prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
######################################################################################################## # data_sql.py - Data pull from json, clean it up and upload to SQL # by <NAME> # # This is Python script Pulls the metadata (link) from following three json data:- # 1. https://api.weather.gov/points/31.7276,-110.8754 # 2. https://api.weather.gov/points/32.395,-110.6911 # 3. https://api.weather.gov/points/32.4186,-110.7383 # # The Link pulled (json data) from the above three json data are # the grid data links that are use to pull all the weather related data for the three capmgrounds:- # 1. https://api.weather.gov/gridpoints/TWC/91,26 # 2. https://api.weather.gov/gridpoints/TWC/101,54 # 3. https://api.weather.gov/gridpoints/TWC/100,56 # # From the above grid data 4 dataframes are created. The challenge was pulling the data from the # above json links and then converting the date-time columns to the format (date-time) that can be used # to upload to SQL and creating the graphs. Also Temperatures need to be converted to degreeF and wind # speeds to Miles per hour:- # 1. Campgroud information dF with information like lat, lon, elevation, # meta url, grid url, forest url, campsite url fire danger and map code. # 2. One for each campground (bs_grid_df, rc_grid_df, sc_grid_df). These df # have columns (temp in degreeF, temp time, wind speed, wind speed time, wind gust, # wind gust time, prob precipitation, Prob precp time, qty precip, qty precip time). # # SQLalchemy was used to create 4 tables in postgres SQL and then the above 4 DataFrames were uploaded # Postgres SQL. The table names in SQL are: # 1. camp_wx # 2. cg_bog_spring # 3. cg_rose_canyon # 4. cg_spencer_canyon # # This script was converted from data_sql.ipynb ########################################################################################################## # %% # ------------------------ # Dependencies and Setup # ------------------------ import pandas as pd import json import requests import numpy as np import datetime from datetime import timedelta from splinter import Browser from bs4 import BeautifulSoup # %% # -------------------------------------------------------------------- # Bog Spring CAMPGROUND # -------------------------------------------------------------------- # --------------------------------------------- # Pull Grid Data URL From Metadata url for # --------------------------------------------- bs_url = "https://api.weather.gov/points/31.7276,-110.8754" response_bs = requests.get(bs_url) data_bs = response_bs.json() data_bs grid_data_bs = data_bs["properties"]["forecastGridData"] grid_data_bs # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for BogSprings Campground # ------------------------------------------------------------------------ bs_forcast_url = grid_data_bs response_bs_forecast = requests.get(bs_forcast_url) data_bs_forecast = response_bs_forecast.json() data_bs_forecast lat_bs = data_bs_forecast["geometry"]["coordinates"][0][0][1] lat_bs lng_bs = data_bs_forecast["geometry"]["coordinates"][0][0][0] lng_bs elevation_bs = data_bs_forecast["properties"]["elevation"]["value"] elevation_bs # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- bs_df = pd.DataFrame({"id": 1, "campground": "Bog Springs", "lat": [lat_bs], "lon": [lng_bs], "elevation": [elevation_bs], "nws_meta_url": [bs_url], "nws_grid_url": [grid_data_bs], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25732&actid=29", "campsite_url": "https://www.fs.usda.gov/Internet/FSE_MEDIA/fseprd746637.jpg", "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3393.5714340164473!2d-110.87758868361043!3d31.72759998130141!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6970db0a5e44d%3A0x1b48084e4d6db970!2sBog%20Springs%20Campground!5e0!3m2!1sen!2sus!4v1626560932236!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) bs_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp = [] for i in data_bs_forecast["properties"]["temperature"]["values"]: temp.append(i) temp_df = pd.DataFrame(temp) temp_df # Temperature conversion to Degree Fahrenheit temp_df['degF'] = (temp_df['value'] * 9 / 5) + 32 temp_df # validTime Column split to date and time for Temperature date_temp = temp_df['validTime'].str.split('T', n=1, expand=True) time_temp = date_temp[1].str.split('+', n=1, expand=True) time_temp temp_df['date_temp'] = date_temp[0] temp_df['time_temp'] = time_temp[0] # Combine date and time with a space in between the two temp_df['date_time_temp'] = temp_df['date_temp'] + ' ' + temp_df['time_temp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js temp_df['date_time_temp'] = pd.to_datetime(temp_df['date_time_temp']) # Pull all the data for today + 3 days time_delta_temp = datetime.datetime.strptime(temp_df['date_temp'][0],"%Y-%m-%d") + timedelta(days = 4) temp_df['times_temp'] = time_delta_temp.strftime("%Y-%m-%d") temp_df = temp_df.loc[temp_df['date_temp'] < temp_df['times_temp']] temp_df # temp_df.dtypes # =================== Wind Speed Data ====================== wind_speed = [] for i in data_bs_forecast["properties"]["windSpeed"]["values"]: wind_speed.append(i) windSpeed_df = pd.DataFrame(wind_speed) windSpeed_df # Converting KM/hour to Miles/hour windSpeed_df['miles/hour'] = windSpeed_df['value'] * 0.621371 windSpeed_df # validTime Column split to date and time for Wind Speed date_ws = windSpeed_df['validTime'].str.split('T', n=1, expand=True) time_ws = date_ws[1].str.split('+', n=1, expand=True) time_ws windSpeed_df['date_ws'] = date_ws[0] windSpeed_df['time_ws'] = time_ws[0] # Combine date and time with a space in between the two windSpeed_df['date_time_ws'] = windSpeed_df['date_ws'] + ' ' + windSpeed_df['time_ws'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js windSpeed_df['date_time_ws'] = pd.to_datetime(windSpeed_df['date_time_ws']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_df['date_ws'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_df['times_ws'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_df = windSpeed_df.loc[windSpeed_df['date_ws'] < windSpeed_df['times_ws']] windSpeed_df # windSpeed_df.dtypes # =================== Wind Gust Data ====================== wind_gust = [] for i in data_bs_forecast["properties"]["windGust"]["values"]: wind_gust.append(i) wind_gust_df = pd.DataFrame(wind_gust) wind_gust_df # Converting KM/hour to Miles/hour wind_gust_df['m/h'] = wind_gust_df['value'] * 0.621371 wind_gust_df # # validTime Column split to date and time for Wind Gusts date_wg = wind_gust_df['validTime'].str.split('T', n=1, expand=True) time_wg = date_wg[1].str.split('+', n=1, expand=True) time_wg wind_gust_df['date_wg'] = date_wg[0] wind_gust_df['time_wg'] = time_wg[0] # Combine date and time with a space in between the two wind_gust_df['date_time_wg'] = wind_gust_df['date_wg'] + ' ' + wind_gust_df['time_wg'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js wind_gust_df['date_time_wg'] = pd.to_datetime(wind_gust_df['date_time_wg']) wind_gust_df # Pull all the data for today + 3 days time_delta_wg = datetime.datetime.strptime(wind_gust_df['date_wg'][0],"%Y-%m-%d") + timedelta(days = 4) wind_gust_df['times_wg'] = time_delta_wg.strftime("%Y-%m-%d") wind_gust_df = wind_gust_df.loc[wind_gust_df['date_wg'] < wind_gust_df['times_wg']] wind_gust_df # wind_gust_df.dtypes # =================== Probability of Precipitation Data ====================== prob_precip = [] for i in data_bs_forecast["properties"]["probabilityOfPrecipitation"]["values"]: prob_precip.append(i) prob_precip_df = pd.DataFrame(prob_precip) prob_precip_df # # validTime Column split to date and time for Probability Precipitation date_pp = prob_precip_df['validTime'].str.split('T', n=1, expand=True) time_pp = date_pp[1].str.split('+', n=1, expand=True) time_pp prob_precip_df['date_pp'] = date_pp[0] prob_precip_df['time_pp'] = time_pp[0] # Combine date and time with a space in between the two prob_precip_df['date_time_pp'] = prob_precip_df['date_pp'] + ' ' + prob_precip_df['time_pp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js prob_precip_df['date_time_pp'] = pd.to_datetime(prob_precip_df['date_time_pp']) prob_precip_df # Pull all the data for today + 3 days time_delta_pp = datetime.datetime.strptime(prob_precip_df['date_pp'][0],"%Y-%m-%d") + timedelta(days = 4) prob_precip_df['times_pp'] = time_delta_pp.strftime("%Y-%m-%d") prob_precip_df = prob_precip_df.loc[prob_precip_df['date_pp'] < prob_precip_df['times_pp']] prob_precip_df # prob_precip_df.dtypes # =================== Quantity of Precipitation Data ====================== qty_precip = [] for i in data_bs_forecast["properties"]["quantitativePrecipitation"]["values"]: qty_precip.append(i) qty_precip_df = pd.DataFrame(qty_precip) qty_precip_df # # validTime Column split to date and time for quantity Precipitation date_qp = qty_precip_df['validTime'].str.split('T', n=1, expand=True) time_qp = date_qp[1].str.split('+', n=1, expand=True) time_qp qty_precip_df['date_qp'] = date_qp[0] qty_precip_df['time_qp'] = time_qp[0] # Combine date and time with a space in between the two qty_precip_df['date_time_qp'] = qty_precip_df['date_qp'] + ' ' + qty_precip_df['time_qp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js qty_precip_df['date_time_qp'] = pd.to_datetime(qty_precip_df['date_time_qp']) qty_precip_df # Pull all the data for today + 3 days time_delta_qp = datetime.datetime.strptime(qty_precip_df['date_qp'][0],"%Y-%m-%d") + timedelta(days = 4) qty_precip_df['times_qp'] = time_delta_qp.strftime("%Y-%m-%d") qty_precip_df = qty_precip_df.loc[qty_precip_df['date_qp'] < qty_precip_df['times_qp']] qty_precip_df # qty_precip_df.dtypes # =================== Create DataFrame with all the above data for Bog Spring Campground ====================== bs_grid_df = pd.DataFrame({"id":1, "campground": "Bog Springs", "forecasted_temperature_degF": temp_df['degF'], "forecastTime_temperature": temp_df['date_time_temp'], "forecasted_windSpeed_miles_per_h": windSpeed_df['miles/hour'], "forecastTime_windSpeed": windSpeed_df['date_time_ws'], "forecasted_windGust_miles_per_h": wind_gust_df['m/h'], "forecastTime_windGust": wind_gust_df['date_time_wg'], "forecasted_probabilityOfPrecipitation": prob_precip_df['value'], "forecastTime_probabilityOfPrecipitation": prob_precip_df['date_time_pp'], "forecasted_quantityOfPrecipitation_mm": qty_precip_df['value'], "forecastTime_quantityOfPrecipitation": qty_precip_df['date_time_qp'], }) bs_grid_df # bs_grid_df.dtypes # %% # -------------------------------------------------------------------- # ROSE CANYON CAMPGROUND # -------------------------------------------------------------------- # ------------------------------------------- # Pull Grid Data URL From Metadata url # ------------------------------------------- rc_url = "https://api.weather.gov/points/32.395,-110.6911" response_rc = requests.get(rc_url) data_rc = response_rc.json() data_rc grid_data_rc = data_rc["properties"]["forecastGridData"] grid_data_rc # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for Rose Canyon Campground # ------------------------------------------------------------------------ rc_forcast_url = grid_data_rc response_rc_forecast = requests.get(rc_forcast_url) data_rc_forecast = response_rc_forecast.json() data_rc_forecast lat_rc = data_rc_forecast["geometry"]["coordinates"][0][0][1] lat_rc lng_rc = data_rc_forecast["geometry"]["coordinates"][0][0][0] lng_rc elevation_rc = data_rc_forecast["properties"]["elevation"]["value"] elevation_rc # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- rc_df = pd.DataFrame({"id": 2, "campground": "Rose Canyon", "lat": [lat_rc], "lon": [lng_rc], "elevation": [elevation_rc], "nws_meta_url": [rc_url], "nws_grid_url": [grid_data_rc], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25698&actid=29", "campsite_url": "https://cdn.recreation.gov/public/2019/06/20/00/19/232284_beeddff5-c966-49e2-93a8-c63c1cf21294_700.jpg", # "nws_meta_json":[data_rc], # "nws_grid_json": [data_rc_forecast], "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3368.97130566869!2d-110.70672358360277!3d32.39313088108983!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6400421614087%3A0xb6cfb84a4b05c95b!2sRose%20Canyon%20Campground!5e0!3m2!1sen!2sus!4v1626560965073!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) rc_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp_rc = [] for i in data_rc_forecast["properties"]["temperature"]["values"]: temp_rc.append(i) temp_rc_df = pd.DataFrame(temp_rc) temp_rc_df # Temperature conversion to Degree Fahrenheit temp_rc_df['degF_rc'] = (temp_rc_df['value'] * 9 / 5) + 32 temp_rc_df # validTime Column split to date and time for Temperature date_temp_rc = temp_rc_df['validTime'].str.split('T', n=1, expand=True) time_temp_rc = date_temp_rc[1].str.split('+', n=1, expand=True) time_temp_rc temp_rc_df['date_temp_rc'] = date_temp_rc[0] temp_rc_df['time_temp_rc'] = time_temp_rc[0] # Combine date and time with a space in between the two temp_rc_df['date_time_temp_rc'] = temp_rc_df['date_temp_rc'] + ' ' + temp_rc_df['time_temp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js temp_rc_df['date_time_temp_rc'] = pd.to_datetime(temp_rc_df['date_time_temp_rc']) # Pull all the data for today + 3 days time_delta_temp_rc = datetime.datetime.strptime(temp_rc_df['date_temp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) temp_rc_df['times_temp_rc'] = time_delta_temp_rc.strftime("%Y-%m-%d") temp_rc_df = temp_rc_df.loc[temp_rc_df['date_temp_rc'] < temp_rc_df['times_temp_rc']] temp_rc_df temp_rc_df.dtypes # =================== Wind Speed Data ====================== wind_speed_rc = [] for i in data_rc_forecast["properties"]["windSpeed"]["values"]: wind_speed_rc.append(i) windSpeed_rc_df = pd.DataFrame(wind_speed_rc) windSpeed_rc_df # Converting KM/hour to Miles/hour windSpeed_rc_df['miles/hour_rc'] = windSpeed_rc_df['value'] * 0.621371 windSpeed_rc_df # validTime Column split to date and time for wind Speed date_ws_rc = windSpeed_rc_df['validTime'].str.split('T', n=1, expand=True) time_ws_rc = date_ws_rc[1].str.split('+', n=1, expand=True) time_ws_rc windSpeed_rc_df['date_ws_rc'] = date_ws_rc[0] windSpeed_rc_df['time_ws_rc'] = time_ws_rc[0] # Combine date and time with a space in between the two windSpeed_rc_df['date_time_ws_rc'] = windSpeed_rc_df['date_ws_rc'] + ' ' + windSpeed_rc_df['time_ws_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js windSpeed_rc_df['date_time_ws_rc'] = pd.to_datetime(windSpeed_rc_df['date_time_ws_rc']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_rc_df['date_ws_rc'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_rc_df['times_ws_rc'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_rc_df = windSpeed_rc_df.loc[windSpeed_rc_df['date_ws_rc'] < windSpeed_rc_df['times_ws_rc']] windSpeed_rc_df # windSpeed_rc_df.dtypes # =================== Wind Gust Data ====================== wind_gust_rc = [] for i in data_rc_forecast["properties"]["windGust"]["values"]: wind_gust_rc.append(i) wind_gust_rc_df = pd.DataFrame(wind_gust_rc) wind_gust_rc_df # Converting KM/hour to Miles/hour wind_gust_rc_df['m/h_rc'] = wind_gust_rc_df['value'] * 0.621371 wind_gust_rc_df # # validTime Column split to date and time for wind Gusts date_wg_rc = wind_gust_rc_df['validTime'].str.split('T', n=1, expand=True) time_wg_rc = date_wg_rc[1].str.split('+', n=1, expand=True) time_wg_rc wind_gust_rc_df['date_wg_rc'] = date_wg_rc[0] wind_gust_rc_df['time_wg_rc'] = time_wg_rc[0] # Combine date and time with a space in between the two wind_gust_rc_df['date_time_wg_rc'] = wind_gust_rc_df['date_wg_rc'] + ' ' + wind_gust_rc_df['time_wg_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js wind_gust_rc_df['date_time_wg_rc'] = pd.to_datetime(wind_gust_rc_df['date_time_wg_rc']) wind_gust_rc_df # Pull all the data for today + 3 days time_delta_wg = datetime.datetime.strptime(wind_gust_rc_df['date_wg_rc'][0],"%Y-%m-%d") + timedelta(days = 4) wind_gust_rc_df['times_wg_rc'] = time_delta_wg.strftime("%Y-%m-%d") wind_gust_rc_df = wind_gust_rc_df.loc[wind_gust_rc_df['date_wg_rc'] < wind_gust_rc_df['times_wg_rc']] wind_gust_rc_df # wind_gust_rc_df.dtypes # =================== Probability of Precipitataion ====================== prob_precip_rc = [] for i in data_rc_forecast["properties"]["probabilityOfPrecipitation"]["values"]: prob_precip_rc.append(i) prob_precip_rc_df = pd.DataFrame(prob_precip_rc) prob_precip_rc_df # # validTime Column split to date and time for Probability Precipitation date_pp_rc = prob_precip_rc_df['validTime'].str.split('T', n=1, expand=True) time_pp_rc = date_pp_rc[1].str.split('+', n=1, expand=True) time_pp_rc prob_precip_rc_df['date_pp_rc'] = date_pp_rc[0] prob_precip_rc_df['time_pp_rc'] = time_pp_rc[0] # Combine date and time with a space in between the two prob_precip_rc_df['date_time_pp_rc'] = prob_precip_rc_df['date_pp_rc'] + ' ' + prob_precip_rc_df['time_pp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js prob_precip_rc_df['date_time_pp_rc'] = pd.to_datetime(prob_precip_rc_df['date_time_pp_rc']) prob_precip_rc_df # Pull all the data for today + 3 days time_delta_pp = datetime.datetime.strptime(prob_precip_rc_df['date_pp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) prob_precip_rc_df['times_pp_rc'] = time_delta_pp.strftime("%Y-%m-%d") prob_precip_rc_df = prob_precip_rc_df.loc[prob_precip_rc_df['date_pp_rc'] < prob_precip_rc_df['times_pp_rc']] prob_precip_rc_df # prob_precip_rc_df.dtypes # =================== Quantity of Precipitataion ====================== qty_precip_rc = [] for i in data_rc_forecast["properties"]["quantitativePrecipitation"]["values"]: qty_precip_rc.append(i) qty_precip_rc_df = pd.DataFrame(qty_precip_rc) qty_precip_rc_df # # validTime Column split to date and time for quantity Precipitation date_qp_rc = qty_precip_rc_df['validTime'].str.split('T', n=1, expand=True) time_qp_rc = date_qp_rc[1].str.split('+', n=1, expand=True) time_qp_rc qty_precip_rc_df['date_qp_rc'] = date_qp_rc[0] qty_precip_rc_df['time_qp_rc'] = time_qp_rc[0] # Combine date and time with a space in between the two qty_precip_rc_df['date_time_qp_rc'] = qty_precip_rc_df['date_qp_rc'] + ' ' + qty_precip_rc_df['time_qp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js qty_precip_rc_df['date_time_qp_rc'] = pd.to_datetime(qty_precip_rc_df['date_time_qp_rc']) qty_precip_rc_df # Pull all the data for today + 3 days time_delta_qp = datetime.datetime.strptime(qty_precip_rc_df['date_qp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) qty_precip_rc_df['times_qp_rc'] = time_delta_qp.strftime("%Y-%m-%d") qty_precip_rc_df = qty_precip_rc_df.loc[qty_precip_rc_df['date_qp_rc'] < qty_precip_rc_df['times_qp_rc']] qty_precip_rc_df # qty_precip_rc_df.dtypes # =================== Create DataFrame with all the above data for Rose Canyon Campground ====================== rc_grid_df = pd.DataFrame({"id":2, "campground": "Rose Canyon", "forecasted_temperature_degF": temp_rc_df['degF_rc'], "forecastTime_temperature": temp_rc_df['date_time_temp_rc'], "forecasted_windSpeed_miles_per_h": windSpeed_rc_df['miles/hour_rc'], "forecastTime_windSpeed": windSpeed_rc_df['date_time_ws_rc'], "forecasted_windGust_miles_per_h": wind_gust_rc_df['m/h_rc'], "forecastTime_windGust": wind_gust_rc_df['date_time_wg_rc'], "forecasted_probabilityOfPrecipitation": prob_precip_rc_df['value'], "forecastTime_probabilityOfPrecipitation": prob_precip_rc_df['date_time_pp_rc'], "forecasted_quantityOfPrecipitation_mm": qty_precip_rc_df['value'], "forecastTime_quantityOfPrecipitation": qty_precip_rc_df['date_time_qp_rc'], }) rc_grid_df # rc_grid_df.dtypes # %% # -------------------------------------------------------------------- # SPENCER CANYON CAMPGROUND # -------------------------------------------------------------------- # ------------------------------------------- # Pull Grid Data URL From Metadata url # ------------------------------------------- sc_url = "https://api.weather.gov/points/32.4186,-110.7383" response_sc = requests.get(sc_url) data_sc = response_sc.json() data_sc grid_data_sc = data_sc["properties"]["forecastGridData"] grid_data_sc # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for Rose Canyon Campground # ------------------------------------------------------------------------ sc_forcast_url = grid_data_sc response_sc_forecast = requests.get(sc_forcast_url) data_sc_forecast = response_sc_forecast.json() data_sc_forecast lat_sc = data_sc_forecast["geometry"]["coordinates"][0][0][1] lat_sc lng_sc = data_sc_forecast["geometry"]["coordinates"][0][0][0] lng_sc elevation_sc = data_sc_forecast["properties"]["elevation"]["value"] elevation_sc # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- sc_df = pd.DataFrame({"id": 3, "campground": "Spencer Canyon", "lat": [lat_sc], "lon": [lng_sc], "elevation": [elevation_sc], "nws_meta_url": [sc_url], "nws_grid_url": [grid_data_sc], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25710&actid=29", "campsite_url": "https://www.fs.usda.gov/Internet/FSE_MEDIA/fseprd746608.jpg", # "nws_meta_json":[data_sc], # "nws_grid_json": [data_sc_forecast], "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3368.0814680369876!2d-110.74302428360251!3d32.41697578108229!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d61515ca1f56fd%3A0x242e26b2f2f72242!2sSpencer%20Canyon%20Campground!5e0!3m2!1sen!2sus!4v1626560995515!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) sc_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp_sc = [] for i in data_sc_forecast["properties"]["temperature"]["values"]: temp_sc.append(i) temp_sc_df =
pd.DataFrame(temp_sc)
pandas.DataFrame
from pathlib import Path from typing import Union, List import xarray as xr import numpy as np import pandas as pd import dask from dask.distributed import progress from loguru import logger from reki.format.grib.eccodes import load_field_from_file as load_grib2_field_from_file from reki.format.grads import load_field_from_file as load_grads_field_from_file from reki_data_tool.utils import ( extract_domain, combine_fields, compute_field, ) from reki_data_tool.postprocess.station.winter.meso1km.utils import ( standard_station, standard_lat_section, standard_lon_section, ) from reki_data_tool.postprocess.station.winter.meso1km.common import ( LEVELS, NAMES, DATASET_NAMES, STATIONS ) from reki_data_tool.utils import cal_run_time, create_dask_client @cal_run_time def create_station_dask_v1( output_file: Union[str, Path], station_id: str, start_time: pd.Timestamp, grib2_files: List[Union[str, Path]], postvar_file: Union[str, Path] = None, engine: str = "local", threads_per_worker: int = 1, n_workers: int = None, ): logger.info(f"create dask client with engine {engine}...") if engine == "local": client_kwargs = dict(threads_per_worker=threads_per_worker, n_workers=n_workers) else: client_kwargs = dict() client = create_dask_client(engine, client_kwargs=client_kwargs) logger.info("create dask client with engine {engine}...done") logger.info(f"client: {client}") logger.info("program begin") # 站点信息 station_lat_index = STATIONS[station_id]["point"]["lat_index"] station_lon_index = STATIONS[station_id]["point"]["lon_index"] # 剖面图范围 lat_index_range = STATIONS[station_id]["section"]["lat_index_range"] lon_index_range = STATIONS[station_id]["section"]["lon_index_range"] logger.info("loading fields from files...") data_list = dict() for field_record in NAMES: data_source = field_record.get("data_source", "grib2") field_name = field_record["field_name"] stations = [] lat_sections = [] lon_sections = [] if data_source == "grib2": for file_path in grib2_files: field = dask.delayed(load_grib2_field_from_file)( file_path, parameter=field_name, level_type="pl", level=LEVELS ) # level_field = dask.delayed(extract_level)(field, levels) field_station = dask.delayed(extract_domain)(field, station_lat_index, station_lon_index) field_lat_section = dask.delayed(extract_domain)(field, lat_index_range, station_lon_index) field_lon_section = dask.delayed(extract_domain)(field, station_lat_index, lon_index_range) stations.append(field_station) lat_sections.append(field_lat_section) lon_sections.append(field_lon_section) elif data_source == "postvar": for forecast_hour in pd.to_timedelta(np.arange(0, 25, 1), unit="h"): field = dask.delayed(load_grads_field_from_file)( postvar_file, parameter=field_name, level_type="pl", forecast_time=forecast_hour, level=LEVELS ) if field is None: raise ValueError("field not found!") # level_field = extract_level(field, levels) field_station = dask.delayed(extract_domain)(field, station_lat_index, station_lon_index) field_lat_section = dask.delayed(extract_domain)(field, lat_index_range, station_lon_index) field_lon_section = dask.delayed(extract_domain)(field, station_lat_index, lon_index_range) stations.append(field_station) lat_sections.append(field_lat_section) lon_sections.append(field_lon_section) else: raise ValueError(f"data source is not supported: {data_source}") data_list[f"{field_name}_0"] = dask.delayed(combine_fields)(lat_sections, field_record, dim="valid_time") data_list[f"{field_name}_9"] = dask.delayed(combine_fields)(lon_sections, field_record, dim="valid_time") data_list[f"{field_name}"] = dask.delayed(combine_fields)(stations, field_record, dim="valid_time") logger.info("loading fields from files...done") logger.info("generating dataset fields...") dataset_list = dict() for record in DATASET_NAMES: name = record["name"] if "fields" not in record: field_name = record["field_name"] current_station = data_list[f"{field_name}"] current_lat_section = data_list[f"{field_name}_0"] current_lon_section = data_list[f"{field_name}_9"] else: op = record["operator"] current_station = dask.delayed(compute_field)(op, *[data_list[f"{f['field_name']}"] for f in record["fields"]]) current_lat_section = dask.delayed(compute_field)(op, *[data_list[f"{f['field_name']}_0"] for f in record["fields"]]) current_lon_section = dask.delayed(compute_field)(op, *[data_list[f"{f['field_name']}_9"] for f in record["fields"]]) dataset_list[f"{name}_0"] = dask.delayed(standard_lat_section)(current_lat_section, record) dataset_list[f"{name}_9"] = dask.delayed(standard_lon_section)(current_lon_section, record) dataset_list[f"{name}"] = dask.delayed(standard_station)(current_station, record) logger.info("generating dataset fields...done") def get_data_list(dataset_list): return dataset_list t = dask.delayed(get_data_list)(dataset_list) logger.info("run DAG...") result = t.persist() if engine == "local": progress(result) else: # progress(result) pass r = result.compute() logger.info("run DAG...done") client.close() logger.info("creating xarray.Dataset...") ds = xr.Dataset(r) # 维度属性和变量 ds.coords["level"].attrs = { "long_name": "Isobaric surface", "units": "hPa" } ds["level"] = ds.coords["level"] # 数据集属性 ds.attrs = { "model": "GRAPES-1KM", "initial_time": f"{start_time}0000" } logger.info("creating xarray.Dataset...done") logger.info("saving to NetCDF file...") ds.to_netcdf(output_file, format="NETCDF3_CLASSIC") logger.info(f"saving to NetCDF file...done, {output_file}") logger.info("program end") if __name__ == "__main__": grib2_data_path = Path( # "/g11/wangdp/project/work/data/playground/station/ncl/data", # "grib2-orig" "/g2/nwp_sp/OPER_ARCHIVE/GRAPES_MESO_1KM/Prod-grib/2022031300/ORIG" ) grib2_files = list(grib2_data_path.glob("rmf.hgra.*.grb2")) grib2_files = sorted(grib2_files) # postvar_file_path = Path( # "/g11/wangdp/project/work/data/playground/station/ncl/data", # "postvar/postvar.ctl_202108251200000" # ) station_id = "54406" from reki_data_tool.postprocess.station.winter.meso1km.config import ( OUTPUT_DIRECTORY ) output_file_path = Path(OUTPUT_DIRECTORY, f"station_{station_id}_11_dask_v1.nc") create_station_dask_v1( output_file=output_file_path, station_id=station_id, start_time=
pd.to_datetime("2022-03-13 00:00:00")
pandas.to_datetime
import fitbit import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from ast import literal_eval # 更新時間管理など import datetime import time # Ctrl+Cで終了時の処理のため import signal import sys # モジュール変数の定義 import config # OSC関係のため import argparse from pythonosc import osc_message_builder from pythonosc import udp_client # 用いるTokenについて TOKEN_FILE = "tokens.token" ACCESS_TOKEN_FILE = "access.token" CLIENT_ID = "" CLIENT_SECRET = "" ACCESS_TOKEN = "" REFRESH_TOKEN = "" # 取得したい日付(今日に設定) e.g. "2018-02-26" DATE = datetime.datetime.now().strftime( '%Y-%m-%d' ) DATE = "2018-02-27" print(DATE) # Ctrl+Cで終了時の処理 def handler(signal, frame): print('Exit with Ctrl+C / sys.exit(0) ') # config.output_file.close() sys.exit(0) # request token file が更新されるのでそれのupdater def updateToken(token): f = open(TOKEN_FILE, 'w') f.write(str(token)) f.close() return def init_fitbit(): with open(ACCESS_TOKEN_FILE, "r") as f: #token fileの読み込み for line in f: start_index=line.find("access_token") if start_index is 0: split_list = line.split() ACCESS_TOKEN = split_list[2] start_index=line.find("refresh_token") if start_index is 0: split_list = line.split() REFRESH_TOKEN = split_list[2] start_index=line.find("clientid") if start_index is 0: split_list = line.split() CLIENT_ID = split_list[2] start_index=line.find("clientsecret") if start_index is 0: split_list = line.split() CLIENT_SECRET = split_list[2] # Refresh Token に関しては8時間しか有効でないので常に更新 tokens = open(TOKEN_FILE).read() token_dict = literal_eval(tokens) # access_token = token_dict['access_token'] REFRESH_TOKEN = token_dict['refresh_token'] # メモしたID等の確認用 print("CLIENT_ID = {0}".format(CLIENT_ID)) print("CLIENT_SECRET = {0}".format(CLIENT_SECRET)) print("ACCESS_TOKEN = {0}".format(ACCESS_TOKEN)) print("REFRESH_TOKEN = {0}".format(REFRESH_TOKEN)) # ID等の設定 authd_client = fitbit.Fitbit(CLIENT_ID, CLIENT_SECRET,access_token=ACCESS_TOKEN, refresh_token=REFRESH_TOKEN, refresh_cb = updateToken) return authd_client def init_osc(): parser = argparse.ArgumentParser() parser.add_argument("--ip", default="127.0.0.1", help="The ip of th OSC Server") parser.add_argument("--port", type=int, default=config.port_num, help="The port the OSC server is listening on") args = parser.parse_args() osc_client = udp_client.UDPClient(args.ip, args.port) # 設定のログ出し print("ip:127.0.0.1, port:" + str(config.port_num) + ", address:/data") return osc_client # 繰り返すタスク def task(authd_client, osc_client, start_time="16:15", end_time="16:40"): data_sec = authd_client.intraday_time_series('activities/heart', DATE, detail_level='1sec',start_time=start_time, end_time=end_time) #'1sec', '1min', or '15min' heart_sec = data_sec["activities-heart-intraday"]["dataset"] # 取得データをDataFrameに変換 heart_df =
pd.DataFrame.from_dict(heart_sec)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Copyright 2018 Infosys Ltd. Use of this source code is governed by MIT license that can be found in the LICENSE file or at https://opensource.org/licenses/MIT. @author: zineb , Mohan # -*- coding: utf-8 -*- """ #%% import xml.dom.minidom import pandas as pd import requests import datetime as DT from dateutil.parser import parse import win32com.client as win32 import newspaper from newspaper import Article import nltk nltk.download('all') from TwitterSearch import TwitterSearchOrder from TwitterSearch import TwitterUserOrder from TwitterSearch import TwitterSearchException from TwitterSearch import TwitterSearch from bs4 import BeautifulSoup as bs import urllib3 import xmltodict import traceback2 as traceback import re import warnings import contextlib from urllib3.exceptions import InsecureRequestWarning import Algo_4 #%% old_merge_environment_settings = requests.Session.merge_environment_settings @contextlib.contextmanager def no_ssl_verification(): opened_adapters = set() def merge_environment_settings(self, url, proxies, stream, verify, cert): # Verification happens only once per connection so we need to close # all the opened adapters once we're done. Otherwise, the effects of # verify=False persist beyond the end of this context manager. opened_adapters.add(self.get_adapter(url)) settings = old_merge_environment_settings(self, url, proxies, stream, verify, cert) settings['verify'] = False return settings requests.Session.merge_environment_settings = merge_environment_settings try: with warnings.catch_warnings(): warnings.simplefilter('ignore', InsecureRequestWarning) yield finally: requests.Session.merge_environment_settings = old_merge_environment_settings for adapter in opened_adapters: try: adapter.close() except: pass keywords=[] companies_names=[] days_count=[] emails=[] persons_names=[] connections=[] companies_ids=[] relevantsubject=[] twitter_list=[] main_list=[] log_date=[] def main(): #COMPANIES.XML doc_comp = xml.dom.minidom.parse("companies.xml"); # print(doc.nodeName) # print(doc.firstChild.tagName) companies=doc_comp.getElementsByTagName("company") for company in companies: #print(company.getElementsByTagName("name")) company_name=company.getElementsByTagName("c_name")[0].childNodes[0] companies_names.append(company_name.nodeValue) keyword=company.getElementsByTagName("keyword") x=[] for word in keyword: x.append(word.childNodes[0].nodeValue) keywords.append(x) company_id=company.getElementsByTagName("c_id")[0].childNodes[0] companies_ids.append(company_id.nodeValue) twitter=company.getElementsByTagName("twitter_name")[0].childNodes[0].nodeValue youtube=company.getElementsByTagName("youtube")[0].childNodes[0].nodeValue hashtag=company.getElementsByTagName("hashtag") z=[] for word in hashtag: z.append(word.childNodes[0].nodeValue) twitter_list.append([twitter,z]) main_list.append([company_name.nodeValue,x,twitter,z,youtube]) #NEW DATE doc_log = xml.dom.minidom.parse("log.xml"); log_date.append(doc_log.getElementsByTagName('day')[0].childNodes[0].nodeValue) #PEOPLE.XML doc = xml.dom.minidom.parse("people_v2.xml"); #print(doc.nodeName) #print(doc.firstChild.tagName) person=doc.getElementsByTagName("person") for info in person: # print(company.getElementsByTagName("name")) person_name=info.getElementsByTagName("p_name")[0].childNodes[0] #print(person_name) persons_names.append(person_name.nodeValue) email=info.getElementsByTagName("email")[0].childNodes[0] emails.append(email.nodeValue) grouped_company=info.getElementsByTagName("group") group=[] for g in grouped_company: group_name=g.getElementsByTagName("g_name")[0].childNodes[0] #group.append(group_name.nodeValue) comp_name=g.getElementsByTagName("comp_id") comp=[] for c in range(len(comp_name)): comp.append(comp_name[c].childNodes[0].nodeValue) group.append([group_name.nodeValue,comp]) #connections.append(group) single_companies=info.getElementsByTagName("single")[0] cs_name=single_companies.getElementsByTagName("comp_id") single_comp=[] for s in range(len(cs_name)): single_name=cs_name[s].childNodes[0].nodeValue single_comp.append(single_name) group.append(single_comp) connections.append(group) #Keywords.XML doc_words = xml.dom.minidom.parse("keywords_list.xml"); #print(doc_date.nodeName) for i in range(len(doc_words.getElementsByTagName('word'))): word=doc_words.getElementsByTagName('word')[i] l=word.childNodes[0].nodeValue relevantsubject.append(l) if __name__ == "__main__": main(); #%% urls=[] current_companies=[] datasets={} API_KEY = '' def content(): today = DT.date.today() # days_ago = today - DT.timedelta(days=int(days_count[0])) todayf = today.strftime("%Y-%m-%d") # days_agof = days_ago.strftime("%Y-%m-%d") #URLS url = 'https://newsapi.org/v2/everything?q=' url_p2='&from='+log_date[0]+'&to='+todayf+'+&sortBy=publishedAt&language=en&apiKey='+ API_KEY for company in range(len(keywords)): # print(company) # print(len(company)) if len(keywords[company]) == 0 : print('no keywords given') if len(keywords[company]) > 1 : new_url = url + keywords[company][0] for i in range(1,len(keywords[company])): new_url = new_url + "%20AND%20"+ keywords[company][i] final_url = new_url + url_p2 else: final_url= url + keywords[company][0] + url_p2 # print(url) urls.append(final_url) # Build df with article info + create excel sheet count = 0 # current_companies=[] # datasets={} for url in urls: JSONContent = requests.get(url).json() #content = json.dumps(JSONContent, indent = 4, sort_keys=True) article_list = [] for i in range(len(JSONContent['articles'])): article_list.append([JSONContent['articles'][i]['source']['name'], JSONContent['articles'][i]['title'], JSONContent['articles'][i]['publishedAt'], JSONContent['articles'][i]['url'] ]) #print(article_list) if article_list != []: datasets[companies_names[count]]= pd.DataFrame(article_list) datasets[companies_names[count]].columns = ['Source/User','Title/Tweet','Date','Link'] datasets[companies_names[count]]['Date']=datasets[companies_names[count]]['Date'].str.replace('T',' ') datasets[companies_names[count]]['Date']=datasets[companies_names[count]]['Date'].str.replace('Z','') datasets[companies_names[count]]['Date']=datasets[companies_names[count]]['Date'].str.split(expand=True) for i in range(len(datasets[companies_names[count]]['Date'])): datasets[companies_names[count]]['Date'][i]=parse(datasets[companies_names[count]]['Date'][i]) datasets[companies_names[count]]['Date'][i]=datasets[companies_names[count]]['Date'][i].date() #datasets[companies_names[count]]['Date'][i]=datasets[companies_names[count]]['Date'][i].str.split(expand=True) #ds = '2012-03-01T10:00:00Z' # or any date sting of differing formats. #date = parser.parse(ds) #datasets[companies_names[count]]['Date']=pd.to_datetime(datasets[companies_names[count]]['Date']) #print(datasets[companies_names[count]]) current_companies.append(companies_names[count]) count=count+1 else: None count=count+1 content() duplicate_df=[] def duplicate_check(): for article in datasets: d=datasets[article][datasets[article].duplicated(['Title/Tweet'],keep='first')==True] print(d) if d.empty == False: duplicate_df.append(d) else: None #duplicate_article.append(d) #duplicate_article = duplicate_article.concat([duplicate_article,d], axis=0) #print(d) duplicate_check() def duplicate_drop(): for article in datasets: datasets[article]=datasets[article].drop_duplicates(['Title/Tweet'],keep='first') datasets[article]=datasets[article].reset_index() datasets[article]=datasets[article].drop(['index'], axis=1) duplicate_drop() #%% def Scoring(): for a in datasets: try: datasets[a].insert(0,'Category','Article') datasets[a].insert(1,'Company',str(a)) datasets[a].insert(3,'Keywords','none') datasets[a].insert(4,'Subjects/Views','none') for i in range(len(datasets[a]['Link'])): r=[] article = Article(datasets[a]['Link'][i]) article.download() article.html article.parse() txt=article.text.encode('ascii','ignore').decode('ascii') #f=requests.get(datasets[article]['Link'][i]) #txt=f.text.encode('ascii','ignore').decode('ascii') txt=txt.lower() #total_word= wordcounter(txt).get_word_count() for word in relevantsubject: result=txt.count(word) if result != 0: r.append(word +'('+ str(txt.count(word)) +')') else: None # relevanceLink.append(r) r=', '.join(word for word in r) if r != []: datasets[a]['Subjects/Views'][i]=str(r + ' (totalWords:'+ str(len(txt.split()))+')') else: datasets[a]['Subjects/Views'][i]=str('None') article.nlp() k=', '.join(keyword for keyword in article.keywords) datasets[a]['Keywords'][i]=str(k) except newspaper.article.ArticleException: None #k= [] #for keyword in article.keywords: # k.append[keyword] # k=', '.join(keyword for keyword in k) # datasets[a]['Keywords'][i]=str(k) Scoring() # datasets[article] #%% Formatting companies_dic=dict(zip(companies_names, companies_ids)) people_comp_dic=dict(zip(persons_names, connections)) people_email_dic=dict(zip(persons_names, emails)) Subject = pd.DataFrame(relevantsubject) Subject.columns=['Subject Interest'] Companies = pd.DataFrame(companies_names) Companies.columns=['Companies Interest'] CS = pd.concat([Subject, Companies], axis=1) CS.fillna('',inplace=True) MainDF=pd.DataFrame(main_list) MainDF.columns=['company','keywords','twitter','hashtag','youtube'] #import re def Find(string): url = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+] |[!*\(\), ]|(?:%[0-9a-fA-F][0-9a-fA-F])|(?:%[0-9a-fA-F]|[$-_@.&+]|[!*\(\), ]|[0-9a-fA-F]))+', string) return url #%% tweets_datasets={} tw_current_companies=[] today = DT.date.today() #days_ago = today - DT.timedelta(days=int(days_count[0])) new_date = parse(log_date[0]).date() def Tweets(): try: max_feeds=10 tso = TwitterSearchOrder() # create a TwitterSearchOrder object tso.set_language('en') tso.set_include_entities(False) # and don't give us all those entity information tso.set_until(new_date) tso.arguments.update({'tweet_mode':'extended'}) tso.arguments.update({'truncated': 'False' }) ts = TwitterSearch( consumer_key = '', consumer_secret = '', access_token = '', access_token_secret = '', proxy='http://proxy_address' ) for c in range(len(MainDF)): count=0 #kw=[MainDF['twitter'][c]] #for h in MainDF['hashtag'][c]: # kw.append(h) tso.set_keywords(MainDF['hashtag'][c]) tweets_list=[] tuo = TwitterUserOrder(MainDF['twitter'][c]) # tuo.set_language('en') tuo.set_include_entities(False) # and don't give us all those entity information # tuo.set_until(days_ago) # tuo.set_count(15) tuo.arguments.update({'tweet_mode':'extended'}) tuo.arguments.update({'truncated': 'False' }) #for tweet in ts.search_tweets_iterable(tso): # print(tweet) # tweets_list.append([tweet['user']['screen_name'],tweet['full_text']]) for tweet in ts.search_tweets_iterable(tso): if 'retweeted_status' in tweet: None #tweets_list.append([tweet['user']['screen_name'],tweet['retweeted_status']['full_text'],'Retweet of ' + tweet['retweeted_status']['user']['screen_name']]) else: links=Find(tweet['full_text']) links=', '.join(link for link in links) #print(tweet) tweets_list.append([MainDF['company'][c],tweet['user']['screen_name'],tweet['full_text'],tweet['created_at'],links]) for tweet in ts.search_tweets_iterable(tuo): if tweet['lang'] != 'en': #print(tweet) None else: # print(tweet) links=Find(tweet['full_text']) links=', '.join(link for link in links) tweets_list.append([MainDF['company'][c],tweet['user']['screen_name'],tweet['full_text'],tweet['created_at'],links]) count=count+1 if count == max_feeds: break if tweets_list != []: tweets_datasets[MainDF['company'][c]]= pd.DataFrame(tweets_list) tweets_datasets[MainDF['company'][c]].columns = ['Company','Source/User','Title/Tweet','Date','Link'] tweets_datasets[MainDF['company'][c]].insert(0,'Category','Twitter') for i in range(len(tweets_datasets[MainDF['company'][c]]['Date'])): tweets_datasets[MainDF['company'][c]]['Date'][i]=parse(tweets_datasets[MainDF['company'][c]]['Date'][i]) tweets_datasets[MainDF['company'][c]]['Date'][i]=tweets_datasets[MainDF['company'][c]]['Date'][i].date() #print(datasets[companies_names[count]]) tw_current_companies.append(MainDF['company'][c]) else: None #tweets_list.append() #print( '@%s tweeted: %s' % ( tweet['user']['screen_name'], tweet['text'] ) ) except TwitterSearchException as e: # take care of all those ugly errors if there are some print(e) with no_ssl_verification(): Tweets() #%% Filters only for todays for comp in tweets_datasets: tweets_datasets[comp]=tweets_datasets[comp].loc[tweets_datasets[comp]['Date'] >= new_date] for comp in list(tweets_datasets.keys()): if tweets_datasets[comp].empty == True: del tweets_datasets[comp] #re-indexing for comp in tweets_datasets: tweets_datasets[comp]=tweets_datasets[comp].reset_index() tweets_datasets[comp]=tweets_datasets[comp].drop(['index'], axis=1) #tweets_datasets = tweets_datasets.loc[tweets_datasets[comp].empty == False] #%% from nltk.corpus import stopwords from nltk.tokenize import word_tokenize Double_df=[] for comp in tweets_datasets: for i in range(len(tweets_datasets[comp])): doubles=[] #doubles.append(comp) X =tweets_datasets[comp]['Title/Tweet'][i] X_list = word_tokenize(X) sw = stopwords.words('english') X_set = {w for w in X_list if not w in sw} for n in range(len(tweets_datasets[comp])): Y =tweets_datasets[comp]['Title/Tweet'][n] # tokenization Y_list = word_tokenize(Y) # sw contains the list of stopwords # sw = stopwords.words('english') l1 =[];l2 =[] # remove stop words from string #X_set = {w for w in X_list if not w in sw} Y_set = {w for w in Y_list if not w in sw} # form a set containing keywords of both strings rvector = X_set.union(Y_set) for w in rvector: if w in X_set: l1.append(1) # create a vector else: l1.append(0) if w in Y_set: l2.append(1) else: l2.append(0) c = 0 # cosine formula for i in range(len(rvector)): c+= l1[i]*l2[i] cosine = c / float((sum(l1)*sum(l2))**0.5) print(tweets_datasets[comp]['Title/Tweet'][n]) print("similarity: ", cosine) if (Y == X)== True: #None print('Same') else: if 0.80 <= cosine <= 0.99 : print('Yes!') doubles.append(tweets_datasets[comp].iloc[[n]]) #d=tweets_datasets[comp][tweets_datasets[comp]['Title/Tweet'][n]] #doubles.append(d) else: None if doubles != []: d=pd.concat(doubles) d=d.reset_index() d=d.drop(['index'],axis=1) Double_df.append(d) else: None def drop_similar(): for comp in tweets_datasets: for i in range(len(Double_df)): for n in range(len(Double_df[i])): for r in range(len(tweets_datasets[comp].copy())): if Double_df[i]['Title/Tweet'][n] != tweets_datasets[comp]['Title/Tweet'][r]: None else: tweets_datasets[comp]=tweets_datasets[comp].drop(r) tweets_datasets[comp]=tweets_datasets[comp].reset_index() tweets_datasets[comp]=tweets_datasets[comp].drop(['index'], axis=1) drop_similar() #%% tw_duplicate_df=[] def tw_duplicate_check(): try: for article in tweets_datasets: d=tweets_datasets[article][tweets_datasets[article].duplicated(subset=['Title/Tweet'],keep='first')==True] print(d) if d.empty == False: tw_duplicate_df.append(d) else: None except: None tw_duplicate_check() def tw_duplicate_drop(): if tw_duplicate_df != []: for article in tweets_datasets: tweets_datasets[article]=tweets_datasets[article].drop_duplicates(subset=['Title/Tweet'],keep='first', inplace=True) tweets_datasets[article]=tweets_datasets[article].reset_index() tweets_datasets[article]=tweets_datasets[article].drop(['index'], axis=1) else: None tw_duplicate_drop() #%% def Scoring_Tweet(): for a in tweets_datasets: #datasets[a].insert(0,'Company',str(a)) tweets_datasets[a].insert(3,'Subjects/Views','none') for i in range(len(tweets_datasets[a]['Title/Tweet'])): r=[] txt=tweets_datasets[a]['Title/Tweet'][i].encode('ascii','ignore').decode('ascii') #f=requests.get(datasets[article]['Link'][i]) #txt=f.text.encode('ascii','ignore').decode('ascii') txt=txt.lower() #total_word= wordcounter(txt).get_word_count() for word in relevantsubject: result=txt.count(word) if result != 0: r.append(word +'('+ str(txt.count(word)) +')') else: None # relevanceLink.append(r) r=', '.join(word for word in r) if r != []: tweets_datasets[a]['Subjects/Views'][i]=str(r + ' (totalWords:'+ str(len(txt.split()))+')') else: tweets_datasets[a]['Subjects/Views'][i]=str('None') Scoring_Tweet() #%% general_df = {} general_df = tweets_datasets.copy() for n in datasets: if n in general_df: general_df[n]=pd.concat([datasets[n],general_df[n]], axis=0, sort=False) else: general_df.update({str(n):datasets[n]}) for comp in general_df: general_df[comp]=general_df[comp].reset_index() general_df[comp]=general_df[comp].drop(['index'], axis=1) #%% Youtube_dataset ={} base = "https://www.youtube.com/user/{}/videos" from textblob import TextBlob #qstring = "snowflakecomputing" for i in range(len(MainDF)): qstring= MainDF['youtube'][i] with no_ssl_verification(): r = requests.get(base.format(qstring) ) page = r.text soup=bs(page,'html.parser') vids= soup.findAll('a',attrs={'class':'yt-uix-tile-link'}) duration=soup.findAll('span',attrs={'class':'accessible description'}) date=soup.findAll('ul',attrs={'class':'yt-lockup-meta-info'}) videolist=[] for v in vids: tmp = 'https://www.youtube.com' + v['href'] videolist.append([v['title'],tmp]) infos=[] for d in date: x=d.findAll('li') infos.append([x[0].text,x[1].text]) youtubeDF=pd.DataFrame(videolist) infosDF=pd.DataFrame(infos) youtubeDF=pd.concat([youtubeDF,infosDF],axis=1) #print(youtubeDF) if youtubeDF.empty == False : youtubeDF.columns=['Title/Tweet','Link','Subjects/Views','Date'] youtubeDF.insert(0,'Company',str(MainDF['company'][i])) youtubeDF.insert(0,'Category','youtube') youtubeDF.insert(2,'Source/User',base.format(qstring)) last = youtubeDF.loc[youtubeDF['Date']=='1 day ago'] last['Date']=last['Date'].replace('1 day ago',log_date[0], regex=True) if last.empty == False: Youtube_dataset[MainDF['company'][i]]=pd.DataFrame(last) else: None else: None #%% #re-indexing for comp in Youtube_dataset: Youtube_dataset[comp]=Youtube_dataset[comp].reset_index() Youtube_dataset[comp]=Youtube_dataset[comp].drop(['index'], axis=1) #%% for i in list(Youtube_dataset.keys()): for n in range(len(Youtube_dataset[i])): if TextBlob(Youtube_dataset[i]['Title/Tweet'][n]).detect_language() != 'en': Youtube_dataset[i]=Youtube_dataset[i].drop(n) Youtube_dataset[i]=Youtube_dataset[i].reset_index() Youtube_dataset[i]=Youtube_dataset[i].drop(['index'], axis=1) else: None #%% for comp in list(Youtube_dataset.keys()): if Youtube_dataset[comp].empty == True: del Youtube_dataset[comp] #%% #re-indexing for comp in Youtube_dataset: Youtube_dataset[comp]=Youtube_dataset[comp].reset_index() Youtube_dataset[comp]=Youtube_dataset[comp].drop(['index'], axis=1) #%% for n in Youtube_dataset: if n in general_df: general_df[n]=pd.concat([Youtube_dataset[n],general_df[n]], axis=0, sort=False) else: general_df.update({str(n):Youtube_dataset[n]}) for comp in general_df: general_df[comp]=general_df[comp].reset_index() general_df[comp]=general_df[comp].drop(['index'], axis=1) #%% ITUNES urls_itunes=[] itunes_content={} url_1='https://itunes.apple.com/search?lang=en_us&term=' for i in range(len(companies_names)): url_final= url_1 + companies_names[i] #print(url_final) urls_itunes.append(url_final) i = 0 for url in urls_itunes: response = requests.get(url) content = response.json() podcast_list=[] for n in range(len(content['results'])): c = content['results'][n] #print(content['results'][n].items()) if content['results'][n]['wrapperType'] == 'audiobook': podcast_list.append(['audiobook',companies_names[i],c['artistName'],c['collectionName'],c['releaseDate'],c['collectionViewUrl']]) else: if content['results'][n]['kind'] == 'podcast': podcast_list.append(['podcast',companies_names[i],c['artistName'],c['collectionName'],c['releaseDate'],c['trackViewUrl']]) else: None if podcast_list != []: itunes_content[companies_names[i]] = pd.DataFrame(podcast_list) itunes_content[companies_names[i]].columns =['Category','Company','Source/User','Title/Tweet','Date','Link'] itunes_content[companies_names[i]]['Date']=itunes_content[companies_names[i]]['Date'].str.replace('T',' ') itunes_content[companies_names[i]]['Date']=itunes_content[companies_names[i]]['Date'].str.replace('Z',' ') itunes_content[companies_names[i]]['Date']=itunes_content[companies_names[i]]['Date'].str.split(expand=True) for d in range(len(itunes_content[companies_names[i]]['Date'])): itunes_content[companies_names[i]]['Date'][d]=parse(itunes_content[companies_names[i]]['Date'][d]) itunes_content[companies_names[i]]['Date'][d]=itunes_content[companies_names[i]]['Date'][d].date() i = i +1 else: i = i +1 #Only for the good period of time for comp in itunes_content: itunes_content[comp]=itunes_content[comp].loc[itunes_content[comp]['Date'] >= new_date] for comp in list(itunes_content.keys()): if itunes_content[comp].empty == True: del itunes_content[comp] #re-indexing for comp in itunes_content: itunes_content[comp]=itunes_content[comp].reset_index() itunes_content[comp]=itunes_content[comp].drop(['index'], axis=1) #%% for n in itunes_content: if n in general_df: general_df[n]=pd.concat([itunes_content[n],general_df[n]], axis=0, sort=False) else: general_df.update({str(n):itunes_content[n]}) for comp in general_df: general_df[comp]=general_df[comp].reset_index() general_df[comp]=general_df[comp].drop(['index'], axis=1) #%% RSS FEED #import urlopen url='https://blogs.gartner.com/gbn-feed/' proxy = urllib3.ProxyManager('http://proxy_address') http = urllib3.PoolManager() response = proxy.request('GET', url) try: data = xmltodict.parse(response.data) except: print("Failed to parse xml from response (%s)" % traceback.format_exc()) RSSfeed=pd.DataFrame(data['rss']['channel']['item']) for r in range(len(RSSfeed)): RSSfeed['pubDate'][r]=parse(RSSfeed['pubDate'][r]) RSSfeed['pubDate'][r]=RSSfeed['pubDate'][r].date() RSSfeed=RSSfeed.loc[RSSfeed['pubDate'] >= new_date] #RSSfeed=RSSfeed.loc[RSSfeed['pubDate'] >= parse('2019-09-12').date()] RSSfeed=RSSfeed.drop(['guid','author','headshot','category'], axis=1) #%% def RSS_scoring(): try: if RSSfeed.empty == True: None else: RSSfeed.insert(0,'Category','Gartner') #RSSfeed.insert(1,'Company','/') RSSfeed.insert(3,'Keywords','none') RSSfeed.insert(4,'Subjects/Views','none') for i in range(len(RSSfeed['link'])): article = Article(RSSfeed['link'][i]) article.download() article.html article.parse() txt=article.text.encode('ascii','ignore').decode('ascii') #f=requests.get(datasets[article]['Link'][i]) #txt=f.text.encode('ascii','ignore').decode('ascii') txt=txt.lower() #total_word= wordcounter(txt).get_word_count() r=[] for word in relevantsubject: result=txt.count(word) if result != 0: r.append(word +'('+ str(txt.count(word)) +')') else: None # relevanceLink.append(r) r=', '.join(word for word in r) if r != []: RSSfeed['Subjects/Views'][i]=str(r + ' (totalWords:'+ str(len(txt.split()))+')') else: RSSfeed['Subjects/Views'][i]=str('None') article.nlp() k=', '.join(keyword for keyword in article.keywords) RSSfeed['Keywords'][i]=str(k) except: None RSS_scoring() #%% if RSSfeed.empty != True: RSSfeed=RSSfeed.loc[RSSfeed['Subjects/Views'].str.contains('data') == True] if RSSfeed.empty == True: RSSfeed = RSSfeed.drop(['Category', 'title', 'link', 'Keywords', 'Subjects/Views', 'description','pubDate'], axis=1) else: None else: RSSfeed = RSSfeed.drop([ 'title', 'link', 'description','pubDate'], axis=1) #%% for i in RSSfeed: RSSfeed[i].fillna(" ", inplace=True) NEWS = RSSfeed['title'] + RSSfeed['Keywords'] + RSSfeed['Subjects/Views'] NEWS = NEWS.apply(Algo_4.clean_text) NEWS_cv = Algo_4.cv.transform(NEWS) NEWS_tfdi = Algo_4.tfidf_transformer.transform(NEWS_cv) predictions_news = Algo_4.naive_bayes.predict(NEWS_cv) predictions_news=pd.Series(predictions_news) RSSfeed=pd.concat([RSSfeed,predictions_news], axis=1) RSSfeed.rename(columns={0:'Relevant(1)/Irrelevant(0)'}, inplace=True) #%% for i in general_df: for n in general_df[i]: general_df[i][n].fillna(" ", inplace=True) for i in general_df: if 'Keywords' in general_df[i]: NEWS = general_df[i]['Title/Tweet'] + general_df[i]['Source/User']+ general_df[i]['Keywords'] + general_df[i]['Subjects/Views'] else: NEWS = general_df[i]['Title/Tweet'] + general_df[i]['Source/User'] + general_df[i]['Subjects/Views'] NEWS = NEWS.apply(Algo_4.clean_text) NEWS_cv = Algo_4.cv.transform(NEWS) NEWS_tfdi = Algo_4.tfidf_transformer.transform(NEWS_cv) predictions_news = Algo_4.naive_bayes.predict(NEWS_cv) predictions_news=pd.Series(predictions_news) general_df[i]=pd.concat([general_df[i],predictions_news], axis=1) general_df[i].rename(columns={0:'Relevant(1)/Irrelevant(0)'}, inplace=True) #%% def ToExcel(): for p in people_comp_dic: with pd.ExcelWriter('NewsFor' + str(p)+'-'+ DT.date.today().strftime("%d-%m-%Y") +'.xlsx',engine='xlsxwriter',options={'strings_to_urls': False}) as writer: workbook=writer.book cell_format = workbook.add_format() cell_format.set_text_wrap({'text_wrap':True}) col_format = workbook.add_format({ 'align': 'vcenter', 'text_wrap': 'vjustify', 'num_format':'@'}) #print(i) for c in range(len(people_comp_dic[p])) : if len(people_comp_dic[p][c]) == 2 and type(people_comp_dic[p][c][1]) == list: GroupedDataset=pd.DataFrame() #print(GroupedDataset) for sc in range(len(people_comp_dic[p][c][1])): for i in general_df: if str(i) == str(people_comp_dic[p][c][1][sc]): GroupedDataset=pd.concat([GroupedDataset,general_df[i]],axis=0,sort=False) else: None #if GroupeDataset = []: #print(GroupedDataset) if GroupedDataset.empty == False: GroupedDataset.to_excel(writer,sheet_name=str(people_comp_dic[p][c][0]), index=False) worksheet=writer.sheets[str(people_comp_dic[p][c][0])] worksheet.autofilter('A1:H20') worksheet.set_column('A:A',10,col_format) worksheet.set_column('B:B',10,col_format) worksheet.set_column('C:C',10,col_format) worksheet.set_column('D:D',40,col_format) worksheet.set_column('E:E',30,col_format) worksheet.set_column('F:F',40,col_format) worksheet.set_column('G:G',10,col_format) worksheet.set_column('H:H',30,col_format) worksheet.set_column('I:I',30,col_format) else: #print('df empty') GroupedDataset.to_excel(writer,sheet_name=str(people_comp_dic[p][c][0]), index=False) worksheet=writer.sheets[str(people_comp_dic[p][c][0])] worksheet.write('A1', 'No news about this group.') elif len(people_comp_dic[p][c]) > 1: for sc in range(len(people_comp_dic[p][c])): for i in general_df: if str(i) == str(people_comp_dic[p][c][sc]): general_df[i].to_excel(writer,sheet_name=str(i), index=False) worksheet=writer.sheets[str(i)] worksheet.autofilter('A1:H20') worksheet.set_column('A:A',10,col_format) worksheet.set_column('B:B',10,col_format) worksheet.set_column('C:C',10,col_format) worksheet.set_column('D:D',40,col_format) #worksheet.set_column('D:D',20,col_format) worksheet.set_column('E:E',30,col_format) worksheet.set_column('F:F',40,col_format) worksheet.set_column('G:G',10,col_format) worksheet.set_column('H:H',30,col_format) worksheet.set_column('I:I',30,col_format) else: None else: None if RSSfeed.empty == True: RSSfeed.to_excel(writer,sheet_name='Gartner', index=False) worksheet=writer.sheets['Gartner'] worksheet.write('A1', 'No Gartner feeds for today!') else: RSSfeed.to_excel(writer,sheet_name='Gartner',index=False) worksheet=writer.sheets['Gartner'] worksheet.autofilter('A1:G20') worksheet.set_column('A:A',10,col_format) worksheet.set_column('B:B',40,col_format) worksheet.set_column('C:C',30,col_format) worksheet.set_column('D:D',30,col_format) worksheet.set_column('E:E',30,col_format) worksheet.set_column('F:F',40,col_format) worksheet.set_column('G:G',10,col_format) worksheet.set_column('H:H',30,col_format) CS.to_excel(writer,sheet_name='Info',index=False) worksheet=writer.sheets['Info'] worksheet.set_column('A:B',30,col_format) GroupedDuplicate=pd.DataFrame() for d in range(len(duplicate_df)): GroupedDuplicate=pd.concat([GroupedDuplicate,duplicate_df[d]],sort=False,axis=0) for tw in range(len(tw_duplicate_df)): GroupedDuplicate=pd.concat([GroupedDuplicate,tw_duplicate_df[tw]],sort=False,axis=0) for db in range(len(Double_df)): #for i in range(len(Double_df[db])): GroupedDuplicate=pd.concat([GroupedDuplicate,Double_df[db]],sort=False,axis=0) if GroupedDuplicate.empty == False: GroupedDuplicate.to_excel(writer,sheet_name='Backlog', index=False) worksheet=writer.sheets['Backlog'] worksheet.autofilter('A1:H20') worksheet.set_column('A:A',10,col_format) worksheet.set_column('B:B',10,col_format) worksheet.set_column('C:C',10,col_format) worksheet.set_column('D:D',40,col_format) worksheet.set_column('E:E',30,col_format) worksheet.set_column('F:F',40,col_format) worksheet.set_column('G:G',10,col_format) worksheet.set_column('H:H',30,col_format) else: GroupedDuplicate.to_excel(writer,sheet_name='Backlog', index=False) worksheet=writer.sheets['Backlog'] worksheet.write('A1', 'No duplicates.') # ALL COMPANIES with
pd.ExcelWriter('AllCompaniesNews.xlsx',engine='xlsxwriter')
pandas.ExcelWriter
# coding: utf-8 """ """ import pandas as pd import numpy as np import re import csv import io import time import traceback import logging logging.basicConfig(format="%(asctime)s %(levelname)s: %(message)s", level=logging.DEBUG) def cal_jlr_zengzhanglv(data, col1, col2): kuisun_count = 0 if not (data.iat[0] > 0 and data.iat[-1] > 0): fhzzl = np.nan else: # 复合增长率 fhzzl = ((data.iat[0] / data.iat[-1]) ** (1.0 / (len(data) - 1)) - 1) * 100 for d in data[:-1]: if d < 0: kuisun_count += 1 return pd.Series({col1: fhzzl, col2: kuisun_count}) def cal_PEG(data, col1, col2): # data.iat[0] is PE if not (data.iat[0] > 0 and data.iat[1] > 0 and data.iat[-1] > 0): peg = np.nan fhzzl = np.nan else: # 复合增长率 fhzzl = ((data.iat[1] / data.iat[-1]) ** (1.0 / (len(data) - 2)) - 1) * 100 if fhzzl == 0: peg = np.nan else: peg = data.iat[0] / fhzzl return pd.Series({col1: fhzzl, col2: peg}) def generate_date_label(start_label): dongtai_label = start_label if pd.Timestamp(dongtai_label).is_year_end: jingtai_label = dongtai_label else: jingtai_label = (pd.Timestamp(dongtai_label)- pd.offsets.YearEnd(1)).strftime("%Y%m%d") # q4 ttm = q4 + last q4 - last q4 # q3 ttm = q3 + last q4 - last q3 # q2 ttm = q2 + last q4 - last q2 # q1 ttm = q1 + last q4 - last q1 ttm_label1 = dongtai_label ttm_label2 = (pd.Timestamp(dongtai_label) - pd.offsets.YearEnd(1)).strftime("%Y%m%d") ttm_label3 = (pd.Timestamp(dongtai_label) - pd.offsets.DateOffset(years=1)).strftime("%Y%m%d") y4_label = pd.date_range(end=jingtai_label, freq='Y', periods=4).strftime("%Y%m%d")[::-1].tolist() y3_label = y4_label[:-1] y6_label = pd.date_range(end=jingtai_label, freq='Y', periods=6).strftime("%Y%m%d")[::-1].tolist() y5_label = y6_label[:-1] y11_label = pd.date_range(end=jingtai_label, freq='Y', periods=11).strftime("%Y%m%d")[::-1].tolist() y10_label = y11_label[:-1] yall_label = pd.date_range(end=jingtai_label, freq='Y', periods=30).strftime("%Y%m%d")[::-1].tolist() return dongtai_label, jingtai_label, ttm_label1, ttm_label2, ttm_label3, \ y3_label, y4_label, y5_label, y6_label, y10_label, y11_label, yall_label if __name__ == '__main__': logging.debug("read all input.") with io.open(r'..\all_other_data\symbol.txt', 'r', encoding='utf-8') as f: symbol = [s.strip()[2:] for s in f.readlines()] # symbol = symbol[0:1] zhibiao_df = pd.read_csv(r"..\all_other_data\all_zhibiao_for_cwfx_tdx.csv", encoding='gbk', dtype={u'代码': str}) zhibiao_df = zhibiao_df.set_index(keys=[u'代码', u'指标']) # zhibiao_df = zhibiao_df.reindex(index=[u'000001', u'000002', u'000003', u'000004'], level=0) finance_df =
pd.read_csv(r"..\all_other_data\all_finance_info.csv", encoding='gbk', dtype={u'代码': str})
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pickle import shutil import sys import tempfile import numpy as np from numpy import arange, nan import pandas.testing as pdt from pandas import DataFrame, MultiIndex, Series, to_datetime # dependencies testing specific import pytest import recordlinkage from recordlinkage.base import BaseCompareFeature STRING_SIM_ALGORITHMS = [ 'jaro', 'q_gram', 'cosine', 'jaro_winkler', 'dameraulevenshtein', 'levenshtein', 'lcs', 'smith_waterman' ] NUMERIC_SIM_ALGORITHMS = ['step', 'linear', 'squared', 'exp', 'gauss'] FIRST_NAMES = [ u'Ronald', u'Amy', u'Andrew', u'William', u'Frank', u'Jessica', u'Kevin', u'Tyler', u'Yvonne', nan ] LAST_NAMES = [ u'Graham', u'Smith', u'Holt', u'Pope', u'Hernandez', u'Gutierrez', u'Rivera', nan, u'Crane', u'Padilla' ] STREET = [ u'<NAME>', nan, u'<NAME>', u'<NAME>', u'<NAME>', u'<NAME>', u'Williams Trail', u'Durham Mountains', u'Anna Circle', u'<NAME>' ] JOB = [ u'Designer, multimedia', u'Designer, blown glass/stained glass', u'Chiropractor', u'Engineer, mining', u'Quantity surveyor', u'Phytotherapist', u'Teacher, English as a foreign language', u'Electrical engineer', u'Research officer, government', u'Economist' ] AGES = [23, 40, 70, 45, 23, 57, 38, nan, 45, 46] # Run all tests in this file with: # nosetests tests/test_compare.py class TestData(object): @classmethod def setup_class(cls): N_A = 100 N_B = 100 cls.A = DataFrame({ 'age': np.random.choice(AGES, N_A), 'given_name': np.random.choice(FIRST_NAMES, N_A), 'lastname': np.random.choice(LAST_NAMES, N_A), 'street': np.random.choice(STREET, N_A) }) cls.B = DataFrame({ 'age': np.random.choice(AGES, N_B), 'given_name': np.random.choice(FIRST_NAMES, N_B), 'lastname': np.random.choice(LAST_NAMES, N_B), 'street': np.random.choice(STREET, N_B) }) cls.A.index.name = 'index_df1' cls.B.index.name = 'index_df2' cls.index_AB = MultiIndex.from_arrays( [arange(len(cls.A)), arange(len(cls.B))], names=[cls.A.index.name, cls.B.index.name]) # Create a temporary directory cls.test_dir = tempfile.mkdtemp() @classmethod def teardown_class(cls): # Remove the test directory shutil.rmtree(cls.test_dir) class TestCompareApi(TestData): """General unittest for the compare API.""" def test_repr(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) c_str = str(comp) c_repr = repr(comp) assert c_str == c_repr start_str = '<{}'.format(comp.__class__.__name__) assert c_str.startswith(start_str) def test_instance_linking(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A, self.B) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_instance_dedup(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_label_linking(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A, self.B) assert "my_feature_label" in result.columns.tolist() def test_label_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A) assert "my_feature_label" in result.columns.tolist() def test_multilabel_none_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A, self.B) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A, self.B) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_none_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_error_dedup(self): def ones(s1, s2): return np.ones((len(s1), 2)) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones, 'given_name', 'given_name', label=['a', 'b', 'c']) with pytest.raises(ValueError): comp.compute(self.index_AB, self.A) def test_incorrect_collabels_linking(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A, self.B) def test_incorrect_collabels_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A) def test_compare_custom_vectorized_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='my_feature_label') result = comp.compute(ix, A, B) expected = DataFrame( [1, 1, 1, 1, 1], index=ix, columns=['my_feature_label']) pdt.assert_frame_equal(result, expected) # def test_compare_custom_nonvectorized_linking(self): # A = DataFrame({'col': [1, 2, 3, 4, 5]}) # B = DataFrame({'col': [1, 2, 3, 4, 5]}) # ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # def custom_func(a, b): # return np.int64(1) # # test without label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix) # pdt.assert_frame_equal(result, expected) # # test with label # comp = recordlinkage.Compare() # comp.compare_single( # custom_func, # 'col', # 'col', # label='test' # ) # result = comp.compute(ix, A, B) # expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) # pdt.assert_frame_equal(result, expected) def test_compare_custom_instance_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def call(s1, s2): # this should raise on incorrect types assert isinstance(s1, np.ndarray) assert isinstance(s2, np.ndarray) return np.ones(len(s1), dtype=np.int) comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A, B) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) # test with kwarg comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', x=5, label='test') result = comp.compute(ix, A, B) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'col', 'col', label='test') result = comp.compute(ix, A) expected = DataFrame([1, 1, 1, 1, 1], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_compare_custom_vectorized_arguments_dedup(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([[0, 1, 2, 3, 4], [1, 2, 3, 4, 0]]) # test without label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5) result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix) pdt.assert_frame_equal(result, expected) # test with label comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2, x: np.ones(len(s1), dtype=np.int) * x, 'col', 'col', 5, label='test') result = comp.compute(ix, A) expected = DataFrame([5, 5, 5, 5, 5], index=ix, columns=['test']) pdt.assert_frame_equal(result, expected) def test_parallel_comparing_api(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) def test_parallel_comparing(self): # use single job comp = recordlinkage.Compare(n_jobs=1) comp.exact('given_name', 'given_name', label='my_feature_label') result_single = comp.compute(self.index_AB, self.A, self.B) result_single.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=2) comp.exact('given_name', 'given_name', label='my_feature_label') result_2processes = comp.compute(self.index_AB, self.A, self.B) result_2processes.sort_index(inplace=True) # use two jobs comp = recordlinkage.Compare(n_jobs=4) comp.exact('given_name', 'given_name', label='my_feature_label') result_4processes = comp.compute(self.index_AB, self.A, self.B) result_4processes.sort_index(inplace=True) # compare results pdt.assert_frame_equal(result_single, result_2processes) pdt.assert_frame_equal(result_single, result_4processes) def test_pickle(self): # test if it is possible to pickle the Compare class comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.numeric('number', 'number') comp.geo('lat', 'lng', 'lat', 'lng') comp.date('before', 'after') # do the test pickle_path = os.path.join(self.test_dir, 'pickle_compare_obj.pickle') pickle.dump(comp, open(pickle_path, 'wb')) def test_manual_parallel_joblib(self): # test if it is possible to pickle the Compare class # This is only available for python 3. For python 2, it is not # possible to pickle instancemethods. A workaround can be found at # https://stackoverflow.com/a/29873604/8727928 if sys.version.startswith("3"): # import joblib dependencies from joblib import Parallel, delayed # split the data into smaller parts len_index = int(len(self.index_AB) / 2) df_chunks = [self.index_AB[0:len_index], self.index_AB[len_index:]] comp = recordlinkage.Compare() comp.string('given_name', 'given_name') comp.string('lastname', 'lastname') comp.exact('street', 'street') # do in parallel Parallel(n_jobs=2)( delayed(comp.compute)(df_chunks[i], self.A, self.B) for i in [0, 1]) def test_indexing_types(self): # test the two types of indexing # this test needs improvement A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B_reversed = B[::-1].copy() ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type comp_label = recordlinkage.Compare(indexing_type='label') comp_label.exact('col', 'col') result_label = comp_label.compute(ix, A, B_reversed) # test with position indexing type comp_position = recordlinkage.Compare(indexing_type='position') comp_position.exact('col', 'col') result_position = comp_position.compute(ix, A, B_reversed) assert (result_position.values == 1).all(axis=0) pdt.assert_frame_equal(result_label, result_position) def test_pass_list_of_features(self): from recordlinkage.compare import FrequencyA, VariableA, VariableB # setup datasets and record pairs A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) ix = MultiIndex.from_arrays([np.arange(5), np.arange(5)]) # test with label indexing type features = [ VariableA('col', label='y1'), VariableB('col', label='y2'), FrequencyA('col', label='y3') ] comp_label = recordlinkage.Compare(features=features) result_label = comp_label.compute(ix, A, B) assert list(result_label) == ["y1", "y2", "y3"] class TestCompareFeatures(TestData): def test_feature(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = lambda s1, s2: np.ones(len(s1)) feature.compute(ix, A, B) def test_feature_multicolumn_return(self): # test using classes and the base class A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) def ones(s1, s2): return DataFrame(np.ones((len(s1), 3))) feature = BaseCompareFeature('col', 'col') feature._f_compare_vectorized = ones result = feature.compute(ix, A, B) assert result.shape == (5, 3) def test_feature_multicolumn_input(self): # test using classes and the base class A = DataFrame({ 'col1': ['abc', 'abc', 'abc', 'abc', 'abc'], 'col2': ['abc', 'abc', 'abc', 'abc', 'abc'] }) B = DataFrame({ 'col1': ['abc', 'abd', 'abc', 'abc', '123'], 'col2': ['abc', 'abd', 'abc', 'abc', '123'] }) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) feature = BaseCompareFeature(['col1', 'col2'], ['col1', 'col2']) feature._f_compare_vectorized = \ lambda s1_1, s1_2, s2_1, s2_2: np.ones(len(s1_1)) feature.compute(ix, A, B) class TestCompareExact(TestData): """Test the exact comparison method.""" def test_exact_str_type(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 0, 1, 1, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_exact_num_type(self): A = DataFrame({'col': [42, 42, 41, 43, nan]}) B = DataFrame({'col': [42, 42, 42, 42, 42]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) expected = DataFrame([1, 1, 0, 0, 0], index=ix) comp = recordlinkage.Compare() comp.exact('col', 'col') result = comp.compute(ix, A, B) pdt.assert_frame_equal(result, expected) def test_link_exact_missing(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='na_') comp.exact('col', 'col', missing_value=0, label='na_0') comp.exact('col', 'col', missing_value=9, label='na_9') comp.exact('col', 'col', missing_value=nan, label='na_na') comp.exact('col', 'col', missing_value='str', label='na_str') result = comp.compute(ix, A, B) # Missing values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='na_') pdt.assert_series_equal(result['na_'], expected) # Missing values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='na_0') pdt.assert_series_equal(result['na_0'], expected) # Missing values as 9 expected = Series([1, 1, 0, 9, 9], index=ix, name='na_9') pdt.assert_series_equal(result['na_9'], expected) # Missing values as nan expected = Series([1, 1, 0, nan, nan], index=ix, name='na_na') pdt.assert_series_equal(result['na_na'], expected) # Missing values as string expected = Series([1, 1, 0, 'str', 'str'], index=ix, name='na_str') pdt.assert_series_equal(result['na_str'], expected) def test_link_exact_disagree(self): A = DataFrame({'col': [u'a', u'b', u'c', u'd', nan]}) B = DataFrame({'col': [u'a', u'b', u'd', nan, nan]}) ix = MultiIndex.from_arrays([A.index.values, B.index.values]) comp = recordlinkage.Compare() comp.exact('col', 'col', label='d_') comp.exact('col', 'col', disagree_value=0, label='d_0') comp.exact('col', 'col', disagree_value=9, label='d_9') comp.exact('col', 'col', disagree_value=nan, label='d_na') comp.exact('col', 'col', disagree_value='str', label='d_str') result = comp.compute(ix, A, B) # disagree values as default expected = Series([1, 1, 0, 0, 0], index=ix, name='d_') pdt.assert_series_equal(result['d_'], expected) # disagree values as 0 expected = Series([1, 1, 0, 0, 0], index=ix, name='d_0') pdt.assert_series_equal(result['d_0'], expected) # disagree values as 9 expected = Series([1, 1, 9, 0, 0], index=ix, name='d_9')
pdt.assert_series_equal(result['d_9'], expected)
pandas.testing.assert_series_equal
import numpy as np import pandas as pd from networkx import nx import numpy.linalg as la class DataSimulation: def __init__(self,p,n_days,t=None,road_props=None, noise_scale=1,t_switch=0,test_frac=0.8): self.p=p self.n_days=n_days if not t is None: self.t=t else : self.t = np.arange(14.75,20,0.25) if not road_props is None: self.road_props=road_props else : self.road_props= dict(zip([30, 50, 80, 130],np.random.multinomial(self.p,[0,0.25,0.5,0.25]))) self.noise_scale=noise_scale self.t_switch=t_switch self.tau = len(self.t) self.test_frac = test_frac def rearange_data(data,p): data=data.swapaxes(0,2) data=data.swapaxes(1,2) data=data.reshape(p,-1) return data def generate_date_index(n_days): start_date = pd.datetime(2020,1,1,15,0,0) dinx=pd.date_range('2020-1-1 15:00:00+01:00',periods=4*24*n_days,freq='15min') return dinx[(dinx.time>= pd.datetime(2020,1,1,15,0,0).time()) & (dinx.time< pd.datetime(2020,1,1,20,0,0).time()) ] def gen_one_instant_speed(max_speed,normal_center=0.9,size=1): normal_values = np.random.normal(0,(max_speed-normal_center*max_speed)/2,size) return normal_center*max_speed+normal_values def run_generation_formula(A,b,w,tau,p,A_R=None,t_switch=None,noise_scale=1): data=[] cur_A=A for i in range(tau-1): if t_switch is not None and i>t_switch : cur_A=A_R x= w-b[i][:] noise = np.random.normal(0,noise_scale,size=p) w= b[i+1][:] + cur_A.dot(x) + noise data.append(w) return np.array(data) def generate_intercept(t,road_props,tau): b_t= (2.5**2-(t-17.5)**2) b_t=np.reshape(b_t,(1,-1)) b_t_difference = b_t[0][1:]-b_t[0][0:-1] b_p = np.concatenate([DataSimulation.gen_one_instant_speed(max_speed,normal_center=0.9,size=prop) for max_speed,prop in road_props.items()]) b_p=np.reshape(b_p,(-1,1)) b_p=b_p.repeat(tau,axis=1) b=b_p.T-b_t.T return b def generate_graph(p): g = nx.gnm_random_graph(p, 8*p,directed=True) return g def generate_A_matrix(g,p): A=np.random.uniform(-1,1,size=(p,p))*(np.array([[1 if i in g.adj[j] else 0 for i in range(p)] for j in g.adj])+np.diag([1]*p)) A=(A.T/la.norm(A,axis=1)).T return A def generate_data(self): self.g = DataSimulation.generate_graph(self.p) self.b = DataSimulation.generate_intercept(self.t,self.road_props,self.tau) self.A_L = DataSimulation.generate_A_matrix(self.g,self.p) self.A_R = DataSimulation.generate_A_matrix(self.g,self.p) full_days_data = [] for i in range(self.n_days): w0 = np.concatenate([DataSimulation.gen_one_instant_speed(max_speed,normal_center=0.9,size=prop) for max_speed,prop in self.road_props.items()]) data= DataSimulation.run_generation_formula(self.A_L,self.b,w0,self.tau,self.p,A_R = self.A_R,t_switch= self.t_switch+1) full_days_data.append(data) self.full_days_data=np.array(full_days_data) return self.full_days_data def split_center_data(self): full_days_data_train=self.full_days_data[:int(self.test_frac*self.n_days)] full_days_data_test=self.full_days_data[int(self.test_frac*self.n_days):] full_days_data_train = DataSimulation.rearange_data(full_days_data_train,self.p) full_days_data_test = DataSimulation.rearange_data(full_days_data_test,self.p) sim_train_df = pd.DataFrame(data= full_days_data_train,columns=DataSimulation.generate_date_index(self.n_days)[:int(self.test_frac*self.n_days*(self.tau-1))]) sim_test_df = pd.DataFrame(data= full_days_data_test,columns=DataSimulation.generate_date_index(self.n_days)[int(self.test_frac*self.n_days*(self.tau-1)):]) intercept = pd.concat([sim_train_df.groupby(
pd.to_datetime(sim_train_df.columns)
pandas.to_datetime
