray) and (barcoded_df.shape[0] >1): experiment_fpath = Path(experiment_fpath) barcodes_names = barcoded_df['barcode_reference_dot_id'].values coords = barcoded_df.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() barcodes_extraction_resolution = barcoded_df['barcodes_extraction_resolution'].values[0] chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) chunks_coords[chunks_coords<0]=0 chunks_coords[chunks_coords>registered_img_stack.shape[1]]= registered_img_stack.shape[1] for idx in np.arange(chunks_coords.shape[0]): selected_region = registered_img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] if selected_region.size >0: max_array = selected_region.max(axis=(1,2)) barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # for channel in channels: # all_regions[channel] = {} # all_max[channel] = {} # img_stack = registered_img_stack[channel] # trimmed_df_channel = trimmed_df.loc[trimmed_df.channel == channel] # if trimmed_df_channel.shape[0] >0: # barcodes_names = trimmed_df_channel['barcode_reference_dot_id'].values # coords = trimmed_df_channel.loc[:, ['r_px_registered', 'c_px_registered']].to_numpy() # barcodes_extraction_resolution = trimmed_df_channel['barcodes_extraction_resolution'].values[0] # chunks_coords = dots_hoods(coords,barcodes_extraction_resolution) # chunks_coords[chunks_coords<0]=0 # chunks_coords[chunks_coords>img_stack.shape[1]]= img_stack.shape[1] # for idx in np.arange(chunks_coords.shape[0]): # selected_region = img_stack[:,chunks_coords[idx,0]:chunks_coords[idx,1]+1,chunks_coords[idx,2]:chunks_coords[idx,3]+1] # if selected_region.size >0: # max_array = selected_region.max(axis=(1,2)) # # all_regions[channel][barcodes_names[idx]]= selected_region # all_max[channel][barcodes_names[idx]]= max_array # barcoded_df.loc[barcoded_df.dot_id == barcodes_names[idx],round_intensity_labels] = max_array # fpath = experiment_fpath / 'tmp' / 'combined_rounds_images' / (experiment_name + '_' + channel + '_img_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_regions,open(fpath,'wb')) # fpath = experiment_fpath / 'results' / (experiment_name + '_barcodes_max_array_dict_fov_' + str(fov) + '.pkl') # pickle.dump(all_max,open(fpath,'wb')) else: barcoded_df.loc[:,round_intensity_labels] = np.nan return barcoded_df def identify_flipped_bits(codebook: pd.DataFrame, gene: str, raw_barcode: ByteString)-> Tuple[ByteString, ByteString]: """Utility function used to identify the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for a single dot. Args: codebook (pd.DataFrame): Codebook used for the decoding gene (str): Name of the gene identified raw_barcode (ByteString): identifide barcode from the images Returns: Tuple[ByteString, ByteString]: (flipped_position, flipping_direction) """ gene_barcode_str =codebook.loc[codebook.Gene == gene, 'Code'].values[0] gene_barcode = np.frombuffer(gene_barcode_str, np.int8) raw_barcode = np.frombuffer(raw_barcode, np.int8) flipped_positions = np.where(raw_barcode != gene_barcode)[0].astype(np.int8) flipping_directions = (gene_barcode[flipped_positions] - raw_barcode[flipped_positions]).astype(np.int8) # flipped_positions = flipped_positions.tobytes() # flipping_directions = flipping_directions.tobytes() return flipped_positions,flipping_directions def define_flip_direction(codebook_dict: dict,experiment_fpath: str, output_df: pd.DataFrame): """Function used to determinethe the position of the bits that are flipped after the nearest neighbors and the definition of the acceptable hamming distance for fov. Args: codebook (dict): Codebooks used for the decoding experiment_fpath (str): Path to the folder of the experiment to process output_df (pd.DataFrame): Dataframe with the decoded results for the specific fov. """ if output_df.shape[0] > 1: correct_hamming_distance = 0 selected_hamming_distance = 3 / output_df.iloc[0].barcode_length experiment_fpath = Path(experiment_fpath) experiment_name = experiment_fpath.stem channels = codebook_dict.keys() all_evaluated = [] for channel in channels: codebook = codebook_dict[channel] fov = output_df.fov_num.values[0] trimmed_df = output_df.loc[(output_df.dot_id == output_df.barcode_reference_dot_id) & (output_df.channel == channel) & (output_df['hamming_distance'] > correct_hamming_distance) & (output_df['hamming_distance'] < selected_hamming_distance), ['barcode_reference_dot_id', 'decoded_genes', 'raw_barcodes','hamming_distance']] trimmed_df = trimmed_df.dropna(subset=['decoded_genes']) trimmed_df.loc[:,('flip_and_direction')] = trimmed_df.apply(lambda x: identify_flipped_bits(codebook,x.decoded_genes,x.raw_barcodes),axis=1) trimmed_df['flip_position'] = trimmed_df['flip_and_direction'].apply(lambda x: x[0]) trimmed_df['flip_direction'] = trimmed_df['flip_and_direction'].apply(lambda x: x[1]) trimmed_df.drop(columns=['flip_and_direction'],inplace=True) all_evaluated.append(trimmed_df) all_evaluated = pd.concat(all_evaluated,axis=0,ignore_index=True,inplace=True) fpath = experiment_fpath / 'results' / (experiment_name + '_' + channel + '_df_flip_direction_fov' + str(fov) + '.parquet') all_evaluated.to_parquet(fpath) # return trimmed_df def chunk_dfs(dataframes_list: list, chunk_size: int): """ Functions modified from https://stackoverflow.com/questions/45217120/how-to-efficiently-join-merge-concatenate-large-data-frame-in-pandas yields n dataframes at a time where n == chunksize """ dfs = [] for f in dataframes_list: dfs.append(f) if len(dfs) == chunk_size: yield dfs dfs = [] if dfs: yield dfs def merge_with_concat(dfs: list)->pd.DataFrame: """Utility function used to merge dataframes Args: dsf (list): List with the dataframe to merge Returns: pd.DataFrame: Merged dataframe """ # dfs = (df.set_index(col, drop=True) for df in dfs) merged = pd.concat(dfs, axis=0, join='outer', copy=False) return merged """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def extract_barcodes_NN_fast_multicolor(registered_counts_df: pd.DataFrame, analysis_parameters: Dict, codebook_df: pd.DataFrame, metadata:dict)-> Tuple[pd.DataFrame,pd.DataFrame]: """Function used to extract the barcodes from the registered counts using nearest neighbour. if there is a problem with the registration the barcode assigned will be 0*barcode_length Args: registered_counts_df (pd.Dataframe): Fov counts after registration analysis_parameters (Dict): Parameters for data processing codebook_df (pd.DataFrame): codebook used to deconvolve the barcode Returns: Tuple[pd.DataFrame,pd.DataFrame]: (barcoded_round, all_decoded_dots_df) """ logger = selected_logger() barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] barcode_length = metadata['barcode_length'] registration_errors = Registration_errors() stitching_channel = metadata['stitching_channel'] registered_counts_df.dropna(subset=['dot_id'],inplace=True) # Starting level for selection of dots dropping_counts = registered_counts_df.copy(deep=True) all_decoded_dots_list = [] barcoded_round = [] if registered_counts_df['r_px_registered'].isnull().values.any(): all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return registered_counts_df, all_decoded_dots_df else: for ref_round_number in np.arange(1,barcode_length+1): #ref_round_number = 1 reference_round_df = dropping_counts.loc[dropping_counts.round_num == ref_round_number,:] # Step one (all dots not in round 1) compare_df = dropping_counts.loc[dropping_counts.round_num!