import pickle from threading import Lock from django.contrib.gis.db.models import Avg from pandas import DataFrame from app.external_sources.cadastres.models import Cadastre from app.external_sources.csv.services.csv_service import get_load_properties from app.external_sources.idealista.services.idealista_service import get_last_info from app.external_sources.ine.services.ine_service import get_demographic_info from app.external_sources.mi_cole.services.school_service import get_schools_in_circle from app.external_sources.places.services.places_service import get_places_in_circle from app.geo.services.geo_service import get_zone_containing_point from app.main.settings import BASE_DIR from app.properties.services.property_service import update_estimated_price __cached_model = None __lock_model = Lock() def get_model(): global __cached_model __lock_model.acquire() try: if __cached_model is None: __cached_model = load_model() finally: __lock_model.release() return __cached_model def load_model(): """Read model file Returns: Pipeline: model pipeline """ with open((BASE_DIR / "app/model_files/model_v1.pkl").resolve(), "rb") as f: return pickle.load(f)[0] def createDataFrame(load_id: int): """Create dataframe with model variables from a load Args: load_id (int): load to filter Returns: DataFrame: DataFrame with model variables """ dirty_properties = list(get_load_properties(load_id)) rows = list() for dirty_property in dirty_properties: row = prepare_data(dirty_property.property.cadastre) row["property_id"] = dirty_property.property.id rows.append(row) return
DataFrame(rows)
pandas.DataFrame
#!/usr/bin/env python3.7 # -*- coding: utf-8 -*- """ Created on Mon Feb 11 11:14:12 2019 @author: ejreidelbach :DESCRIPTION: :REQUIRES: :TODO: """ #============================================================================== # Package Import #============================================================================== import json import os import pandas as pd import pathlib import tqdm import urllib.request #============================================================================== # Reference Variable Declaration #============================================================================== #============================================================================== # Function Definitions #============================================================================== def downloadPictures(dict_url, folder_name): ''' Purpose: Download pictures via the provided url for the image Inputs ------ dict_url : dictionary of URLs dictionary in which the name of the image is the key and the associated value is the URL of the image folder_name : string name of the folder in which downloaded images should be stored Outputs ------- files are saved to a folder named after the input dictionary ''' # Check to see if the desired folder exists and create it if it doesn't pathlib.Path('pictures/',folder_name).mkdir(parents=True, exist_ok=True) # Download all the images at the associated URLs for name, url in tqdm.tqdm(dict_url.items()): if not pd.isna(url): urllib.request.urlretrieve(url, 'pictures/' + folder_name + '/' + name + '.jpg') #============================================================================== # Working Code #============================================================================== # Set the project working directory path_dir = pathlib.Path('/home/ejreidelbach/Projects/draft-gem/src/static') os.chdir(path_dir) #------------------------------------------------------------------------------ # Download Pictures of Schools #------------------------------------------------------------------------------ # Ingest the listing of schools and their associated pictures df_pics_school =
pd.read_csv('positionData/school_pictures.csv')
pandas.read_csv
from dateutil import parser import datetime import pandas as pd import json from matplotlib.dates import DateFormatter def fridge_plot(directory, variable, start_date, end_date = None): begin = parser.parse(start_date) if end_date is None: end = begin else: end = parser.parse(end_date) delta = end - begin date_list = [] for i in range(delta.days + 2): date_list.append((begin + datetime.timedelta(days = i)).date().strftime('%Y%m%d')) date_set = set(date_list) data_dict = [] for date in date_set: try: with open(directory + 'triton_' + date, 'r') as f: for line in f: data_dict.append(json.loads(line[:-2])) except IOError: pass df = pd.DataFrame.from_dict(data_dict) if len(data_dict) == 0: print("Error: No data") return df df['time']=
pd.to_datetime(df['time'])
pandas.to_datetime
from pandas import read_csv, merge import csv import sys from pandas.core.frame import DataFrame def average_submissions(): with open('submission_avg_13Aug.csv', 'wb') as f: writer = csv.writer(f) writer.writerow(['clip', 'seizure', 'early']) df1 =
read_csv('submission_late_loader_newa.csv')
pandas.read_csv
from datetime import datetime import os import re import numpy as np import pandas as pd from fetcher.extras.common import atoi, MaRawData, zipContextManager from fetcher.utils import Fields, extract_arcgis_attributes, extract_attributes NULL_DATE = datetime(2020, 1, 1) DATE = Fields.DATE.name TS = Fields.TIMESTAMP.name DATE_USED = Fields.DATE_USED.name def add_query_constants(df, query): for k, v in query.constants.items(): df[k] = v return df def build_leveled_mapping(mapping): tab_mapping = {x.split(":")[0]: {} for x in mapping.keys() if x.find(':') > 0} for k, v in mapping.items(): if k.find(':') < 0: continue tab, field = k.split(":") tab_mapping[tab][field] = v return tab_mapping def prep_df(values, mapping): df = pd.DataFrame(values).rename(columns=mapping).set_index(DATE) for c in df.columns: if c.find('status') >= 0: continue # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = pd.to_datetime(df.index, errors='coerce') return df def make_cumsum_df(data, timestamp_field=Fields.TIMESTAMP.name): df = pd.DataFrame(data) df.set_index(timestamp_field, inplace=True) df.sort_index(inplace=True) df = df.select_dtypes(exclude=['string', 'object']) # .groupby(level=0).last() # can do it here, but not mandatory cumsum_df = df.cumsum() cumsum_df[Fields.TIMESTAMP.name] = cumsum_df.index return cumsum_df def handle_ak(res, mapping, queries): tests = res[0] collected = [x['attributes'] for x in tests['features']] df = pd.DataFrame(collected) df = df.pivot(columns='Test_Result', index='Date_Collected') df.columns = df.columns.droplevel() df['tests_total'] = df.sum(axis=1) df = df.rename(columns=mapping).cumsum() df[TS] = df.index add_query_constants(df, queries[0]) tagged = df.to_dict(orient='records') # cases cases = pd.DataFrame([x['attributes'] for x in res[1]['features']]).rename(columns=mapping) cases[TS] = pd.to_datetime(cases[TS], unit='ms') cases = cases.set_index(TS).sort_index().cumsum().resample('1d').ffill() cases[TS] = cases.index add_query_constants(cases, queries[1]) tagged.extend(cases.to_dict(orient='records')) # last item: already cumulative data = extract_arcgis_attributes(res[2], mapping) for x in data: x[DATE_USED] = queries[2].constants[DATE_USED] tagged.extend(data) return tagged def handle_ar(res, mapping): # simply a cumsum table data = extract_arcgis_attributes(res[0], mapping) cumsum_df = make_cumsum_df(data) return cumsum_df.to_dict(orient='records') def handle_az(res, mapping, queries): mapped = [] for i, df in enumerate(res[0]): # minor cheating for same column names df.columns = ["{}-{}".format(c, i) for c in df.columns] df = df.rename(columns=mapping) df[DATE] = pd.to_datetime(df[DATE]) df = df.set_index(DATE).sort_index().cumsum() df[TS] = df.index add_query_constants(df, queries[i]) mapped.extend(df.to_dict(orient='records')) return mapped def handle_ca(res, mapping, queries): # need to cumsum mapped = [] for query, result in zip(queries, res): # extract also maps items = extract_attributes(result, query.data_path, mapping, 'CA') df = prep_df(items, mapping).sort_index(na_position='first').drop(columns=TS).cumsum() df = df.loc[df.index.notna()] add_query_constants(df, query) df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_ct(res, mapping, queries): tests = res[0] df = pd.DataFrame(tests).rename(columns=mapping).set_index(DATE) for c in df.columns: # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = df.index.fillna(NULL_DATE.strftime(mapping.get('__strptime'))) df = df.sort_index().cumsum() df[TS] = pd.to_datetime(df.index) df[TS] = df[TS].values.astype(np.int64) // 10 ** 9 add_query_constants(df, queries[0]) tagged = df.to_dict(orient='records') # by report df = res[1].rename(columns=mapping).sort_values('DATE') add_query_constants(df, queries[1]) df[TS] = df['DATE'] tagged.extend(df.to_dict(orient='records')) # death + cases for i, df in enumerate(res[2:]): df = res[2+i].rename(columns=mapping).set_index('DATE').sort_index().cumsum() add_query_constants(df, queries[2+i]) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_dc(res, mapping, queries): df = res[0] # make it pretty df = df[df['Unnamed: 0'] == 'Testing'].T df.columns = df.loc['Unnamed: 1'] df = df.iloc[2:] df.index = pd.to_datetime(df.index, errors='coerce') df = df.loc[df.index.dropna()].rename(columns=mapping) add_query_constants(df, queries[0]) df[TS] = df.index return df.to_dict(orient='records') def handle_de(res, mapping): df = res[0] df['Date'] = pd.to_datetime(df[['Year', 'Month', 'Day']]) df = df[df['Statistic'].isin(mapping.keys())] # changing the order of operations here is probably better def prepare_values(df): df = df.pivot( index=['Date', 'Date used'], values='Value', columns=['Statistic']) df[DATE_USED] = df.index.get_level_values(1) df = df.droplevel(1) df['Date'] = df.index df = df.replace(mapping).rename(columns=mapping) return df.to_dict(orient='records') # Death deaths_df = df[(df['Statistic'].str.find('Death') >= 0) & (df['Unit'] == 'people')] tagged = prepare_values(deaths_df) # testing tests_df = df[df['Statistic'].str.find('Test') >= 0] for x in ['people', 'tests']: partial = prepare_values(tests_df[tests_df['Unit'] == x]) tagged.extend(partial) # cases cases = df[df['Unit'] == 'people'][df['Statistic'].str.find('Cases') >= 0] partial = prepare_values(cases) tagged.extend(partial) return tagged def handle_fl(res, mapping, queries): # simply a cumsum table tagged = [] for i, data in enumerate(res[:-1]): df = extract_arcgis_attributes(res[i], mapping) cumsum_df = make_cumsum_df(df) add_query_constants(cumsum_df, queries[i]) tagged.extend(cumsum_df.to_dict(orient='records')) # The last item is the aggregated case-line data df = pd.DataFrame([x['attributes'] for x in res[-1]['features']]) df = df.rename( columns={**{'EXPR_1': 'Year', 'EXPR_2': 'Month', 'EXPR_3': 'Day'}, **mapping}) df[DATE] = pd.to_datetime(df[['Year', 'Month', 'Day']]) df = df.set_index(DATE).sort_index().cumsum() add_query_constants(df, queries[-1]) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_ga(res, mapping): tagged = [] file_mapping = build_leveled_mapping(mapping) with zipContextManager(res[0]) as zipdir: for filename in file_mapping.keys(): date_fields = [k for k, v in file_mapping[filename].items() if v == 'TIMESTAMP'] df = pd.read_csv(os.path.join(zipdir, filename), parse_dates=date_fields) df = df[df['county'] == 'Georgia'] by_date = file_mapping[filename].pop(DATE_USED) df = df.rename(columns=file_mapping[filename]) df[DATE_USED] = by_date tagged.extend(df.to_dict(orient='records')) return tagged def handle_il(res, mapping, queries): df = res[0].rename(columns=mapping) df[TS] = df[DATE] add_query_constants(df, queries[0]) mapped = df.to_dict(orient='records') # testing df = pd.DataFrame(res[1].get('test_group_counts')).rename(columns=mapping) df = df[df['regionID'] == 0] df[DATE] = pd.to_datetime(df[DATE]) df = df.set_index(DATE).sort_index().cumsum() df[TS] = df.index mapped.extend(df.to_dict(orient='records')) return mapped def handle_in(res, mapping): tagged = [] df = prep_df(res[0]['result']['records'], mapping).sort_index().cumsum() # need to assign dating correctly assignments = [ ('SPECIMENS', 'Specimen Collection'), ('POSITIVE_BY_SPECIMEN', 'Specimen Collection'), (['POSITIVE', 'TOTAL'], 'Report'), ('DEATH', 'Death'), ] for key, by_date in assignments: if isinstance(key, list): subset = df.filter(key) else: subset = df.filter(like=key) if subset.columns[0] == 'POSITIVE_BY_SPECIMEN': subset.columns = ['POSITIVE'] subset[DATE_USED] = by_date subset[TS] = subset.index tagged.extend(subset.to_dict(orient='records')) return tagged def handle_ks(res, mapping, queries): testing = res[0][0].filter(like='alias') testing.columns = [c.replace('-alias', '') for c in testing.columns] testing = testing.rename(columns=mapping).groupby(DATE).last() testing.index = pd.to_datetime(testing.index) testing[TS] = testing.index add_query_constants(testing, queries[0]) return testing.to_dict(orient='records') def handle_la(res, mapping): df = res[0].rename(columns=mapping).groupby(DATE).sum() df = df.sort_index().cumsum() df[TS] = df.index df[DATE_USED] = 'Specimen Collection' return df.to_dict(orient='records') def handle_ma(res, mapping): '''Returning a list of dictionaries (records) ''' tagged = [] # break the mapping to {file -> {mapping}} # not the most efficient, but the data is tiny tab_mapping = build_leveled_mapping(mapping) tabs = MaRawData(res[0]) for tabname in tab_mapping.keys(): df = tabs[tabname].rename(columns=tab_mapping[tabname]) df[DATE] =
pd.to_datetime(df[DATE])
pandas.to_datetime
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ Loads data from csv files and merge Args: messages_filepath: file path to the messages csv file categories_filepath: file path to the categories csv file Returns: df: merged dataframe of the messages.csv and categories.csv files """ messages =
pd.read_csv(messages_filepath)
pandas.read_csv
# RHR Online Anomaly Detection & Alert Monitoring ###################################################### # Author: <NAME> # # Email: <EMAIL> # # Location: Dept.of Genetics, Stanford University # # Date: Oct 29 2020 # ###################################################### # uses raw heart rate and steps data (this stpes data doesn't have zeroes and need to innfer from hr datetime stamp) ## simple command # python rhrad_online_alerts.py --heart_rate hr.csv --steps steps.csv ## full command # python rhrad_online_alerts.py --heart_rate pbb_fitbit_oldProtocol_hr.csv --steps pbb_fitbit_oldProtocol_steps.csv --myphd_id pbb_RHR_online --figure1 pbb_RHR_online_anomalies.pdf --anomalies pbb_RHR_online_anomalies.csv --symptom_date 2020-01-10 --diagnosis_date 2020-01-11 --outliers_fraction 0.1 --random_seed 10 --baseline_window 744 --sliding_window 1 --alerts pbb_RHR_online_alerts.csv --figure2 pbb_RHR_online_alerts.pdf # python rhrad_online_alerts.py --heart_rate pbb_fitbit_oldProtocol_hr.csv \ # --steps pbb_fitbit_oldProtocol_steps.csv \ # --myphd_id pbb_RHR_online \ # --figure1 pbb_RHR_online_anomalies.pdf \ # --anomalies pbb_RHR_online_anomalies.csv \ # --symptom_date 2020-01-10 --diagnosis_date 2020-01-11 \ # --outliers_fraction 0.1 \ # --random_seed 10 \ # --baseline_window 744 --sliding_window 1 # --alerts pbb_RHR_online_alerts.csv \ # --figure2 pbb_RHR_online_alerts.pdf import warnings warnings.filterwarnings('ignore') import sys import argparse import pandas as pd import numpy as np import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt import matplotlib.dates as mdates #%matplotlib inline import seaborn as sns from statsmodels.tsa.seasonal import seasonal_decompose from sklearn.preprocessing import StandardScaler from sklearn.covariance import EllipticEnvelope #################################### parser = argparse.ArgumentParser(description='Find anomalies in wearables time-series data.') parser.add_argument('--heart_rate', metavar='', help ='raw heart rate count with a header = heartrate') parser.add_argument('--steps',metavar='', help ='raw steps count with a header = steps') parser.add_argument('--myphd_id',metavar='', default = 'myphd_id', help ='user myphd_id') parser.add_argument('--anomalies', metavar='', default = 'myphd_id_anomalies.csv', help='save predicted anomalies as a CSV file') parser.add_argument('--figure1', metavar='', default = 'myphd_id_anomalies.pdf', help='save predicted anomalies as a PDF file') parser.add_argument('--symptom_date', metavar='', default = 'NaN', help = 'symptom date with y-m-d format') parser.add_argument('--diagnosis_date', metavar='', default = 'NaN', help='diagnosis date with y-m-d format') parser.add_argument('--outliers_fraction', metavar='', type=float, default=0.1, help='fraction of outliers or anomalies') parser.add_argument('--random_seed', metavar='', type=int, default=10, help='random seed') parser.add_argument('--baseline_window', metavar='',type=int, default=744, help='baseline window is used for training (in hours)') parser.add_argument('--sliding_window', metavar='',type=int, default=1, help='sliding window is used to slide the testing process each hour') parser.add_argument('--alerts', metavar='', default = 'myphd_id_alerts.csv', help='save predicted anomalies as a CSV file') parser.add_argument('--figure2', metavar='', default = 'myphd_id_alerts.pdf', help='save predicted anomalies as a PDF file') args = parser.parse_args() # as arguments fitbit_oldProtocol_hr = args.heart_rate fitbit_oldProtocol_steps = args.steps myphd_id = args.myphd_id myphd_id_anomalies = args.anomalies myphd_id_figure1 = args.figure1 symptom_date = args.symptom_date diagnosis_date = args.diagnosis_date RANDOM_SEED = args.random_seed outliers_fraction = args.outliers_fraction baseline_window = args.baseline_window sliding_window = args.sliding_window myphd_id_alerts = args.alerts myphd_id_figure2 = args.figure2 #################################### class RHRAD_online: # Infer resting heart rate ------------------------------------------------------ def resting_heart_rate(self, heartrate, steps): """ This function uses heart rate and steps data to infer resting heart rate. It filters the heart rate with steps that are zero and also 12 minutes ahead. """ # heart rate data df_hr = pd.read_csv(fitbit_oldProtocol_hr) df_hr = df_hr.set_index('datetime') df_hr.index.name = None df_hr.index = pd.to_datetime(df_hr.index) # steps data df_steps = pd.read_csv(fitbit_oldProtocol_steps) df_steps = df_steps.set_index('datetime') df_steps.index.name = None df_steps.index = pd.to_datetime(df_steps.index) # merge dataframes #df_hr = df_hr.resample('1min').mean() #df_steps = df_steps.resample('1min').mean() # added "outer" paramter for merge function to adjust the script to the new steps format #df1 = pd.merge(df_hr, df_steps, left_index=True, right_index=True) df1 = pd.merge(df_hr, df_steps, left_index=True, right_index=True, how="outer") df1 = df1[pd.isnull(df1).any(axis=1)].fillna(0) df1 = df1.rename(columns={"value_x": "heartrate", "value_y": "steps"}) df1 = df1.resample('1min').mean() print(myphd_id) print("Data size (in miutes) before removing missing data") print(df1.shape) ax = df1.plot(figsize=(20,4), title=myphd_id) ax.figure.savefig(myphd_id+'_data.png') #print(df1) df1 = df1.dropna(how='any') df1 = df1.loc[df1['heartrate']!=0] print("Data size (in miutes) after removing missing data") print(df1.shape) #print(df1) # define RHR as the HR measurements recorded when there were less than two steps taken during a rolling time window of the preceding 12 minutes (including the current minute) df1['steps'] = df1['steps'].apply(np.int64) df1['steps_window_12'] = df1['steps'].rolling(12).sum() df1 = df1.loc[(df1['steps_window_12'] == 0 )] print(df1['heartrate'].describe()) print(df1['steps_window_12'].describe()) # impute missing data #df1 = df1.resample('1min').mean() #df1 = df1.ffill() print("No.of timesteps for RHR (in minutes)") print(df1.shape) return df1 # Pre-processing ------------------------------------------------------ def pre_processing(self, resting_heart_rate): """ This function takes resting heart rate data and applies moving averages to smooth the data and downsamples to one hour by taking the avegare values """ # smooth data df_nonas = df1.dropna() df1_rom = df_nonas.rolling(400).mean() # resample df1_resmp = df1_rom.resample('1H').mean() df2 = df1_resmp.drop(['steps'], axis=1) df2 = df2.dropna() print("No.of timesteps for RHR (in hours)") print(df2.shape) return df2 # Seasonality correction ------------------------------------------------------ def seasonality_correction(self, resting_heart_rate, steps): """ This function takes output pre-processing and applies seasonality correction """ sdHR_decomposition = seasonal_decompose(sdHR, model='additive', freq=1) sdSteps_decomposition = seasonal_decompose(sdSteps, model='additive', freq=1) sdHR_decomp = pd.DataFrame(sdHR_decomposition.resid + sdHR_decomposition.trend) sdHR_decomp.rename(columns={sdHR_decomp.columns[0]:'heartrate'}, inplace=True) sdSteps_decomp = pd.DataFrame(sdSteps_decomposition.resid + sdSteps_decomposition.trend) sdSteps_decomp.rename(columns={sdSteps_decomp.columns[0]:'steps_window_12'}, inplace=True) frames = [sdHR_decomp, sdSteps_decomp] data = pd.concat(frames, axis=1) #print(data) #print(data.shape) return data # Train model and predict anomalies ------------------------------------------------------ def online_anomaly_detection(self, data_seasnCorec, baseline_window, sliding_window): """ # split the data, standardize the data inside a sliding window # parameters - 1 month baseline window and 1 hour sliding window # fit the model and predict the test set """ for i in range(baseline_window, len(data_seasnCorec)): data_train_w = data_seasnCorec[i-baseline_window:i] # train data normalization ------------------------------------------------------ data_train_w += 0.1 standardizer = StandardScaler().fit(data_train_w.values) data_train_scaled = standardizer.transform(data_train_w.values) data_train_scaled_features = pd.DataFrame(data_train_scaled, index=data_train_w.index, columns=data_train_w.columns) data =
pd.DataFrame(data_train_scaled_features)
pandas.DataFrame
from __future__ import unicode_literals, division, print_function import json import os import pandas as pd import unittest from matminer.featurizers.dos import DOSFeaturizer, DopingFermi, \ Hybridization, SiteDOS, DosAsymmetry from pymatgen.electronic_structure.dos import CompleteDos from pymatgen.util.testing import PymatgenTest test_dir = os.path.join(os.path.dirname(__file__)) class DOSFeaturesTest(PymatgenTest): def setUp(self): with open(os.path.join(test_dir, 'si_dos.json'), 'r') as sDOS: si_dos = CompleteDos.from_dict(json.load(sDOS)) self.df = pd.DataFrame({'dos': [si_dos], 'site': [0]}) with open(os.path.join(test_dir, 'nb3sn_dos.json'), 'r') as sDOS: nb3sn_dos = CompleteDos.from_dict(json.load(sDOS)) self.nb3sn_df =
pd.DataFrame({'dos': [nb3sn_dos]})
pandas.DataFrame
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(4, 1)) tm.close() @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf, close x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_by_no_extra_plots(self): import matplotlib.pyplot as plt n = 10 df = DataFrame({'gender': tm.choice(['Male', 'Female'], size=n), 'height': random.normal(66, 4, size=n)}) axes = df.height.hist(by=df.gender) self.assertEqual(len(plt.get_fignums()), 1) def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure, close fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with tm.assertRaises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @slow def test_kde(self): _skip_if_no_scipy() _check_plot_works(self.ts.plot, kind='kde') _check_plot_works(self.ts.plot, kind='density') ax = self.ts.plot(kind='kde', logy=True) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_kwargs(self): _skip_if_no_scipy() from numpy import linspace _check_plot_works(self.ts.plot, kind='kde', bw_method=.5, ind=linspace(-100,100,20)) _check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20)) ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20)) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_color(self): _skip_if_no_scipy() ax = self.ts.plot(kind='kde', logy=True, color='r') lines = ax.get_lines() self.assertEqual(len(lines), 1) self.assertEqual(lines[0].get_color(), 'r') @slow def test_autocorrelation_plot(self): from pandas.tools.plotting import autocorrelation_plot _check_plot_works(autocorrelation_plot, self.ts) _check_plot_works(autocorrelation_plot, self.ts.values) @slow def test_lag_plot(self): from pandas.tools.plotting import lag_plot _check_plot_works(lag_plot, self.ts) _check_plot_works(lag_plot, self.ts, lag=5) @slow def test_bootstrap_plot(self): from pandas.tools.plotting import bootstrap_plot _check_plot_works(bootstrap_plot, self.ts, size=10) def test_invalid_plot_data(self): s = Series(list('abcd')) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @tm.mplskip class TestDataFramePlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') def tearDown(self): tm.close() @slow def test_plot(self): df = tm.makeTimeDataFrame() _check_plot_works(df.plot, grid=False) _check_plot_works(df.plot, subplots=True) _check_plot_works(df.plot, subplots=True, use_index=False) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) self._check_plot_fails(df.plot, kind='line', blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) _check_plot_works(df.plot, subplots=True, title='blah') _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) def test_nonnumeric_exclude(self): import matplotlib.pyplot as plt df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() self.assertEqual(len(ax.get_lines()), 1) # B was plotted @slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self.assertEqual(ax.xaxis.get_label().get_text(), 'a') @slow def test_explicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b', label='LABEL') self.assertEqual(ax.xaxis.get_label().get_text(), 'LABEL') @slow def test_plot_xy(self): import matplotlib.pyplot as plt # columns.inferred_type == 'string' df = tm.makeTimeDataFrame() self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @slow def test_xcompat(self): import pandas as pd import matplotlib.pyplot as plt df = tm.makeTimeDataFrame() ax = df.plot(x_compat=True) lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['x_compat'] = False ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plot_params.use('x_compat', True): ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) def test_unsorted_index(self): df = DataFrame({'y': np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64) tm.assert_series_equal(rs, df.y) def _check_data(self, xp, rs): xp_lines = xp.get_lines() rs_lines = rs.get_lines() def check_line(xpl, rsl): xpdata = xpl.get_xydata() rsdata = rsl.get_xydata() assert_array_equal(xpdata, rsdata) [check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)] tm.close() @slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, sharex=True, legend=True) for ax in axes: self.assert_(ax.get_legend() is not None) axes = df.plot(subplots=True, sharex=True) for ax in axes[:-2]: [self.assert_(not label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_xticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_yticklabels()] axes = df.plot(subplots=True, sharex=False) for ax in axes: [self.assert_(label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] @slow def test_plot_scatter(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) _check_plot_works(df.plot, x='x', y='y', kind='scatter') _check_plot_works(df.plot, x=1, y=2, kind='scatter') with tm.assertRaises(ValueError): df.plot(x='x', kind='scatter') with tm.assertRaises(ValueError): df.plot(y='y', kind='scatter') @slow def test_plot_bar(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) _check_plot_works(df.plot, kind='bar') _check_plot_works(df.plot, kind='bar', legend=False) _check_plot_works(df.plot, kind='bar', subplots=True) _check_plot_works(df.plot, kind='bar', stacked=True) df = DataFrame(randn(10, 15), index=list(string.ascii_letters[:10]), columns=lrange(15)) _check_plot_works(df.plot, kind='bar') df = DataFrame({'a': [0, 1], 'b': [1, 0]}) _check_plot_works(df.plot, kind='bar') def test_bar_stacked_center(self): # GH2157 df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', stacked='True', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width() / 2) def test_bar_center(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width()) @slow def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([1., 10.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 100)) # no subplots df = DataFrame({'A': [3] * 5, 'B': lrange(1, 6)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True, log=True) assert_array_equal(ax.yaxis.get_ticklocs(), expected) @slow def test_bar_log_subplots(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot(log=True, kind='bar', subplots=True) assert_array_equal(ax[0].yaxis.get_ticklocs(), expected) assert_array_equal(ax[1].yaxis.get_ticklocs(), expected) @slow def test_boxplot(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) df['indic'] = ['foo', 'bar'] * 3 df['indic2'] = ['foo', 'bar', 'foo'] * 2 _check_plot_works(df.boxplot) _check_plot_works(df.boxplot, column=['one', 'two']) _check_plot_works(df.boxplot, column=['one', 'two'], by='indic') _check_plot_works(df.boxplot, column='one', by=['indic', 'indic2']) _check_plot_works(df.boxplot, by='indic') _check_plot_works(df.boxplot, by=['indic', 'indic2']) _check_plot_works(plotting.boxplot, df['one']) _check_plot_works(df.boxplot, notch=1) _check_plot_works(df.boxplot, by='indic', notch=1) df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2']) df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B']) _check_plot_works(df.boxplot, by='X') @slow def test_kde(self): _skip_if_no_scipy() df = DataFrame(randn(100, 4)) _check_plot_works(df.plot, kind='kde') _check_plot_works(df.plot, kind='kde', subplots=True) ax = df.plot(kind='kde') self.assert_(ax.get_legend() is not None) axes = df.plot(kind='kde', logy=True, subplots=True) for ax in axes: self.assertEqual(ax.get_yscale(), 'log') @slow def test_hist(self): import matplotlib.pyplot as plt df = DataFrame(randn(100, 4)) _check_plot_works(df.hist) _check_plot_works(df.hist, grid=False) # make sure layout is handled df = DataFrame(randn(100, 3)) _check_plot_works(df.hist) axes = df.hist(grid=False) self.assert_(not axes[1, 1].get_visible()) df = DataFrame(randn(100, 1)) _check_plot_works(df.hist) # make sure layout is handled df = DataFrame(randn(100, 6)) _check_plot_works(df.hist) # make sure sharex, sharey is handled _check_plot_works(df.hist, sharex=True, sharey=True) # handle figsize arg _check_plot_works(df.hist, figsize=(8, 10)) # make sure xlabelsize and xrot are handled ser = df[0] xf, yf = 20, 20 xrot, yrot = 30, 30 ax = ser.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) xf, yf = 20, 20 xrot, yrot = 30, 30 axes = df.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) for i, ax in enumerate(axes.ravel()): if i < len(df.columns): ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) tm.close() # make sure kwargs to hist are handled ax = ser.hist(normed=True, cumulative=True, bins=4) # height of last bin (index 5) must be 1.0 self.assertAlmostEqual(ax.get_children()[5].get_height(), 1.0) tm.close() ax = ser.hist(log=True) # scale of y must be 'log' self.assertEqual(ax.get_yscale(), 'log') tm.close() # propagate attr exception from matplotlib.Axes.hist with tm.assertRaises(AttributeError): ser.hist(foo='bar') @slow def test_hist_layout(self): import matplotlib.pyplot as plt df = DataFrame(randn(100, 4)) layout_to_expected_size = ( {'layout': None, 'expected_size': (2, 2)}, # default is 2x2 {'layout': (2, 2), 'expected_size': (2, 2)}, {'layout': (4, 1), 'expected_size': (4, 1)}, {'layout': (1, 4), 'expected_size': (1, 4)}, {'layout': (3, 3), 'expected_size': (3, 3)}, ) for layout_test in layout_to_expected_size: ax = df.hist(layout=layout_test['layout']) self.assertEqual(len(ax), layout_test['expected_size'][0]) self.assertEqual(len(ax[0]), layout_test['expected_size'][1]) # layout too small for all 4 plots with tm.assertRaises(ValueError): df.hist(layout=(1, 1)) # invalid format for layout with tm.assertRaises(ValueError): df.hist(layout=(1,)) @slow def test_scatter(self): _skip_if_no_scipy() df = DataFrame(randn(100, 2)) import pandas.tools.plotting as plt def scat(**kwds): return plt.scatter_matrix(df, **kwds) _check_plot_works(scat) _check_plot_works(scat, marker='+') _check_plot_works(scat, vmin=0) _check_plot_works(scat, diagonal='kde') _check_plot_works(scat, diagonal='density') _check_plot_works(scat, diagonal='hist') def scat2(x, y, by=None, ax=None, figsize=None): return plt.scatter_plot(df, x, y, by, ax, figsize=None) _check_plot_works(scat2, 0, 1) grouper = Series(np.repeat([1, 2, 3, 4, 5], 20), df.index) _check_plot_works(scat2, 0, 1, by=grouper) @slow def test_andrews_curves(self): from pandas import read_csv from pandas.tools.plotting import andrews_curves path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(andrews_curves, df, 'Name') @slow def test_parallel_coordinates(self): from pandas import read_csv from pandas.tools.plotting import parallel_coordinates from matplotlib import cm path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(parallel_coordinates, df, 'Name') _check_plot_works(parallel_coordinates, df, 'Name', colors=('#556270', '#4ECDC4', '#C7F464')) _check_plot_works(parallel_coordinates, df, 'Name', colors=['dodgerblue', 'aquamarine', 'seagreen']) _check_plot_works(parallel_coordinates, df, 'Name', colors=('#556270', '#4ECDC4', '#C7F464')) _check_plot_works(parallel_coordinates, df, 'Name', colors=['dodgerblue', 'aquamarine', 'seagreen']) _check_plot_works(parallel_coordinates, df, 'Name', colormap=cm.jet) df = read_csv(path, header=None, skiprows=1, names=[1, 2, 4, 8, 'Name']) _check_plot_works(parallel_coordinates, df, 'Name', use_columns=True) _check_plot_works(parallel_coordinates, df, 'Name', xticks=[1, 5, 25, 125]) @slow def test_radviz(self): from pandas import read_csv from pandas.tools.plotting import radviz from matplotlib import cm path = os.path.join(curpath(), 'data', 'iris.csv') df = read_csv(path) _check_plot_works(radviz, df, 'Name') _check_plot_works(radviz, df, 'Name', colormap=cm.jet) @slow def test_plot_int_columns(self): df = DataFrame(randn(100, 4)).cumsum() _check_plot_works(df.plot, legend=True) def test_legend_name(self): multi = DataFrame(randn(4, 4), columns=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) multi.columns.names = ['group', 'individual'] ax = multi.plot() leg_title = ax.legend_.get_title() self.assertEqual(leg_title.get_text(), 'group,individual') def _check_plot_fails(self, f, *args, **kwargs): with tm.assertRaises(Exception): f(*args, **kwargs) @slow def test_style_by_column(self): import matplotlib.pyplot as plt fig = plt.gcf() df = DataFrame(randn(100, 3)) for markers in [{0: '^', 1: '+', 2: 'o'}, {0: '^', 1: '+'}, ['^', '+', 'o'], ['^', '+']]: fig.clf() fig.add_subplot(111) ax = df.plot(style=markers) for i, l in enumerate(ax.get_lines()[:len(markers)]): self.assertEqual(l.get_marker(), markers[i]) @slow def test_line_colors(self): import matplotlib.pyplot as plt import sys from matplotlib import cm custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(color=custom_colors) lines = ax.get_lines() for i, l in enumerate(lines): xp = custom_colors[i] rs = l.get_color() self.assertEqual(xp, rs) tmp = sys.stderr sys.stderr = StringIO() try: tm.close() ax2 = df.plot(colors=custom_colors) lines2 = ax2.get_lines() for l1, l2 in zip(lines, lines2): self.assertEqual(l1.get_color(), l2.get_color()) finally: sys.stderr = tmp
tm.close()
pandas.util.testing.close
import pandas try: from typing import List, Any except: pass from .ReportParser import ReportParser class ReportParserEFM(ReportParser): def __init__(self): ReportParser.__init__(self) def parseLines(self, lines): # type: ([str]) -> None current = 2 self.status = lines[current].strip() # read list of modes current = self.skip_until(lines, current, '#\t\tReactions\tEquations') current = current + 1 end = self.find_empty(lines, current) modes = [] # type: List[Any] reversibility = [] reactions = [] equations = [] last = -1 for no in range(current, end): parts = lines[no].strip().split('\t') col1 = parts[0].strip() col2 = parts[1].strip() if len(parts) != 4: reactions[last] = reactions[last] + ' + ' + col1 equations[last] = equations[last] + '; ' + col2 continue col3 = parts[2].strip() col4 = parts[3].strip() if col1 != '': last = int(col1) - 1 modes.append(col1) reversibility.append(col2) reactions.append(col3) equations.append(col4) df = pandas.DataFrame( {'Mode': modes, 'Reversibility': reversibility, 'Reactions': reactions, 'Equations': equations}) df = df.set_index('Mode') self.data_frames.append(df) self.data_descriptions.append({'desc': "Flux modes"}) current = end + 1 # read net reactions current = self.skip_until(lines, current, '#\tNet Reaction\tInternal Species') current = current + 1 end = self.find_empty(lines, current) modes = [] species = [] for no in range(current, end): parts = lines[no].strip().split('\t') if len(parts) != 3: continue modes.append(parts[0]) species.append(parts[2]) df =
pandas.DataFrame({'Mode': modes, 'Internal Species': species})
pandas.DataFrame
import pandas as pd import pytest from pandas.testing import assert_frame_equal from contextlib import contextmanager from gptables import GPTable # TODO: These should be stored in GPTable gptable_text_attrs = ["title", "scope", "units", "source"] gptable_list_text_attrs = ["subtitles", "legend", "notes"] valid_index_columns = [ {}, {1: "one"}, {1: "one", 2: "two"}, {1: "one", 2: "two", 3: "three"} ] valid_text_elements = [ "This is a string", ["This is ", {"bold": True}, "rich", "text"], None ] invalid_text_elements = [ dict(), set(), 42, 3.14, True ] @contextmanager def does_not_raise(): yield @pytest.fixture(scope="function") def create_gptable_with_kwargs(): def generate_gptable(format_dict=None): base_gptable = { "table": pd.DataFrame(), "title": "", "scope": "", "units": "", "source": "", "index_columns": {} # Override default, as no columns in table } if format_dict is not None: base_gptable.update(format_dict) return GPTable(**base_gptable) return generate_gptable def test_init_defaults(create_gptable_with_kwargs): """ Test that given a minimal input, default attributes are correct types. """ empty_gptable = create_gptable_with_kwargs() # Required args assert empty_gptable.title == "" assert empty_gptable.scope == "" assert empty_gptable.units == "" assert empty_gptable.source == "" assert_frame_equal( empty_gptable.table,
pd.DataFrame()
pandas.DataFrame
import functools import inspect from abc import ABC from abc import abstractmethod from copy import deepcopy from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Sequence from typing import Union import numpy as np import pandas as pd from etna.core.mixins import BaseMixin from etna.datasets.tsdataset import TSDataset from etna.loggers import tslogger # TODO: make PyCharm see signature of decorated method def log_decorator(f): """Add logging for method of the model.""" patch_dict = {"function": f.__name__, "line": inspect.getsourcelines(f)[1], "name": inspect.getmodule(f).__name__} @functools.wraps(f) def wrapper(self, *args, **kwargs): tslogger.log(f"Calling method {f.__name__} of {self.__class__.__name__}", **patch_dict) result = f(self, *args, **kwargs) return result return wrapper class Model(ABC, BaseMixin): """Class for holding specific models - autoregression and simple regressions.""" def __init__(self): self._models = None @abstractmethod def fit(self, ts: TSDataset) -> "Model": """Fit model. Parameters ---------- ts: Dataframe with features Returns ------- : Model after fit """ pass @abstractmethod def forecast( self, ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975) ) -> TSDataset: """Make predictions. Parameters ---------- ts: Dataframe with features prediction_interval: If True returns prediction interval for forecast quantiles: Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval Returns ------- TSDataset Models result """ pass @staticmethod def _forecast_segment(model, segment: Union[str, List[str]], ts: TSDataset) -> pd.DataFrame: segment_features = ts[:, segment, :] segment_features = segment_features.droplevel("segment", axis=1) segment_features = segment_features.reset_index() dates = segment_features["timestamp"] dates.reset_index(drop=True, inplace=True) segment_predict = model.predict(df=segment_features) segment_predict = pd.DataFrame({"target": segment_predict}) segment_predict["segment"] = segment segment_predict["timestamp"] = dates return segment_predict class FitAbstractModel(ABC): """Interface for model with fit method.""" @abstractmethod def fit(self, ts: TSDataset) -> "FitAbstractModel": """Fit model. Parameters ---------- ts: Dataset with features Returns ------- : Model after fit """ pass @abstractmethod def get_model(self) -> Union[Any, Dict[str, Any]]: """Get internal model/models that are used inside etna class. Internal model is a model that is used inside etna to forecast segments, e.g. :py:class:`catboost.CatBoostRegressor` or :py:class:`sklearn.linear_model.Ridge`. Returns ------- : The result can be of two types: * if model is multi-segment, then the result is internal model * if model is per-segment, then the result is dictionary where key is segment and value is internal model """ pass class ForecastAbstractModel(ABC): """Interface for model with forecast method.""" @abstractmethod def forecast(self, ts: TSDataset) -> TSDataset: """Make predictions. Parameters ---------- ts: Dataset with features Returns ------- : Dataset with predictions """ pass class PredictIntervalAbstractModel(ABC): """Interface for model with forecast method that creates prediction interval.""" @abstractmethod def forecast( self, ts: TSDataset, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975) ) -> TSDataset: """Make predictions. Parameters ---------- ts: Dataset with features prediction_interval: If True returns prediction interval for forecast quantiles: Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval Returns ------- : Dataset with predictions """ pass class PerSegmentBaseModel(FitAbstractModel, BaseMixin): """Base class for holding specific models for per-segment prediction.""" def __init__(self, base_model: Any): """ Init PerSegmentBaseModel. Parameters ---------- base_model: Internal model which will be used to forecast segments, expected to have fit/predict interface """ self._base_model = base_model self._models: Optional[Dict[str, Any]] = None @log_decorator def fit(self, ts: TSDataset) -> "PerSegmentBaseModel": """Fit model. Parameters ---------- ts: Dataset with features Returns ------- : Model after fit """ self._models = {} for segment in ts.segments: self._models[segment] = deepcopy(self._base_model) for segment, model in self._models.items(): segment_features = ts[:, segment, :] segment_features = segment_features.dropna() # TODO: https://github.com/tinkoff-ai/etna/issues/557 segment_features = segment_features.droplevel("segment", axis=1) segment_features = segment_features.reset_index() model.fit(df=segment_features, regressors=ts.regressors) return self def _get_model(self) -> Dict[str, Any]: """Get internal etna base models that are used inside etna class. Returns ------- : dictionary where key is segment and value is internal model """ if self._models is None: raise ValueError("Can not get the dict with base models, the model is not fitted!") return self._models def get_model(self) -> Dict[str, Any]: """Get internal models that are used inside etna class. Internal model is a model that is used inside etna to forecast segments, e.g. :py:class:`catboost.CatBoostRegressor` or :py:class:`sklearn.linear_model.Ridge`. Returns ------- : dictionary where key is segment and value is internal model """ internal_models = {} for segment, base_model in self._get_model().items(): if not hasattr(base_model, "get_model"): raise NotImplementedError( f"get_model method is not implemented for {self._base_model.__class__.__name__}" ) internal_models[segment] = base_model.get_model() return internal_models @staticmethod def _forecast_segment(model: Any, segment: str, ts: TSDataset, *args, **kwargs) -> pd.DataFrame: """Make predictions for one segment.""" segment_features = ts[:, segment, :] segment_features = segment_features.droplevel("segment", axis=1) segment_features = segment_features.reset_index() dates = segment_features["timestamp"] dates.reset_index(drop=True, inplace=True) segment_predict = model.predict(df=segment_features, *args, **kwargs) if isinstance(segment_predict, np.ndarray): segment_predict = pd.DataFrame({"target": segment_predict}) segment_predict["segment"] = segment segment_predict["timestamp"] = dates return segment_predict class PerSegmentModel(PerSegmentBaseModel, ForecastAbstractModel): """Class for holding specific models for per-segment prediction.""" def __init__(self, base_model: Any): """ Init PerSegmentBaseModel. Parameters ---------- base_model: Internal model which will be used to forecast segments, expected to have fit/predict interface """ super().__init__(base_model=base_model) @log_decorator def forecast(self, ts: TSDataset) -> TSDataset: """Make predictions. Parameters ---------- ts: Dataframe with features Returns ------- : Dataset with predictions """ result_list = list() for segment, model in self._get_model().items(): segment_predict = self._forecast_segment(model=model, segment=segment, ts=ts) result_list.append(segment_predict) result_df =
pd.concat(result_list, ignore_index=True)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt import analyze from utils import plot_collections, bin, modify, plotting """ Blue: #0C5DA5 Green: #00B945 """ plt.style.use(['science', 'ieee', 'std-colors']) fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) sciblue = '#0C5DA5' scigreen = '#00B945' # --- --- SETUP # --- files to read dataset_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/datasets/synthetic_overlap_noise-level1/' base_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/publication data/iteration 5/synthetic grid overlap random z nl1/' # test coords base_testcoords = 'test_coords/' idpt1 = 'dx-5-60-5/test_id1_coords_static_grid-overlap-random-z-nl1.xlsx' spct1 = 'dx-5-60-5/test_id11_coords_SPC_grid-overlap-random-z-nl1.xlsx' idpt2 = 'dx-7.5-57.5-5/test_id2_coords_static_grid-overlap-random-z-nl1.xlsx' spct2 = 'dx-7.5-57.5-5/test_id12_coords_SPC_grid-overlap-random-z-nl1.xlsx' # true coords true1 = dataset_dir + 'grid-random-z/calibration_input/calib_-15.0.txt' true2 = dataset_dir + 'grid-random-z/test_input_dx7.5/B0000.txt' # diameter parameters path_diameter_params = dataset_dir + 'grid/results/calibration-SPC-spct-no_noise_cal/calib_spct_pop_defocus_stats_GridOverlapSPC_calib_nll1_SPC_no_noise_cal.xlsx' # save ids save_ids = ['test_id1_coords_static', 'test_id11_coords_SPC', 'test_id2_coords_static', 'test_id12_coords_SPC', ] modifiers = [True, True, False, False] # --- --- PERCENT DIAMETER OVERLAP export_percent_diameter_overlap = False plot_percent_diameter_overlap = False if plot_percent_diameter_overlap or export_percent_diameter_overlap: # --- read each percent diameter overlap dataframe (if available) calculate_percent_overlap = False for sid, modifier in zip(save_ids, modifiers): if calculate_percent_overlap: # --- For each test coords, calculate percent diameter overlap for test_coord, true_coord, filt, sid in zip([idpt1, spct1, idpt2, spct2], [true1, true1, true2, true2], modifier, save_ids): dfo = analyze.calculate_particle_to_particle_spacing( test_coords_path=base_dir + base_testcoords + test_coord, theoretical_diameter_params_path=path_diameter_params, mag_eff=10, z_param='z_true', zf_at_zero=False, zf_param='zf_from_dia', max_n_neighbors=5, true_coords_path=true_coord, maximum_allowable_diameter=55) # filter dx 5 60 5 coords if filt: dfo = dfo[dfo['x'] < 820] # save to excel dfo.to_excel(base_dir + 'percent-overlap/{}_grid-overlap-random-z-nl1_percent_overlap.xlsx'.format(sid), index=False) else: dfo = pd.read_excel(base_dir + 'percent-overlap/test_coords_percent_overlap/' '{}_grid-overlap-random-z-nl1_percent_overlap.xlsx'.format(sid)) # --- --- EVALUATE RMSE Z # limit percent diameter overlap to -25% (not overlapping here) dfo['percent_dx_diameter'] = dfo['percent_dx_diameter'].where(dfo['percent_dx_diameter'] > -0.5, -0.5) # binning columns_to_bin = ['z_true', 'percent_dx_diameter'] bin_z = [-27.5, -15, -2.5, 10, 22.5] bin_pdo = 3 dfbicts = analyze.evaluate_2d_bin_local_rmse_z(df=dfo, columns_to_bin=columns_to_bin, bins=[bin_z, bin_pdo], round_to_decimals=[3, 4], min_cm=0.5, equal_bins=[False, True]) # --- --- PLOT RMSE Z if plot_percent_diameter_overlap: # Plot rmse z + number of particles binned as a function of percent diameter overlap for different z bins fig, [ax, ax2] = plt.subplots(nrows=2, sharex=True, figsize=(size_x_inches*1.35, size_y_inches*1.5)) for name, df in dfbicts.items(): ax.plot(df.bin, df.rmse_z, '-o', label=name) ax2.plot(df.bin, df.num_bind, '-o') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') ax.set_yscale('log') ax.legend(loc='upper left', bbox_to_anchor=(1, 1), title=r'$z_{bin}$') ax2.set_xlabel(r'$\gamma \: $(\%)') ax2.set_ylabel(r'$N_{p}$') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_rmsez_num-binned_pdo.png'.format(sid)) plt.show() # --- --- EXPORT RMSE Z TO EXCEL # dfstack = modify.stack_dficts_by_key(dfbicts, drop_filename=False) # dfstack.to_excel(base_dir + 'percent-overlap/{}_binned_rmsez_by_z_pdo.xlsx'.format(sid), index=False) # --- --- PLOT OTHER METRICS # --- calculate the local rmse_z uncertainty num_bins = 25 bin_list = np.round(np.linspace(-1.25, 1, 10), 4) min_cm = 0.5 z_range = [-40.1, 40.1] round_to_decimal = 4 df_ground_truth = None # bin by percent diameter overlap if plot_percent_diameter_overlap: dfob = bin.bin_local_rmse_z(df=dfo, column_to_bin='percent_dx_diameter', bins=bin_list, min_cm=min_cm, z_range=z_range, round_to_decimal=round_to_decimal, df_ground_truth=df_ground_truth) fig, ax = plt.subplots() ax.plot(dfob.index, dfob.rmse_z, '-o') ax.set_xlabel(r'$\gamma \: $(\%)') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_binned_rmsez_by_pdo.png'.format(sid)) plt.show() # bin by z dfobz = bin.bin_local_rmse_z(df=dfo, column_to_bin='z_true', bins=num_bins, min_cm=min_cm, z_range=z_range, round_to_decimal=round_to_decimal, df_ground_truth=df_ground_truth) fig, ax = plt.subplots() ax.plot(dfobz.index, dfobz.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \:$ ($\mu m$)') ax.set_ylabel(r'z r.m.s. error ($\mu m$)') plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_binned_rmsez_by_z.png'.format(sid)) plt.show() # --- --- CALCULATE RMSE BY PARTICLE TO PARTICLE SPACINGS # --- setup column_to_split = 'x' round_x_to_decimal = 0 if modifier: splits = np.array([93.0, 189.0, 284.0, 380.0, 475.0, 571.0, 666.0, 762.0, 858.0, 930]) # , 900.0 keys = [60, 5, 10, 15, 20, 25, 30, 35, 40, 50] # , 47.5 else: splits = np.array([79.0, 163.5, 254.0, 348.5, 447.0, 555.5, 665.0, 777.5, 900.0]) keys = [7.5, 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5] # --- split df into dictionary dfsplicts_gdpyt = modify.split_df_and_merge_dficts(dfo, keys, column_to_split, splits, round_x_to_decimal) # --- rmse z by binning x dfmbicts_gdpyt = analyze.calculate_bin_local_rmse_z(dfsplicts_gdpyt, column_to_split, splits, min_cm, z_range, round_x_to_decimal, dficts_ground_truth=None) # --- plot global uncertainty - gdpyt if plot_percent_diameter_overlap: xlabel_for_keys = r'$\delta x (pix)$' h = 80 scale_fig_dim = [1, 1] fig, ax, ax2 = plotting.plot_dfbicts_global(dfmbicts_gdpyt, parameters='rmse_z', xlabel=xlabel_for_keys, h=h, scale=scale_fig_dim) plt.tight_layout() plt.savefig(base_dir + 'percent-overlap/{}_global_binned_rmsez_by_z.png'.format(sid)) plt.show() # --- --- EXPORT GLOBAL RMSE Z TO EXCEL if export_percent_diameter_overlap: dfstack = modify.stack_dficts_by_key(dfmbicts_gdpyt, drop_filename=False) dfstack.to_excel(base_dir + 'percent-overlap/{}_global_binned_rmsez_by_particle_spacing.xlsx'.format(sid), index=False) # --- --- COMBINED PARTICLE TO PARTICLE SPACING plot_particle_spacing = False if plot_particle_spacing: # read files read_dir = base_dir + 'percent-overlap/particle-to-particle-spacing/' fn1 = 'test_id1_coords_static_global_binned_rmsez_by_particle_spacing' fn2 = 'test_id2_coords_static_global_binned_rmsez_by_particle_spacing' fn11 = 'test_id11_coords_SPC_global_binned_rmsez_by_particle_spacing' fn12 = 'test_id12_coords_SPC_global_binned_rmsez_by_particle_spacing' df1 = pd.read_excel(read_dir + fn1 + '.xlsx') df2 = pd.read_excel(read_dir + fn2 + '.xlsx') df11 =
pd.read_excel(read_dir + fn11 + '.xlsx')
pandas.read_excel
# Written by: <NAME>, @dataoutsider # Viz: "Good Read", enjoy! import numpy as np import matplotlib.pyplot as plt import pandas as pd import os from math import pi, cos, sin, exp, sqrt, atan2 #pd.set_option('display.max_rows', None) class point: def __init__(self, index, item, x, y, path = -1, value = ''): self.index = index self.item = item self.x = x self.y = y self.path = path self.value = value def to_dict(self): return { 'index' : self.index, 'item' : self.item, 'x' : self.x, 'y' : self.y, 'path' : self.path, 'value' : self.value } def ellipse_y(a, b, xs, xe, points): x = np.linspace(xs, xe, num=points) y = (b/a)*np.sqrt(a**2-x**2) return x, y def ellipse_x(a, b, y): x = sqrt(-((a**2.*y**2.-b**2.*a**2.)/(b**2.))) return x def feather(x, length, cutoff_0_to_2): xt = x/length xf = xt*cutoff_0_to_2 # x space xr = [0., 2.0] # paramters xi = [1.5, 3.5] a = [0., 40.] f = [2.0, 2.0] # parameter linear transform xi_t = np.interp(xf, xr, xi) a_t = np.interp(xf, xr, a) f_t = np.interp(xf, xr, f) # Nick's feather equation y = (1./xi_t**f_t)*sin(a_t*pi/180.)*25. return y #region data prep df = pd.read_csv(os.path.dirname(__file__) + '/1001bookreviews_google_clean.csv') df_cat_count = df.groupby('category').count().reset_index() # Lump singles into 'Other' df_cat_count['type'] = ['[\'All Single-Book Categories\']' if x == 1 else y for x, y in zip(df_cat_count['google_id'], df_cat_count['category'])] # Save out lumped categories df_cat_count.to_csv(os.path.dirname(__file__) + '/1001bookreviews_quill_cat.csv', encoding='utf-8', index=False) # Final group df_cat_count = df_cat_count.groupby('type').sum() group_sort = df_cat_count.sort_values(by=['google_id'], ascending=[True]).reset_index() group_sort['cat_perc'] = group_sort['google_id']/len(df.index) print(group_sort) #endregion #region constants top_x = 0.15 # 0.15 0.3 top_y = 8.5 #6 19.5 btm_x = 0.15 # 0.15 0.3 btm_y = -3.25 #-2.5 -7.0 #endregion #region algorithm upper = top_y - 0.01 lower = 0.0 delta = upper-lower offset = 0 list_xy = [] ix = 0 resolution = 100 spine_b = 0.05 #0.05 0.15 path = 1 xt = [] yt = [] for index, row in group_sort.iterrows(): y_high = upper-offset y_low = y_high-delta*row['cat_perc'] offset += delta*row['cat_perc'] x_high = ellipse_x(top_x, top_y, y_high) x_low = ellipse_x(top_x, top_y, y_low) # v (top down bend) >list_xy.append(point(ix, index, -x_high, y_high, 1, 0)) x, y = ellipse_y(x_high, -spine_b, -x_high, x_high, resolution) for i in range(resolution): list_xy.append(point(ix, -(index+1), x[i], y_high+y[i], path, row['type'])) path += 1 # / (right side inward bend) >list_xy.append(point(ix, index, x_high, y_high, 2, 0)) x, y = ellipse_y(top_x, top_y, x_high, x_low, resolution) for i in range(resolution): list_xy.append(point(ix, -(index+1), x[i], y[i], path, row['type'])) path += 1 # ^ (bottom down bend) >list_xy.append(point(ix, index, -x_high, y_low, 4, 0)) x, y = ellipse_y(x_low, -spine_b, x_low, -x_low, resolution) for i in range(resolution): list_xy.append(point(ix, -(index+1), x[i], y_low+y[i], path, row['type'])) path += 1 if index == len(group_sort.index)-1: xt = x yt = y # \ (left side inward bend) >list_xy.append(point(ix, index, x_high, y_low, 3, 0)) x, y = ellipse_y(top_x, top_y, -x_low, -x_high, resolution) for i in range(resolution): list_xy.append(point(ix, -(index+1), x[i], y[i], path, row['type'])) path += 1 path = 1 # pen tip for i in range(resolution): list_xy.append(point(ix, -(index+2), xt[i], yt[i], path, '[\'aaa\']')) path += 1 x, y = ellipse_y(btm_x, btm_y, -btm_x, btm_x, resolution) for i in range(resolution): list_xy.append(point(ix, -(index+2), x[i], y[i], path, '[\'aaa\']')) path += 1 #endregion #region output df_quill = pd.DataFrame.from_records([s.to_dict() for s in list_xy]) df_quill['color'] = df_quill['value'] df_feather = pd.read_csv(os.path.dirname(__file__) + '/test_feather.csv') df_out =
pd.concat([df_feather, df_quill], ignore_index=True)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox)
tm.assert_equal(lhs == NaT, expected)
pandas._testing.assert_equal
"""Create a synthetic population that is representative of Germany.""" from pathlib import Path import numpy as np import pandas as pd import pytask import sid from sid.shared import factorize_assortative_variables from src.config import BLD from src.config import N_HOUSEHOLDS from src.config import SRC from src.create_initial_states.create_contact_model_group_ids import ( add_contact_model_group_ids, ) from src.create_initial_states.create_vaccination_priority import ( create_vaccination_group, ) from src.create_initial_states.create_vaccination_priority import ( create_vaccination_rank, ) from src.prepare_data.task_prepare_rki_data import TRANSLATE_STATES from src.shared import create_age_groups from src.shared import create_age_groups_rki _DEPENDENCIES = { # py files "sid_shared.py": Path(sid.__file__).parent.resolve() / "shared.py", "shared.py": SRC / "shared.py", "create_contact_model_group_ids": SRC / "create_initial_states" / "create_contact_model_group_ids.py", "add_weekly_ids": SRC / "create_initial_states" / "add_weekly_ids.py", "make_educ_group_columns": SRC / "create_initial_states" / "make_educ_group_columns.py", "create_vaccination_priority": SRC / "create_initial_states" / "create_vaccination_priority.py", "translations": SRC / "prepare_data" / "task_prepare_rki_data.py", # # data "hh_data": SRC / "original_data" / "population_structure" / "microcensus2010_cf.dta", "county_probabilities": BLD / "data" / "population_structure" / "counties.parquet", "work_daily_dist": BLD / "contact_models" / "empirical_distributions" / "work_recurrent_daily.pkl", "work_weekly_dist": BLD / "contact_models" / "empirical_distributions" / "work_recurrent_weekly.pkl", "other_daily_dist": BLD / "contact_models" / "empirical_distributions" / "other_recurrent_daily.pkl", "other_weekly_dist": BLD / "contact_models" / "empirical_distributions" / "other_recurrent_weekly.pkl", "params": BLD / "params.pkl", } @pytask.mark.depends_on(_DEPENDENCIES) @pytask.mark.parametrize( "n_hhs, produces", [ (N_HOUSEHOLDS, BLD / "data" / "initial_states.parquet"), (100_000, BLD / "data" / "debug_initial_states.parquet"), ], ) def task_create_initial_states_microcensus(depends_on, n_hhs, produces): mc = pd.read_stata(depends_on["hh_data"]) county_probabilities = pd.read_parquet(depends_on["county_probabilities"]) work_daily_dist =
pd.read_pickle(depends_on["work_daily_dist"])
pandas.read_pickle
import pandas as pd import urllib as ul # class の定義 class SipSymp: # ベースURL の設定 __base_url = 'http://www.ieice.org/ess/sip/symp/' # <br /> の置き換え __brstr = '@' def __init__(self, year): self.__year = year # URL の設定 self.__url = self.__base_url + str(self.__year) + '/?cmd=program' # HTMLの読み込みと改行タグの置換 fp = ul.request.urlopen(self.__url) html = fp.read() html = html.replace(b'<br />', self.__brstr.encode()) fp.close() # プログラムの抽出 tables = pd.read_html(html) nTables = len(tables) # タイトル・著者リストの抽出(評価1年目) nRows = len(tables[1]) if nRows > 1: self.__ser = tables[1].iloc[1:,1].str.strip() else: self.__ser =
pd.Series([])
pandas.Series
import os import warnings from typing import List import numpy as np import pandas as pd from pandas import read_sql_query from sqlalchemy import create_engine from zipline.data.bundles import ingest, register from zipline.utils.cli import maybe_show_progress from app.models import Database warnings.filterwarnings("ignore") class DatabaseEngine: def __init__(self, db_config: Database): self._db_config = db_config self._engine = create_engine(self._get_db_url()) def _get_db_url(self) -> str: return f"postgresql://{self._db_config.user}:{self._db_config.password}@{self._db_config.netloc}:{self._db_config.port}/{self._db_config.dbname}" # noqa def get_data(self, isins, from_date, to_date): query = f"""SELECT open, high, low, close, volume, time FROM ohlc INNER JOIN instrument ON instrument.isin = ohlc.isin WHERE instrument.isin='{isins}' AND time BETWEEN '{from_date}' AND '{to_date}' ORDER BY time asc""" return read_sql_query(query, self._engine) class SQLIngester: def __init__(self, isins: List[str], from_date: str, to_date: str, engine: DatabaseEngine, **kwargs): self.isins = isins self.from_date = from_date self.to_date = to_date self._engine = engine def create_metadata(self) -> pd.DataFrame: return pd.DataFrame( np.empty( len(self.isins), dtype=[ ("start_date", "datetime64[ns]"), ("end_date", "datetime64[ns]"), ("auto_close_date", "datetime64[ns]"), ("symbol", "object"), ("exchange", "object"), ], ) ) def get_stock_data(self, isins: str) -> pd.DataFrame: data = self._engine.get_data(isins, self.from_date, self.to_date) data["time"] = pd.to_datetime(data["time"]) data.rename(columns={"time": "Date"}, inplace=True, copy=False) data.set_index("Date", inplace=True) return data def writer(self, show_progress: bool) -> iter(int, pd.DataFrame): with maybe_show_progress(self.isins, show_progress, label="Downloading from Yahoo") as it: for index, isins in enumerate(it): data = self.get_stock_data(isins) data.dropna( inplace=True ) # Yahoo can sometimes add duplicate rows on same date, one which is full or NaN start_date = data.index[0] end_date = data.index[-1] autoclose_date = end_date + pd.Timedelta(days=1) self._df_metadata.iloc[index] = start_date, end_date, autoclose_date, isins, "NASDAQ" yield index, data def __call__( self, environ, asset_db_writer, minute_bar_writer, daily_bar_writer, adjustment_writer, calendar, start_session, end_session, cache, show_progress, output_dir, ): self._df_metadata = self.create_metadata() daily_bar_writer.write(self.writer(show_progress), show_progress=show_progress) asset_db_writer.write(equities=self._df_metadata) adjustment_writer.write() if __name__ == "__main__": symbols = [sym.strip() for sym in os.environ.get("SYMBOLS").split(",")] register( "foreverbull", SQLIngester(symbols, os.environ.get("FROM_DATE"), os.environ.get("TO_DATE")), calendar_name="XFRA", ) ingest("foreverbull", os.environ,
pd.Timestamp.utcnow()
pandas.Timestamp.utcnow
# -*- coding: utf-8 -*- """ Created on Mar 8 2019 @author: <NAME> email : <EMAIL> """ ################################################################################ #Analysis with Random Forest #Tested with Python 2.7 and Python 3.5 on Ubuntu Mate Release 16.04.5 LTS (Xenial Xerus) 64-bit ############################################################################### ''' IMPORT LIBRARIES ''' import numpy as np import pandas as pd import os from cvd_ids_in_ukbb_normal_pca import find_cvds_ukbb #from analyze_plots_ukbb import * from mlxtend.feature_selection import SequentialFeatureSelector as SFS from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.model_selection import StratifiedKFold import matplotlib.pyplot as plt from sklearn.metrics import roc_curve, auc from scipy import interp from sklearn.ensemble import RandomForestClassifier from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs def ROC_curve(X, y,setA,label,clf,name,path_to_save): cv=StratifiedKFold(n_splits=10) classifier = clf tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) i=0 for train, test in cv.split(X,y): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) # plt.plot(fpr, tpr, lw=1, alpha=0.3, # label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 plt.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Chance', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) plt.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC curve of %s using %s'%(setA[0], label)) plt.legend(loc="lower right") #plt.show() title='%s_%s_%s'%(setA[0],label,name) title.replace(' ','_') plt.savefig(path_to_save+'ROC_%s.png'%title) plt.close() def find_min_overlap(overlap_angina): min_overlap_id = overlap_angina.values.argmin() min_overlap_name =overlap_angina.columns[min_overlap_id] return min_overlap_name def get_conventional_indices (convention, nor_df_training): ''' Get conventional indices for Normal Training ''' conventional_indices_training_nor = convention.loc[convention['f.eid'].isin(nor_df_training['patient'])] conventional_indices_training_nor = conventional_indices_training_nor.set_index('f.eid') conventional_indices_training_nor = conventional_indices_training_nor.reindex(index = nor_df_training['patient']) conventional_indices_training_nor=conventional_indices_training_nor.fillna(conventional_indices_training_nor.mean()) conventional_indices_LV_training = conventional_indices_training_nor.filter(regex=( 'LV')) conventional_indices_LV_training =conventional_indices_LV_training.iloc[:,:-1] conventional_indices_RV_training = conventional_indices_training_nor.filter(regex=('RV')) conventional_indices_RV_training =conventional_indices_RV_training.iloc[:,:-1] conventional_all_training_nor = pd.concat([conventional_indices_LV_training,conventional_indices_RV_training],axis=1) return conventional_all_training_nor file_feat=open('.../conditions.txt') conditions=[] with open(".../conditions.txt") as feat: for line in feat: f=line.strip() f=line.split(",") for i in range (len(f)): conditions.append(str(f[i])) os.chdir(".../Risk Factors_new conditions_even_cases/Diabetes_ML/") ### Define Risk factors to analyze risk_factors =[ # ['high cholesterol'], ['diabetes'], # ['hypertension',\ # 'essential hypertension'] ] cvds_samples=[] cvd_classifier_acc=[] acc_all=[] models=[] #### Take the UKBB files ########################################################################################## #### these 3 files will be check for the cardiovascular diseases ## to find the samples main_path_files = '.../Data Information/Files/' #1- conditions=pd.read_csv(main_path_files+'medical_conditions_.csv', low_memory=False) #2- history=pd.read_csv(main_path_files+'health_and_medical_history_.csv', low_memory=False) #3- outcomes=pd.read_csv(main_path_files+'health_related_outcomes_.csv', low_memory=False) ### #### Take the conventional clinical indices to make the comparison of the results convention =pd.read_csv(main_path_files+'imaging_heart_mri_qmul_oxford_decoded_headings_decoded_data_2017-May-17_1445_r4d.csv', low_memory=False) ## Get genetics data (if needed) #genomics = pd.read_csv('genomics_decoded_headings_decoded_data_2017-May-17_1445_r4d.csv', low_memory=False) #genomics=genomics.fillna(genomics.mean()) #genomics.drop(genomics.select_dtypes(['object']), inplace=True, axis=1) #### Take the calculated radiomics features radiomics_ukbb=pd.read_csv('.../cardiac radiomics for Application 2964/1. Radiomics results calculated.csv', low_memory=False) #### Define the paths for the figures #save_path_main='.../Risk Factors/Even_cases_reproduce/' ''' Define different RF classifiers ''' names = [ 'RF_n_est1_maxdepth3_maxfeat_auto_gini','RF_n_est1_maxdepth3_maxfeat_sqrt_gini', 'RF_n_est1_maxdepth3_maxfeat_02_gini', 'RF_n_est16_maxdepth3_maxfeat_auto_gini','RF_n_est16_maxdepth3_maxfeat_sqrt_gini','RF_n_est16_maxdepth3_maxfeat_02_gini', 'RF_n_est32_maxdepth3_maxfeat_auto_gini','RF_n_est32_maxdepth3_maxfeat_sqrt_gini','RF_n_est32_maxdepth3_maxfeat_02_gini', 'RF_n_est100_maxdepth3_maxfeat_auto_gini','RF_n_est100_maxdepth3_maxfeat_sqrt_gini','RF_n_est100_maxdepth3_maxfeat_02_gini', 'RF_n_est1_maxdepth5_maxfeat_auto_gini','RF_n_est1_maxdepth5_maxfeat_sqrt_gini', 'RF_n_est1_maxdepth5_maxfeat_02_gini', 'RF_n_est16_maxdepth5_maxfeat_auto_gini','RF_n_est16_maxdepth5_maxfeat_sqrt_gini','RF_n_est16_maxdepth5_maxfeat_02_gini', 'RF_n_est32_maxdepth5_maxfeat_auto_gini','RF_n_est32_maxdepth5_maxfeat_sqrt_gini','RF_n_est32_maxdepth5_maxfeat_02_gini', 'RF_n_est100_maxdepth5_maxfeat_auto_gini','RF_n_est100_maxdepth5_maxfeat_sqrt_gini','RF_n_est100_maxdepth5_maxfeat_02_gini', 'RF_n_est1_maxdepth3_maxfeat_auto_entropy','RF_n_est1_maxdepth3_maxfeat_sqrt_entropy','RF_n_est1_maxdepth3_maxfeat_02_entropy', 'RF_n_est16_maxdepth3_maxfeat_auto_entropy','RF_n_est16_maxdepth3_maxfeat_sqrt_entropy','RF_n_est16_maxdepth3_maxfeat_02_entropy', 'RF_n_est32_maxdepth3_maxfeat_auto_entropy','RF_n_est32_maxdepth3_maxfeat_sqrt_entropy','RF_n_est32_maxdepth3_maxfeat_02_entropy', 'RF_n_est100_maxdepth3_maxfeat_auto_entropy','RF_n_est100_maxdepth3_maxfeat_sqrt_entropy','RF_n_est100_maxdepth3_maxfeat_02_entropy', 'RF_n_est1_maxdepth5_maxfeat_auto_entropy','RF_n_est1_maxdepth5_maxfeat_sqrt_entropy','RF_n_est1_maxdepth5_maxfeat_02_entropy', 'RF_n_est16_maxdepth5_maxfeat_auto_entropy','RF_n_est16_maxdepth5_maxfeat_sqrt_entropy','RF_n_est16_maxdepth5_maxfeat_02_entropy', 'RF_n_est32_maxdepth5_maxfeat_auto_entropy', 'RF_n_est32_maxdepth5_maxfeat_sqrt_entropy','RF_n_est32_maxdepth5_maxfeat_02_entropy', 'RF_n_est100_maxdepth5_maxfeat_auto_entropy','RF_n_est100_maxdepth5_maxfeat_sqrt_entropy','RF_n_est100_maxdepth5_maxfeat_02_entropy' # "Random Forest" # , "Neural Net", ] classifiers = [ RandomForestClassifier(n_estimators=1, max_depth=3, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=3, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=3, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features='auto', criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features='sqrt', criterion='gini'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features=0.2, criterion='gini'), RandomForestClassifier(n_estimators=1, max_depth=3, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=1, max_depth=3, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=1, max_depth=3, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=3, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=3, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=3, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=1, max_depth=5, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=16, max_depth=5, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=32, max_depth=5, max_features=0.2, criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features='auto', criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features='sqrt', criterion='entropy'), RandomForestClassifier(n_estimators=100, max_depth=5, max_features=0.2, criterion='entropy'), ] cvds_samples_all=[] cvds_samples_random_selection=[] cvd_classifier_acc=[] acc_all=[] cases=[] models=[] models_conv=[] read_samples_path ='.../Results-Single_feat_Last/' path_to_save_roc='.../Diabetes_ML/RF/' for i in range(len(risk_factors)): #### Define the set for each risk to analyze setA= risk_factors[i] # Find CVDs in UK Biobank data and add 'normal' cases as a new instance in the list, cvds_classify # print('Analyzing %s in UK Biobank...'%(setA)) # [nor_df, setA_df, rest_cvds_classify] =find_cvds_ukbb(conditions,radiomics_ukbb, rest_cvds_classify, setA) nor_df =pd.read_csv(read_samples_path+'normal_%s.csv'%setA[0]) setA_df =pd.read_csv(read_samples_path+'setA_df_%s.csv'%setA[0]) nor_conv=
pd.read_csv(read_samples_path+'normal_%s_conv.csv'%setA[0])
pandas.read_csv
import os,sys import pandas as pd import numpy as np import subprocess from tqdm import tqdm from ras_method import ras_method import warnings warnings.filterwarnings('ignore') def est_trade_value(x,output_new,sector): """ Function to estimate the trade value between two sectors """ if (sector is not 'other1') & (sector is not 'other2'): sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == sector].reset_index() else: sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == 'IMP'].reset_index() x['gdp'] = x.gdp*min(sec_output.loc[sec_output.region==x.reg1].values[0][2],sec_output.loc[sec_output.region==x.reg2].values[0][2]) return x def estimate(table='INDEC',year=2015,print_output=False,print_progress=True): """ Function to create a province-level MRIO table, based on a national IO table. The default is the INDEC table. """ data_path = os.path.join('..','data') # load sector data sectors = list(pd.read_excel(os.path.join(data_path,'other_sources', 'industry_high_level_classification.xlsx'))['SEC_CODE'].values) # load provincial mappers reg_mapper = pd.read_excel(os.path.join(data_path,'INDEC','sh_cou_06_16.xls'),sheet_name='reg_mapper',header=None).iloc[:,:2] reg_mapper = dict(zip(reg_mapper[0],reg_mapper[1])) # load provincial data prov_data = pd.read_excel(os.path.join(data_path,'INDEC','PIB_provincial_06_17.xls'),sheet_name='VBP', skiprows=3,index_col=[0],header=[0],nrows=71) prov_data = prov_data.loc[[x.isupper() for x in prov_data.index],:] prov_data.columns = [x.replace(' ','_') for x in ['Ciudad de Buenos Aires', 'Buenos Aires', 'Catamarca', 'Cordoba', 'Corrientes', 'Chaco', 'Chubut', 'Entre Rios', 'Formosa', 'Jujuy', 'La Pampa', 'La Rioja', 'Mendoza', 'Misiones', 'Neuquen', 'Rio Negro', 'Salta', 'San Juan', 'San Luis', 'Santa Cruz', 'Santa Fe', 'Santiago del Estero', 'Tucuman', 'Tierra del Fuego', 'No distribuido', 'Total']] region_names = list(prov_data.columns)[:-2] prov_data.index = sectors+['TOTAL'] prov_data = prov_data.replace(0, 1) ### Create proxy data for first iteration sectors+['other1','other2'] # proxy level 2 proxy_reg_arg = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_reg_arg['year'] = 2016 proxy_reg_arg = proxy_reg_arg[['year','index','TOTAL']] proxy_reg_arg.columns = ['year','id','gdp'] proxy_reg_arg.to_csv(os.path.join('..','mrio_downscaling','proxy_reg_arg.csv'),index=False) # proxy level 4 for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_sector = pd.DataFrame(prov_data.iloc[iter_,:24]/prov_data.iloc[iter_,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = 'sec{}'.format(sector) proxy_sector = proxy_sector[['year','sector','index',sector]] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join('..','mrio_downscaling','proxy_sec{}.csv'.format(sector)),index=False) else: proxy_sector = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = sector+'1' proxy_sector = proxy_sector[['year','sector','index','TOTAL']] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join('..','mrio_downscaling','proxy_{}.csv'.format(sector)),index=False) # proxy level 18 def change_name(x): if x in sectors: return 'sec'+x elif x == 'other1': return 'other11' else: return 'other21' mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, sectors+['other1','other2'], region_names], names=['sec1', 'reg1','sec2','reg2']) for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_sec{}.csv'.format(sector)),index=False) else: proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_{}.csv'.format(sector)),index=False) """ Create first version of MRIO for Argentina, without trade """ ### save basetable for disaggregation usin the specific source: basetable = pd.read_csv(os.path.join(data_path,'national_tables','{}_{}.csv'.format(year,table)),index_col=[0]) basetable.to_csv(os.path.join('..','mrio_downscaling','basetable.csv'),header=False,index=False) ### run libmrio p = subprocess.Popen([r'..\mrio_downscaling\mrio_disaggregate', 'settings_notrade.yml'], cwd=os.path.join('..','mrio_downscaling')) p.wait() ### load data and reorder region_names_list = [item for sublist in [[x]*(len(sectors)+2) for x in region_names] for item in sublist] rows = ([x for x in sectors+['VA','IMP']])*len(region_names) cols = ([x for x in sectors+['FD','EXP']])*len(region_names) index_mi = pd.MultiIndex.from_arrays([region_names_list, rows], names=('region', 'row')) column_mi = pd.MultiIndex.from_arrays([region_names_list, cols], names=('region', 'col')) MRIO = pd.read_csv(os.path.join('..','mrio_downscaling','output1.csv'),header=None,index_col=None) MRIO.index = index_mi MRIO.columns = column_mi # create predefined index and col, which is easier to read sector_only = [x for x in sectors]*len(region_names) col_only = ['FD']*len(region_names) region_col = [item for sublist in [[x]*len(sectors) for x in region_names] for item in sublist] + \ [item for sublist in [[x]*1 for x in region_names] for item in sublist] column_mi_reorder = pd.MultiIndex.from_arrays( [region_col, sector_only+col_only], names=('region', 'col')) # sum va and imports valueA = MRIO.xs('VA', level=1, axis=0).sum(axis=0) valueA.drop('FD', level=1,axis=0,inplace=True) valueA.drop('EXP', level=1,axis=0,inplace=True) imports = MRIO.xs('IMP', level=1, axis=0).sum(axis=0) imports.drop('FD', level=1,axis=0,inplace=True) imports.drop('EXP', level=1,axis=0,inplace=True) FinalD = MRIO.xs('FD', level=1, axis=1).sum(axis=1) FinalD.drop('VA', level=1,axis=0,inplace=True) FinalD.drop('IMP', level=1,axis=0,inplace=True) Export = MRIO.xs('EXP', level=1, axis=1).sum(axis=1) Export.drop('VA', level=1,axis=0,inplace=True) Export.drop('IMP', level=1,axis=0,inplace=True) output_new = MRIO.copy() """ Balance first MRIO version """ # convert to numpy matrix X0 = MRIO.as_matrix() # get sum of rows and columns u = X0.sum(axis=1) v = X0.sum(axis=0) # and only keep T v[:(len(u)-2)] = u[:-2] # apply RAS method to rebalance the table X1 = ras_method(X0, u, v, eps=1e-5,print_out=print_output) #translate to pandas dataframe output_new = pd.DataFrame(X1) output_new.index = index_mi output_new.columns = column_mi if print_progress: print('NOTE : Balanced MRIO table without trade finished using {} data'.format(table)) """ Create second version of MRIO for Argentina, with trade """ ### Load OD matrix od_matrix_total = pd.DataFrame(pd.read_excel(os.path.join(data_path,'OD_data','province_ods.xlsx'), sheet_name='total',index_col=[0,1],usecols =[0,1,2,3,4,5,6,7])).unstack(1).fillna(0) od_matrix_total.columns.set_levels(['A','G','C','D','B','I'],level=0,inplace=True) od_matrix_total.index = od_matrix_total.index.map(reg_mapper) od_matrix_total = od_matrix_total.stack(0) od_matrix_total.columns = od_matrix_total.columns.map(reg_mapper) od_matrix_total = od_matrix_total.swaplevel(i=-2, j=-1, axis=0) od_matrix_total = od_matrix_total.loc[:, od_matrix_total.columns.notnull()] ### Create proxy data # proxy level 14 mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, region_names], names=['sec1', 'reg1','reg2']) for iter_,sector in enumerate((sectors+['other1','other2'])): if sector in ['A','G','C','D','B','I']: proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = 'sec{}'.format(sector) proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_sec{}.csv'.format(sector)),index=False) elif (sector is not 'other1') & (sector is not 'other2') & (sector not in ['A','G','C','D','B','I']): # & (sector not in ['L','M','N','O','P']): proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() #proxy_trade[0].loc[(proxy_trade.origin_province == proxy_trade.destination_province)] = 0.9 #proxy_trade[0].loc[~(proxy_trade.origin_province == proxy_trade.destination_province)] = 0.1 proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = 'sec{}'.format(sector) proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_sec{}.csv'.format(sector)),index=False) else: proxy_trade = (od_matrix_total.sum(level=1).divide(od_matrix_total.sum(level=1).sum(axis=1),axis='rows')).stack(0).reset_index() proxy_trade.columns = ['reg1','reg2','gdp'] proxy_trade['year'] = 2016 proxy_trade = proxy_trade.apply(lambda x: est_trade_value(x,output_new,sector),axis=1) proxy_trade['sec1'] = sector+'1' proxy_trade = proxy_trade[['year','sec1','reg1','reg2','gdp']] proxy_trade.columns = ['year','sector','region','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade14_{}.csv'.format(sector)),index=False) # proxy level 18 mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, sectors+['other1','other2'], region_names], names=['sec1', 'reg1','sec2','reg2']) for iter_,sector in enumerate((sectors+['other1','other2'])): if (sector is not 'other1') & (sector is not 'other2'): proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade = proxy_trade.loc[proxy_trade.sec2.isin(['L','M','N','O','P'])] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade.query("reg1 == reg2") proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_sec{}.csv'.format(sector)),index=False) else: proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade = proxy_trade.loc[proxy_trade.sec2.isin(['L','M','N','O','P'])] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade.query("reg1 == reg2") proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join('..','mrio_downscaling','proxy_trade_{}.csv'.format(sector)),index=False) ### run libmrio p = subprocess.Popen([r'..\mrio_downscaling\mrio_disaggregate', 'settings_trade.yml'], cwd=os.path.join('..','mrio_downscaling')) p.wait() # load data and reorder region_names_list = [item for sublist in [[x]*(len(sectors)+2) for x in region_names] for item in sublist] rows = ([x for x in sectors+['VA','IMP']])*len(region_names) cols = ([x for x in sectors+['FD','EXP']])*len(region_names) index_mi =
pd.MultiIndex.from_arrays([region_names_list, rows], names=('region', 'row'))
pandas.MultiIndex.from_arrays
import dask import glob import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import numpy as np import os import pandas as pd from pymicro.view.vol_utils import compute_affine_transform import scipy import scipy.optimize import secrets matplotlib.use("Agg") TRACKID = "track" X = "x" Y = "y" Z = "z" FRAME = "frame" CELLID = "cell" def drop_matched(matched: pd.DataFrame, df1: pd.DataFrame, df2: pd.DataFrame): """Remove the matched rows from df1 and df2. Matched results from merging df1 with df2. Important order of df1 and df2 matters.""" # extract df1 and df2 from matched matched_x = matched[[x for x in matched.columns if "_x" in x]].copy() matched_y = matched[[y for y in matched.columns if "_y" in y]].copy() matched_x.columns = [x.replace("_x", "") for x in matched_x.columns] matched_y.columns = [y.replace("_y", "") for y in matched_y.columns] # Add frame column and reorder matched_x[FRAME] = matched[FRAME] matched_y[FRAME] = matched[FRAME] matched_x[CELLID] = matched[CELLID] matched_y[CELLID] = matched[CELLID] matched_x = matched_x[df1.columns] matched_y = matched_y[df2.columns] df1_new = pd.concat([df1, matched_x]) df2_new = pd.concat([df2, matched_y]) df1_new = df1_new.drop_duplicates(keep=False) df2_new = df2_new.drop_duplicates(keep=False) return df1_new, df2_new def filter_tracks(df: pd.DataFrame, min_length: int = 10) -> pd.DataFrame: """Filter tracks based on length. Arg: df: dataframe containing the tracked data min_length: integer specifying the min track length Return: filtered data frame.""" df = df[[X, Y, Z, FRAME, TRACKID, CELLID]] df = df[df[CELLID] != 0].copy() distribution_length = df[TRACKID].value_counts() selection = distribution_length.index.values[ distribution_length.values > min_length ] df = df[df[TRACKID].isin(selection)] return df def filter_overlapping(df: pd.DataFrame, max_overlaps: float = 0.5): """Return data.frame where tracks with overlaps higher than max_overlaps are filtered out. Args: df: dataframe with tracks to stitch max_overlaps: maximum fraction of track that can overlap. Tracks with higher overlaps will be filtered out. Return: filtered dataframe. """ while True: # count number of duplicated timepoints per track duplicated = df[df[FRAME].isin(df[df[FRAME].duplicated()][FRAME])][ TRACKID ].value_counts() if len(duplicated) < 1: return df # duplicated track id duplicated_tracks = duplicated.index.values # number of duplication duplicated_values = duplicated.values # count number of timepoints per track count_tracks_length = df[TRACKID].value_counts() # if number of track is 1, by definition there is no overlapping if len(count_tracks_length) == 1: return df # count track length of overlapping tracks count_tracks_overlapping = count_tracks_length[ count_tracks_length.index.isin(duplicated_tracks) ] # extract track id of shortest overlapping tracks shortest_track_overlapping_idx = count_tracks_overlapping.idxmin() # too long overlaps? toolong = False for track, value in zip(duplicated_tracks, duplicated_values): fraction = value / len(df[df[TRACKID] == track]) if fraction > max_overlaps: toolong = True # if we found too many overlaps, remove shortest track and restart if toolong: df = df[df[TRACKID] != shortest_track_overlapping_idx].copy() # if no too long overlaps, remove duplicates and return dataframe if not toolong: df = df.drop_duplicates(FRAME) return df def stitch(df: pd.DataFrame, max_dist: float = 1.6, max_overlaps: float = 0.5): """Stitch tracks with the same cell id. If tracks overlap, filters out tracks with overlap higher than max_overlaps. Overlapping frames are filtered out randomly. Arg: df: dataframe containing the tracked data. max_dist: maximum distance to match tracks from the same cell. max_overlaps: maximum overlap allowed for each track. Return: dataframe with stitched tracks.""" res = pd.DataFrame() # loop over cell (stitch only tracks from same cell) for cell, sub in df.groupby(CELLID): # if we find any overlapping tracks, filter them out (either whole track or partial tracks) if np.sum(sub[FRAME].duplicated()) > 0: sub = filter_overlapping(df=sub, max_overlaps=max_overlaps) sub = sub.sort_values(FRAME).reset_index(drop=True) # if we have only 1 track, skip stitching if len(sub[TRACKID].unique()) == 1: res = pd.concat([res, sub]) continue # look for jumps between tracks in time idx = sub[sub[TRACKID].diff() != 0].index.values[ 1: ] # remove first value id df which is always different from none # all jumping track ids trackids = sub.loc[np.unique([idx - 1, idx]), TRACKID].values indexes = np.unique(trackids, return_index=True)[1] trackids = np.array([trackids[index] for index in sorted(indexes)]) # find prev and after jump data frames (sub2 before, sub1 after jump) sub1 = sub.loc[idx] sub2 = sub.loc[idx - 1] # vector containing all the stitched ids lastidx = 0 stitched_trackids = [trackids[lastidx]] for index in np.arange(len(trackids) - 1): # if no jumping found between current and next track id, go back to previous tracks back_iteration = 0 # loop until you find jumping between next track and some previous tracks while True: if index - back_iteration < 0: raise ValueError( "No jumping found between next track and any of previous one. Something is off.." ) # select all transition between two tracks selection = ( (sub1[TRACKID] == trackids[index - back_iteration]).values & (sub2[TRACKID] == trackids[index + 1]).values ) | ( (sub1[TRACKID] == trackids[index + 1]).values & (sub2[TRACKID] == trackids[index - back_iteration]).values ) # if jumping between tracks occur multiple times, take the shortest distance if np.sum(selection) > 0: dists = np.sqrt( np.sum( np.square( sub1.loc[selection, [X, Y, Z]].values - sub2.loc[selection, [X, Y, Z]].values ), axis=1, ) ) dist = np.min(dists) break # if no jumping has been found, take previous track else: back_iteration += 1 # if jumping has found, check distance if dist < max_dist: sub.loc[ sub[TRACKID] == trackids[index + 1], TRACKID ] = stitched_trackids[-1 - back_iteration] # if jumping is too big, record the unstitched track id else: lastidx = index + 1 stitched_trackids.append(trackids[lastidx]) res = pd.concat([res, sub]) return res def calculate_distance_merged_channels(merged): s1 = merged[[x + "_x" for x in [X, Y, Z]]].values s2 = merged[[x + "_y" for x in [X, Y, Z]]].values return np.sqrt(np.mean(np.sum((s1 - s2) ** 2, axis=1))) def calculate_single_dist(sub_df1, sub_df2, cost=True): """Distance function for merging tracks. Eucledian distance scaled with sqrt of length. If defined, cost for no-overlapping part of tracks is added.""" merged = pd.merge(sub_df1, sub_df2, how="inner", on=[FRAME]) if not len(merged): return 9999999999 s1 = merged[[x + "_x" for x in [X, Y, Z]]].values s2 = merged[[x + "_y" for x in [X, Y, Z]]].values dist = np.mean(np.sum((s1 - s2) ** 2, axis=1)) / np.sqrt(len(merged)) if cost: scaling = np.mean([len(sub_df1), len(sub_df2)]) / len(merged) dist *= scaling return dist @dask.delayed def calculate_dist(sub_df1, df2, cost=True): dist = [] for _, sub_df2 in df2.groupby(TRACKID): dist.append(calculate_single_dist(sub_df1, sub_df2, cost=cost)) return dist def calculate_distance(df1: pd.DataFrame, df2: pd.DataFrame, cost: bool = True): """Return the matrix of distances between tracks in true and pred. Since we want to privilege long overlapping tracks, we will divide the average distance by the square-root of the number of overlapping points. Args: df1: dataframe containing the first dataset (ground truth, channel 1 etc..) df2: dataframe containing the second dataset (ground truth, channel 2 etc..) cost: if defined, the distance will be scaled by the fraction of no overlapping points Return: matrix of all pairwise distances. """ dist = [] column_length = df1[TRACKID].nunique() row_length = df2[TRACKID].nunique() for _, sub_df1 in df1.groupby(TRACKID): dist.append(calculate_dist(sub_df1, df2, cost=cost)) dist = dask.compute(dist) dist = np.array(dist) return dist def merge_channels( df1: pd.DataFrame, df2: pd.DataFrame, cost: bool = True, distance_cutoff: int = 2, recursive: bool = True, ): """Return data frame containing the merged channel tracks Args: df1: dataframe containing the first dataset (ground truth, channel 1 etc..) df2: dataframe containing the second dataset (ground truth, channel 2 etc..) cost: if defined, the distance will be scaled by the fraction of no overlapping points distance_cutoff: cutoff on the average distance between tracks to be considered as corresponding track. recursive: apply recursive matching of leftover of partially matched tracks. Return: data frame of merged datasers. """ results = pd.DataFrame() while True: # calculate distance between tracks dist = calculate_distance(df1, df2, cost) dist = dist.squeeze(axis=0) # match tracks rows, cols = scipy.optimize.linear_sum_assignment(dist) remove = 0 for r, c in zip(rows, cols): if dist[r, c] > distance_cutoff: rows = rows[rows != r] cols = cols[cols != c] remove += 1 if len(rows) == 0 or len(cols) == 0: break # extract matched track ids track_ids_df1 = [] for trackid, _ in df1.groupby(TRACKID): track_ids_df1.append(trackid) track_ids_df2 = [] for trackid, _ in df2.groupby(TRACKID): track_ids_df2.append(trackid) track_list_df1 = np.array([track_ids_df1[i] for i in rows]) track_list_df2 = np.array([track_ids_df2[i] for i in cols]) # record and drop matched part of tracks for idx1, idx2 in zip(track_list_df1, track_list_df2): sub1 = df1[df1[TRACKID] == idx1].copy() sub2 = df2[df2[TRACKID] == idx2].copy() tmp = pd.merge(sub1, sub2, on=[FRAME], how="inner").sort_values(FRAME) tmp[CELLID] = tmp["cell_x"].astype(int) if not len(tmp): continue df1, df2 = drop_matched(tmp, df1, df2) if calculate_distance_merged_channels(tmp) <= distance_cutoff: tmp["uniqueid"] = secrets.token_hex(16) results = pd.concat([results, tmp]) if not recursive: return results return results def register_points_using_euclidean_distance( reference_file: str, moving_file: str, distance_cutoff: float = 0.1 ): """Given file containing reference and moving coordinates, get the two sets of matched points""" reference =
pd.read_csv(reference_file)
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys from sqlalchemy import create_engine def load_data(filepath): """ A function that loads and returns a dataframe. INPUT: filepath: relative or absolute path to the data RETURNS: df: Dataframe """ df = pd.read_csv(filepath) return df def business_understanding(dataframe): """ A procedure to understand the business goal of the data. Prints the columns of the dataframe INPUT: dataframe: The data's dataframe to be understood RETURNS: None """ columns = dataframe.columns print("The HR has identified and curated data from employees using nine criteria, namely:") for i, col in enumerate(columns): print(f"{i+1}. {col} ") def data_cleaning_and_understanding(dataframe): """ This procedure analyses the dataframe to answer the following questions: 1. How many employees have left the company so far? 2. Which group of employees have the tendency to leave most? 3. Find other details about the data In particlar, this function analyzes the percentage change of each sub-group in every columns between the original dataframe and the new dataframe involving employees that have left INPUT: dataframe- original dataframe OUTPUT: two series: dataframes with the column of the group of employees that are most likely to leave their employments from both the original dataframe and the dataframe containing only those that have left their employment """ df = dataframe num_employees = df.shape[0] num_of_valid_employees = df.dropna(how="any").shape[0] num_of_missing_employees = df.shape[0] - num_of_valid_employees df_of_left_employees = df.query('LeaveOrNot==1') num_of_left_employees = df_of_left_employees.shape[0] # Get all the columns except the "LeaveOrNot" labels = df.columns[:-1] # Search for Group with the most tendency to leave their employment new = [] original = [] for label in labels: elem = df_of_left_employees[label].value_counts()/num_of_left_employees indiv = df[label].value_counts()/num_employees new.append(elem) original.append(indiv) percent_change = [(a-b)*100 for a, b in zip(np.array(new, dtype='object'), np.array(original, dtype='object'))] print('='*60) if num_of_missing_employees != 0: print(f"The dataset contains {num_of_valid_employees } valid employees.") else: print(f"The dataset contains {num_employees } number of employees.") print('='*60) print(f"{num_of_left_employees} employees have so far left the company") print('='*60) for x in percent_change: print(x) print('='*60) # This the group with the most tendency to leave their employment would be observed from the last printout above # The group with most percentage change is "Female" employees df_most_left_new = df_of_left_employees['Gender'] df_most_left_original = df['Gender'] return df_most_left_original, df_most_left_new def create_dummy_df(df, dummy_na): ''' INPUT: df - pandas dataframe with categorical variables you want to dummy dummy_na - Bool holding whether you want to dummy NA vals of categorical columns or not OUTPUT: df - a new dataframe that has the following characteristics: 1. contains all columns that were not specified as categorical 2. removes all the original columns that are categorical variables 3. dummy columns for each of the categorical columns 4. if dummy_na is True - it also contains dummy columns for the NaN values 5. Use a prefix of the column name with an underscore (_) for separating ''' cat_df = df.select_dtypes(include=['object']) #Create a copy of the dataframe #Pull a list of the column names of the categorical variables cat_cols = cat_df.columns for col in cat_cols: try: # for each cat add dummy var, drop original column df = pd.concat([df.drop(col, axis=1),
pd.get_dummies(df[col], prefix=col, prefix_sep='_', drop_first=True, dummy_na=dummy_na)
pandas.get_dummies
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : <NAME> # @Contact : <EMAIL> from collections import Counter import category_encoders.utils as util import numpy as np import pandas as pd from pandas.core.common import SettingWithCopyWarning from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.impute import SimpleImputer as SklearnSimpleImputer from sklearn.utils._testing import ignore_warnings from .base import BaseImputer class CategoricalImputer(BaseEstimator, TransformerMixin): def __init__( self, strategy="most_frequent", fill_value="<NULL>", ): self.strategy = strategy self.fill_value = fill_value assert strategy in ("most_frequent", "constant"), ValueError(f"Invalid strategy {strategy}") def fit(self, X, y=None): X = util.convert_input(X) self.columns = X.columns self.statistics_ = np.array([self.fill_value] * len(self.columns), dtype='object') if self.strategy == "most_frequent": for i, column in enumerate(X.columns): for value, counts in Counter(X[column]).most_common(): if not pd.isna(value): self.statistics_[i] = value break return self @ignore_warnings(category=SettingWithCopyWarning) def transform(self, X): # note: change inplace for i, (column, dtype) in enumerate(zip(X.columns, X.dtypes)): value = self.statistics_[i] mask =
pd.isna(X[column])
pandas.isna
#!/usr/bin/env python3 # various functions and mixins for downstream genomic and epigenomic anlyses import os import glob import re import random from datetime import datetime import time from pybedtools import BedTool import pandas as pd import numpy as np from tqdm import tqdm_notebook, tqdm # Get Current Git Commit Hash for version path = [x.replace(' ', r'\ ') for x in os.popen('echo $PYTHONPATH').read().split(':') if 'dkfunctions' in x.split('/')] if len(path) > 0: version = os.popen(f'cd {path[0]}; git rev-parse HEAD').read()[:-1] __version__ = f'v0.1, Git SHA1: {version}' else: __version__ = f'v0.1, {datetime.now():%Y-%m-%d}' def val_folder(folder): folder = folder if folder.endswith('/') else f'{folder}/' folder = f'{os.getcwd()}/' if folder == '/' else folder os.makedirs(folder, exist_ok=True) return folder def image_display(file): from IPython.display import Image, display display(Image(file)) def rplot(plot_func, filename, filetype, *args, **kwargs): from rpy2.robjects.packages import importr grdevices = importr('grDevices') filetype = filetype.lower() plot_types = {'png': grdevices.png, 'svg': grdevices.svg, 'pdf': grdevices.pdf } plot_types[filetype](f'{filename}.{filetype}') return_object = plot_func(*args, **kwargs) grdevices.dev_off() if filetype == 'png': image_display(f'{filename}.{filetype}') return return_object def read_pd(file, *args, **kwargs): if (file.split('.')[-1] == 'txt') or (file.split('.')[-1] == 'tab'): return pd.read_table(file, header=0, index_col=0, *args, **kwargs) elif (file.split('.')[-1] == 'xls') or (file.split('.')[-1] == 'xlsx'): return pd.read_excel(file, *args, **kwargs) else: raise IOError("Cannot parse count matrix. Make sure it is .txt, .xls, or .xlsx") def rout_write(x): ''' function for setting r_out to print to file instead of jupyter rpy2.rinterface.set_writeconsole_regular(rout_write) rpy2.rinterface.set_writeconsole_warnerror(rout_write) ''' print(x, file=open(f'{os.getcwd()}/R_out_{datetime.now():%Y-%m-%d}.txt', 'a')) def alert_me(text): ''' Send me a pop up alert to macosx. ''' os.system(f'''osascript -e 'tell Application "System Events" to display dialog "{text}"' ''') def tq_type(): environ = os.environ if '_' in environ.keys(): jupyter = True if os.environ['_'].endswith('jupyter') else False elif 'MPLBACKEND' in environ.keys(): jupyter = True if 'ipykernel' in os.environ['MPLBACKEND'] else jupyter return tqdm_notebook if jupyter else tqdm def peak_overlap_MC(df_dict, background, permutations=1000, seed=42, notebook=True): ''' Monte Carlo simulation of peak overlaps in a given background pvalue calucated as liklihood over emperical random background overlap of shuffled peaks per chromosome. Inputs ------ df_dict: dictinoary of dataframes in bed format background genome space: pybedtool bed of background genome space permutations: number of permutations seed: random seed Returns ------- pvalue ''' np.random.seed(seed) tq = tq_type() # generate probability of chosing a chromosome region based on its size bregions = background.to_dataframe() bregions.index = range(len(bregions)) bregions['Size'] = bregions.iloc[:, 2] - bregions.iloc[:, 1] total_size = bregions.Size.sum() bregions['fraction'] = bregions.Size / total_size bed_dict = {name: df.copy() for name, df in df_dict.items()} # determine length of each peak region for df in bed_dict.values(): df['Length'] = df.iloc[:, 2] - df.iloc[:, 1] # determine baseline overlap intersect count of preshuffled peaks. A, B = bed_dict.values() overlap = len(BedTool.from_dataframe(A).sort().merge() + BedTool.from_dataframe(B).sort().merge()) results = [] for permutation in tq(range(permutations)): for df in bed_dict.values(): # randomly pick a region in the background based on size distribution of the regions index_list = bregions.index.tolist() df_size = len(df) bregions_fraction = bregions.fraction first_pick = np.random.choice(index_list, size=df_size, p=bregions_fraction) lengths = df.Length.tolist() alternatives = np.random.choice(index_list, size=df_size, p=bregions_fraction) # repick regions if the peak length is larger than the region size (this part can be optimized) regions = [] new_pick = 0 for reg, length in zip(first_pick, lengths): reg_length = bregions.iloc[reg, 2] - bregions.iloc[reg, 1] if reg_length > length: regions.append(reg) else: while reg_length <= length: new_reg = alternatives[new_pick] reg_length = bregions.iloc[new_reg, 2] - bregions.iloc[new_reg, 1] new_pick += 1 regions.append(new_reg) # assign the chromosome df.iloc[:, 0] = [bregions.iloc[x, 0] for x in regions] # randomly pick a start within the selected background region within the peak size constraints df.iloc[:, 1] = [np.random.randint(bregions.iloc[reg, 1], bregions.iloc[reg, 2] - length) for length, reg in zip(lengths, regions)] # assign end based on peak length df.iloc[:, 2] = df.iloc[:, 1] + df.Length new_overlap = len(BedTool.from_dataframe(A).sort().merge() + BedTool.from_dataframe(B).sort().merge()) results.append(1 if new_overlap >= overlap else 0) p = (sum(results) + 1) / (len(results) + 1) A_name, B_name = df_dict.keys() print(f'Number of intersected peaks of {A_name} and {B_name}: {overlap}') print(f'Number of times simulated intersections exceeded or equaled the actual overlap: {sum(results)}') print(f'Monte Carlo p-value estimate: {p}') return p ''' Implementation of an Enrichr API with graphs Author: <NAME> ''' def post_genes(gene_list, description): ''' posts gene list to Enricr Returns ------- dictionary: userListId, shortId ''' import json import requests ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/addList' genes_str = '\n'.join([str(x) for x in gene_list]) payload = {'list': (None, genes_str), 'description': (None, description) } response = requests.post(ENRICHR_URL, files=payload) if not response.ok: raise Exception('Error analyzing gene list') return json.loads(response.text) def enrich(userListId, filename, gene_set_library): ''' Returns ------- Text file of enrichment results ''' import requests ENRICHR_URL = 'http://amp.pharm.mssm.edu/Enrichr/export' query_string = '?userListId=%s&filename=%s&backgroundType=%s' url = ENRICHR_URL + query_string % (userListId, filename, gene_set_library) response = requests.get(url, stream=True) with open(filename, 'wb') as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) return response def enrichr_barplot(filename, gene_library, out_dir, description, max_n=20, q_thresh=0.05, color='slategray', display_image=True): ''' Saves barplot from Enrichr results Paramaters ---------- filename: enrichr response file gene_library: gene set library to test out_dir: result output folder description: sample or gene set source name max_n: max number of significant to display q_thresh: qvalue threshold color: plot color dispaly_image: bool Return ------ None ''' import seaborn as sns import matplotlib.pyplot as plt e_df = pd.read_csv(filename, header=0, sep="\t").sort_values(by=['Adjusted P-value']).head(max_n) e_df['Clean_term'] = e_df.Term.apply(lambda x: x.split("_")[0]) e_df['log_q'] = -np.log10(e_df['Adjusted P-value']) plt.clf() sns.set(context='paper', font='Arial', font_scale=1.2, style='white', rc={'figure.dpi': 300, 'figure.figsize': (8, 6)} ) fig, ax = plt.subplots() fig.suptitle(f'{description} {gene_library.replace("_", " ")} enrichment\n(q<{q_thresh}, max {max_n})') sig = e_df[e_df['Adjusted P-value'] <= q_thresh].copy() if len(sig) > 0: g = sns.barplot(data=sig, x='log_q', y='Clean_term', color=color, ax=ax) plt.xlabel('q-value (-log$_{10}$)') plt.ylabel('Enrichment Term') ymin, ymax = g.get_ylim() g.vlines(x=-np.log10(q_thresh), ymin=ymin, ymax=ymax, colors='k', linestyles='dashed', label=f'q = {q_thresh}') g.legend() sns.despine() else: ax.text(0.5, 0.5, 'No Significant Enrichments.', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes ) try: plt.tight_layout(h_pad=1, w_pad=1) except ValueError: pass plt.subplots_adjust(top=0.88) file = f'{out_dir}{description}_{gene_library}_enrichr.barplot.png' fig.savefig(file, dpi=300) plt.close() image_display(file) def enrichr(dict_of_genelists, out_dir, dict_of_genelibraries=None, display=True, q_thresh=0.05, plot_color='slategray', max_n=20 ): ''' Runs enrichment analysis through Enrichr and plots results Paramaters ---------- dict_of_genelists: dictionary of description to genelists dict_of_genelibraries: dictionary of enrichr gene libraries to test against If None, will use default libraries display: bool whether to display inline q_thresh: qvalue threshold plot_color: max_n: ''' out_dir = out_dir if out_dir.endswith('/') else f'{out_dir}/' gene_libraries ={'KEGG': 'KEGG_2016', 'GO_Biological_Process': 'GO_Biological_Process_2018', 'ChIP-X_Consensus_TFs': 'ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X', 'ChEA': 'ChEA_2016', 'OMIM_Disease': 'OMIM_Disease' } libraries = gene_libraries if dict_of_genelibraries is None else dict_of_genelibraries generator = ((d,g,l,gl) for d,g in dict_of_genelists.items() for l, gl in libraries.items() ) for description, genes, library, gene_library in generator: filename=f'{out_dir}{description}_{library}.enrichr.txt' post = post_genes(genes, description) get = enrich(post['userListId'], filename, gene_library) if get.ok: enrichr_barplot(filename=filename, gene_library=library, out_dir=out_dir, description=description, max_n=max_n,q_thresh=q_thresh, color=plot_color, display_image=display) else: print(f'Enrichr error: {library}, {description}') ''' end enrichr ''' def gsea_dotplot(df_dict, title='', qthresh=0.05, top_term=None, gene_sets=[], dotsize_factor=4, figsize=(4, 10), out_dir='.'): ''' Makes a dotplot of GSEA results with the dot size as the percent of genes in the leading edge and the color the NES. Plots only significant dots at given fdr theshold Inputs ------ df_dict: dictionary of named GSEA results for the analysis. pandas df of gsea_report.xls (use pd.concat to combine pos and neg enrichments) name: name used for title and filename qthresh: qvalue theshold for includsion pgene_sets: list of gene sets to plot. If empty, will plot all with FDR q value < 0.05 top_term: integer specifing top number of sets to plot (by qvalue). None plots all. dot_size_factor: scale to increase dot size for leading edge % out_dir: output directory Returns ------- Gene_Sets used for plotting ''' import matplotlib.pyplot as plt import seaborn as sns out_dir = val_folder(out_dir) index = [] # get leading edge percentages for df in df_dict.values(): if 'NAME' in df.columns.tolist(): df.index = df.NAME df['le_tags'] = df['LEADING EDGE'].apply(lambda x: x.split('%')[0].split('=')[-1]) df.sort_values(by='NES', ascending=False, inplace=True) index += df[df['FDR q-val'] < 0.05].index.tolist() index = list(set(index)) # use gene_sets if provided if len(gene_sets) > 0: index = gene_sets # make master df data_df = pd.DataFrame() for name, df in df_dict.items(): df['sample_name'] = name data_df = pd.concat([data_df, df.loc[index]]) # extra filters data_df = data_df[data_df.sample_name.notna()] if top_term: index = list(set(data_df.sort_values(by='FDR q-val').head(top_term).index.tolist())) # reindex data_df['GS_NAME'] = data_df.index data_df.index = range(len(data_df)) # make x coordinate samples = data_df.sample_name.unique() sample_number = len(samples) sample_x = {name: (x + .5) for name, x in zip(samples, range(sample_number))} data_df['x'] = data_df.sample_name.map(sample_x) # make y coordinate gene_set = list(index[::-1]) gene_set_number = len(gene_set) sample_y = {name: y for name, y in zip(gene_set, range(gene_set_number))} data_df['y'] = data_df.GS_NAME.map(sample_y) # filter for significance and make dot size from leading edge percentage data_df['sig_tags'] = data_df[['FDR q-val', 'le_tags']].apply(lambda x: 0 if float(x[0]) > qthresh else float(x[1]), axis=1) data_df['area'] = data_df['sig_tags'] * dotsize_factor plot_df = data_df[data_df.GS_NAME.isin(index)].copy() # plot plt.clf() sns.set(context='paper', style='white', font='Arial', rc={'figure.dpi': 300}) fig, ax = plt.subplots(figsize=figsize) sc = ax.scatter(x=plot_df.x, y=plot_df.y, s=plot_df.area, edgecolors='face', c=plot_df.NES, cmap='RdBu_r') # format y axis ax.yaxis.set_major_locator(plt.FixedLocator(plot_df.y)) ax.yaxis.set_major_formatter(plt.FixedFormatter(plot_df.GS_NAME)) ax.set_yticklabels(plot_df.GS_NAME.apply(lambda x: x.replace('_', ' ')), fontsize=16) # format x axis ax.set_xlim(0, sample_number) ax.xaxis.set_major_locator(plt.FixedLocator(plot_df.x)) ax.xaxis.set_major_formatter(plt.FixedFormatter(plot_df.sample_name)) ax.set_xticklabels(plot_df.sample_name, fontsize=16, rotation=45) # add colorbar cax = fig.add_axes([0.95, 0.20, 0.03, 0.22]) cbar = fig.colorbar(sc, cax=cax,) cbar.ax.tick_params(right=True) cbar.ax.set_title('NES', loc='left', fontsize=12) cbar.ax.tick_params(labelsize=10) # add legend markers = [] min_value = plot_df[plot_df.sig_tags > 0].sig_tags.min() max_value = plot_df.sig_tags.max() rounded_min = int(10 * round((min_value - 5) / 10)) rounded_max = int(10 * round((max_value + 5) / 10)) # rounds up to nearest ten (ie 61 --> 70) sizes = [x for x in range(rounded_min, rounded_max + 1, 10)] for size in sizes: markers.append(ax.scatter([], [], s=size * dotsize_factor, c='k')) legend = ax.legend(markers, sizes, prop={'size': 12}) legend.set_title('Leading Edge (%)', prop={'size': 12}) # offset legend bb = legend.get_bbox_to_anchor().inverse_transformed(ax.transAxes) xOffset = .6 yOffset = 0 bb.x0 += xOffset bb.x1 += xOffset bb.y0 += yOffset bb.y1 += yOffset legend.set_bbox_to_anchor(bb, transform=ax.transAxes) # set title ax.set_title(title.replace('_', ' '), fontsize=20) sns.despine() fig.savefig(f'{out_dir}{title.replace(" ", "_")}.png', bbox_inches='tight') fig.savefig(f'{out_dir}{title.replace(" ", "_")}.svg', bbox_inches='tight') return plot_df def annotate_peaks(dict_of_dfs, folder, genome, db='UCSC', check=False, TSS=[-3000,3000], clean=False): ''' Annotate a dictionary of dataframes from bed files to the genome using ChIPseeker and Ensembl annotations. Inputs ------ dict_of_beds: dictionary of bed files folder: output folder genome: hg38, hg19, mm10 db: default UCSC, but can also accept Ensembl TSS: list of regions around TSS to annotate as promoter check: bool. checks whether annotation file already exists Returns ------- dictionary of annotated bed files as dataframe ''' import rpy2.robjects as ro import rpy2.rinterface as ri from rpy2.robjects.packages import importr from rpy2.robjects import pandas2ri pandas2ri.activate() tq = tq_type() ri.set_writeconsole_regular(rout_write) ri.set_writeconsole_warnerror(rout_write) chipseeker = importr('ChIPseeker') genomicFeatures = importr('GenomicFeatures') makeGR = ro.r("makeGRangesFromDataFrame") as_df = ro.r("as.data.frame") check_df = {key: os.path.isfile(f'{folder}{key.replace(" ","_")}_annotated.txt') for key in dict_of_dfs.keys()} return_bool = False not in set(check_df.values()) if return_bool & check: return {f'{key}_annotated': pd.from_csv(f'{folder}{key.replace(" ","_")}_annotated.txt', index_col=0, header=0, sep="\t") for key in dict_of_dfs.keys()} species = ('Mmusculus' if genome.lower() == 'mm10' else 'Hsapiens') if db.lower() == 'ucsc': TxDb = importr(f'TxDb.{species}.UCSC.{genome.lower()}.knownGene') txdb = ro.r(f'txdb <- TxDb.{species}.UCSC.{genome.lower()}.knownGene') elif db.lower() == 'ensembl': TxDb = importr(f'TxDb.{species}.UCSC.{genome.lower()}.ensGene') txdb = ro.r(f'txdb <- TxDb.{species}.UCSC.{genome.lower()}.ensGene') else: raise ValueError('UCSC or Ensembl only.') os.makedirs(folder, exist_ok=True) if genome.lower() == 'mm10': annoDb = importr('org.Mm.eg.db') anno = 'org.Mm.eg.db' elif genome.lower() == 'hg38' or genome.lower() == 'hg19': annoDb = importr('org.Hs.eg.db') anno = 'org.Hs.eg.db' return_dict = {} print('Annotating Peaks...') for key, df in tq(dict_of_dfs.items()): if check & check_df[key]: return_dict[f'{key}_annotated'] = pd.from_csv(f'{folder}{key.replace(" ","_")}_annotated.txt', index_col=0, header=0, sep="\t") else: col_len = len(df.columns) df.columns = ["chr", "start", "end"] + list(range(col_len - 3)) GR = makeGR(df) GR_anno = chipseeker.annotatePeak(GR, overlap='TSS', TxDb=txdb, annoDb=anno, tssRegion=ro.IntVector(TSS)) #switched to TSS on 10/02/2019 return_dict[f'{key}_annotated'] = ro.pandas2ri.ri2py(chipseeker.as_data_frame_csAnno(GR_anno)) return_dict[f'{key}_annotated'].to_excel(f'{folder}{key.replace(" ","_")}_annotated.xlsx') if clean: for k,df in return_dict.items(): df['Anno'] = df.annotation.apply(lambda x: 'Promoter' if x.split(' ')[0] == 'Promoter' else x) df['Anno'] = df.Anno.apply(lambda x: 'Intergenic' if x.split(' ')[0] in ['Downstream', 'Distal'] else x) df['Anno'] = df.Anno.apply(lambda x: x.split(' ')[0] if x.split(' ')[0] in ['Intron', 'Exon'] else x) return return_dict def plot_venn2(Series, string_name_of_overlap, folder): ''' Series with with overlaps 10,01,11 Plots a 2 way venn. Saves to file. ''' import matplotlib.pyplot as plt import seaborn as sns from matplotlib_venn import venn2, venn2_circles folder = f'{folder}venn2/' if folder.endswith('/') else f'{folder}/venn2/' os.makedirs(folder, exist_ok=True) plt.figure(figsize=(7, 7)) font = {'family': 'sans-serif', 'weight': 'normal', 'size': 16, } plt.rc('font', **font) # make venn sns.set(style='white', font='Arial') venn_plot = venn2(subsets=(Series.iloc[0], Series.iloc[1], Series.iloc[2]), set_labels=[name.replace('_', ' ') for name in Series.index.tolist()]) patch = ['10', '01', '11'] colors = ['green', 'blue', 'teal'] for patch, color in zip(patch, colors): venn_plot.get_patch_by_id(patch).set_color('none') venn_plot.get_patch_by_id(patch).set_alpha(.4) venn_plot.get_patch_by_id(patch).set_edgecolor('none') c = venn2_circles(subsets=(Series.iloc[0], Series.iloc[1], Series.iloc[2])) colors_test = ['green', 'blue'] for circle, color in zip(c, colors_test): circle.set_edgecolor(color) circle.set_alpha(0.8) circle.set_linewidth(3) plt.title(string_name_of_overlap.replace('_', ' ') + " overlaps") plt.tight_layout() name = string_name_of_overlap.replace('_', ' ').replace('\n', '_') plt.savefig(f"{folder}{name}-overlap.svg") plt.savefig(f"{folder}{name}-overlap.png", dpi=300) plt.close() image_display(f"{folder}{name}-overlap.png") def plot_venn2_set(dict_of_sets, string_name_of_overlap, folder, pvalue=False, total_genes=None): ''' Plots a 2 way venn from a dictionary of sets Saves to file. Inputs ------ dict_of_sets: dictionary of sets to overlap string_name_of_overlap: string with name of overlap folder: output folder Returns ------- None ''' import matplotlib.pyplot as plt import seaborn as sns from matplotlib_venn import venn2, venn2_circles from scipy import stats folder = f'{folder}venn2/' if folder.endswith('/') else f'{folder}/venn2/' os.makedirs(folder, exist_ok=True) plt.figure(figsize=(7, 7)) font = {'family': 'sans-serif', 'weight': 'normal', 'size': 16, } plt.rc('font', **font) set_list = [] set_names = [] for name, setlist in dict_of_sets.items(): set_list.append(setlist) set_names.append(name.replace('_', ' ')) # make venn sns.set(style='white', font='Arial') venn_plot = venn2(subsets=set_list, set_labels=set_names) patch = ['10', '01', '11'] colors = ['green', 'blue', 'teal'] for patch, color in zip(patch, colors): venn_plot.get_patch_by_id(patch).set_color('none') venn_plot.get_patch_by_id(patch).set_alpha(.4) venn_plot.get_patch_by_id(patch).set_edgecolor('none') c = venn2_circles(subsets=set_list) colors_test = ['green', 'blue'] for circle, color in zip(c, colors_test): circle.set_edgecolor(color) circle.set_alpha(0.8) circle.set_linewidth(3) if None not in [pvalue, total_genes]: intersection_N = len(set_list[0] & set_list[1]) pvalue = stats.hypergeom.sf(intersection_N, total_genes, len(set_list[0]), len(set_list[1])) pvalue_string = f'= {pvalue:.03g}' if pvalue > 1e-5 else '< 1e-5' plt.text(0, -.05, f'p-value {pvalue_string}', fontsize=10, transform=c[1].axes.transAxes) plt.title(string_name_of_overlap.replace('_', ' ') + " overlaps") plt.tight_layout() plt.savefig(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.svg") plt.savefig(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.png", dpi=300) plt.close() image_display(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.png") def plot_venn3_set(dict_of_sets, string_name_of_overlap, folder): ''' Makes 3 way venn from 3 sets. Saves to file. Inputs ------ dict_of_sets: dictionary of sets to overlap string_name_of_overlap: string with name of overlap folder: output folder Returns ------- None ''' import matplotlib.pyplot as plt import seaborn as sns from matplotlib_venn import venn3, venn3_circles folder = f'{folder}venn3/' if folder.endswith('/') else f'{folder}/venn3/' os.makedirs(folder, exist_ok=True) plt.clf() sns.set(style='white', context='paper', font_scale=2, rc={'figure.figsize': (7, 7)}) # font = {'family': 'sans-serif', # 'weight': 'normal', # 'size': 16, # } # plt.rc('font', **font) set_list = [] set_names = [] for name, setlist in dict_of_sets.items(): set_list.append(setlist) set_names.append(name.replace('_', ' ')) # make venn venn_plot = venn3(subsets=set_list, set_labels=set_names) patch = ['100', '110', '101', '010', '011', '001', '111'] for p in patch: if venn_plot.get_patch_by_id(p): venn_plot.get_patch_by_id(p).set_color('none') venn_plot.get_patch_by_id(p).set_alpha(.4) venn_plot.get_patch_by_id(p).set_edgecolor('none') # make c = venn3_circles(subsets=set_list) colors_list = ['green', 'blue', 'grey'] for circle, color in zip(c, colors_list): circle.set_edgecolor(color) circle.set_alpha(0.8) circle.set_linewidth(3) plt.title(f"{string_name_of_overlap.replace('_', ' ')} Overlaps") plt.tight_layout() plt.savefig(f"{folder}{string_name_of_overlap.replace(' ','_')}-overlap.svg") plt.savefig(f"{folder}{string_name_of_overlap.replace(' ','_')}-overlap.png", dpi=300) plt.close() image_display(f"{folder}{string_name_of_overlap.replace(' ','_')}-overlap.png") def plot_venn3_counts(element_list, set_labels, string_name_of_overlap, folder): ''' Plot three way venn based on counts of specific overlaping numbers. Saves to file. Inputs ------ element_list: tuple with counts of the the overlaps from (Abc,aBc,ABc,abC,AbC,ABC) set_labels: list or tuple with names of the overlaps ('A','B','C') string_name_of_overlap: string with name of overlap folder: output folder Returns ------- None ''' import matplotlib.pyplot as plt import seaborn as sns from matplotlib_venn import venn3, venn3_circles folder = f'{folder}venn3/' if folder.endswith('/') else f'{folder}/venn3/' os.makedirs(folder, exist_ok=True) plt.clf() sns.set(style='white', context='paper', font_scale=1, rc={'figure.figsize': (7, 7)}) # font = {'family': 'sans-serif', # 'weight': 'normal', # 'size': 16, # } # plt.rc('font', **font) # make venn venn_plot = venn3(subsets=element_list, set_labels=[name.replace('_', ' ') for name in set_labels]) patch = ['100', '110', '101', '010', '011', '001', '111'] for p in patch: if venn_plot.get_patch_by_id(p): venn_plot.get_patch_by_id(p).set_color('none') venn_plot.get_patch_by_id(p).set_alpha(.4) venn_plot.get_patch_by_id(p).set_edgecolor('none') # make c = venn3_circles(subsets=element_list) colors_list = ['green', 'blue', 'grey'] for circle, color in zip(c, colors_list): circle.set_edgecolor(color) circle.set_alpha(0.8) circle.set_linewidth(3) plt.title(f"{string_name_of_overlap.replace('_', ' ')} Overlaps") plt.tight_layout() plt.savefig(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.svg") plt.savefig(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.png", dpi=300) plt.close() image_display(f"{folder}{string_name_of_overlap.replace(' ', '_')}-overlap.png") def overlap_two(bed_dict, genome=None): ''' Takes a dictionary of two bed-like format files. Merges all overlapping peaks for each bed into a master file. Intersects beds to merged master file. Performs annotations with ChIPseeker if genome is specified. Plots venn diagrams of peak overlaps If genome is specified, also plots venn diagrams of annotated gene sets. Inputs ------ bed_dict: dictionary of BedTool files genome: 'hg38','hg19','mm10' Returns ------- Returns a dictionary of dataframes from unique and overlap peaks. If genome is specified, includes a dictionary of annotated peaks. ''' names = list(bed_dict.keys()) Folder = f'{os.getcwd()}/' subfolder = f"{names[0].replace(' ', '_')}_{names[1].replace(' ', '_')}_overlap/" out = f'{Folder}{subfolder}' os.makedirs(out, exist_ok=True) print(f'Output files are found in {out}') masterfile = bed_dict[names[0]].cat(bed_dict[names[1]]).sort().merge() sorted_dict = {key: bed.sort().merge() for key, bed in bed_dict.items()} overlap_dict = {'overlap': masterfile.intersect(sorted_dict[names[0]]).intersect(sorted_dict[names[1]])} for key, bed in sorted_dict.items(): other = {other_key: other_bed for other_key, other_bed in sorted_dict.items() if other_key != key} overlap_dict['{}_unique_peak'.format(key)] = masterfile.intersect(sorted_dict[key]).intersect(list(other.values())[0], v=True) for key, bed in overlap_dict.items(): bed.to_dataframe().to_csv('{}{}{}-unique-peaks-from-mergedPeaks.bed'.format(Folder, subfolder, key.replace(' ', '_')), header=None, index=None, sep="\t") overlap_numbers = pd.Series({names[0]: len(overlap_dict['{}_unique_peak'.format(names[0])]), names[1]: len(overlap_dict['{}_unique_peak'.format(names[1])]), 'overlap': len(overlap_dict['overlap']) }, index=[names[0], names[1], 'overlap'] ) # Venn plot_venn2(overlap_numbers, '{} and\n{} peak'.format(names[0], names[1]), '{}{}'.format(Folder, subfolder) ) if bool(genome): print('Annotating overlaping peaks...') # Annotate with ChIPseeker unikey = '{}_unique' unianno = '{}_unique_annotated' return_dict = annotate_peaks({unikey.format(key): bed.to_dataframe() for key, bed in overlap_dict.items()}, '{}{}'.format(Folder, subfolder), genome=genome) Set1_unique = set(return_dict[unianno.format('{}_unique_peak'.format(names[0]))].SYMBOL.unique().tolist()) Set2_unique = set(return_dict[unianno.format('{}_unique_peak'.format(names[1]))].SYMBOL.unique().tolist()) Overlap_Set = set(return_dict[unianno.format('overlap')].SYMBOL.unique().tolist()) venn2_dict = {names[0]: (Set1_unique | Overlap_Set), names[1]: (Set2_unique | Overlap_Set) } plot_venn2_set(venn2_dict, '{} and {}\nannotated gene'.format(names[0], names[1]), '{}{}'.format(Folder, subfolder) ) gene_overlaps = {} gene_overlaps['{}_unique_genes'.format(names[0])] = Set1_unique - (Set2_unique | Overlap_Set) gene_overlaps['{}_unique_genes'.format(names[1])] = Set2_unique - (Set1_unique | Overlap_Set) gene_overlaps['Overlap_Gene_Set'] = (Set1_unique & Set2_unique) | Overlap_Set for key, gene_set in gene_overlaps.items(): with open(f'{Folder}{subfolder}{key}.txt', 'w') as file: for gene in gene_set: file.write(f'{gene}\n') for key, item in gene_overlaps.items(): return_dict[key] = item for key, df in overlap_dict.items(): return_dict[key] = df else: return_dict = overlap_dict return return_dict def overlap_three(bed_dict, genome=None): ''' Takes a dictionary of three bed-like format files. Merges all overlapping peaks for each bed into a master file. Intersects beds to merged master file. Performs annotations with ChIPseeker if genome is specified. Plots venn diagrams of peak overlaps If genome is specified, also plots venn diagrams of annotated gene sets. Inputs ------ bed_dict: dictionary of BedTool files genome: 'hg38','hg19','mm10' Returns ------- Returns a dictionary of dataframes from unique and overlap peaks. If genome is specified, includes a dictionary of annotated peaks. ''' from collections import OrderedDict names = list(bed_dict.keys()) Folder = f'{os.getcwd()}/' subfolder = f"{names[0].replace(' ', '_')}-{ names[1].replace(' ', '_')}-{names[2].replace(' ', '_')}-overlap/" out = f'{Folder}{subfolder}' os.makedirs(out, exist_ok=True) print(f'Output files are found in {out}') print(f'A: {names[0]}, B: {names[1]}, C: {names[2]}') master = bed_dict[names[0]].cat(bed_dict[names[1]]).cat(bed_dict[names[2]]).sort().merge() A = bed_dict[names[0]].sort().merge() B = bed_dict[names[1]].sort().merge() C = bed_dict[names[2]].sort().merge() sorted_dict = OrderedDict({'master': master, 'A': A, 'B': B, 'C': C}) sorted_dict['A_bc'] = (master + A - B - C) sorted_dict['aB_c'] = (master + B - A - C) sorted_dict['A_B_c'] = (master + A + B - C) sorted_dict['abC_'] = (master + C - A - B) sorted_dict['A_bC_'] = (master + A + C - B) sorted_dict['aB_C_'] = (master + B + C - A) sorted_dict['A_B_C_'] = (master + A + B + C) labTup = tuple(key for key in sorted_dict.keys()) lenTup = tuple(len(bed) for bed in sorted_dict.values()) print(f'{labTup}\n{lenTup}') plot_venn3_counts(lenTup[4:], names, f"{'_'.join(names)}-peak-overlaps", out) for key, bed in sorted_dict.items(): if len(bed) > 1: bed.to_dataframe().to_csv(f'{out}{key.replace(" ", "_")}-peaks-from-mergedPeaks.bed', header=None, index=None, sep="\t") if bool(genome): print('Annotating ovelapped peaks...') unikey = '{}' unianno = '{}_annotated' return_dict = annotate_peaks({unikey.format(key): bed.to_dataframe() for key, bed in sorted_dict.items()}, out, genome=genome) Set1 = set(return_dict[unianno.format('A')].SYMBOL.unique().tolist()) Set2 = set(return_dict[unianno.format('B')].SYMBOL.unique().tolist()) Set3 = set(return_dict[unianno.format('C')].SYMBOL.unique().tolist()) plot_venn3_set({names[0]: Set1, names[1]: Set2, names[2]: Set3}, f'{names[0]}_{names[1]}_{names[2]}-gene-overlaps', out) return sorted_dict if genome is None else {**sorted_dict, **return_dict} def splice_bar(data, title, x, y): ''' Plots bar graph of misplicing counts as file. Inputs ------ data: dataframe title: string plot title x: string of columm title for number of events in data y: string of column title for splicing type in data Returns ------- None ''' import matplotlib.pyplot as plt import seaborn as sns sns.set(context='paper', font='Arial', style='white', font_scale=2) plot = sns.barplot(x=x, y=y, data=data) plot.set_title(title.replace('_', ' ')) plot.set_ylabel('') sns.despine() sns.utils.plt.savefig('{}.png'.format(title.replace(' ', '_')), dpi=300) plt.close() image_display('{}.png'.format(title.replace(' ', '_'))) def make_df(dict_of_sets, name): ''' Make a dataframe from a dictionary of sets. Inputs ------ dict_of_sets: dictionary of sets name: string name of file Returns ------- dataframe ''' out_dir = '{pwd}/{name}/'.format(pwd=os.getcwd(), name=name.replace(' ', '_')) os.makedirs(out_dir, exist_ok=True) count = 0 for key, genes in dict_of_sets.items(): count = max(count, len(genes)) df = pd.DataFrame(index=range(1, count + 1)) for key, genes in dict_of_sets.items(): df[key] = pd.Series(list(genes) + ['NA'] * (count - len(genes))) df.to_excel('{}/{}.xls'.format(out_dir, name.replace(' ', '_')), index=False) return df def plot_col(df, title, ylabel, out='', xy=(None, None), xticks=[''], plot_type=['violin'], pvalue=False, compare_tags=None): ''' Two column boxplot from dataframe. Titles x axis based on column names. Inputs ------ df: dataframe (uses first two columns) title: string of title ylabel: string of y label xy: If specified, will x is the label column and y is the data column. (default: (None,None): Data separated into two columns). xticks: list of xtick names (default is column name) pvalue: bool to perform ttest (default is False). Will only work if xy=(None,None) or ther are only two labels in x. plot_type: list of one or more: violin, box, swarm (default=violin) compare_tags: if xy and pvalue is specified and there are more than two tags in x, specify the tags to compare. eg. ['a','b'] out: out parent directory. if none returns into colplot/ Returns ------ None ''' import matplotlib.pyplot as plt import seaborn as sns from scipy import stats out = val_folder(out) plt.clf() sns.set(context='paper', font='Arial', font_scale=2, style='white', rc={'figure.dpi': 300, 'figure.figsize': (5, 6)}) if type(plot_type) != list: plot_type = plot_type.split() lower_plot_type = [x.lower() for x in plot_type] if len(lower_plot_type) == 0: raise IOError('Input a plot type.') elif True not in {x in lower_plot_type for x in ['violin', 'box', 'swarm']}: raise IOError('Did not recognize plot type.') if 'swarm' in lower_plot_type: if xy == (None, None): fig = sns.swarmplot(data=df, color='black', s=4) else: fig = sns.swarmplot(data=df, x=xy[0], y=xy[1], color='black', s=4) if 'violin' in lower_plot_type: if xy == (None, None): fig = sns.violinplot(data=df) else: fig = sns.violinplot(data=df, x=xy[0], y=xy[1]) if 'box' in lower_plot_type: if xy == (None, None): fig = sns.boxplot(data=df) else: fig = sns.boxplot(data=df, x=xy[0], y=xy[1]) fig.yaxis.set_label_text(ylabel) fig.set_title(title.replace('_', ' ')) if xticks: fig.xaxis.set_ticklabels(xticks) fig.xaxis.set_label_text('') for tick in fig.xaxis.get_ticklabels(): tick.set_fontsize(12) if pvalue: if xy == (None, None): _, pvalue = stats.ttest_ind(a=df.iloc[:, 0], b=df.iloc[:, 1]) compare_tags = df.columns else: _, pvalue = stats.ttest_ind(a=df[df[xy[0]] == compare_tags[0]][xy[1]], b=df[df[xy[0]] == compare_tags[1]][xy[1]]) fig.text(s='p-value = {:.03g}, {} v {}'.format(pvalue, compare_tags[0], compare_tags[1]), x=0, y=-.12, transform=fig.axes.transAxes, fontsize=12) sns.despine() plt.tight_layout() plt.savefig('{}{}.svg'.format(out, title.replace(' ', '_'))) plt.subplots_adjust(bottom=0.17, top=0.9) plt.savefig('{}{}.png'.format(out, title.replace(' ', '_')), dpi=300) print('{}.png found in {}/'.format(title.replace(' ', '_'), out)) plt.close() image_display('{}{}.png'.format(out, title.replace(' ', '_'))) def scatter_regression(df, s=150, alpha=0.3, line_color='dimgrey', svg=False, reg_stats=True, point_color='steelblue', title=None, xlabel=None, ylabel=None, IndexA=None, IndexB=None, annotate=None, Alabel='Group A', Blabel='Group B'): ''' Scatter plot and Regression based on two matched vectors. Plots r-square and pvalue on .png Inputs ------ df: dataframe to plot (column1 = x axis, column2= y axis) kwargs (defaults): s: point size (150) alpha: (0.3) line_color: regression line color (dimgrey) svg: make svg (False) stats: print R2 and pvalue on plot (True) point_color: (steelblue) title: string xlabel: string ylabel: string IndexA: set or list of genes to highlight red Alabel: string for IndexA group ('Group A') IndexB: set or list of genes to highlight blue annotate: list of genes to annotate on the graph Returns ------- None Prints file name and location Saves .png plot in scatter_regression/ folder in cwd with dpi=300. ''' import matplotlib.pyplot as plt import seaborn as sns from scipy import stats sns.set(context='paper', style="white", font_scale=3, font='Arial', rc={"lines.linewidth": 2, 'figure.figsize': (9, 9), 'font.size': 18, 'figure.dpi': 300}) fig, ax = plt.subplots() cols = df.columns.tolist() regplot = sns.regplot(x=cols[0], y=cols[1], data=df, scatter=True, fit_reg=True, color=line_color, scatter_kws={'s': s, 'color': point_color, 'alpha': alpha} ) if xlabel: plt.xlabel(xlabel, labelpad=10) if ylabel: plt.ylabel(ylabel, labelpad=10) if title: regplot.set_title(title.replace('_', ' ')) if type(IndexA) in [list, set]: # A = set(IndexA) Abool = [True if x in IndexA else False for x in df.index.tolist()] regplot = ax.scatter(df[Abool].iloc[:, 0], df[Abool].iloc[:, 1], marker='o', alpha=(alpha + .4 if alpha < .6 else 1), color='red', s=s, label=Alabel) if type(IndexB) in [list, set]: # B = set(IndexB) Bbool = [True if x in IndexB else False for x in df.index.tolist()] regplot = ax.scatter(df[Bbool].iloc[:, 0], df[Bbool].iloc[:, 1], marker='o', alpha=(alpha + .3 if alpha < .7 else 1), color='mediumblue', s=s, label=Blabel) if type(annotate) in [list, set]: anno_df = df[[True if x in annotate else False for x in df.index.tolist()]] offx, offy = (df.iloc[:, :2].max() - df.iloc[:, :2].min()) * .1 for index, (x, y) in anno_df.iterrows(): ax.annotate(index, xy=(x, y), xytext=((x - offx, y + offy) if y >= x else (x + offx, y - offy)), arrowprops={'arrowstyle': '-', 'color': 'black'}) if reg_stats: r, pvalue = stats.pearsonr(x=df.iloc[:, 0], y=df.iloc[:, 1]) ax.text(0, 0, 'r = {:.03g}; p-value = {:.03g}'.format(r, pvalue), fontsize=25, transform=ax.transAxes) sns.despine(offset=5) fig.tight_layout() os.makedirs('scatter_regression/', exist_ok=True) if svg: plt.savefig('scatter_regression/{}.svg'.format(title.replace(' ', '_'))) plt.savefig('scatter_regression/{}.png'.format(title.replace(' ', '_')), dpi=300) print('{}.png found in {}/scatter_regression/'.format(title.replace(' ', '_'), os.getcwd())) plt.close() image_display('scatter_regression/{}.png'.format(title.replace(' ', '_'))) def signature_heatmap(vst, sig, name, cluster_columns=False): ''' Generate heatmap of differentially expressed genes using variance stablized transfrmed log2counts. Inputs ------ vst = gene name is the index sig = set or list of signature name = name of file cluster_columns = bool (default = False) Outputs ------ .png and .svg file of heatmap Returns ------- None ''' import matplotlib.pyplot as plt import seaborn as sns sns.set(font='Arial', font_scale=2, style='white', context='paper') vst['gene_name'] = vst.index CM = sns.clustermap(vst[vst.gene_name.apply(lambda x: x in sig)].drop('gene_name', axis=1), z_score=0, method='complete', cmap='RdBu_r', yticklabels=False, col_cluster=cluster_columns) CM.fig.suptitle(name.replace('_', ' ')) CM.savefig('{}_Heatmap.png'.format(name.replace(' ', '_')), dpi=300) CM.savefig('{}_Heatmap.svg'.format(name.replace(' ', '_'))) plt.close() image_display('{}_Heatmap.png'.format(name.replace(' ', '_'))) def ssh_job(command_list, job_name, job_folder, project='nimerlab', threads=1, q='general', mem=3000): ''' Sends job to LSF pegasus.ccs.miami.edu Inputs ------ command_list: list of commands with new lines separated by commas job_name: string of job name (also used for log file) job_folder: string of folder to save err out and script files q: pegasus q, ie. 'bigmem', 'general' (default), 'parrallel' mem: integer memory requirement, default=3000 (3GB RAM) project: string pegasus project name (default = nimerlab) threads: integer of number of threads. default = 1 ssh: whether or not to ssh into pegasus. Default=True Returns ------- Tuple(rand_id, job_folder, prejob_files) ''' job_folder = job_folder if job_folder.endswith('/') else f'{job_folder}/' os.system(f'ssh pegasus mkdir -p {job_folder}') rand_id = str(random.randint(0, 100000)) str_comd_list = '\n'.join(command_list) cmd = '\n'.join(['#!/bin/bash', '', f"#BSUB -J ID_{rand_id}_JOB_{job_name.replace(' ','_')}", f'#BSUB -R "rusage[mem={mem}]"', f'#BSUB -R "span[ptile={threads}]"', f"#BSUB -o {job_folder}{job_name.replace(' ','_')}_logs_{rand_id}.stdout.%J", f"#BSUB -e {job_folder}{job_name.replace(' ','_')}_logs_{rand_id}.stderr.%J", '#BSUB -W 120:00', f'#BSUB -n {threads}', f'#BSUB -q {q}', f'#BSUB -P {project}', '', f'{str_comd_list}' ]) with open(f'{job_name.replace(" ","_")}.sh', 'w') as file: file.write(cmd) prejob_files = os.popen(f'ssh pegasus ls {job_folder}').read().split('\n')[:-1] os.system(f'''ssh pegasus "mkdir -p {job_folder}"''') os.system(f'scp {job_name.replace(" ", "_")}.sh pegasus:{job_folder}') os.system(f'''ssh pegasus "cd {job_folder}; bsub < {job_name.replace(' ','_')}.sh"''') print(f'Submitting {job_name} as ID_{rand_id} from folder {job_folder}: {datetime.now():%Y-%m-%d %H:%M:%S}') return (rand_id, job_folder, prejob_files, job_name) def ssh_check(ID, job_folder, prejob_files=None, wait=True, return_filetype=None, load=False, check_IO_logs=None, sleep=10, job_name=''): ''' Checks for pegasus jobs sent by ssh_job and prints contents of the log file. Optionally copies and/or loads the results file. Inputs ------ Job ID: Job ID wait: wait for processes to finish before returning, default=True job_folder: job folder to probe for results, (only if return_filetype specified) return_filetype: return file type (ex. .png will search for all .png in job_folder and import it)default=None display: whether or not to display imported file pre_list: list of contents of job folder brefore execution. check_IO_logs: read output from .err .out logs sleep: seconds to sleep (default 10) job_name: pepends local ssh folder with job name if provided Returns ------ None ''' job_folder = val_folder(job_folder) jobs_list = os.popen('ssh pegasus bhist -w').read() job = [j for j in re.findall(r'ID_(\d+)', jobs_list) if j == ID] if len(job) != 0: print(f'Job ID_{ID} is not complete: {datetime.now():%Y-%m-%d %H:%M:%S}') else: if os.popen('''ssh pegasus "if [ -f {}/*_logs_{}.stderr* ]; then echo 'True' ; fi"'''.format(job_folder, ID)).read() == 'True\n': print(f'Job ID_{ID} is finished') else: print(f'There was likely an error in submission of Job ID_{ID}') if wait: running = True while running: jobs_list = os.popen('ssh pegasus "bhist -w"').read() job = [j for j in re.findall(r'ID_(\d+)', jobs_list) if j == ID] if len(job) == 0: running = False else: print(f'Waiting for jobs to finish... {datetime.now():%Y-%m-%d %H:%M:%S}') time.sleep(sleep) print(f'Job ID_{ID} is finished') if load: os.makedirs(f'ssh_files/{ID}/', exist_ok=True) post_files = os.popen(f'ssh pegasus ls {job_folder}*{return_filetype}').read().split("\n")[:-1] if prejob_files is None: prejob_files = [] import_files = [file for file in post_files if file not in prejob_files] for file in import_files: print('Copying {} to {}/ssh_files/{}{}/'.format(file, os.getcwd(), job_name, ID)) os.system('scp pegasus:{} ssh_files/{}{}/{}'.format(file, job_name, ID, file.split('/')[-1])) image_display('ssh_files/{}{}/{}'.format(job_name, ID, file.split('/')[-1])) if check_IO_logs: logs = {'ErrorFile': '{}/*_logs_{}.stderr*'.format(job_folder, ID), 'OutFile': '{}/*_logs_{}.stdout*'.format(job_folder, ID) } os.makedirs('logs/', exist_ok=True) for key, log in logs.items(): os.system("scp 'pegasus:{}' 'logs/ID_{}_{}.txt'".format(log, ID, key)) if os.path.isfile('logs/ID_{}_{}.txt'.format(ID, key)): print('logs/ID_{} {}:'.format(ID, key)) with open('logs/ID_{}_{}.txt'.format(ID, key)) as file: print(file.read()) def deeptools(regions, signals, matrix_name, out_name, pegasus_folder, envelope='deeptools', copy=False, title='', bps=(1500, 1500, 4000), d_type='center', scaled_names=('TSS', 'TES'), make=('matrix', 'heatmap', 'heatmap_group', 'profile', 'profile_group'), missing_values_as_zero=True, heatmap_kmeans=0, save_sorted_regions='', sort_regions='descend', profile_colors=None): ''' Inputs ------ regions: dictionary {'region_name':'/path/to/ssh/bedfile'} signals: dictionary {'signal_name':'/path/to/ssh/bigwigfile'} matrix_name: string of matrix name or matrix to be named (before .matrix.gz) out_name: name for output file tite: plot title (optional) envelope: conda envelope bps: tuple of region width on either side of center or scaled. center ignores last number. default is (1500,1500,4000) type: 'center' or 'scaled' scaled_names: optional names for scaled start and end (default ('TSS','TES')) make: tuple of deeptool commands. options: matrix, heatmap, heatmap_group, profile, profile_group copy: bool. Copy region and signal files to peagasus missing_values_as_zero: True heatmap_kmeans: Default 0. kmeans clusters (int) save_sorted_regions= '' (default: don't output) else filename for kmeans sorted region file sort_regions= default descend. 'keep', 'no', ascend. profile_colors: default none. list of colers per sample in sample order Returns ------- string of commands for ssh_job ''' pegasus_folder = pegasus_folder if pegasus_folder.endswith('/') else f'{pegasus_folder}/' os.system(f"ssh pegasus 'mkdir {pegasus_folder}'") make_lower = [x.lower() for x in make] if d_type.lower() == 'center': deepMat = 'reference-point --referencePoint center' deepHeat = "--refPointLabel 'Peak Center'" deepProf = "--refPointLabel 'Peak Center'" else: deepMat = f'scale-regions --regionBodyLength {bps[2]}' deepHeat = f'--startLabel {scaled_names[0]} --endLabel {scaled_names[1]}' deepProf = f'--startLabel {scaled_names[0]} --endLabel {scaled_names[1]}' cmd_list = ['module rm python share-rpms65', f'source activate {envelope}'] if copy: print('Copying region files to pegasus...') for region in regions.values(): if os.popen(f'''ssh pegasus "if [ -f {pegasus_folder}{region.split('/')[-1]}]; then echo 'True' ; fi"''').read() != 'True\n': print(f'Copying {region} to pegasus at {pegasus_folder}.') os.system(f"scp {region} pegasus:{pegasus_folder}") else: print(f'{region} found in {pegasus_folder}.') print('Copying signal files to pegasus...') for signal in signals.values(): if os.popen(f'''ssh pegasus "if [ -f {pegasus_folder}/{signal.split('/')[-1]} ]; then echo 'True' ; fi"''').read() != 'True\n': print(f'Copying {signal} to {pegasus_folder}.') os.system(f"scp {signal} pegasus:{pegasus_folder}") pegasus_region_path = ' '.join([f"{pegasus_folder}{region_path.split('/')[-1]}" for region_path in regions.values()]) pegasus_signal_path = ' '.join([f"{pegasus_folder}{signal_path.split('/')[-1]}" for signal_path in signals.values()]) else: pegasus_region_path = ' '.join([f'{region_path}' for region_path in regions.values()]) pegasus_signal_path = ' '.join([f'{signal_path}' for signal_path in signals.values()]) if 'matrix' in make_lower: signal_name = ' '.join([f'''"{signal_name.replace('_', ' ')}"''' for signal_name in signals.keys()]) computeMatrix = f"computeMatrix {deepMat} -a {bps[0]} -b {bps[1]} -p 4 -R {pegasus_region_path} -S {pegasus_signal_path} --samplesLabel {signal_name} -o {matrix_name}.matrix.gz" if missing_values_as_zero: computeMatrix += ' --missingDataAsZero' cmd_list.append(computeMatrix) if 'heatmap' in make_lower or 'heatmap_group' in make_lower: region_name = ' '.join([f'''"{region_name.replace('_', ' ')}"''' for region_name in regions.keys()]) plotHeatmap_base = f"plotHeatmap -m {matrix_name}.matrix.gz --dpi 300 {deepHeat} --plotTitle '{title.replace('_',' ')}' --whatToShow 'heatmap and colorbar' --colorMap Reds" if sort_regions != 'descend': plotHeatmap_base += f' --sortRegions {sort_regions}' if heatmap_kmeans > 0: plotHeatmap_base += f' --kmeans {heatmap_kmeans}' else: plotHeatmap_base += f' --regionsLabel {region_name}' if save_sorted_regions != '': plotHeatmap_base += f' --outFileSortedRegions {save_sorted_regions}.txt' if 'heatmap' in make_lower: cmd_list.append(f"{plotHeatmap_base} -out {out_name}_heatmap.png") if 'heatmap_group' in make_lower: cmd_list.append(f"{plotHeatmap_base} -out {out_name}_heatmap_perGroup.png --perGroup") if 'profile' in make_lower or 'profile_group' in make_lower: region_name = ' '.join([f'''"{region_name.replace('_', ' ')}"''' for region_name in regions.keys()]) plotProfile_base = f"plotProfile -m {matrix_name}.matrix.gz --dpi 300 {deepProf} --plotTitle '{title.replace('_',' ')}'" if heatmap_kmeans > 0: plotProfile_base += f' --kmeans {heatmap_kmeans}' else: plotProfile_base += f' --regionsLabel {region_name}' if profile_colors: plotProfile_base += f' --colors {" ".join(profile_colors)}' if save_sorted_regions != '': plotProfile_base += f' --outFileSortedRegions {save_sorted_regions}_profile.txt' if 'profile' in make_lower: cmd_list.append(f"{plotProfile_base} -out {out_name}_profile.png") if 'profile_group' in make_lower: cmd_list.append(f"{plotProfile_base} -out {out_name}_profile_perGroup.png --perGroup") return cmd_list def order_cluster(dict_set, count_df, gene_column_name, title): ''' Inputs ------ dict_set: a dictary with a cluster name and a set of genes in that cluster for plotting (should be non-overlapping). df: a pandas dataframe with the normalized counts for each gene and samples (or average of samples) in row columns. should also contain a column with the gene name. gene_column_name: the pandas column specifying the gene name (used in the dict_set) title: title for the plot and for saving the file Returns ------ (Ordered Index List, Ordered Count DataFrame, Clustermap) ''' import matplotlib.pyplot as plt import seaborn as sns from scipy.cluster import hierarchy import matplotlib.patches as mpatches out_list = [] df = count_df.copy() df['group'] = 'NA' for name, genes in dict_set.items(): if len(genes) == 0: print(f'There are not genes in {name}. Skipping Group') continue reduced_df = df[df[gene_column_name].isin(genes)] linkage = hierarchy.linkage(reduced_df.drop(columns=[gene_column_name, 'group']), method='ward', metric='euclidean') order = hierarchy.dendrogram(linkage, no_plot=True, color_threshold=-np.inf)['leaves'] gene_list = reduced_df.iloc[order][gene_column_name].tolist() gene_index = df[df[gene_column_name].isin(gene_list)].index.tolist() out_list += gene_index gene_symbol = [gene.split('_')[-1] for gene in gene_list] with open(f'{name}_genes.txt', 'w') as file: for gene in gene_symbol: file.write(f'{gene}\n') df.loc[gene_index, 'group'] = name ordered_df = df.loc[out_list] color_mapping = dict(zip([name for name, genes in dict_set.items() if len(genes) > 0], sns.hls_palette(len(df.group.unique()), s=.7))) row_colors = df.group.map(color_mapping) sns.set(context='notebook', font='Arial', palette='RdBu_r', style='white', rc={'figure.dpi': 300}) clustermap = sns.clustermap(ordered_df.loc[out_list].drop(columns=[gene_column_name, 'group']), z_score=0, row_colors=row_colors, row_cluster=False, col_cluster=False, cmap='RdBu_r', yticklabels=False) clustermap.fig.suptitle(title) legend = [mpatches.Patch(color=color, label=label.replace('_', ' ')) for label, color in color_mapping.items() if label != 'NA'] clustermap.ax_heatmap.legend(handles=legend, bbox_to_anchor=(-.1, .9, 0., .102)) clustermap.savefig(f'{title.replace(" ","_")}.png', dpi=300) plt.close() image_display(f'{title.replace(" ","_")}.png') return out_list, ordered_df, clustermap def ranked_ordered_cluster(dict_set, in_df, gene_column_name, dict_sort_col, title='ranked_ordered_cluster', group_name='Group', figsize=None, ascending=False): ''' Inputs ------ dict_set: a dictary with a cluster name and a set of genes in that cluster for plotting. df: a pandas dataframe with the normalized counts for each gene and samples (or average of samples) in row columns. should also contain a column with the gene name. gene_column_name: the pandas column specifying the gene name (used in the dict_set) dict_sort_col: dictionary mapping cluster name with column to sort by in that cluster. group_name: name (string) of the clusters (ie. Group, or Lineage) title: title for the plot and for saving the file figsize: tuple of figsize or default none for autogeneration ascending: bool for sort order Returns ------ (Ordered Count DataFrame, Clustermap) ''' import matplotlib.pyplot as plt import seaborn as sns from scipy import stats import matplotlib.patches as mpatches from dkfunctions import image_display out_dfs = [] df = in_df.copy() df[group_name] = 'NA' df.index = df[gene_column_name] for name, genes in dict_set.items(): reduced_df = df[df[gene_column_name].isin(genes)].copy() zscored = reduced_df.drop(columns=[gene_column_name, group_name]).T.apply(stats.zscore).T.copy() order = zscored.sort_values(by=dict_sort_col[name], ascending=ascending).index.tolist() gene_list = reduced_df.loc[order, gene_column_name].tolist() gene_symbol = [gene.split('_')[-1] for gene in gene_list] with open(f'{name}_genes.txt', 'w') as file: for gene in gene_symbol: file.write(f'{gene}\n') reduced_df[group_name] = name reduced_df = reduced_df.loc[gene_list] out_dfs.append(reduced_df) ordered_df = pd.concat(out_dfs) groups = ordered_df[group_name].unique() color_mapping = dict(zip(groups, sns.color_palette("colorblind",len(groups)))) row_colors = ordered_df[group_name].map(color_mapping).tolist() sns.set(context='paper', font='Arial', palette='pastel', style='white', rc={'figure.dpi': 300}, font_scale=.9) g = sns.clustermap(ordered_df.drop(columns=[gene_column_name, group_name]), z_score=0, row_colors=row_colors, row_cluster=False, col_cluster=False, cmap='RdBu_r', yticklabels=True, figsize=figsize) g.fig.suptitle(title) legend = [mpatches.Patch(color=color, label=label.replace('_', ' ')) for label, color in color_mapping.items() if label != 'NA'] g.ax_heatmap.legend(handles=legend, bbox_to_anchor=(-.1, .9, 0., .102),fontsize='large') g.savefig(f'{title.replace(" ","_")}.png', dpi=300) g.savefig(f'{title.replace(" ","_")}.svg') plt.close() image_display(f'{title.replace(" ","_")}.png') return ordered_df, g def gsea_barplot(out_dir, pos_file, neg_file, gmt_name, max_number=20): ''' Inputs ------ out_dir: directory output or '' for current directory pos_file: GSEA positive enrichment .xls file neg_file: GSEA negative enrichment .xls file gmt_name: name of enrichment (ex: Hallmarks) max_number: max number of significant sets to report (default 20) Returns ------- string of save file ''' import matplotlib.pyplot as plt import seaborn as sns out_dir = out_dir if out_dir.endswith('/') else '{}/'.format(out_dir) out_dir = '' if out_dir == '/' else out_dir os.makedirs(out_dir, exist_ok=True) pos = pd.read_table(pos_file).head(max_number) if os.path.isfile(pos_file) else pd.DataFrame(columns=['FDR q-val']) pos[gmt_name] = [' '.join(name.split('_')[1:]) for name in pos.NAME.tolist()] neg = pd.read_table(neg_file).head(max_number) if os.path.isfile(neg_file) else pd.DataFrame(columns=['FDR q-val']) neg[gmt_name] = [' '.join(name.split('_')[1:]) for name in neg.NAME.tolist()] sns.set(context='paper', font='Arial', font_scale=.9, style='white', rc={'figure.dpi': 300, 'figure.figsize': (8, 6)}) fig, (ax1, ax2) = plt.subplots(ncols=1, nrows=2) fig.suptitle('{} GSEA enrichment\n(q<0.05, max {})'.format(gmt_name, max_number)) if len(pos[pos['FDR q-val'] < 0.05]) > 0: UP = sns.barplot(data=pos[pos['FDR q-val'] < 0.05], x='NES', y=gmt_name, color='firebrick', ax=ax1) UP.set_title('Positive Enrichment') sns.despine() if len(neg[neg['FDR q-val'] < 0.05]) > 0: DN = sns.barplot(data=neg[neg['FDR q-val'] < 0.05], x='NES', y=gmt_name, color='steelblue', ax=ax2) DN.set_title('Negative Enrichment') sns.despine() try: plt.tight_layout(h_pad=1, w_pad=1) except ValueError: pass plt.subplots_adjust(top=0.88) file = f'{out_dir}{gmt_name}_GSEA_NES_plot.png' fig.savefig(file, dpi=300) plt.close() image_display(file) return file def hinton(df, filename, folder, max_weight=None): """Draw Hinton diagram for visualizing a weight matrix.""" import matplotlib.pyplot as plt import seaborn as sns folder = folder if folder.endswith('/') else f'{folder}/' folder = f'{os.getcwd()}/' if folder == '/' else folder sns.set(context='paper', rc={'figure.figsize': (8, 8), 'figure.dpi': 200}) matrix = df.values plt.clf() plt.figure(figsize=(10, 10), dpi=200) ax = plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('white') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) ax.axis('off') for (x, y), w in np.ndenumerate(matrix): color = 'red' if w > 0 else 'blue' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([y - size / 2, x - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) fraction = len(df.index.tolist()) increment = (.915 / fraction) y = 0.942 for x in df.index.tolist(): ax.annotate(x, xy=(-.15, y), xycoords='axes fraction') y -= increment ax.annotate("Components", xy=(.4, 0), xycoords='axes fraction', size=14) ax.autoscale_view() ax.annotate('Hinton Plot of Independent Components', xy=(.14, 1), xycoords='axes fraction', size=20) ax.invert_yaxis() ax.figure.savefig(f'{folder}{filename}.png') plt.close() image_display(f'{folder}{filename}.png') def genomic_annotation_plots(dict_of_annotated_dfs, txdb_db, filename='Genomic_Annotation_Plot', title='', bar_width=.75, figsize=(10, 5), order=['Promoter (<=1kb)', 'Promoter (1-2kb)', 'Promoter (2-3kb)', 'Intron', 'Exon', "3' UTR", "5' UTR", 'Downstream (<1kb)', 'Downstream (1-2kb)' 'Downstream (2-3kb)', 'Distal Intergenic'], feature_col='annotation', palette='colorblind', plot_mode='fraction' ): ''' from chipseeker annotation output as df txdb_db = UCSC or Ensembl ''' import matplotlib.pyplot as plt import seaborn as sns db = '(uc' if txdb_db == 'UCSC' else '(ENS' Anno_df = pd.DataFrame(index=order) for name, df in dict_of_annotated_dfs.items(): df[feature_col] = [anno.replace(f' {db}', f'_{db}').split('_')[0] for anno in df[feature_col].tolist()] df_anno = df.groupby(feature_col).count().iloc[:, 0] if plot_mode.lower() == 'fraction': Anno_df[name] = df_anno / df_anno.sum() else: Anno_df[name] = df_anno Anno_df[Anno_df.isna()] = 0 sns.set(style='white', font='Arial', font_scale=1.2) sns.set_palette(palette, n_colors=len(order)) f = plt.figure(figsize=figsize) Anno_df.T.plot(kind='barh', stacked=True, ax=f.gca(), width=bar_width, lw=0.1) plt.title(title) plt.legend(loc=3, bbox_to_anchor=(1.0, 0)) plt.xlabel('Fraction' if plot_mode.lower() == 'fraction' else 'Peak Number') sns.despine() plt.tight_layout() plt.savefig(f'{filename}.png', dpi=300) plt.close() image_display(f'{filename}.png') def extract_ENCODE_report_data(base_folder, report_type, out_folder='', histone=False, replicate=False): ''' Inputs ----- base_folder: AQUAS results folder. Will use subfolders for sample name and look for report in those subfolders. report_type: 'AQUAS' or 'cromwell' replicate: Whether the ChIPseq was performed as a repliate or not. Returns ----- DataFrame of results ''' tq = tq_type() if report_type.lower() not in ['aquas', 'cromwell']: raise ValueError('This function only extracts summary info from AQUAS or Cromwell generated qc reports.') base_folder = val_folder(base_folder) report_name = f'{base_folder}*/*report.html' if report_type.lower() == 'aquas' else f'{base_folder}*report.html' reports = glob.glob(report_name) out_folder = val_folder(out_folder) if replicate is True: raise AssertionError('Not set up for replicates yet.') results_df = pd.DataFrame(index=['Percent_mapped', 'Filtered_Uniquely_Mapped_Reads', 'Fraction_Duplicated', 'S_JS_Distance', 'PBC1', 'RSC', 'Overlap_Optimal_Peak_Number', 'FrIP_IDR', 'IDR_Peak_Number']) for file in tq(reports): name = re.findall(r'.*/(.*)_report.html', file)[0] if report_type.lower() == 'aquas' else re.findall(r'.*/(.*)_qc_report.html', file)[0] report = pd.read_html(file) series = pd.Series() series['Percent_mapped'] = report[1].iloc[7, 1] if report_type.lower() == 'aquas' else report[0].iloc[7, 1] series['Filtered_Uniquely_Mapped_Reads'] = report[2].iloc[5, 1] if report_type.lower() == 'aquas' else report[3].iloc[5, 1] series['Fraction_Duplicated'] = report[3].iloc[7, 1] if report_type.lower() == 'aquas' else report[1].iloc[7, 1] series['S_JS_Distance'] = report[4].iloc[7, 1] if report_type.lower() == 'aquas' else report[8].iloc[8, 1] series['PBC1'] = report[5].iloc[6, 1] if report_type.lower() == 'aquas' else report[2].iloc[6, 1] series['RSC'] = report[6].iloc[8, 1] if report_type.lower() == 'aquas' else report[5].iloc[9, 1] series['Overlap_Optimal_Peak_Number'] = report[10].iloc[4, 1] if report_type.lower() == 'aquas' else report[4].iloc[4, 1] if histone is False: series['FrIP_IDR'] = report[11].iloc[0, 1] if report_type.lower() == 'aquas' else report[7].iloc[1, 1] series['IDR_Peak_Number'] = report[12].iloc[4, 1] if report_type.lower() == 'aquas' else report[4].iloc[4, 2] results_df[name] = series for index in tq(results_df.index.tolist()): plot_col(results_df.loc[index], out=out_folder, title=f'{index}', ylabel=index.replace('_', ' '), plot_type=['violin', 'swarm']) return results_df def meme_ssh(folder, fasta, bed, meme_db, out_name, markov=None): folder = folder if folder.endswith('/') else f'{folder}/' out_fasta = f'{folder}{bed.split("/")[-1].replace(".bed",".fasta")}' meme_cmd = ['module rm python share-rpms65', 'source activate motif', f'bedtools getfasta -fi {fasta} -bed {bed} -fo {out_fasta}', f'meme-chip -oc {out_name} -db {meme_db} -dna {out_fasta}' ] if markov: meme_cmd[3] += f' -bfile {markov}' return ssh_job(meme_cmd, f'{out_name}_meme', folder, mem=3000) def overlap_four(bed_dict, genome=None): ''' Takes a dictionary of four pybedtools.BedTool objects. Merges all overlapping peaks for each bed into a master file. Intersects beds to merged master file. Performs annotations with ChIPseeker if genome is specified. Inputs ------ bed_dict: dictionary of BedTool files genome: 'hg38','hg19','mm10' Returns ------- Returns a dictionary of dataframes from unique and overlap peaks. If genome is specified, includes a dictionary of annotated genes. ''' from collections import OrderedDict import pickle names = list(bed_dict.keys()) Folder = f'{os.getcwd()}/' subfolder = f"{names[0].replace(' ', '_')}-{ names[1].replace(' ', '_')}-{names[2].replace(' ', '_')}-{names[3].replace(' ', '_')}overlap/" out = f'{Folder}{subfolder}' os.makedirs(out, exist_ok=True) print(f'Output files are found in {out}') print(f'A: {names[0]}, B: {names[1]}, C: {names[2]}, D: {names[3]}') master = bed_dict[names[0]].cat(bed_dict[names[1]]).cat(bed_dict[names[2]]).sort().merge().cat(bed_dict[names[3]]).sort().merge() A = bed_dict[names[0]].sort().merge() B = bed_dict[names[1]].sort().merge() C = bed_dict[names[2]].sort().merge() D = bed_dict[names[3]].sort().merge() sorted_dict = OrderedDict({'master': master, 'A': A, 'B': B, 'C': C, 'D': D}) sorted_dict['Abcd'] = (master + A - B - C - D) sorted_dict['aBcd'] = (master + B - A - C - D) sorted_dict['abCd'] = (master + C - A - B - D) sorted_dict['abcD'] = (master + D - A - B - C) sorted_dict['ABcd'] = (master + A + B - C - D) sorted_dict['AbCd'] = (master + A + C - B - D) sorted_dict['AbcD'] = (master + A + D - C - B) sorted_dict['aBCd'] = (master + B + C - A - D) sorted_dict['aBcD'] = (master + B + D - A - C) sorted_dict['abCD'] = (master + C + D - A - B) sorted_dict['ABCd'] = (master + A + B + C - D) sorted_dict['ABcD'] = (master + A + B + D - C) sorted_dict['AbCD'] = (master + A + C + D - B) sorted_dict['aBCD'] = (master + B + C + D - A) sorted_dict['ABCD'] = (master + A + B + C + D) labTup = tuple(key for key in sorted_dict.keys()) lenTup = tuple(len(bed) for bed in sorted_dict.values()) gener = (f'{lab}: {size}' for lab, size in zip(labTup, lenTup)) for x in gener: print(x) for key, bed in sorted_dict.items(): if len(bed) > 1: bed.to_dataframe().to_csv(f"{out}{key.replace(' ', '_')}-peaks-from-mergedPeaks.bed", header=None, index=None, sep="\t") if bool(genome): print('Annotating ovelapped peaks...') unikey = '{}' unianno = '{}_annotated' return_dict = annotate_peaks({unikey.format(key): bed.to_dataframe() for key, bed in sorted_dict.items() if len(bed) > 0}, out, genome=genome) gene_dict = {names[0]: return_dict[unianno.format('A')].SYMBOL.unique().tolist(), names[1]: return_dict[unianno.format('B')].SYMBOL.unique().tolist(), names[2]: return_dict[unianno.format('C')].SYMBOL.unique().tolist(), names[3]: return_dict[unianno.format('D')].SYMBOL.unique().tolist() } for name, gene_list in gene_dict.items(): with open(f'{out}{name}_all_peaks_annotated.txt', 'w') as fp: for gene in gene_list: fp.write(f'{gene}\n') with open(f'{out}Overlap_annotated_results.pkl', 'wb') as fp: pickle.dump(return_dict, fp) return sorted_dict if genome is None else {**sorted_dict, **return_dict} def extract_clustermap_clusters(clustermap, num_of_clusters): ''' Input a seaborn clustermap and number of clusters to id Returns an array of labelled clusters based on the original dataframe used to generate the clustermap. Usage: df['cluster'] = extract_clutsermap_clusters(clustermap, 2) ''' from scipy.cluster.hierarchy import fcluster return fcluster(clustermap.dendrogram_row.linkage, num_of_clusters, criterion='maxclust') def generate_ROSE_gffs(bed_file, name): ''' takes a bed_file and returns a gff in the format needed for the ROSE algorithm. ''' if type(bed_file) is BedTool: bed_file = bed_file.to_dataframe() elif type(bed_file) is not pd.DataFrame: IOError('Input must be either a pybedtools object or a pandas dataframe') gff = pd.DataFrame({'chr': bed_file.chrom, 'number': bed_file.index.tolist(), 'b1': '.', 'start': bed_file.start, 'end': bed_file.end, 'b2': '.', 'b3': '.', 'b4': '.', 'id': bed_file.index.tolist() }, index=bed_file.index) gff.to_csv(f'{name}_enhancer.gff', header=False, index=False, sep="\t") return gff def active_enhancer_determination(H3K4me1_bw, H3K4me3_bw, H3K4me1_bed, H3K27ac_bed, name, TSS_bed=None, gtf_file=None, TSS_region=(2500, 2500), chrom_sizes=None): ''' Input ---------- TSS_bed: location of a premade TSS window bed file. If None, gtf_file, chrom.sizes, and TSS_region must be specified. gtf_file: if no TSS_bed is provided, location of gtf_file must be included here. TSS_region: if no TSS_bed is provided, specify the distances before and after TSS. chrom: file of chromosome sizes (no header in file) H3K4me1_bw: location of H3K4me1 bigwig file (should be normalized ie. FC over input) H3K4me3_bw: location of H3K4me3 bigwig file (should be normalized ie. FC over input) H3K4me1_bed: peakfile for H3K4me1 H3K27ac_bed: peakfile for H2K27ac name: name of the output sample Output ----------- Saves enhancer bed file to disk as well as TSS window bed file if TSS_bed is not provided returns an enhancer bedfile ''' import gtfparse import pyBigWig if TSS_bed is None: gtf = gtfparse.read_gtf(gtf_file) TSS = gtf[gtf.feature == 'gene'][['seqname', 'start', 'end', 'strand']] TSS['TSS'] = TSS[['start', 'end', 'strand']].apply(lambda x: x[0] if x[2] == '+' else x[1], axis=1) TSS_slop = pd.DataFrame({'chr': TSS.seqname, 'start': TSS.TSS - TSS_region[0], 'end': TSS.TSS + TSS_region[1] }, index=TSS.index) low_index = TSS_slop[TSS_slop.start < 0].index TSS_slop.loc[low_index, 'start'] = 0 chrom =