=ref_round_number,:] if (not reference_round_df.empty): if not compare_df.empty: nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_round_df[['r_px_registered','c_px_registered']]) dists, indices = nn.kneighbors(compare_df[['r_px_registered','c_px_registered']], return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_distances_below_resolution = np.where(dists <= barcodes_extraction_resolution)[0] comp_idx = idx_distances_below_resolution ref_idx = indices[comp_idx].flatten() # Subset the dataframe according to the selected points # The reference selected will have repeated points comp_selected_df = compare_df.iloc[comp_idx] ref_selected_df = reference_round_df.iloc[ref_idx] # The size of ref_selected_df w/o duplicates may be smaller of reference_round_df if # some of the dots in reference_round_df have no neighbours # Test approach where we get rid of the single dots comp_selected_df.loc[:,'barcode_reference_dot_id'] = ref_selected_df['dot_id'].values ref_selected_df_no_duplicates = ref_selected_df.drop_duplicates() ref_selected_df_no_duplicates.loc[:,'barcode_reference_dot_id'] = ref_selected_df_no_duplicates['dot_id'].values # Collect singletons # Remeber that this method works only because there are no duplicates inside the dataframes # https://stackoverflow.com/questions/48647534/python-pandas-find-difference-between-two-data-frames if reference_round_df.shape[0] > ref_selected_df_no_duplicates.shape[0]: singletons_df = pd.concat([reference_round_df,ref_selected_df_no_duplicates]).drop_duplicates(keep=False) singletons_df.loc[:,'barcode_reference_dot_id'] = singletons_df['dot_id'].values barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) else: barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates], axis=0,ignore_index=False) # barcoded_round = pd.concat([comp_selected_df, ref_selected_df_no_duplicates,singletons_df], axis=0,ignore_index=False) barcoded_round_grouped = barcoded_round.groupby('barcode_reference_dot_id') compare_df = compare_df.drop(comp_selected_df.index) dropping_counts = compare_df else: # Collecting singleton of last bit reference_round_df.loc[:,'barcode_reference_dot_id'] = reference_round_df['dot_id'].values barcoded_round_grouped = reference_round_df.groupby('barcode_reference_dot_id') ref_selected_df_no_duplicates = reference_round_df for brdi, grp in barcoded_round_grouped: barcode = np.zeros([barcode_length],dtype=np.int8) barcode[grp.round_num.values.astype(np.int8)-1] = 1 #hamming_dist, index_gene = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) #gene= codebook_df.loc[index_gene.reshape(index_gene.shape[0]),'Gene'].tolist() barcode = barcode.tostring() if len(ref_selected_df_no_duplicates) != 0: ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'raw_barcodes'] = barcode #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'decoded_gene_name'] = gene #ref_selected_df_no_duplicates.loc[ref_selected_df_no_duplicates.barcode_reference_dot_id == brdi,'hamming_distance'] = hamming_dist.flatten()[0] #fish_counts.loc[grp.index,'barcode_reference_dot_id'] = brdi #fish_counts.loc[grp.index,'raw_barcodes'] = barcode #dists, index = nn_sklearn.kneighbors(all_barcodes, return_distance=True) all_decoded_dots_list.append(ref_selected_df_no_duplicates) if all_decoded_dots_list: all_decoded_dots_df = pd.concat(all_decoded_dots_list,ignore_index=False) codebook_df = convert_str_codebook(codebook_df,'Code') codebook_array = make_codebook_array(codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) all_barcodes = np.vstack(all_decoded_dots_df.raw_barcodes.map(lambda x: np.frombuffer(x, np.int8)).values) dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() all_decoded_dots_df.loc[:,'decoded_genes'] = genes all_decoded_dots_df.loc[:,'hamming_distance'] = dists_arr all_decoded_dots_df.loc[:,'number_positive_bits'] = all_barcodes.sum(axis=1) all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution else: all_decoded_dots_df = pd.DataFrame(columns = registered_counts_df.columns) all_decoded_dots_df['decoded_genes'] = np.nan all_decoded_dots_df['hamming_distance'] = np.nan all_decoded_dots_df['number_positive_bits'] = np.nan all_decoded_dots_df['barcode_reference_dot_id'] = np.nan all_decoded_dots_df['raw_barcodes'] = np.nan all_decoded_dots_df['barcodes_extraction_resolution'] = barcodes_extraction_resolution # Save barcoded_round and all_decoded_dots_df return barcoded_round, all_decoded_dots_df # TODO Remove all the functions below ######## ------------------------------------------------------------------- class extract_barcodes_NN(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,file_tags,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.file_tags = file_tags self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() fov = self.file_tags['fov'] channel = self.file_tags['channel'] self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(fov),'dot_channel':channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') # self.all_barcodes = {} # for name, group in self.grpd: # rounds_num = group.round_num.values # dot_ids = group.dot_id.values # rounds_num = rounds_num.astype(int) # barcode = np.zeros([self.barcode_length],dtype=np.int8) # barcode[(rounds_num-1)] += 1 # dists_arr, index_arr = nn_sklearn.kneighbors(barcode.reshape(1, -1), return_distance=True) # gene=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist()[0] # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # if dists_arr[0][0] == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif dists_arr[0][0] < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if hd == 0: cols = cols + ['zeroHdistance_genes'] writing_data = writing_data + [gene] if hd < hd_2: cols = cols + ['below2Hdistance_genes'] writing_data = writing_data + [gene] if hd < hd_3: cols = cols + ['below3Hdistance_genes'] writing_data = writing_data + [gene] self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,cols] = writing_data # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'raw_barcodes'] = barcode.tostring() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'all_Hdistance_genes'] = gene # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'number_positive_bits'] = barcode.sum() # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'hamming_distance'] = hd # if hd == 0: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'0Hdistance_genes'] = gene # elif hd < hd_2: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below2Hdistance_genes'] = gene # elif hd < hd_3: # self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,'below3Hdistance_genes'] = gene fname = self.file_tags['experiment_fpath'] / 'tmp' / 'registered_counts' / (self.file_tags['experiment_name'] + '_' + self.file_tags['channel'] + '_decoded_fov_' + self.file_tags['fov'] + '.parquet') self.barcoded_fov_df.to_parquet(fname,index=False) class extract_barcodes_NN_test(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, fov, channel, counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df,status:str): self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = experiment_config['Barcode_length'] self.fov = fov self.channel = channel self.counts = counts self.logger = selected_logger() self.codebook_df = codebook_df self.status = status self.registration_errors = Registration_errors() @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan # ref_idx = indices[idx_selected_coords_compare] # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() self.barcoded_fov_df = data_models.barcode_analysis_df self.barcoded_fov_df.attrs = self.counts.attrs if self.status == 'FAILED': error = self.counts['min_number_matching_dots_registration'].values[0] round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':error, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num },ignore_index=True) elif self.status == 'SUCCESS': if (min(self.counts.loc[:,'min_number_matching_dots_registration']) < self.RegistrationMinMatchingBeads): round_num = self.counts['round_num'].values[0] self.barcoded_fov_df = self.barcoded_fov_df.append({'min_number_matching_dots_registration':registration_errors.registration_below_extraction_resolution, 'fov_num':int(self.fov),'dot_channel':self.channel,'round_num': round_num},ignore_index=True) self.status = 'FAILED' else: hd_2 = 2 / self.barcode_length hd_3 = 3 / self.barcode_length # barcode_length = len(self.counts['round_num'].unique()) rounds = np.arange(1,self.barcode_length+1) self.codebook_df = self.convert_str_codebook(self.codebook_df,'Code') codebook_array = self.make_codebook_array(self.codebook_df,'Code') nn_sklearn = NearestNeighbors(n_neighbors=1, metric="hamming") nn_sklearn.fit(codebook_array) # remove points with np.NAN # self.counts = self.counts.dropna() for round_num in rounds: compare_df, barcoded_df = self.barcode_nn(self.counts, round_num, self.barcodes_extraction_resolution) self.barcoded_fov_df = self.barcoded_fov_df.append(barcoded_df, ignore_index=True) self.counts = compare_df self.counts['barcode_reference_dot_id'] = self.counts.dot_id self.barcoded_fov_df = self.barcoded_fov_df.append(self.counts, ignore_index=True) self.barcoded_fov_df['barcodes_extraction_resolution'] = self.barcodes_extraction_resolution self.grpd = self.barcoded_fov_df.groupby('barcode_reference_dot_id') barcode_reference_dot_id_list = [] num_unique_dots = np.unique(self.barcoded_fov_df.loc[:,'barcode_reference_dot_id']).shape[0] # There are no dots is the df if num_unique_dots > 0: all_barcodes = np.zeros([num_unique_dots,self.barcode_length],dtype=np.int8) for idx, (name, group) in enumerate(self.grpd): barcode_reference_dot_id_list.append(name) barcode = np.zeros([self.barcode_length],dtype=np.int8) rounds_num = group.round_num.values rounds_num = rounds_num.astype(int) barcode[(rounds_num-1)] += 1 all_barcodes[idx,:] = barcode dists_arr, index_arr = nn_sklearn.kneighbors(all_barcodes, return_distance=True) genes=self.codebook_df.loc[index_arr.reshape(index_arr.shape[0]),'Gene'].tolist() for idx,name in enumerate(barcode_reference_dot_id_list): barcode = all_barcodes[idx,:] gene = genes[idx] hd = dists_arr[idx][0] cols = ['raw_barcodes','all_Hdistance_genes','number_positive_bits','hamming_distance'] # will add last column depending on hd writing_data = [barcode.tostring(),gene,barcode.sum(),hd] if hd == 0: cols = cols + ['zeroHdistance_genes'] writing_data = writing_data + [gene] if hd < hd_2: cols = cols + ['below2Hdistance_genes'] writing_data = writing_data + [gene] if hd < hd_3: cols = cols + ['below3Hdistance_genes'] writing_data = writing_data + [gene] self.barcoded_fov_df.loc[self.barcoded_fov_df.barcode_reference_dot_id == name,cols] = writing_data class extract_barcodes_NN_new(): """ Class used to extract the barcodes from the registered counts using nearest neighbour Parameters: ----------- counts: pandas.DataFrame pandas file with the fov counts after registration analysis_parameters: dict parameters for data processing experiment_config: Dict dictionary with the experimental data codebook_df: pandas.DataFrame pandas file with the codebook used to deconvolve the barcode NB: if there is a problem with the registration the barcode assigned will be 0*barcode_length """ def __init__(self, registered_counts, analysis_parameters:Dict,experiment_config:Dict,codebook_df): self.counts_df = registered_counts self.analysis_parameters = analysis_parameters self.experiment_config = experiment_config self.codebook_df = codebook_df self.logger = selected_logger() self.barcodes_extraction_resolution = analysis_parameters['BarcodesExtractionResolution'] self.RegistrationMinMatchingBeads = analysis_parameters['RegistrationMinMatchingBeads'] self.barcode_length = self.counts_df.loc[0]['barcode_length'] self.registration_errors = Registration_errors() self.stitching_channel = self.counts_df['stitching_channel'].iloc[0] @staticmethod def convert_str_codebook(codebook_df,column_name): codebook_df[column_name] = codebook_df[column_name].map(lambda x: np.frombuffer(x, np.int8)) return codebook_df @staticmethod def make_codebook_array(codebook_df,column_name): codebook_array = np.zeros((len(codebook_df[column_name]),codebook_df[column_name][0].shape[0])) for idx, el in enumerate(codebook_df[column_name]): row = codebook_df[column_name][idx] row = row[np.newaxis,:] codebook_array[idx,:] = row