pd.read_csv(chrom_sizes, header=None, index_col=0, sep="\t")
pandas.read_csv
import unittest import sys import os import os.path from os.path import dirname, abspath, expanduser, exists, join import shutil import subprocess TEST_DIR=abspath(expanduser(dirname(__file__))) try: import dataworkspaces except ImportError: sys.path.append(os.path.abspath("..")) from dataworkspaces.utils.subprocess_utils import find_exe TEMPDIR=os.path.abspath(os.path.expanduser(__file__)).replace('.py', '_data') WS_DIR=join(TEMPDIR, 'workspace') CODE_DIR=join(WS_DIR, 'code') NOTEBOOK='test_jupyter_kit.ipynb' PYTHONPATH=os.path.abspath("..") try: JUPYTER=find_exe('jupyter', 'install Jupyter before running this test') ERROR = None except Exception as e: ERROR = e JUPYTER=None try: import pandas except ImportError: pandas = None try: import numpy except ImportError: numpy = None @unittest.skipUnless(JUPYTER is not None, "SKIP: No Jupyter install found: %s"%ERROR) class TestJupyterKit(unittest.TestCase): def setUp(self): if exists(TEMPDIR): shutil.rmtree(TEMPDIR) os.mkdir(TEMPDIR) os.mkdir(WS_DIR) self.dws=find_exe("dws", "Make sure you have enabled your python virtual environment") self._run_dws(['init', '--hostname', 'test-host', '--create-resources=code,source-data,intermediate-data,results'], verbose=False) shutil.copy(NOTEBOOK, join(CODE_DIR, NOTEBOOK)) def tearDown(self): if exists(TEMPDIR): shutil.rmtree(TEMPDIR) def _run_dws(self, dws_args, cwd=WS_DIR, env=None, verbose=True): if verbose: command = self.dws + ' --verbose --batch '+ ' '.join(dws_args) else: command = self.dws + ' --batch '+ ' '.join(dws_args) print(command + (' [%s]' % cwd)) r = subprocess.run(command, cwd=cwd, shell=True, env=env) r.check_returncode() def test_jupyter(self): command = "%s nbconvert --to notebook --execute %s" % (JUPYTER, NOTEBOOK) print(command) import copy env=copy.copy(os.environ) env['PYTHONPATH']=PYTHONPATH print("set pythonpath to %s" % PYTHONPATH) r = subprocess.run(command, cwd=CODE_DIR, shell=True, env=env) r.check_returncode() self._run_dws(['snapshot', '-m', "'snapshot of notebook run'", 'S1'], verbose=False) @unittest.skipUnless(JUPYTER is not None, "SKIP: No Jupyter install found: %s"%ERROR) @unittest.skipUnless(pandas is not None, "SKIP: pandas is not installed") @unittest.skipUnless(numpy is not None, "SKIP: numpy is not installed") class TestHeatmapBinning(unittest.TestCase): def test_no_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([numpy.nan, numpy.nan])) assert_series_equal(pandas.Series([-1,-1]), bins) def test_one_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.2, numpy.nan, 1.2])) assert_series_equal(pandas.Series([3,-1,3]), bins) def test_two_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.4, numpy.nan, 1.2])) assert_series_equal(pandas.Series([4,-1,2]), bins) def test_three_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.4, numpy.nan, 1.2, 1.0])) assert_series_equal(pandas.Series([4,-1,3, 2]), bins, check_dtype=False) def test_four_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.4, numpy.nan, 1.2, 1.0, 1.0, 0.8])) assert_series_equal(pandas.Series([4,-1,3, 2,2,2]), bins, check_dtype=False) def test_five_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.4, numpy.nan, 1.2, 1.0, 1.0, 0.8, 0.4])) assert_series_equal(pandas.Series([5,-1,4, 2, 2, 1, 1]), bins, check_dtype=False) def test_six_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(pandas.Series([1.4, numpy.nan, 1.2, 1.0, 1.0, 0.8, 0.4, 1.5])) assert_series_equal(pandas.Series([4,-1,3, 2, 2, 1, 1, 5]), bins, check_dtype=False) def test_seven_unique(self): from dataworkspaces.kits.jupyter import _metric_col_to_colormap from pandas.testing import assert_series_equal bins = _metric_col_to_colormap(
pandas.Series([0.2, 1.4, numpy.nan, 1.2, 1.0, 1.0, 0.8, 0.4, 1.5])
pandas.Series
import numpy as np from nglui import annotation import pandas as pd from collections.abc import Collection from itertools import chain def _multipoint_transform(row, pt_columns, squeeze_cols): """Reshape dataframe to accomodate multiple points in a single row""" pts = {pcol: np.atleast_2d(row[pcol]) for pcol in pt_columns} n_pts = pts[pt_columns[0]].shape[0] rows = [{} for _ in range(n_pts)] for col in row.index: if col in pt_columns: if col in squeeze_cols: for r, v in zip(rows, pts[col].squeeze().tolist()): r[col] = v else: for r, v in zip(rows, pts[col].tolist()): r[col] = v else: for r in rows: r[col] = row[col] return rows class SelectionMapper(object): """Class for configuring object selections based on root id Parameters ---------- data_columns : str or list, optional Name (or list of names) of the data columns to get ids from. Default is None. fixed_ids : list, optional List of ids to select irrespective of data. """ def __init__( self, data_columns=None, fixed_ids=None, fixed_id_colors=None, color_column=None ): if isinstance(data_columns, str): data_columns = [data_columns] self._config = dict( data_columns=data_columns, fixed_ids=fixed_ids, fixed_id_colors=fixed_id_colors, color_column=color_column, ) @property def data_columns(self): if self._config.get("data_columns", None) is None: return [] else: return self._config.get("data_columns") @property def fixed_ids(self): if self._config.get("fixed_ids", None) is None: return np.array([], dtype=np.uint64) else: return np.array(self._config.get("fixed_ids", []), dtype=np.uint64) @property def fixed_id_colors(self): if self._config.get("fixed_id_colors", None) is None: return [] else: return list(self._config.get("fixed_id_colors", None)) @property def color_column(self): return self._config.get("color_column", None) def selected_ids(self, data): """Uses the rules to generate a list of ids from a dataframe.""" selected_ids = [] if data is not None: for col in self.data_columns: selected_ids.append(data[col].values.astype(np.uint64)) selected_ids.append(self.fixed_ids) return np.concatenate(selected_ids) def seg_colors(self, data): colors = {} if len(self.fixed_id_colors) == len(self.fixed_ids): for ii, oid in enumerate(self.fixed_ids): colors[oid] = self.fixed_id_colors[ii] if self.color_column is not None: clist = data[self.color_column].to_list() for col in self.data_columns: for ii, oid in enumerate(data[col]): colors[oid] = clist[ii] return colors class AnnotationMapperBase(object): def __init__( self, type, data_columns, description_column, linked_segmentation_column, tag_column, group_column, set_position, gather_linked_segmentations, share_linked_segmentations, multipoint, ): self._config = dict( type=type, data_columns=data_columns, array_data=False, description_column=description_column, linked_segmentation_column=linked_segmentation_column, tag_column=tag_column, group_column=group_column, set_position=set_position, gather_linked_segmentations=gather_linked_segmentations, share_linked_segmentations=share_linked_segmentations, multipoint=multipoint, ) self._tag_map = None @property def type(self): return self._config.get("type", None) @property def data_columns(self): return self._config.get("data_columns", None) @property def description_column(self): return self._config.get("description_column", None) @property def linked_segmentation_column(self): return self._config.get("linked_segmentation_column", None) @property def tag_column(self): return self._config.get("tag_column", None) @property def group_column(self): return self._config.get("group_column", None) @property def gather_linked_segmentations(self): return self._config.get("gather_linked_segmentations", True) @property def share_linked_segmentations(self): return self._config.get("share_linked_segmentations", False) @property def set_position(self): return self._config.get("set_position", False) @property def multipoint(self): return self._config.get("multipoint", False) def multipoint_reshape(self, data, pt_columns, squeeze_cols=[]): if data is None or len(data) == 0: return data else: rows = data.apply( lambda x: _multipoint_transform( x, pt_columns=pt_columns, squeeze_cols=squeeze_cols ), axis=1, ).tolist() return pd.DataFrame.from_records([r for r in chain.from_iterable(rows)]) @property def tag_map(self): if self._tag_map is None: return {} else: return self._tag_map @tag_map.setter def tag_map(self, tag_list): if tag_list is None: self._tag_map = {} else: self._tag_map = {tag: ii + 1 for ii, tag in enumerate(tag_list)} @property def array_data(self): return self._config.get("array_data", False) @array_data.setter def array_data(self, new_array_data): self._config["array_data"] = new_array_data if new_array_data: self._config["data_columns"] = self._default_array_data_columns() self._config["description_column"] = None self._config["linked_segmentation_column"] = None self._config["tag_column"] = None def _default_array_data_columns(self): return [] def _assign_tags(self, data): if self.tag_column is not None: anno_tags = [] for row in data[self.tag_column]: if isinstance(row, Collection) and not isinstance(row, str): add_annos = [self.tag_map.get(r, None) for r in row] else: add_annos = [self.tag_map.get(row, None)] anno_tags.append(add_annos) else: anno_tags = [[None] for x in range(len(data))] return anno_tags def _render_data(self, data): # Set per subclass return None def _linked_segmentations(self, data): if self.linked_segmentation_column is not None: seg_array = np.vstack(data[self.linked_segmentation_column].values) linked_segs = [row[~pd.isnull(row)].astype(int) for row in seg_array] else: linked_segs = [None for x in range(len(data))] return linked_segs def _descriptions(self, data): if self.description_column is not None: descriptions = data[self.description_column].values else: descriptions = [None for x in range(len(data))] return descriptions def _add_groups(self, groups, annos): vals, inverse = np.unique(groups, return_inverse=True) inv_inds = np.flatnonzero(~
pd.isnull(vals)
pandas.isnull
import numpy as np import pandas as pd from collections import defaultdict from statsmodels.stats.multitest import multipletests import pybedtools from adjustText import adjust_text from copy import deepcopy from pysam import FastaFile import matplotlib.pylab as plt from darwinian_shift.section import Section, NoMutationsError from darwinian_shift.transcript import Transcript, NoTranscriptError, CodingTranscriptError from darwinian_shift.mutation_spectrum import MutationalSpectrum, GlobalKmerSpectrum, read_spectrum, \ EvenMutationalSpectrum from darwinian_shift.statistics import CDFPermutationTest from darwinian_shift.reference_data.reference_utils import get_source_genome_reference_file_paths from darwinian_shift.lookup_classes.errors import MetricLookupException from darwinian_shift.utils import read_sbs_from_vcf BED_COLS = ['Chromosome/scaffold name', 'Genomic coding start', 'Genomic coding end', 'Gene name', 'Transcript stable ID'] class DarwinianShift: """ Class to process and store data for statistical testing of selection Calculates the mutation spectrum from the data Tests of individual genes/transcripts can run using the run_gene and run_transcript methods. """ def __init__(self, # Input data data, # Reference data. # If supplying the name of the source_genome (e.g. homo_sapiens), it will use pre-downloaded ensembl data from the reference_data directory, # Specify the ensembl release number to use a specific version, or it will use the most recent release that has been downloaded. # Alternatively, provide the paths to an exon file and a reference genome fa.gz file. # This must be compressed with bgzip and with a faidx index file # the exon file or reference file will take precedence over the source_genome/ensembl_release # e.g. can specify source_genome and exon file to use the standard genome with a custom set of exons # Special case, can specify source_genome="GRCh37" to use that human build. source_genome=None, ensembl_release=None, exon_file=None, reference_fasta=None, # Measurements and statistics lookup=None, # A class which will return metric value. See lookup_classes directory statistics=None, # Options sections=None, # Tab separated file or dataframe. # PDB file options pdb_directory=None, sifts_directory=None, download_sifts=False, # MutationalSpectrum options spectra=None, # Predefined spectra gene_list=None, transcript_list=None, deduplicate=False, # If false, will run over all transcripts in exon data file that have a mutation. # If true, will pick the longest transcript for each gene. use_longest_transcript_only=True, # These will exclude from the tests, not the spectrum. excluded_positions=None, # dict, key=chrom, val=positions. E.g. {'1': [1, 2, 3]} excluded_mutation_types=None, included_mutation_types=None, # This has priority over excluded mutation_types chunk_size=50000000, # How much of a chromosome will be processed at once. # Bigger=quicker but more memory low_mem=True, # Will not store sequence data during spectrum calculation for later reuse. # Options for testing/reproducibility random_seed=None, # Int. Set this to return consistent results. testing_random_seed=None, # Int. Set to get same results, even if changing order or spectra/tests. verbose=False ): """ :param data: :param source_genome: :param ensembl_release: :param exon_file: :param reference_fasta: :param lookup: :param statistics: :param sections: :param pdb_directory: :param sifts_directory: :param download_sifts: :param spectra: Spectrum object or list of Spectrum objects. The mutational spectrum is calculated from the data. To skip this process, use EvenMutationalSpectrum or "Even", although this will impact the statistical results. Default is a global trinucleotide spectrum. :param gene_list: :param transcript_list: :param deduplicate: :param use_longest_transcript_only: :param excluded_positions: :param excluded_mutation_types: :param included_mutation_types: :param chunk_size: :param low_mem: :param random_seed: :param testing_random_seed: :param verbose: """ self.verbose=verbose self.low_mem=low_mem if random_seed is not None: np.random.seed(random_seed) if isinstance(data, pd.DataFrame): self.data = data elif isinstance(data, str): # File path given if data.endswith('.vcf') or data.endswith('.vcf.gz'): self.data = read_sbs_from_vcf(data) else: # Assume the data is in a tab-delimited file including "chr", "pos", "ref" and "mut" columns. self.data = pd.read_csv(data, sep="\t") # Filter non-snv mutations. bases = ['A', 'C', 'G', 'T'] # Take copy here to deal with pandas SettingWithCopyWarning # From here on, want to be editing views of the following copy of the data and ignore previous unfiltered data. self.data = self.data[(self.data['ref'].isin(bases)) & (self.data['mut'].isin(bases))].copy() self.data.loc[:, 'chr'] = self.data['chr'].astype(str) self.data = self.data.reset_index(drop=True) # Make sure every mutation has a unique index if self.verbose: # For tracking which mutations are included in used transcripts. # Slows process, so only done if verbose=True. self.data.loc[:, 'included'] = False self.chromosomes = self.data['chr'].unique() if deduplicate: self._deduplicate_data() self.excluded_positions = excluded_positions self.excluded_mutation_types = excluded_mutation_types self.included_mutation_types = included_mutation_types if pdb_directory is None: self.pdb_directory = "." else: self.pdb_directory = pdb_directory if sifts_directory is None: self.sifts_directory = "." else: self.sifts_directory = sifts_directory self.download_sifts = download_sifts self.lookup = lookup if hasattr(self.lookup, "setup_project"): self.lookup.setup_project(self) exon_file, reference_fasta = self._get_reference_data(source_genome, ensembl_release, exon_file, reference_fasta) self.exon_data = pd.read_csv(exon_file, sep="\t") self.exon_data.loc[:, 'Chromosome/scaffold name'] = self.exon_data['Chromosome/scaffold name'].astype(str) # This filter helps to remove obscure scaffolds so they will not be matched. self.exon_data = self.exon_data[self.exon_data['Chromosome/scaffold name'].isin(self.chromosomes)] # Removes exons without any coding bases self.exon_data = self.exon_data[~pd.isnull(self.exon_data['Genomic coding start'])] self.exon_data['Genomic coding start'] = self.exon_data['Genomic coding start'].astype(int) self.exon_data['Genomic coding end'] = self.exon_data['Genomic coding end'].astype(int) # If transcripts are not specified, may be used to check if excluded mutations are in alternative transcripts self.unfiltered_exon_data = None self.use_longest_transcript_only = use_longest_transcript_only self.gene_list = gene_list self.transcript_list = transcript_list self.transcript_objs = {} # If transcripts not specified, will use longest transcript per gene to calculate signature. self.signature_transcript_list = None self.alternative_transcripts = None self.reference_fasta = reference_fasta self.transcript_gene_map = {} self.gene_transcripts_map = defaultdict(set) self.spectra = None self._process_spectra(spectra) if len(set([s.name for s in self.spectra])) < len(self.spectra): raise ValueError('More than one MutationSpectrum with the same name. Provide unique names to each.') self.ks = set([getattr(s, 'k', None) for s in self.spectra]) # Kmers to use for the spectra. E.g. 3 for trinucleotides self.ks.discard(None) self.chunk_size = chunk_size self.section_transcripts = None # Transcripts required for the sections. self.sections = None additional_results_columns = self._get_sections(sections) self._set_up_exon_data() self.checked_included = False self.total_spectrum_ref_mismatch = 0 if any([(isinstance(s, GlobalKmerSpectrum) and not s.precalculated) for s in self.spectra]): # Collect data for any signatures that need to be calculated from the global data if not self.use_longest_transcript_only: print('WARNING: Using multiple transcripts per gene may double count mutants in the spectrum') print('Can set use_longest_transcript_only=True and save the spectrum, then run using the pre-calculated spectrum.') self._calculate_spectra(self.verbose) if self.verbose: self._check_non_included_mutations() if statistics is None: # Use the default statistics only # Use the cdf permutation test as the default as it is appropriate for a wide range of null distributions. self.statistics = [CDFPermutationTest()] elif not isinstance(statistics, (list, tuple)): self.statistics = [statistics] else: self.statistics = statistics if testing_random_seed is not None: for s in self.statistics: try: s.set_testing_random_seed(testing_random_seed) except AttributeError as e: # Not a test that uses a seed pass if len(set([s.name for s in self.statistics])) < len(self.statistics): raise ValueError('More than one statistic with the same name. Provide unique names to each.') # Results self.result_columns = ['gene', 'transcript_id', 'chrom', 'section_id', 'num_mutations'] self.result_columns.extend(additional_results_columns) self.results = None self.scored_data = [] def _get_reference_data(self, source_genome, ensembl_release, exon_file, reference_fasta): if source_genome is None and (exon_file is None or reference_fasta is None): raise TypeError('Must provide a source_genome or an exon_file and a reference_fasta') if source_genome is not None and (exon_file is None or reference_fasta is None): try: exon_file1, reference_file1 = get_source_genome_reference_file_paths(source_genome, ensembl_release) except Exception as e: print('Reference files not found for source_genome:{} and ensembl_release:{}'.format(source_genome, ensembl_release)) print('Try downloading the data using download_reference_data_from_latest_ensembl or download_grch37_reference_data') print('Or download manually and specify the file paths using exon_file and reference_fasta') raise e if exon_file is None: exon_file = exon_file1 if reference_fasta is None: reference_fasta = reference_file1 if self.verbose: print('exon_file:', exon_file) print('reference_fasta:', reference_fasta) return exon_file, reference_fasta def _deduplicate_data(self): self.data.drop_duplicates(subset=['chr', 'pos', 'ref', 'mut'], inplace=True) def _process_spectra(self, spectra): if spectra is None: self.spectra = [ GlobalKmerSpectrum() ] elif isinstance(spectra, (list, tuple, set)): try: processed_spectra = [] for s in spectra: if isinstance(s, MutationalSpectrum): processed_spectra.append(s) elif isinstance(s, str): processed_spectra.append(read_spectrum(s)) else: raise TypeError( 'Each spectrum must be a MutationalSpectrum object or file path to precalculated spectrum, {} given'.format( type(s))) self.spectra = processed_spectra except TypeError as e: raise TypeError( 'Each spectrum must be a MutationalSpectrum object or file path to precalculated spectrum, {} given'.format( type(s))) elif isinstance(spectra, MutationalSpectrum): self.spectra = [spectra] elif isinstance(spectra, str): if spectra.lower() == 'even': self.spectra = [EvenMutationalSpectrum()] else: # File path self.spectra = [read_spectrum(spectra)] else: raise TypeError( 'spectra must be a MutationalSpectrum object or list of MutationalSpectrum objects, {} given'.format( type(spectra))) for i, s in enumerate(self.spectra): s.set_project(self) s.reset() # Makes sure counts start from zero in case using same spectrum object again. # Run s.fix_spectrum() for each spectrum to prevent reset. def _get_sections(self, sections): additional_results_columns = [] if sections is not None: if isinstance(sections, str): self.sections = pd.read_csv(sections, sep="\t") elif isinstance(sections, pd.DataFrame): self.sections = sections else: raise ValueError('Do not recognize input sections. Should be file path or pandas dataframe') print(len(self.sections), 'sections') additional_results_columns = [c for c in self.sections.columns if c != 'transcript_id'] self.section_transcripts = self.sections['transcript_id'].unique() return additional_results_columns def make_section(self, section_dict=None, transcript_id=None, gene=None, lookup=None, **kwargs): """ :param section_dict: Can be dictionary or pandas Series. Must contain "transcript_id" or "gene" and any other information required to define a section (e.g. start/end or pdb_id and pdb_chain) :param transcript_id: :param gene: :param lookup: A Lookup object, if given will override the lookup for the DarwinianShift object. Alternatively, this can be provided in the section_dict under the key "lookup" :return: """ if section_dict is not None: section_dict_copy = section_dict.copy() # Make sure not to edit the original dictionary/series if 'transcript_id' in section_dict_copy: transcript_id = section_dict_copy.pop('transcript_id') else: transcript_id = self.get_transcript_id(section_dict_copy['gene']) if isinstance(transcript_id, set): transcript_id = list(transcript_id)[0] print('Multiple transcripts for gene {}. Running {}'.format(section_dict_copy['gene'], transcript_id)) elif transcript_id is not None: section_dict_copy = {} elif gene is not None: transcript_id = self.get_transcript_id(gene) if isinstance(transcript_id, set): transcript_id = list(transcript_id)[0] print('Multiple transcripts for gene {}. Running {}'.format(gene, transcript_id)) elif transcript_id is None: raise ValueError('No transcript associated with gene {}'.format(gene)) section_dict_copy = {} else: raise ValueError('Must provide a section_dict, transcript_id or gene') transcript_obj = self.get_transcript_obj(transcript_id) if lookup is not None: section_dict_copy['lookup'] = lookup for k, v in kwargs.items(): section_dict_copy[k] = v sec = Section(transcript_obj, **section_dict_copy) return sec def get_transcript_obj(self, transcript_id): t = self.transcript_objs.get(transcript_id, None) if t is None: t = self.make_transcript(transcript_id=transcript_id) return t def get_transcript_id(self, gene): t = self.gene_transcripts_map.get(gene, None) if t is not None and len(t) == 1: return list(t)[0] else: return t def get_gene_name(self, transcript_id): return self.transcript_gene_map.get(transcript_id, None) def get_gene_list(self): """ If no gene_list or transcript_list has been given for __init__, this will be a list of the genes that overlap with the data. :return: """ if self.gene_list is not None: return self.gene_list else: return list(self.gene_transcripts_map.keys()) def get_transcript_list(self): """ If no gene_list or transcript_list has been given for __init__, this will be a list of the genes that overlap with the data. :return: """ if self.transcript_list is not None: return self.transcript_list else: return list(self.transcript_gene_map.keys()) def make_transcript(self, gene=None, transcript_id=None, genomic_sequence_chunk=None, offset=None, region_exons=None, region_mutations=None): """ Makes a new transcript object and adds to the gene-transcript maps :param gene: :param transcript_id: :return: """ if gene is None and transcript_id is None: raise ValueError('Need to supply gene or transcript_id') t = Transcript(self, gene=gene, transcript_id=transcript_id, genomic_sequence_chunk=genomic_sequence_chunk, offset=offset, region_exons=region_exons, region_mutations=region_mutations) self.transcript_gene_map[t.transcript_id] = t.gene t.get_observed_mutations() self.gene_transcripts_map[t.gene].add(t.transcript_id) if self.verbose: self.data.loc[t.transcript_data_locs, 'included'] = True if not self.low_mem: self.transcript_objs[t.transcript_id] = t return t def get_overlapped_transcripts(self, mut_data, exon_data): mut_data = mut_data.sort_values(['chr', 'pos']) mut_bed = pybedtools.BedTool.from_dataframe(mut_data[['chr', 'pos', 'pos']]) exon_bed = pybedtools.BedTool.from_dataframe(exon_data[BED_COLS]) try: intersection = exon_bed.intersect(mut_bed).to_dataframe() except pd.errors.EmptyDataError as e: return None if not intersection.empty: intersection.rename({'score': 'Transcript stable ID', 'name': 'Gene name'}, inplace=True, axis=1) intersection = intersection[['Gene name', 'Transcript stable ID']] return intersection.drop_duplicates() else: return None def _set_up_exon_data(self): if self.transcript_list is not None: if self.section_transcripts: transcript_list_total = set(self.transcript_list).union(self.section_transcripts) else: transcript_list_total = self.transcript_list self.exon_data = self.exon_data[self.exon_data['Transcript stable ID'].isin(transcript_list_total)] self.exon_data = self.exon_data.sort_values(['Chromosome/scaffold name', 'Genomic coding start']) if set(self.transcript_list).difference(self.exon_data['Transcript stable ID'].unique()): raise ValueError('Not all requested transcripts found in exon data.') elif self.gene_list is not None: # Given genes. Will use longest transcript for each. if self.section_transcripts: self.exon_data = self.exon_data[(self.exon_data['Gene name'].isin(self.gene_list)) | (self.exon_data['Transcript stable ID'].isin(self.section_transcripts))] else: self.exon_data = self.exon_data[self.exon_data['Gene name'].isin(self.gene_list)] if self.use_longest_transcript_only: self._remove_unused_transcripts() self.exon_data = self.exon_data.sort_values(['Chromosome/scaffold name', 'Genomic coding start']) if set(self.gene_list).difference(self.exon_data['Gene name'].unique()): raise ValueError('Not all requested genes found in exon data.') else: overlapped_transcripts = self.get_overlapped_transcripts(self.data, self.exon_data) if overlapped_transcripts is None: raise ValueError('No transcripts found matching the mutations') self.exon_data = self.exon_data[ self.exon_data['Transcript stable ID'].isin(overlapped_transcripts['Transcript stable ID'])] self.exon_data = self.exon_data.sort_values(['Chromosome/scaffold name', 'Genomic coding start']) if self.use_longest_transcript_only: self._remove_unused_transcripts() if self.verbose: print(len(self.exon_data['Gene name'].unique()), 'genes') # Record the transcripts that are associated with each gene so they can be looked up ed = self.exon_data[['Gene name', 'Transcript stable ID']].drop_duplicates() for g, t in zip(ed['Gene name'], ed['Transcript stable ID']): self.transcript_gene_map[t] = g self.gene_transcripts_map[g].add(t) def _remove_unused_transcripts(self): if self.verbose: self.unfiltered_exon_data = self.exon_data.copy() transcripts = set() for gene, gene_df in self.exon_data.groupby('Gene name'): longest_cds = gene_df['CDS Length'].max() transcript_df = gene_df[gene_df['CDS Length'] == longest_cds] if len(transcript_df) > 0: transcripts.add(transcript_df.iloc[0]['Transcript stable ID']) self.signature_transcript_list = list(transcripts) if self.section_transcripts is not None: transcripts = transcripts.union(self.section_transcripts) self.exon_data = self.exon_data[self.exon_data['Transcript stable ID'].isin(transcripts)] def _check_non_included_mutations(self): # annotated mutations are those included in one of the given transcripts if not self.checked_included and self.unfiltered_exon_data is not None: non_annotated_mutations = self.data[~self.data['included']] overlapped = self.get_overlapped_transcripts(non_annotated_mutations, self.unfiltered_exon_data) if overlapped is not None: genes = overlapped['Gene name'].unique() print(len(non_annotated_mutations), 'mutations not in used transcripts, of which', len(overlapped), 'are exonic in an alternative transcript') print('Selected transcripts miss exonic mutations in alternative transcripts for:', genes) print('Look at self.alternative_transcripts for alternatives') self.alternative_transcripts = overlapped else: print(len(non_annotated_mutations), 'mutations not in used transcripts, of which 0 are exonic ' 'in an alternative transcript') self.checked_included = True def _get_processing_chunks(self): # Divide the genes/transcripts into sections which are nearby in chromosomes chunks = [] for chrom, chrom_df in self.exon_data.groupby('Chromosome/scaffold name'): chrom_data = self.data[self.data['chr'] == chrom] while len(chrom_df) > 0: first_pos = chrom_df['Genomic coding start'].min() chunk = chrom_df[chrom_df['Genomic coding start'] <= first_pos + self.chunk_size] chunk_transcripts = chunk['Transcript stable ID'].unique() chunk = chrom_df[chrom_df['Transcript stable ID'].isin(chunk_transcripts)] # Do not split up transcripts last_pos = chunk['Genomic coding end'].max() chunk_data = chrom_data[(chrom_data['pos'] >= first_pos) & (chrom_data['pos'] <= last_pos)] chunks.append({ 'chrom': str(chrom), 'start': int(first_pos), 'end': int(last_pos), 'transcripts': chunk_transcripts, 'exon_data': chunk, 'mut_data': chunk_data }) # Remove the transcripts in last chunk chrom_df = chrom_df[~chrom_df['Transcript stable ID'].isin(chunk_transcripts)] return chunks def _chunk_iterator(self): chunks = self._get_processing_chunks() f = FastaFile(self.reference_fasta) if len(self.ks) == 0: max_k = 0 else: max_k = max(self.ks) if max_k == 0: context = 0 else: context = int((max_k - 1) / 2) for c in chunks: offset = c['start'] - context try: chunk_seq = f[c['chrom']][ offset - 1:c['end'] + context].upper() #  Another -1 to move to zero based coordinates. except KeyError as e: print('Did not recognize chromosome', c['chrom']) continue for t in c['transcripts']: yield t, chunk_seq, offset, c['exon_data'], c['mut_data'] def _calculate_spectra(self, verbose=False): for transcript_id, chunk_seq, offset, region_exons, region_mutations in self._chunk_iterator(): if self.signature_transcript_list is not None and transcript_id not in self.signature_transcript_list: continue try: # Get the trinucleotides from the transcript. t = self.make_transcript(transcript_id=transcript_id, genomic_sequence_chunk=chunk_seq, offset=offset, region_exons=region_exons, region_mutations=region_mutations) for s in self.spectra: s.add_transcript_muts(t) if t.mismatches > 0: self.total_spectrum_ref_mismatch += t.mismatches elif t.dedup_mismatches > 0: # If all signature deduplicate, just count those mismatches. self.total_spectrum_ref_mismatch += t.dedup_mismatches if verbose: print('{}:{}'.format(t.gene, t.transcript_id), end=" ") except (NoTranscriptError, CodingTranscriptError): pass except Exception as e: print('Failed to collect signature data from {}'.format(transcript_id)) raise e if verbose: print() for sig in self.spectra: sig.get_spectrum() if self.total_spectrum_ref_mismatch > 0: print('Warning: {} mutations do not match reference base'.format(self.total_spectrum_ref_mismatch)) def run_gene(self, gene, plot=False, spectra=None, statistics=None, start=None, end=None, excluded_mutation_types=None, included_mutation_types=None, included_residues=None, excluded_residues=None, pdb_id=None, pdb_chain=None, lookup=None, **additional_kwargs): """ Run analysis for a single gene :param gene: Gene name. :param plot: Will plot the standard results of the analysis. If False, can still be plotted afterwards from the returned class object. Plotting afterwards also enables more plotting options. :param spectra: The mutational spectrum or spectra to use for the analysis. If None, will use the spectra of the project. :param statistics: The statistical tests to run. If None, will use the statistics of the project. :param start: Will exclude residues before this one from the analysis. If None, will start from the first residue of the protein. :param end: Will exclude residues after this one from the analysis. If None, will end at the last residue of the protein. :param excluded_mutation_types: Can be string or list of strings. Mutation types to exclude from the analysis. E.g. ['synonymous', 'nonsense']. If None, will use the excluded_mutation_types of the project. :param included_mutation_types: Can be string or list of strings. Mutation types to include in the analysis. E.g. ['synonymous', 'nonsense']. If None, will use the included_mutation_types of the project. :param included_residues: List or array of integers. The residues to analyse. If None, will analyse all residues (except those excluded by other arguments). :param excluded_residues: List or array of integers. The residues to exclude from the analysis. :param pdb_id: For analyses that use a protein structure. Four letter ID of the pdb file to use. :param pdb_chain: For analyses that use a protein structure. The chain to use for the analysis. :param lookup: The class object or function used to score the mutations. If None, will use the lookup of the project. :param additional_kwargs: Any additional attributes that will be assigned to the Section object created. These can be used by the lookup class. :return: Section object """ gene_transcripts = self.gene_transcripts_map[gene] if len(gene_transcripts) == 0: transcript_obj = self.make_transcript(gene=gene) transcript_id = transcript_obj.transcript_id else: transcript_id = list(gene_transcripts)[0] if len(gene_transcripts) > 1: print('Multiple transcripts for gene {}. Running {}'.format(gene, transcript_id)) return self.run_transcript(transcript_id, plot=plot, spectra=spectra, statistics=statistics, start=start, end=end, excluded_mutation_types=excluded_mutation_types, included_mutation_types=included_mutation_types, included_residues=included_residues, excluded_residues=excluded_residues, pdb_id=pdb_id, pdb_chain=pdb_chain, lookup=lookup, **additional_kwargs) def run_transcript(self, transcript_id, plot=False, spectra=None, statistics=None, start=None, end=None, excluded_mutation_types=None, included_mutation_types=None, included_residues=None, excluded_residues=None, pdb_id=None, pdb_chain=None, lookup=None, **additional_kwargs): """ Run analysis for a single transcript. :param transcript_id: Transcript id. :param plot: Will plot the standard results of the analysis. If False, can still be plotted afterwards from the returned class object. Plotting afterwards also enables more plotting options. :param spectra: The mutational spectrum or spectra to use for the analysis. If None, will use the spectra of the project. :param statistics: The statistical tests to run. If None, will use the statistics of the project. :param start: Will exclude residues before this one from the analysis. If None, will start from the first residue of the protein. :param end: Will exclude residues after this one from the analysis. If None, will end at the last residue of the protein. :param excluded_mutation_types: Can be string or list of strings. Mutation types to exclude from the analysis. E.g. ['synonymous', 'nonsense']. If None, will use the excluded_mutation_types of the project. :param included_mutation_types: Can be string or list of strings. Mutation types to include in the analysis. E.g. ['synonymous', 'nonsense']. If None, will use the included_mutation_types of the project. :param included_residues: List or array of integers. The residues to analyse. If None, will analyse all residues (except those excluded by other arguments). :param excluded_residues: List or array of integers. The residues to exclude from the analysis. :param pdb_id: For analyses that use a protein structure. Four letter ID of the pdb file to use. :param pdb_chain: For analyses that use a protein structure. The chain to use for the analysis. :param lookup: The class object or function used to score the mutations. If None, will use the lookup of the project. :param additional_kwargs: Any additional attributes that will be assigned to the Section object created. These can be used by the lookup class. :return: Section object """ try: section = Section(self.get_transcript_obj(transcript_id), start=start, end=end, pdb_id=pdb_id, pdb_chain=pdb_chain, excluded_mutation_types=excluded_mutation_types, included_mutation_types=included_mutation_types, included_residues=included_residues, excluded_residues=excluded_residues, lookup=lookup, **additional_kwargs) except (CodingTranscriptError, NoTranscriptError) as e: print(type(e).__name__, e, '- Unable to run for', transcript_id) return None return self.run_section(section, plot=plot, spectra=spectra, statistics=statistics) def run_section(self, section, plot=False, verbose=False, spectra=None, statistics=None, lookup=None): """ Run statistics and optionally plot plots for a section. The section can be a Section object, or a dictionary that defines the Section object to be made The spectra and statistics can be passed here, but other options for the Section (such as included/excluded mutation types) must be defined when the Section object is created or in the dictionary passed to the section arg :param section: Section object or dictionary with Section.__init__ kwargs. :param plot: Will plot the standard results of the analysis. If False, can still be plotted afterwards from the returned class object. Plotting afterwards also enables more plotting options. :param verbose: Will print section id and gene name when running. :param spectra: The mutational spectrum or spectra to use for the analysis. If None, will use the spectra of the project. :param statistics: The statistical tests to run. If None, will use the statistics of the project. :param lookup: A Lookup object, if given will override the lookup for the DarwinianShift object. Alternatively, this can be provided in the section_dict under the key "lookup" :return: Section object """ if self.lookup is None and lookup is None: # No lookup defined for the project or given as an argument to this function. # See if one has been defined for the section if isinstance(section, (dict, pd.Series)): section_lookup = section.get('lookup', None) else: section_lookup = getattr(section, 'lookup', None) if section_lookup is None: raise ValueError('No lookup defined. Define one for the whole project using ' \ 'self.change_lookup() or provide one to this function.') try: if isinstance(section, (dict, pd.Series)): # Dictionary/series with attributes to define a new section section = self.make_section(section, lookup=lookup) elif lookup is not None: section.change_lookup_inplace(lookup) if verbose: print('Running', section.section_id, section.gene) section.run(plot_permutations=plot, spectra=spectra, statistics=statistics) if plot: section.plot() return section except (NoMutationsError, AssertionError, CodingTranscriptError, NoTranscriptError, MetricLookupException) as e: if isinstance(section, Section): print(type(e).__name__, e, '- Unable to run for', section.section_id) else: print(type(e).__name__, e, '- Unable to run for', section) return None def run_all(self, verbose=None, spectra=None, statistics=None): """ Run analysis over all genes, transcripts or sections defined in the project. After running, the results can be seen in the 'results' attribute of the DarwinianShift object. The scores of each mutation can also be seen in the 'scored_data' attribute of the DarwinianShift object. :param verbose: Will print additional information. :param spectra: The mutational spectrum or spectra to use for the analysis. If None, will use the spectra of the project. :param statistics: The statistical tests to run. If None, will use the statistics of the project. :return: """ if verbose is None: verbose = self.verbose results = [] scored_data = [] for t, chunk_seq, offset, region_exons, region_mutations in self._chunk_iterator(): if self.sections is not None: # Sections are defined. if t not in self.section_transcripts: continue transcript_obj = self.transcript_objs.get(t) if transcript_obj is None: try: transcript_obj = self.make_transcript(transcript_id=t, genomic_sequence_chunk=chunk_seq, offset=offset, region_exons=region_exons, region_mutations=region_mutations) except (NoTranscriptError, CodingTranscriptError) as e: if verbose: print(e) continue if self.sections is None: # If the sections to run are not defined, use the whole transcript as one section transcript_sections = [Section(transcript_obj)] else: transcript_sections_df = self.sections[self.sections['transcript_id'] == transcript_obj.transcript_id] transcript_sections = [] for i, row in transcript_sections_df.iterrows(): transcript_sections.append(self.make_section(row)) for section in transcript_sections: res = self.run_section(section, verbose=verbose, spectra=spectra, statistics=statistics) if res is not None: scored_data.append(res.observed_mutations) results.append(res.get_results_dictionary()) if results: self.results =
pd.DataFrame(results)
pandas.DataFrame
#!/usr/bin/env python3 """ Generates all the actual figures. Run like python3 src/plot.py PLOT_NAME """ import argparse import collections import pandas as pd import numpy as np import humanize import matplotlib matplotlib.use('Agg') # NOQA import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import InsetPosition, inset_axes import seaborn as sns import scipy tgp_region_pop = { 'AMR': ['CLM', 'MXL', 'PUR', 'PEL'], 'AFR': ['LWK', 'ASW', 'GWD', 'MSL', 'YRI', 'ACB', 'ESN'], 'EAS': ['CHS', 'KHV', 'JPT', 'CHB', 'CDX'], 'SAS': ['BEB', 'STU', 'GIH', 'PJL', 'ITU'], 'EUR': ['FIN', 'GBR', 'IBS', 'CEU', 'TSI'] } # Standard order. tgp_populations = [ 'CHB', 'JPT', 'CHS', 'CDX', 'KHV', 'CEU', 'TSI', 'FIN', 'GBR', 'IBS', 'YRI', 'LWK', 'GWD', 'MSL', 'ESN', 'ASW', 'ACB', 'MXL', 'PUR', 'CLM', 'PEL', 'GIH', 'PJL', 'BEB', 'STU', 'ITU'] def get_tgp_region_colours(): return { "EAS": sns.color_palette("Greens", 2)[1], "EUR": sns.color_palette("Blues", 1)[0], "AFR": sns.color_palette("Wistia", 3)[0], "AMR": sns.color_palette("Reds", 2)[1], "SAS": sns.color_palette("Purples", 2)[1], } def get_sgdp_region_colours(): cols = get_tgp_region_colours() return { 'Africa': cols["AFR"], 'America': cols["AMR"], 'EastAsia': cols["EAS"], 'SouthAsia': cols["SAS"], 'Oceania': "brown", 'WestEurasia': cols["EUR"], 'CentralAsiaSiberia': "pink" } def get_tgp_colours(): # TODO add option to give shades for the different pops. region_colours = get_tgp_region_colours() pop_colour_map = {} for region, pops in tgp_region_pop.items(): for pop in pops: pop_colour_map[pop] = region_colours[region] return pop_colour_map class Figure(object): """ Superclass of figures for the paper. Each figure is a concrete subclass. """ name = None def __init__(self): datafile_name = "data/{}.csv".format(self.name) self.data = pd.read_csv(datafile_name) def save(self, figure_name=None, bbox_inches="tight"): if figure_name is None: figure_name = self.name print("Saving figure '{}'".format(figure_name)) plt.savefig("figures/{}.pdf".format(figure_name), bbox_inches='tight', dpi=400) plt.savefig("figures/{}.png".format(figure_name), bbox_inches='tight', dpi=400) plt.close() def error_label(self, error, label_for_no_error = "No genotyping error"): """ Make a nice label for an error parameter """ try: error = float(error) return "Error rate = {}".format(error) if error else label_for_no_error except (ValueError, TypeError): try: # make a simplified label if "Empirical" in error: error = "With genotyping" except: pass return "{} error".format(error) if error else label_for_no_error class StoringEveryone(Figure): """ Figure showing how tree sequences can store the entire human population worth of variation data. """ name = "storing_everyone" def plot(self): df = self.data df = df[df.sample_size > 10] fig = plt.figure() ax1 = fig.add_subplot(111) xytext = (18, 0) GB = 1024**3 largest_n = np.array(df.sample_size)[-1] index = df.vcf > 0 line, = ax1.loglog(df.sample_size, df.vcf_fit, "-", color="tab:pink", label="") ax1.loglog( df.sample_size[index], df.vcf[index], "d", label="VCF", color=line.get_color()) largest_value = np.array(df.vcf_fit)[-1] ax1.annotate( humanize.naturalsize(largest_value * GB, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") line, = ax1.loglog( df.sample_size, df.vcfz_fit, ":", label="", color=line.get_color()) ax1.loglog( df.sample_size[index], df.vcfz[index], "d", label="Compressed VCF", color=line.get_color(), markerfacecolor='w') largest_value = np.array(df.vcfz_fit)[-1] ax1.annotate( humanize.naturalsize(largest_value * GB, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") index = df.pbwt > 0 line, = ax1.loglog( df.sample_size[index], df.pbwt[index], "-", color="tab:orange", label="") ax1.loglog( df.sample_size[index], df.pbwt[index], "s", label="pbwt", color=line.get_color()) line, = ax1.loglog( df.sample_size[index], df.pbwtz[index], ":", label="", color=line.get_color()) ax1.loglog( df.sample_size[index], df.pbwtz[index], "s", label="Compressed pbwt", color=line.get_color(), markerfacecolor='w') line, = ax1.loglog( df.sample_size, df.uncompressed, "o", label="Trees", color="b") ax1.loglog(df.sample_size, df.tsk_fit, "-", color=line.get_color(), label="") largest_value = np.array(df.tsk_fit)[-1] ax1.annotate( humanize.naturalsize(largest_value * GB, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") line, = ax1.loglog( df.sample_size, df.tskz_fit, ":", label="", color=line.get_color()) ax1.loglog(df.sample_size, df.compressed, "o", label="Compressed trees", color=line.get_color(), markerfacecolor='w') largest_value = np.array(df.tskz_fit)[-1] ax1.annotate( humanize.naturalsize(largest_value * GB, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") ax1.set_xlabel("Number of chromosomes") ax1.set_ylabel("File size (GiB)") plt.legend() # plt.tight_layout() self.save() plt.clf() fig = plt.figure() ax1 = fig.add_subplot(111) largest_n = 10**7 index = df.sample_size <= largest_n # Rescale to MiB uncompressed = np.array(df.uncompressed[index] * 1024) compressed = np.array(df.compressed[index] * 1024) pbwt = np.array(df.pbwt[index] * 1024) pbwtz = np.array(df.pbwtz[index] * 1024) ax1.loglog(df.sample_size[index], uncompressed, "-o", label="trees") largest_value = uncompressed[-1] ax1.annotate( humanize.naturalsize(largest_value * 1024**2, binary=True, format="%.1f"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") ax1.loglog(df.sample_size[index], compressed, "-o", label="Compressed trees") largest_value = compressed[-1] ax1.annotate( humanize.naturalsize(largest_value * 1024**2, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value - 10), xycoords="data") ax1.loglog(df.sample_size[index], pbwt, "-s", label="pbwt") largest_value = pbwt[-1] ax1.annotate( humanize.naturalsize(largest_value * 1024**2, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value), xycoords="data") ax1.loglog(df.sample_size[index], pbwtz, "-s", label="Compressed pbwt") largest_value = pbwtz[-1] ax1.annotate( humanize.naturalsize(largest_value * 1024**2, binary=True, format="%d"), textcoords="offset points", xytext=xytext, xy=(largest_n, largest_value + 10), xycoords="data") ax1.set_ylabel("File size (MiB)") ax1.set_xlabel("Number of chromosomes") plt.legend() self.save("storing_everyone_pbwt") class SampleEdges(Figure): name = "sample_edges" def plot_region(self, df, ax, rotate_labels): ax.plot(df.sample_edges.values, "o") breakpoints = np.where(df.population.values[1:] != df.population.values[:-1])[0] breakpoints = np.array([-1] + list(breakpoints) + [len(df)-1])+0.5 x_labels = [] x_pos = [] last = -0.5 for bp in breakpoints[1:]: x_labels.append(df.population[int(bp - 1.5)]) x_pos.append(last + (bp - last) / 2) last = bp # use major ticks for labels, so they are not cut off ax.tick_params(axis="x", which="major", length=0) ax.set_xticks(x_pos) if rotate_labels: ax.set_xticklabels(x_labels, rotation=30) else: ax.set_xticklabels(x_labels) ax.tick_params(axis="x", which="minor", length=0) ax.set_xticks(breakpoints, minor=True) ax.set_xticklabels([], minor=True) ax.set_xlim(-0.5, len(df) - 0.5) ax.set_title(df.region.unique()[0]) ax.grid(which="minor", axis="x") def plot_summary(self): full_df = self.data fig, axes = plt.subplots(2, 1, figsize=(14, 6)) plt.subplots_adjust(hspace=0.5) for ax, dataset in zip(axes, ["1kg", "sgdp"]): df = full_df[full_df.dataset == dataset] df = df.sort_values(by=["region", "population", "sample", "strand"]) df = df.reset_index() ax.plot(df.sample_edges.values) breakpoints = np.where(df.region.values[1:] != df.region.values[:-1])[0] for bp in breakpoints: ax.axvline(x=bp, ls="--", color="black") last = 0 for j, bp in enumerate(list(breakpoints) + [len(df)]): x = last + (bp - last) / 2 y = -400 if dataset == "1kg": y = -200 ax.annotate( df.region[bp - 1], xy=(x, y), horizontalalignment='center', annotation_clip=False) last = bp breakpoints = np.where( df.population.values[1:] != df.population.values[:-1])[0] breakpoints = list(breakpoints) + [len(df)] ax.set_xticks(breakpoints) ax.set_xticklabels([]) ax.set_ylabel("Sample Edges") ax.grid(axis="x") ax.set_xlim(0, len(df)) ax.xaxis.set_ticks_position('none') title = "SGDP" if dataset == "1kg": title = "TGP" last = 0 for bp in breakpoints: x = last + (bp - last) / 2 last = bp ax.annotate( df.population[int(x)], xy=(x, 100), horizontalalignment='center', annotation_clip=False) outliers = ["NA20289", "HG02789"] for outlier in outliers: tmp_df = df[df["sample"] == outlier] x = tmp_df.index.values[0] ax.annotate( outlier, xy=(x, 1550), horizontalalignment='center', annotation_clip=False, style='italic') ax.set_title(title + " individuals") axes[0].set_ylim(0, 1500) axes[1].set_ylim(0, 3500) self.save("sample_edges_summary") def plot(self): self.plot_summary() full_df = self.data for ds in ["1kg", "sgdp"]: df_ds = full_df[full_df.dataset == ds] print(ds, "Overall", df_ds.sample_edges.mean(), sep="\t") fig, axes = plt.subplots(5, 1, figsize=(14, 16)) plt.subplots_adjust(hspace=0.5) if ds == "1kg": plt.title("TGP sample edges per population") else: plt.title("SGDP sample edges per population") for ax, region in zip(axes, df_ds.region.unique()): df = df_ds[df_ds.region == region] df = df.sort_values(by=["population", "sample", "strand"]) df = df.reset_index() print(ds, region, df.sample_edges.mean(), sep="\t") self.plot_region(df, ax, rotate_labels=ds == "sgdp") self.save("{}_{}".format(self.name, ds)) class FrequencyDistanceAccuracy(Figure): """ Plot accuracy of frequency ordering pairs of mutations vs distance between mutations The csv file is created by running python3 ./src/freq_dist_simulations.py or, if you have, say 40 processors available, you can run it in parallel like python3 -p 40 ./src/freq_dist_simulations.py """ name = "frequency_distance_accuracy_singletons" def plot(self): df = self.data plt.plot((df.SeparationDistanceStart + df.SeparationDistanceEnd)/2/1e3, df.Agree/df.Total,label=self.error_label(None), color="k", linestyle="-") plt.plot((df.SeparationDistanceStart + df.SeparationDistanceEnd)/2/1e3, df.ErrorAgree/df.Total,label=self.error_label("EmpiricalError"), color="k", linestyle="-.") plt.xlabel("Distance between variants (kb)") plt.ylabel("Proportion of mutation pairs correctly ordered") plt.legend() self.save() class AncestorAccuracy(Figure): """ Compare lengths of real vs reconstructed ancestors, using 2 csv files generated by TSINFER_DIR=../tsinfer #set to your tsinfer directory python3 ${TSINFER_DIR}/evaluation.py aq -l 5 -d data -C -s 321 -e 0 python3 ${TSINFER_DIR}/evaluation.py aq -l 5 -d data -C -s 321 -e data/EmpiricalErrorPlatinum1000G.csv cd data cat anc-qual_n=100_Ne=5000_L=5.0_mu=1e-08_rho=1e-08_err=data_EmpiricalErrorPlatinum1000G_error_data.csv > ancestor_accuracy.csv tail +2 anc-qual_n=100_Ne=5000_L=5.0_mu=1e-08_rho=1e-08_err=0.0_error_data.csv >> ancestor_accuracy.csv """ # noqa name = "ancestor_accuracy" def __init__(self): super().__init__() # rescale length to kb self.data["Real length"] /= 1e3 self.data["Estim length"] /= 1e3 # put high inaccuracy first self.data = self.data.sort_values("Inaccuracy") def plot(self): n_bins=50 max_length = max(np.max(self.data["Real length"]), np.max(self.data["Estim length"]))* 1.1 min_length = min(np.min(self.data["Real length"]), np.min(self.data["Estim length"])) * 0.9 fig = plt.figure(figsize=(20, 8)) gs = matplotlib.gridspec.GridSpec(1, 4, width_ratios=[5,5,0.5,2.5]) ax0 = fig.add_subplot(gs[0]) axes = [ax0, fig.add_subplot(gs[1], sharex=ax0, sharey=ax0, yticklabels=[])] c_ax = fig.add_subplot(gs[2]) h_ax = fig.add_subplot(gs[3], sharey=c_ax) for ax, error in zip(axes, sorted(self.data.seq_error.unique())): df = self.data.query("seq_error == @error") ls = "-" if ax == axes[0] else "-." im = ax.scatter(df["Real length"], df["Estim length"], c=1-df["Inaccuracy"], s=20, cmap=matplotlib.cm.viridis) ax.plot([0, max_length], [0, max_length], '-', color='grey', zorder=-1, linestyle=ls) ax.set_title(self.error_label(error)) ax.set_xscale('log') ax.set_yscale('log') n_greater_eq = sum(df["Estim length"]/df["Real length"] >= 1) n_less = sum(df["Estim length"]/df["Real length"] < 1) ax.text(min_length*1.1, min_length*2, "{} haplotypes $\geq$ true length".format(n_greater_eq), rotation=45, va='bottom', ha='left', color="#2ca02c") ax.text(min_length*2, min_length*1.1, "{} haplotypes $<$ true length".format(n_less), rotation=45, va='bottom', ha='left', color="#d62728") ax.set_aspect(1) ax.set_xlim(min_length, max_length) ax.set_ylim(min_length, max_length) ax.set_xlabel("True ancestral haplotype length (kb)") if ax == axes[0]: ax.set_ylabel("Inferred ancestral haplotype length (kb)") n, bins, patches = h_ax.hist(1-df["Inaccuracy"], bins=n_bins, orientation="horizontal", alpha=0.5, edgecolor='black', linewidth=1, linestyle=ls); norm = matplotlib.colors.Normalize(bins.min(), bins.max()) # set a color for every bar (patch) according # to bin value from normalized min-max interval for bin, patch in zip(bins, patches): color = matplotlib.cm.viridis(norm(bin)) patch.set_facecolor(color) c_ax.set_axes_locator(InsetPosition(axes[1], [1.05,0,0.05,1])) cbar = fig.colorbar(im, cax=c_ax) cbar.set_label("Accuracy", rotation=270, va="center") h_ax.set_axes_locator(InsetPosition(c_ax, [3.5,0,7,1])) h_ax.set_title("Accuracy distribution") h_ax.axis('off') self.save() class ToolsFigure(Figure): """ Superclass of all figures where different tools (e.g. ARGweaver, fastarg) are compared """ # Colours taken from Matplotlib default color wheel. # https://matplotlib.org/users/dflt_style_changes.html tools_format = collections.OrderedDict([ ("ARGweaver", {"mark":"*", "col":"#d62728"}), ("RentPlus", {"mark":"d", "col":"#2ca02c"}), ("fastARG", {"mark":"^", "col":"#ff7f0e"}), ("tsinfer", {"mark":"o", "col":"#1f77b4"}), ]) error_bars = True class CputimeAllToolsBySampleSizeFigure(ToolsFigure): """ Compare cpu times for tsinfer vs other tools. We can only really get the CPU times for all four methods in the same scale for tiny examples. We can show that ARGWeaver and RentPlus are much slower than tsinfer and FastARG here and compare tsinfer and FastARG more thoroughly in a dedicated figure. """ name = "cputime_all_tools_by_sample_size" def plot(self): df = self.data # Scale time to hours time_scale = 3600 df.cputime_mean /= time_scale df.cputime_se /= time_scale sample_sizes = df.sample_size.unique() fig, (ax_hi, ax_lo) = plt.subplots(2, 1, sharex=True) lengths = df.length.unique() # check these have fixed lengths assert len(lengths) == 1 max_non_AW = 0 for tool in df.tool.unique(): line_data = df.query("tool == @tool") if tool != 'ARGweaver': max_non_AW = max(max_non_AW, max(line_data.cputime_mean+line_data.cputime_se)) for ax in (ax_lo, ax_hi): ax.errorbar( line_data.sample_size, line_data.cputime_mean, yerr=line_data.cputime_se, color=self.tools_format[tool]["col"], marker=self.tools_format[tool]['mark'], elinewidth=1, label=tool) d = .015 # how big to make the diagonal lines in axes coordinates # arguments to pass to plot, just so we don't keep repeating them kwargs = dict(transform=ax_hi.transAxes, color='k', clip_on=False) ax_hi.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal ax_hi.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal ax_lo.set_xlabel("Sample Size") ax_hi.set_ylabel("CPU time (hours)") #ax_lo.set_xlim(sample_sizes.min(), sample_sizes.max()) # zoom-in / limit the view to different portions of the data ax_hi.set_ylim(bottom = max_non_AW*40) # outliers only ax_lo.set_ylim(bottom = 0-max_non_AW/20, top=max_non_AW+max_non_AW/20) # most of the data #ax_hi.set_ylim(0.01, 3) # outliers only #ax_lo.set_ylim(0, 0.002) # most of the data # hide the spines between ax and ax2 ax_hi.spines['bottom'].set_visible(False) ax_lo.spines['top'].set_visible(False) ax_hi.xaxis.tick_top() ax_hi.tick_params(labeltop=False) # don't put tick labels at the top ax_lo.xaxis.tick_bottom() kwargs.update(transform=ax_lo.transAxes) # switch to the bottom axes ax_lo.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal ax_lo.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal ax_hi.legend(loc="lower right") self.save() class MemTimeFastargTsinferFigure(ToolsFigure): name = "mem_time_fastarg_tsinfer" def __init__(self): super().__init__() # Rescale the length to Mb length_scale = 10**6 self.data.length /= length_scale # Scale time to hours time_scale = 3600 cpu_cols = [c for c in self.data.columns if c.startswith("cputime")] self.data[cpu_cols] /= time_scale # Scale memory to GiB mem_cols = [c for c in self.data.columns if c.startswith("memory")] self.data[mem_cols] /= 1024 * 1024 * 1024 length_sample_size_combos = self.data[["length", "sample_size"]].drop_duplicates() self.fixed_length = length_sample_size_combos['length'].value_counts().idxmax() self.fixed_sample_size = length_sample_size_combos['sample_size'].value_counts().idxmax() def plot(self): fig, axes = plt.subplots(2, 2, sharey="row", sharex="col", figsize=(8, 5.5), constrained_layout=True) xticks = [[0,2,4,6,8,10], [0,5000,10000,15000,20000]] #hardcode a hack here ylim_inset = [0.32, 0.35] #hardcode a hack here for i, (plotted_column, y_label) in enumerate( zip(["cputime", "memory"], ["CPU time (hours)", "Memory (GiB)"])): df = self.data.query("sample_size == @self.fixed_sample_size") df_inset = df.query("tool == 'tsinfer'") for tool in df.tool.unique(): line_data = df.query("tool == @tool") axes[i][0].errorbar( line_data.length, line_data[plotted_column+"_mean"], yerr=line_data[plotted_column+"_se"], label=tool, color=self.tools_format[tool]["col"], marker=self.tools_format[tool]['mark'], elinewidth=1) axes[i][0].set_xlim(0) axes[i][0].get_yaxis().set_label_coords(-0.08,0.5) axes[i][0].set_ylabel(y_label) tool = "tsinfer" axins1 = inset_axes(axes[i][0], width="50%", height="40%", loc=2, borderpad=1) axins1.errorbar( df_inset.length, df_inset[plotted_column+"_mean"], yerr=df_inset[plotted_column + "_se"], label=tool, color=self.tools_format[tool]["col"], marker=self.tools_format[tool]['mark'], linewidth=1, elinewidth=1, markersize=3) df = self.data.query("length == @self.fixed_length") df_inset = df.query("tool == 'tsinfer'") for tool in df.tool.unique(): line_data = df.query("tool == @tool") axes[i][1].errorbar( line_data.sample_size, line_data[plotted_column+"_mean"], yerr=line_data[plotted_column+"_se"], label=tool, color=self.tools_format[tool]["col"], marker=self.tools_format[tool]['mark'], elinewidth=1) tool = "tsinfer" axins2 = inset_axes(axes[i][1], width="50%", height="40%", loc=2, borderpad=1) axins2.errorbar( df_inset.sample_size, df_inset[plotted_column+"_mean"], yerr=df_inset[plotted_column+"_se"], label=tool, color=self.tools_format[tool]["col"], marker=self.tools_format[tool]['mark'], linewidth=1, elinewidth=1, markersize=3) axins1.tick_params(axis='both', which='major', labelsize=7) axins1.set_ylim(-0.01, ylim_inset[i]) axins1.set_xticks(xticks[0]) axins1.yaxis.tick_right() axins2.tick_params(axis='both', which='major', labelsize=7) axins2.set_ylim(-0.01, ylim_inset[i]) axins2.set_xticks(xticks[1]) axins2.yaxis.tick_right() #axins2.set_yticklabels(["{:.0f}".format(s) for s in yticks[i]]) axes[0][0].legend(loc="upper right", numpoints=1, fontsize="small") axes[1][0].set_xlabel("Length (Mb) for fixed sample size of {}".format( self.fixed_sample_size)) axes[1][1].set_xlabel("Sample size for fixed length of {:g} Mb".format( self.fixed_length)) axes[1][0].set_xticks(xticks[0]) axes[1][1].set_xticks(xticks[1]) self.save() class PerformanceLengthSamplesFigure(ToolsFigure): """ The performance metrics figures. Each of these figures has two panels; one for scaling by sequence length and the other for scaling by sample size. Different lines are given for each of the different combinations of tsinfer parameters """ y_name = "plotted_column" y_axis_label = None def __init__(self): super().__init__() # Rescale the length to Mb length_scale = 10**6 self.data.length /= length_scale length_sample_size_combos = self.data[["length", "sample_size"]].drop_duplicates() self.fixed_length = length_sample_size_combos['length'].value_counts().idxmax() self.fixed_sample_size = length_sample_size_combos['sample_size'].value_counts().idxmax() def plot(self): df = self.data recombination_linestyles = [':', '-', '--'] recombination_rates = np.sort(df.recombination_rate.unique()) mutation_rates = df.mutation_rate.unique() tools = df.tool.unique() assert len(recombination_linestyles) >= len(recombination_rates) assert len(mutation_rates) == len(tools) == 1 mu = mutation_rates[0] tool = tools[0] fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6), sharey=True) ax1.set_title("Fixed number of chromosomes ({})".format(self.fixed_sample_size)) ax1.set_xlabel("Sequence length (MB)") ax1.set_ylabel(self.y_axis_label) for linestyle, rho in zip(recombination_linestyles, recombination_rates): line_data = df.query("(sample_size == @self.fixed_sample_size) and (recombination_rate == @rho)") ax1.errorbar( line_data.length, line_data[self.plotted_column + "_mean"], yerr=None, # line_data[self.plotted_column + "_se"], linestyle=linestyle, color=self.tools_format[tool]["col"], #marker=self.tools_format[tool]['mark'], #elinewidth=1 ) ax2.set_title("Fixed sequence length ({:g} Mb)".format(self.fixed_length)) ax2.set_xlabel("Sample size") for linestyle, rho in zip(recombination_linestyles, recombination_rates): line_data = df.query("(length == @self.fixed_length) and (recombination_rate == @rho)") ax2.errorbar( line_data.sample_size, line_data[self.plotted_column + "_mean"], yerr=None, # line_data[self.plotted_column + "_se"], linestyle=linestyle, color=self.tools_format[tool]["col"], #marker=self.tools_format[tool]['mark'], #elinewidth=1 ) params = [ plt.Line2D((0,0),(0,0), color=self.tools_format[tool]["col"], linestyle=linestyle, linewidth=2) for linestyle, rho in zip(recombination_linestyles, recombination_rates)] ax1.legend( params, [r"$\rho$ = {}".format("$\mu$" if rho==mu else r"{:g}$\mu$ (more recombination)".format(rho/mu) if rho>mu else r"$\mu$/{:g} (less recombination)".format(mu/rho)) for rho_index, rho in enumerate(recombination_rates)], loc="upper right", fontsize=10, title="Relative rate of recombination") self.save() class TSCompressionFigure(PerformanceLengthSamplesFigure): name = "tsinfer_ts_filesize_ln" plotted_column = "ts_relative_filesize" y_axis_label = "File size relative to simulated tree sequence" class VCFCompressionFigure(PerformanceLengthSamplesFigure): name = "tsinfer_vcf_compression_ln" plotted_column = "vcf_compression_factor" y_axis_label = "Compression factor relative to vcf.gz" class NodesWithMutations(PerformanceLengthSamplesFigure): name = "mutation_ancestors_ln" plotted_column = "prop_nodes_with_mutation" y_axis_label = "Proportion of internal nodes associated with at least one mutation" class TreeMetricsFigure(ToolsFigure): metric_titles = { "wRF": "weighted Robinson-Foulds metric", "RF": "Robinson-Foulds metric", "SPR": "estimated SPR difference", "path": "Path difference", "KC": "Kendall-Colijn metric", } polytomy_and_averaging_format = collections.OrderedDict([ ("broken", { "per site": {"linestyle":"--"}, "per variant": {"linestyle":":"}}), ("retained", { "per site": {"linestyle":"-"}, "per variant": {"linestyle":"-."}}) ]) sample_size_format = [ {'fillstyle':'full'}, #smaller ss {'fillstyle':'none'} #assume only max 2 sample sizes per plot ] length_format = {'tsinfer':[{'col':'k'}, {'col':'#1f77b4'}, {'col':'#17becf'}]} def single_metric_plot(self, df, x_variable, ax, av_method, rho = None, markers = True, x_jitter = None): """ A single plot on an ax. This requires plotting separate lines, e.g. for each tool If rho is give, plot an x=rho vertical line, assuming x is the mutation_rate. x_jitter can be None, 'log' or 'linear' """ v_cols = ['length', 'sample_size', 'tool', 'polytomies'] v_order = df[v_cols].drop_duplicates() # find unique combinations # sort for display v_order = v_order.sort_values(v_cols, ascending=[False, True, True, False]) ss_order = {v:k for k,v in enumerate(v_order.sample_size.unique())} l_order = {v:k for k,v in enumerate(v_order.length.unique())} for i, r in enumerate(v_order.itertuples()): query = [] query.append("length == @r.length") query.append("sample_size == @r.sample_size") query.append("tool == @r.tool") query.append("polytomies == @r.polytomies") line_data = df.query("(" + ") and (".join(query) + ")") if not line_data.empty: if len(v_order.length.unique()) > 1: # all tsinfer tools: use colours for length for polytomy format colour = self.length_format[r.tool][l_order[r.length]]["col"] else: # no variable lengths: use standard tool colours colour = self.tools_format[r.tool]["col"] x = line_data[x_variable] if x_jitter: if x_jitter == 'log': x *= 1 + (2*i/len(v_order)-1) * (max(x)/min(x))/5000 else: x += (2 * i - 1) * (max(x)-min(x))/400 ax.errorbar( x, line_data.treedist_mean, yerr=line_data.treedist_se if self.error_bars else None, linestyle=self.polytomy_and_averaging_format[r.polytomies][av_method]["linestyle"], fillstyle=self.sample_size_format[ss_order[r.sample_size]]['fillstyle'], color=colour, marker=self.tools_format[r.tool]['mark'] if markers else None, elinewidth=1) if rho is not None: ax.axvline(x=rho, color = 'gray', zorder=-1, linestyle=":", linewidth=1) ax.text(rho, ax.get_ylim()[1]/40, r'$\mu=\rho$', va="bottom", ha="right", color='gray', rotation=90) return v_order class MetricsAllToolsFigure(TreeMetricsFigure): """ Simple figure that shows all the metrics at the same time. Assumes at most 2 sample sizes """ name = "metrics_all_tools" def plot(self): averaging_method = self.data.averaging.unique() eff_sizes = self.data.Ne.unique() rhos = self.data.recombination_rate.unique() lengths = self.data.length.unique() assert len(averaging_method) == len(eff_sizes) == len(rhos) == 1 rho = rhos[0] method = averaging_method[0] sample_sizes = self.data.sample_size.unique() # x-direction is different error rates seq_error_params = self.data.error_param.unique() # y-direction is the permutations of metric + whether it is rooted metric_and_rooting = self.data.groupby(["metric", "rooting"]).groups metric_and_rooting = collections.OrderedDict( # make a consistent order sorted(metric_and_rooting.items(), key=lambda x: x[0])) # sort this so that metrics come out in a set order (TO DO) fig, axes = plt.subplots(len(metric_and_rooting), len(seq_error_params), squeeze=False, sharey='row', figsize=(6*len(seq_error_params), 15)) for j, ((metric, root), rows) in enumerate(metric_and_rooting.items()): for k, error in enumerate(seq_error_params): # we are in the j,k th subplot ax = axes[j][k] ax.set_xscale('log') display_order = self.single_metric_plot( self.data.loc[rows].query("error_param == @error"), "mutation_rate", ax, method, rho, markers = (len(sample_sizes)!=1)) # Use integers for labels ax.yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True)) # Make the labels on each Y axis line up properly ax.get_yaxis().set_label_coords(-0.08,0.5) if j == 0: ax.set_title(self.error_label(error)) if j == len(metric_and_rooting) - 1: ax.set_xlabel("Mutation rate") if k == 0: ax.set_ylim(getattr(self,'ylim', 0)) rooting_suffix = " (unrooted)" if root=="unrooted" else "" ylab = getattr(self, 'y_axis_label', self.metric_titles[metric] + rooting_suffix) ax.set_ylabel(ylab) artists = [ plt.Line2D((0,1),(0,0), linewidth=2, color=self.tools_format[d.tool]["col"], linestyle=self.polytomy_and_averaging_format[d.polytomies][method]["linestyle"], marker = None if len(sample_sizes)==1 else self.tools_format[d.tool]['mark']) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] tool_labels = [d.tool + ("" if d.polytomies == "retained" else (" (polytomies " + d.polytomies + ")")) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] axes[0][0].legend( artists, tool_labels, numpoints=1, labelspacing=0.1) fig.tight_layout() self.save() class MetricsAllToolsAccuracyFigure(MetricsAllToolsFigure): """ Show the metrics tending to 0 as mutation rate increases """ name = "metrics_all_tools_accuracy" class MetricAllToolsFigure(TreeMetricsFigure): """ Plot each metric in a different pdf file. For the publication: make symbols small and solid """ plot_height = 4.5 name = "metric_all_tools" #y_axis_label="Average distance from true trees" hide_polytomy_breaking = True output_metrics = [("KC","rooted"), ("RF", "rooted")] #can add extras in here if necessary def plot(self): if getattr(self,"hide_polytomy_breaking", None): df = self.data.query("polytomies != 'broken'") else: df = self.data for metric, rooting in self.output_metrics: query = ["metric == @metric", "rooting == @rooting"] averaging_method = df.averaging.unique() eff_sizes = df.Ne.unique() rhos = df.recombination_rate.unique() lengths = df.length.unique() assert len(averaging_method) == len(eff_sizes) == len(rhos) == 1 rho = rhos[0] method = averaging_method[0] # x-direction is different sequencing error rates try: seq_error_params = df.error_param.unique() except AttributeError: seq_error_params = [0] # y-direction is different ancestral allele error rates (if present) try: aa_error_params = self.data.ancestral_state_error_param.unique() except AttributeError: aa_error_params = [0] fig, axes = plt.subplots(len(aa_error_params), len(seq_error_params), squeeze=False, sharey=True, figsize=getattr(self,'figsize',(6*len(seq_error_params), self.plot_height))) # Used for final version of Figure 3. # figsize=(7, 3.5)) for j, aa_error in enumerate(aa_error_params): for k, seq_error in enumerate(seq_error_params): ax = axes[j][k] subquery = query if len(seq_error_params) > 1: subquery.append("error_param == @seq_error") if len(aa_error_params) > 1: subquery.append("ancestral_state_error_param == @aa_error") display_order = self.single_metric_plot( df.query("(" + ") and (".join(subquery) + ")"), "mutation_rate", ax, method, rho) ax.set_title(self.error_label(seq_error)) ax.set_xlabel("Mutation rate") ax.set_xscale('log') if k == 0: ax.set_ylim(getattr(self,'ylim', 0)) rooting_suffix = " (unrooted)" if rooting=="unrooted" else "" ylab = getattr(self, 'y_axis_label', None) if ylab is None: ylab = metric + rooting_suffix + " metric" if len(aa_error_params)>1 or aa_error != 0: ylab += ", {:g}% ancestral state error".format(aa_error*100) ax.set_ylabel(ylab) # Create legends from custom artists artists = [ plt.Line2D((0,1),(0,0), color=self.tools_format[d.tool]["col"], linestyle=self.polytomy_and_averaging_format[d.polytomies][method]["linestyle"], marker = self.tools_format[d.tool]['mark']) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] tool_labels = [d.tool + ("" if d.polytomies == "retained" else (" (polytomies " + d.polytomies + ")")) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] first_legend = axes[0][0].legend( artists, tool_labels, numpoints=1, labelspacing=0.1, loc="upper right") fig.tight_layout() if len(self.output_metrics)==1: self.save() else: self.save("_".join([self.name, metric, rooting])) class MetricAllToolsAccuracyBadAncestorsSummary(MetricAllToolsFigure): name = "metric_all_tools_accuracy_bad_ancestors" output_metrics = [("KC","rooted"), ("RF", "rooted")] y_axis_label = None hide_polytomy_breaking = False plot_height = 10.5 class MetricAllToolsAccuracyDemographyFigure(MetricAllToolsFigure): """ Simple figure that shows an ARG metrics for a genome under a more complex demographic model (the Gutenkunst Out Of Africa model), as mutation rate increases to high values """ plot_height = 3.5 # To more-or-less match to other supplementary figures name = "metric_all_tools_accuracy_demography" hide_polytomy_breaking = True class MetricAllToolsAccuracySweepFigure(TreeMetricsFigure): """ Figure for simulations with selection. Each page should be a single figure for a particular metric, with error on the """ name = "metric_all_tools_accuracy_sweep" error_bars = True hide_polytomy_breaking = True output_metrics = [("KC","rooted")] #can add extras in here if necessary def plot(self): if getattr(self,"hide_polytomy_breaking", None): df = self.data.query("polytomies != 'broken'") else: df = self.data for metric, rooting in self.output_metrics: df = df.query("(metric == @metric) and (rooting == @rooting)") output_freqs = df[['output_frequency', 'output_after_generations']].drop_duplicates() averaging_method = df.averaging.unique() eff_sizes = df.Ne.unique() rhos = df.recombination_rate.unique() lengths = df.length.unique() assert len(averaging_method) == len(eff_sizes) == len(rhos) == 1 rho = rhos[0] method = averaging_method[0] # x-direction is different error rates seq_error_params = df.error_param.unique() fig, axes = plt.subplots(len(output_freqs), len(seq_error_params), figsize=getattr(self,'figsize',(6*len(seq_error_params), 2.5*len(output_freqs))), squeeze=False, sharey=True) for j, output_data in enumerate(output_freqs.itertuples()): for k, error in enumerate(seq_error_params): ax = axes[j][k] freq = output_data.output_frequency gens = output_data.output_after_generations query = ["error_param == @error"] query.append("output_frequency == @freq") query.append("output_after_generations == @gens") display_order = self.single_metric_plot( df.query("(" + ") and (".join(query) + ")"), "mutation_rate", ax, method, rho) ax.set_xscale('log') if j == 0: ax.set_title(self.error_label(error)) if j == len(output_freqs) - 1: ax.set_xlabel("Neutral mutation rate") if k == 0: ax.set_ylabel(getattr(self, 'y_axis_label', metric + " metric") + " @ {}{}".format( "fixation " if np.isclose(freq, 1.0) else "freq {}".format(freq), "+{} gens".format(int(gens)) if gens else "")) if np.isclose(freq, 1.0) and not gens: # This is *at* fixation - set the plot background colour ax.set_facecolor('0.9') # Create legends from custom artists artists = [ plt.Line2D((0,1),(0,0), color=self.tools_format[d.tool]["col"], linestyle=self.polytomy_and_averaging_format[d.polytomies][method]["linestyle"], marker = self.tools_format[d.tool]['mark']) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] tool_labels = [d.tool + ("" if d.polytomies == "retained" else (" (polytomies " + d.polytomies + ")")) for d in display_order[['tool', 'polytomies']].drop_duplicates().itertuples()] first_legend = axes[0][0].legend( artists, tool_labels, numpoints=1, labelspacing=0.1, loc="upper right") fig.tight_layout() if len(self.output_metrics)==1: self.save() else: self.save("_".join([self.name, metric, rooting])) class MetricSubsamplingFigure(TreeMetricsFigure): """ Figure that shows whether increasing sample size helps with the accuracy of reconstructing the ARG for a fixed subsample. We only use tsinfer for this. """ name = "metric_subsampling" hide_polytomy_breaking = True output_metrics = [("KC","rooted")] #can add extras in here if necessary def plot(self): self.polytomy_and_averaging_format['retained']['per variant']['linestyle'] = "-" for metric, rooting in self.output_metrics: query = ["metric == @metric", "rooting == @rooting"] if getattr(self,"hide_polytomy_breaking", None): query.append("polytomies != 'broken'") df = self.data.query("(" + ") and (".join(query) + ")") subsample_size = df.subsample_size.unique() # all should have the same similarion sample size (but inference occurs on # different subsample sizes, and tree comparisons on a fixed small tip #. averaging_method = self.data.averaging.unique() sample_sizes = df.sample_size.unique() all_tree_tips = df.restrict_sample_size_comparison.unique() mutation_rates = df.mutation_rate.unique() assert len(all_tree_tips) == len(mutation_rates) == len(sample_sizes) == len(averaging_method) == 1 tree_tips = all_tree_tips[0] method = averaging_method[0] lengths = df.length.unique() seq_error_params = df.error_param.unique() fig, axes = plt.subplots(1, len(seq_error_params), figsize=(12, 6), squeeze=False, sharey=True) for k, error in enumerate(seq_error_params): ax = axes[0][k] display_order = self.single_metric_plot( df.query("error_param == @error"), "subsample_size", ax, method, rho = None, markers = False, x_jitter = 'log') ax.set_title(self.error_label(error)) if k == 0: ylab = getattr(self, 'y_axis_label', self.metric_titles[metric]) ax.set_ylabel("Average " + ylab + " for trees reduced to first {} samples".format(tree_tips)) ax.set_xlabel("Sample size used for inference") ax.set_xscale('log') if len(display_order)>1: l_order = {v:k for k,v in enumerate(display_order.length.unique())} artists = [ plt.Line2D((0,1),(0,0), color=self.length_format[d.tool][l_order[d.length]]["col"], linestyle=self.polytomy_and_averaging_format[d.polytomies][method]["linestyle"], marker = False) for d in display_order[['length', 'tool', 'polytomies']].drop_duplicates().itertuples()] labels = ["{} kb".format(d.length//1000) for d in display_order[['length']].drop_duplicates().itertuples()] first_legend = axes[0][0].legend( artists, labels, numpoints=1, labelspacing=0.1, loc="upper right") fig.tight_layout() if len(self.output_metrics)==1: self.save() else: self.save("_".join([self.name, metric, rooting])) def rotate_linkage(linkage, index): x, y = linkage[index][0:2] linkage[index][0] = y linkage[index][1] = x class UkbbStructureFigure(Figure): """ Figure showing the structure for UKBB using heatmaps. """ name = "ukbb_structure" def __init__(self): # We don't have a CSV called this, name.csv so skip loading. pass def plot_ukbb_region_clustermap(self): df = pd.read_csv("data/ukbb_ukbb_british_centre.csv").set_index("centre") # Zscore normalise for col in list(df): df[col] = scipy.stats.zscore(df[col]) row_linkage = scipy.cluster.hierarchy.linkage(df, method="average", optimal_ordering=True) # Tweaks to the clade rotation order # Flip the north vs north-west cities rotate_linkage(row_linkage, -3) # Put Welsh towns next to Birmingham rotate_linkage(row_linkage, -8) # Do Leeds - Sheffield - Nottingham, not Nottingham - Sheffield - Leeds # (this simply helps the top-to-bottom labelling scheme rotate_linkage(row_linkage, -9) rotate_linkage(row_linkage, -11) # Bristol near Welsh towns rotate_linkage(row_linkage, -12) # Swansea then Cardiff (highlights association between Cardiff & Bristol) rotate_linkage(row_linkage, -15) # The south/south-east centres are a bit visually messy - try putting east at end # Oxford near Bristol rotate_linkage(row_linkage, -16) # Reading nearer Oxford rotate_linkage(row_linkage, -20) # Push Croydon (furthest east) to the end rotate_linkage(row_linkage, -21) order = scipy.cluster.hierarchy.leaves_list(row_linkage) x_pop = df.index.values[order] cg = sns.clustermap(df[x_pop], row_linkage=row_linkage, col_cluster=False, rasterized=True) cg.ax_heatmap.set_ylabel("") for tick in cg.ax_heatmap.get_xticklabels(): tick.set_rotation(-45) tick.set_ha('left') tick.set_rotation_mode("anchor") self.save("ukbb_ukbb_clustermap_british") def plot_1kg_ukbb_clustermap(self): df = pd.read_csv("data/1kg_ukbb_ethnicity.csv").set_index("ethnicity") colour_map = get_tgp_colours() colours = [colour_map[pop] for pop in tgp_populations] df = df[tgp_populations] row_linkage = scipy.cluster.hierarchy.linkage(df, method="average") cg = sns.clustermap( df, row_linkage=row_linkage, col_cluster=False, col_colors=colours, rasterized=True) cg.ax_heatmap.set_ylabel("") for region, col in get_tgp_region_colours().items(): cg.ax_col_dendrogram.bar(0, 0, color=col, label=region, linewidth=0) cg.ax_col_dendrogram.legend(bbox_to_anchor=(1.2, 0.8)) self.save("ukbb_1kg_clustermap_ethnicity") def plot_1kg_ukbb_british_centre_clustermap(self): df = pd.read_csv("data/1kg_ukbb_british_centre.csv").set_index("centre") colour_map = get_tgp_colours() colours = [colour_map[pop] for pop in tgp_populations] df = df[tgp_populations] # Zscore normalise for col in list(df): df[col] = scipy.stats.zscore(df[col]) row_linkage = scipy.cluster.hierarchy.linkage(df, method="average") cg = sns.clustermap( df, row_linkage=row_linkage, col_cluster=False, col_colors=colours, rasterized=True) cg.ax_heatmap.set_ylabel("") for region, col in get_tgp_region_colours().items(): cg.ax_col_dendrogram.bar(0, 0, color=col, label=region, linewidth=0) cg.ax_col_dendrogram.legend(bbox_to_anchor=(1.2, 0.8)) self.save("ukbb_1kg_clustermap_british_centre") def plot(self): self.plot_ukbb_region_clustermap() self.plot_1kg_ukbb_clustermap() self.plot_1kg_ukbb_british_centre_clustermap() class GlobalStructureFigure(Figure): name = "global_structure" def __init__(self): # We don't have a CSV called this, name.csv so skip loading. pass def plot_clustermap(self, df, pop_colours, region_colours, figsize): dfg = df.groupby("population").mean() # Zscore normalise for col in list(dfg): dfg[col] = scipy.stats.zscore(dfg[col]) row_linkage = scipy.cluster.hierarchy.linkage(dfg, method="average") order = scipy.cluster.hierarchy.leaves_list(row_linkage) x_pop = dfg.index.values[order] colours = pd.Series(pop_colours) cg = sns.clustermap( dfg[x_pop], row_linkage=row_linkage, col_cluster=False, row_colors=colours, figsize=figsize, rasterized=True) cg.ax_heatmap.set_ylabel("") for region, col in region_colours.items(): cg.ax_col_dendrogram.bar(0, 0, color=col, label=region, linewidth=0) return cg def plot_1kg_clustermap(self): df =
pd.read_csv("data/1kg_gnn.csv")
pandas.read_csv
# -*-coding:utf-8 -*- ''' @File : preprocess.py @Author : <NAME> @Date : 2020/9/9 @Desc : ''' import pandas as pd import json import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DATA_BASE = BASE_DIR + "/data/" # print(DATA_BASE) def data_preprocess(corpus_file_name): """ 数据预处理 """ print("===================Start Preprocess======================") df = pd.read_csv(DATA_BASE + corpus_file_name + ".csv") # 读取源数据,将数据解析为时间格式 # df["小时"] = df["time"].map(lambda x: int(x.strftime("%H"))) # 提取小时 df = df.drop_duplicates() # 去重 print("Remove duplicate items completed! ") df = df.dropna(subset=["内容"]) # 删除 “评论内容” 空值行 # df = df.dropna(subset=["gender"]) # 删除 “性别” 空值行 print("Remove empty contents completed! ") # df.to_csv(corpus_file_name+".csv") # 写入处理后的数据 print("===================数据清洗完毕======================") return df def get_phrases(corpus_file_name): """ 从excel/csv文件中提取相应的短语组合 """ print("===================Start Withdraw======================") print(DATA_BASE + corpus_file_name + ".csv") df = pd.read_csv("../data/" + corpus_file_name + ".csv") # 读取源数据 df = df.fillna(" ") # 用空格 " "替换 nan print("Replace NAN completed! ") # print(list(df["中性"])) pos = [ph.split(";") for ph in df["正向_细"]] neu = [ph.split(";") for ph in df["中性_细"]] neg = [ph.split(";") for ph in df["负向_细"]] pos_phrases, neu_phrases, neg_phrases = [], [], [] for i in range(len(pos)): pos_phrases.extend(pos[i]) neu_phrases.extend(neu[i]) neg_phrases.extend(neg[i]) with open(DATA_BASE + "neg_phrases.txt", "w", encoding="utf-8") as f: for ph in neg_phrases: if len(ph) > 1: f.write(ph + "\n") # # all_phrases = pos_phrases + neu_phrases + neg_phrases # special_phrases = [line.strip() for line in open(DATA_BASE + "special_phrases.txt", encoding='utf-8').readlines()] # all_phrases = list(set(special_phrases + all_phrases)) # # print(all_phrases) # # with open(DATA_BASE + "special_phrases.txt", "w", encoding="utf-8") as fw: # for ph in all_phrases: # if len(ph) > 1: # fw.write(ph + "\n") print("===================Phrases saved in file======================") def combine_phrases(): """ 整合化妆品和护肤品的短语 """ df1 =
pd.read_csv(DATA_BASE + "skin_care_phrases" + ".csv")
pandas.read_csv
import pandas as pd from zipfile import ZipFile import os class CPSPandas(): def __init__(self): pass def zipToPandas(self,filePath,startsWith="", endsWith="",contain="",header=None,error_bad_lines=True): zip_file = ZipFile(filePath) alldf = [] for textFile in zip_file.infolist(): fileName = textFile.filename baseName = os.path.basename(fileName) if baseName.startswith(startsWith) and baseName.endswith(endsWith) and (contain in baseName): try: oneFileDF = pd.read_csv(zip_file.open(fileName),header=header,error_bad_lines=error_bad_lines) alldf.append(oneFileDF) except Exception as e: print(e) df =
pd.concat(alldf)
pandas.concat
import random import pandas as pd from functools import partial from torch.utils.data import DataLoader from datasets import load_dataset, concatenate_datasets from datasets import Features, Value, ClassLabel from datastreams.datasets import dataset_configs class DataStream: features = Features({ "context": Value("string"), "statement": Value("string"), "label": ClassLabel(2, names=["False", "True"]) }) def __init__(self, dataset_names: list, split: str="train_split"): self.dataset_names = dataset_names self.stream = [] for name in dataset_names: config = dataset_configs[name] path = config["path"] name = config.get("name", None) dataset_split = config[split] dataset = load_dataset(path, name, split=dataset_split) filter_column = config.get("filter_column", None) filter_value = config.get("filter_value", None) if filter_column and filter_value: dataset = dataset.filter(lambda batch: batch[filter_column]==filter_value) transform = config["transform"] dataset = dataset.map(transform, batched=True, remove_columns=dataset.column_names) try: dataset = dataset.cast(self.features) except: raise ValueError(f"{transform} didn't transform to datastream features.") self.stream.append(dataset) def summary(self): return pd.DataFrame( [(name, data.num_rows) for name, data in zip(self.dataset_names, self.stream)], columns=["dataset", "num_examples"] ) def save(self, path): path.mkdir(parents=True, exist_ok=True) for name, data in zip(self.dataset_names, self.stream): data.to_pandas().to_csv(path/f"{name}.csv", index=False) def sample_examples(self, num_per_dataset: int=1) -> pd.DataFrame: all_sample_data = [] for name, data in zip(self.dataset_names, self.stream): sample_idxs = random.choices(range(data.num_rows), k=num_per_dataset) sample_data = data.select(sample_idxs).to_pandas() sample_data["dataset"] = name all_sample_data.append(sample_data) return
pd.concat(all_sample_data)
pandas.concat
from collections import OrderedDict from itertools import product from re import match from typing import List, Dict from numpy import nan from pandas import read_excel, DataFrame, Series, ExcelFile, concat, notnull, \ isnull from survey import Survey from survey.groups.question_groups.count_question_group import \ CountQuestionGroup from survey.groups.question_groups.free_text_question_group import \ FreeTextQuestionGroup from survey.groups.question_groups.likert_question_group import \ LikertQuestionGroup from survey.groups.question_groups.multi_choice_question_group import \ MultiChoiceQuestionGroup from survey.groups.question_groups.positive_measure_question_group import \ PositiveMeasureQuestionGroup from survey.groups.question_groups.question_group import QuestionGroup from survey.groups.question_groups.ranked_choice_question_group import \ RankedChoiceQuestionGroup from survey.groups.question_groups.single_choice_question_group import \ SingleChoiceQuestionGroup from survey.surveys.metadata.question_metadata import QuestionMetadata from survey.surveys.survey_creators.base.survey_creator import SurveyCreator class FocusVisionCreator(SurveyCreator): def read_survey_data(self): data = read_excel(self.survey_data_fn) data.columns = [column.replace(u'\xa0', u' ') for column in data.columns] if self.pre_clean is not None: data = self.pre_clean(data) self.survey_data = data def _loop_variable_froms(self, variable_name: str) -> List[str]: return self.loop_mappings.loc[ self.loop_mappings['loop_variable'] == variable_name, 'map_from' ].tolist() def _loop_variable_tos(self, variable_name: str) -> List[str]: return self.loop_mappings.loc[ self.loop_mappings['loop_variable'] == variable_name, 'map_to' ].tolist() def _loop_variable_mappings(self, variable_name: str) -> Series: return self.loop_mappings.loc[ self.loop_mappings['loop_variable'] == variable_name ].set_index('map_from')['map_to'] def _create_looped_metadata(self, metadata_dict: dict) -> List[dict]: new_metadata_dicts: List[dict] = [] expressions: DataFrame = self.loop_expressions.loc[ self.loop_expressions['loop_name'] == metadata_dict['loop_variables'], : ] loop_variables: List[str] = metadata_dict['loop_variables'].split('\n') # build lists of loop variable values loop_froms: List[list] = [] for loop_variable in loop_variables: loop_froms.append(self._loop_variable_froms(loop_variable)) # iterate over potential matching expressions for _, expression_data in expressions.iterrows(): # iterate over product of loop variable values and check for # matching column(s) for loop_vals in product(*loop_froms): # create a new expression using the loop variable values loop_expression = expression_data['expression_builder'] for l, loop_val in enumerate(loop_vals): loop_expression = loop_expression.replace( '{{' + loop_variables[l] + '}}', str(loop_val) ) # find columns matching the question expression and # loop expression match_cols = [column for column in self.survey_data.columns if match(loop_expression, column) and match(metadata_dict['expression'], column)] if len(match_cols) > 0: # create new metadata dict new_metadata = {k: v for k, v in metadata_dict.items()} # build list of loop variable values to sub into question / # attribute name var_vals: List[str] = [] for loop_variable, loop_val in zip( loop_variables, loop_vals ): loop_var_mappings = self._loop_variable_mappings( loop_variable ) var_vals.append(loop_var_mappings.loc[loop_val]) # create new name for metadata based on loop values new_metadata['name'] = ( new_metadata['name'] + '__' + '__'.join(var_vals) ) # assign loop expression to match columns against new_metadata['loop_expression'] = loop_expression new_metadata_dicts.append(new_metadata) return new_metadata_dicts def read_metadata(self): metadata = ExcelFile(self.metadata_fn) # read metadata questions_metadata = read_excel(metadata, 'questions') self.questions_metadata_original = questions_metadata attributes_metadata = read_excel(metadata, 'attributes') orders_metadata = read_excel(metadata, 'orders') if 'loop_mappings' in metadata.sheet_names: self.loop_mappings = read_excel(metadata, 'loop_mappings') if 'loop_expressions' in metadata.sheet_names: self.loop_expressions = read_excel(metadata, 'loop_expressions') # filter to specified survey if None not in (self.survey_id_col, self.survey_id): questions_metadata = self._filter_to_survey(questions_metadata) attributes_metadata = self._filter_to_survey(attributes_metadata) orders_metadata = self._filter_to_survey(orders_metadata) # check for clashes in question, attribute and category names category_names = sorted(orders_metadata['category'].unique()) q_name_errors = [] for q_name in sorted(questions_metadata['name'].unique()): if q_name in category_names: q_name_errors.append(q_name) if q_name_errors: raise ValueError( f'The following categories clash with question names. ' f'Rename questions or categories.\n{q_name_errors}' ) a_name_errors = [] for a_name in sorted(attributes_metadata['name'].unique()): if a_name in category_names: a_name_errors.append(a_name) if a_name_errors: raise ValueError( f'The following categories clash with attribute names. ' f'Rename attributes or categories.\n{a_name_errors}' ) # create ordered choices for questions with shared choices for meta in (attributes_metadata, questions_metadata): for idx, row in meta.iterrows(): # add shared orders to metadata if notnull(row['categories']): q_name = row['name'] order_value = row['categories'] ordered_choices = orders_metadata[ orders_metadata['category'] == order_value ].copy() ordered_choices['category'] = q_name orders_metadata = concat([orders_metadata, ordered_choices]) # create looped questions if 'loop_variables' in questions_metadata.columns: questions_metadata_items = [] for _, row in questions_metadata.iterrows(): metadata_dict = row.to_dict() if notnull(metadata_dict['loop_variables']): new_metadatas = self._create_looped_metadata(metadata_dict) questions_metadata_items.extend(new_metadatas) for new_metadata in new_metadatas: q_name = new_metadata['name'] order_value = row['categories'] ordered_choices = orders_metadata[ orders_metadata['category'] == order_value ].copy() ordered_choices['category'] = q_name orders_metadata = concat([ orders_metadata, ordered_choices ]) else: questions_metadata_items.append(metadata_dict) questions_metadata = DataFrame(questions_metadata_items) # set member variables self.questions_metadata = questions_metadata self.attributes_metadata = attributes_metadata self.orders_metadata = orders_metadata def _get_single_column_data( self, question_metadata: QuestionMetadata ) -> Series: if question_metadata.expression is None: return self.survey_data[question_metadata.text] else: if not question_metadata.loop_expression: match_cols = [c for c in self.survey_data.columns if match(question_metadata.expression, c)] else: match_cols = [c for c in self.survey_data.columns if match(question_metadata.expression, c) and match(question_metadata.loop_expression, c)] if len(match_cols) != 1: raise ValueError( f'Did not match exactly one column for question:' f' "{question_metadata.name}". ' f'Matched {len(match_cols)}.' ) data = self.survey_data[match_cols[0]] data = data.rename(question_metadata.name) return data def _get_multi_choice_data( self, question_metadata: QuestionMetadata ) -> Series: # merge multi-choice questions to single column if question_metadata.expression is None: raise ValueError('Need a regular expression to match ' 'MultiChoice question columns.') match_cols = [c for c in self.survey_data.columns if match(question_metadata.expression, c)] if len(match_cols) == 0: raise ValueError( f'Could not match expression "{question_metadata.expression}" ' f'for MultiChoice question "question_metadata"' ) if notnull(question_metadata.loop_expression): match_cols = [c for c in match_cols if match(question_metadata.loop_expression, c)] choices = self.survey_data[match_cols].copy(deep=True) def create_cell_data(row: Series): selected_values = [val for val in row.to_list() if not val.startswith('NO TO:')] return '\n'.join(selected_values) null_rows = choices.notnull().sum(axis=1) == 0 data = Series(data=nan, index=choices.index) data.loc[~null_rows] = choices.loc[~null_rows].apply( create_cell_data, axis=1 ) return Series(data=data, name=question_metadata.name) def clean_survey_data(self): new_columns = [] # copy attribute columns to new dataframe for amd in self.attribute_metadatas: new_columns.append(self._get_single_column_data(amd)) for qmd in self.question_metadatas: if qmd.type_name not in ('MultiChoice', 'RankedChoice'): new_columns.append(self._get_single_column_data(qmd)) elif qmd.type_name == 'MultiChoice': new_columns.append(self._get_multi_choice_data(qmd)) elif qmd.type_name == 'RankedChoice': raise NotImplementedError( 'No implementation for FocusVision RankedChoice Questions' ) # set index of respondent id new_survey_data = concat(new_columns, axis=1) new_survey_data.index = self.survey_data['record: Record number'] new_survey_data.index.name = 'Respondent ID' self.survey_data = new_survey_data def format_survey_data(self): pass def _create_groups(self) -> Dict[str, QuestionGroup]: # create groups groups = {} for _, question_metadata in self.questions_metadata_original.iterrows(): if
isnull(question_metadata['loop_variables'])
pandas.isnull
import os import pandas as pd import numpy as np import time from pathlib import Path as P from multiprocessing import Pool, Manager, cpu_count from tqdm import tqdm from .tools import read_peaklists, process,\ check_peaklist, export_to_excel,\ MINT_RESULTS_COLUMNS, PEAKLIST_COLUMNS from .peak_detection import OpenMSFFMetabo import ms_mint class Mint(object): def __init__(self, verbose:bool=False): self._verbose = verbose self._version = ms_mint.__version__ self._progress_callback = None self.reset() if self.verbose: print('Mint Version:', self.version , '\n') self.peak_detector = OpenMSFFMetabo() @property def verbose(self): return self._verbose @verbose.setter def verbose(self, value:bool): self._verbose = value @property def version(self): return self._version def reset(self): self._files = [] self._peaklist_files = [] self._peaklist = pd.DataFrame(columns=PEAKLIST_COLUMNS) self._results = pd.DataFrame({i: [] for i in MINT_RESULTS_COLUMNS}) self._all_df = None self._progress = 0 self.runtime = None self._status = 'waiting' self._messages = [] def clear_peaklist(self): self._peaklist =
pd.DataFrame(columns=PEAKLIST_COLUMNS)
pandas.DataFrame
""" This module contains functions for loading data. """ from collections import OrderedDict import csv from typing import Tuple, Optional, Dict, Union, Type, List import arff import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype from gama.utilities.preprocessing import log CSV_SNIFF_SIZE = 2 ** 12 def load_csv_header(file_path: str, **kwargs) -> List[str]: """ Return column names in the header, or 0...N if no header is present. """ with open(file_path, "r") as csv_file: has_header = csv.Sniffer().has_header(csv_file.read(CSV_SNIFF_SIZE)) csv_file.seek(0) if "sep" not in kwargs: dialect = csv.Sniffer().sniff(csv_file.read(CSV_SNIFF_SIZE)) kwargs["sep"] = dialect.delimiter csv_file.seek(0) first_line = csv_file.readline()[:-1] if has_header: return first_line.split(kwargs["sep"]) else: return [str(i) for i, _ in enumerate(first_line.split(kwargs["sep"]))] def csv_to_pandas(file_path: str, **kwargs) -> pd.DataFrame: """ Load data from the csv file into a pd.DataFrame. Parameters ---------- file_path: str Path of the csv file kwargs: Additional arguments for pandas.read_csv. If not specified, the presence of the header and the delimiter token are both detected automatically. Returns ------- pandas.DataFrame A dataframe of the data in the ARFF file, with categorical columns having category dtype. """ if "header" not in kwargs: with open(file_path, "r") as csv_file: has_header = csv.Sniffer().has_header(csv_file.read(CSV_SNIFF_SIZE)) kwargs["header"] = 0 if has_header else None df =
pd.read_csv(file_path, **kwargs)
pandas.read_csv
import faiss from utils import MovieDataApp, RetToHive spark = MovieDataApp().spark import numpy as np spark.sql('use movie_recall') # id = spark.sql('select movie_id from movie_vector_1969').limit(10000) user_vector_arr = spark.sql('select * from movie_vector_1969').limit(100).toPandas().values[:, 2].tolist() user_vector_arr = np.asarray(user_vector_arr).astype('float32') # print(type(user_vector_arr)) # print(user_vector_arr.shape) # print(user_vector_arr) # user_vector_arr.printSchema() gds_vector_arr = spark.sql('select movievector from movie_vector_1969').limit(100).toPandas().values[:, 0].tolist() gds_vector_arr = np.asarray(gds_vector_arr).astype('float32') # print(gds_vector_arr.shape) # print(gds_vector_arr) # user_vector_arr # shape(1000, 100) # gds_vector_arr # shape(100, 100) dim = 100# 向量维度 k = 10 # 定义召回向量个数 index = faiss.IndexFlatL2(dim) # L2距离,即欧式距离(越小越好) # index=faiss.IndexFlatIP(dim) # 点乘,归一化的向量点乘即cosine相似度(越大越好) # print(index.is_trained) index.add(gds_vector_arr) # 添加训练时的样本 # print(index.ntotal) D, I = index.search(user_vector_arr, k) # 寻找相似向量, I表示相似用户ID矩阵, D表示距离矩阵 print(D[:5]) print(I[-5:]) import pandas as pd df = pd.DataFrame(columns=['index']) df.append(pd.Series([None]), ignore_index=True) df['index'] = I.tolist() df2 =
pd.DataFrame(columns=['similar'])
pandas.DataFrame
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier def main(): try: df_train = pd.read_csv( 'http://archive.ics.uci.edu/ml/' 'machine-learning-databases/adult/adult.data', header=None) df_test = pd.read_csv( 'http://archive.ics.uci.edu/ml/' 'machine-learning-databases/adult/adult.test', skiprows=[0], header=None) except: df_train = pd.read_csv('adult.data', header=None) df_test =
pd.read_csv('adult.test', skiprows=[0], header=None)
pandas.read_csv
import numpy as np import pandas as pd import pickle import warnings from tqdm import tqdm import time from collections import defaultdict import matplotlib.pyplot as plt warnings.filterwarnings('ignore') train =
pd.read_csv('../IA2-train.csv')
pandas.read_csv
""" Name : c9_44_equal_weighted_vs_value_weighted.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : <NAME> Date : 6/6/2017 email : <EMAIL> <EMAIL> """ import pandas as pd import scipy as sp x=pd.read_pickle("c:/temp/yanMonthly.pkl") def ret_f(ticker): a=x[x.index==ticker] p=sp.array(a['VALUE']) ddate=a['DATE'][1:] ret=p[1:]/p[:-1]-1 out1=pd.DataFrame(p[1:],index=ddate) out2=pd.DataFrame(ret,index=ddate) output=pd.merge(out1,out2,left_index=True, right_index=True) output.columns=['Price_'+ticker,'Ret_'+ticker] return output a=ret_f("IBM") b=ret_f('WMT') c=
pd.merge(a,b,left_index=True, right_index=True)
pandas.merge
import numpy as np from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import Categorical, DataFrame, Series import pandas._testing as tm class TestCategoricalConcat: def test_categorical_concat(self, sort): # See GH 10177 df1 = DataFrame( np.arange(18, dtype="int64").reshape(6, 3), columns=["a", "b", "c"] ) df2 = DataFrame(np.arange(14, dtype="int64").reshape(7, 2), columns=["a", "c"]) cat_values = ["one", "one", "two", "one", "two", "two", "one"] df2["h"] = Series(Categorical(cat_values)) res = pd.concat((df1, df2), axis=0, ignore_index=True, sort=sort) exp = DataFrame( { "a": [0, 3, 6, 9, 12, 15, 0, 2, 4, 6, 8, 10, 12], "b": [ 1, 4, 7, 10, 13, 16, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ], "c": [2, 5, 8, 11, 14, 17, 1, 3, 5, 7, 9, 11, 13], "h": [None] * 6 + cat_values, } ) tm.assert_frame_equal(res, exp) def test_categorical_concat_dtypes(self): # GH8143 index = ["cat", "obj", "num"] cat = Categorical(["a", "b", "c"]) obj = Series(["a", "b", "c"]) num = Series([1, 2, 3]) df = pd.concat([Series(cat), obj, num], axis=1, keys=index) result = df.dtypes == "object" expected = Series([False, True, False], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "int64" expected = Series([False, False, True], index=index) tm.assert_series_equal(result, expected) result = df.dtypes == "category" expected = Series([True, False, False], index=index) tm.assert_series_equal(result, expected) def test_concat_categoricalindex(self): # GH 16111, categories that aren't lexsorted categories = [9, 0, 1, 2, 3] a = Series(1, index=pd.CategoricalIndex([9, 0], categories=categories)) b = Series(2, index=pd.CategoricalIndex([0, 1], categories=categories)) c = Series(3, index=pd.CategoricalIndex([1, 2], categories=categories)) result = pd.concat([a, b, c], axis=1) exp_idx = pd.CategoricalIndex([9, 0, 1, 2], categories=categories) exp = DataFrame( { 0: [1, 1, np.nan, np.nan], 1: [np.nan, 2, 2, np.nan], 2: [np.nan, np.nan, 3, 3], }, columns=[0, 1, 2], index=exp_idx, ) tm.assert_frame_equal(result, exp) def test_categorical_concat_preserve(self): # GH 8641 series concat not preserving category dtype # GH 13524 can concat different categories s = Series(list("abc"), dtype="category") s2 = Series(list("abd"), dtype="category") exp = Series(list("abcabd")) res = pd.concat([s, s2], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), dtype="category") res = pd.concat([s, s], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series(list("abcabc"), index=[0, 1, 2, 0, 1, 2], dtype="category") res = pd.concat([s, s]) tm.assert_series_equal(res, exp) a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame({"A": a, "B": b.astype(CategoricalDtype(list("cab")))}) res = pd.concat([df2, df2]) exp = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ) tm.assert_frame_equal(res, exp) def test_categorical_index_preserver(self): a = Series(np.arange(6, dtype="int64")) b = Series(list("aabbca")) df2 = DataFrame( {"A": a, "B": b.astype(CategoricalDtype(list("cab")))} ).set_index("B") result = pd.concat([df2, df2]) expected = DataFrame( { "A": pd.concat([a, a]), "B": pd.concat([b, b]).astype(CategoricalDtype(list("cab"))), } ).set_index("B") tm.assert_frame_equal(result, expected) # wrong categories -> uses concat_compat, which casts to object df3 = DataFrame( {"A": a, "B": Categorical(b, categories=list("abe"))} ).set_index("B") result = pd.concat([df2, df3]) expected = pd.concat( [ df2.set_axis(df2.index.astype(object), 0), df3.set_axis(df3.index.astype(object), 0), ] ) tm.assert_frame_equal(result, expected) def test_concat_categorical_tz(self): # GH-23816 a = Series(pd.date_range("2017-01-01", periods=2, tz="US/Pacific")) b = Series(["a", "b"], dtype="category") result =
pd.concat([a, b], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- from collections import OrderedDict import pandas as pd try: from pandas.testing import assert_frame_equal except ImportError: from pandas.util.testing import assert_frame_equal from jparse import JParser jp = JParser() TEST_CASE1 = [OrderedDict([('A1', 1), ('A2', 2), ('A3', 3)]), OrderedDict([('A1', [4, 5, 6]), ('A2', 7), ('A3', 'x')])] TEST_CASE2 = OrderedDict([('A1', [OrderedDict([('B1', 4), ('B2', 5)]), OrderedDict([('B1', 6), ('B3', 7)])]), ('A2', OrderedDict([('C1', [8, 9]), ('C2', [10, 11])])), ('A3', OrderedDict([('A1', OrderedDict([('B4', 12)])), ('A4', 10)]))]) def test_to_df_default(): result1 = jp.to_df(TEST_CASE1) result2 = jp.to_df(TEST_CASE2) expected1 = pd.DataFrame([{'0_A1': 1, '0_A2': 2, '0_A3': 3, '1_A1_0': 4, '1_A1_1': 5, '1_A1_2': 6, '1_A2': 7, '1_A3': 'x'}]) expected2 = pd.DataFrame([{'A1_0_B1': 4, 'A1_0_B2': 5, 'A1_1_B1': 6, 'A1_1_B3': 7, 'A2_C1_0': 8, 'A2_C1_1': 9, 'A2_C2_0': 10, 'A2_C2_1': 11, 'A3_A1_B4': 12, 'A3_A4': 10}]) assert_frame_equal(result1, expected1)
assert_frame_equal(result2, expected2)
pandas.util.testing.assert_frame_equal
import logging from collections import OrderedDict import pandas as pd import pyprind import six import dask from dask import delayed from dask.diagnostics import ProgressBar from py_stringmatching.tokenizer.qgram_tokenizer import QgramTokenizer from py_stringmatching.tokenizer.whitespace_tokenizer import WhitespaceTokenizer import cloudpickle as cp import pickle import py_entitymatching.catalog.catalog_manager as cm from py_entitymatching.blocker.blocker import Blocker import py_stringsimjoin as ssj from py_entitymatching.utils.catalog_helper import log_info, get_name_for_key, \ add_key_column from py_entitymatching.utils.generic_helper import parse_conjunct from py_entitymatching.utils.validation_helper import validate_object_type from py_entitymatching.dask.utils import validate_chunks, get_num_partitions, \ get_num_cores, wrap logger = logging.getLogger(__name__) class DaskRuleBasedBlocker(Blocker): """ WARNING THIS BLOCKER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK. Blocks based on a sequence of blocking rules supplied by the user. """ def __init__(self, *args, **kwargs): feature_table = kwargs.pop('feature_table', None) self.feature_table = feature_table self.rules = OrderedDict() self.rule_str = OrderedDict() self.rule_ft = OrderedDict() self.filterable_sim_fns = {'jaccard', 'cosine', 'dice', 'overlap_coeff'} self.allowed_ops = {'<', '<='} self.rule_source = OrderedDict() self.rule_cnt = 0 logger.warning("WARNING THIS BLOCKER IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN " "RISK.") super(Blocker, self).__init__(*args, **kwargs) def _create_rule(self, conjunct_list, feature_table, rule_name): if rule_name is None: # set the rule name automatically name = '_rule_' + str(self.rule_cnt) self.rule_cnt += 1 else: # use the rule name supplied by the user name = rule_name # create function string fn_str = 'def ' + name + '(ltuple, rtuple):\n' # add 4 tabs fn_str += ' ' fn_str += 'return ' + ' and '.join(conjunct_list) if feature_table is not None: feat_dict = dict( zip(feature_table['feature_name'], feature_table['function'])) else: feat_dict = dict(zip(self.feature_table['feature_name'], self.feature_table['function'])) six.exec_(fn_str, feat_dict) return feat_dict[name], name, fn_str def add_rule(self, conjunct_list, feature_table=None, rule_name=None): """Adds a rule to the rule-based blocker. Args: conjunct_list (list): A list of conjuncts specifying the rule. feature_table (DataFrame): A DataFrame containing all the features that are being referenced by the rule (defaults to None). If the feature_table is not supplied here, then it must have been specified during the creation of the rule-based blocker or using set_feature_table function. Otherwise an AssertionError will be raised and the rule will not be added to the rule-based blocker. rule_name (string): A string specifying the name of the rule to be added (defaults to None). If the rule_name is not specified then a name will be automatically chosen. If there is already a rule with the specified rule_name, then an AssertionError will be raised and the rule will not be added to the rule-based blocker. Returns: The name of the rule added (string). Raises: AssertionError: If `rule_name` already exists. AssertionError: If `feature_table` is not a valid value parameter. Examples: >>> import py_entitymatching >>> from py_entitymatching.dask.dask_rule_based_blocker import DaskRuleBasedBlocker >>> rb = DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, rule_name='rule1') """ if rule_name is not None and rule_name in self.rules.keys(): logger.error('A rule with the specified rule_name already exists.') raise AssertionError('A rule with the specified rule_name already exists.') if feature_table is None and self.feature_table is None: logger.error('Either feature table should be given as parameter ' + 'or use set_feature_table to set the feature table.') raise AssertionError('Either feature table should be given as ' + 'parameter or use set_feature_table to set ' + 'the feature table.') if not isinstance(conjunct_list, list): conjunct_list = [conjunct_list] fn, name, fn_str = self._create_rule(conjunct_list, feature_table, rule_name) self.rules[name] = fn self.rule_source[name] = fn_str self.rule_str[name] = conjunct_list if feature_table is not None: self.rule_ft[name] = feature_table else: self.rule_ft[name] = self.feature_table return name def delete_rule(self, rule_name): """Deletes a rule from the rule-based blocker. Args: rule_name (string): Name of the rule to be deleted. Examples: >>> import py_entitymatching as em >>> from py_entitymatching.dask.dask_rule_based_blocker import DaskRuleBasedBlocker >>> rb = DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, block_f, rule_name='rule_1') >>> rb.delete_rule('rule_1') """ assert rule_name in self.rules.keys(), 'Rule name not in current set of rules' del self.rules[rule_name] del self.rule_source[rule_name] del self.rule_str[rule_name] del self.rule_ft[rule_name] return True def view_rule(self, rule_name): """Prints the source code of the function corresponding to a rule. Args: rule_name (string): Name of the rule to be viewed. Examples: >>> import py_entitymatching as em >>> rb = em.DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, block_f, rule_name='rule_1') >>> rb.view_rule('rule_1') """ assert rule_name in self.rules.keys(), 'Rule name not in current set of rules' print(self.rule_source[rule_name]) def get_rule_names(self): """Returns the names of all the rules in the rule-based blocker. Returns: A list of names of all the rules in the rule-based blocker (list). Examples: >>> import py_entitymatching as em >>> rb = em.DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, block_f, rule_name='rule_1') >>> rb.get_rule_names() """ return self.rules.keys() def get_rule(self, rule_name): """Returns the function corresponding to a rule. Args: rule_name (string): Name of the rule. Returns: A function object corresponding to the specified rule. Examples: >>> import py_entitymatching as em >>> rb = em.DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, feature_table=block_f, rule_name='rule_1') >>> rb.get_rule() """ assert rule_name in self.rules.keys(), 'Rule name not in current set of rules' return self.rules[rule_name] def set_feature_table(self, feature_table): """Sets feature table for the rule-based blocker. Args: feature_table (DataFrame): A DataFrame containing features. Examples: >>> import py_entitymatching as em >>> rb = em.DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rb.set_feature_table(block_f) """ if self.feature_table is not None: logger.warning( 'Feature table is already set, changing it now will not recompile ' 'existing rules') self.feature_table = feature_table def block_tables(self, ltable, rtable, l_output_attrs=None, r_output_attrs=None, l_output_prefix='ltable_', r_output_prefix='rtable_', verbose=False, show_progress=True, n_ltable_chunks=1, n_rtable_chunks=1): """ WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK Blocks two tables based on the sequence of rules supplied by the user. Finds tuple pairs from left and right tables that survive the sequence of blocking rules. A tuple pair survives the sequence of blocking rules if none of the rules in the sequence returns True for that pair. If any of the rules returns True, then the pair is blocked. Args: ltable (DataFrame): The left input table. rtable (DataFrame): The right input table. l_output_attrs (list): A list of attribute names from the left table to be included in the output candidate set (defaults to None). r_output_attrs (list): A list of attribute names from the right table to be included in the output candidate set (defaults to None). l_output_prefix (string): The prefix to be used for the attribute names coming from the left table in the output candidate set (defaults to 'ltable\_'). r_output_prefix (string): The prefix to be used for the attribute names coming from the right table in the output candidate set (defaults to 'rtable\_'). verbose (boolean): A flag to indicate whether the debug information should be logged (defaults to False). show_progress (boolean): A flag to indicate whether progress should be displayed to the user (defaults to True). n_ltable_chunks (int): The number of partitions to split the left table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. n_rtable_chunks (int): The number of partitions to split the right table ( defaults to 1). If it is set to -1, then the number of partitions is set to the number of cores in the machine. Returns: A candidate set of tuple pairs that survived the sequence of blocking rules (DataFrame). Raises: AssertionError: If `ltable` is not of type pandas DataFrame. AssertionError: If `rtable` is not of type pandas DataFrame. AssertionError: If `l_output_attrs` is not of type of list. AssertionError: If `r_output_attrs` is not of type of list. AssertionError: If the values in `l_output_attrs` is not of type string. AssertionError: If the values in `r_output_attrs` is not of type string. AssertionError: If the input `l_output_prefix` is not of type string. AssertionError: If the input `r_output_prefix` is not of type string. AssertionError: If `verbose` is not of type boolean. AssertionError: If `show_progress` is not of type boolean. AssertionError: If `n_ltable_chunks` is not of type int. AssertionError: If `n_rtable_chunks` is not of type int. AssertionError: If `l_out_attrs` are not in the ltable. AssertionError: If `r_out_attrs` are not in the rtable. AssertionError: If there are no rules to apply. Examples: >>> import py_entitymatching as em >>> from py_entitymatching.dask.dask_rule_based_blocker import DaskRuleBasedBlocker >>> rb = DaskRuleBasedBlocker() >>> A = em.read_csv_metadata('path_to_csv_dir/table_A.csv', key='id') >>> B = em.read_csv_metadata('path_to_csv_dir/table_B.csv', key='id') >>> block_f = em.get_features_for_blocking(A, B) >>> rule = ['name_name_lev(ltuple, rtuple) > 3'] >>> rb.add_rule(rule, feature_table=block_f) >>> C = rb.block_tables(A, B) """ logger.warning( "WARNING THIS COMMAND IS EXPERIMENTAL AND NOT TESTED. USE AT YOUR OWN RISK.") # validate data types of input parameters self.validate_types_params_tables(ltable, rtable, l_output_attrs, r_output_attrs, l_output_prefix, r_output_prefix, verbose, 1) # validate data type of show_progress self.validate_show_progress(show_progress) # validate input parameters self.validate_output_attrs(ltable, rtable, l_output_attrs, r_output_attrs) # get and validate metadata log_info(logger, 'Required metadata: ltable key, rtable key', verbose) # # get metadata l_key, r_key = cm.get_keys_for_ltable_rtable(ltable, rtable, logger, verbose) # # validate metadata cm._validate_metadata_for_table(ltable, l_key, 'ltable', logger, verbose) cm._validate_metadata_for_table(rtable, r_key, 'rtable', logger, verbose) # validate rules assert len(self.rules.keys()) > 0, 'There are no rules to apply' # validate number of ltable and rtable chunks validate_object_type(n_ltable_chunks, int, 'Parameter n_ltable_chunks') validate_object_type(n_rtable_chunks, int, 'Parameter n_rtable_chunks') validate_chunks(n_ltable_chunks) validate_chunks(n_rtable_chunks) # # determine the number of chunks n_ltable_chunks = get_num_partitions(n_ltable_chunks, len(ltable)) n_rtable_chunks = get_num_partitions(n_rtable_chunks, len(rtable)) # # set index for convenience l_df = ltable.set_index(l_key, drop=False) r_df = rtable.set_index(r_key, drop=False) # # remove l_key from l_output_attrs and r_key from r_output_attrs l_output_attrs_1 = [] if l_output_attrs: l_output_attrs_1 = [x for x in l_output_attrs if x != l_key] r_output_attrs_1 = [] if r_output_attrs: r_output_attrs_1 = [x for x in r_output_attrs if x != r_key] # # get attributes to project l_proj_attrs, r_proj_attrs = self.get_attrs_to_project(l_key, r_key, l_output_attrs_1, r_output_attrs_1) l_df, r_df = l_df[l_proj_attrs], r_df[r_proj_attrs] candset, rule_applied = self.block_tables_with_filters(l_df, r_df, l_key, r_key, l_output_attrs_1, r_output_attrs_1, l_output_prefix, r_output_prefix, verbose, show_progress, get_num_cores()) # pass number of splits as # the number of cores in the machine if candset is None: # no filterable rule was applied candset = self.block_tables_without_filters(l_df, r_df, l_key, r_key, l_output_attrs_1, r_output_attrs_1, l_output_prefix, r_output_prefix, verbose, show_progress, n_ltable_chunks, n_rtable_chunks) elif len(self.rules) > 1: # one filterable rule was applied but other rules are left # block candset by applying other rules and excluding the applied rule candset = self.block_candset_excluding_rule(candset, l_df, r_df, l_key, r_key, l_output_prefix + l_key, r_output_prefix + r_key, rule_applied, show_progress, get_num_cores()) retain_cols = self.get_attrs_to_retain(l_key, r_key, l_output_attrs_1, r_output_attrs_1, l_output_prefix, r_output_prefix) if len(candset) > 0: candset = candset[retain_cols] else: candset = pd.DataFrame(columns=retain_cols) # update catalog key = get_name_for_key(candset.columns) candset = add_key_column(candset, key) cm.set_candset_properties(candset, key, l_output_prefix + l_key, r_output_prefix + r_key, ltable, rtable) # return candidate set return candset def block_candset_excluding_rule(self, c_df, l_df, r_df, l_key, r_key, fk_ltable, fk_rtable, rule_to_exclude, show_progress, n_chunks): # # list to keep track of valid ids valid = [] apply_rules_excluding_rule_pkl = cp.dumps(self.apply_rules_excluding_rule) if n_chunks == 1: # single process valid = _block_candset_excluding_rule_split(c_df, l_df, r_df, l_key, r_key, fk_ltable, fk_rtable, rule_to_exclude, apply_rules_excluding_rule_pkl, show_progress) else: # multiprocessing c_splits = pd.np.array_split(c_df, n_chunks) valid_splits = [] for i in range(len(c_splits)): partial_result = delayed(_block_candset_excluding_rule_split)(c_splits[i], l_df, r_df, l_key, r_key, fk_ltable, fk_rtable, rule_to_exclude, apply_rules_excluding_rule_pkl, False) # use Progressbar from # Dask.diagnostics so set the #show_progress to False valid_splits.append(partial_result) valid_splits = delayed(wrap)(valid_splits) if show_progress: with ProgressBar(): valid_splits = valid_splits.compute(scheduler="processes", num_workers=get_num_cores()) else: valid_splits = valid_splits.compute(scheduler="processes", num_workers=get_num_cores()) valid = sum(valid_splits, []) # construct output candset if len(c_df) > 0: candset = c_df[valid] else: candset =
pd.DataFrame(columns=c_df.columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 31 15:16:47 2017 @author: wasifaahmed """ from flask import Flask, flash,render_template, request, Response, redirect, url_for, send_from_directory,jsonify,session import json as json from datetime import datetime,timedelta,date from sklearn.cluster import KMeans import numpy as np from PIL import Image from flask.ext.sqlalchemy import SQLAlchemy import matplotlib.image as mpimg from io import StringIO from skimage import data, exposure, img_as_float ,io,color import scipy from scipy import ndimage import time import tensorflow as tf import os , sys import shutil import numpy as np import pandas as pd from PIL import Image from model import * from sqlalchemy.sql import text from sqlalchemy import * from forms import * import math from io import StringIO import csv from sqlalchemy.orm import load_only from datetime import datetime,date from numpy import genfromtxt from sqlalchemy.ext.serializer import loads, dumps from sqlalchemy.orm import sessionmaker, scoped_session from flask_bootstrap import Bootstrap graph = tf.Graph() with graph.as_default(): sess = tf.Session(graph=graph) init_op = tf.global_variables_initializer() pointsarray=[] def load_model(): sess.run(init_op) saver = tf.train.import_meta_graph('E:/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727.meta') #saver = tf.train.import_meta_graph('/Users/wasifaahmed/Documents/FRAS/Fras_production_v.0.1/FRAS Windows/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727.meta') print('The model is loading...') #saver.restore(sess, "/Users/wasifaahmed/Documents/FRAS/Fras_production_v.0.1/FRAS Windows/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727") saver.restore(sess, 'E:/FRAS Windows/FRAS_production/Simulation/FRAS_20170726/FRAS_20170727') print('loaded...') pass engine =create_engine('postgresql://postgres:user@localhost/postgres') Session = scoped_session(sessionmaker(bind=engine)) mysession = Session() app = Flask(__name__) app.config.update( DEBUG=True, SECRET_KEY='\<KEY>') app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://postgres:user@localhost/fras_production' db.init_app(app) Bootstrap(app) @app.after_request def add_header(response): response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response @app.route('/',methods=['GET', 'POST']) def login(): form = LoginForm() return render_template('forms/login.html', form=form) @app.route('/home',methods=['GET', 'POST']) def index(): return render_template('pages/home.html') @app.route('/detail_setup/') def Detail_Setup(): curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() firer_1 = [row.service_id for row in Shooter.query.all()] return render_template('pages/detail_setup.html', data=selection, firer_1=firer_1) @app.route('/auto_setup/') def auto_setup(): drop=[] curdate=time.strftime("%Y-%m-%d") form=BulkRegistrationForm() selection_2=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() selection=TGroup.query.distinct(TGroup.group_no).filter(TGroup.date==curdate).all() return render_template('pages/auto_setup.html', data=selection, data_2=selection_2,form=form) @app.route('/auto_setup_1/') def auto_setup_1(): drop=[] curdate=time.strftime("%Y-%m-%d") form=BulkRegistrationForm() selection_2=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() selection=TGroup.query.distinct(TGroup.group_no).all() return render_template('pages/auto_setup_1.html', data=selection, data_2=selection_2,form=form) @app.route('/group_gen/',methods=['GET', 'POST']) def group_gen(): da_1=None da_2=None da_3=None da_4=None da_5=None da_6=None da_7=None da_8=None if request.method == "POST": data = request.get_json() group=data['data'] session['group']=group data=TGroup.query.filter(TGroup.group_no==group).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no return jsonify(data1=da_1, data2=da_2, data3=da_3, data4=da_4, data5=da_5, data6=da_6, data7=da_7, data8=da_8 ) @app.route('/detail_exitence_1/',methods=['GET', 'POST']) def detail_exitence_1(): ra_1=None da_1=None detail=None service_id_1=None session=None paper=None set_no=None cant=None if request.method == "POST": data = request.get_json() detail=data['data'] dt=time.strftime("%Y-%m-%d") data=db.session.query(Session_Detail).filter(Session_Detail.detail_no==detail).scalar() db.session.query(TShooting).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=data.session_id, detail_no=data.detail_no, target_1_id=data.target_1_id, target_2_id=data.target_2_id, target_3_id=data.target_3_id, target_4_id=data.target_4_id, target_5_id=data.target_5_id, target_6_id=data.target_6_id, target_7_id=data.target_7_id, target_8_id=data.target_8_id, paper_ref=data.paper_ref, set_no=data.set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() res=[] ten=[] gp_len=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==data.target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==data.target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==data.target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(ele6) da_1=db.session.query(Shooter.name).filter(Shooter.id==data.target_1_id).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.id==data.target_1_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() ra_1_id=db.session.query(Shooter.rank_id).filter(Shooter.id==data.target_1_id).scalar() ra_1 = db.session.query(Rank.name).filter(Rank.id==ra_1_id).scalar() session=db.session.query(TShooting.session_id).scalar() paper=db.session.query(TShooting.paper_ref).scalar() set_no=db.session.query(TShooting.set_no).scalar() service_id_1 = db.session.query(Shooter.service_id).filter(Shooter.id==data.target_1_id).scalar() return jsonify( data1=da_1, ra_1=ra_1, detail=detail, service_id_1=service_id_1, session=session, paper=paper, set_no=set_no, cant=cant, res=res, ten=ten, gp_len=gp_len ) @app.route('/generate_ref/' ,methods=['GET', 'POST']) def generate_ref(): g=None if request.method == "POST": data = request.get_json() paper_ref =data['data'] if (paper_ref == 'New'): g=0 else: obj=TPaper_ref.query.scalar() g= obj.paper_ref return jsonify(gen=int(g)) @app.route('/create_detail_target_2/', methods=['GET', 'POST']) def create_detail_target_2(): curdate=time.strftime("%Y-%m-%d") firer_1 = [row.service_id for row in Shooter.query.all()] detail_data=TShooting.query.scalar() return render_template('pages/create_detail_target_2.html', detail_data=detail_data, firer_1=firer_1 ) @app.route('/save_target_2/', methods=['GET', 'POST']) def save_target_2(): r=request.form['tag'] r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id ses=Session_Detail.query.first() ses.target_2_id=r_id db.session.commit() temp =TShooting.query.first() temp.target_2_id=r_id db.session.commit() return redirect(url_for('individual_score_target_2')) @app.route('/create_detail_target_1/', methods=['GET', 'POST']) def create_detail_target_1(): curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date==curdate).all() firer_1 = [row.service_id for row in Shooter.query.all()] return render_template('pages/create_detail_target_1.html', data=selection, firer_1=firer_1 ) @app.route('/create_session/', methods=['GET', 'POST']) def create_session(): try: data = Shooter.query.all() rang= Range.query.all() firearms = Firearms.query.all() ammunation = Ammunation.query.all() rang_name = request.form.get('comp_select_4') fire_name = request.form.get('comp_select_5') ammu_name = request.form.get('comp_select_6') form=SessionForm() if(rang_name is None): range_id=999 fire_id=999 ammu_id=999 else: range_id = db.session.query(Range.id).filter(Range.name==rang_name).scalar() fire_id = db.session.query(Firearms.id).filter(Firearms.name==fire_name).scalar() ammu_id = db.session.query(Ammunation.id).filter(Ammunation.name==ammu_name).scalar() if form.validate_on_submit(): shooting=Shooting_Session( date=form.date.data.strftime('%Y-%m-%d'), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=fire_id, ammunation_id=ammu_id, target_distance = form.target_distance.data, weather_notes = form.weather_notes.data, comments = form.comments.data, session_no=form.session_no.data, occasion=form.occ.data ) db.session.add(shooting) db.session.commit() return redirect(url_for('create_detail_target_1')) except Exception as e: return redirect(url_for('error5_505.html')) return render_template('forms/shooting_form.html', form=form, data =data ,rang=rang , firearmns=firearms, ammunation = ammunation) @app.route('/monthly_report/',methods=['GET','POST']) def monthly_report(): year=None month=None date_start=None try: if request.method=='POST': month=request.form.get('comp_select') year = datetime.now().year if (month == 'October'): dt_start='-10-01' dt_end ='-10-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='January'): dt_start='-01-01' dt_end ='-01-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='February'): dt_start='-02-01' dt_end ='-02-28' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='March'): dt_start='-03-01' dt_end ='-03-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='April'): dt_start='-04-01' dt_end ='-04-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='May'): dt_start='-05-01' dt_end ='-05-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='June'): dt_start='-06-01' dt_end ='-06-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='July'): dt_start='-07-01' dt_end ='-07-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='August'): dt_start='-08-01' dt_end ='-08-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='September'): dt_start='-09-01' dt_end ='-09-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() elif(month=='November'): dt_start='-11-01' dt_end ='-11-30' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() else: dt_start='-12-01' dt_end ='-12-31' str_date_start = str(year)+dt_start date_start=datetime.strptime(str_date_start, "%Y-%m-%d") str_date_end = str(year)+dt_end date_end=datetime.strptime(str_date_end, "%Y-%m-%d") dat1=db.session.query(Grouping.date,Shooter.service_id,Rank.name,Shooter.name.label('firer'),Shooter.unit,Shooter.brigade,Grouping.detail_no,Grouping.result,Grouping.grouping_length_f,MPI.tendency_text).filter(Grouping.date.between(date_start,date_end), Grouping.firer_id==Shooter.id,Shooter.rank_id==Rank.id and Grouping.date==MPI.date, Grouping.session_id==MPI.session_id,Grouping.firer_id==MPI.firer_id,Grouping.detail_no==MPI.detail_no,Grouping.target_no==MPI.target_no,Grouping.spell_no==MPI.spell_no,Grouping.paper_ref==MPI.paper_ref).all() return render_template('pages/monthly_report.html', dat1=dat1 ,month=month) except Exception as e: return render_template('errors/month_session.html') return render_template('pages/monthly_report.html') @app.route('/save_target_1/', methods=['GET', 'POST']) def save_target_1(): ref_1=None try: if request.method == 'POST': detail_no = request.form['game_id_1'] r=request.form['tag'] r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r2_id=999 r3_id=999 r4_id=999 r5_id=999 r6_id=999 r7_id=999 r8_id=999 ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') ref_1 = None paper=db.session.query(TPaper_ref).scalar() if(ref == ""): ref_1=paper.paper_ref else: ref_1=ref temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).delete() db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() except Exception as e: return redirect(url_for('error_target_1')) return redirect(url_for('individual_score_target_1')) @app.route('/FRAS/', methods=['GET', 'POST']) def load (): try: ref_1=None if request.method == 'POST': detail_no = request.form['game_id_1'] tmp_list = [] duplicate = False r=request.form['tag'] if (r== ""): r_id = 999 else: r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r1=request.form['tag_1'] if(r1== ""): r1_id=999 else: r1_object=Shooter.query.filter(Shooter.service_id==r1).scalar() r1_id=r1_object.id r2=request.form['tag_2'] if (r2==""): r2_id=999 else: r2_object=Shooter.query.filter(Shooter.service_id==r2).scalar() r2_id=r2_object.id r3=request.form['tag_3'] if(r3==""): r3_id=999 else: r3_object=Shooter.query.filter(Shooter.service_id==r3).scalar() r3_id=r3_object.id r4=request.form['tag_4'] if(r4==""): r4_id=999 else: r4_object=Shooter.query.filter(Shooter.service_id==r4).scalar() r4_id=r4_object.id r5=request.form['tag_5'] if(r5==""): r5_id=999 else: r5_object=Shooter.query.filter(Shooter.service_id==r5).scalar() r5_id=r5_object.id r6=request.form['tag_6'] if(r6==""): r6_id=999 else: r6_object=Shooter.query.filter(Shooter.service_id==r6).scalar() r6_id=r6_object.id r7=request.form['tag_7'] if(r7== ""): r7_id=999 else: r7_object=Shooter.query.filter(Shooter.service_id==r7).scalar() r7_id=r7_object.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : print("Inside ref _4 else") ref_1=ref print(ref_1) print("Inside ref _4 else 1") if(int(set_no)>5): print("Inside ref _5 else") return redirect(url_for('paper_duplicate_error')) else: print("Inside TPaper_ref") db.session.query(TPaper_ref).delete() print("Inside TPaper_ref") db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() print("Inside load 3") for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True print("temp1") if(duplicate): return redirect(url_for('duplicate_firer_error')) else: print("temp") temp=db.session.query(TShooting.save_flag).scalar() print(temp) if(temp is None): print("Inside the temp if") print(sess) print(detail_no) Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) print(Tdetail_shots) print("Tdetail_shots") db.session.add(Tdetail_shots) db.session.commit() print("" ) detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: print(e) return redirect(url_for('error_2')) return redirect(url_for('image_process')) @app.route('/FRAS_1/', methods=['GET', 'POST']) def load_1 (): ref_1=None try: if request.method == 'POST': print("This is inside Post") detail_no = request.form['game_id_1'] print("this is detail_no") print(detail_no) tmp_list = [] duplicate = False gr=session.get('group',None) data=TGroup.query.filter(TGroup.group_no==gr).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no if(da_1==""): r_id=999 else: r=Shooter.query.filter(Shooter.service_id==da_1).scalar() r_id=r.id if(da_2==""): r1_id=999 else: r1=Shooter.query.filter(Shooter.service_id==da_2).scalar() r1_id=r1.id if(da_3==""): r2_id=999 else: r2=Shooter.query.filter(Shooter.service_id==da_3).scalar() r2_id=r2.id if(da_4==""): r3_id=999 else: r3=Shooter.query.filter(Shooter.service_id==da_4).scalar() r3_id=r3.id if(da_5==""): r4_id=999 else: r4=Shooter.query.filter(Shooter.service_id==da_5).scalar() r4_id=r4.id if(da_6==""): r5_id=999 else: r5=Shooter.query.filter(Shooter.service_id==da_6).scalar() r5_id=r5.id if(da_7==""): r6_id=999 else: r6=Shooter.query.filter(Shooter.service_id==da_7).scalar() r6_id=r6.id if(da_8==""): r7_id=999 else: r7=Shooter.query.filter(Shooter.service_id==da_8).scalar() r7_id=r7.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) print(tmp_list) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : ref_1=ref check=TPaper_ref.query.scalar() cses=check.session_no det=check.detail_no if(int(set_no)>5): return redirect(url_for('paper_duplicate_error')) else: db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: return redirect(url_for('error_102')) return redirect(url_for('detail_view')) @app.route('/FRAS_2/', methods=['GET', 'POST']) def load_2 (): ref_1=None try: if request.method == 'POST': print("This is inside Post") detail_no = request.form['game_id_1'] print("this is detail_no") print(detail_no) tmp_list = [] duplicate = False gr=session.get('group',None) data=TGroup.query.filter(TGroup.group_no==gr).scalar() da_1=data.target_1_no da_2=data.target_2_no da_3=data.target_3_no da_4=data.target_4_no da_5=data.target_5_no da_6=data.target_6_no da_7=data.target_7_no da_8=data.target_8_no if(da_1==""): r_id=999 else: r=Shooter.query.filter(Shooter.service_id==da_1).scalar() r_id=r.id if(da_2==""): r1_id=999 else: r1=Shooter.query.filter(Shooter.service_id==da_2).scalar() r1_id=r1.id if(da_3==""): r2_id=999 else: r2=Shooter.query.filter(Shooter.service_id==da_3).scalar() r2_id=r2.id if(da_4==""): r3_id=999 else: r3=Shooter.query.filter(Shooter.service_id==da_4).scalar() r3_id=r3.id if(da_5==""): r4_id=999 else: r4=Shooter.query.filter(Shooter.service_id==da_5).scalar() r4_id=r4.id if(da_6==""): r5_id=999 else: r5=Shooter.query.filter(Shooter.service_id==da_6).scalar() r5_id=r5.id if(da_7==""): r6_id=999 else: r6=Shooter.query.filter(Shooter.service_id==da_7).scalar() r6_id=r6.id if(da_8==""): r7_id=999 else: r7=Shooter.query.filter(Shooter.service_id==da_8).scalar() r7_id=r7.id ref=request.form['business'] set_no = request.form.get('comp_select_6') shots = request.form['tag_8'] sess=request.form.get('comp_select') tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) print(tmp_list) if ref == None or ref =="": ref_obj=TPaper_ref.query.scalar() ref_1=ref_obj.paper_ref else : ref_1=ref check=TPaper_ref.query.scalar() cses=check.session_no det=check.detail_no if(int(set_no)>5): return redirect(url_for('paper_duplicate_error')) else: db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( paper_ref=ref_1, detail_no=detail_no, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting is None): detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_shots =TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(Tdetail_shots) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail_no, target_1_id=r_id, target_2_id=r1_id, target_3_id=r2_id, target_4_id=r3_id, target_5_id=r4_id, target_6_id=r5_id, target_7_id=r6_id, target_8_id=r7_id, paper_ref=ref_1, set_no=set_no, save_flag=0 ) db.session.add(detail_shots) db.session.commit() except Exception as e: print(e) return redirect(url_for('error')) return redirect(url_for('image_process')) @app.route('/detail_view/', methods=['GET', 'POST']) def detail_view(): detail = Session_Detail.query.all() for details in detail: details.target_1=Shooter.query.filter(Shooter.id==details.target_1_id).scalar() details.target_2=Shooter.query.filter(Shooter.id==details.target_2_id).scalar() details.target_3=Shooter.query.filter(Shooter.id==details.target_3_id).scalar() details.target_4=Shooter.query.filter(Shooter.id==details.target_4_id).scalar() details.target_5=Shooter.query.filter(Shooter.id==details.target_5_id).scalar() details.target_6=Shooter.query.filter(Shooter.id==details.target_6_id).scalar() details.target_7=Shooter.query.filter(Shooter.id==details.target_7_id).scalar() details.target_8=Shooter.query.filter(Shooter.id==details.target_8_id).scalar() return render_template('pages/detail_view.html',detail=detail) @app.route('/detail_view/detail/<id>', methods=['GET', 'POST']) def view_detail(id): detail=Session_Detail.query.filter(Session_Detail.id == id) for details in detail: details.target_1=Shooter.query.filter(Shooter.id==details.target_1_id).scalar() details.target_2=Shooter.query.filter(Shooter.id==details.target_2_id).scalar() details.target_3=Shooter.query.filter(Shooter.id==details.target_3_id).scalar() details.target_4=Shooter.query.filter(Shooter.id==details.target_4_id).scalar() details.target_5=Shooter.query.filter(Shooter.id==details.target_5_id).scalar() details.target_6=Shooter.query.filter(Shooter.id==details.target_6_id).scalar() details.target_7=Shooter.query.filter(Shooter.id==details.target_7_id).scalar() details.target_8=Shooter.query.filter(Shooter.id==details.target_8_id).scalar() return render_template('pages/detail_view_id.html',data=detail) @app.route('/detail_view/edit/<id>', methods=['GET', 'POST']) def view_detail_edit(id): try: detail=Session_Detail.query.filter(Session_Detail.id == id).first() form=DetailEditForm(obj=detail) if form.validate_on_submit(): tmp_list = [] target_1=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() tmp_list.append(target_1.id) target_2=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() tmp_list.append(target_2.id) target_3=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() tmp_list.append(target_3.id) target_4=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() tmp_list.append(target_4.id) target_5=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() tmp_list.append(target_5.id) target_6=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() tmp_list.append(target_6.id) target_7=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() tmp_list.append(target_7.id) target_8=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() tmp_list.append(target_8.id) duplicate = False for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(duplicate): return redirect(url_for('duplicate_firer_error')) else: detail.date=form.date.data detail.session_id=form.session_id.data detail.detail_no=form.detail_no.data detail.paper_ref=form.paper_ref.data detail.set_no=form.set_no.data target_1_obj=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() detail.target_1_id=target_1_obj.id target_2_obj=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() detail.target_2_id=target_2_obj.id target_3_obj=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() detail.target_3_id=target_3_obj.id target_4_obj=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() detail.target_4_id=target_4_obj.id target_5_obj=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() detail.target_5_id=target_5_obj.id target_6_obj=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() detail.target_6_id=target_6_obj.id target_7_obj=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() detail.target_7_id=target_7_obj.id target_8_obj=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() detail.target_8_id=target_8_obj.id db.session.commit() db.session.query(TPaper_ref).delete() db.session.commit() ref_edit = TPaper_ref( paper_ref=form.paper_ref.data, detail_no=form.detail_no.data, session_no=form.session_id.data ) db.session.add(ref_edit) db.session.commit() target_1_obj=Shooter.query.filter(Shooter.service_id == form.target_1_service.data).scalar() target_2_obj=Shooter.query.filter(Shooter.service_id == form.target_2_service.data).scalar() target_3_obj=Shooter.query.filter(Shooter.service_id == form.target_3_service.data).scalar() target_4_obj=Shooter.query.filter(Shooter.service_id == form.target_4_service.data).scalar() target_5_obj=Shooter.query.filter(Shooter.service_id == form.target_5_service.data).scalar() target_6_obj=Shooter.query.filter(Shooter.service_id == form.target_6_service.data).scalar() target_7_obj=Shooter.query.filter(Shooter.service_id == form.target_7_service.data).scalar() target_8_obj=Shooter.query.filter(Shooter.service_id == form.target_8_service.data).scalar() temp_shooting=db.session.query(TShooting).scalar() if(temp_shooting.save_flag==1): return redirect(url_for('data_save')) else: db.session.query(TShooting).filter(TShooting.id != 999).delete() db.session.commit() Tdetail_edit =TShooting( date=form.date.data, datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=form.session_id.data, detail_no=form.detail_no.data, target_1_id=target_1_obj.id, target_2_id=target_2_obj.id, target_3_id=target_3_obj.id, target_4_id=target_4_obj.id, target_5_id=target_5_obj.id, target_6_id=target_6_obj.id, target_7_id=target_7_obj.id, target_8_id=target_8_obj.id, paper_ref=form.paper_ref.data, set_no=form.set_no.data, save_flag=0 ) db.session.add(Tdetail_edit) db.session.commit() return redirect(url_for('detail_view')) form.date.data=detail.date form.session_id.data=detail.session_id form.detail_no.data=detail.detail_no form.paper_ref.data=detail.paper_ref form.set_no.data=detail.set_no name_1= Shooter.query.filter(Shooter.id==detail.target_1_id).scalar() form.target_1_service.data=data=name_1.service_id name_2= Shooter.query.filter(Shooter.id==detail.target_2_id).scalar() form.target_2_service.data=data=name_2.service_id name_3= Shooter.query.filter(Shooter.id==detail.target_3_id).scalar() form.target_3_service.data=data=name_3.service_id name_4= Shooter.query.filter(Shooter.id==detail.target_4_id).scalar() form.target_4_service.data=data=name_4.service_id name_5=Shooter.query.filter(Shooter.id==detail.target_5_id).scalar() form.target_5_service.data=data=name_5.service_id name_6=Shooter.query.filter(Shooter.id==detail.target_6_id).scalar() form.target_6_service.data=data=name_6.service_id name_7=Shooter.query.filter(Shooter.id==detail.target_7_id).scalar() form.target_7_service.data=data=name_7.service_id name_8=Shooter.query.filter(Shooter.id==detail.target_8_id).scalar() form.target_8_service.data=data=name_8.service_id except Exception as e: return render_template('errors/detail_view.html') return render_template('pages/detail_view_edit.html' , detail=detail,form=form) @app.route('/data_save', methods=['GET', 'POST']) def data_save(): return render_template('pages/data_save.html') @app.route('/target_registration/', methods=['GET', 'POST']) def target_registration(): result=None if request.method=="POST": data1 = request.get_json() print(data1) cant=data1['cant'] div=data1['div'] rank=data1['rank'] gen=data1['gender'] dt=data1['date'] name=data1['name'] army_no=data1['service'] unit=data1['unit'] brigade=data1['brig'] gender_id=db.session.query(Gender.id).filter(Gender.name==gen).scalar() rank_id=db.session.query(Rank.id).filter(Rank.name==rank).scalar() cant_id=db.session.query(Cantonment.id).filter(Cantonment.cantonment==cant ,Cantonment.division==div).scalar() print("cant_id") print(cant_id) shooter = Shooter( name=name, service_id = army_no, registration_date = dt, gender_id=gender_id, cantonment_id = cant_id, rank_id =rank_id, unit=unit, brigade=brigade ) db.session.add(shooter) db.session.commit() result="Data Saved Sucessfully" return jsonify(result=result) @app.route('/shooter_registration/', methods=['GET', 'POST']) def registration(): try: cantonment=Cantonment.query.distinct(Cantonment.cantonment) gender =Gender.query.all() rank = Rank.query.all() ran = request.form.get('comp_select4') cant = request.form.get('comp_select') gen = request.form.get('comp_select5') brig = request.form.get('comp_select1') form = RegistrationForm(request.form) if(ran is None): pass else: ran_object=Rank.query.filter(Rank.name==ran).scalar() rank_id = ran_object.id cant_object = Cantonment.query.filter(Cantonment.cantonment==cant,Cantonment.division==brig).scalar() cant_id = cant_object.id gen_obj=Gender.query.filter(Gender.name==gen).scalar() gender_id = gen_obj.id if form.validate_on_submit(): shooter = Shooter( name=form.name.data, service_id = form.service_id.data, registration_date = form.dt.data.strftime('%Y-%m-%d'), gender_id=gender_id, cantonment_id = cant_id, rank_id =rank_id, unit=form.unit.data, brigade=form.brig.data ) db.session.add(shooter) db.session.commit() new_form = RegistrationForm(request.form) return redirect(url_for('firer_details')) except Exception as e: return redirect(url_for('error_4')) return render_template('forms/registration.html', cantonment = cantonment , form=form , rank = rank, gender=gender) @app.route('/get_brigade/') def get_brigade(): cant = request.args.get('customer') da = da = Cantonment.query.filter(Cantonment.cantonment==cant).distinct(Cantonment.division) data = [{"name": x.division} for x in da] return jsonify(data) @app.route('/firer_details/', methods=['GET', 'POST']) def firer_details(): firer = Shooter.query.all() for firers in firer: firers.cantonment_name= Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.division = Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.rank = Rank.query.filter(Rank.id==firers.rank_id).scalar() firers.gender_name = Gender.query.filter(Gender.id==firers.gender_id).scalar() return render_template('pages/firer_details.html' , firer = firer) @app.route('/bulk_registration_group') def bulk_registration_group(): form=BulkRegistrationForm(request.form) return render_template('pages/bulk_registration_group.html',form=form) @app.route('/bulk_registration') def bulk_registration(): cantonment=db.session.query(Cantonment).distinct(Cantonment.cantonment) form=RegistrationForm(request.form) return render_template('pages/bulk_registration.html',cantonment=cantonment,form=form) @app.route('/upload', methods=['POST']) def upload(): try: f = request.files['data_file'] cant = request.form.get('comp_select') div = request.form.get('comp_select1') form=RegistrationForm(request.form) unit = request.form['game_id_1'] brig = request.form['game_id_2'] cant_id = db.session.query(Cantonment.id).filter(Cantonment.cantonment==cant, Cantonment.division==div ).scalar() if form.is_submitted(): stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: shooters = Shooter( name = lis[i][0], service_id=lis[i][3], registration_date=datetime.now(), gender_id=db.session.query(Gender.id).filter(Gender.name==lis[i][2]).scalar(), cantonment_id = cant_id, rank_id = db.session.query(Rank.id).filter(Rank.name==lis[i][1]).scalar(), unit=unit, brigade=brig ) db.session.add(shooters) db.session.commit() except Exception as e: return redirect(url_for('error_3')) return redirect(url_for('firer_details')) @app.route('/uploadgroup', methods=['POST']) def uploadgroup(): try: f = request.files['data_file'] form=BulkRegistrationForm(request.form) if form.is_submitted(): curdate_p=(date.today())- timedelta(1) if(db.session.query(db.exists().where(TGroup.date <= curdate_p)).scalar()): db.session.query(TGroup).delete() db.session.commit() stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: group = TGroup( date=datetime.now(), group_no=lis[i][0], target_1_no=lis[i][1], target_2_no=lis[i][2], target_3_no=lis[i][3], target_4_no=lis[i][4], target_5_no=lis[i][5], target_6_no=lis[i][6], target_7_no=lis[i][7], target_8_no=lis[i][8] ) db.session.add(group) db.session.commit() else: stream = StringIO(f.stream.read().decode("UTF8")) csv_input = csv.reader(stream) lis =list(csv_input) for i in range(len(lis)): if (i==0): pass else: group = TGroup( date=datetime.now(), group_no=lis[i][0], target_1_no=lis[i][1], target_2_no=lis[i][2], target_3_no=lis[i][3], target_4_no=lis[i][4], target_5_no=lis[i][5], target_6_no=lis[i][6], target_7_no=lis[i][7], target_8_no=lis[i][8] ) db.session.add(group) db.session.commit() except Exception as e: return redirect(url_for('error_duplicate')) return redirect(url_for('group_view')) @app.route('/new_group') def new_group(): firer = [row.service_id for row in Shooter.query.all()] return render_template('pages/new_group.html',firer_1=firer) @app.route('/individual_group/', methods=['GET', 'POST']) def individual_group(): try: curdate_p=(date.today())- timedelta(1) #check=mysession.query(TGroup).filter(date==curdate_p).all() if request.method=="POST": grp = request.form['game_id_1'] tmp_list = [] duplicate = False r=request.form['tag'] if (r== ""): r_id = 999 else: r_object=Shooter.query.filter(Shooter.service_id==r).scalar() r_id=r_object.id r1=request.form['tag_1'] if(r1== ""): r1_id=999 else: r1_object=Shooter.query.filter(Shooter.service_id==r1).scalar() r1_id=r1_object.id r2=request.form['tag_2'] if (r2==""): r2_id=999 else: r2_object=Shooter.query.filter(Shooter.service_id==r2).scalar() r2_id=r2_object.id r3=request.form['tag_3'] if(r3==""): r3_id=999 else: r3_object=Shooter.query.filter(Shooter.service_id==r3).scalar() r3_id=r3_object.id r4=request.form['tag_4'] if(r4==""): r4_id=999 else: r4_object=Shooter.query.filter(Shooter.service_id==r4).scalar() r4_id=r4_object.id r5=request.form['tag_5'] if(r5==""): r5_id=999 else: r5_object=Shooter.query.filter(Shooter.service_id==r5).scalar() r5_id=r5_object.id r6=request.form['tag_6'] if(r6==""): r6_id=999 else: r6_object=Shooter.query.filter(Shooter.service_id==r6).scalar() r6_id=r6_object.id r7=request.form['tag_7'] if(r7== ""): r7_id=999 else: r7_object=Shooter.query.filter(Shooter.service_id==r7).scalar() r7_id=r7_object.id tmp_list.append(r_id) tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False elif(i!