return codebook_array @staticmethod def barcode_nn(counts_df, ref_round_number, barcodes_extraction_resolution): column_names = list(counts_df.columns.values) column_names = column_names.append('barcode_reference_dot_id') barcoded_df = pd.DataFrame(columns=column_names) reference_array = counts_df.loc[counts_df.round_num == ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() reference_round_df = counts_df.loc[counts_df.round_num == ref_round_number,:].reset_index(drop=True) # Step one (all dots not in round 1) coords_compare = counts_df.loc[counts_df.round_num != ref_round_number, ['r_px_registered','c_px_registered']].to_numpy() compare_df = counts_df.loc[counts_df.round_num != ref_round_number,:].reset_index(drop=True) if (reference_array.shape[0] >0) and (coords_compare.shape[0] >0): # initialize network nn = NearestNeighbors(n_neighbors=1, metric="euclidean") nn.fit(reference_array) # Get the nn dists, indices = nn.kneighbors(coords_compare, return_distance=True) # select only the nn that are below barcodes_extraction_resolution distance idx_selected_coords_compare = np.where(dists <= barcodes_extraction_resolution)[0] compare_selected_df = compare_df.loc[idx_selected_coords_compare,:] compare_selected_df['barcode_reference_dot_id'] = np.nan for k,v in groupby(idx_selected_coords_compare): if len(list(v)) > 3: print("key: '{}'--> group: {}".format(k, len(list(v)))) # ref_idx = indices[idx_selected_coords_compare].squeeze() # compare_selected_df.loc[compare_selected_df.index.isin(idx_selected_coords_compare),'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] for idx in idx_selected_coords_compare: ref_idx = indices[idx] compare_selected_df.loc[idx,'barcode_reference_dot_id'] = reference_round_df.loc[ref_idx,'dot_id'].values[0] reference_round_df['barcode_reference_dot_id'] = reference_round_df.dot_id barcoded_df = barcoded_df.append([compare_selected_df, reference_round_df], ignore_index=True) compare_df = compare_df.drop(compare_selected_df.index) compare_df = compare_df.reset_index(drop=True) return compare_df, barcoded_df def run_extraction(self): data_models = Output_models() registration_errors = Registration_errors() self.barcoded_spec = data_models.barcode_analysis_df if not self.counts_df[self.counts_df['dot_id'].isnull()].empty: print('shitty FOV') self.all_combine_df =
pd.concat([self.counts_df,self.barcoded_spec],axis=1)
pandas.concat
import itertools import json import ntpath import os import pandas as pd import re import spacy from glob import glob from pprint import PrettyPrinter from sentence_transformers import SentenceTransformer from string import punctuation from tqdm import tqdm from src.utils import normalize_punctuations # Download SpaCy models if needed spacy_model = 'en_core_web_sm' try: nlp = spacy.load(spacy_model) except OSError: print("\n\n\n Downloading SpaCy model ...") spacy.cli.download(spacy_model) nlp = spacy.load(spacy_model) # Define useful directories working_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) root_dir = os.path.dirname(working_dir) data_dir = os.path.join(root_dir, 'dataset') # Define useful variables word_pattern = re.compile(r'\w+') punct_pattern = re.compile(f"[{punctuation}]") printer = PrettyPrinter(indent=4) sentiment_mapper = {"pos": 1, "positive": 1, "neg": 2, "negative": 2, "neu": 3, "neutral": 3, "conflict": 4, } category_mapper = {"Arrival Experience": 1, "Room Services": 2, "Breakfast": 3, "Dinning": 4, "Bar & Lounge": 5, "F&B Services": 6, "Hotel Services": 7, "Others": 8, } attribute_mapper = {"Speed of check-in/out": 1, "Booking accuracy": 2, "Room availability": 3, "Timeliness of service": 4, "Loyalty Recognition": 5, "Staff were responsive to my needs": 6, "Accuracy of delivery of service": 7, "Staff attitude / Staff anticipation": 8, "Tools & Equipment": 9, "Operational Hours": 10, "Food quality": 11, "Food variety": 12, "Food temperature": 13, "Beverage quality": 14, "Price / Value": 15, "Service Culture": 16, "Problem Identification": 17, "Service Recovery": 18, "Hotel Facilities": 19, "Location & Transportation": 20, "Parking": 21, "Disabled-Friendliness": 22, "Room Cleanliness": 23, "Room Amenities": 24, "Room Condition": 25, "Room Odour": 26, "Noise Pollution": 27, "Air-Condition": 28, "Internet Connectivity": 29, "Pest": 30, "Shower / Bath Experience": 31, "Planning": 32, "Cleaning Process": 33, "Others": 34, } attribute_replacement = {"Queue": "Timeliness of service", "Knowledge of staff": "Staff were responsive to my needs", "Food Snack / Menu": "Food variety", "Food presentation": "Food variety", "Beverages quality": "Beverage quality", "Beverage": "Beverage quality", "Operations Hours": "Operational Hours", "Primary Issues": "Service Culture", "Track, Measure & Sustain": "Problem Identification", "Transportation": "Location & Transportation", "IHG Way of Clean 5-S Cleaning Process": "Cleaning Process", "Cleaning tools": "Cleaning Process", "Audits": "Others", "PMM": "Others", "PMM tools": "Others", "Application of tools": "Others"} def encode_words_location(text: str) -> dict: # print(f"\n{text}") text = normalize_punctuations(text) # Split sentence into phrases by punctuation punct_locs = [(p.start(), p.end()) for p in punct_pattern.finditer(text)] if len(punct_locs)==0: phrases_dict = {0: [0, len(text), text]} else: phrases_dict = dict() phrase_idx = 0 last_punct_end = 0 for p_i, punct_loc in enumerate(punct_locs): current_punct_start, current_punct_end = punct_loc if p_i == 0: if current_punct_start > 0: phrases_dict[phrase_idx] = [0, current_punct_start, text[:current_punct_start]] phrase_idx += 1 elif p_i != 0: phrases_dict[phrase_idx] = [last_punct_end, current_punct_start, text[last_punct_end:current_punct_start]] phrase_idx += 1 phrases_dict[phrase_idx] = [current_punct_start, current_punct_end, text[current_punct_start:current_punct_end]] phrase_idx += 1 if p_i == len(punct_locs)-1: if current_punct_end < len(text): phrases_dict[phrase_idx] = [current_punct_end, len(text)-1, text[current_punct_end:]] last_punct_end = current_punct_end # printer.pprint(phrases_dict) # Split phrases into words (offset by sentence, not by current phrase) words_dict = dict() word_idx = 0 for phrase_idx in range(len(phrases_dict)): phrase_start, phrase_end, phrase = phrases_dict[phrase_idx] if phrase_end-phrase_start == 1: # case of punctuation words_dict[word_idx] = phrases_dict[phrase_idx] word_idx += 1 phrase_words_dict = { w_i+word_idx: [w.start()+phrase_start, w.end()+phrase_start, w.group(0)] \ for w_i, w in enumerate(word_pattern.finditer(phrase)) } word_idx += len(phrase_words_dict) words_dict.update(phrase_words_dict) # printer.pprint(words_dict) # Convert word dictionary to word dataframe --> easy comparison words_df = pd.DataFrame(data=words_dict).T words_df.rename(columns={0: 'offset_start', 1: 'offset_end', 2: 'word'}, inplace=True) # print(words_df) # Sentencize words_df['sentence_id'] = [0] * len(words_df) sentences = [sent.text for sent in nlp(text).sents] BoSs = [text.find(sent) for sent in sentences] for sentence_id, bos in enumerate(BoSs): if sentence_id == 0: continue words_df.loc[words_df.offset_start>=bos, 'sentence_id'] = sentence_id return words_dict, words_df def decode_words_location(located_words: pd.DataFrame, annotations: list or tuple) -> list: annotations = list(annotations) n_words = len(located_words) # located_words['word'] = located_words['word'].apply(lambda x: x.lower()) # Assign all words as BACKGROUND located_words['aspect'] = [0] * n_words located_words['opinion'] = [0] * n_words located_words['sentiment'] = [0] * n_words located_words['category'] = [0] * n_words located_words['attribute'] = [0] * n_words # If no annotation, all words are considered background - class=0 if len(annotations) < 1: return located_words for annotation in annotations: offset_start, offset_end, label = annotation[:3] # Assign all words in annotation as # BEGIN code for Aspect & Opinion, # polarity code for Sentiment, # class code for Category & Attribute. annotation_locs = (located_words['offset_start']>=offset_start) & (located_words['offset_end']<=offset_end) if label == 'opinion': located_words.loc[annotation_locs, 'opinion'] = 1 else: category, attribute, polarity = label.split('_-_') if attribute in attribute_replacement.keys(): attribute = attribute_replacement[attribute] located_words.loc[annotation_locs, 'aspect'] = 1 located_words.loc[annotation_locs, 'sentiment'] = sentiment_mapper[polarity] located_words.loc[annotation_locs, 'category'] = category_mapper[category] located_words.loc[annotation_locs, 'attribute'] = attribute_mapper[attribute] # Split Aspect & Opinion annotated words into BEGINNING and INSIDE for r_i in range(n_words-1, 0, -1): for col in ['opinion', 'aspect']: if located_words.loc[r_i, col] == 0: continue if located_words.loc[r_i-1, col] == 1: # if previous word is annotated as BEGINNING, flip current word to INSIDE located_words.loc[r_i, col] = 2 # print(located_words) return located_words def window_slide(seq: list or tuple, window_size: int=2): seq_iter = iter(seq) seq_sliced = list(itertools.islice(seq_iter, window_size)) if len(seq_sliced) == window_size: yield seq_sliced for seq_el in seq_iter: yield seq_sliced[1:] + [seq_el] def process_word_level(annotation: dict, lower_case: bool=False, upper_case: bool=False, capital_case: bool=False) -> pd.DataFrame: text = annotation['data'] if lower_case: text = text.lower() elif upper_case: text = text.upper() elif capital_case: sentences = [sent.text for sent in nlp(text).sents] sentences = [sent.capitalize() for sent in sentences] text = '. '.join(sentences) _, located_words_df = encode_words_location(text) words_annotated = annotation['label'] if 'label' in annotation.keys() else [] words_data = [a+[text[a[0]:a[1]]] for a in words_annotated] words_labeled = decode_words_location(located_words_df, words_data) words_labeled['doc_id'] = doc_id words_labeled.reset_index(inplace=True) words_labeled.rename(columns={'index': 'word_id'}, inplace=True) return words_labeled[words_labeled.word!=' '] def process_token_level(words_labeled: pd.DataFrame) -> pd.DataFrame: words_df = words_labeled[['word_id', 'word']] words = words_df.word.values.tolist() text = ' '.join(words) tokens = tokenizer.tokenize(text) tokens_df = pd.DataFrame(columns=['token', 'word', 'word_id']) word_offset, word_id, token_id = 0, 0, 0 word = words.pop(0) for token_id, token in enumerate(tokens): token_ = token[2:] if token.startswith('##') else token if token_ == word[word_offset:word_offset+len(token_)]: tokens_df.loc[token_id] = [token, word, word_id] word_offset += len(token_) else: print(f"\n\t{doc_id}\t{token_}\t{word[:len(token_)]}") if word_offset >= len(word) and len(words) > 0: word = words.pop(0) word_id += 1 word_offset = 0 tokens_labeled = tokens_df.merge(words_labeled, on=['word', 'word_id'], how='inner') return tokens_labeled if __name__ == "__main__": # Load tokenizer print(f"\n\n\nLoading Tokenizer ...") sbert_version = 'distilUSE' sbert_dir = os.path.join(root_dir, 'artefacts', sbert_version) embedder = SentenceTransformer(sbert_dir) tokenizer = embedder.tokenizer # Processing label_cols = ['document', 'num_sentences', 'token', 'target', 'opinion', 'target_polarity', 'category', 'attribute'] labels_df =
pd.DataFrame(columns=label_cols)
pandas.DataFrame
import src.controllers as contr import src.pre_processing as pp import yfinance as yf import pandas as pd import numpy as np import os def correlation_testing(): tickers =
pd.DataFrame(["GME", "AMC", "KOSS", "NAKD", "BBBY", "NOK", "VIX"], columns=['Ticker'])
pandas.DataFrame
import decimal import numpy as np from numpy import iinfo import pytest import pandas as pd from pandas import to_numeric from pandas.util import testing as tm class TestToNumeric(object): def test_empty(self): # see gh-16302 s = pd.Series([], dtype=object) res = to_numeric(s) expected = pd.Series([], dtype=np.int64) tm.assert_series_equal(res, expected) # Original issue example res = to_numeric(s, errors='coerce', downcast='integer') expected = pd.Series([], dtype=np.int8) tm.assert_series_equal(res, expected) def test_series(self): s = pd.Series(['1', '-3.14', '7']) res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series(['1', '-3.14', 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) def test_series_numeric(self): s = pd.Series([1, 3, 4, 5], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) s = pd.Series([1., 3., 4., 5.], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) # bool is regarded as numeric s = pd.Series([True, False, True, True], index=list('ABCD'), name='XXX') res = to_numeric(s) tm.assert_series_equal(res, s) def test_error(self): s = pd.Series([1, -3.14, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([1, -3.14, 'apple']) tm.assert_series_equal(res, expected) res = to_numeric(s, errors='coerce') expected = pd.Series([1, -3.14, np.nan]) tm.assert_series_equal(res, expected) s = pd.Series(['orange', 1, -3.14, 'apple']) msg = 'Unable to parse string "orange" at position 0' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') def test_error_seen_bool(self): s = pd.Series([True, False, 'apple']) msg = 'Unable to parse string "apple" at position 2' with pytest.raises(ValueError, match=msg): to_numeric(s, errors='raise') res = to_numeric(s, errors='ignore') expected = pd.Series([True, False, 'apple']) tm.assert_series_equal(res, expected) # coerces to float res = to_numeric(s, errors='coerce') expected = pd.Series([1., 0., np.nan]) tm.assert_series_equal(res, expected) def test_list(self): s = ['1', '-3.14', '7'] res = to_numeric(s) expected = np.array([1, -3.14, 7]) tm.assert_numpy_array_equal(res, expected) def test_list_numeric(self): s = [1, 3, 4, 5] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s, dtype=np.int64)) s = [1., 3., 4., 5.] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) # bool is regarded as numeric s = [True, False, True, True] res = to_numeric(s) tm.assert_numpy_array_equal(res, np.array(s)) def test_numeric(self): s = pd.Series([1, -3.14, 7], dtype='O') res = to_numeric(s) expected = pd.Series([1, -3.14, 7]) tm.assert_series_equal(res, expected) s = pd.Series([1, -3.14, 7]) res = to_numeric(s) tm.assert_series_equal(res, expected) # GH 14827 df = pd.DataFrame(dict( a=[1.2, decimal.Decimal(3.14), decimal.Decimal("infinity"), '0.1'], b=[1.0, 2.0, 3.0, 4.0], )) expected = pd.DataFrame(dict( a=[1.2, 3.14, np.inf, 0.1], b=[1.0, 2.0, 3.0, 4.0], )) # Test to_numeric over one column df_copy = df.copy() df_copy['a'] = df_copy['a'].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) # Test to_numeric over multiple columns df_copy = df.copy() df_copy[['a', 'b']] = df_copy[['a', 'b']].apply(to_numeric) tm.assert_frame_equal(df_copy, expected) def test_numeric_lists_and_arrays(self): # Test to_numeric with embedded lists and arrays df = pd.DataFrame(dict( a=[[decimal.Decimal(3.14), 1.0], decimal.Decimal(1.6), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 1.6, 0.1], )) tm.assert_frame_equal(df, expected) df = pd.DataFrame(dict( a=[np.array([decimal.Decimal(3.14), 1.0]), 0.1] )) df['a'] = df['a'].apply(to_numeric) expected = pd.DataFrame(dict( a=[[3.14, 1.0], 0.1], )) tm.assert_frame_equal(df, expected) def test_all_nan(self): s = pd.Series(['a', 'b', 'c']) res = to_numeric(s, errors='coerce') expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(res, expected) @pytest.mark.parametrize("errors", [None, "ignore", "raise", "coerce"]) def test_type_check(self, errors): # see gh-11776 df = pd.DataFrame({"a": [1, -3.14, 7], "b": ["4", "5", "6"]}) kwargs = dict(errors=errors) if errors is not None else dict() error_ctx = pytest.raises(TypeError, match="1-d array") with error_ctx: to_numeric(df, **kwargs) def test_scalar(self): assert pd.to_numeric(1) == 1 assert pd.to_numeric(1.1) == 1.1 assert pd.to_numeric('1') == 1 assert pd.to_numeric('1.1') == 1.1 with pytest.raises(ValueError): to_numeric('XX', errors='raise') assert to_numeric('XX', errors='ignore') == 'XX' assert np.isnan(to_numeric('XX', errors='coerce')) def test_numeric_dtypes(self): idx = pd.Index([1, 2, 3], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) idx = pd.Index([1., np.nan, 3., np.nan], name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, idx) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.values) def test_str(self): idx = pd.Index(['1', '2', '3'], name='xxx') exp = np.array([1, 2, 3], dtype='int64') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) idx = pd.Index(['1.5', '2.7', '3.4'], name='xxx') exp = np.array([1.5, 2.7, 3.4]) res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(exp, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(exp, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, exp) def test_datetime_like(self, tz_naive_fixture): idx = pd.date_range("20130101", periods=3, tz=tz_naive_fixture, name="xxx") res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name="xxx")) res = pd.to_numeric(pd.Series(idx, name="xxx")) tm.assert_series_equal(res, pd.Series(idx.asi8, name="xxx")) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_timedelta(self): idx = pd.timedelta_range('1 days', periods=3, freq='D', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) res = pd.to_numeric(pd.Series(idx, name='xxx')) tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) res = pd.to_numeric(idx.values) tm.assert_numpy_array_equal(res, idx.asi8) def test_period(self): idx = pd.period_range('2011-01', periods=3, freq='M', name='xxx') res = pd.to_numeric(idx) tm.assert_index_equal(res, pd.Index(idx.asi8, name='xxx')) # TODO: enable when we can support native PeriodDtype # res = pd.to_numeric(pd.Series(idx, name='xxx')) # tm.assert_series_equal(res, pd.Series(idx.asi8, name='xxx')) def test_non_hashable(self): # Test for Bug #13324 s = pd.Series([[10.0, 2], 1.0, 'apple']) res = pd.to_numeric(s, errors='coerce') tm.assert_series_equal(res, pd.Series([np.nan, 1.0, np.nan])) res = pd.to_numeric(s, errors='ignore') tm.assert_series_equal(res, pd.Series([[10.0, 2], 1.0, 'apple'])) with pytest.raises(TypeError, match="Invalid object type"): pd.to_numeric(s) @pytest.mark.parametrize("data", [ ["1", 2, 3], [1, 2, 3], np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]") ]) def test_downcast_basic(self, data): # see gh-13352 invalid_downcast = "unsigned-integer" msg = "invalid downcasting method provided" with pytest.raises(ValueError, match=msg): pd.to_numeric(data, downcast=invalid_downcast) expected = np.array([1, 2, 3], dtype=np.int64) # Basic function tests. res = pd.to_numeric(data) tm.assert_numpy_array_equal(res, expected) res = pd.to_numeric(data, downcast=None) tm.assert_numpy_array_equal(res, expected) # Basic dtype support. smallest_uint_dtype = np.dtype(np.typecodes["UnsignedInteger"][0]) # Support below np.float32 is rare and far between. float_32_char = np.dtype(np.float32).char smallest_float_dtype = float_32_char expected = np.array([1, 2, 3], dtype=smallest_uint_dtype) res = pd.to_numeric(data, downcast="unsigned") tm.assert_numpy_array_equal(res, expected) expected = np.array([1, 2, 3], dtype=smallest_float_dtype) res = pd.to_numeric(data, downcast="float") tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("signed_downcast", ["integer", "signed"]) @pytest.mark.parametrize("data", [ ["1", 2, 3], [1, 2, 3], np.array(["1970-01-02", "1970-01-03", "1970-01-04"], dtype="datetime64[D]") ]) def test_signed_downcast(self, data, signed_downcast): # see gh-13352 smallest_int_dtype = np.dtype(np.typecodes["Integer"][0]) expected = np.array([1, 2, 3], dtype=smallest_int_dtype) res = pd.to_numeric(data, downcast=signed_downcast) tm.assert_numpy_array_equal(res, expected) def