=j and tmp_list[i]==tmp_list[j]): duplicate = True if(db.session.query(db.exists().where(TGroup.date == curdate_p)).scalar()): db.session.query(TGroup).delete() db.session.commit() if(duplicate): return redirect(url_for('duplicate_firer_error')) else: gr=TGroup( date=datetime.now(), group_no=grp, target_1_no=r, target_2_no=r1, target_3_no=r2, target_4_no=r3, target_5_no=r4, target_6_no=r5, target_7_no=r6, target_8_no=r7 ) db.session.add(gr) db.session.commit() else: if(duplicate): return redirect(url_for('duplicate_firer_error')) else: gr=TGroup( date=datetime.now(), group_no=grp, target_1_no=r, target_2_no=r1, target_3_no=r2, target_4_no=r3, target_5_no=r4, target_6_no=r5, target_7_no=r6, target_8_no=r7 ) db.session.add(gr) db.session.commit() except Exception as e: return render_template('errors/group_view_error.html') return redirect(url_for('group_view')) @app.route('/group_view/', methods=['GET', 'POST']) def group_view(): detail = TGroup.query.all() return render_template('pages/group_detail_view.html',detail=detail) @app.route('/group_view/detail/<id>', methods=['GET', 'POST']) def group_detail_view(id): view = TGroup.query.filter(TGroup.group_no == id) return render_template('pages/group_detail_view_id.html' , data = view) @app.route('/group_details/edit/<id>', methods=['GET', 'POST']) def group_detail_edit(id): firer = TGroup.query.filter(TGroup.group_no == id).first() form=GroupEditForm(obj=firer) if form.validate_on_submit(): firer.date=form.date.data firer.target_1_no=form.target_1_army.data firer.target_2_no=form.target_2_army.data firer.target_3_no=form.target_3_army.data firer.target_4_no=form.target_4_army.data firer.target_5_no=form.target_5_army.data firer.target_6_no=form.target_6_army.data firer.target_7_no=form.target_7_army.data firer.target_8_no=form.target_8_army.data firer.group_no=form.group_no.data db.session.commit() return redirect(url_for('group_view')) form.group_no.data=firer.group_no form.target_1_army.data=firer.target_1_no form.target_2_army.data=firer.target_2_no form.target_3_army.data=firer.target_3_no form.target_4_army.data=firer.target_4_no form.target_5_army.data=firer.target_5_no form.target_6_army.data=firer.target_6_no form.target_7_army.data=firer.target_7_no form.target_8_army.data=firer.target_8_no return render_template('pages/group_edit.html' , firer = firer , form=form) @app.route('/firer_details/detail/<id>', methods=['GET', 'POST']) def firer_detail_view(id): firer = Shooter.query.filter(Shooter.service_id == id) for firers in firer: firers.cantonment_name= Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.division = Cantonment.query.filter(Cantonment.id==firers.cantonment_id).scalar() firers.rank = Rank.query.filter(Rank.id==firers.rank_id).scalar() firers.gender_name = Gender.query.filter(Gender.id==firers.gender_id).scalar() return render_template('pages/firer_detail_view.html' , data = firer) @app.route('/firer_details/edit/<id>', methods=['GET', 'POST']) def firer_detail_edit(id): firer = Shooter.query.filter(Shooter.service_id == id).first() form=RegistrationEditForm(obj=firer) try: if form.validate_on_submit(): firer.name = form.name.data firer.service_id=form.service_id.data firer.registration_date=form.date.data gender_obj=Gender.query.filter(Gender.name==form.gender.data).scalar() firer.gender_id=gender_obj.id cantonment_obj=Cantonment.query.filter(Cantonment.cantonment==form.cantonment.data ,Cantonment.division==form.div.data).scalar() firer.cantonment_id=cantonment_obj.id rank_obj=Range.query.filter(Rank.name==form.rank.data).distinct(Rank.id).scalar() firer.rank_id=rank_obj.id firer.unit=form.unit.data firer.brigade=form.brigade.data db.session.commit() return redirect(url_for('firer_details')) form.name.data=firer.name form.service_id.data=firer.service_id form.date.data=firer.registration_date gender_name=Gender.query.filter(Gender.id==firer.gender_id).scalar() form.gender.data=gender_name.name cantonment_name=Cantonment.query.filter(Cantonment.id==firer.cantonment_id).scalar() form.cantonment.data=cantonment_name.cantonment form.div.data=cantonment_name.division unit_data=Shooter.query.filter(Shooter.service_id==firer.service_id).scalar() form.unit.data=unit_data.unit form.brigade.data=unit_data.brigade rank_name=Rank.query.filter(Rank.id==firer.rank_id).distinct(Rank.name).scalar() form.rank.data=rank_name.name except Exception as e: return redirect(url_for('error_7')) return render_template('pages/firer_detail_edit.html' , firer = firer , form=form) @app.route('/live/') def live(): T1_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_1_id).scalar() T1_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_rank = mysession.query(Rank.name).filter(Rank.id==T1_r_id).scalar() T2_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_2_id).scalar() T2_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_rank = mysession.query(Rank.name).filter(Rank.id==T2_r_id).scalar() T3_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_3_id).scalar() T3_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_rank = mysession.query(Rank.name).filter(Rank.id==T3_r_id).scalar() T4_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_4_id).scalar() T4_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_rank = mysession.query(Rank.name).filter(Rank.id==T4_r_id).scalar() T5_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_5_id).scalar() T5_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_rank = mysession.query(Rank.name).filter(Rank.id==T5_r_id).scalar() T6_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_6_id).scalar() T6_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_rank = mysession.query(Rank.name).filter(Rank.id==T6_r_id).scalar() T7_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_7_id).scalar() T7_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_rank = mysession.query(Rank.name).filter(Rank.id==T7_r_id).scalar() T8_name = mysession.query(Shooter.name).filter(Shooter.id==TShooting.target_8_id).scalar() T8_service = mysession.query(Shooter.service_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_r_id = mysession.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_rank = mysession.query(Rank.name).filter(Rank.id==T8_r_id).scalar() return render_template('pages/live.html' , T1_name=T1_name, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/cam_detail_2/', methods=['GET', 'POST']) def cam_detail_2(): return render_template('pages/cam_detail_1.html') @app.route('/cam_detail_4/', methods=['GET', 'POST']) def cam_detail_4(): return render_template('pages/cam_detail_2.html') @app.route('/cam_detail_1/', methods=['GET', 'POST']) def cam_detail_1(): return render_template('pages/cam_detail_3.html') @app.route('/cam_detail_3/', methods=['GET', 'POST']) def cam_detail_3(): return render_template('pages/cam_detail_4.html') @app.route('/cam_detail_6/', methods=['GET', 'POST']) def cam_detail_6(): return render_template('pages/cam_detail_5.html') @app.route('/cam_detail_8/', methods=['GET', 'POST']) def cam_detail_8(): return render_template('pages/cam_detail_6.html') @app.route('/cam_detail_7/', methods=['GET', 'POST']) def cam_detail_7(): return render_template('pages/cam_detail_7.html') @app.route('/cam_detail_5/', methods=['GET', 'POST']) def cam_detail_5(): return render_template('pages/cam_detail_8.html') @app.route('/session_setup/', methods=['GET', 'POST']) def session_setup(): try: data = Shooter.query.all() rang= Range.query.all() firearms = Firearms.query.all() ammunation = Ammunation.query.all() rang_name = request.form.get('comp_select_4') fire_name = request.form.get('comp_select_5') ammu_name = request.form.get('comp_select_6') form=SessionForm() if(rang_name is None): range_id=999 fire_id=999 ammu_id=999 else: range_id = db.session.query(Range.id).filter(Range.name==rang_name).scalar() fire_id = db.session.query(Firearms.id).filter(Firearms.name==fire_name).scalar() ammu_id = db.session.query(Ammunation.id).filter(Ammunation.name==ammu_name).scalar() if form.validate_on_submit(): shooting=Shooting_Session( date=form.date.data.strftime('%Y-%m-%d'), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=fire_id, ammunation_id=ammu_id, target_distance = form.target_distance.data, weather_notes = form.weather_notes.data, comments = form.comments.data, session_no=form.session_no.data, occasion=form.occ.data ) db.session.add(shooting) db.session.commit() return redirect(url_for('session_config')) except Exception as e: return redirect(url_for('error5_505.html')) return render_template('forms/shooting_form.html', form=form, data =data ,rang=rang , firearmns=firearms, ammunation = ammunation) @app.route('/configuration/', methods=['GET', 'POST']) def session_config(): config = Shooting_Session.query.all() for con in config: con.range_name = Range.query.filter(Range.id==con.shooting_range_id).scalar() con.firerarms_name = Firearms.query.filter(Firearms.id==con.firearms_id).scalar() con.ammunation_name = Ammunation.query.filter(Ammunation.id==con.ammunation_id).scalar() return render_template('pages/shooting_configuration_detail.html',con=config) @app.route('/image_process/') def image_process(): dt=time.strftime("%Y-%m-%d") detail_data=db.session.query(Session_Detail).filter(Session_Detail.date==dt,Session_Detail.save_flag==0).all() data =TShooting.query.scalar() if(data is None): T1_name ="NA" T1_service ="NA" T1_rank="NA" T2_name ="NA" T2_service ="NA" T2_rank="NA" T3_name ="NA" T3_service ="NA" T3_rank="NA" T4_name ="NA" T4_service ="NA" T4_rank="NA" T5_name ="NA" T5_service ="NA" T5_rank="NA" T6_name ="NA" T6_service ="NA" T6_rank="NA" T7_name ="NA" T7_service ="NA" T7_rank="NA" T8_name ="NA" T8_service ="NA" T8_rank="NA" elif(data.save_flag == 1 ): db.session.query(TShooting).delete() db.session.commit() T1_name ="NA" T1_service ="NA" T1_rank="NA" T2_name ="NA" T2_service ="NA" T2_rank="NA" T3_name ="NA" T3_service ="NA" T3_rank="NA" T4_name ="NA" T4_service ="NA" T4_rank="NA" T5_name ="NA" T5_service ="NA" T5_rank="NA" T6_name ="NA" T6_service ="NA" T6_rank="NA" T7_name ="NA" T7_service ="NA" T7_rank="NA" T8_name ="NA" T8_service ="NA" T8_rank="NA" else: T1=Shooter.query.filter(Shooter.id==TShooting.target_1_id).scalar() if(T1 is None): T1_name ="NA" T1_service ="NA" T1_rank="NA" else: T1_name = T1.name T1_service = T1.service_id T1_r_id = T1.rank_id T1_rank_id = Rank.query.filter(Rank.id==T1_r_id).scalar() T1_rank=T1_rank_id.name T2=Shooter.query.filter(Shooter.id==TShooting.target_2_id).scalar() if(T2 is None): T2_name ="NA" T2_service ="NA" T2_rank="NA" else: T2_name = T2.name T2_service = T2.service_id T2_r_id = T2.rank_id T2_rank_id = Rank.query.filter(Rank.id==T2_r_id).scalar() T2_rank=T2_rank_id.name T3=Shooter.query.filter(Shooter.id==TShooting.target_3_id,TShooting.target_3_id!=999).scalar() if(T3 is None): T3_name ="NA" T3_service ="NA" T3_rank="NA" else: T3_name = T3.name T3_service = T3.service_id T3_r_id = T3.rank_id T3_rank_id = Rank.query.filter(Rank.id==T3_r_id).scalar() T3_rank=T3_rank_id.name T4=Shooter.query.filter(Shooter.id==TShooting.target_4_id,TShooting.target_4_id!=999).scalar() if(T4 is None): T4_name ="NA" T4_service ="NA" T4_rank="NA" else: T4_name = T4.name T4_service = T4.service_id T4_r_id = T4.rank_id T4_rank_id = Rank.query.filter(Rank.id==T4_r_id).scalar() T4_rank=T4_rank_id.name T5=Shooter.query.filter(Shooter.id==TShooting.target_5_id).scalar() if(T5 is None): T5_name ="NA" T5_service ="NA" T5_rank="NA" else: T5_name = T5.name T5_service = T5.service_id T5_r_id = T5.rank_id T5_rank_id = Rank.query.filter(Rank.id==T5_r_id).scalar() T5_rank=T5_rank_id.name T6=Shooter.query.filter(Shooter.id==TShooting.target_6_id).scalar() if(T6 is None): T6_name ="NA" T6_service ="NA" T6_rank="NA" else: T6_name = T6.name T6_service = T6.service_id T6_r_id = T6.rank_id T6_rank_id = Rank.query.filter(Rank.id==T6_r_id).scalar() T6_rank=T6_rank_id.name T7=Shooter.query.filter(Shooter.id==TShooting.target_7_id).scalar() if(T7 is None): T7_name ="NA" T7_service ="NA" T7_rank="NA" else: T7_name = T7.name T7_service = T7.service_id T7_r_id = T7.rank_id T7_rank_id = Rank.query.filter(Rank.id==T7_r_id).scalar() T7_rank=T7_rank_id.name T8=Shooter.query.filter(Shooter.id==TShooting.target_8_id).scalar() if(T8 is None): T8_name ="NA" T8_service ="NA" T8_rank="NA" else: T8_name = T8.name T8_service = T8.service_id T8_r_id = T8.rank_id T8_rank_id = Rank.query.filter(Rank.id==T8_r_id).scalar() T8_rank=T8_rank_id.name return render_template('pages/image_process.html' , T1_name=T1_name, detail_data=detail_data, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/image_edit_1/', methods=['GET', 'POST']) def image_edit_1(): return render_template('pages/image_edit_1.html') @app.route('/image_edit_2/', methods=['GET', 'POST']) def image_edit_2(): return render_template('pages/image_edit_2.html') @app.route('/image_edit_3/', methods=['GET', 'POST']) def image_edit_3(): return render_template('pages/image_edit_3.html') @app.route('/image_edit_4/', methods=['GET', 'POST']) def image_edit_4(): return render_template('pages/image_edit_4.html') @app.route('/image_edit_5/', methods=['GET', 'POST']) def image_edit_5(): return render_template('pages/image_edit_5.html') @app.route('/image_edit_6/', methods=['GET', 'POST']) def image_edit_6(): return render_template('pages/image_edit_6.html') @app.route('/image_edit_7/', methods=['GET', 'POST']) def image_edit_7(): return render_template('pages/image_edit_7.html') @app.route('/image_edit_8/', methods=['GET', 'POST']) def image_edit_8(): return render_template('pages/image_edit_8.html') @app.route('/configuration/detail/<id>', methods=['GET', 'POST']) def session_config_detail(id): config = Shooting_Session.query.filter(Shooting_Session.id == id) for con in config: con.range_name = Range.query.filter(Range.id==con.shooting_range_id).scalar() con.firerarms_name = Firearms.query.filter(Firearms.id==con.firearms_id).scalar() con.ammunation_name = Ammunation.query.filter(Ammunation.id==con.ammunation_id).scalar() return render_template('pages/shooting_configuration_detail_view.html',con=config) @app.route('/configuration/edit/<id>', methods=['GET', 'POST']) def shooting_config_edit(id): edit = Shooting_Session.query.get_or_404(id) form = SessionEditForm(obj=edit) if form.validate_on_submit(): edit.session_no = form.session_no.data edit.date = form.date.data edit.occasion=form.occ.data edit.target_distance = form.target_distance.data ammunation_id=Ammunation.query.filter(Ammunation.name==form.ammunation_name.data).scalar() edit.ammunation_id=ammunation_id.id firearms_id=Firearms.query.filter(Firearms.name==form.firerarms_name.data).scalar() edit.firearms_id=firearms_id.id range_id=Range.query.filter(Range.name==form.range_name.data).scalar() edit.shooting_range_id=range_id.id edit.weather_notes=form.weather_notes.data edit.comments=form.comments.data db.session.commit() return redirect(url_for('session_config')) form.session_no.data=edit.session_no form.date.data=edit.date form.occ.data=edit.occasion ammunation_name=Ammunation.query.filter(Ammunation.id==edit.ammunation_id).scalar() form.ammunation_name.data=ammunation_name.name firerarms_name=Firearms.query.filter(Firearms.id==edit.firearms_id).scalar() form.firerarms_name.data=firerarms_name.name range_name=Range.query.filter(Range.id==edit.shooting_range_id).scalar() form.range_name.data=range_name.name form.weather_notes.data=edit.weather_notes form.comments.data=edit.comments return render_template('pages/shooting_configuration_edit.html',form=form,edit=edit) @app.route('/detail_dashboard/') def detail_dashboard(): tshoot=db.session.query(TShooting).scalar() if(tshoot is None): T1_name = "NA" T1_service="NA" T1_rank ="NA" T2_name = "NA" T2_service="NA" T2_rank ="NA" T3_name = "NA" T3_service="NA" T3_rank ="NA" T4_name = "NA" T4_service="NA" T4_rank ="NA" T5_name = "NA" T5_service="NA" T5_rank ="NA" T6_name = "NA" T6_service="NA" T6_rank ="NA" T7_name = "NA" T7_service="NA" T7_rank ="NA" T8_name = "NA" T8_service="NA" T8_rank ="NA" else: T1=Shooter.query.filter(Shooter.id==TShooting.target_1_id).scalar() T1_name = T1.name T1_service = T1.service_id T1_r_id = T1.rank_id T1_rank_id = Rank.query.filter(Rank.id==T1_r_id).scalar() T1_rank=T1_rank_id.name T2=Shooter.query.filter(Shooter.id==TShooting.target_2_id).scalar() T2_name = T2.name T2_service = T2.service_id T2_r_id = T2.rank_id T2_rank_id = Rank.query.filter(Rank.id==T2_r_id).scalar() T2_rank=T2_rank_id.name T3=Shooter.query.filter(Shooter.id==TShooting.target_3_id).scalar() T3_name = T3.name T3_service = T3.service_id T3_r_id = T3.rank_id T3_rank_id = Rank.query.filter(Rank.id==T3_r_id).scalar() T3_rank=T3_rank_id.name T4=Shooter.query.filter(Shooter.id==TShooting.target_4_id).scalar() T4_name = T4.name T4_service = T4.service_id T4_r_id = T4.rank_id T4_rank_id = Rank.query.filter(Rank.id==T4_r_id).scalar() T4_rank=T4_rank_id.name T5=Shooter.query.filter(Shooter.id==TShooting.target_5_id).scalar() T5_name = T5.name T5_service = T5.service_id T5_r_id = T5.rank_id T5_rank_id = Rank.query.filter(Rank.id==T5_r_id).scalar() T5_rank=T5_rank_id.name T6=Shooter.query.filter(Shooter.id==TShooting.target_6_id).scalar() T6_name = T6.name T6_service = T6.service_id T6_r_id = T6.rank_id T6_rank_id = Rank.query.filter(Rank.id==T6_r_id).scalar() T6_rank=T6_rank_id.name T7=Shooter.query.filter(Shooter.id==TShooting.target_7_id).scalar() T7_name = T7.name T7_service = T7.service_id T7_r_id = T7.rank_id T7_rank_id = Rank.query.filter(Rank.id==T7_r_id).scalar() T7_rank=T7_rank_id.name T8=Shooter.query.filter(Shooter.id==TShooting.target_8_id).scalar() T8_name = T8.name T8_service = T8.service_id T8_r_id = T8.rank_id T8_rank_id = Rank.query.filter(Rank.id==T8_r_id).scalar() T8_rank=T8_rank_id.name return render_template('pages/detail_dashboard.html' , T1_name=T1_name, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank, T4_rank=T4_rank, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) @app.route('/adhoc_detail_1/', methods=['GET', 'POST']) def adhoc_detail_1(): name_1=None army=None rank=None cant=None set_1_name=None set_1_army=None set_2_name=None set_2_army=None set_3_name=None set_3_army=None set_4_name=None set_4_army=None res=[] ten=[] gp_len=[] if request.method == "POST": data1 = request.get_json() army=data1['usr'] curdate=time.strftime("%Y-%m-%d") name_1=db.session.query(Shooter.name).filter(Shooter.service_id==army).scalar() target_1_id=db.session.query(Shooter.id).filter(Shooter.service_id==army).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.service_id==army).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.service_id==army).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(ele6) set_1_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter(Shooter.id==set_1_id).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==2, Firer_Details.set_no==2 ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter(Shooter.id==set_2_id).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==3, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter(Shooter.id==set_3_id).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter(Firer_Details.date==curdate, Firer_Details.target_no==4, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter(Shooter.id==set_4_id).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() return jsonify(name_1=name_1,army=army,rank=rank,cant=cant, set_1_name=set_1_name, set_2_name=set_2_name, set_3_name=set_3_name, set_4_name=set_4_name, set_1_army=set_1_army, set_2_army=set_2_army, set_3_army=set_3_army, set_4_army=set_4_army, gp_len=gp_len, res=res, ten=ten ) @app.route('/individual_score/target_1', methods=['GET', 'POST']) def individual_score_target_1(): session.clear() data=TShooting.query.scalar() firing_set_arr=[] cantonment=Cantonment.query.distinct(Cantonment.cantonment) curdate=time.strftime("%Y-%m-%d") selection=Shooting_Session.query.filter(Shooting_Session.date>=curdate).order_by(Shooting_Session.datetimestamp.desc()).all() gender =Gender.query.all() rank_s = Rank.query.all() firing_set=db.session.query(Firer_Details.set_no).filter(Firer_Details.target_no==1).distinct().all() for ele in firing_set: for ele2 in ele: firing_set_arr.append(ele2) if(len(firing_set_arr)<1): pass else: i=len(firing_set_arr)-1 if(firing_set_arr[i]==5): db.session.query(Firer_Details).filter(Firer_Details.target_no==1).delete() db.session.commit() else: pass dt=time.strftime("%Y-%m-%d") curdatetime=datetime.now() firer_1 = [row.service_id for row in Shooter.query.all()] detail_data=db.session.query(Session_Detail).filter(Session_Detail.date==dt,Session_Detail.save_flag==0).all() name = "NA" detail_no ="NA" rank ="NA" target_no = 1 service_id ="NA" ten = [] res = [] selection=Shooting_Session.query.filter(Shooting_Session.date>=dt).order_by(Shooting_Session.datetimestamp.desc()).all() firearms = Firearms.query.all() rang= Range.query.all() ammunation = Ammunation.query.all() return render_template('pages/prediction_target_1.html', curdatetime=curdatetime, name = name, firer_1=firer_1, rank=rank, detail_data=detail_data, detail_no=detail_no, target_no=target_no, service_id=service_id, firearms=firearms, ammunation=ammunation, data=selection, rang=rang, res=res, date=dt, ten=ten, cantonment=cantonment, gender=gender, rank_s=rank_s) @app.route('/session_target_1/', methods=['GET', 'POST']) def session_target_1(): if request.method == "POST": data1 = request.get_json() session=data1["session"] ran=data1["range"] arms=data1["arms"] distance=data1["dis"] occ=data1["occ"] ammu=data1["ammu"] weather=data1["weather"] comment=data1["comment"] range_id=db.session.query(Range.id).filter(Range.name==ran).scalar() arms_id=db.session.query(Firearms.id).filter(Firearms.name==arms).scalar() ammu_id=db.session.query(Ammunation.id).filter(Ammunation.name==ammu).scalar() shooting=Shooting_Session( date=time.strftime("%Y-%m-%d"), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), shooting_range_id=range_id, firearms_id=arms_id, ammunation_id=ammu_id, target_distance=distance, weather_notes =weather, comments =comment, session_no=session, occasion=occ ) db.session.add(shooting) db.session.commit() result="This is Successfully Saved" return jsonify(result=result ,session=session) @app.route('/target_1_populate/', methods=['GET', 'POST']) def target_1_populate(): if request.method == 'POST': session_id=db.session.query(TShooting.session_id).scalar() return jsonify(session_id=session_id) @app.route('/load_detail_1/', methods=['GET', 'POST']) def load_detail_1(): result_1="Done" if request.method == 'POST': curdate=time.strftime("%Y-%m-%d") r8=None data=request.get_json() tmp_list = [] duplicate = False detail =data["detail"] sess=data["session"] paper=data["paper"] shot=data["shot"] set=data["set"] if(data["r1"]==""): r1_id=999 else: r1=data["r1"] r1_id=db.session.query(Shooter.id).filter(Shooter.service_id==r1).scalar() if(data["r2"]==""): r2_id=999 else: r2=data["r2"] r2_id=db.session.query(Shooter.id).filter(Shooter.service_id==r2).scalar() if(data["r3"]==""): r3_id=999 else: r3=data["r3"] r3_id=db.session.query(Shooter.id).filter(Shooter.service_id==r3).scalar() if(data["r4"]==""): r4_id=999 else: r4=data["r4"] r4_id=db.session.query(Shooter.id).filter(Shooter.service_id==r4).scalar() if(data["r5"]==""): r5_id=999 else: r5=data["r5"] r5_id=db.session.query(Shooter.id).filter(Shooter.service_id==r5).scalar() if(data["r6"]==""): r6_id=999 else: r6=data["r6"] r6_id=db.session.query(Shooter.id).filter(Shooter.service_id==r6).scalar() if(data["r7"]==""): r7_id=999 else: r7=data["r7"] r7_id=db.session.query(Shooter.id).filter(Shooter.service_id==r7).scalar() if(data["r8"]==""): r8_id=999 else: r8=data["r8"] r8_id=db.session.query(Shooter.id).filter(Shooter.service_id==r8).scalar() tmp_list.append(r1_id) tmp_list.append(r2_id) tmp_list.append(r3_id) tmp_list.append(r4_id) tmp_list.append(r5_id) tmp_list.append(r6_id) tmp_list.append(r7_id) tmp_list.append(r8_id) db.session.query(TPaper_ref).delete() db.session.commit() ref_db = TPaper_ref( date=time.strftime("%Y-%m-%d"), paper_ref=paper, detail_no=detail, session_no=sess ) db.session.add(ref_db) db.session.commit() for i in range(len(tmp_list)): for j in range(len(tmp_list)): if(i!=j and tmp_list[i]==tmp_list[j]): if(tmp_list[i]== 999 and tmp_list[j]==999): duplicate = False else: duplicate = True else: duplicate = False if(duplicate): print("inside dup") error="dup" else: db.session.query(TShooting).delete() db.session.commit() tshoot=TShooting( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail, target_1_id=r1_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=paper, set_no=set, save_flag=0 ) db.session.add(tshoot) db.session.commit() detail_shots =Session_Detail( date=datetime.now(), datetimestamp=time.strftime("%Y-%m-%d %H:%M"), session_id=sess, detail_no=detail, target_1_id=r1_id, target_2_id=r2_id, target_3_id=r3_id, target_4_id=r4_id, target_5_id=r5_id, target_6_id=r6_id, target_7_id=r7_id, target_8_id=r8_id, paper_ref=paper, set_no=set, save_flag=0 ) db.session.add(detail_shots) db.session.commit() error="ok" firer_name,cant,rank,service_id,res,tenden,gp_len,set_4_name,set_4_army,set_4_session_no,set_4_detail_no,set_3_name,set_3_army,set_3_session_no,set_3_detail_no,set_2_name,set_2_army,set_2_session_no,set_2_detail_no,set_1_name,set_1_army,set_1_session_no,set_1_detail_no,current_firer_name,current_army_no,current_session_no,current_detail_no=get_information(r1_id,sess,paper) result="The Detail is Saved Successfully" return jsonify(result=result,data1=firer_name,ra_1=rank,detail=detail, service_id_1=service_id, session=sess, paper=paper, set_no=set, cant=cant, gp_len=gp_len, res=res, ten=tenden, set_4_name=set_4_name, set_3_name=set_3_name, set_2_name=set_2_name, set_1_name=set_1_name, current_firer_name=current_firer_name, set_4_army=set_4_army, set_3_army=set_3_army, set_2_army=set_2_army, set_1_army=set_1_army, current_army_no=current_army_no, set_4_session_no=set_4_session_no, set_3_session_no=set_3_session_no, set_2_session_no=set_2_session_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_4_detail_no=set_4_detail_no, set_3_detail_no=set_3_detail_no, set_2_detail_no=set_2_detail_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no ) return jsonify(result_1=result_1) def get_information(target_1_id,sess,paper_ref): res=[] ten=[] gp_len=[] curdate=time.strftime("%Y-%m-%d") tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==target_1_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] tres = db.session.query(Grouping.result).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] tgp = db.session.query(Grouping.grouping_length_f).filter(Grouping.firer_id==target_1_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] for ele in tres: for ele2 in ele: res.append(ele2) for ele3 in tten: for ele4 in ele3: ten.append(ele4) for ele5 in tgp: for ele6 in ele5: gp_len.append(int(ele6)) da_1=db.session.query(Shooter.name).filter(Shooter.id==target_1_id).scalar() cant_id=db.session.query(Shooter.cantonment_id).filter(Shooter.id==target_1_id).scalar() cant=db.session.query(Cantonment.cantonment).filter(Cantonment.id==cant_id).scalar() ra_1_id=db.session.query(Shooter.rank_id).filter(Shooter.id==target_1_id).scalar() ra_1 = db.session.query(Rank.name).filter(Rank.id==ra_1_id).scalar() service_id_1 = db.session.query(Shooter.service_id).filter(Shooter.id==target_1_id).scalar() set_1_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==target_1_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==target_1_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==target_1_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==target_1_id).scalar() return(da_1,cant,ra_1,service_id_1,res,ten,gp_len, set_4_name,set_4_army,set_4_session_no,set_4_detail_no, set_3_name,set_3_army,set_3_session_no,set_3_detail_no, set_2_name,set_2_army,set_2_session_no,set_2_detail_no, set_1_name,set_1_army,set_1_session_no,set_1_detail_no, current_firer_name,current_army_no,current_session_no,current_detail_no ) @app.route('/individual_score/target_2', methods=['GET', 'POST']) def individual_score_target_2(): firer_id =db.session.query(TShooting.target_2_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 2 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres,) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_2() if request.method == 'POST': paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print("paper_ref") print(paper_ref) return render_template('pages/prediction_target_2.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_3', methods=['GET', 'POST']) def individual_score_target_3(): firer_id =db.session.query(TShooting.target_3_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 3 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_3.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_4', methods=['GET', 'POST']) def individual_score_target_4(): firer_id =db.session.query(TShooting.target_4_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 4 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_4.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_5', methods=['GET', 'POST']) def individual_score_target_5(): firer_id =db.session.query(TShooting.target_5_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 5 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_5.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_6', methods=['GET', 'POST']) def individual_score_target_6(): firer_id =db.session.query(TShooting.target_6_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 6 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_6.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_7', methods=['GET', 'POST']) def individual_score_target_7(): firer_id =db.session.query(TShooting.target_7_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 7 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_7.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/individual_score/target_8', methods=['GET', 'POST']) def individual_score_target_8(): firer_id =db.session.query(TShooting.target_8_id).scalar() detail_no =db.session.query(TShooting.detail_no).scalar() session_no =db.session.query(TShooting.session_id).scalar() target_no = 7 tres = db.session.query(Grouping.result).filter(Grouping.firer_id==firer_id).order_by(Grouping.datetimestamp.desc()).limit(5).all()[::-1] res=[] ten=[] tten=db.session.query(MPI.tendency_code).filter(MPI.firer_id==firer_id).order_by(MPI.datetimestamp.desc()).limit(5).all()[::-1] print(tres) for ele in tres: for ele2 in ele: print(type(ele2)) res.append(ele2) for ele3 in tten: for ele4 in ele3: print(type(ele4)) ten.append(ele4) service_id = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() rank_id=db.session.query(Shooter.rank_id).filter(Shooter.id==firer_id).scalar() rank=db.session.query(Rank.name).filter(Rank.id==rank_id).scalar() name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() return render_template('pages/prediction_target_8.html', name = name, detail_no=detail_no, session_no=session_no, target_no=target_no, service_id=service_id, rank=rank, res=res, ten=ten) @app.route('/prediction_target_1/', methods=['GET', 'POST']) def prediction_target_1(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,detail,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_1() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 ,Firer_Details.set_no==2 , Firer_Details.session_id==sess).all() set_2_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==2 , Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==3 , Firer_Details.session_id==sess).all() set_3_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==3 , Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) print(set_3_x_arr) set_4_x=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==4 , Firer_Details.session_id==sess).all() set_4_y=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==4 , Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==1 ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() set_2_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==2 ).distinct().scalar() print("set_2_detail_no") print(set_2_detail_no) print(set_2_detail_no) set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==3 ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(Firer_Details.firer_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_session_no=db.session.query(Firer_Details.session_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_detail_no=db.session.query(Firer_Details.detail_id).filter( Firer_Details.date==curdate, Firer_Details.target_no==1, Firer_Details.set_no==4 ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_2/', methods=['GET', 'POST']) def prediction_target_2(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_2() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==2, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') fin_x_arr_1=[] fin_y_arr_1=[] for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_3/', methods=['GET', 'POST']) def prediction_target_3(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_3() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_2 in set_2_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_2 in set_2_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==3, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') fin_x_arr_1=[] fin_y_arr_1=[] for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_4/', methods=['GET', 'POST']) def prediction_target_4(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_4() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==4, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_5/', methods=['GET', 'POST']) def prediction_target_5(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_5() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==5, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_6/', methods=['GET', 'POST']) def prediction_target_6(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_6() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 ,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==6, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_7/', methods=['GET', 'POST']) def prediction_target_7(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_7() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==7, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/prediction_target_8/', methods=['GET', 'POST']) def prediction_target_8(): t1_x=0 t1_y=0 xmpi_j=0 ympi_j=0 gp=0 Tfirt_x_j=0 Tfirt_y_j=0 fin_x_1=0 fin_y_1=0 xmpi_inch = 0 ympi_inch = 0 result_1=None fir_tendency=None set_1_name = None set_1_army =None set_1_session_no = None set_1_detail_no=None set_1_id =None set_2_name = None set_2_army =None set_2_session_no = None set_2_detail_no=None set_2_id =None set_3_name = None set_3_army =None set_3_session_no = None set_3_detail_no=None set_3_id =None set_4_name = None set_4_army =None set_4_session_no = None set_4_detail_no=None set_4_id =None fir_tendency_1=None firer_id=None current_army_no=None current_firer_name=None current_session_no=None session_detail_no=None current_detail_no=None set_2_x=None set_2_y=None set_3_x=None set_3_y=None set_4_x=None set_4_y=None paper_ref=None sess=None res=None set_2_x_arr=[] set_2_y_arr=[] set_3_x_arr=[] set_3_y_arr=[] set_4_x_arr=[] set_4_y_arr=[] fin_x_arr_1=[] fin_y_arr_1=[] curdate=time.strftime("%Y-%m-%d") if request.method == 'POST': firer_id,sess,o,p,u,q,t1_x,t1_y,xmpi,ympi,f,gp,Tfirt_x,Tfirt_y,fin_x_1,fin_y_1,result_1,fir_tendency_1=prediction_calculation_8() paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() set_2_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8,T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_2_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8 , T_Firer_Details.set_no==2 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_2 in set_2_x: set_2_x_arr.append(int(x_2.final_x)) for y_2 in set_2_y: set_2_y_arr.append(int(y_2.final_y)) set_3_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_3_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8 , T_Firer_Details.set_no==3 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_3 in set_3_x: set_3_x_arr.append(int(x_3.final_x)) for y_3 in set_3_y: set_3_y_arr.append(int(y_3.final_y)) set_4_x=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8 , T_Firer_Details.set_no==4 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() set_4_y=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==8 , T_Firer_Details.set_no==4 ,T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess).all() for x_4 in set_4_x: set_4_x_arr.append(int(x_4.final_x)) for y_4 in set_4_y: set_4_y_arr.append(int(y_4.final_y)) set_1_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref, T_Firer_Details.session_id==sess ).distinct().scalar() set_1_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==1, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_1_name=db.session.query(Shooter.name).filter( Shooter.id==set_1_id ).scalar() set_1_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_1_id).scalar() set_2_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==2, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_2_name=db.session.query(Shooter.name).filter( Shooter.id==set_2_id ).scalar() set_2_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_2_id).scalar() set_3_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==3, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_3_name=db.session.query(Shooter.name).filter( Shooter.id==set_3_id ).scalar() set_3_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_3_id).scalar() set_4_id = db.session.query(T_Firer_Details.firer_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_session_no=db.session.query(T_Firer_Details.session_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_detail_no=db.session.query(T_Firer_Details.detail_id).filter(T_Firer_Details.date==curdate, T_Firer_Details.target_no==8, T_Firer_Details.set_no==4, T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess ).distinct().scalar() set_4_name=db.session.query(Shooter.name).filter( Shooter.id==set_4_id ).scalar() set_4_army=db.session.query(Shooter.service_id).filter(Shooter.id==set_4_id).scalar() current_firer_name = db.session.query(Shooter.name).filter(Shooter.id==firer_id).scalar() current_army_no = db.session.query(Shooter.service_id).filter(Shooter.id==firer_id).scalar() current_session_no=db.session.query(TShooting.session_id).filter(TShooting.target_1_id==firer_id).scalar() current_detail_no=db.session.query(TShooting.detail_no).filter(TShooting.target_1_id==firer_id).scalar() xmpi_inch = pixeltoinch(xmpi) ympi_inch = pixeltoinch(ympi) xmpi_j =pd.Series(xmpi_inch).to_json(orient='values') ympi_j =pd.Series(ympi_inch).to_json(orient='values') Tfirt_x_j =pd.Series(Tfirt_x).to_json(orient='values') Tfirt_y_j =pd.Series(Tfirt_y).to_json(orient='values') for x_1 in fin_x_1: fin_x_arr_1.append(int(x_1.final_x)) for y_1 in fin_y_1 : fin_y_arr_1.append(int(y_1.final_y)) return jsonify(x1=t1_x , y1=t1_y , xmpi1=Tfirt_x_j , ympi1=Tfirt_y_j, gp=gp, txf1=Tfirt_x_j, tyf1=Tfirt_y_j, fx1=fin_x_arr_1, fy1=fin_y_arr_1, result_1=result_1, fir_tendency_1=fir_tendency_1, set_1_name=set_1_name, current_firer_name=current_firer_name, set_1_army=set_1_army, current_army_no=current_army_no, set_1_session_no=set_1_session_no, current_session_no=current_session_no, set_1_detail_no=set_1_detail_no, current_detail_no=current_detail_no, set_2_x=set_2_x_arr, set_2_y=set_2_y_arr, set_2_name=set_2_name, set_2_army=set_2_army, set_2_detail_no=set_2_detail_no, set_2_session_no=set_2_session_no, set_3_x=set_3_x_arr, set_3_y=set_3_y_arr, set_3_name=set_3_name, set_3_army=set_3_army, set_3_session_no=set_3_session_no, set_3_detail_no=set_3_detail_no, set_4_x=set_4_x_arr, set_4_y=set_4_y_arr, set_4_name=set_4_name, set_4_army=set_4_army, set_4_session_no=set_4_session_no, set_4_detail_no=set_4_detail_no ) @app.route('/previous_page_target_1/', methods=['GET', 'POST']) def previous_page_target_1(): T1_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_1_id).scalar() T1_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_1_id).scalar() T1_rank = db.session.query(Rank.name).filter(Rank.id==T1_r_id).scalar() T2_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_2_id).scalar() T2_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_2_id).scalar() T2_rank = db.session.query(Rank.name).filter(Rank.id==T2_r_id).scalar() T3_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_3_id).scalar() T3_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_3_id).scalar() T3_rank = db.session.query(Rank.name).filter(Rank.id==T3_r_id).scalar() T4_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_4_id).scalar() T4_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_4_id).scalar() T4_rank = db.session.query(Rank.name).filter(Rank.id==T4_r_id).scalar() print(T1_rank) print(T2_rank) print(T3_rank) print(T4_rank) return render_template('pages/previous_page_target_1.html' , T1_name=T1_name, T1_service=T1_service, T2_name=T2_name, T2_service=T2_service, T3_name=T3_name, T3_service=T3_service, T4_name=T4_name, T4_service=T4_service, T4_rank=T4_rank, T1_rank=T1_rank, T2_rank=T2_rank, T3_rank=T3_rank ) @app.route('/previous_page_target_5/', methods=['GET', 'POST']) def previous_page_target_5(): T5_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_5_id).scalar() T5_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_5_id).scalar() T5_rank = db.session.query(Rank.name).filter(Rank.id==T5_r_id).scalar() T6_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_6_id).scalar() T6_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_6_id).scalar() T6_rank = db.session.query(Rank.name).filter(Rank.id==T6_r_id).scalar() T7_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_7_id).scalar() T7_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_7_id).scalar() T7_rank = db.session.query(Rank.name).filter(Rank.id==T7_r_id).scalar() T8_name = db.session.query(Shooter.name).filter(Shooter.id==TShooting.target_8_id).scalar() T8_service = db.session.query(Shooter.service_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_r_id = db.session.query(Shooter.rank_id).filter(Shooter.id==TShooting.target_8_id).scalar() T8_rank = db.session.query(Rank.name).filter(Rank.id==T8_r_id).scalar() return render_template('pages/previous_page_target_5.html' , T5_name=T5_name, T5_service=T5_service, T6_name=T6_name, T6_service=T6_service, T7_name=T7_name, T7_service=T7_service, T8_name=T8_name, T8_service=T8_service, T5_rank=T5_rank, T6_rank=T6_rank, T7_rank=T7_rank, T8_rank=T8_rank ) def prediction_calculation_1(): curdate=time.strftime("%Y-%m-%d") X_json=0 Y_json=0 firer_id =db.session.query(TShooting.target_1_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=1 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref ) data_x_1=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==1 , Firer_Details.paper_ref==paper_ref , Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(Firer_Details).filter(Firer_Details.date==curdate , Firer_Details.target_no==1 , Firer_Details.set_no==1 , Firer_Details.paper_ref==paper_ref , Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x') print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/1.png') #image=Image.open('/Users/wasifaahmed/Documents/FRAS/Fras_production_v.0.1/FRAS Windows/FRAS Windows/FRAS_production/static/img_dump/1.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) print(centroids) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_2(): curdate=time.strftime("%Y-%m-%d") X_json=0 Y_json=0 firer_id =db.session.query(TShooting.target_2_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=2 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref ) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==2 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/2.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_3(): X_json=0 Y_json=0 curdate=time.strftime("%Y-%m-%d") firer_id =db.session.query(TShooting.target_3_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=3 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==3 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/3.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) print("calling from prediction_calculation_1" ) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_4(): curdate=time.strftime("%Y-%m-%d") firer_id =db.session.query(TShooting.target_4_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=4 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref ) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details.final_y).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==4 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/4.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) print("calling from prediction_calculation_1" ) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_5(): curdate=time.strftime("%Y-%m-%d") firer_id =db.session.query(TShooting.target_5_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=5 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==5 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/5.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) print("calling from prediction_calculation_1" ) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_6(): curdate=time.strftime("%Y-%m-%d") firer_id =db.session.query(TShooting.target_6_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=6 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==6 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/6.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=pd.Series(x).to_json(orient='values') Y_json = pd.Series(y).to_json(orient='values') mpit=mpi(1,centroids) xmpi1 = mpit [:, 1] ympi1 = 2000-mpit [:, 0] f1 ,firt_x,firt_y= firing_tendancy(1000, 1000 , xmpi1, ympi1) fir_tendency_txt,fir_tendency_code = getfiringtendencytext(f1 ,firt_x,firt_y) print("calling from prediction_calculation_1" ) gp_1 = grouping_length(0 , 0 , x , y) result_1 =getresulttext(gp_1) return (firer_id, sess_id, detail_id, target_no, set_no, paper_ref, X_json, Y_json, xmpi1, ympi1, f1, gp_1, firt_x, firt_y, data_x_1, data_y_1, result_1, fir_tendency_txt ) def prediction_calculation_7(): curdate=time.strftime("%Y-%m-%d") firer_id =db.session.query(TShooting.target_7_id).scalar() sess_id = db.session.query(TShooting.session_id).scalar() detail_id = db.session.query(TShooting.detail_no).scalar() target_no=7 paper_ref=db.session.query(TPaper_ref.paper_ref).scalar() print(paper_ref) data_x_1=db.session.query(T_Firer_Details).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() data_y_1=db.session.query(T_Firer_Details.final_y).filter(T_Firer_Details.date==curdate , T_Firer_Details.target_no==7 , T_Firer_Details.set_no==1 , T_Firer_Details.paper_ref==paper_ref , T_Firer_Details.session_id==sess_id).all() print(data_x_1) set_no=db.session.query(TShooting.set_no).scalar() paper_ref=db.session.query(TShooting.paper_ref).scalar() print('Old x' ) print(data_x_1) image=Image.open('E:/FRAS Windows/FRAS_production/static/img_dump/7.png') w,h = image.size predictedMatrix = predictAsMatrix(image,w,h) g= Graph(80, 80, predictedMatrix) N=g.countIslands() points(predictedMatrix,h=80,w=80) centroids=kmean(N,pointsarray) if(centroids is None): x=0, y=0, mpit=0 xmpi1=0 ympi1=0 f1=0, firt_x=0 firt_y=0 fir_tendency_code="" fir_tendency_txt="" gp_1="" result_1="" else: x= centroids [:, 1] y= 2000-centroids [:, 0] X_json=
pd.Series(x)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Experiments @Fischer in Montebelluna 28.02.20 # We had the oppurtunity to use the Flexometer for ski boots of Fischer with their help at Montebelluna. The idea is to validate our system acquiring simultaneously data by our sensor setup and the one from their machine. With the machine of Fischer it's possible to apply exact loads. # We used booth our sensorized ski boots (Dynafit Hoji Pro Tour W and Dynafit TLT Speedfit). The Hoji we already used in the past for our experiments in the lab @Bz with our selfbuild experiment test bench. For the TLT Speedfit this was the first experiment. # # Strain gauge setup: # - Dynafit Hoji Pro Tour: 4 pairs of strain gauges 1-4 (a=0°, b=90°) # - Dynafit TLT Speedfit: 4 triples of strain gauges 1-4 (a=0°,b=45°,c=90°) # As we had only a restricted time, we tested all 4 strain gauges pairs of the Hoji and only strain gauge triple 3 for TLT Speedfit. For the first time the new prototype of datalogger was running in an experiment. In addition also the first time in battery mode and not at room temperature. Unfortunately the connection of the strains to the logging system was not the best as in battery mode we don't have any possibility to control the connection to the channels yet. We'll get a solution for this the next days. # # Experiments (ambient temperature: 4°C): # - #1: Hoji Pro Tour, 4a&b # - #2: Hoji Pro Tour, 3a&b # - #3: Hoji Pro Tour, 2a&b # - #4: Hoji Pro Tour, 1a&b # - #5: TLT Speedfit, 3a&b&c # # ATTENTION: The Hoji boot was not closed as much as the TLT. Take in consideration this when looking at force/angular displacement graph. # In[50]: # Importing libraries import pandas as pd import numpy as np import datetime import time import matplotlib.pyplot as plt from matplotlib.pyplot import figure import csv import matplotlib.patches as mpatches #needed for plot legend from matplotlib.pyplot import * get_ipython().run_line_magic('matplotlib', 'inline') from IPython.display import set_matplotlib_formats set_matplotlib_formats('png', 'pdf') # # Machine Data: load and plot # The boot was loaded cyclical by the machine with a maximum of F = 150N. In each single experiment 1-5 we exported the data of the last 5 cycles. # # In[51]: #Loading data in df[expnr]: exprnr-> experiment 1-5 with cycle 1-5 expnr=5 #number of exp cyclenr = 5 #number of cycle per experiment colnr = 2*cyclenr # dfm={} for expnr in range(expnr): d = {} for i in range(cyclenr): #load data from cycle 1-5 d[expnr,i] = pd.DataFrame() d[expnr,i] = pd.read_csv('ESP'+ str(expnr+1) + 'ciclo'+ str(i+1) +'.csv', sep='\t',header=None) dfm[expnr]=pd.concat([d[expnr,0], d[expnr,1], d[expnr,2], d[expnr,3], d[expnr,4]], axis=1, join='inner') dfm[expnr] = np.array(dfm[expnr]) #transform in np.array for i in range(len(dfm[expnr])): #replace , with . and change format to float for j in range(colnr): dfm[expnr][i,j]=float(dfm[expnr][i,j].replace(',', '.')) #print(dfm[1][:,0]) # In[52]: figm, axm = plt.subplots(5, 5, figsize=(13, 11), sharex='col') #define plot settings col_title = ['Experiment {}'.format(col) for col in range(1, 5)] for i in range(expnr+1): for j in range(cyclenr): axm[j,i].plot(dfm[i][:,2*j+1],dfm[i][:,2*j]) axm[0,i].set_title('Experiment '+ str(i+1)) axm[j,0].set(ylabel='F[N] Cycle'+ str(j+1)) axm[4,i].set(xlabel='angle [°]') plt.tight_layout() figm.suptitle('Machine Data Plot (Hoji Pro Tour: 1-4, TLT Speedfit: 5)',fontsize=16) figm.subplots_adjust(top=0.88) # On the x-axis the force F is shown (max 150N) and on the y-axis the displacement angle alpha. # In the plot above the columns are showing the experiment and the rows the single cycles. The cycles within the same experiment are quite similar (qualitative). It's cool how clear is the difference between the two different ski boot models we used. Experiment 1-4 is showing Dynafit Hoji Pro Tour and experiment 5 the Dynafit TLT Speedfit. # # Calculate surface under curve # To compare the energy release between Hoji and TLT we are going to calculate the surface in the closed curve. # We can calculate an area under a curve (curve to x-axis) by integration (E = \int{M dphi}). Via interpolation of extracted points on the curve we generate a function which is integrated afterwards by trapezian rule to get the surface. By subtracting the surface of unloading from the one of loading the area between can be calculated, which corresponds the energy release. # In[53]: from scipy.interpolate import interp1d from numpy import trapz # Experiment data x1=dfm[1][:,1] # Exp1 cycle 1 Hoji y1=dfm[1][:,0] # Exp1 cycle 1 Hoji x2=dfm[4][:,1] # Exp5 cycle 1 Hoji y2=dfm[4][:,0] # Exp5 cycle 1 Hoji ym1=np.array([-29,17,41.14,63,96,147.8]) # x points loading Hoji xm1=np.array([-1.5,2.9,7.312,11,13.7,13.94]) # y points loading Hoji ym2=np.array([-29,3.741,25,43.08,63,72,106,147.8]) # x points unloading Hoji xm2=np.array([-1.5,-0.646,1.2,3.127,6.6,8.37,13.28,13.94]) # y points unloading Hoji ym3=np.array([-28.5,-12.27,4.841,18.01,31.92,39.46,87.48,145.6]) # x points loading TLT xm3=np.array([-2.752,-0.989,1.022,3.23,5.387,6.012,6.521,6.915]) # y point loading TLT ym4=np.array([-28.5,2.042,26.35,41.36,51.86,56.33,93.87,145.6]) # x points unloading TLT xm4=np.array([-2.752,-1.94,-0.43,1.524,3.76,5.625,6.24,6.915]) # y points unloading TLt # Interpolation f1 = interp1d(xm1, ym1) f2 = interp1d(xm2, ym2) f3 = interp1d(xm3, ym3) f4 = interp1d(xm4, ym4) # Plot of original data and interpolation fig0, ax0 = plt.subplots(1, 2, figsize=(15, 8)) fig0.suptitle('Ski boot testing machine', fontsize=16) #fig0.suptitle('Interpolation of experiment data 1&5 cycle 1 (left: Hoji, right: TLT)', fontsize=16) ax0[0].plot(x1,y1) # loading Hoji ax0[0].set_title('Hoji Pro Tour W') #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji #ax0[0].plot(x1,y1,xm1,ym1, 'o', xm1, f1(xm1), '-') # loading Hoji #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji ax0[0].set(xlabel='angle [°]') ax0[0].set(ylabel='Force [N]') ax0[1].plot(x2,y2) # loading Hoji ax0[1].set_title('TLT Speedfit') #ax0[1].plot(x2,y2,xm3,ym3, 'o', xm3, f3(xm3), '-') # loading Hoji #ax0[1].plot(xm4,ym4, 'o', xm4, f4(xm4), '-', xm4, f4(xm4), '--') # unloading Hoji ax0[1].set(xlabel='angle [°]') ax0[1].set(ylabel='Force [N]') plt.show() # Calculation of area between loading and unloading curve -> Energy area1_hoji=np.trapz(f1(xm1), xm1) area2_hoji=np.trapz(f2(xm2), xm2) area1_TLT=np.trapz(f3(xm3), xm3) area2_TLT=np.trapz(f4(xm4), xm4) energy_hoji=abs(area1_hoji-area2_hoji) energy_TLT=abs(area1_TLT-area2_TLT) #print('Energy release Hoji = ', energy_hoji, '[J]') #print('Energy release TLT = ', energy_TLT, '[J]') # # Bootsensing: load and plot # We created a datalogger which is saving the experiment data in a .txt file on a SD card. After the experiments we took them from the SD card to our PC. # <NAME> did an excellent work with his file reader (https://github.com/raphaFanti/multiSensor/blob/master/analysis/03.%20Experiments_200220/Analysis%20v02/datanalysis_200220-v02.ipynb) which I'm using here to load this data. I modified the col_names as we used adapted column names the last time and updated the experiment date. He implemented also a good way to store all in a big dataframe. I'll copy also this code from Raphael. # In[54]: # transforms a time string into a datetime element def toDate(timeString): hh, mm, ss = timeString.split(":") return datetime.datetime(2020, 2, 28, int(hh), int(mm), int(ss)) # date of experiment: 28.02.20 # returns a dataframe for each sub experient col_names = ["ID","strain1","strain2","strain3","temp","millis"] # column names from file cols_ordered = ["time","strain1","strain2","strain3"] # order wished cols_int = ["strain1","strain2","strain3"] # to be transformed to int columns def getDf(fl, startTime): # ! note that we remove the first data line for each measurement since the timestamp remains zero for two first lines fl.readline() # line removed line = fl.readline() lines = [] while "Time" not in line: cleanLine = line.rstrip() # trick for int since parsing entire column was not working intsLine = cleanLine.replace(".00", "") splitedLine = intsLine.split(",") lines.append(splitedLine) line = fl.readline() # create dataframe df = pd.DataFrame(lines, columns = col_names) # create time colum df["time"] = df["millis"].apply(lambda x: startTime + datetime.timedelta(milliseconds = int(x))) # drop ID, millis and temperature, and order columns df = df.drop(["ID", "temp", "millis"], axis = 1) df = df[cols_ordered] # adjust types df[cols_int] = df[cols_int].astype(int) return df # Load data to dataframe. As we were not working with our usually experiment protocol, I had to skip phase = bs2. # In[55]: filenames = ["2022823_exp1","2022848_exp2","2022857_exp3", "202285_exp4", "2022829_exp5"] nExp = len(filenames) # we simply calculate the number of experiments # big data frame df = pd.DataFrame() for i, this_file in enumerate(filenames): # experiment counter exp = i + 1 # open file with open(this_file + ".TXT", 'r') as fl: # throw away first 3 lines and get baseline 1 start time for i in range(3): fl.readline() # get start time for first baseline bl1_time = fl.readline().replace("BASELINE Time: ", "") startTime = toDate(bl1_time) # get data for first baseline df_bl1 = getDf(fl, startTime) df_bl1["phase"] = "bl1" # get start time for experiment exp_time = fl.readline().replace("RECORDING Time: ", "") startTime = toDate(exp_time) # get data for experiment df_exp = getDf(fl, startTime) df_exp["phase"] = "exp" # get start time for second baseline #bl2_time = fl.readline().replace("BASELINE Time: ", "") #startTime = toDate(bl2_time) # get data for second baseline #df_bl2 = getDf(fl, startTime) #df_bl2["phase"] = "bl2" # create full panda df_exp_full = pd.concat([df_bl1, df_exp]) # create experiment column df_exp_full["exp"] = exp df = pd.concat([df, df_exp_full]) # shift columns exp and phase to begining cols = list(df.columns) cols = [cols[0]] + [cols[-1]] + [cols[-2]] + cols[1:-2] df = df[cols] #print(df) # In[56]: def plotExpLines(df, exp): fig, ax = plt.subplots(3, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment ' + str(exp), fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(dfExp["time"], dfExp["strain3"], 'tab:green') ax[0].set(ylabel='strain3') ax[1].plot(dfExp["time"], dfExp["strain1"], 'tab:red') ax[1].set(ylabel='strain1') ax[2].plot(dfExp["time"], dfExp["strain2"], 'tab:blue') ax[2].set(ylabel='strain2') ax[2].set(xlabel='time [ms]') plt.show() # ### Experiment 1 # In[57]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 1]['time'],df[df["exp"] == 1]['strain3']) plt.xlabel('daytime') plt.ylabel('4A') plt.title('Experiment 1: 4A ') plt.show() # We applied 34 cycles. # ### Experiment 2 # In[58]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 2]['time'],df[df["exp"] == 2]['strain3']) plt.xlabel('daytime') plt.ylabel('3A') plt.title('Experiment 2: 3A ') plt.show() # # Experiment 3 # In[59]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 3]['time'],df[df["exp"] == 3]['strain3']) plt.xlabel('daytime') plt.ylabel('2B') plt.title('Experiment 3: 2B ') plt.show() # ### Experiment 4 # In[60]: figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 4]['time'],df[df["exp"] == 4]['strain3']) plt.xlabel('daytime') plt.ylabel('1A') plt.title('Experiment 4: 1A ') plt.show() # ### Experiment 5 # In[61]: fig, ax = plt.subplots(2, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment 5: 3B & 3C ', fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain3'], 'tab:green') ax[0].set(ylabel='3C') ax[1].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain2'], 'tab:red') ax[1].set(ylabel='3B') ax[1].set(xlabel='daytime') plt.show() # In[62]: #dfExp = df[df["exp"] == 3] #plotExpLines(dfExp, 3) # # Analysis # Now we try to compare the data from the Flexometer of Fischer and from our Bootsensing. # - Fischer: force F over displacement angle alpha # - Bootsensing: deformation measured by strain gauge (resistance change) in at the moment unknown unit over time (daytime in plot shown) # The idea now is to identify the last 5 cycles in Bootsensing data automatically and to exstract time information (t0,t). Afterwards this delta t can be applied on Fischers data to plot force F over the extracted time. # ### Bootsensing: Cycle identification # For Experiment 1-5 we will identfy the last 5 cycles of strain3. As the data of Fischer starts at a peak (maximum load), we will identify them also in our bootsensing data and extract the last 6 peak indexes. Applying these indices on strain3/time data we get the last 5 cycles. # # Find peaks: find_peaks function https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html # Find valley: with Inverse of find peaks # # # In[63]: from scipy.signal import find_peaks import numpy as np # Load data of Experiments 1-5 ds={} # dict for strain data -> dataformat will be changed dt={} # time data peaks={} # peaks valleys={} # valleys inv_ds={} # inverse for valleys calculation ds_peaks={} # index of peak (used for 5-2) ds_peaks_end={} # index of last peaks ds_valleys_end = {} # index of last valley ds_valleys={} # index of valley (used for 5-2) len_valley={} # valley lenght for i in range(1,6): # i = Experiment number ds[i]=df[df["exp"] == i]['strain3'] #data for strain3 dt[i]=df[df["exp"] == i]['time'] # time data ds[i]=ds[i].dropna() # drop NaN dt[i]=dt[i].dropna() ds[i]=ds[i].reset_index(drop=True) #reset index dt[i]=dt[i].reset_index(drop=True) peaks[i],_=find_peaks(ds[i],prominence=100000) # find peaks inv_ds[i]=ds[i]*(-1) # inverse of ds valleys[i],_=find_peaks(inv_ds[i],prominence=10000) # find valleys for j in range(1,6): # j = cycle number ds_valleys[j,i]=valleys[i][-1-j:-j] # selecting last 5 valleys ds_valleys_end[j,i]=valleys[i][-1:] # select last valley ds_valleys[j,i]=ds_valleys[j,i][0] # assign index ds_valleys_end[j,i]=ds_valleys_end[j,i][0] ds_peaks[j,i]=peaks[i][-1-j:-j] # selecting last 5 peaks ds_peaks_end[j,i]=peaks[i][-1:] # select last peak ds_peaks[j,i]=ds_peaks[j,i][0] # assign index ds_peaks_end[j,i]=ds_peaks_end[j,i][0] #print(ds1[1][ds_valleys[1,1]]) #Calculate cycle lengths #for i in range(1,6): #len_valley[e] = dt1[e][ds_valleys[1,1]] - dt1[e][ds_valleys[2,1]] #1th #len_valley1_2[i] = dt1[ds_valley_3[i]] - dt1[ds_valley_4[i]] #2th #len_valley2_3[i] = dt1[ds_valley_2[i]] - dt1[ds_valley_3[i]] #3th #len_valley3_4[i] = dt1[ds_valley_1[i]] - dt1[ds_valley_2[i]] #4th #len_valley4_5[i] = dt1[ds_valley_last_end[i]] - dt1[ds_valley_1[i]] #5th # EXPERIMENT 1: pay attention for peaks/valley after cycles # Now we will plot the data for strain3 for each experiment with their peaks and valleys. # In[64]: # Plot peaks and valleys for Exp 1-5 for strain3 fig1, ax1 = plt.subplots(5, 1, figsize=(15, 8)) fig1.subplots_adjust(top=2) fig1.suptitle('Experiments 1-5: peaks and valleys ', fontsize=16) for i in range(5): # i for Experiment number ax1[i].plot(df[df["exp"] == (i+1)]['time'], df[df["exp"] == (i+1)]['strain3'], 'tab:green') ax1[i].plot(dt[(i+1)][peaks[(i+1)]],ds[(i+1)][peaks[(i+1)]],"x") #Plot peaks with x ax1[i].plot(dt[(i+1)][valleys[(i+1)]],ds[(i+1)][valleys[(i+1)]],"o") #Plot valleys with o ax1[i].set(ylabel='raw signal') ax1[i].set(xlabel='daytime') ax1[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig1.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # Plot last 5 cycles for Exp 1-5 for strain3 fig2, ax2 = plt.subplots(5, 1, figsize=(10, 8)) fig2.suptitle('Experiments 1-5: last 5 cycles ', fontsize=16) for i in range(5): # i for Experiment number ax2[i].plot(dt[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]],ds[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]]) # select data between 5th last and last valley #ax2[i].plot(dt[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]],ds[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]])# select data between 5th last and last peak ax2[i].set(ylabel='raw signal') ax2[i].set(xlabel='daytime') ax2[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig2.subplots_adjust(top=0.88) # spacer between title and plot plt.show() #plt.axvline(x=dt[ds_valley_2_index],color="grey") #time borders 3th cycle #plt.axvline(x=dt[ds_valley_3_index],color="grey") #plt.axhline(y=ds[ds_valley_3_index],color="red") # h line # For Experiment 2-5 the last 5 cycles are clear. The signal of experiment 1 is raising again after the cyclic loading as it's not possible to select the last 5 cycles with this "peaks" method, but happily we can extract still the last cycle. # As we can see in the plot of the last 5 cycles above, the last cycle for Exp1, Exp3 and Exp5 is ending with a peak where Exp2 and Exp4 is ending with a valley. We can say this from the plots as we know from our exported machine data that a cycle ends always with the maximum force of 150N. This means a valley or peak for our bootsensing system. # ### Match Fischer Data with Bootsensing cycle time # Now we are going to match the Bootsensing cycle time with the force data of Fischer for each experiment 1-5. As the machine of Fischer applied the load with a frequency of 0.33 Hz, the cycle length of each cycle should be approximately t=3s. We verified this calculating the length between 2 neighbour valley of our bootsensing data (see code above). # In[65]: #Identify frequency of Fischer Dataacquisition f={} # Fischer force matrix freq={} # matrix with vector lenght to identify frequency for i in range(5): # f[i] = dfm[i][:,2*i] # load force data for Exp5, strain3 0,2,4,6,8 freq[i] = len(dfm[i][:,2*i]) # force vector len #Create time linspace for Fischer data #Timestamp can not be selected by item, done without manually time_start1=dt[1][ds_peaks[5,1]] # Exp1: select manually last cycle time_end1=dt[1][ds_peaks[4,1]] time_start2=dt[2][ds_valleys[5,2]] # Exp2 time_end2=dt[2][ds_valleys[4,2]] time_start3=dt[3][ds_peaks[5,3]] # Exp3 time_end3=dt[3][ds_peaks[4,3]] time_start4=dt[4][ds_valleys[5,4]] # Exp4 time_end4=dt[4][ds_valleys[4,4]] time_start5=dt[5][ds_peaks[5,5]] # Exp5 time_end5=dt[5][ds_peaks[4,5]] #print(time_start1,time_end1) x1=pd.date_range(time_start1, time_end1, periods=freq[0]).to_pydatetime() x2=pd.date_range(time_start2, time_end2, periods=freq[1]).to_pydatetime() x3=
pd.date_range(time_start3, time_end3, periods=freq[2])
pandas.date_range
import numpy as np import pandas as pd import os.path from glob import glob import scipy.stats as ss from sklearn.metrics import r2_score, roc_auc_score, average_precision_score COLORS = { 'orange': '#f0593e', 'dark_red': '#7c2712', 'red': '#ed1d25', 'yellow': '#ed9f22', 'light_green': '#67bec5', 'dark_green': '#018a84', 'light_blue': '#00abe5', 'dark_blue': '#01526e', 'grey': '#a8a8a8' } DINUCLEOTIDES = { 'AA': 'AA/TT', 'AC': 'AC/GT', 'AG': 'AG/CT', 'CA': 'CA/TG', 'CC': 'CC/GG', 'GA': 'GA/TC' } FEATURE_NAME_DICT = { 'yeast': { 'tf_binding:TF': 'TF binding', 'histone_modifications:h3k27ac_tp1_0_merged': 'H3K27ac', 'histone_modifications:h3k36me3_tp1_0_merged': 'H3K36me3', 'histone_modifications:h3k4me3_tp1_0_merged': 'H3K4me3', 'histone_modifications:h3k4me_tp1_0_merged': 'H3K4me1', 'histone_modifications:h3k79me_tp1_0_merged': 'H3K79me1', 'histone_modifications:h4k16ac_tp1_0_merged': 'H4K16ac', 'chromatin_accessibility:BY4741_ypd_osm_0min.occ': 'Chrom acc', 'gene_expression:TF': 'GEX level', 'gene_expression:variation': 'GEX var', 'dna_sequence:nt_freq_agg': 'Dinucleotides' }, 'human_k562': { 'tf_binding:TF': 'TF binding', 'histone_modifications:K562_H3K27ac': 'H3K27ac', 'histone_modifications:K562_H3K27me3': 'H3K27me3', 'histone_modifications:K562_H3K36me3': 'H3K36me3', 'histone_modifications:K562_H3K4me1': 'H3K4me1', 'histone_modifications:K562_H3K4me3': 'H3K4me3', 'histone_modifications:K562_H3K9me3': 'H3K9me3', 'chromatin_accessibility:K562_atac': 'Chrom acc', 'gene_expression:median_level': 'GEX level', 'gene_expression:variation': 'GEX var', 'dna_sequence:nt_freq_agg': 'DNA sequence' }, 'human_hek293': { 'tf_binding:TF': 'TF binding', 'histone_modifications:HEK293_H3K27ac': 'H3K27ac', 'histone_modifications:HEK293_H3K27me3': 'H3K27me3', 'histone_modifications:HEK293_H3K36me3': 'H3K36me3', 'histone_modifications:HEK293_H3K4me1': 'H3K4me1', 'histone_modifications:HEK293_H3K4me3': 'H3K4me3', 'histone_modifications:HEK293_H3K9me3': 'H3K9me3', 'chromatin_accessibility:HEK293T_dnase': 'Chrom acc', 'gene_expression:median_level': 'GEX level', 'gene_expression:variation': 'GEX var', 'dna_sequence:nt_freq_agg': 'DNA sequence' }, 'human_h1': { 'tf_binding:TF': 'TF binding', 'histone_modifications:H3K27ac': 'H3K27ac', 'histone_modifications:H3K27me3': 'H3K27me3', 'histone_modifications:H3K36me3': 'H3K36me3', 'histone_modifications:H3K4me1': 'H3K4me1', 'histone_modifications:H3K4me3': 'H3K4me3', 'histone_modifications:H3K9me3': 'H3K9me3', 'chromatin_accessibility:H1_ChromAcc_intersect': 'Chrom acc', 'gene_expression:median_level': 'GEX level', 'gene_expression:variation': 'GEX var', 'dna_sequence:nt_freq_agg': 'DNA sequence' } } def parse_classifier_stats(dirpath, algorithm, feat_types, sys2com_dict=None): out_df = pd.DataFrame( columns=['tf', 'chance', 'feat_type', 'cv', 'auroc', 'auprc']) for feat_type in feat_types: print('... working on', feat_type) subdirs = glob('{}/{}/{}/*'.format(dirpath, feat_type, algorithm)) for subdir in subdirs: tf = os.path.basename(subdir) filename = glob('{}/stats.csv*'.format(subdir))[0] stats_df = pd.read_csv(filename) filename = glob('{}/preds.csv*'.format(subdir))[0] preds_df = pd.read_csv(filename) stats_df['feat_type'] = feat_type if sys2com_dict is not None: tf_com = sys2com_dict[tf] if tf in sys2com_dict else tf stats_df['tf'] = '{} ({})'.format(tf, tf_com) stats_df['tf_com'] = tf_com else: stats_df['tf'] = tf stats_df['chance'] = np.sum(preds_df['label'] == 1) / preds_df.shape[0] out_df = out_df.append(stats_df, ignore_index=True) return out_df def compare_model_stats(df, metric, comp_groups): stats_df = pd.DataFrame(columns=['tf', 'comp_group', 'p_score']) for tf, df2 in df.groupby('tf'): for (f1, f2) in comp_groups: x1 = df2.loc[df2['feat_type'] == f1, metric] x2 = df2.loc[df2['feat_type'] == f2, metric] _, p = ss.ttest_rel(x1, x2) sign = '+' if np.median(x2) > np.median(x1) else '-' stats_row = pd.Series({ 'tf': tf, 'comp_group': '{} vs {}'.format(f1, f2), 'p_score': -np.log10(p), 'sign': sign}) stats_df = stats_df.append(stats_row, ignore_index=True) return stats_df def get_feature_indices(df, organism): """Parse feature indices for visualization. """ feat_dict = FEATURE_NAME_DICT[organism] idx_df = pd.DataFrame() for _, row in df.iterrows(): if row['feat_type'] == 'dna_sequence_nt_freq': type_name = 'dna_sequence:nt_freq_agg' else: type_name = row['feat_type'] + ':' + row['feat_name'] type_name2 = feat_dict[type_name] for i in range(row['start'], row['end']): idx_df = idx_df.append(pd.Series({'feat_type_name': type_name2, 'feat_idx': i}), ignore_index=True) return idx_df def calculate_resp_and_unresp_signed_shap_sum(data_dir, tfs=None, organism='yeast', sum_over_type='tf'): """Calculate the sum of SHAP values within responsive and unresponsive genes respectively. """ # TODO: update shap csv header print('Loading feature data ...', end=' ') shap_subdf_list = [] for i, shap_subdf in enumerate(pd.read_csv('{}/feat_shap_wbg.csv.gz'.format(data_dir), chunksize=10 ** 7, low_memory=False)): print(i, end=' ') shap_subdf = shap_subdf.rename(columns={'gene': 'tf:gene', 'feat': 'shap'}) shap_subdf['tf'] = shap_subdf['tf:gene'].apply(lambda x: x.split(':')[0]) if tfs is not None: shap_subdf = shap_subdf[shap_subdf['tf'].isin(tfs)] shap_subdf_list.append(shap_subdf) print() shap_df = pd.concat(shap_subdf_list) del shap_subdf_list feats_df = pd.read_csv('{}/feats.csv.gz'.format(data_dir), names=['feat_type', 'feat_name', 'start', 'end']) preds_df = pd.read_csv('{}/preds.csv.gz'.format(data_dir)) if tfs is not None: preds_df = preds_df[preds_df['tf'].isin(tfs)] feat_idx_df = get_feature_indices(feats_df, organism) ## Parse out shap+ and shap- values print('Parsing signed shap values ...') shap_df = shap_df.merge(preds_df[['tf:gene', 'label', 'gene']], how='left', on='tf:gene') shap_df['shap+'] = shap_df['shap'].clip(lower=0) shap_df['shap-'] = shap_df['shap'].clip(upper=0) ## Sum across reg region for each feature and each tf:gene, and then take ## the mean among responsive targets and repeat for non-responsive targets. print('Summing shap ...') shap_df = shap_df.merge(feat_idx_df[['feat_type_name', 'feat_idx']], on='feat_idx') sum_shap = shap_df.groupby(['tf', 'gene', 'label', 'feat_type_name'])[['shap+', 'shap-']].sum().reset_index() sum_shap = sum_shap.groupby([sum_over_type, 'label', 'feat_type_name'])[['shap+', 'shap-']].mean().reset_index() sum_shap['label_name'] = sum_shap['label'].apply(lambda x: 'Responsive' if x == 1 else 'Non-responsive') sum_shap['label_name'] = pd.Categorical( sum_shap['label_name'], ordered=True, categories=['Responsive', 'Non-responsive']) sum_shap_pos = sum_shap[[sum_over_type, 'label_name', 'feat_type_name', 'shap+']].copy().rename(columns={'shap+': 'shap'}) sum_shap_pos['shap_dir'] = 'SHAP > 0' sum_shap_neg = sum_shap[[sum_over_type, 'label_name', 'feat_type_name', 'shap-']].copy().rename(columns={'shap-': 'shap'}) sum_shap_neg['shap_dir'] = 'SHAP < 0' sum_signed_shap = pd.concat([sum_shap_pos, sum_shap_neg]) sum_signed_shap['shap_dir'] =
pd.Categorical(sum_signed_shap['shap_dir'], categories=['SHAP > 0', 'SHAP < 0'])
pandas.Categorical
# The MIT License (MIT) # Copyright (c) 2020 by Brockmann Consult GmbH and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re from datetime import datetime from typing import List from typing import Tuple, Optional import pandas as pd import xarray as xr from .error import ConverterError from .log import LOGGER class DatasetPreProcessor: def __init__(self, input_variables: List[str] = None, input_concat_dim: str = None, input_datetime_format: str = None): self._input_variables = input_variables self._input_concat_dim = input_concat_dim self._input_datetime_format = input_datetime_format self._first_dataset_shown = False def preprocess_dataset(self, ds: xr.Dataset) -> xr.Dataset: if self._input_variables: drop_variables = set(ds.variables).difference(self._input_variables) ds = ds.drop_vars(drop_variables) if self._input_concat_dim: ds = ensure_dataset_has_concat_dim(ds, self._input_concat_dim, datetime_format=self._input_datetime_format) if not self._first_dataset_shown: LOGGER.debug(f'First input dataset:\n{ds}') self._first_dataset_shown = True return ds _RE_TO_DATETIME_FORMATS = [(re.compile(14 * '\\d'), '%Y%m%d%H%M%S'), (re.compile(12 * '\\d'), '%Y%m%d%H%M'), (re.compile(8 * '\\d'), '%Y%m%d'), (re.compile(6 * '\\d'), '%Y%m'), (re.compile(4 * '\\d'), '%Y')] def ensure_dataset_has_concat_dim(ds: xr.Dataset, concat_dim_name: str, datetime_format: str = None) -> xr.Dataset: """ :param ds: Dataset to adjust :param concat_dim_name: Name of dimension to be appended :param datetime_format: Name of dimension to be appended :return: Adjusted dataset """ concat_dim_var = None if concat_dim_name in ds: concat_dim_var = ds[concat_dim_name] if concat_dim_var is not None: if not concat_dim_var.dims: # if the concat_dim_var does not yet have a dimension, add it ds = ds.assign_coords({ concat_dim_name: xr.DataArray(concat_dim_var, dims=(concat_dim_name,)) }) elif concat_dim_name == 'time': time_coverage_start, time_coverage_end = \ get_time_coverage_from_ds(ds, datetime_format=datetime_format) time_coverage_start = time_coverage_start or time_coverage_end time_coverage_end = time_coverage_end or time_coverage_start ds = ds.assign_coords( time=xr.DataArray([time_coverage_start + 0.5 * (time_coverage_end - time_coverage_start)], dims=('time',), attrs=dict(bounds='time_bnds')), time_bnds=xr.DataArray([[time_coverage_start, time_coverage_end]], dims=('time', 'bnds')) ) concat_dim_var = ds.time else: # Can't do anything raise ConverterError(f'Missing (coordinate) variable "{concat_dim_name}" for dimension "{concat_dim_name}".') is_concat_dim_used = any((concat_dim_name in ds[var_name].dims) for var_name in ds.data_vars) if not is_concat_dim_used: concat_dim_bnds_name = concat_dim_var.attrs.get('bounds', f'{concat_dim_name}_bnds') concat_dim_bnds_var = ds[concat_dim_bnds_name] if concat_dim_bnds_name in ds else None # ds.expand_dims() will raise if coordinates exist, so remove them temporarily if concat_dim_bnds_var is not None: ds = ds.drop_vars([concat_dim_name, concat_dim_bnds_name]) else: ds = ds.drop_vars(concat_dim_name) # if concat_dim_name is still a dimension, drop it too if concat_dim_name in ds.dims: ds = ds.drop_dims(concat_dim_name) # expand dataset by concat_dim_name/concat_dim_var, this will add the dimension and the coordinate ds = ds.expand_dims({concat_dim_name: concat_dim_var}) # also (re)assign bounds coordinates if concat_dim_bnds_var is not None: ds = ds.assign_coords(time_bnds=concat_dim_bnds_var) return ds def get_time_coverage_from_ds(ds: xr.Dataset, datetime_format: str = None) -> Tuple[datetime, datetime]: time_coverage_start = ds.attrs.get('time_coverage_start') if time_coverage_start is not None: time_coverage_start = parse_timestamp(time_coverage_start, datetime_format=datetime_format) time_coverage_end = ds.attrs.get('time_coverage_end') if time_coverage_end is not None: time_coverage_end = parse_timestamp(time_coverage_end, datetime_format=datetime_format) time_coverage_start = time_coverage_start or time_coverage_end time_coverage_end = time_coverage_end or time_coverage_start if time_coverage_start and time_coverage_end: return time_coverage_start, time_coverage_end # TODO: use special parameters to parse time_coverage_start, time_coverage_end from source_path # source_path = ds.encoding.get('source', '') raise ConverterError('Missing time_coverage_start and/or time_coverage_end in dataset attributes.') def parse_timestamp(string: str, datetime_format: str = None) \ -> Optional[datetime]: try: return
pd.to_datetime(string, format=datetime_format)
pandas.to_datetime