test_ignore_downcast_invalid_data(self): # If we can't successfully cast the given # data to a numeric dtype, do not bother # with the downcast parameter. data = ["foo", 2, 3] expected = np.array(data, dtype=object) res = pd.to_numeric(data, errors="ignore", downcast="unsigned") tm.assert_numpy_array_equal(res, expected) def test_ignore_downcast_neg_to_unsigned(self): # Cannot cast to an unsigned integer # because we have a negative number. data = ["-1", 2, 3] expected = np.array([-1, 2, 3], dtype=np.int64) res = pd.to_numeric(data, downcast="unsigned") tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("downcast", ["integer", "signed", "unsigned"]) @pytest.mark.parametrize("data,expected", [ (["1.1", 2, 3], np.array([1.1, 2, 3], dtype=np.float64)), ([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], np.array([10000.0, 20000, 3000, 40000.36, 50000, 50000.00], dtype=np.float64)) ]) def test_ignore_downcast_cannot_convert_float( self, data, expected, downcast): # Cannot cast to an integer (signed or unsigned) # because we have a float number. res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("downcast,expected_dtype", [ ("integer", np.int16), ("signed", np.int16), ("unsigned", np.uint16) ]) def test_downcast_not8bit(self, downcast, expected_dtype): # the smallest integer dtype need not be np.(u)int8 data = ["256", 257, 258] expected = np.array([256, 257, 258], dtype=expected_dtype) res = pd.to_numeric(data, downcast=downcast) tm.assert_numpy_array_equal(res, expected) @pytest.mark.parametrize("dtype,downcast,min_max", [ ("int8", "integer", [iinfo(np.int8).min, iinfo(np.int8).max]), ("int16", "integer", [iinfo(np.int16).min, iinfo(np.int16).max]), ('int32', "integer", [iinfo(np.int32).min, iinfo(np.int32).max]), ('int64', "integer", [iinfo(np.int64).min, iinfo(np.int64).max]), ('uint8', "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max]), ('uint16', "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max]), ('uint32', "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max]), ('uint64', "unsigned", [iinfo(np.uint64).min, iinfo(np.uint64).max]), ('int16', "integer", [iinfo(np.int8).min, iinfo(np.int8).max + 1]), ('int32', "integer", [iinfo(np.int16).min, iinfo(np.int16).max + 1]), ('int64', "integer", [iinfo(np.int32).min, iinfo(np.int32).max + 1]), ('int16', "integer", [iinfo(np.int8).min - 1, iinfo(np.int16).max]), ('int32', "integer", [iinfo(np.int16).min - 1, iinfo(np.int32).max]), ('int64', "integer", [iinfo(np.int32).min - 1, iinfo(np.int64).max]), ('uint16', "unsigned", [iinfo(np.uint8).min, iinfo(np.uint8).max + 1]), ('uint32', "unsigned", [iinfo(np.uint16).min, iinfo(np.uint16).max + 1]), ('uint64', "unsigned", [iinfo(np.uint32).min, iinfo(np.uint32).max + 1]) ]) def test_downcast_limits(self, dtype, downcast, min_max): # see gh-14404: test the limits of each downcast. series = pd.to_numeric(pd.Series(min_max), downcast=downcast) assert series.dtype == dtype def test_coerce_uint64_conflict(self): # see gh-17007 and gh-17125 # # Still returns float despite the uint64-nan conflict, # which would normally force the casting to object. df = pd.DataFrame({"a": [200, 300, "", "NaN", 30000000000000000000]}) expected = pd.Series([200, 300, np.nan, np.nan, 30000000000000000000], dtype=float, name="a") result =
to_numeric(df["a"], errors="coerce")
pandas.to_numeric
import os import FactorTest.FactorTestBox as FB from FactorTest.FactorTestPara import * import pandas as pd import numpy as np from tqdm import tqdm # #A股日行情(放在第一列更新,同时会维护tradedate) def getAShareEODPrices(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,TRADE_DT,'+','.join(infoDF['数据库键'])+' from wind.AShareEODPrices where TRADE_DT>='+str(int(starttime))) sqlData.rename(columns={'S_INFO_WINDCODE':'code','TRADE_DT':'time'},inplace=True) FB.saveDailyData(sqlData,infoDF) #A股日行情1(放在第一列更新,同时会维护tradedate) def getAShareEODPrices1(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,TRADE_DT,'+','.join(infoDF['数据库键'])+' from wind.AShareEODPrices where TRADE_DT>='+str(int(starttime))) sqlData.rename(columns={'S_INFO_WINDCODE':'code','TRADE_DT':'time'},inplace=True) FB.saveDailyData(sqlData,infoDF) #A股日行情衍生指标 def AShareEODDerivativeIndicator(infoDF): for ind in tqdm(FB.partition(infoDF.index,5)): info_loc=infoDF.loc[ind] starttime=FB.getUpdateStartTime(info_loc['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,TRADE_DT,'+','.join(info_loc['数据库键'])+' from wind.AShareEODDerivativeIndicator where TRADE_DT>='+str(int(starttime))) sqlData.rename(columns={'S_INFO_WINDCODE':'code','TRADE_DT':'time'},inplace=True) FB.saveDailyData(sqlData,info_loc) #A股财务数据 def AShareFinancialIndicator(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,REPORT_PERIOD,'+','.join(infoDF['数据库键'])+' from wind.AShareFinancialIndicator where REPORT_PERIOD>='+str(int(starttime))) sqlData.rename(columns={'S_INFO_WINDCODE':'code','REPORT_PERIOD':'time'},inplace=True) FB.saveFinData(sqlData,infoDF) #sw指数成分股 def AShareSWIndustriesClass(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,SW_IND_CODE,ENTRY_DT,REMOVE_DT from wind.AShareSWIndustriesClass where ENTRY_DT>='+str(int(starttime))) sqlData.columns=['code',infoDF['数据库键'].iloc[0],'time','eddate'] FB.saveIndData(sqlData,infoDF) #sw指数价格 def ASWSIndexEOD(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_INFO_WINDCODE,TRADE_DT,'+','.join(infoDF['数据库键'])+' from wind.ASWSIndexEOD where TRADE_DT>='+str(int(starttime))) sqlData.rename(columns={'S_INFO_WINDCODE':'code','TRADE_DT':'time'},inplace=True) FB.saveDailyData(sqlData,infoDF) def getHS300Weight(infoDF): starttime=FB.getUpdateStartTime(infoDF['最新时间']) sqlData=FB.getSql('select S_CON_WINDCODE,TRADE_DT,I_WEIGHT \ from wind.AIndexHS300CloseWeight where TRADE_DT>'+str(int(starttime))) sqlData.rename(columns={'S_CON_WINDCODE':'code','TRADE_DT':'time'},inplace=True) FB.saveDailyData(sqlData,infoDF) def readWindData(ans,ind='Times',col='Codes'): return pd.DataFrame(ans.Data,index=getattr(ans,ind),columns=getattr(ans,col)) def getZZ500EWeight(infoDF): starttime=str(FB.getUpdateStartTime(infoDF['最新时间'])) starttime=starttime[:4]+'-'+starttime[4:6]+'-'+starttime[6:] from WindPy import w w.start() ans=w.wset("indexhistory","startdate="+starttime+";enddate=2100-12-31;windcode=000905.SH") w.close() try: ans=readWindData(ans,'Fields','Codes').T[['tradedate','tradecode','tradestatus']] except: ans=pd.DataFrame(index=['tradedate','tradecode','tradestatus']).T FB.saveIndexComponentData(ans, infoDF) def getZZ1000EWeight(infoDF): starttime=str(FB.getUpdateStartTime(infoDF['最新时间'])) starttime=starttime[:4]+'-'+starttime[4:6]+'-'+starttime[6:] from WindPy import w w.start() ans=w.wset("indexhistory","startdate="+starttime+";enddate=2100-12-31;windcode=000852.SH") w.close() try: ans=readWindData(ans,'Fields','Codes').T[['tradedate','tradecode','tradestatus']] except: ans=pd.DataFrame(index=['tradedate','tradecode','tradestatus']).T FB.saveIndexComponentData(ans, infoDF) def getWindAEWeight(infoDF): starttime=str(FB.getUpdateStartTime(infoDF['最新时间'])) starttime=starttime[:4]+'-'+starttime[4:6]+'-'+starttime[6:] from WindPy import w w.start() ans=w.wset("indexhistory","startdate="+starttime+";enddate=2100-12-31;windcode=881001.WI") w.close() try: ans=readWindData(ans,'Fields','Codes').T[['tradedate','tradecode','tradestatus']] except: ans=
pd.DataFrame(index=['tradedate','tradecode','tradestatus'])
pandas.DataFrame
import requests from web3 import Web3 import pandas from time import time # print("Using Unix TimeSamp:", int(time())) CURRENT_TIME = int(time()) def integrate(times): """ Returns the seconds of staked times for an array of alternating deposit and withdrawal times for a token. """ if len(times) == 1: return CURRENT_TIME - times[0] elif len(times) % 2 == 0: s = 0 for i in range(0, len(times), 2): s += times[i+1] - times[i] return s else: times2 = [times.pop()] return integrate(times)+integrate(times2) # DTSPool contract address CONTRACT_ADDR = "0x4f65ADeF0860390aB257F4A3e4eea147F892410a" # Probably shouldn't share this but who's gonna read this anyways lmao INFURA_ID = "313074df26854ed9899239ba251ebc7c" ETHERSCAN_TOKEN = "<KEY>" url_abi = f"https://api.etherscan.io/api?module=contract&action=getabi&address={CONTRACT_ADDR}&apikey={ETHERSCAN_TOKEN}" w3 = Web3(Web3.HTTPProvider(f"https://mainnet.infura.io/v3/{INFURA_ID}")) response = requests.get(url_abi) print("Got contract ABI") # Application binary interface ABI = response.json() checkAddr = Web3.toChecksumAddress(CONTRACT_ADDR) contract = w3.eth.contract(checkAddr, abi=ABI["result"]) url_txns = f"https://api.etherscan.io/api?module=account&action=txlist&address={CONTRACT_ADDR}&apikey={ETHERSCAN_TOKEN}" response = requests.get(url_txns) print("Got all contract transactions") # print(response.status_code) # List of all transactions that involve DTSPool data = response.json() token_events = {k: [] for k in range(10000)} # {addr: {123: [.., ...], 456: [...]}} addr_token_events = {} # len(data["result"]) for i in range(1, len(data["result"])): if int(data["result"][i]["isError"]): print("*error tx from:", data["result"][i]["from"]) continue function_input = contract.decode_function_input(data["result"][i]["input"]) nftContract = function_input[1]["tokenContract"] if nftContract != "0xc92d06C74A26AeAf4d1A1273FAC171f3B09FAC79": print("Skipping deposited nft:", contract) continue timeStamp = data["result"][i]["timeStamp"] addr = data["result"][i]["from"] event = str(function_input[0]) # function # print(event) if "MultipleNFT" in event: # print(d[1]["tokenIDList"]) for token in function_input[1]["tokenIDList"]: token_events[token].append(timeStamp) if not addr_token_events.get(addr): addr_token_events.update({addr: {}}) # This is so not computationally efficient but ask me if I care addr_token_events[addr].update({token: token_events[token]}) else: # print(d[1]["tokenID"]) token_events[function_input[1]["tokenID"]].append(timeStamp) if not addr_token_events.get(addr): addr_token_events.update({addr: {}}) addr_token_events[addr].update( {token: token_events[function_input[1]["tokenID"]]}) integrated_times = {k: 0 for k in addr_token_events} for addr, v in addr_token_events.items(): # print(addr, v) for times in v.values(): times = [int(t) for t in times] # print(times) # For every token calculate total staked times and add to that address integrated_times[addr] += integrate(times) # print(integrated_times) # fml if I can remember in the future how does this work # https://stackoverflow.com/questions/613183/how-do-i-sort-a-dictionary-by-value sorted_integrated_times = {k: v for k, v in sorted( integrated_times.items(), key=lambda item: item[1], reverse=True) if v != 0} df =
pandas.DataFrame.from_dict(sorted_integrated_times, orient='index')
pandas.DataFrame.from_dict
import matplotlib # matplotlib.use('pgf') # pgf_with_pdflatex = { # "pgf.texsystem": "pdflatex", # "pgf.preamble": [ # r"\usepackage[utf8x]{inputenc}", # r"\usepackage[T1]{fontenc}", # r"\usepackage{cmbright}", # ] # } # matplotlib.rcParams.update(pgf_with_pdflatex) import pandas import re import numpy from matplotlib import pyplot matplotlib.style.use('ggplot') pyplot.interactive(False) def to_min_secs(x, pos): x = int(x) minutes = x // 60 seconds = x % 60 return '{:02d}:{:02d}'.format(minutes, seconds) def build_dataframe_case(case): # mobility data mobility_columns = ['module', 'max_speed', 'min_speed', 'start_time', 'stop_time', 'total_co2', 'total_dist', 'total_time'] case_df_mobility = pandas.read_csv(case + '_stats_veinsmobility.csv') case_df_mobility.columns = mobility_columns mobility_search_re = 'ProvidenciaExampleScenario.(.+?).veinsmobility' case_df_mobility['module'] = case_df_mobility['module'].map(lambda x: re.search(mobility_search_re, x).group(1)) case_df_mobility.set_index(['module'], inplace=True) # appl data (sent warnings, arrived at dest) appl_columns = ['module', 'arrived', 'rcvd_warnings', 'sent_warnings'] case_df_appl = pandas.read_csv(case + '_stats_appl.csv') case_df_appl.columns = appl_columns appl_search_re = 'ProvidenciaExampleScenario.(.+?).appl' case_df_appl['module'] = case_df_appl['module'].map(lambda x: re.search(appl_search_re, x).group(1)) case_df_appl['arrived'] = case_df_appl['arrived'].map({1: True, 0: False}) case_df_appl.set_index(['module'], inplace=True) case_df_speed = pandas.DataFrame() case_df_speed['mean_speed'] = case_df_mobility['total_dist'] / case_df_mobility['total_time'] # join all tables case_df = pandas.merge(case_df_mobility, case_df_appl, left_index=True, right_index=True, how='outer') case_df = pandas.merge(case_df, case_df_speed, left_index=True, right_index=True, how='outer') return case_df def buid_csv(): for case in ['per00', 'per10']: df = build_dataframe_case(case) df.to_csv(case + '_total_stats.csv') def arrived(): per00 = pandas.read_csv('per00_total_stats.csv') per10 = pandas.read_csv('per10_total_stats.csv') per00_arr = per00['arrived'].sum() per10_arr = per10['arrived'].sum() print(per00_arr, per10_arr) def per00_vs_per10_distancetime(): per00 = pandas.read_csv('per00_total_stats.csv') per10 =
pandas.read_csv('per10_total_stats.csv')
pandas.read_csv