#-*- coding:utf-8 -*- from __future__ import print_function import os,sys,sip,time from datetime import datetime,timedelta from qtpy.QtWidgets import QTreeWidgetItem,QMenu,QApplication,QAction,QMainWindow from qtpy import QtGui,QtWidgets from qtpy.QtCore import Qt,QUrl,QDate from Graph import graphpage from layout import Ui_MainWindow from pandas import DataFrame as df import pandas as pd import tushare as ts import pickle import numpy as np list1 = [] class MyUi(QMainWindow): def __init__(self): super(MyUi, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) cwd = os.getcwd() cwd = str(cwd) if os.path.isfile(cwd+"/time"): with open("time","rb") as outfile:#reads current time history = pickle.load(outfile) if (datetime.now()-history).total_seconds()<43200: #measures if time elapse>12 hours print("Less than 12 hours. Loading previously saved Pickle...") else: print("More than 12 hours. Updating Pickle...") data = ts.get_industry_classified() with open("class","wb+") as outfile: pickle.dump(data,outfile) now = datetime.now() with open("time", "wb+") as outfile: #update time pickle.dump(now, outfile) else: print("No Pickle found!") #If this is first time using tuchart in this directory data =
df()
pandas.DataFrame
""" Unit test suite for OLS and PanelOLS classes """ # pylint: disable-msg=W0212 from __future__ import division from datetime import datetime import unittest import nose import numpy as np from pandas import date_range, bdate_range from pandas.core.panel import Panel from pandas import DataFrame, Index, Series, notnull, datetools from pandas.stats.api import ols from pandas.stats.ols import _filter_data from pandas.stats.plm import NonPooledPanelOLS, PanelOLS from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from common import BaseTest _have_statsmodels = True try: import statsmodels.api as sm except ImportError: try: import scikits.statsmodels.api as sm except ImportError: _have_statsmodels = False def _check_repr(obj): repr(obj) str(obj) def _compare_ols_results(model1, model2): assert(type(model1) == type(model2)) if hasattr(model1, '_window_type'): _compare_moving_ols(model1, model2) else: _compare_fullsample_ols(model1, model2) def _compare_fullsample_ols(model1, model2): assert_series_equal(model1.beta, model2.beta) def _compare_moving_ols(model1, model2): assert_frame_equal(model1.beta, model2.beta) class TestOLS(BaseTest): # TODO: Add tests for OLS y predict # TODO: Right now we just check for consistency between full-sample and # rolling/expanding results of the panel OLS. We should also cross-check # with trusted implementations of panel OLS (e.g. R). # TODO: Add tests for non pooled OLS. @classmethod def setUpClass(cls): try: import matplotlib as mpl mpl.use('Agg', warn=False) except ImportError: pass if not _have_statsmodels: raise nose.SkipTest def testOLSWithDatasets(self): self.checkDataSet(sm.datasets.ccard.load(), skip_moving=True) self.checkDataSet(sm.datasets.cpunish.load(), skip_moving=True) self.checkDataSet(sm.datasets.longley.load(), skip_moving=True) self.checkDataSet(sm.datasets.stackloss.load(), skip_moving=True) self.checkDataSet(sm.datasets.copper.load()) self.checkDataSet(sm.datasets.scotland.load()) # degenerate case fails on some platforms # self.checkDataSet(datasets.ccard.load(), 39, 49) # one col in X all 0s def testWLS(self): X = DataFrame(np.random.randn(30, 4), columns=['A', 'B', 'C', 'D']) Y = Series(np.random.randn(30)) weights = X.std(1) self._check_wls(X, Y, weights) weights.ix[[5, 15]] = np.nan Y[[2, 21]] = np.nan self._check_wls(X, Y, weights) def _check_wls(self, x, y, weights): result = ols(y=y, x=x, weights=1/weights) combined = x.copy() combined['__y__'] = y combined['__weights__'] = weights combined = combined.dropna() endog = combined.pop('__y__').values aweights = combined.pop('__weights__').values exog = sm.add_constant(combined.values, prepend=False) sm_result = sm.WLS(endog, exog, weights=1/aweights).fit() assert_almost_equal(sm_result.params, result._beta_raw) assert_almost_equal(sm_result.resid, result._resid_raw) self.checkMovingOLS('rolling', x, y, weights=weights) self.checkMovingOLS('expanding', x, y, weights=weights) def checkDataSet(self, dataset, start=None, end=None, skip_moving=False): exog = dataset.exog[start : end] endog = dataset.endog[start : end] x = DataFrame(exog, index=np.arange(exog.shape[0]), columns=np.arange(exog.shape[1])) y = Series(endog, index=np.arange(len(endog))) self.checkOLS(exog, endog, x, y) if not skip_moving: self.checkMovingOLS('rolling', x, y) self.checkMovingOLS('rolling', x, y, nw_lags=0) self.checkMovingOLS('expanding', x, y, nw_lags=0) self.checkMovingOLS('rolling', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1) self.checkMovingOLS('expanding', x, y, nw_lags=1, nw_overlap=True) def checkOLS(self, exog, endog, x, y): reference = sm.OLS(endog, sm.add_constant(exog, prepend=False)).fit() result = ols(y=y, x=x) # check that sparse version is the same sparse_result = ols(y=y.to_sparse(), x=x.to_sparse()) _compare_ols_results(result, sparse_result) assert_almost_equal(reference.params, result._beta_raw) assert_almost_equal(reference.df_model, result._df_model_raw) assert_almost_equal(reference.df_resid, result._df_resid_raw) assert_almost_equal(reference.fvalue, result._f_stat_raw[0]) assert_almost_equal(reference.pvalues, result._p_value_raw) assert_almost_equal(reference.rsquared, result._r2_raw) assert_almost_equal(reference.rsquared_adj, result._r2_adj_raw) assert_almost_equal(reference.resid, result._resid_raw) assert_almost_equal(reference.bse, result._std_err_raw) assert_almost_equal(reference.tvalues, result._t_stat_raw) assert_almost_equal(reference.cov_params(), result._var_beta_raw) assert_almost_equal(reference.fittedvalues, result._y_fitted_raw) _check_non_raw_results(result) def checkMovingOLS(self, window_type, x, y, weights=None, **kwds): window = sm.tools.tools.rank(x.values) * 2 moving = ols(y=y, x=x, weights=weights, window_type=window_type, window=window, **kwds) # check that sparse version is the same sparse_moving = ols(y=y.to_sparse(), x=x.to_sparse(), weights=weights, window_type=window_type, window=window, **kwds) _compare_ols_results(moving, sparse_moving) index = moving._index for n, i in enumerate(moving._valid_indices): if window_type == 'rolling' and i >= window: prior_date = index[i - window + 1] else: prior_date = index[0] date = index[i] x_iter = {} for k, v in x.iteritems(): x_iter[k] = v.truncate(before=prior_date, after=date) y_iter = y.truncate(before=prior_date, after=date) static = ols(y=y_iter, x=x_iter, weights=weights, **kwds) self.compare(static, moving, event_index=i, result_index=n) _check_non_raw_results(moving) FIELDS = ['beta', 'df', 'df_model', 'df_resid', 'f_stat', 'p_value', 'r2', 'r2_adj', 'rmse', 'std_err', 't_stat', 'var_beta'] def compare(self, static, moving, event_index=None, result_index=None): index = moving._index # Check resid if we have a time index specified if event_index is not None: ref = static._resid_raw[-1] label = index[event_index] res = moving.resid[label] assert_almost_equal(ref, res) ref = static._y_fitted_raw[-1] res = moving.y_fitted[label] assert_almost_equal(ref, res) # Check y_fitted for field in self.FIELDS: attr = '_%s_raw' % field ref = getattr(static, attr) res = getattr(moving, attr) if result_index is not None: res = res[result_index] assert_almost_equal(ref, res) def test_ols_object_dtype(self): df = DataFrame(np.random.randn(20, 2), dtype=object) model = ols(y=df[0], x=df[1]) summary = repr(model) class TestOLSMisc(unittest.TestCase): ''' For test coverage with faux data ''' @classmethod def setupClass(cls): if not _have_statsmodels: raise nose.SkipTest def test_f_test(self): x = tm.makeTimeDataFrame() y = x.pop('A') model = ols(y=y, x=x) hyp = '1*B+1*C+1*D=0' result = model.f_test(hyp) hyp = ['1*B=0', '1*C=0', '1*D=0'] result = model.f_test(hyp) assert_almost_equal(result['f-stat'], model.f_stat['f-stat']) self.assertRaises(Exception, model.f_test, '1*A=0') def test_r2_no_intercept(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() x_with = x.copy() x_with['intercept'] = 1. model1 = ols(y=y, x=x) model2 = ols(y=y, x=x_with, intercept=False) assert_series_equal(model1.beta, model2.beta) # TODO: can we infer whether the intercept is there... self.assert_(model1.r2 != model2.r2) # rolling model1 = ols(y=y, x=x, window=20) model2 = ols(y=y, x=x_with, window=20, intercept=False) assert_frame_equal(model1.beta, model2.beta) self.assert_((model1.r2 != model2.r2).all()) def test_summary_many_terms(self): x = DataFrame(np.random.randn(100, 20)) y = np.random.randn(100) model = ols(y=y, x=x) model.summary def test_y_predict(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() model1 = ols(y=y, x=x) assert_series_equal(model1.y_predict, model1.y_fitted) assert_almost_equal(model1._y_predict_raw, model1._y_fitted_raw) def test_predict(self): y = tm.makeTimeSeries() x = tm.makeTimeDataFrame() model1 = ols(y=y, x=x) assert_series_equal(model1.predict(), model1.y_predict) assert_series_equal(model1.predict(x=x), model1.y_predict) assert_series_equal(model1.predict(beta=model1.beta), model1.y_predict) exog = x.copy() exog['intercept'] = 1. rs = Series(np.dot(exog.values, model1.beta.values), x.index) assert_series_equal(model1.y_predict, rs) x2 = x.reindex(columns=x.columns[::-1]) assert_series_equal(model1.predict(x=x2), model1.y_predict) x3 = x2 + 10 pred3 = model1.predict(x=x3) x3['intercept'] = 1. x3 = x3.reindex(columns = model1.beta.index) expected = Series(np.dot(x3.values, model1.beta.values), x3.index) assert_series_equal(expected, pred3) beta = Series(0., model1.beta.index) pred4 = model1.predict(beta=beta) assert_series_equal(Series(0., pred4.index), pred4) def test_predict_longer_exog(self): exogenous = {"1998": "4760","1999": "5904","2000": "4504", "2001": "9808","2002": "4241","2003": "4086", "2004": "4687","2005": "7686","2006": "3740", "2007": "3075","2008": "3753","2009": "4679", "2010": "5468","2011": "7154","2012": "4292", "2013": "4283","2014": "4595","2015": "9194", "2016": "4221","2017": "4520"} endogenous = {"1998": "691", "1999": "1580", "2000": "80", "2001": "1450", "2002": "555", "2003": "956", "2004": "877", "2005": "614", "2006": "468", "2007": "191"} endog = Series(endogenous) exog = Series(exogenous) model = ols(y=endog, x=exog) pred = model.y_predict self.assert_(pred.index.equals(exog.index)) def test_longpanel_series_combo(self): wp = tm.makePanel() lp = wp.to_frame() y = lp.pop('ItemA') model = ols(y=y, x=lp, entity_effects=True, window=20) self.assert_(notnull(model.beta.values).all()) self.assert_(isinstance(model, PanelOLS)) model.summary def test_series_rhs(self): y = tm.makeTimeSeries() x = tm.makeTimeSeries() model = ols(y=y, x=x) expected = ols(y=y, x={'x' : x}) assert_series_equal(model.beta, expected.beta) def test_various_attributes(self): # just make sure everything "works". test correctness elsewhere x = DataFrame(np.random.randn(100, 5)) y = np.random.randn(100) model = ols(y=y, x=x, window=20) series_attrs = ['rank', 'df', 'forecast_mean', 'forecast_vol'] for attr in series_attrs: value = getattr(model, attr) self.assert_(isinstance(value, Series)) # works model._results def test_catch_regressor_overlap(self): df1 = tm.makeTimeDataFrame().ix[:, ['A', 'B']] df2 = tm.makeTimeDataFrame().ix[:, ['B', 'C', 'D']] y = tm.makeTimeSeries() data = {'foo' : df1, 'bar' : df2} self.assertRaises(Exception, ols, y=y, x=data) def test_plm_ctor(self): y = tm.makeTimeDataFrame() x = {'a' : tm.makeTimeDataFrame(), 'b' : tm.makeTimeDataFrame()} model = ols(y=y, x=x, intercept=False) model.summary model = ols(y=y, x=Panel(x)) model.summary def test_plm_attrs(self): y = tm.makeTimeDataFrame() x = {'a' : tm.makeTimeDataFrame(), 'b' : tm.makeTimeDataFrame()} rmodel = ols(y=y, x=x, window=10) model = ols(y=y, x=x) model.resid rmodel.resid def test_plm_lagged_y_predict(self): y = tm.makeTimeDataFrame() x = {'a' : tm.makeTimeDataFrame(), 'b' : tm.makeTimeDataFrame()} model = ols(y=y, x=x, window=10) result = model.lagged_y_predict(2) def test_plm_f_test(self): y = tm.makeTimeDataFrame() x = {'a' : tm.makeTimeDataFrame(), 'b' : tm.makeTimeDataFrame()} model = ols(y=y, x=x) hyp = '1*a+1*b=0' result = model.f_test(hyp) hyp = ['1*a=0', '1*b=0'] result = model.f_test(hyp) assert_almost_equal(result['f-stat'], model.f_stat['f-stat']) def test_plm_exclude_dummy_corner(self): y = tm.makeTimeDataFrame() x = {'a' : tm.makeTimeDataFrame(), 'b' : tm.makeTimeDataFrame()} model = ols(y=y, x=x, entity_effects=True, dropped_dummies={'entity' : 'D'}) model.summary self.assertRaises(Exception, ols, y=y, x=x, entity_effects=True, dropped_dummies={'entity' : 'E'}) def test_columns_tuples_summary(self): # #1837 X = DataFrame(np.random.randn(10, 2), columns=[('a', 'b'), ('c', 'd')]) Y = Series(np.random.randn(10)) # it works! model = ols(y=Y, x=X) model.summary class TestPanelOLS(BaseTest): FIELDS = ['beta', 'df', 'df_model', 'df_resid', 'f_stat', 'p_value', 'r2', 'r2_adj', 'rmse', 'std_err', 't_stat', 'var_beta'] _other_fields = ['resid', 'y_fitted'] def testFiltering(self): result = ols(y=self.panel_y2, x=self.panel_x2) x = result._x index = x.index.get_level_values(0) index = Index(sorted(set(index))) exp_index = Index([datetime(2000, 1, 1), datetime(2000, 1, 3)]) self.assertTrue;(exp_index.equals(index)) index = x.index.get_level_values(1) index = Index(sorted(set(index))) exp_index = Index(['A', 'B']) self.assertTrue(exp_index.equals(index)) x = result._x_filtered index = x.index.get_level_values(0) index = Index(sorted(set(index))) exp_index = Index([datetime(2000, 1, 1), datetime(2000, 1, 3), datetime(2000, 1, 4)]) self.assertTrue(exp_index.equals(index)) assert_almost_equal(result._y.values.flat, [1, 4, 5]) exp_x = [[6, 14, 1], [9, 17, 1], [30, 48, 1]] assert_almost_equal(exp_x, result._x.values) exp_x_filtered = [[6, 14, 1], [9, 17, 1], [30, 48, 1], [11, 20, 1], [12, 21, 1]] assert_almost_equal(exp_x_filtered, result._x_filtered.values) self.assertTrue(result._x_filtered.index.levels[0].equals( result.y_fitted.index)) def test_wls_panel(self): y = tm.makeTimeDataFrame() x = Panel({'x1' : tm.makeTimeDataFrame(), 'x2' : tm.makeTimeDataFrame()}) y.ix[[1, 7], 'A'] = np.nan y.ix[[6, 15], 'B'] = np.nan y.ix[[3, 20], 'C'] = np.nan y.ix[[5, 11], 'D'] = np.nan stack_y = y.stack() stack_x = DataFrame(dict((k, v.stack()) for k, v in x.iterkv())) weights = x.std('items') stack_weights = weights.stack() stack_y.index = stack_y.index._tuple_index stack_x.index = stack_x.index._tuple_index stack_weights.index = stack_weights.index._tuple_index result = ols(y=y, x=x, weights=1/weights) expected = ols(y=stack_y, x=stack_x, weights=1/stack_weights) assert_almost_equal(result.beta, expected.beta) for attr in ['resid', 'y_fitted']: rvals = getattr(result, attr).stack().values evals = getattr(expected, attr).values assert_almost_equal(rvals, evals) def testWithTimeEffects(self): result = ols(y=self.panel_y2, x=self.panel_x2, time_effects=True) assert_almost_equal(result._y_trans.values.flat, [0, -0.5, 0.5]) exp_x = [[0, 0], [-10.5, -15.5], [10.5, 15.5]] assert_almost_equal(result._x_trans.values, exp_x) # _check_non_raw_results(result) def testWithEntityEffects(self): result = ols(y=self.panel_y2, x=self.panel_x2, entity_effects=True) assert_almost_equal(result._y.values.flat, [1, 4, 5]) exp_x = DataFrame([[0, 6, 14, 1], [0, 9, 17, 1], [1, 30, 48, 1]], index=result._x.index, columns=['FE_B', 'x1', 'x2', 'intercept'], dtype=float) tm.assert_frame_equal(result._x, exp_x.ix[:, result._x.columns]) # _check_non_raw_results(result) def testWithEntityEffectsAndDroppedDummies(self): result = ols(y=self.panel_y2, x=self.panel_x2, entity_effects=True, dropped_dummies={'entity' : 'B'}) assert_almost_equal(result._y.values.flat, [1, 4, 5]) exp_x = DataFrame([[1, 6, 14, 1], [1, 9, 17, 1], [0, 30, 48, 1]], index=result._x.index, columns=['FE_A', 'x1', 'x2', 'intercept'], dtype=float) tm.assert_frame_equal(result._x, exp_x.ix[:, result._x.columns]) # _check_non_raw_results(result) def testWithXEffects(self): result = ols(y=self.panel_y2, x=self.panel_x2, x_effects=['x1']) assert_almost_equal(result._y.values.flat, [1, 4, 5]) res = result._x exp_x = DataFrame([[0, 0, 14, 1], [0, 1, 17, 1], [1, 0, 48, 1]], columns=['x1_30', 'x1_9', 'x2', 'intercept'], index=res.index, dtype=float) assert_frame_equal(res, exp_x.reindex(columns=res.columns)) def testWithXEffectsAndDroppedDummies(self): result = ols(y=self.panel_y2, x=self.panel_x2, x_effects=['x1'], dropped_dummies={'x1' : 30}) res = result._x assert_almost_equal(result._y.values.flat, [1, 4, 5]) exp_x = DataFrame([[1, 0, 14, 1], [0, 1, 17, 1], [0, 0, 48, 1]], columns=['x1_6', 'x1_9', 'x2', 'intercept'], index=res.index, dtype=float) assert_frame_equal(res, exp_x.reindex(columns=res.columns)) def testWithXEffectsAndConversion(self): result = ols(y=self.panel_y3, x=self.panel_x3, x_effects=['x1', 'x2']) assert_almost_equal(result._y.values.flat, [1, 2, 3, 4]) exp_x = [[0, 0, 0, 1, 1], [1, 0, 0, 0, 1], [0, 1, 1, 0, 1], [0, 0, 0, 1, 1]] assert_almost_equal(result._x.values, exp_x) exp_index = Index(['x1_B', 'x1_C', 'x2_baz', 'x2_foo', 'intercept']) self.assertTrue(exp_index.equals(result._x.columns)) # _check_non_raw_results(result) def testWithXEffectsAndConversionAndDroppedDummies(self): result = ols(y=self.panel_y3, x=self.panel_x3, x_effects=['x1', 'x2'], dropped_dummies={'x2' : 'foo'}) assert_almost_equal(result._y.values.flat, [1, 2, 3, 4]) exp_x = [[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [0, 1, 0, 1, 1], [0, 0, 0, 0, 1]] assert_almost_equal(result._x.values, exp_x) exp_index = Index(['x1_B', 'x1_C', 'x2_bar', 'x2_baz', 'intercept']) self.assertTrue(exp_index.equals(result._x.columns)) # _check_non_raw_results(result) def testForSeries(self): self.checkForSeries(self.series_panel_x, self.series_panel_y, self.series_x, self.series_y) self.checkForSeries(self.series_panel_x, self.series_panel_y, self.series_x, self.series_y, nw_lags=0) self.checkForSeries(self.series_panel_x, self.series_panel_y, self.series_x, self.series_y, nw_lags=1, nw_overlap=True) def testRolling(self): self.checkMovingOLS(self.panel_x, self.panel_y) def testRollingWithFixedEffects(self): self.checkMovingOLS(self.panel_x, self.panel_y, entity_effects=True) self.checkMovingOLS(self.panel_x, self.panel_y, intercept=False, entity_effects=True) def testRollingWithTimeEffects(self): self.checkMovingOLS(self.panel_x, self.panel_y, time_effects=True) def testRollingWithNeweyWest(self): self.checkMovingOLS(self.panel_x, self.panel_y, nw_lags=1) def testRollingWithEntityCluster(self): self.checkMovingOLS(self.panel_x, self.panel_y, cluster='entity') def testRollingWithTimeEffectsAndEntityCluster(self): self.checkMovingOLS(self.panel_x, self.panel_y, time_effects=True, cluster='entity') def testRollingWithTimeCluster(self): self.checkMovingOLS(self.panel_x, self.panel_y, cluster='time') def testRollingWithNeweyWestAndEntityCluster(self): self.checkMovingOLS(self.panel_x, self.panel_y, nw_lags=1, cluster='entity') def testRollingWithNeweyWestAndTimeEffectsAndEntityCluster(self): self.checkMovingOLS(self.panel_x, self.panel_y, nw_lags=1, cluster='entity', time_effects=True) def testExpanding(self): self.checkMovingOLS(self.panel_x, self.panel_y, window_type='expanding') def testNonPooled(self): self.checkNonPooled(y=self.panel_y, x=self.panel_x) self.checkNonPooled(y=self.panel_y, x=self.panel_x, window_type='rolling', window=25, min_periods=10) def checkNonPooled(self, x, y, **kwds): # For now, just check that it doesn't crash result = ols(y=y, x=x, pool=False, **kwds) _check_repr(result) for attr in NonPooledPanelOLS.ATTRIBUTES: _check_repr(getattr(result, attr)) def checkMovingOLS(self, x, y, window_type='rolling', **kwds): window = 25 # must be larger than rank of x moving = ols(y=y, x=x, window_type=window_type, window=window, **kwds) index = moving._index for n, i in enumerate(moving._valid_indices): if window_type == 'rolling' and i >= window: prior_date = index[i - window + 1] else: prior_date = index[0] date = index[i] x_iter = {} for k, v in x.iteritems(): x_iter[k] = v.truncate(before=prior_date, after=date) y_iter = y.truncate(before=prior_date, after=date) static = ols(y=y_iter, x=x_iter, **kwds) self.compare(static, moving, event_index=i, result_index=n) _check_non_raw_results(moving) def checkForSeries(self, x, y, series_x, series_y, **kwds): # Consistency check with simple OLS. result = ols(y=y, x=x, **kwds) reference = ols(y=series_y, x=series_x, **kwds) self.compare(reference, result) def compare(self, static, moving, event_index=None, result_index=None): # Check resid if we have a time index specified if event_index is not None: staticSlice = _period_slice(static, -1) movingSlice = _period_slice(moving, event_index) ref = static._resid_raw[staticSlice] res = moving._resid_raw[movingSlice] assert_almost_equal(ref, res) ref = static._y_fitted_raw[staticSlice] res = moving._y_fitted_raw[movingSlice] assert_almost_equal(ref, res) # Check y_fitted for field in self.FIELDS: attr = '_%s_raw' % field ref = getattr(static, attr) res = getattr(moving, attr) if result_index is not None: res = res[result_index] assert_almost_equal(ref, res) def test_auto_rolling_window_type(self): data = tm.makeTimeDataFrame() y = data.pop('A') window_model = ols(y=y, x=data, window=20, min_periods=10) rolling_model = ols(y=y, x=data, window=20, min_periods=10, window_type='rolling') assert_frame_equal(window_model.beta, rolling_model.beta) def _check_non_raw_results(model): _check_repr(model) _check_repr(model.resid) _check_repr(model.summary_as_matrix) _check_repr(model.y_fitted) _check_repr(model.y_predict) def _period_slice(panelModel, i): index = panelModel._x_trans.index period = index.levels[0][i] L, R = index.get_major_bounds(period, period) return slice(L, R) class TestOLSFilter(unittest.TestCase): def setUp(self): date_index = date_range(datetime(2009, 12, 11), periods=3, freq=datetools.bday) ts = Series([3, 1, 4], index=date_index) self.TS1 = ts date_index = date_range(datetime(2009, 12, 11), periods=5, freq=datetools.bday) ts = Series([1, 5, 9, 2, 6], index=date_index) self.TS2 = ts date_index = date_range(datetime(2009, 12, 11), periods=3, freq=datetools.bday) ts = Series([5, np.nan, 3], index=date_index) self.TS3 = ts date_index = date_range(datetime(2009, 12, 11), periods=5, freq=datetools.bday) ts =
Series([np.nan, 5, 8, 9, 7], index=date_index)
pandas.Series
from sox import Transformer import sox from glob import glob import tensorflow as tf import pandas as pd import os import unicodedata import tqdm import logging import librosa import numpy as np import soundfile from sklearn.model_selection import train_test_split logging.basicConfig(level=logging.NOTSET) logging.getLogger('sox').setLevel(logging.ERROR) FLAGS = tf.compat.v1.app.flags.FLAGS tfm = Transformer() tfm.set_output_format(rate=16000) def main(_): source_dir = FLAGS.source_dir data = [] df_details = pd.read_csv(os.path.join(source_dir, "validated.tsv"), sep="\t", header=0) with tqdm.tqdm(total=len(df_details.index)) as bar: for i in df_details.index: file_name = df_details["path"][i] source_file = os.path.join(source_dir, "clips/" + file_name) wav_file = os.path.join(os.path.dirname(__file__), "../data/common-voice-mozilla/Common-Voice-Mozilla/wav-files/" + file_name.split(".mp3")[0] + ".wav") transcript = df_details["sentence"][i] if pd.isnull(transcript): continue transcript = unicodedata.normalize("NFKD", transcript) \ .encode("ascii", "ignore") \ .decode("ascii", "ignore") transcript = transcript.lower().strip() try: if not os.path.exists(wav_file): tfm.build(source_file, wav_file) y, sr = librosa.load(wav_file, sr=None) yt, index = librosa.effects.trim(y, top_db=10) yt = y[max(index[0] - 40000, 0): min(index[1] + 40000, len(y))] soundfile.write(wav_file, yt, sr) wav_filesize = os.path.getsize(wav_file) data.append((os.path.abspath(wav_file), wav_filesize, transcript)) except sox.core.SoxError: logging.info(f"Error in file: {source_file}") bar.update(1) train_data, test_data = train_test_split(data, test_size=FLAGS.test_size, random_state=FLAGS.random_state) df_train =
pd.DataFrame(data=train_data, columns=["wav_filename", "wav_filesize", "transcript"])
pandas.DataFrame
# Importar librerias import pandas # importar libreria pandas import time # importar libreria time import datetime # importar libreria de fecha y hora from datetime import datetime # importar la libreria de datetime import os # importar la libreria de os from termcolor import colored # importar la libreria termcolor import sqlite3 # importar libreria sqlite3 os.system('CLS') # limpiar la terminal # Seccion carga de datos desde CSV (base de datos) """-----------------------------------------------------------------------------------------------------------------------""" conn = sqlite3.connect('./database.db') # conexion a la base de datos matrixpandas = pandas.read_sql_query("SELECT * FROM productos", conn) # carga de datos desde la base de datos de stock matriz = matrixpandas.values.tolist() # convertir la matriz a una lista registros = pandas.read_sql_query("SELECT * FROM registros", conn) # carga de datos desde la base de datos de registros registros = registros.values.tolist() # convertir la matriz a una lista """-----------------------------------------------------------------------------------------------------------------------""" # Seccion de funciones """-----------------------------------------------------------------------------------------------------------------------""" # funcion para imprimir la matriz de productos def print_data(matriz): os.system('CLS') print_matriz = pandas.DataFrame( matriz, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas print("Imprimiendo matriz de datos...") # mensaje de impresion time.sleep(1) # esperar 1 segundo print(print_matriz) # imprimir la matriz de stock print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo # funcion para imprimir la matriz de registros def print_registros(registros): print_registros = pandas.DataFrame( registros, columns=["code", "variacion", "motivo", "timestamp"]) # generar la matriz en formato pandas print("Imprimiendo matriz de datos...") # mensaje de impresion time.sleep(1) # esperar 1 segundo print(print_registros) # imprimir la matriz de registros print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo # funcion para consultar el stock de un producto def product_stock(matriz): os.system("CLS") # limpiar la terminal founded = False # variable para saber si se encontro el producto stock = (input("Ingrese el código del producto a consultar stock: ")).upper() # capturar el codigo del producto a buscar os.system('CLS') # limpiar la terminal for i in range(len(matriz)): # recorrer la matriz if stock == matriz[i][0]: # si se encontró el codigo del producto en la matriz print("El stock actual del producto ", stock, "es: ", matriz[i][3]) # imprimir el stock del producto founded = True # cambiar la variable a True input("Ingrese cualquier tecla cuando desee volver al menu principal: ") # volver al menu principal time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal if founded == False: # si no se encontró el codigo del producto en la matriz print("No se encontro el codigo") # mensaje de error time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar ") # mensaje de volver a intentar print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menú principal") # mensaje de volver al menu principal choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 product_stock(matriz) # volver a intentar elif choose == "2": # si la opcion es 2 time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal # funcion para filtrar los productos por tipo def product_type(matriz): type_product = input( "Ingrese la categoria de producto por el que desea filtrar: ") # capturar el tipo de producto para filtrar a = len(matriz) # obtener la longitud de la matriz lista = list() # crear una lista for i in range(a): # recorrer la matriz if (matriz[i][2]).upper() == (type_product).upper(): # si el tipo de producto es igual al tipo de producto capturado lista.append(matriz[i]) # agregar el producto a la lista if len(lista) != 0: c = pandas.DataFrame( lista, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas os.system('CLS') # limpiar la terminal print(c) # imprimir la matriz de productos print(" ") decition = input( "Cuando desee regresar al menú principal ingrese cualquier tecla: ") # volver al menu principal os.system('CLS') # limpiar la terminal time.sleep(1) # esperar 1 segundo else: print("No se encontraron productos con ese tipo") # mensaje de error time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal print(colored("- 1.", "blue", attrs=["bold"]), "Volver a intentar ") # mensaje de volver a intentar print(colored("- 2.", "blue", attrs=["bold"]), "Volver al menú principal") # mensaje de volver al menu principal choose = (input("Ingrese una opción: ")).upper() # capturar la opcion if choose == "1": # si la opcion es 1 product_type(matriz) # volver a intentar elif choose == "2": # si la opcion es 2 time.sleep(1) # esperar 1 segundo os.system("CLS") # limpiar la terminal # funcion para obtener el tiempo actual def get_current_time(): time_update = datetime.now() # obtener la fecha y hora actual now = time_update.strftime("%d/%m/%Y %H:%M:%S") # formatear la fecha y hora actual return now # retornar fecha # funcion para alertar si hay que reponer un producto def alert(matriz): time.sleep(0.2) # esperar 0.2 segundos os.system("CLS") # limpiar la terminal to_repos = list() # crear una lista para los productos a reponer codes_to_repos = list() # crear una lista para los codigos de los productos a reponer for i in range(len(matriz)): # recorrer la matriz if int(matriz[i][3]) <= int(matriz[i][4]): # si el stock es menor o igual al reposicion to_repos.append(matriz[i]) # agregar el producto a la lista codes_to_repos.append(matriz[i][0]) # agregar el codigo del producto a la lista to_repos = pandas.DataFrame(to_repos, columns=["code", "name", "type", "stock", "repos", "price", "last_update"]) # generar la matriz en formato pandas if len(codes_to_repos) > 0: # si hay productos a reponer print("Los codigos a reponer son: ") # mensaje de los codigos a reponer for i in codes_to_repos: # recorrer la lista de codigos a reponer print(i, end=" ") # imprimir los codigos a reponer print("") print("-----------------------------") print(" ") print(to_repos) # imprimir la matriz de productos a reponer print(" ") a = input("Ingrese una tecla cuando desee volver al menu principal: ") # volver al menu principal os.system('CLS') # limpiar la terminal else: print("No hay ningun codigo a reponer por el momento.") # mensaje de error os.system('CLS') # limpiar la terminal # funcion para agregar un nuevo producto def add_new_product(matriz): new_product = list() # crear una lista para almacenar los datos del nuevo producto code = input("Ingresa el codigo del producto que desea agregar: ") # capturar el codigo del producto name = input("Ingresa el nombre del producto que va a agregar: ") # capturar el nombre del producto type_product = input("Ingresa la categoria del producto: ") # capturar el tipo de producto stock = int(input("Ingresa el stock inicial del producto, puede ser 0: ")) # capturar el stock inicial del producto reposition = int(input("Punto de reposicion del producto: ")) # capturar el punto de reposicion del producto price = input("Ingresa el precio del producto: ") # capturar el precio del producto new_product.append(code.upper()) # agregar el codigo al nuevo producto new_product.append(name) # agregar el nombre al nuevo producto new_product.append(type_product) # agregar el tipo de producto al nuevo producto new_product.append(stock) # agregar el stock al nuevo producto new_product.append(reposition) # agregar el punto de reposicion al nuevo producto new_product.append(price) # agregar el precio al nuevo producto new_product.append(get_current_time()) # agregar la fecha y hora actual al nuevo producto matriz.append(new_product) # agregar el nuevo producto a la matriz print("El producto " + code.upper() + " fue agregado") # mensaje de confirmacion time.sleep(2) # esperar 2 segundos os.system('CLS') # limpiar la terminal df =
pandas.DataFrame(matriz)
pandas.DataFrame
#Author: <NAME> 2019 #merge tables import pandas as pd import click # options @click.command() @click.option('--counts', 'counts_file', required=True, type=click.Path(exists=True, readable=True), help='Barcodes (DNA or RNA).') @click.option('--assignment', 'assignment_file', required=True, type=click.Path(exists=True, readable=True), help='Assignment tsv file.') @click.option('--name', 'name', required=True, type=str, help='Name the statistic should be written with.') @click.option('--output', 'output_file', required=True, type=click.Path(writable=True), help='Output file.') @click.option('--statistic', 'statistic_file', required=True, type=click.Path(writable=True), help='Statistic output file.') def cli(counts_file, assignment_file, output_file, statistic_file, name): # statistic statistic = pd.DataFrame(data={'Experiment' : [name], 'Barcodes': [0], 'Counts' : [0], 'Average counts' : [0], 'Assigned barcodes' : [0], 'Assigned counts' : [0], 'Average assigned counts' : [0], 'Fraction assigned barcodes' : [0], 'Fraction assigned counts' : [0]}) # Association file click.echo("Read assignment file...") assoc_barcodes_oligo=pd.read_csv(assignment_file, header=None, usecols=[0,1], sep="\t", names=['Barcode','Oligo']) assoc_barcodes = set(assoc_barcodes_oligo.Barcode) #get count df click.echo("Read count file...") counts=
pd.read_csv(counts_file, header=None, sep="\t", names=['Barcode','Counts'])
pandas.read_csv
"""Tests for dynamic validator.""" from datetime import date, datetime import numpy as np import pandas as pd from delphi_validator.report import ValidationReport from delphi_validator.dynamic import DynamicValidator class TestCheckRapidChange: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_df(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) ref_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_0_vs_many(self): validator = DynamicValidator(self.params) report = ValidationReport([]) time_value = datetime.combine(date.today(), datetime.min.time()) test_df = pd.DataFrame([time_value] * 5, columns=["time_value"]) ref_df = pd.DataFrame([time_value] * 1, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, time_value, "geo", "signal", report) assert len(report.raised_errors) == 1 assert "check_rapid_change_num_rows" in [ err.check_data_id[0] for err in report.raised_errors] class TestCheckAvgValDiffs: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_se(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [np.nan] * 6, "se": [1, 1, 1, 2, 0, 1], "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df =
pd.DataFrame(data)
pandas.DataFrame
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = pd.read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = pd.concat( list( pd.read_sql_query( "select * from types_test_data", self.conn, chunksize=1 ) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H") expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2 ** 25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) df.to_sql("test_nan", self.conn, index=False) # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = "test_get_schema_create_table" create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, sqlalchemy.TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": str}) # GH9083 df.to_sql("dtype_test3", self.conn, dtype={"B": sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql("single_dtype_test", self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == "mysql": my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, sqltypes.DateTime) assert isinstance(col_dict["Int"].type, sqltypes.Integer) assert isinstance(col_dict["Float"].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) df.to_sql( "test_dtypes", self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": sqlalchemy.Float(precision=23)}, ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, sqltypes.Float) assert isinstance(col_dict["f64"].type, sqltypes.Float) assert isinstance(col_dict["i32"].type, sqltypes.Integer) assert isinstance(col_dict["i64"].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn) main(self.conn) def test_temporary_table(self): test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=sqlalchemy.select([Temporary.spam]), con=conn) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip("Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy: """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") df.to_sql("test_bigintwarning", self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table("test_bigintwarning", self.conn) assert len(w) == 0 class _TestMySQLAlchemy: """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" @classmethod def connect(cls): url = "mysql+{driver}://root@localhost/pandas_nosetest" return sqlalchemy.create_engine( url.format(driver=cls.driver), connect_args=cls.connect_args ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): import pymysql # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql("test_procedure", self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except pymysql.Error: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy: """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" @classmethod def connect(cls): url = "postgresql+{driver}://postgres@localhost/pandas_nosetest" return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql("test_schema_public", self.conn, index=False) df.to_sql( "test_schema_public_explicit", self.conn, index=False, schema="public" ) df.to_sql("test_schema_other", self.conn, index=False, schema="other") # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql("test_schema_other", self.conn, schema="other", index=False) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="replace", ) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="append", ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema="other") pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, "test_schema_other2", index=False) pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_copy_from_callable_insertion_method(self): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join(f'"{k}"' for k in keys) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) expected.to_sql( "test_copy_insert", self.conn, index=False, method=psql_insert_copy ) result = sql.read_sql_table("test_copy_insert", self.conn) tm.assert_frame_equal(result, expected) @pytest.mark.single @pytest.mark.db class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback @pytest.mark.single class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlite3.connect(":memory:") def setup_connect(self): self.conn = self.connect() def load_test_data_and_sql(self): self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): # GH 29921 self._to_sql(method="multi") def test_create_and_drop_table(self): temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) self.pandasSQL.to_sql(temp_frame, "drop_test_frame") assert self.pandasSQL.has_table("drop_test_frame") self.pandasSQL.drop_table("drop_test_frame") assert not self.pandasSQL.has_table("drop_test_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_query("SELECT * FROM test_date", self.conn) if self.flavor == "sqlite": # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == "mysql": tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_query("SELECT * FROM test_time", self.conn) if self.flavor == "sqlite": # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + f"AND tbl_name = '{tbl_name}'", self.conn, ) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute(f"PRAGMA table_info({table})") for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError(f"Table {table}, column {column} not found") def test_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": "STRING"}) # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER" assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING" msg = r"B \(<class 'bool'>\) not a string" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": bool}) # single dtype df.to_sql("single_dtype_test", self.conn, dtype="STRING") assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING" assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING" def test_notna_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) assert self._get_sqlite_column_type(tbl, "Bool") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Date") == "TIMESTAMP" assert self._get_sqlite_column_type(tbl, "Int") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Float") == "REAL" def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) msg = "Empty table or column name specified" with pytest.raises(ValueError, match=msg): df.to_sql("", self.conn) for ndx, weird_name in enumerate( [ "test_weird_name]", "test_weird_name[", "test_weird_name`", 'test_weird_name"', "test_weird_name'", "_b.test_weird_name_01-30", '"_b.test_weird_name_01-30"', "99beginswithnumber", "12345", "\xe9", ] ): df.to_sql(weird_name, self.conn) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) c_tbl = f"test_weird_col_name{ndx:d}" df2.to_sql(c_tbl, self.conn) sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) def date_format(dt): """Returns date in YYYYMMDD format.""" return dt.strftime("%Y%m%d") _formatters = { datetime: "'{}'".format, str: "'{}'".format, np.str_: "'{}'".format, bytes: "'{}'".format, float: "{:.8f}".format, int: "{:d}".format, type(None): lambda x: "NULL", np.float64: "{:.10f}".format, bool: "'{!s}'".format, } def format_query(sql, *args): """ """ processed_args = [] for arg in args: if isinstance(arg, float) and isna(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None, cur=None): """Replace removed sql.tquery function""" res = sql.execute(query, con=con, cur=cur).fetchall() if res is None: return None else: return list(res) @pytest.mark.single class TestXSQLite(SQLiteMixIn): @pytest.fixture(autouse=True) def setup_method(self, request, datapath): self.method = request.function self.conn = sqlite3.connect(":memory:") # In some test cases we may close db connection # Re-open conn here so we can perform cleanup in teardown yield self.method = request.function self.conn = sqlite3.connect(":memory:") def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) cur = self.conn.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, check_less_precise=True) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.iloc[0] sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for l in lines: tokens = l.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert 'PRIMARY KEY ("A", "B")' in create_sql cur = self.conn.cursor() cur.execute(create_sql) def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception): tquery("select * from test", con=self.conn) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.to_sql(frame, name="test_table", con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() new_idx = Index(np.arange(len(frame2))) + 10 frame2["Idx"] = new_idx.copy() sql.to_sql(frame2, name="test_table2", con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col="Idx") expected = frame.copy() expected.index = new_idx expected.index.name = "Idx" tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({"From": np.ones(5)}) sql.to_sql(df, con=self.conn, name="testkeywords", index=False) def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=["c0"]) sql.to_sql(mono_df, con=self.conn, name="mono_df", index=False) # computing the sum via sql con_x = self.conn the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) # it should not fail, and gives 3 ( Issue #3628 ) assert the_sum == 3 result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) table_name = "table_if_exists" sql_select = f"SELECT * FROM {table_name}" def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) msg = "'notvalidvalue' is not valid for if_exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="notvalidvalue", ) clean_up(table_name) # test if_exists='fail' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) msg = "Table 'table_if_exists' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) # test if_exists='replace' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(3, "C"), (4, "D"), (5, "E")] clean_up(table_name) # test if_exists='append' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="append", index=False, ) assert tquery(sql_select, con=self.conn) == [ (1, "A"), (2, "B"), (3, "C"), (4, "D"), (5, "E"), ] clean_up(table_name) @pytest.mark.single @pytest.mark.db @pytest.mark.skip( reason="gh-13611: there is no support for MySQL if SQLAlchemy is not installed" ) class TestXMySQL(MySQLMixIn): @pytest.fixture(autouse=True, scope="class") def setup_class(cls): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas_nosetest") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) except pymysql.Error: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) @pytest.fixture(autouse=True) def setup_method(self, request, datapath): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas_nosetest") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) except pymysql.Error: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) self.method = request.function def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index
tm.assert_frame_equal(result, frame, check_less_precise=True)
pandas._testing.assert_frame_equal
import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, inspect import pymysql pymysql.install_as_MySQLdb() import pandas as pd from flask import Flask, jsonify import datetime as dt from splinter import Browser from bs4 import BeautifulSoup import time Base = automap_base() engine = create_engine('sqlite:///./data/FPA_FOD_20170508.sqlite') Base.metadata.create_all(engine) session = Session(engine) # Store data in dataframe df = pd.read_sql('SELECT fire_year,fire_name, fips_name, fire_size, stat_cause_descr, latitude, longitude, fips_code, DISCOVERY_DATE, CONT_DATE FROM Fires WHERE state == "CA" AND fire_year >= 2010 and fire_year <= 2014 and fire_size > 1000 and county <> "none"', engine) merge_df = df.rename(index=str,columns={"FIRE_YEAR":"Fire Year","FIRE_NAME":"Fire Name","FIRE_SIZE":"Acres Burned", "STAT_CAUSE_DESCR":"Fire Cause","LATITUDE":"Latitude","LONGITUDE":"Longitude", "FIPS_CODE":"FIPS Code","FIPS_NAME":"County","DISCOVERY_DATE":"Start Date", "CONT_DATE":"Containment Date"}) merge_df = merge_df[["Fire Year","Fire Name","Acres Burned","Fire Cause","Latitude","Longitude","FIPS Code","County","Start Date","Containment Date"]] merge_df["Number of Days"] = "" # Web Scrapping browser = Browser("chrome", executable_path='chromedriver.exe', headless=True) # 2015 data url = "https://en.wikipedia.org/wiki/2015_California_wildfires" url = "https://en.wikipedia.org/wiki/2015_California_wildfires" df_2015_list =
pd.read_html(url)
pandas.read_html
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base =
tm.box_expected(base, box_with_array)
pandas.util.testing.box_expected
import pandas as pd from functools import reduce # Antwoord op de vraag # # Als de hele wereld relatief gezien net zo veel (geregistreerde) coronadoden had als NL," # hoeveel waren dat er wereldwijd dan minder/meer geweest dan het huidige aantal van 4,6 miljoen? # # https://twitter.com/rcsmit/status/1434497100411293700 def save_df(df, name): """ Saves the dataframe """ name_ = name + ".csv" compression_opts = dict(method=None, archive_name=name_) df.to_csv(name_, index=False, compression=compression_opts) print("--- Saving " + name_ + " ---") def prepare_cases_landelijk(): """Berekent aantal overleden per leeftijdsgroep van casus_landelijk.csv (data.rivm.nl) Returns: df: df met aantal overleden per leeftijdsgroep """ url1 = "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\input\\COVID-19_casus_landelijk.csv" df = pd.read_csv(url1, delimiter=";", low_memory=False) df["Date_statistics"] =
pd.to_datetime(df["Date_statistics"], format="%Y-%m-%d")
pandas.to_datetime
"""High-level functions to help perform complex tasks """ from __future__ import print_function, division import os import multiprocessing as mp import warnings from datetime import datetime import platform import struct import shutil import copy import numpy as np import pandas as pd import time pd.options.display.max_colwidth = 100 from ..pyemu_warnings import PyemuWarning try: import flopy except: pass import pyemu from pyemu.utils.os_utils import run, start_workers def geostatistical_draws(pst, struct_dict,num_reals=100,sigma_range=4,verbose=True): """construct a parameter ensemble from a prior covariance matrix implied by geostatistical structure(s) and parameter bounds. Args: pst (`pyemu.Pst`): a control file (or the name of control file). The parameter bounds in `pst` are used to define the variance of each parameter group. struct_dict (`dict`): a dict of GeoStruct (or structure file), and list of pilot point template files pairs. If the values in the dict are `pd.DataFrames`, then they must have an 'x','y', and 'parnme' column. If the filename ends in '.csv', then a pd.DataFrame is loaded, otherwise a pilot points file is loaded. num_reals (`int`, optional): number of realizations to draw. Default is 100 sigma_range (`float`): a float representing the number of standard deviations implied by parameter bounds. Default is 4.0, which implies 95% confidence parameter bounds. verbose (`bool`, optional): flag to control output to stdout. Default is True. flag for stdout. Returns `pyemu.ParameterEnsemble`: the realized parameter ensemble. Note: parameters are realized by parameter group. The variance of each parameter group is used to scale the resulting geostatistical covariance matrix Therefore, the sill of the geostatistical structures in `struct_dict` should be 1.0 Example:: pst = pyemu.Pst("my.pst") sd = {"struct.dat":["hkpp.dat.tpl","vka.dat.tpl"]} pe = pyemu.helpers.geostatistical_draws(pst,struct_dict=sd} pe.to_csv("my_pe.csv") """ if isinstance(pst,str): pst = pyemu.Pst(pst) assert isinstance(pst,pyemu.Pst),"pst arg must be a Pst instance, not {0}".\ format(type(pst)) if verbose: print("building diagonal cov") full_cov = pyemu.Cov.from_parameter_data(pst, sigma_range=sigma_range) full_cov_dict = {n: float(v) for n, v in zip(full_cov.col_names, full_cov.x)} # par_org = pst.parameter_data.copy # not sure about the need or function of this line? (BH) par = pst.parameter_data par_ens = [] pars_in_cov = set() keys = list(struct_dict.keys()) keys.sort() for gs in keys: items = struct_dict[gs] if verbose: print("processing ",gs) if isinstance(gs,str): gss = pyemu.geostats.read_struct_file(gs) if isinstance(gss,list): warnings.warn("using first geostat structure in file {0}".\ format(gs),PyemuWarning) gs = gss[0] else: gs = gss if gs.sill != 1.0: warnings.warn("GeoStruct {0} sill != 1.0 - this is bad!".format(gs.name)) if not isinstance(items,list): items = [items] #items.sort() for item in items: if isinstance(item,str): assert os.path.exists(item),"file {0} not found".\ format(item) if item.lower().endswith(".tpl"): df = pyemu.pp_utils.pp_tpl_to_dataframe(item) elif item.lower.endswith(".csv"): df = pd.read_csv(item) else: df = item if "pargp" in df.columns: if verbose: print("working on pargroups {0}".format(df.pargp.unique().tolist())) for req in ['x','y','parnme']: if req not in df.columns: raise Exception("{0} is not in the columns".format(req)) missing = df.loc[df.parnme.apply( lambda x : x not in par.parnme),"parnme"] if len(missing) > 0: warnings.warn("the following parameters are not " + \ "in the control file: {0}".\ format(','.join(missing)),PyemuWarning) df = df.loc[df.parnme.apply(lambda x: x not in missing)] if "zone" not in df.columns: df.loc[:,"zone"] = 1 zones = df.zone.unique() aset = set(pst.adj_par_names) for zone in zones: df_zone = df.loc[df.zone==zone,:].copy() df_zone = df_zone.loc[df_zone.parnme.apply(lambda x: x in aset),:] if df_zone.shape[0] == 0: warnings.warn("all parameters in zone {0} tied and/or fixed, skipping...".format(zone),PyemuWarning) continue #df_zone.sort_values(by="parnme",inplace=True) df_zone.sort_index(inplace=True) if verbose: print("build cov matrix") cov = gs.covariance_matrix(df_zone.x,df_zone.y,df_zone.parnme) if verbose: print("done") if verbose: print("getting diag var cov",df_zone.shape[0]) #tpl_var = np.diag(full_cov.get(list(df_zone.parnme)).x).max() tpl_var = max([full_cov_dict[pn] for pn in df_zone.parnme]) if verbose: print("scaling full cov by diag var cov") #cov.x *= tpl_var for i in range(cov.shape[0]): cov.x[i,:] *= tpl_var # no fixed values here pe = pyemu.ParameterEnsemble.from_gaussian_draw(pst=pst,cov=cov,num_reals=num_reals, by_groups=False,fill=False) #df = pe.iloc[:,:] par_ens.append(pe._df) pars_in_cov.update(set(pe.columns)) if verbose: print("adding remaining parameters to diagonal") fset = set(full_cov.row_names) diff = list(fset.difference(pars_in_cov)) if (len(diff) > 0): name_dict = {name:i for i,name in enumerate(full_cov.row_names)} vec = np.atleast_2d(np.array([full_cov.x[name_dict[d]] for d in diff])) cov = pyemu.Cov(x=vec,names=diff,isdiagonal=True) #cov = full_cov.get(diff,diff) # here we fill in the fixed values pe = pyemu.ParameterEnsemble.from_gaussian_draw(pst,cov,num_reals=num_reals, fill=False) par_ens.append(pe._df) par_ens = pd.concat(par_ens,axis=1) par_ens = pyemu.ParameterEnsemble(pst=pst,df=par_ens) return par_ens def geostatistical_prior_builder(pst, struct_dict,sigma_range=4, verbose=False): """construct a full prior covariance matrix using geostastical structures and parameter bounds information. Args: pst (`pyemu.Pst`): a control file instance (or the name of control file) struct_dict (`dict`): a dict of GeoStruct (or structure file), and list of pilot point template files pairs. If the values in the dict are `pd.DataFrames`, then they must have an 'x','y', and 'parnme' column. If the filename ends in '.csv', then a pd.DataFrame is loaded, otherwise a pilot points file is loaded. sigma_range (`float`): a float representing the number of standard deviations implied by parameter bounds. Default is 4.0, which implies 95% confidence parameter bounds. verbose (`bool`, optional): flag to control output to stdout. Default is True. flag for stdout. Returns: `pyemu.Cov`: a covariance matrix that includes all adjustable parameters in the control file. Note: The covariance of parameters associated with geostatistical structures is defined as a mixture of GeoStruct and bounds. That is, the GeoStruct is used to construct a pyemu.Cov, then the entire pyemu.Cov is scaled by the uncertainty implied by the bounds and sigma_range. Sounds complicated... Example:: pst = pyemu.Pst("my.pst") sd = {"struct.dat":["hkpp.dat.tpl","vka.dat.tpl"]} cov = pyemu.helpers.geostatistical_draws(pst,struct_dict=sd} cov.to_binary("prior.jcb") """ if isinstance(pst,str): pst = pyemu.Pst(pst) assert isinstance(pst,pyemu.Pst),"pst arg must be a Pst instance, not {0}".\ format(type(pst)) if verbose: print("building diagonal cov") full_cov = pyemu.Cov.from_parameter_data(pst,sigma_range=sigma_range) full_cov_dict = {n:float(v) for n,v in zip(full_cov.col_names,full_cov.x)} #full_cov = None par = pst.parameter_data for gs,items in struct_dict.items(): if verbose: print("processing ",gs) if isinstance(gs,str): gss = pyemu.geostats.read_struct_file(gs) if isinstance(gss,list): warnings.warn("using first geostat structure in file {0}".\ format(gs),PyemuWarning) gs = gss[0] else: gs = gss if not isinstance(items,list): items = [items] for item in items: if isinstance(item,str): assert os.path.exists(item),"file {0} not found".\ format(item) if item.lower().endswith(".tpl"): df = pyemu.pp_utils.pp_tpl_to_dataframe(item) elif item.lower.endswith(".csv"): df = pd.read_csv(item) else: df = item for req in ['x','y','parnme']: if req not in df.columns: raise Exception("{0} is not in the columns".format(req)) missing = df.loc[df.parnme.apply( lambda x : x not in par.parnme),"parnme"] if len(missing) > 0: warnings.warn("the following parameters are not " + \ "in the control file: {0}".\ format(','.join(missing)),PyemuWarning) df = df.loc[df.parnme.apply(lambda x: x not in missing)] if "zone" not in df.columns: df.loc[:,"zone"] = 1 zones = df.zone.unique() aset = set(pst.adj_par_names) for zone in zones: df_zone = df.loc[df.zone==zone,:].copy() df_zone = df_zone.loc[df_zone.parnme.apply(lambda x: x in aset), :] if df_zone.shape[0] == 0: warnings.warn("all parameters in zone {0} tied and/or fixed, skipping...".format(zone), PyemuWarning) continue #df_zone.sort_values(by="parnme",inplace=True) df_zone.sort_index(inplace=True) if verbose: print("build cov matrix") cov = gs.covariance_matrix(df_zone.x,df_zone.y,df_zone.parnme) if verbose: print("done") # find the variance in the diagonal cov if verbose: print("getting diag var cov",df_zone.shape[0]) #tpl_var = np.diag(full_cov.get(list(df_zone.parnme)).x).max() tpl_var = max([full_cov_dict[pn] for pn in df_zone.parnme]) #if np.std(tpl_var) > 1.0e-6: # warnings.warn("pars have different ranges" +\ # " , using max range as variance for all pars") #tpl_var = tpl_var.max() if verbose: print("scaling full cov by diag var cov") cov *= tpl_var if verbose: print("test for inversion") try: ci = cov.inv except: df_zone.to_csv("prior_builder_crash.csv") raise Exception("error inverting cov {0}". format(cov.row_names[:3])) if verbose: print('replace in full cov') full_cov.replace(cov) # d = np.diag(full_cov.x) # idx = np.argwhere(d==0.0) # for i in idx: # print(full_cov.names[i]) return full_cov def _condition_on_par_knowledge(cov,par_knowledge_dict): """ experimental function to include conditional prior information for one or more parameters in a full covariance matrix """ missing = [] for parnme in par_knowledge_dict.keys(): if parnme not in cov.row_names: missing.append(parnme) if len(missing): raise Exception("par knowledge dict parameters not found: {0}".\ format(','.join(missing))) # build the selection matrix and sigma epsilon #sel = pyemu.Cov(x=np.identity(cov.shape[0]),names=cov.row_names) sel = cov.zero2d sel = cov.to_pearson() new_cov_diag = pyemu.Cov(x=np.diag(cov.as_2d.diagonal()),names=cov.row_names) #new_cov_diag = cov.zero2d for parnme,var in par_knowledge_dict.items(): idx = cov.row_names.index(parnme) #sel.x[idx,:] = 1.0 #sel.x[idx,idx] = var new_cov_diag.x[idx,idx] = var #cov.x[idx,idx] new_cov_diag = sel * new_cov_diag * sel.T for _ in range(2): for parnme, var in par_knowledge_dict.items(): idx = cov.row_names.index(parnme) # sel.x[idx,:] = 1.0 # sel.x[idx,idx] = var new_cov_diag.x[idx, idx] = var # cov.x[idx,idx] new_cov_diag = sel * new_cov_diag * sel.T print(new_cov_diag) return new_cov_diag def kl_setup(num_eig,sr,struct,prefixes, factors_file="kl_factors.dat", islog=True, basis_file=None, tpl_dir="."): """setup a karhuenen-Loeve based parameterization for a given geostatistical structure. Args: num_eig (`int`): the number of basis vectors to retain in the reduced basis sr (`flopy.reference.SpatialReference`): a spatial reference instance struct (`str`): a PEST-style structure file. Can also be a `pyemu.geostats.Geostruct` instance. prefixes ([`str`]): a list of parameter prefixes to generate KL parameterization for. factors_file (`str`, optional): name of the PEST-style interpolation factors file to write (can be processed with FAC2REAL). Default is "kl_factors.dat". islog (`bool`, optional): flag to indicate if the parameters are log transformed. Default is True basis_file (`str`, optional): the name of the PEST-style binary (e.g. jco) file to write the reduced basis vectors to. Default is None (not saved). tpl_dir (`str`, optional): the directory to write the resulting template files to. Default is "." (current directory). Returns: `pandas.DataFrame`: a dataframe of parameter information. Note: This is the companion function to `helpers.apply_kl()` Example:: m = flopy.modflow.Modflow.load("mymodel.nam") prefixes = ["hk","vka","ss"] df = pyemu.helpers.kl_setup(10,m.sr,"struct.dat",prefixes) """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) assert isinstance(sr,flopy.utils.SpatialReference) # for name,array in array_dict.items(): # assert isinstance(array,np.ndarray) # assert array.shape[0] == sr.nrow # assert array.shape[1] == sr.ncol # assert len(name) + len(str(num_eig)) <= 12,"name too long:{0}".\ # format(name) if isinstance(struct,str): assert os.path.exists(struct) gs = pyemu.utils.read_struct_file(struct) else: gs = struct names = [] for i in range(sr.nrow): names.extend(["i{0:04d}j{1:04d}".format(i,j) for j in range(sr.ncol)]) cov = gs.covariance_matrix(sr.xcentergrid.flatten(), sr.ycentergrid.flatten(), names=names) eig_names = ["eig_{0:04d}".format(i) for i in range(cov.shape[0])] trunc_basis = cov.u trunc_basis.col_names = eig_names #trunc_basis.col_names = [""] if basis_file is not None: trunc_basis.to_binary(basis_file) trunc_basis = trunc_basis[:,:num_eig] eig_names = eig_names[:num_eig] pp_df = pd.DataFrame({"name":eig_names},index=eig_names) pp_df.loc[:,"x"] = -1.0 * sr.ncol pp_df.loc[:,"y"] = -1.0 * sr.nrow pp_df.loc[:,"zone"] = -999 pp_df.loc[:,"parval1"] = 1.0 pyemu.pp_utils.write_pp_file(os.path.join("temp.dat"),pp_df) _eigen_basis_to_factor_file(sr.nrow, sr.ncol, trunc_basis, factors_file=factors_file, islog=islog) dfs = [] for prefix in prefixes: tpl_file = os.path.join(tpl_dir,"{0}.dat_kl.tpl".format(prefix)) df = pyemu.pp_utils.pilot_points_to_tpl("temp.dat",tpl_file,prefix) shutil.copy2("temp.dat",tpl_file.replace(".tpl","")) df.loc[:,"tpl_file"] = tpl_file df.loc[:,"in_file"] = tpl_file.replace(".tpl","") df.loc[:,"prefix"] = prefix df.loc[:,"pargp"] = "kl_{0}".format(prefix) dfs.append(df) #arr = pyemu.geostats.fac2real(df,factors_file=factors_file,out_file=None) df = pd.concat(dfs) df.loc[:,"parubnd"] = 10.0 df.loc[:,"parlbnd"] = 0.1 return pd.concat(dfs) # back_array_dict = {} # f = open(tpl_file,'w') # f.write("ptf ~\n") # f.write("name,org_val,new_val\n") # for name,array in array_dict.items(): # mname = name+"mean" # f.write("{0},{1:20.8E},~ {2} ~\n".format(mname,0.0,mname)) # #array -= array.mean() # array_flat = pyemu.Matrix(x=np.atleast_2d(array.flatten()).transpose() # ,col_names=["flat"],row_names=names, # isdiagonal=False) # factors = trunc_basis * array_flat # enames = ["{0}{1:04d}".format(name,i) for i in range(num_eig)] # for n,val in zip(enames,factors.x): # f.write("{0},{1:20.8E},~ {0} ~\n".format(n,val[0])) # back_array_dict[name] = (factors.T * trunc_basis).x.reshape(array.shape) # print(array_back) # print(factors.shape) # # return back_array_dict def _eigen_basis_to_factor_file(nrow, ncol, basis, factors_file, islog=True): assert nrow * ncol == basis.shape[0] with open(factors_file,'w') as f: f.write("junk.dat\n") f.write("junk.zone.dat\n") f.write("{0} {1}\n".format(ncol,nrow)) f.write("{0}\n".format(basis.shape[1])) [f.write(name+"\n") for name in basis.col_names] t = 0 if islog: t = 1 for i in range(nrow * ncol): f.write("{0} {1} {2} {3:8.5e}".format(i+1,t,basis.shape[1],0.0)) [f.write(" {0} {1:12.8g} ".format(i + 1, w)) for i, w in enumerate(basis.x[i,:])] f.write("\n") def kl_apply(par_file, basis_file,par_to_file_dict,arr_shape): """ Apply a KL parameterization transform from basis factors to model input arrays. Args: par_file (`str`): the csv file to get factor values from. Must contain the following columns: "name", "new_val", "org_val" basis_file (`str`): the PEST-style binary file that contains the reduced basis par_to_file_dict (`dict`): a mapping from KL parameter prefixes to array file names. arr_shape (tuple): a length 2 tuple of number of rows and columns the resulting arrays should have. Note: This is the companion function to kl_setup. This function should be called during the forward run """ df = pd.read_csv(par_file) assert "name" in df.columns assert "org_val" in df.columns assert "new_val" in df.columns df.loc[:,"prefix"] = df.name.apply(lambda x: x[:-4]) for prefix in df.prefix.unique(): assert prefix in par_to_file_dict.keys(),"missing prefix:{0}".\ format(prefix) basis = pyemu.Matrix.from_binary(basis_file) assert basis.shape[1] == arr_shape[0] * arr_shape[1] arr_min = 1.0e-10 # a temp hack #means = df.loc[df.name.apply(lambda x: x.endswith("mean")),:] #print(means) df = df.loc[df.name.apply(lambda x: not x.endswith("mean")),:] for prefix,filename in par_to_file_dict.items(): factors = pyemu.Matrix.from_dataframe(df.loc[df.prefix==prefix,["new_val"]]) factors.autoalign = False basis_prefix = basis[:factors.shape[0],:] arr = (factors.T * basis_prefix).x.reshape(arr_shape) #arr += means.loc[means.prefix==prefix,"new_val"].values arr[arr<arr_min] = arr_min np.savetxt(filename,arr,fmt="%20.8E") def zero_order_tikhonov(pst, parbounds=True,par_groups=None, reset=True): """setup preferred-value regularization in a pest control file. Args: pst (`pyemu.Pst`): the control file instance parbounds (`bool`, optional): flag to weight the new prior information equations according to parameter bound width - approx the KL transform. Default is True par_groups (`list`): a list of parameter groups to build PI equations for. If None, all adjustable parameters are used. Default is None reset (`bool`): a flag to remove any existing prior information equations in the control file. Default is True Example:: pst = pyemu.Pst("my.pst") pyemu.helpers.zero_order_tikhonov(pst) pst.write("my_reg.pst") """ if par_groups is None: par_groups = pst.par_groups pilbl, obgnme, weight, equation = [], [], [], [] for idx, row in pst.parameter_data.iterrows(): pt = row["partrans"].lower() try: pt = pt.decode() except: pass if pt not in ["tied", "fixed"] and\ row["pargp"] in par_groups: pilbl.append(row["parnme"]) weight.append(1.0) ogp_name = "regul"+row["pargp"] obgnme.append(ogp_name[:12]) parnme = row["parnme"] parval1 = row["parval1"] if pt == "log": parnme = "log(" + parnme + ")" parval1 = np.log10(parval1) eq = "1.0 * " + parnme + " ={0:15.6E}".format(parval1) equation.append(eq) if reset: pst.prior_information = pd.DataFrame({"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight}) else: pi = pd.DataFrame({"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight}) pst.prior_information = pst.prior_information.append(pi) if parbounds: _regweight_from_parbound(pst) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization" def _regweight_from_parbound(pst): """sets regularization weights from parameter bounds which approximates the KL expansion. Called by zero_order_tikhonov(). """ pst.parameter_data.index = pst.parameter_data.parnme pst.prior_information.index = pst.prior_information.pilbl for idx, parnme in enumerate(pst.prior_information.pilbl): if parnme in pst.parameter_data.index: row = pst.parameter_data.loc[parnme, :] lbnd,ubnd = row["parlbnd"], row["parubnd"] if row["partrans"].lower() == "log": weight = 1.0 / (np.log10(ubnd) - np.log10(lbnd)) else: weight = 1.0 / (ubnd - lbnd) pst.prior_information.loc[parnme, "weight"] = weight else: print("prior information name does not correspond" +\ " to a parameter: " + str(parnme)) def first_order_pearson_tikhonov(pst,cov,reset=True,abs_drop_tol=1.0e-3): """setup preferred-difference regularization from a covariance matrix. Args: pst (`pyemu.Pst`): the PEST control file cov (`pyemu.Cov`): a covariance matrix instance with some or all of the parameters listed in `pst`. reset (`bool`): a flag to remove any existing prior information equations in the control file. Default is True abs_drop_tol (`float`, optional): tolerance to control how many pi equations are written. If the absolute value of the Pearson CC is less than abs_drop_tol, the prior information equation will not be included in the control file. Note: The weights on the prior information equations are the Pearson correlation coefficients implied by covariance matrix. Example:: pst = pyemu.Pst("my.pst") cov = pyemu.Cov.from_ascii("my.cov") pyemu.helpers.first_order_pearson_tikhonov(pst,cov) pst.write("my_reg.pst") """ assert isinstance(cov,pyemu.Cov) print("getting CC matrix") cc_mat = cov.to_pearson() #print(pst.parameter_data.dtypes) try: ptrans = pst.parameter_data.partrans.apply(lambda x:x.decode()).to_dict() except: ptrans = pst.parameter_data.partrans.to_dict() pi_num = pst.prior_information.shape[0] + 1 pilbl, obgnme, weight, equation = [], [], [], [] sadj_names = set(pst.adj_par_names) print("processing") for i,iname in enumerate(cc_mat.row_names): if iname not in sadj_names: continue for j,jname in enumerate(cc_mat.row_names[i+1:]): if jname not in sadj_names: continue #print(i,iname,i+j+1,jname) cc = cc_mat.x[i,j+i+1] if cc < abs_drop_tol: continue pilbl.append("pcc_{0}".format(pi_num)) iiname = str(iname) if str(ptrans[iname]) == "log": iiname = "log("+iname+")" jjname = str(jname) if str(ptrans[jname]) == "log": jjname = "log("+jname+")" equation.append("1.0 * {0} - 1.0 * {1} = 0.0".\ format(iiname,jjname)) weight.append(cc) obgnme.append("regul_cc") pi_num += 1 df = pd.DataFrame({"pilbl": pilbl,"equation": equation, "obgnme": obgnme,"weight": weight}) df.index = df.pilbl if reset: pst.prior_information = df else: pst.prior_information = pst.prior_information.append(df) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization" def simple_tpl_from_pars(parnames, tplfilename='model.input.tpl'): """Make a simple template file from a list of parameter names. Args: parnames ([`str`]): list of parameter names to put in the new template file tplfilename (`str`): Name of the template file to create. Default is "model.input.tpl" Note: writes a file `tplfilename` with each parameter name in `parnames` on a line """ with open(tplfilename, 'w') as ofp: ofp.write('ptf ~\n') [ofp.write('~{0:^12}~\n'.format(cname)) for cname in parnames] def simple_ins_from_obs(obsnames, insfilename='model.output.ins'): """write a simple instruction file that reads the values named in obsnames in order, one per line from a model output file Args: obsnames (`str`): list of observation names to put in the new instruction file insfilename (`str`): the name of the instruction file to create. Default is "model.output.ins" Note: writes a file `insfilename` with each observation read off of a single line """ with open(insfilename, 'w') as ofp: ofp.write('pif ~\n') [ofp.write('!{0}!\n'.format(cob)) for cob in obsnames] def pst_from_parnames_obsnames(parnames, obsnames, tplfilename='model.input.tpl', insfilename='model.output.ins'): """Creates a Pst object from a list of parameter names and a list of observation names. Args: parnames (`str`): list of parameter names obsnames (`str`): list of observation names tplfilename (`str`): template filename. Default is "model.input.tpl" insfilename (`str`): instruction filename. Default is "model.output.ins" Returns: `pyemu.Pst`: the generic control file """ simple_tpl_from_pars(parnames, tplfilename) simple_ins_from_obs(obsnames, insfilename) modelinputfilename = tplfilename.replace('.tpl','') modeloutputfilename = insfilename.replace('.ins','') return pyemu.Pst.from_io_files(tplfilename, modelinputfilename, insfilename, modeloutputfilename) def read_pestpp_runstorage(filename,irun=0,with_metadata=False): """read pars and obs from a specific run in a pest++ serialized run storage file into dataframes. Args: filename (`str`): the name of the run storage file irun (`int`): the run id to process. If 'all', then all runs are read. Default is 0 with_metadata (`bool`): flag to return run stats and info txt as well Returns: tuple containing - **pandas.DataFrame**: parameter information - **pandas.DataFrame**: observation information - **pandas.DataFrame**: optionally run status and info txt. """ header_dtype = np.dtype([("n_runs",np.int64),("run_size",np.int64),("p_name_size",np.int64), ("o_name_size",np.int64)]) try: irun = int(irun) except: if irun.lower() == "all": irun = irun.lower() else: raise Exception("unrecognized 'irun': should be int or 'all', not '{0}'". format(irun)) def status_str(r_status): if r_status == 0: return "not completed" if r_status == 1: return "completed" if r_status == -100: return "canceled" else: return "failed" assert os.path.exists(filename) f = open(filename,"rb") header = np.fromfile(f,dtype=header_dtype,count=1) p_name_size,o_name_size = header["p_name_size"][0],header["o_name_size"][0] par_names = struct.unpack('{0}s'.format(p_name_size), f.read(p_name_size))[0].strip().lower().decode().split('\0')[:-1] obs_names = struct.unpack('{0}s'.format(o_name_size), f.read(o_name_size))[0].strip().lower().decode().split('\0')[:-1] n_runs,run_size = header["n_runs"][0],header["run_size"][0] run_start = f.tell() def _read_run(irun): f.seek(run_start + (irun * run_size)) r_status = np.fromfile(f, dtype=np.int8, count=1) info_txt = struct.unpack("41s", f.read(41))[0].strip().lower().decode() par_vals = np.fromfile(f, dtype=np.float64, count=len(par_names) + 1)[1:] obs_vals = np.fromfile(f, dtype=np.float64, count=len(obs_names) + 1)[:-1] par_df = pd.DataFrame({"parnme": par_names, "parval1": par_vals}) par_df.index = par_df.pop("parnme") obs_df = pd.DataFrame({"obsnme": obs_names, "obsval": obs_vals}) obs_df.index = obs_df.pop("obsnme") return r_status,info_txt,par_df,obs_df if irun == "all": par_dfs,obs_dfs = [],[] r_stats, txts = [],[] for irun in range(n_runs): #print(irun) r_status, info_txt, par_df, obs_df = _read_run(irun) par_dfs.append(par_df) obs_dfs.append(obs_df) r_stats.append(r_status) txts.append(info_txt) par_df = pd.concat(par_dfs,axis=1).T par_df.index = np.arange(n_runs) obs_df = pd.concat(obs_dfs, axis=1).T obs_df.index = np.arange(n_runs) meta_data = pd.DataFrame({"r_status":r_stats,"info_txt":txts}) meta_data.loc[:,"status"] = meta_data.r_status.apply(status_str) else: assert irun <= n_runs r_status,info_txt,par_df,obs_df = _read_run(irun) meta_data = pd.DataFrame({"r_status": [r_status], "info_txt": [info_txt]}) meta_data.loc[:, "status"] = meta_data.r_status.apply(status_str) f.close() if with_metadata: return par_df,obs_df,meta_data else: return par_df,obs_df def jco_from_pestpp_runstorage(rnj_filename,pst_filename): """ read pars and obs from a pest++ serialized run storage file (e.g., .rnj) and return jacobian matrix instance Args: rnj_filename (`str`): the name of the run storage file pst_filename (`str`): the name of the pst file Note: This can then be passed to Jco.to_binary or Jco.to_coo, etc., to write jco file in a subsequent step to avoid memory resource issues associated with very large problems. Returns: `pyemu.Jco`: a jacobian matrix constructed from the run results and pest control file information. TODO: Check rnj file contains transformed par vals (i.e., in model input space) Currently only returns pyemu.Jco; doesn't write jco file due to memory issues associated with very large problems Compare rnj and jco from Freyberg problem in autotests """ header_dtype = np.dtype([("n_runs",np.int64),("run_size",np.int64),("p_name_size",np.int64), ("o_name_size",np.int64)]) pst = pyemu.Pst(pst_filename) par = pst.parameter_data log_pars = set(par.loc[par.partrans=="log","parnme"].values) with open(rnj_filename,'rb') as f: header = np.fromfile(f,dtype=header_dtype,count=1) try: base_par,base_obs = read_pestpp_runstorage(rnj_filename,irun=0) except: raise Exception("couldn't get base run...") par = par.loc[base_par.index,:] li = base_par.index.map(lambda x: par.loc[x,"partrans"]=="log") base_par.loc[li] = base_par.loc[li].apply(np.log10) jco_cols = {} for irun in range(1,int(header["n_runs"])): par_df,obs_df = read_pestpp_runstorage(rnj_filename,irun=irun) par_df.loc[li] = par_df.loc[li].apply(np.log10) obs_diff = base_obs - obs_df par_diff = base_par - par_df # check only one non-zero element per col(par) if len(par_diff[par_diff.parval1 != 0]) > 1: raise Exception("more than one par diff - looks like the file wasn't created during jco filling...") parnme = par_diff[par_diff.parval1 != 0].index[0] parval = par_diff.parval1.loc[parnme] # derivatives jco_col = obs_diff / parval # some tracking, checks print("processing par {0}: {1}...".format(irun, parnme)) print("%nzsens: {0}%...".format((jco_col[abs(jco_col.obsval)>1e-8].shape[0] / jco_col.shape[0])*100.)) jco_cols[parnme] = jco_col.obsval jco_cols = pd.DataFrame.from_records(data=jco_cols, index=list(obs_diff.index.values)) jco_cols = pyemu.Jco.from_dataframe(jco_cols) # write # memory considerations important here for very large matrices - break into chunks... #jco_fnam = "{0}".format(filename[:-4]+".jco") #jco_cols.to_binary(filename=jco_fnam, droptol=None, chunk=None) return jco_cols def parse_dir_for_io_files(d): """ find template/input file pairs and instruction file/output file pairs by extension. Args: d (`str`): directory to search for interface files Note: the return values from this function can be passed straight to `pyemu.Pst.from_io_files()` classmethod constructor. Assumes the template file names are <input_file>.tpl and instruction file names are <output_file>.ins. Returns: tuple containing - **[`str`]**: list of template files in d - **[`str`]**: list of input files in d - **[`str`]**: list of instruction files in d - **[`str`]**: list of output files in d """ files = os.listdir(d) tpl_files = [f for f in files if f.endswith(".tpl")] in_files = [f.replace(".tpl","") for f in tpl_files] ins_files = [f for f in files if f.endswith(".ins")] out_files = [f.replace(".ins","") for f in ins_files] return tpl_files,in_files,ins_files,out_files def pst_from_io_files(tpl_files, in_files, ins_files, out_files, pst_filename=None, pst_path=None): """ create a Pst instance from model interface files. Args: tpl_files ([`str`]): list of template file names in_files ([`str`]): list of model input file names (pairs with template files) ins_files ([`str`]): list of instruction file names out_files ([`str`]): list of model output file names (pairs with instruction files) pst_filename (`str`): name of control file to write. If None, no file is written. Default is None pst_path (`str`): the path to append to the template_file and in_file in the control file. If not None, then any existing path in front of the template or in file is split off and pst_path is prepended. If python is being run in a directory other than where the control file will reside, it is useful to pass `pst_path` as `.`. Default is None Returns: `Pst`: new control file instance with parameter and observation names found in `tpl_files` and `ins_files`, repsectively. Note: calls `pyemu.helpers.pst_from_io_files()` Assigns generic values for parameter info. Tries to use INSCHEK to set somewhat meaningful observation values all file paths are relatively to where python is running. TODO: add pst_path option make in_files and out_files optional Example:: tpl_files = ["my.tpl"] in_files = ["my.in"] ins_files = ["my.ins"] out_files = ["my.out"] pst = pyemu.Pst.from_io_files(tpl_files,in_files,ins_files,out_files) pst.control_data.noptmax = 0 pst.write("my.pst) """ par_names = set() if not isinstance(tpl_files,list): tpl_files = [tpl_files] if not isinstance(in_files,list): in_files = [in_files] assert len(in_files) == len(tpl_files),"len(in_files) != len(tpl_files)" for tpl_file in tpl_files: assert os.path.exists(tpl_file),"template file not found: "+str(tpl_file) #new_names = [name for name in pyemu.pst_utils.parse_tpl_file(tpl_file) if name not in par_names] #par_names.extend(new_names) new_names = pyemu.pst_utils.parse_tpl_file(tpl_file) par_names.update(new_names) if not isinstance(ins_files,list): ins_files = [ins_files] if not isinstance(out_files,list): out_files = [out_files] assert len(ins_files) == len(out_files),"len(out_files) != len(out_files)" obs_names = [] for ins_file in ins_files: assert os.path.exists(ins_file),"instruction file not found: "+str(ins_file) obs_names.extend(pyemu.pst_utils.parse_ins_file(ins_file)) new_pst = pyemu.pst_utils.generic_pst(list(par_names),list(obs_names)) if "window" in platform.platform().lower() and pst_path == ".": pst_path = '' new_pst.instruction_files = ins_files new_pst.output_files = out_files #try to run inschek to find the observtion values pyemu.pst_utils.try_process_output_pst(new_pst) if pst_path is None: new_pst.template_files = tpl_files new_pst.input_files = in_files else: new_pst.template_files = [os.path.join( pst_path, os.path.split(tpl_file)[-1]) for tpl_file in tpl_files] new_pst.input_files = [os.path.join( pst_path, os.path.split(in_file)[-1]) for in_file in in_files] # now set the true path location to instruction files and output files new_pst.instruction_files = [os.path.join( pst_path, os.path.split(ins_file)[-1]) for ins_file in ins_files] new_pst.output_files = [os.path.join( pst_path, os.path.split(out_file)[-1]) for out_file in out_files] if pst_filename: new_pst.write(pst_filename,update_regul=True) return new_pst wildass_guess_par_bounds_dict = {"hk":[0.01,100.0],"vka":[0.1,10.0], "sy":[0.25,1.75],"ss":[0.1,10.0], "cond":[0.01,100.0],"flux":[0.25,1.75], "rech":[0.9,1.1],"stage":[0.9,1.1], } class PstFromFlopyModel(object): """ a monster helper class to setup a complex PEST interface around an existing MODFLOW-2005-family model. Args: model (`flopy.mbase`): a loaded flopy model instance. If model is an str, it is treated as a MODFLOW nam file (requires org_model_ws) new_model_ws (`str`): a directory where the new version of MODFLOW input files and PEST(++) files will be written org_model_ws (`str`): directory to existing MODFLOW model files. Required if model argument is an str. Default is None pp_props ([[`str`,[`int`]]]): pilot point multiplier parameters for grid-based properties. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices. For example, ["lpf.hk",[0,1,2,]] would setup pilot point multiplier parameters for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup pilot point multiplier parameters for recharge for stress period 1,5,11,and 16. const_props ([[`str`,[`int`]]]): constant (uniform) multiplier parameters for grid-based properties. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices. For example, ["lpf.hk",[0,1,2,]] would setup constant (uniform) multiplier parameters for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup constant (uniform) multiplier parameters for recharge for stress period 1,5,11,and 16. temporal_list_props ([[`str`,[`int`]]]): list-type input stress-period level multiplier parameters. A nested list of list-type input elements to parameterize using name, iterable pairs. The iterable is zero-based stress-period indices. For example, to setup multipliers for WEL flux and for RIV conductance, temporal_list_props = [["wel.flux",[0,1,2]],["riv.cond",None]] would setup multiplier parameters for well flux for stress periods 1,2 and 3 and would setup one single river conductance multiplier parameter that is applied to all stress periods spatial_list_props ([[`str`,[`int`]]]): list-type input for spatial multiplier parameters. A nested list of list-type elements to parameterize using names (e.g. [["riv.cond",0],["wel.flux",1] to setup up cell-based parameters for each list-type element listed. These multiplier parameters are applied across all stress periods. For this to work, there must be the same number of entries for all stress periods. If more than one list element of the same type is in a single cell, only one parameter is used to multiply all lists in the same cell. grid_props ([[`str`,[`int`]]]): grid-based (every active model cell) multiplier parameters. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 in every active model cell). For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup grid-based multiplier parameters in every active model cell for recharge for stress period 1,5,11,and 16. sfr_pars (`bool`): setup parameters for the stream flow routing modflow package. If list is passed it defines the parameters to set up. sfr_temporal_pars (`bool`) flag to include stress-period level spatially-global multipler parameters in addition to the spatially-discrete `sfr_pars`. Requires `sfr_pars` to be passed. Default is False grid_geostruct (`pyemu.geostats.GeoStruct`): the geostatistical structure to build the prior parameter covariance matrix elements for grid-based parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None pp_space (`int`): number of grid cells between pilot points. If None, use the default in pyemu.pp_utils.setup_pilot_points_grid. Default is None zone_props ([[`str`,[`int`]]]): zone-based multiplier parameters. A nested list of zone-based model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 for unique zone values in the ibound array. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup zone-based multiplier parameters for recharge for stress period 1,5,11,and 16. pp_geostruct (`pyemu.geostats.GeoStruct`): the geostatistical structure to use for building the prior parameter covariance matrix for pilot point parameters. If None, a generic GeoStruct is created using pp_space and grid-spacing information. Default is None par_bounds_dict (`dict`): a dictionary of model property/boundary condition name, upper-lower bound pairs. For example, par_bounds_dict = {"hk":[0.01,100.0],"flux":[0.5,2.0]} would set the bounds for horizontal hydraulic conductivity to 0.001 and 100.0 and set the bounds for flux parameters to 0.5 and 2.0. For parameters not found in par_bounds_dict, `pyemu.helpers.wildass_guess_par_bounds_dict` is used to set somewhat meaningful bounds. Default is None temporal_list_geostruct (`pyemu.geostats.GeoStruct`): the geostastical struture to build the prior parameter covariance matrix for time-varying list-type multiplier parameters. This GeoStruct express the time correlation so that the 'a' parameter is the length of time that boundary condition multiplier parameters are correlated across. If None, then a generic GeoStruct is created that uses an 'a' parameter of 3 stress periods. Default is None spatial_list_geostruct (`pyemu.geostats.GeoStruct`): the geostastical struture to build the prior parameter covariance matrix for spatially-varying list-type multiplier parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None. remove_existing (`bool`): a flag to remove an existing new_model_ws directory. If False and new_model_ws exists, an exception is raised. If True and new_model_ws exists, the directory is destroyed - user beware! Default is False. k_zone_dict (`dict`): a dictionary of zero-based layer index, zone array pairs. e.g. {lay: np.2darray} Used to override using ibound zones for zone-based parameterization. If None, use ibound values greater than zero as zones. Alternatively a dictionary of dictionaries can be passed to allow different zones to be defined for different parameters. e.g. {"upw.hk" {lay: np.2darray}, "extra.rc11" {lay: np.2darray}} or {"hk" {lay: np.2darray}, "rc11" {lay: np.2darray}} use_pp_zones (`bool`): a flag to use ibound zones (or k_zone_dict, see above) as pilot point zones. If False, ibound values greater than zero are treated as a single zone for pilot points. Default is False obssim_smp_pairs ([[`str`,`str`]]: a list of observed-simulated PEST-type SMP file pairs to get observations from and include in the control file. Default is [] external_tpl_in_pairs ([[`str`,`str`]]: a list of existing template file, model input file pairs to parse parameters from and include in the control file. Default is [] external_ins_out_pairs ([[`str`,`str`]]: a list of existing instruction file, model output file pairs to parse observations from and include in the control file. Default is [] extra_pre_cmds ([`str`]): a list of preprocessing commands to add to the forward_run.py script commands are executed with os.system() within forward_run.py. Default is None. redirect_forward_output (`bool`): flag for whether to redirect forward model output to text files (True) or allow model output to be directed to the screen (False). Default is True extra_post_cmds ([`str`]): a list of post-processing commands to add to the forward_run.py script. Commands are executed with os.system() within forward_run.py. Default is None. tmp_files ([`str`]): a list of temporary files that should be removed at the start of the forward run script. Default is []. model_exe_name (`str`): binary name to run modflow. If None, a default from flopy is used, which is dangerous because of the non-standard binary names (e.g. MODFLOW-NWT_x64, MODFLOWNWT, mfnwt, etc). Default is None. build_prior (`bool`): flag to build prior covariance matrix. Default is True sfr_obs (`bool`): flag to include observations of flow and aquifer exchange from the sfr ASCII output file hfb_pars (`bool`): add HFB parameters. uses pyemu.gw_utils.write_hfb_template(). the resulting HFB pars have parval1 equal to the values in the original file and use the spatial_list_geostruct to build geostatistical covariates between parameters kl_props ([[`str`,[`int`]]]): karhunen-loeve based multiplier parameters. A nested list of KL-based model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 for unique zone values in the ibound array. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup zone-based multiplier parameters for recharge for stress period 1,5,11,and 16. kl_num_eig (`int`): the number of KL-based eigenvector multiplier parameters to use for each KL parameter set. default is 100 kl_geostruct (`pyemu.geostats.Geostruct`): the geostatistical structure to build the prior parameter covariance matrix elements for KL-based parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None Note: Setup up multiplier parameters for an existing MODFLOW model. Does all kinds of coolness like building a meaningful prior, assigning somewhat meaningful parameter groups and bounds, writes a forward_run.py script with all the calls need to implement multiplier parameters, run MODFLOW and post-process. Works a lot better if TEMPCHEK, INSCHEK and PESTCHEK are available in the system path variable """ def __init__(self,model,new_model_ws,org_model_ws=None,pp_props=[],const_props=[], temporal_bc_props=[],temporal_list_props=[],grid_props=[], grid_geostruct=None,pp_space=None, zone_props=[],pp_geostruct=None,par_bounds_dict=None,sfr_pars=False, temporal_sfr_pars=False, temporal_list_geostruct=None,remove_existing=False,k_zone_dict=None, mflist_waterbudget=True,mfhyd=True,hds_kperk=[],use_pp_zones=False, obssim_smp_pairs=None,external_tpl_in_pairs=None, external_ins_out_pairs=None,extra_pre_cmds=None, extra_model_cmds=None,extra_post_cmds=None,redirect_forward_output=True, tmp_files=None,model_exe_name=None,build_prior=True, sfr_obs=False, spatial_bc_props=[],spatial_list_props=[],spatial_list_geostruct=None, hfb_pars=False, kl_props=None,kl_num_eig=100, kl_geostruct=None): self.logger = pyemu.logger.Logger("PstFromFlopyModel.log") self.log = self.logger.log self.logger.echo = True self.zn_suffix = "_zn" self.gr_suffix = "_gr" self.pp_suffix = "_pp" self.cn_suffix = "_cn" self.kl_suffix = "_kl" self.arr_org = "arr_org" self.arr_mlt = "arr_mlt" self.list_org = "list_org" self.list_mlt = "list_mlt" self.forward_run_file = "forward_run.py" self.remove_existing = remove_existing self.external_tpl_in_pairs = external_tpl_in_pairs self.external_ins_out_pairs = external_ins_out_pairs self._setup_model(model, org_model_ws, new_model_ws) self._add_external() self.arr_mult_dfs = [] self.par_bounds_dict = par_bounds_dict self.pp_props = pp_props self.pp_space = pp_space self.pp_geostruct = pp_geostruct self.use_pp_zones = use_pp_zones self.const_props = const_props self.grid_props = grid_props self.grid_geostruct = grid_geostruct self.zone_props = zone_props self.kl_props = kl_props self.kl_geostruct = kl_geostruct self.kl_num_eig = kl_num_eig if len(temporal_bc_props) > 0: if len(temporal_list_props) > 0: self.logger.lraise("temporal_bc_props and temporal_list_props. "+\ "temporal_bc_props is deprecated and replaced by temporal_list_props") self.logger.warn("temporal_bc_props is deprecated and replaced by temporal_list_props") temporal_list_props = temporal_bc_props if len(spatial_bc_props) > 0: if len(spatial_list_props) > 0: self.logger.lraise("spatial_bc_props and spatial_list_props. "+\ "spatial_bc_props is deprecated and replaced by spatial_list_props") self.logger.warn("spatial_bc_props is deprecated and replaced by spatial_list_props") spatial_list_props = spatial_bc_props self.temporal_list_props = temporal_list_props self.temporal_list_geostruct = temporal_list_geostruct if self.temporal_list_geostruct is None: v = pyemu.geostats.ExpVario(contribution=1.0,a=180.0) # 180 correlation length self.temporal_list_geostruct = pyemu.geostats.GeoStruct(variograms=v,name="temporal_list_geostruct") self.spatial_list_props = spatial_list_props self.spatial_list_geostruct = spatial_list_geostruct if self.spatial_list_geostruct is None: dist = 10 * float(max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max())) v = pyemu.geostats.ExpVario(contribution=1.0, a=dist) self.spatial_list_geostruct = pyemu.geostats.GeoStruct(variograms=v,name="spatial_list_geostruct") self.obssim_smp_pairs = obssim_smp_pairs self.hds_kperk = hds_kperk self.sfr_obs = sfr_obs self.frun_pre_lines = [] self.frun_model_lines = [] self.frun_post_lines = [] self.tmp_files = [] self.extra_forward_imports = [] if tmp_files is not None: if not isinstance(tmp_files,list): tmp_files = [tmp_files] self.tmp_files.extend(tmp_files) if k_zone_dict is None: self.k_zone_dict = {k: self.m.bas6.ibound[k].array for k in np.arange(self.m.nlay)} else: # check if k_zone_dict is a dictionary of dictionaries if np.all([isinstance(v, dict) for v in k_zone_dict.values()]): # loop over outer keys for par_key in k_zone_dict.keys(): for k, arr in k_zone_dict[par_key].items(): if k not in np.arange(self.m.nlay): self.logger.lraise("k_zone_dict for par {1}, layer index not in nlay:{0}". format(k, par_key)) if arr.shape != (self.m.nrow, self.m.ncol): self.logger.lraise("k_zone_dict arr for k {0} for par{2} has wrong shape:{1}". format(k, arr.shape, par_key)) else: for k, arr in k_zone_dict.items(): if k not in np.arange(self.m.nlay): self.logger.lraise("k_zone_dict layer index not in nlay:{0}". format(k)) if arr.shape != (self.m.nrow, self.m.ncol): self.logger.lraise("k_zone_dict arr for k {0} has wrong shape:{1}". format(k, arr.shape)) self.k_zone_dict = k_zone_dict # add any extra commands to the forward run lines for alist,ilist in zip([self.frun_pre_lines,self.frun_model_lines,self.frun_post_lines], [extra_pre_cmds,extra_model_cmds,extra_post_cmds]): if ilist is None: continue if not isinstance(ilist,list): ilist = [ilist] for cmd in ilist: self.logger.statement("forward_run line:{0}".format(cmd)) alist.append("pyemu.os_utils.run('{0}')\n".format(cmd)) # add the model call if model_exe_name is None: model_exe_name = self.m.exe_name self.logger.warn("using flopy binary to execute the model:{0}".format(model)) if redirect_forward_output: line = "pyemu.os_utils.run('{0} {1} 1>{1}.stdout 2>{1}.stderr')".format(model_exe_name,self.m.namefile) else: line = "pyemu.os_utils.run('{0} {1} ')".format(model_exe_name, self.m.namefile) self.logger.statement("forward_run line:{0}".format(line)) self.frun_model_lines.append(line) self.tpl_files,self.in_files = [],[] self.ins_files,self.out_files = [],[] self._setup_mult_dirs() self.mlt_files = [] self.org_files = [] self.m_files = [] self.mlt_counter = {} self.par_dfs = {} self.mlt_dfs = [] self._setup_list_pars() self._setup_array_pars() if not sfr_pars and temporal_sfr_pars: self.logger.lraise("use of `temporal_sfr_pars` requires `sfr_pars`") if sfr_pars: if isinstance(sfr_pars, str): sfr_pars = [sfr_pars] if isinstance(sfr_pars, list): self._setup_sfr_pars(sfr_pars, include_temporal_pars=temporal_sfr_pars) else: self._setup_sfr_pars(include_temporal_pars=temporal_sfr_pars) if hfb_pars: self._setup_hfb_pars() self.mflist_waterbudget = mflist_waterbudget self.mfhyd = mfhyd self._setup_observations() self.build_pst() if build_prior: self.parcov = self.build_prior() else: self.parcov = None self.log("saving intermediate _setup_<> dfs into {0}". format(self.m.model_ws)) for tag,df in self.par_dfs.items(): df.to_csv(os.path.join(self.m.model_ws,"_setup_par_{0}_{1}.csv". format(tag.replace(" ",'_'),self.pst_name))) for tag,df in self.obs_dfs.items(): df.to_csv(os.path.join(self.m.model_ws,"_setup_obs_{0}_{1}.csv". format(tag.replace(" ",'_'),self.pst_name))) self.log("saving intermediate _setup_<> dfs into {0}". format(self.m.model_ws)) self.logger.statement("all done") def _setup_sfr_obs(self): """setup sfr ASCII observations""" if not self.sfr_obs: return if self.m.sfr is None: self.logger.lraise("no sfr package found...") org_sfr_out_file = os.path.join(self.org_model_ws,"{0}.sfr.out".format(self.m.name)) if not os.path.exists(org_sfr_out_file): self.logger.lraise("setup_sfr_obs() error: could not locate existing sfr out file: {0}". format(org_sfr_out_file)) new_sfr_out_file = os.path.join(self.m.model_ws,os.path.split(org_sfr_out_file)[-1]) shutil.copy2(org_sfr_out_file,new_sfr_out_file) seg_group_dict = None if isinstance(self.sfr_obs,dict): seg_group_dict = self.sfr_obs df = pyemu.gw_utils.setup_sfr_obs(new_sfr_out_file,seg_group_dict=seg_group_dict, model=self.m,include_path=True) if df is not None: self.obs_dfs["sfr"] = df self.frun_post_lines.append("pyemu.gw_utils.apply_sfr_obs()") def _setup_sfr_pars(self, par_cols=None, include_temporal_pars=None): """setup multiplier parameters for sfr segment data Adding support for reachinput (and isfropt = 1)""" assert self.m.sfr is not None, "can't find sfr package..." if isinstance(par_cols, str): par_cols = [par_cols] reach_pars = False # default to False seg_pars = True par_dfs = {} df = pyemu.gw_utils.setup_sfr_seg_parameters( self.m, par_cols=par_cols, include_temporal_pars=include_temporal_pars) # now just pass model # self.par_dfs["sfr"] = df if df.empty: warnings.warn("No sfr segment parameters have been set up", PyemuWarning) par_dfs["sfr"] = [] seg_pars = False else: par_dfs["sfr"] = [df] # may need df for both segs and reaches self.tpl_files.append("sfr_seg_pars.dat.tpl") self.in_files.append("sfr_seg_pars.dat") if include_temporal_pars: self.tpl_files.append("sfr_seg_temporal_pars.dat.tpl") self.in_files.append("sfr_seg_temporal_pars.dat") if self.m.sfr.reachinput: # if include_temporal_pars: # raise NotImplementedError("temporal pars is not set up for reach data style") df = pyemu.gw_utils.setup_sfr_reach_parameters(self.m, par_cols=par_cols) if df.empty: warnings.warn("No sfr reach parameters have been set up", PyemuWarning) else: self.tpl_files.append("sfr_reach_pars.dat.tpl") self.in_files.append("sfr_reach_pars.dat") reach_pars = True par_dfs["sfr"].append(df) if len(par_dfs["sfr"]) > 0: self.par_dfs["sfr"] =
pd.concat(par_dfs["sfr"])
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 16:02:22 2018 @author: joyce """ import pandas as pd import numpy as np import pymysql from sklearn import linear_model import time from functools import wraps config = { 'host': 'magiquant.mysql.rds.aliyuncs.com', 'port': 3306, 'user':'haoamc', 'passwd':'<PASSWORD>', 'db': 'quant' } def timer(function): @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() print ("Total time running %s: %s seconds" %(function.__name__, str(round((t1-t0), 2)))) return result return function_timer @timer def get_stockdata_from_sql(mode,begin,end,name): """ get stock market data from sql,include: [Open,High,Low,Close,Pctchg,Vol, Amount,total_shares,free_float_shares,Vwap] """ try: conn = pymysql.connect(**config) cursor = conn.cursor() if mode == 0: query = "SELECT stock_id,%s FROM stock_market_data WHERE trade_date='%s';"%(name,begin) else: query = "SELECT trade_date,stock_id,%s FROM stock_market_data WHERE trade_date >='%s' \ AND trade_date <= '%s';"%(name,begin,end) cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) if mode == 0: date.columns =['ID','name'] else: date.columns =['date','ID','name'] date = date.set_index('ID') date.columns = ['date',name] date = date.set_index([date['date'],date.index],drop = True) del date['date'] return date finally: if conn: conn.close() @timer def get_indexdata_from_sql(mode,begin,end,name,index): """ get stock market data from sql,include: [open,high,low,close,pctchg] """ try: conn = pymysql.connect(**config) cursor = conn.cursor() if mode == 0: query = "SELECT stock_id,%s FROM index_market_data WHERE trade_date='%s' AND stock_id ='%s';"%(name,begin,index) else: query = "SELECT trade_date,stock_id,%s FROM index_market_data WHERE trade_date >='%s' \ AND trade_date <= '%s' AND stock_id ='%s';"%(name,begin,end,index) cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) if mode == 0: date.columns =['ID','name'] else: date.columns =['date','ID','name'] date = date.set_index('ID') date.columns = ['date',name] date = date.set_index([date['date'],date.index],drop = True) del date['date'] return date finally: if conn: conn.close() @timer def get_tradedate(begin, end): """ get tradedate between begin date and end date Params: begin: str,eg: '1999-01-01' end: str,eg: '2017-12-31' Return: pd.DataFrame """ try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_trade_day= 1 AND \ calendar_date>='" + begin + "' AND calendar_date<='" + end + "';" cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) return date finally: if conn: conn.close() def get_fama(begin,end,name,index): """ get fama factor from sql Params: begin: str,eg:"1990-01-01" end: str:eg:"2017-12-31" index: str, index id ,eg :'000300.SH' name: the name of fama factors ['SMB','HML','MKT'] """ try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT trade_date,%s FROM fama_factor WHERE \ stock_id = '%s' AND trade_date >= '%s' AND trade_date <= '%s';"\ %(name,index,begin,end) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) data.columns = ['date',name] return data finally: if conn: conn.close() @timer def Corr(df,num): """ Params: data: pd.DataFrame,multi-index = ['date','id'] num: int Return: pd.DataFrame,multi-index = ['date','id'] """ df.columns = ['r1','r2'] df1 = df['r1'] df2 = df['r2'] df1_unstack = df1.unstack() df2_unstack = df2.unstack() corr = df1_unstack.rolling(num).corr(df2_unstack) corr = corr.stack() corr = pd.DataFrame(corr) corr.columns = ['corr'] return corr @timer def Cov(df,num): """ Params: data: pd.DataFrame,multi-index = ['date','id'] num: int Return: pd.DataFrame,multi-index = ['date','id'] """ df.columns = ['r1','r2'] df1 = df['r1'] df2 = df['r2'] df1_unstack = df1.unstack() df2_unstack = df2.unstack() corr = df1_unstack.rolling(num).cov(df2_unstack) corr = corr.stack() corr = pd.DataFrame(corr) corr.columns = ['cov'] return corr @timer def Delta(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'],columns = ['alpha'] num: int Return: pd.DataFrame,multi-inde = ['date','ID'] """ df_unstack = df.unstack() df_temp = df_unstack.shift(num) df_temp1 = df_unstack - df_temp df_final = df_temp1.stack() return df_final @timer def Delay(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'],columns = ['alpha'] num: int Return: pd.DataFrame,multi-index = ['date','ID'] """ df_unstack = df.unstack() df_temp = df_unstack.shift(num) df_final = df_temp.stack() return df_final @timer def Rank(df): """ Params: df: pd.DataFrame,multi-index = ['date','ID'],columns = ['alpha'] Return: pd.DataFrame,multi-index = ['date','ID'],columns = ['alpha'] """ df = df.swaplevel(0,1) df_mod = df.unstack() df_rank = df_mod.rank(axis = 1) df_final_temp = df_rank.stack() # 内外层索引进行交换 df_final = df_final_temp.swaplevel(0,1) return df_final @timer def Cross_max(df1,df2): """ Params: df1: pd.DataFrame,multi-index = ['date','ID'] df2: pd.DataFrame,multi-index = ['date','ID'] """ df = pd.concat([df1,df2],axis =1 ,join = 'inner') df_max = np.max(df,axis = 1) return df_max @timer def Cross_min(df1,df2): """ Params: df1: pd.DataFrame,multi-index = ['date','ID'] df2: pd.DataFrame,multi-index = ['date','ID'] """ df = pd.concat([df1,df2],axis =1 ,join = 'inner') df_min = np.min(df,axis = 1) return df_min @timer def Sum(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'] Returns: df: pd.DataFrame,multi-index = ['date','ID'] """ df_unstack = df.unstack(level = 'ID') df_temp = df_unstack.rolling(num).sum() df_final = df_temp.stack() return df_final @timer def Mean(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'] Returns: df: pd.DataFrame,multi-index = ['date','ID'] """ df_unstack = df.unstack() df_temp = df_unstack.rolling(num).mean() df_final = df_temp.stack() return df_final @timer def STD(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'] Returns: df: pd.DataFrame,multi-index = ['date','ID'] """ df_unstack = df.unstack() df_temp = df_unstack.rolling(num).std() df_final = df_temp.stack() return df_final @timer def TsRank(df,num): """ Params: df: pd.DataFrame,multi-index = ['date','ID'] num: int Returns: df: pd.DataFrame,multi-index = ['date','ID'] """ df = df.swaplevel(0,1) df_unstack = df.unstack() date = df_unstack.index.tolist() ts_rank = pd.DataFrame([]) for i in range(num,len(date)): df = df_unstack.iloc[i-num:i,:] df_rank = df.rank(axis = 0) ts_rank_temp =
pd.DataFrame(df_rank.iloc[num-1,:])
pandas.DataFrame
"""This module contains auxiliary functions for the creation of tables in the main notebook.""" import json import pandas as pd import numpy as np import statsmodels.api as sm_api from auxiliary.auxiliary_tables import * def create_table1(data): """ Creates Table 1. """ table1 = pd.crosstab(data.grade_group, [data.suba, data.group], colnames=['Experiment', 'Group'], margins=True, margins_name="Total") table11 = table1.drop(index = "Total") table12 = pd.crosstab(data.r_be_gene, [data.suba, data.group], margins=True, margins_name="Total") table1 = table11.append(table12).rename(index={"F": "Female", "M": "Male"}, columns={0.0: "Basic-Savings", 1.0: "Tertiary"}) table1 = table1[[('Basic-Savings','Control'),('Basic-Savings','Basic'),('Basic-Savings','Savings'),('Tertiary','Control'),('Tertiary','Tertiary'),('Total', '')]] table1 = table1.reindex(['Grades 6-8','Grades 9-10','Grade 11','Female','Male','Total']) return table1 def style_specific_cell(x): """ Creates Colors for Table 2 """ color1 = 'background-color: lightgreen' color2 = 'background-color: lightcoral' color3 = 'background-color: skyblue' df1 = pd.DataFrame('', index=x.index, columns=x.columns) df1.iloc[0, 1] = color1 df1.iloc[18, 2] = color1 df1.iloc[2, 2] = color2 df1.iloc[2, 3] = color2 df1.iloc[6, 3] = color2 df1.iloc[14, 1] = color3 df1.iloc[24, 3] = color3 return df1 def create_table2(data1, data2): """ Creates Table 2. """ x_sancristobal = data1[['T1_treat','T2_treat']] x_sancristobal = sm_api.add_constant(x_sancristobal) x_suba = data2['T3_treat'] x_suba = sm_api.add_constant(x_suba) result_sancristobal = list() result_suba = list() T_Test = list() Control_avg_bs = list() Control_avg_t = list() for i in ['s_teneviv_int','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_sexo_int','s_yrs','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','s_estrato','s_puntaje','s_ingtotal']: y_sancristobal = data1[i] y_suba = data2[i] reg_sancristobal = sm_api.OLS(y_sancristobal, x_sancristobal).fit(cov_type='cluster', cov_kwds={'groups': data1['school_code']}) result_sancristobal.append(round(reg_sancristobal.params, 2)) result_sancristobal.append(round(reg_sancristobal.bse, 2)) T_Test.append(round(reg_sancristobal.t_test('T1_treat=T2_treat').effect[0], 2)) T_Test.append(round(reg_sancristobal.t_test('T1_treat=T2_treat').sd[0][0], 2)) reg_suba = sm_api.OLS(y_suba, x_suba).fit(cov_type='cluster', cov_kwds={'groups': data2['school_code']}) result_suba.append(round(reg_suba.params, 2)) result_suba.append(round(reg_suba.bse, 2)) Control_avg_bs.append("%.2f" % round(data1.groupby(data1['control']).mean()[i][1], 2)) Control_avg_bs.append(round(data1.groupby(data1['control']).std()[i][1], 2)) Control_avg_t.append("%.2f" % round(data2.groupby(data2['control']).mean()[i][1], 2)) Control_avg_t.append(round(data2.groupby(data2['control']).std()[i][1], 2)) table21 = pd.DataFrame(result_sancristobal, index=['Possessions','Possessions SE','Utilities','Utilities SE','Durable Goods','Durable Goods SE','Physical Infrastructure','Physical Infrastructure SE','Age','Age SE','Gender','Gender SE','Years of Education','Years of Education SE','Single Head','Single Head SE','Age of Head','Age of Head SE','Years of ed., head','Years of ed., head SE','People in Household','People in Household SE','Member under 18','Member under 18 SE','Estrato','Estrato SE','SISBEN score','SISBEN score SE','Household income (1,000 pesos)','Household income (1,000 pesos) SE']) table21.columns = ['Control average B-S', 'Basic-Control', 'Savings-Control'] table21['Control average B-S'] = Control_avg_bs table21['Basic-Savings'] = T_Test table22 = pd.DataFrame(result_suba, index=['Possessions','Possessions SE','Utilities','Utilities SE','Durable Goods','Durable Goods SE','Physical Infrastructure','Physical Infrastructure SE','Age','Age SE','Gender','Gender SE','Years of Education','Years of Education SE','Single Head','Single Head SE','Age of Head','Age of Head SE','Years of ed., head','Years of ed., head SE','People in Household','People in Household SE','Member under 18','Member under 18 SE','Estrato','Estrato SE','SISBEN score','SISBEN score SE','Household income (1,000 pesos)','Household income (1,000 pesos) SE']) table22.columns = ['Control average T', 'Tertiary-Control'] table22['Control average T'] = Control_avg_t table2 = table21.join(table22) #table2 = table2.style.apply(style_specific_cell, axis=None) return table2 def create_table34(data1, data2, data3, variable): """ Creates Table 3 and 4. """ result_sancristobal = list() result_sancristobal1 = list() result_sancristobal2 = list() result_sancristobal3 = list() result_suba = list() result_suba1 = list() result_suba2 = list() result_suba3 = list() result_both = list() r2_sancristobal = list() r2_suba = list() y_suba = data2[variable] y_sancristobal = data1[variable] for i in [['T1_treat','T2_treat'],['T1_treat','T2_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']]: x_sancristobal = data1[i] x_sancristobal = sm_api.add_constant(x_sancristobal) reg_sancristobal = sm_api.OLS(y_sancristobal, x_sancristobal).fit(cov_type='cluster', cov_kwds={'groups': data1['school_code']}) result_sancristobal.append(round(reg_sancristobal.params[1], 3)) result_sancristobal.append(round(reg_sancristobal.bse[1], 3)) result_sancristobal.append(round(reg_sancristobal.params[2], 3)) result_sancristobal.append(round(reg_sancristobal.bse[2], 3)) result_sancristobal.append(round(reg_sancristobal.f_test('T1_treat=T2_treat').fvalue[0][0], 3)) result_sancristobal.append(round(float(reg_sancristobal.f_test('T1_treat=T2_treat').pvalue), 3)) r2_sancristobal.append(round(reg_sancristobal.rsquared, 3)) x_sancristobal = data1[['T1_treat','T2_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']] x_sancristobal = sm_api.add_constant(x_sancristobal) x_sancristobal = x_sancristobal.join(pd.get_dummies(data1['school_code'])) reg_sancristobal = sm_api.OLS(y_sancristobal, x_sancristobal).fit(cov_type='cluster', cov_kwds={'groups': data1['school_code']}) result_sancristobal.append(round(reg_sancristobal.params[[1]][0], 3)) result_sancristobal.append(round(reg_sancristobal.bse[[1]][0], 3)) result_sancristobal.append(round(reg_sancristobal.params[[2]][0], 3)) result_sancristobal.append(round(reg_sancristobal.bse[[2]][0], 3)) A = np.zeros((len(x_sancristobal.columns),), dtype=int) A[1] = 1 A[2] = -1 result_sancristobal.append(round(reg_sancristobal.f_test(A).fvalue[0][0], 3)) result_sancristobal.append(round(float(reg_sancristobal.f_test(A).pvalue), 3)) r2_sancristobal.append(round(reg_sancristobal.rsquared, 3)) result_sancristobal1.append(result_sancristobal[0:6]) result_sancristobal2.append(result_sancristobal[6:12]) result_sancristobal3.append(result_sancristobal[12:]) i = 4 while i < 6: result_sancristobal1[0].insert(i, '') result_sancristobal2[0].insert(i, '') result_sancristobal3[0].insert(i, '') result_sancristobal1[0].append('') result_sancristobal2[0].append('') result_sancristobal3[0].append('') i += 1 result_sancristobal1[0].append('') result_sancristobal2[0].append('') result_sancristobal3[0].append('') result_sancristobal1[0].append(len(y_sancristobal)) result_sancristobal2[0].append(len(y_sancristobal)) result_sancristobal3[0].append(len(y_sancristobal)) result_sancristobal1[0].append(r2_sancristobal[0]) result_sancristobal2[0].append(r2_sancristobal[1]) result_sancristobal3[0].append(r2_sancristobal[2]) for i in [['T3_treat'],['T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']]: x_suba = data2[i] x_suba = sm_api.add_constant(x_suba, has_constant='add') reg_suba = sm_api.OLS(y_suba, x_suba).fit(cov_type='cluster', cov_kwds={'groups': data2['school_code']}) result_suba.append(round(reg_suba.params[1], 3)) result_suba.append(round(reg_suba.bse[1], 3)) r2_suba.append(round(reg_suba.rsquared, 3)) x_suba = data2[['T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']] x_suba = sm_api.add_constant(x_suba, has_constant='add') x_suba = x_suba.join(pd.get_dummies(data2['school_code'])) reg_suba = sm_api.OLS(y_suba, x_suba).fit(cov_type='cluster', cov_kwds={'groups': data2['school_code']}) result_suba.append(round(reg_suba.params[[1]][0], 3)) result_suba.append(round(reg_suba.bse[[1]][0], 3)) r2_suba.append(round(reg_suba.rsquared, 3)) result_suba1.append(result_suba[0:2]) result_suba2.append(result_suba[2:4]) result_suba3.append(result_suba[4:]) i = 1 while i < 5: result_suba1[0].insert(0, '') result_suba2[0].insert(0, '') result_suba3[0].insert(0, '') result_suba1[0].append('') result_suba2[0].append('') result_suba3[0].append('') i += 1 result_suba1[0].append('') result_suba2[0].append('') result_suba3[0].append('') result_suba1[0].append(len(y_suba)) result_suba2[0].append(len(y_suba)) result_suba3[0].append(len(y_suba)) result_suba1[0].append(r2_suba[0]) result_suba2[0].append(r2_suba[1]) result_suba3[0].append(r2_suba[2]) y_both = data3[variable] x_both = data3[['T1_treat','T2_treat','T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']] x_both = sm_api.add_constant(x_both, has_constant='add') x_both = x_both.join(pd.get_dummies(data3['school_code'])) reg_both = sm_api.OLS(y_both, x_both).fit(cov_type='cluster', cov_kwds={'groups': data3['school_code']}) i = 1 while i < 4: result_both.append(round(reg_both.params[[i]][0], 3)) result_both.append(round(reg_both.bse[[i]][0], 3)) i += 1 A = np.zeros((len(x_both.columns),), dtype=int) A[1] = 1 A[2] = -1 result_both.append(round(reg_both.f_test(A).fvalue[0][0], 3)) result_both.append(round(float(reg_both.f_test(A).pvalue), 3)) A = np.zeros((len(x_both.columns),), dtype=int) A[1] = 1 A[3] = -1 result_both.append(round(reg_both.f_test(A).fvalue[0][0], 3)) result_both.append(round(float(reg_both.f_test(A).pvalue), 3)) result_both.append('') result_both.append(len(y_both)) result_both.append(round(reg_both.rsquared, 3)) table3 = pd.DataFrame({'Basic-Savings': result_sancristobal1[0]}, index=['Basic treatment','Basic treatment SE','Savings treatment','Savings treatment SE','Tertiary treatment','Tertiary treatment SE','H0: Basic-Savings F-Stat','p-value','H0: Tertiary-Basic F-Stat','p-value','','Observations','R squared']) table3['Basic-Savings with demographics'] = result_sancristobal2[0] table3['Basic-Savings with demographics and school fixed effects'] = result_sancristobal3[0] table3['Tertiary'] = result_suba1[0] table3['Tertiary with demographics'] = result_suba2[0] table3['Tertiary with demographics and school fixed effects'] = result_suba3[0] table3['Both'] = result_both table3 return table3 def create_table5(data): sample_fu = data.drop(data[(data.fu_observed == 0) | (data.grade != 11)].index) sample_fu_sancristobal = sample_fu.drop(sample_fu[sample_fu.suba == 1].index) sample_fu_suba = sample_fu.drop(sample_fu[sample_fu.suba == 0].index) result_grad_sancristobal = list() result_grad_suba = list() result_grad_both = list() result_tert_sancristobal = list() result_tert_suba = list() result_tert_both = list() i = 1 while i < 5: result_grad_suba.append('') result_tert_suba.append('') i += 1 x = sm_api.add_constant(sample_fu_sancristobal[['T1_treat','T2_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu_sancristobal['school_code'])) y = sample_fu_sancristobal['graduated'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu_sancristobal['school_code']}) result_grad_sancristobal.append(round(reg.params[[1]][0], 3)) result_grad_sancristobal.append(round(reg.bse[[1]][0], 3)) result_grad_sancristobal.append(round(reg.params[[2]][0], 3)) result_grad_sancristobal.append(round(reg.bse[[2]][0], 3)) i = 1 while i < 3: result_grad_sancristobal.append('') i += 1 A = np.array(([0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_grad_sancristobal.append(round(reg.f_test(A).fvalue[0][0], 3)) result_grad_sancristobal.append(round(float(reg.f_test(A).pvalue), 3)) i = 1 while i < 3: result_grad_sancristobal.append('') i += 1 result_grad_sancristobal.append('') result_grad_sancristobal.append(len(y)) result_grad_sancristobal.append(round(reg.rsquared, 3)) sample_fu_sancristobal_tert = sample_fu_sancristobal.drop(sample_fu_sancristobal[sample_fu_sancristobal.tertiary.isnull()].index) x = sm_api.add_constant(sample_fu_sancristobal_tert[['T1_treat','T2_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu_sancristobal_tert['school_code'])) y = sample_fu_sancristobal_tert['tertiary'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu_sancristobal_tert['school_code']}) result_tert_sancristobal.append(round(reg.params[[1]][0], 3)) result_tert_sancristobal.append(round(reg.bse[[1]][0], 3)) result_tert_sancristobal.append(round(reg.params[[2]][0], 3)) result_tert_sancristobal.append(round(reg.bse[[2]][0], 3)) i = 1 while i < 3: result_tert_sancristobal.append('') i += 1 A = np.array(([0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_tert_sancristobal.append(round(reg.f_test(A).fvalue[0][0], 3)) result_tert_sancristobal.append(round(float(reg.f_test(A).pvalue), 3)) i = 1 while i < 3: result_tert_sancristobal.append('') i += 1 result_tert_sancristobal.append('') result_tert_sancristobal.append(len(y)) result_tert_sancristobal.append(round(reg.rsquared, 3)) x = sm_api.add_constant(sample_fu_suba[['T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu_suba['school_code'])) y = sample_fu_suba['graduated'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu_suba['school_code']}) result_grad_suba.append(round(reg.params[[1]][0], 3)) result_grad_suba.append(round(reg.bse[[1]][0], 3)) i = 1 while i < 5: result_grad_suba.append('') i += 1 result_grad_suba.append('') result_grad_suba.append(len(y)) result_grad_suba.append(round(reg.rsquared, 3)) sample_fu_suba_tert = sample_fu_suba.drop(sample_fu_suba[sample_fu_suba.tertiary.isnull()].index) x = sm_api.add_constant(sample_fu_suba_tert[['T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu_suba_tert['school_code'])) y = sample_fu_suba_tert['tertiary'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu_suba_tert['school_code']}) result_tert_suba.append(round(reg.params[[1]][0], 3)) result_tert_suba.append(round(reg.bse[[1]][0], 3)) i = 1 while i < 5: result_tert_suba.append('') i += 1 result_tert_suba.append('') result_tert_suba.append(len(y)) result_tert_suba.append(round(reg.rsquared, 3)) x = sm_api.add_constant(sample_fu[['T1_treat','T2_treat','T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu['school_code'])) y = sample_fu['graduated'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu['school_code']}) result_grad_both.append(round(reg.params[[1]][0], 3)) result_grad_both.append(round(reg.bse[[1]][0], 3)) result_grad_both.append(round(reg.params[[2]][0], 3)) result_grad_both.append(round(reg.bse[[2]][0], 3)) result_grad_both.append(round(reg.params[[3]][0], 3)) result_grad_both.append(round(reg.bse[[3]][0], 3)) A = np.array(([0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_grad_both.append(round(reg.f_test(A).fvalue[0][0], 3)) result_grad_both.append(round(float(reg.f_test(A).pvalue), 3)) A = np.array(([0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_grad_both.append(round(reg.f_test(A).fvalue[0][0], 3)) result_grad_both.append(round(float(reg.f_test(A).pvalue), 3)) result_grad_both.append('') result_grad_both.append(len(y)) result_grad_both.append(round(reg.rsquared, 3)) sample_fu_tert = sample_fu.drop(sample_fu[sample_fu.tertiary.isnull()].index) x = sm_api.add_constant(sample_fu_tert[['T1_treat','T2_treat','T3_treat','Rent','Own paying it','Own payed','Other condition','s_utilities','s_durables','s_infraest_hh','s_age_sorteo','s_age_sorteo2','s_years_back','s_sexo_int','Free union','Married','Widow(er)','Divorced','Single','s_single','s_edadhead','s_yrshead','s_tpersona','s_num18','estrato_0','estrato_1','estrato_2','s_puntaje','s_ingtotal','grade_6.0','grade_7.0','grade_8.0','grade_9.0','grade_10.0','grade_11.0','suba','s_over_age']], has_constant='add') x = x.join(pd.get_dummies(sample_fu_tert['school_code'])) y = sample_fu_tert['tertiary'] reg = sm_api.OLS(y, x).fit(cov_type='cluster', cov_kwds={'groups': sample_fu_tert['school_code']}) result_tert_both.append(round(reg.params[[1]][0], 3)) result_tert_both.append(round(reg.bse[[1]][0], 3)) result_tert_both.append(round(reg.params[[2]][0], 3)) result_tert_both.append(round(reg.bse[[2]][0], 3)) result_tert_both.append(round(reg.params[[3]][0], 3)) result_tert_both.append(round(reg.bse[[3]][0], 3)) A = np.array(([0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_tert_both.append(round(reg.f_test(A).fvalue[0][0], 3)) result_tert_both.append(round(float(reg.f_test(A).pvalue), 3)) A = np.array(([0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])) result_tert_both.append(round(reg.f_test(A).fvalue[0][0], 3)) result_tert_both.append(round(float(reg.f_test(A).pvalue), 3)) result_tert_both.append('') result_tert_both.append(len(y)) result_tert_both.append(round(reg.rsquared, 3)) table5 =
pd.DataFrame({'Graduation Basic-Savings':result_grad_sancristobal}, index=['Basic treatment','Basic treatment SE','Savings treatment','Savings treatment SE','Tertiary treatment','Tertiary treatment SE','H0: Basic-Savings F-Stat','p-value','H0: Tertiary-Basic F-Stat','p-value','','Observations','R squared'])
pandas.DataFrame
import json import math import os import pickle import random from multiprocessing import Pool from pathlib import Path import pandas as pd import torch import torch.nn.functional as F import torch.utils.data from augmentation.augmentation_methods import \ NoiseAugmentor, RirAugmentor, CodecAugmentor, \ LowpassAugmentor, HighpassAugmentor, ReverbAugmentor, \ HilbertAugmentor from complex_data_parser import get_path_by_glob, parse_complex_data from src.meldataset import load_wav from textgrid_parsing import parse_textgrid PHI = (1 + math.sqrt(5))/2 MAX_WAV_VALUE = 32768.0 labels_to_use = ['speaker', 'sex', 'mic-brand'] timed_labels_to_use = ['phones'] label_groups = { 'content': ['speaker', 'sex', 'phones'], 'style': ['mic-brand'] } augmentation_label_groups = { 'content': [], 'style': ['noise', 'rir', 'lowpass', 'highpass', 'reverb', 'codec', 'hilbert'] } class MultilabelWaveDataset(torch.utils.data.Dataset): def __init__(self, data_dir, cache_dir, name, source, segment_length, sampling_rate, embedding_size, augmentation_config=None, disable_wavs=False, split=True, size=None, fine_tuning=False, deterministic=False): self.data_dir = data_dir self.cache_dir = cache_dir self.name = name self.source = source self.segment_length = segment_length self.embedding_size = embedding_size self.sampling_rate = sampling_rate self.split = split self.fine_tuning = fine_tuning self.size = size self.deterministic = deterministic self.random = random.Random() self.disable_wavs = disable_wavs self.should_augment = augmentation_config is not None if self.should_augment: self.aug_options = augmentation_config['options'] self.aug_probs = augmentation_config['probs'] print('Creating [{}] dataset:'.format(self.name)) name_path = Path(os.path.join(cache_dir, name)) if not name_path.exists(): os.mkdir(name_path) cache_path = Path(os.path.join(cache_dir, name, 'labels_cache')) if not name_path.exists(): os.mkdir(cache_path) config_path = f'**/data_configs/{source}/*.json' self.files_with_labels = self.do_with_pickle_cache(lambda: self.get_files_with_labels(cache_dir, config_path), os.path.join(cache_dir, name, 'files_with_labels.pickle')) if self.size is None: self.size = len(self.files_with_labels) self.label_options_weights = self.do_with_pickle_cache(self.get_all_label_options_weights, os.path.join(cache_dir, name, 'label_options_weights.pickle')) base_prob = self.aug_probs['prob'] sub_probs = self.aug_probs['sub_probs'] for augmentation, augmentation_labels in self.aug_options.items(): sub_prob = sub_probs[augmentation]['prob'] option_prob = 1.0/len(augmentation_labels) self.label_options_weights[augmentation] = {'none': base_prob*(1-sub_prob), **{ label: base_prob*sub_prob*option_prob for label in augmentation_labels }} all_label_groups = {key: [*label_groups[key], *augmentation_label_groups[key]] for key in label_groups.keys()} self.label_options_weights_groups = { key: {label: self.label_options_weights[label] for label in label_group} for key, label_group in all_label_groups.items() } self.label_options_groups = { key: {label: tuple(value.keys()) for label, value in label_group.items()} for key, label_group in self.label_options_weights_groups.items() } self.label_options = { key: tuple(label_group.keys()) for key, label_group in self.label_options_weights.items() } self.label_weights_groups = { key: {label: tuple(value.values()) for label, value in label_group.items()} for key, label_group in self.label_options_weights_groups.items() } self.label_weights = { key: tuple(label_group.values()) for key, label_group in self.label_options_weights.items() } if self.should_augment: self.aug_methods = { 'noise': NoiseAugmentor(self.data_dir, self.label_options).augment, 'rir': RirAugmentor(self.data_dir).augment, 'reverb': ReverbAugmentor(self.sampling_rate).augment, 'lowpass': LowpassAugmentor(self.sampling_rate).augment, 'highpass': HighpassAugmentor(self.sampling_rate).augment, 'codec': CodecAugmentor(self.sampling_rate).augment, 'hilbert': HilbertAugmentor(self.sampling_rate).augment } print('Dataset [{}] is ready!\n'.format(self.name)) @staticmethod def do_with_pickle_cache(func, pickle_path): pickle_path = Path(pickle_path) if pickle_path.exists(): with open(pickle_path, 'rb') as pickle_file: result = pickle.load(pickle_file) else: if not pickle_path.parent.exists(): pickle_path.parent.mkdir(parents=True, exist_ok=True) result = func() with open(pickle_path, 'wb') as pickle_file: pickle.dump(result, pickle_file) return result @staticmethod def create_pickle_cache(func, pickle_path): pickle_path = Path(pickle_path) if not pickle_path.exists(): if not pickle_path.parent.exists(): pickle_path.parent.mkdir(parents=True, exist_ok=True) result = func() with open(pickle_path, 'wb') as pickle_file: pickle.dump(result, pickle_file) def get_all_label_options_weights(self): all_label_options = {} for col in labels_to_use: all_label_options[col] = dict(self.files_with_labels[col].value_counts(normalize=True)) with Pool(16) as pool: for label in timed_labels_to_use: all_label_options[label] = dict() results = pool.map(self.get_timed_labels_value_counts_by_index, range(len(self))) rows_to_remove = [] for i, result in enumerate(results): if isinstance(result, Exception): rows_to_remove.append(i) else: for label in timed_labels_to_use: for key, value in result[label].items(): if key not in all_label_options[label]: all_label_options[label][key] = 0 all_label_options[label][key] += value for label in timed_labels_to_use: for key in all_label_options[label]: all_label_options[label][key] /= len(results) if len(rows_to_remove) > 0: self.files_with_labels = self.files_with_labels.drop(rows_to_remove).reset_index(drop=True) pickle_path = os.path.join(self.cache_dir, self.source, 'files_with_labels.pickle') with open(pickle_path, 'wb') as pickle_file: pickle.dump(self.files_with_labels, pickle_file) all_label_options_weights = all_label_options return all_label_options_weights def get_timed_labels_value_counts_by_index(self, i): try: labels, timed_labels = self.get_timed_labels(i) return self.get_labels_value_counts(timed_labels) except Exception as e: print('Item {} failed to get timed labels: [{}]'.format(i, e)) return e def get_labels_value_counts(self, timed_labels): result = {} for label in timed_labels_to_use: result[label] = dict(timed_labels[label]['text'].value_counts(normalize=True)) return result def get_files_with_labels(self, main_dir, config_path): main_dir = Path(main_dir) subdir_list = [path for path in main_dir.glob('*/')] results = None for subdir in subdir_list: try: config_files = [path for path in subdir.glob(config_path)] for config_file in config_files: config = config_file.read_text() config_dict = json.loads(config) print('Loading [{}]...'.format(config_dict['name'])) complex_data = parse_complex_data(subdir, config_dict['config'], config_dict['result']) print('[{}] loaded successfully!'.format(config_dict['name'])) if results is None: results = complex_data else: results = pd.concat([results, complex_data], axis=0, ignore_index=True) except Exception as e: print(e) print('Data config was not found or invalid, moving on.') continue return results def get_timed_labels(self, index): all_labels = self.files_with_labels.iloc[[index]].squeeze() labels = self.get_labels(index) timed_labels = parse_textgrid(all_labels['subdir'], all_labels['textgrid']) return labels, {key: value for key, value in timed_labels.items() if key in timed_labels_to_use} def get_labels(self, index): labels = self.files_with_labels[labels_to_use].iloc[[index]].squeeze() return labels def get_grouped_labels(self, index): labels = self.get_labels(index) grouped_labels = {group: labels.filter(group_labels).to_dict() for group, group_labels in label_groups.items()} return grouped_labels def __getitem__(self, index): if self.deterministic: self.random.seed(index) if self.size < len(self.files_with_labels): index = (int(len(self.files_with_labels) / PHI) * index) % len(self.files_with_labels) return self.get_augmented_item(index) def get_augmented_item(self, index): wav, wav_path, time_labels, grouped_labels = self.get_cut_item(index) if self.should_augment: wav, time_labels, grouped_labels = self.augment_item(wav, time_labels, grouped_labels) return wav, wav_path, time_labels, grouped_labels def create_pickle_label(self, index): return self.create_pickle_cache( lambda: self.get_fresh_label(index), os.path.join(self.cache_dir, self.source, 'labels_cache', '{}.pickle'.format(index)) ) def get_pickle_label(self, index): return self.do_with_pickle_cache( lambda: self.get_fresh_label(index), os.path.join(self.cache_dir, self.source, 'labels_cache', '{}.pickle'.format(index)) ) def get_fresh_label(self, index): labels, timed_labels = self.get_timed_labels(index) segmented_timed_labels = self.get_segmented_timed_labels(timed_labels) all_segmented_labels = self.add_segmented_labels(segmented_timed_labels, labels) segmented_tensor = self.convert_segmented_labels_to_tensor(all_segmented_labels, label_groups) return segmented_tensor def __len__(self): return min(len(self.files_with_labels), self.size) def get_segmented_timed_labels(self, timed_labels): return pd.concat( [ self.get_segmented_timed_labels_for_single(label_name, timed_label) for label_name, timed_label in timed_labels.items() ], axis=1 ) def get_segmented_timed_labels_for_single(self, label_name, timed_label): result_rows = [] time_interval = self.embedding_size / self.sampling_rate current_index = 0 current_time = 0 while current_index < len(timed_label): result_rows.append({label_name: timed_label.iloc[[current_index]].squeeze()['text']}) current_time += time_interval if current_time > timed_label.iloc[[current_index]].squeeze()['end']: current_index += 1 return pd.DataFrame(result_rows) def add_segmented_labels(self, segmented_timed_labels, labels): for col in labels.axes[0]: segmented_timed_labels[col] = labels[col] return segmented_timed_labels def convert_segmented_labels_to_tensor(self, all_segmented_labels, given_label_groups): all_tensors = {} for key, labels in given_label_groups.items(): tensors = {} for col in labels: if col in all_segmented_labels: index_tensor = torch.tensor( all_segmented_labels[col].apply(lambda x: self.label_options[col].index(x)).tolist(), dtype=torch.int64 ) tensors[col] = index_tensor all_tensors[key] = tensors return all_tensors def get_wav(self, index): wav_path = get_path_by_glob(self.cache_dir, self.files_with_labels.iloc[[index]].squeeze()['wav']) if self.disable_wavs: return torch.zeros((self.segment_length,)), str(wav_path) audio, sampling_rate = load_wav(wav_path) if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio = torch.FloatTensor(audio) return audio.squeeze(0), str(wav_path) def get_cut_item(self, index): wav, wav_path = self.get_wav(index) pickle_label_groups = self.get_pickle_label(index) length = wav.size(0) embedded_segment_length = self.segment_length // self.embedding_size embedded_length = min(length // self.embedding_size, next(iter(next(iter(pickle_label_groups.values())).values())).size(0)) trimed_length = embedded_length * self.embedding_size trimed_start = 0 if len(wav) > trimed_length: wav = wav[trimed_start:trimed_start + trimed_length] length = wav.size(0) # print(length, self.segment_length, embedded_length, embedded_segment_length) if length >= self.segment_length: max_embedded_start = embedded_length - embedded_segment_length embedded_start = self.random.randint(0, max_embedded_start) start = embedded_start * self.embedding_size # print('trim: ', start, embedded_start) else: embedded_padding = embedded_segment_length - embedded_length prefix_embedded_padding = self.random.randint(0, embedded_padding) postfix_embedded_padding = embedded_padding - prefix_embedded_padding padding = embedded_padding * self.embedding_size prefix_padding = prefix_embedded_padding * self.embedding_size postfix_padding = postfix_embedded_padding * self.embedding_size for key, group in pickle_label_groups.items(): for label, label_item in group.items(): label_item = label_item[0:embedded_length] if length >= self.segment_length: cut_label_item = label_item[embedded_start:embedded_start + embedded_segment_length] else: cut_label_item = torch.nn.functional.pad(label_item, (prefix_embedded_padding, postfix_embedded_padding), 'constant') group[label] = cut_label_item if length >= self.segment_length: wav = wav[start:start + self.segment_length] else: wav = torch.nn.functional.pad(wav, (prefix_padding, postfix_padding), 'constant') grouped_labels = self.get_grouped_labels(index) return wav, wav_path, pickle_label_groups, grouped_labels def augment_item(self, cut_wav, cut_label, grouped_labels): options = self.aug_options probs = self.aug_probs methods = self.aug_methods (length,) = next(iter(next(iter(cut_label.values())).values())).size() augmented_wav = cut_wav augmented_label =
pd.DataFrame(['none'] * length, columns=['none'])
pandas.DataFrame
import pandas as pd import pytest import featuretools as ft from featuretools.entityset import EntitySet, Relationship from featuretools.utils.cudf_utils import pd_to_cudf_clean from featuretools.utils.gen_utils import import_or_none cudf = import_or_none('cudf') # TODO: Fix vjawa @pytest.mark.skipif('not cudf') def test_create_entity_from_cudf_df(pd_es): cleaned_df = pd_to_cudf_clean(pd_es["log"].df) log_cudf = cudf.from_pandas(cleaned_df) print(pd_es["log"].variable_types) cudf_es = EntitySet(id="cudf_es") cudf_es = cudf_es.entity_from_dataframe( entity_id="log_cudf", dataframe=log_cudf, index="id", time_index="datetime", variable_types=pd_es["log"].variable_types ) pd.testing.assert_frame_equal(cleaned_df, cudf_es["log_cudf"].df.to_pandas(), check_like=True) @pytest.mark.skipif('not cudf') def test_create_entity_with_non_numeric_index(pd_es, cudf_es): df = pd.DataFrame({"id": ["A_1", "A_2", "C", "D"], "values": [1, 12, -34, 27]}) cudf_df = cudf.from_pandas(df) pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") cudf_es.entity_from_dataframe( entity_id="new_entity", dataframe=cudf_df, index="id", variable_types={"id": ft.variable_types.Id, "values": ft.variable_types.Numeric}) pd.testing.assert_frame_equal(pd_es['new_entity'].df.reset_index(drop=True), cudf_es['new_entity'].df.to_pandas()) @pytest.mark.skipif('not cudf') def test_create_entityset_with_mixed_dataframe_types(pd_es, cudf_es): df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27]}) cudf_df = cudf.from_pandas(df) # Test error is raised when trying to add Koalas entity to entitset with existing pandas entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(cudf_df), type(pd_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): pd_es.entity_from_dataframe( entity_id="new_entity", dataframe=cudf_df, index="id") # Test error is raised when trying to add pandas entity to entitset with existing cudf entities err_msg = "All entity dataframes must be of the same type. " \ "Cannot add entity of type {} to an entityset with existing entities " \ "of type {}".format(type(df), type(cudf_es.entities[0].df)) with pytest.raises(ValueError, match=err_msg): cudf_es.entity_from_dataframe( entity_id="new_entity", dataframe=df, index="id") @pytest.mark.skipif('not cudf') def test_add_last_time_indexes(): pd_es = EntitySet(id="pd_es") cudf_es = EntitySet(id="cudf_es") sessions = pd.DataFrame({"id": [0, 1, 2, 3], "user": [1, 2, 1, 3], "time": [pd.to_datetime('2019-01-10'),
pd.to_datetime('2019-02-03')
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed Oct 21 14:38:25 2020 @author: SKD-HiTMAN """ import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity ratings = pd.read_csv('../../../Dataset/SongsDataset/ratings.csv', encoding='latin-1') songs = pd.read_csv('../../../Dataset/NewDataset/songs.csv', encoding='latin-1') # ratings = pd.read_csv('../Dataset/MovieLens/ml-latest-small/ratings.csv') # songs = pd.read_csv('../Dataset/MovieLens/ml-latest-small/songs.csv', encoding='latin-1') merged = pd.merge(ratings, songs, left_on='songId', right_on='songId', sort=True) merged = merged[['userId', 'title', 'rating']] songRatings = merged.pivot_table(index=['userId'], columns=['title'], values='rating') # remove null value-> replace with 0 #songRatings.replace({np.nan:0}, regex=True, inplace=True) songRatings = songRatings.fillna(0) #print((songRatings[songRatings['userId'] == None]).head()) #print(songRatings.head()) # cosine similarity: pairwise similarity b/w all users and song-rating dfs user_similarity = cosine_similarity(songRatings) # user_similarity is a numpy array--> convert to df user_sim_df = pd.DataFrame(user_similarity, index = songRatings.index, columns = songRatings.index) songRatings = songRatings.T # transpose the df to work on columns in the upcoming function # function to take user as parameter and show the result of highest rated songs for similar user import operator def recommendation(user): if user not in songRatings.columns: return ('Oops! No data available for this user!') # sort all the similar user for the active user basing on cosine similarity sim_user = user_sim_df.sort_values(by = user, ascending = False).index[1:11] best = [] for i in sim_user: max_score = songRatings.loc[:, i].max() best.append(songRatings[songRatings.loc[:, i] == max_score].index.tolist()) user_seen_songs = songRatings[songRatings.loc[:, user] > 0].index.tolist() # remove the songs user has already watched for i in range(len(best)): for j in best[i]: if (j in user_seen_songs): best[i].remove(j) most_common = {} for i in range(len(best)): for j in best[i]: if j in most_common: most_common[j] += 1 else: most_common[j] = 1 sorted_list = sorted(most_common.items(), key = operator.itemgetter(1), reverse = True) # sort by 1st elemt which is similar to user--> op.itemgetter(1) return(sorted_list) result = recommendation(45) ################################## performance evaluation # create classes # 1-3 ratings -> disliked; 4-5 -> liked ratings.loc[ratings['rating'] <= 3, "rating"] = 0 ratings.loc[ratings['rating'] > 3, "rating"] = 1 merged =
pd.merge(ratings, songs, left_on='songId', right_on='songId', sort=True)
pandas.merge
""" MIT License Copyright (c) 2021, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------------------------------------------------ K-means++ attack ===================== This class implements K-means++ attack from paper K-means++ vs. Behavioral Biometrics: One Loop to Rule Them All @inproceedings{negi2018k, title={K-means++ vs. Behavioral Biometrics: One Loop to Rule Them All.}, author={<NAME> and <NAME> and <NAME> and <NAME>}, booktitle={NDSS}, year={2018} } """ from source_code.adversaries.adversarial_attacks import Attacks import pandas as pd import numpy as np class KppAttack(Attacks): def __init__(self, data, required_attack_samples): """ @param required_attack_samples: Expects an integer for number of attack samples to generate @param data: Expects a Pandas dataframe """ self.attack_df = data self.attack_samples = required_attack_samples self.attack_df_kpp = None def generate_attack(self): if 'user' in self.attack_df.columns: centroid = self.attack_df.drop('user', axis=1).mean().values.reshape(1, -1) # Using numpy arrays for more efficient usage k_mean_ar = self.attack_df.drop('user', axis=1).to_numpy() feat_list = self.attack_df.columns.drop('user').to_list() else: centroid = self.attack_df.mean() # Using numpy arrays for more efficient usage k_mean_ar = self.attack_df.to_numpy() feat_list = self.attack_df.columns.drop('user').to_list() # Generating attack set, first point is the mean of the attack data init_point = centroid self.attack_df_kpp =
pd.DataFrame(init_point, columns=feat_list)
pandas.DataFrame
import time import requests import logging import argparse import pandas as pd from lxml.html import fromstring from tqdm.auto import tqdm from bs4 import BeautifulSoup from bs4.element import Comment from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.chrome.service import Service from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from concurrent.futures import ThreadPoolExecutor, as_completed logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class CointelegraphCrawler(object): SCROLL_PAUSE_TIME = 2 BUTTON_XPATH = '/html/body/div/div/div/div[1]/main/div/div/div[3]/div[1]/div/div/div/button' UA = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36' def __init__(self, query, driver_root_path, thread=16): super(CointelegraphCrawler).__init__() self.root_url = f'https://cointelegraph.com/tags/{query}' self.driver_root_path = driver_root_path self.service = Service(driver_root_path) self.thread = thread self.session = self.init_session() def init_session(self): # Create a reusable connection pool with python requests session = requests.Session() session.mount( 'https://', requests.adapters.HTTPAdapter( pool_maxsize=self.thread, max_retries=3, pool_block=True) ) return session def run(self, time_limit, save_filename=None): driver = webdriver.Chrome(service=self.service) driver.get(self.root_url) WebDriverWait(driver, 5) logger.info(f'Running selenium...') start = time.time() click_count = 0 last_height = driver.execute_script("return document.body.scrollHeight") while True: end = time.time() eps = end - start if eps >= time_limit: break try: # Find the button and click driver.execute_script( "arguments[0].click();", WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, self.BUTTON_XPATH))) ) # Scroll down to the bottom driver.execute_script('window.scrollTo(0, document.body.scrollHeight);') time.sleep(self.SCROLL_PAUSE_TIME) new_height = driver.execute_script("return document.body.scrollHeight") if new_height == last_height: break last_height = new_height click_count += 1 except: break soup = BeautifulSoup(driver.page_source, "html.parser") driver.quit() logger.info(f'Start parsing information...') info = self._parse(soup) self._news_df =
pd.DataFrame(info, columns=['title', 'link', 'author', 'date'])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')])
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import unittest import pandas as pd import analysis_tools as analysis import matplotlib.pyplot as plt class TestStringMethods(unittest.TestCase): def setUp(self): xs = [10, 30, 110, -20, 50, 50, 30, 80, 99, 10] ys = [20, 60, 110, -40, 100, 100, 60, 160, 200, 20] ts = [0, 1000, 2000, 3000, 8000, 9000, 10000, 11000, 12000, 13000] self.dirty_tracking_data = pd.DataFrame({"x": xs, "y": ys, "t": ts}) def test_cleaning(self): clean_tracking_data = analysis.clean_tracking_data(self.dirty_tracking_data) answer = self.dirty_tracking_data[[True, True, True, False, True, True, True, True, True, False]] self.assertTrue(all(answer == clean_tracking_data)) def test_frac_conv(self): frac_coords = analysis.convert_to_frac_coords(self.dirty_tracking_data, (0, 100), (0, 200)) self.assertEqual(frac_coords["x"][0], 0.1) self.assertEqual(frac_coords["y"][0], 0.1) self.assertEqual(frac_coords["x"][9], 0.1) def test_mid_splats(self): heatmap = analysis.calc_heatmap(
pd.DataFrame([{"x": 0.5, "y": 0.5, "t": 0}])
pandas.DataFrame
# -*- coding: utf-8 -*- import logging import warnings import weakref from pathlib import Path from typing import List, Union, Set, cast from PyQt5.QtWidgets import QInputDialog from pandas import DataFrame, Timestamp, concat from PyQt5.QtCore import Qt from PyQt5.QtGui import QStandardItemModel, QStandardItem from dgp.core import OID, Icon from dgp.core.hdf5_manager import HDF5Manager from dgp.core.models.datafile import DataFile from dgp.core.models.dataset import DataSet, DataSegment from dgp.core.types.enumerations import DataType from dgp.lib.etc import align_frames from dgp.gui.plotting.helpers import LineUpdate from . import controller_helpers from .gravimeter_controller import GravimeterController from .controller_interfaces import IFlightController, IDataSetController, VirtualBaseController from .project_containers import ProjectFolder from .datafile_controller import DataFileController _log = logging.getLogger(__name__) class DataSegmentController(VirtualBaseController): """Controller for :class:`DataSegment` Implements reference tracking feature allowing the mutation of segments representations displayed on a plot surface. """ def __init__(self, segment: DataSegment, project, parent: IDataSetController = None): super().__init__(segment, project, parent=parent) self.update() self._menu = [ ('addAction', ('Delete', self._action_delete)), ('addAction', ('Properties', self._action_properties)) ] @property def entity(self) -> DataSegment: return cast(DataSegment, super().entity) @property def menu(self): return self._menu def clone(self) -> 'DataSegmentController': clone = DataSegmentController(self.entity, self.project, self.get_parent()) self.register_clone(clone) return clone def _action_delete(self): self.get_parent().remove_child(self.uid, confirm=True) def update(self): super().update() self.setText(str(self.entity)) self.setToolTip(repr(self.entity)) def _action_properties(self): warnings.warn("Properties feature not yet implemented") class DataSetController(IDataSetController): def __init__(self, dataset: DataSet, project, flight: IFlightController): super().__init__(model=dataset, project=project, parent=flight) self.setIcon(Icon.PLOT_LINE.icon()) self._grav_file = DataFileController(self.entity.gravity, self.project, self) self._traj_file = DataFileController(self.entity.trajectory, self.project, self) self._child_map = {DataType.GRAVITY: self._grav_file, DataType.TRAJECTORY: self._traj_file} self._segments = ProjectFolder("Segments", Icon.LINE_MODE.icon()) for segment in dataset.segments: seg_ctrl = DataSegmentController(segment, project, parent=self) self._segments.appendRow(seg_ctrl) self.appendRow(self._grav_file) self.appendRow(self._traj_file) self.appendRow(self._segments) self._sensor = None if dataset.sensor is not None: ctrl = self.project.get_child(dataset.sensor.uid) if ctrl is not None: self._sensor = ctrl.clone() self.appendRow(self._sensor) self._gravity: DataFrame = DataFrame() self._trajectory: DataFrame = DataFrame() self._dataframe: DataFrame = DataFrame() self._channel_model = QStandardItemModel() self._menu_bindings = [ # pragma: no cover ('addAction', ('Open', lambda: self.model().item_activated(self.index()))), ('addAction', ('Set Name', self._action_set_name)), ('addAction', (Icon.METER.icon(), 'Set Sensor', self._action_set_sensor_dlg)), ('addSeparator', ()), ('addAction', (Icon.GRAVITY.icon(), 'Import Gravity', lambda: self.project.load_file_dlg(DataType.GRAVITY, dataset=self))), ('addAction', (Icon.TRAJECTORY.icon(), 'Import Trajectory', lambda: self.project.load_file_dlg(DataType.TRAJECTORY, dataset=self))), ('addAction', ('Align Data', self.align)), ('addSeparator', ()), ('addAction', ('Delete', self._action_delete)), ('addAction', ('Properties', self._action_properties)) ] self._clones: Set[DataSetController] = weakref.WeakSet() def clone(self): clone = DataSetController(self.entity, self.get_parent(), self.project) self.register_clone(clone) return clone @property def entity(self) -> DataSet: return cast(DataSet, super().entity) @property def menu(self): # pragma: no cover return self._menu_bindings @property def hdfpath(self) -> Path: return self.project.hdfpath @property def series_model(self) -> QStandardItemModel: if 0 == self._channel_model.rowCount(): self._update_channel_model() return self._channel_model @property def segment_model(self) -> QStandardItemModel: # pragma: no cover return self._segments.internal_model @property def columns(self) -> List[str]: return [col for col in self.dataframe()] def _update_channel_model(self): df = self.dataframe() self._channel_model.clear() for col in df: series_item = QStandardItem(col) series_item.setData(df[col], Qt.UserRole) self._channel_model.appendRow(series_item) @property def gravity(self) -> Union[DataFrame]: if not self._gravity.empty: return self._gravity if self.entity.gravity is None: return self._gravity try: self._gravity = HDF5Manager.load_data(self.entity.gravity, self.hdfpath) except Exception: _log.exception(f'Exception loading gravity from HDF') finally: return self._gravity @property def trajectory(self) -> Union[DataFrame, None]: if not self._trajectory.empty: return self._trajectory if self.entity.trajectory is None: return self._trajectory try: self._trajectory = HDF5Manager.load_data(self.entity.trajectory, self.hdfpath) except Exception: _log.exception(f'Exception loading trajectory data from HDF') finally: return self._trajectory def dataframe(self) -> DataFrame: if self._dataframe.empty: self._dataframe: DataFrame = concat([self.gravity, self.trajectory], axis=1, sort=True) return self._dataframe def align(self): # pragma: no cover """ TODO: Utility of this is questionable, is it built into transform graphs? """ if self.gravity.empty or self.trajectory.empty: _log.info(f'Gravity or Trajectory is empty, cannot align.') return from dgp.lib.gravity_ingestor import DGS_AT1A_INTERP_FIELDS from dgp.lib.trajectory_ingestor import TRAJECTORY_INTERP_FIELDS fields = DGS_AT1A_INTERP_FIELDS | TRAJECTORY_INTERP_FIELDS n_grav, n_traj = align_frames(self._gravity, self._trajectory, interp_only=fields) self._gravity = n_grav self._trajectory = n_traj _log.info(f'DataFrame aligned.') def add_datafile(self, datafile: DataFile) -> None: if datafile.group is DataType.GRAVITY: self.entity.gravity = datafile self._grav_file.set_datafile(datafile) self._gravity =
DataFrame()
pandas.DataFrame
import gzip import numpy as np import pandas as pd from scipy.sparse import coo_matrix from typing import Optional, Union from ..io import read_lasso from ..obtain_dataset import fm_gene2GO def find_nuclear_genes( path: str = None, save: str = None, gene_num: Union[str, int] = "all" ) -> pd.DataFrame: """ Finding nuclear localized genes in slices based on GO annotations. Parameters ---------- path: `str` (default: `None`) Path to lasso file. save: `str` (default: `None`) Output filename. gene_num: `str` or `list` (default: `'all'`) The number of nuclear localized genes. If gene_num is `'all'`, output all nuclear localized genes found. Returns ------- new_lasso: `pd.DataFrame` """ # load data lasso = read_lasso(path=path) lasso_genes = lasso["geneID"].unique().tolist() # the GO terms for a particular gene list go_data = fm_gene2GO( gene=lasso_genes, gene_identifier="symbol", GO_namespace="cellular_component" ) # go_data.to_excel("E14-16h_a_S09_cellular_component.xlsx", index=False) # find nuclear-localized genes nucleus_info = "chromosome|chromatin|euchromatin|heterochromatin|nuclear|nucleus|nucleoplasm|nucleolus|transcription factor" nucleus_data = go_data[go_data["GO name"].str.contains(nucleus_info)] nucleus_data = nucleus_data[~nucleus_data["GO name"].str.contains("mitochond")] nucleus_genes = nucleus_data["gene symbol"].unique().tolist() # remove pseudo positives nucleus_filter_data = go_data[go_data["gene symbol"].isin(nucleus_genes)] nucleus_filter_groups = nucleus_filter_data.groupby(["gene symbol"])["GO name"] nucleus_filter_genes = [] for i, group in nucleus_filter_groups: tf = group.str.contains(nucleus_info).unique().tolist() if len(tf) == 1 and tf[0] is True: nucleus_filter_genes.append(i) new_lasso = lasso[lasso["geneID"].isin(nucleus_filter_genes)] # determine the final number of genes obtained if gene_num is not "all": genes_exp = ( new_lasso[["geneID", "MIDCounts"]] .groupby(["geneID"])["MIDCounts"] .sum() .to_frame("MIDCounts") .reset_index() ) genes_exp.sort_values(by=["MIDCounts", "geneID"], inplace=True, ascending=False) top_num_genes = genes_exp["geneID"].head(gene_num) new_lasso = new_lasso[new_lasso["geneID"].isin(top_num_genes)] print( f"The number of nuclear localized genes found is: {len(new_lasso['geneID'].unique())}." ) # save if save is not None: new_lasso.to_csv(save, sep="\t", index=False) return new_lasso def mapping2lasso( total_file, nucleus_file, cells_file: str = None, save: Optional[str] = None ) -> pd.DataFrame: """ Map cell type information to the original lasso file. Parameters ---------- total_file: `str` (default: `None`) Lasso file containing all genes. nucleus_file: `str` (default: `None`) Lasso file containing only nuclear localized genes.= cells_file: `str` (default: `None`) Matrix file generated by cell segmentation. save: `str` (default: `None`) Path to save the newly generated lasso file. Returns ------- total_cells: `pd.DataFrame` The columns of the dataframe include 'geneID', 'x', 'y', 'MIDCounts', 'cell'. """ total_lasso = read_lasso(path=total_file) nucleus_lasso = read_lasso(path=nucleus_file) # cells processing if cells_file.endswith(".gz"): with gzip.open(cells_file, "r") as f: mtx = coo_matrix(np.load(f)) else: mtx = coo_matrix(np.load(cells_file)) x = pd.Series(mtx.row) + np.min(nucleus_lasso["x"]) y = pd.Series(mtx.col) + np.min(nucleus_lasso["y"]) value = pd.Series(mtx.data) cells = pd.concat([x, y, value], axis=1) cells.columns = ["x", "y", "cell"] # map to the total lasso file total_cells =
pd.merge(total_lasso, cells, on=["x", "y"], how="inner")
pandas.merge
# ==================== # Necessary packages # ==================== import numpy as np import pandas as pd import os # ============================ # Functions for loading data # ============================ def read_out(DIR_NAME, prefix='Rat'): """ Reads all MedPC .out files from the input directory and saves as .raw.csv file in the same directory. Note: This file does not resave files if they already exist. To rewrite files the existing file must be deleted. Parameters ---------- DIR_NAM : str directory containing .out files prefix : str, optional (default ='Rat') desired ID prefix. (ex. 'Rat' for Rat1, Rat2, Rat3, etc.) Returns ------- This function does not return variables, but instead saves the read data into a new .raw.csv file. """ os.chdir(DIR_NAME) for file in os.listdir(DIR_NAME): if (file.endswith('.out')): columns = _read_names(DIR_NAME, file, prefix) names_idx = [i for i, s in enumerate(columns) if not 'DELETE' in s] names = [columns[i] for i in names_idx] data = _read_data(DIR_NAME, file, names_idx) df = pd.DataFrame(data=data, columns=names) NewCSVname = os.path.splitext(file)[0] + '.raw.csv' if not os.path.isfile(NewCSVname): df.to_csv(NewCSVname, index=False) print('Saved ' + NewCSVname +'!') else: print('"' + NewCSVname + '" already exists. Delete to rewrite file.') print('Finished reading .out files') def read_rawcsv(fname, delete='Y'): """Reads and creates a pandas dataframe from a specified .raw.csv file created by read_out. Can also delete specified columns so that only desired data is loaded. Parameters ---------- fname : str name of the desired file delete : str, optional deletes columns labled 'DELETE' in the .raw.csv file. 'y' for yes, 'n' for no. ('y' by default) Returns ------- rawcsv_df : pandas dataframe dataframe containing .raw.csv data and corresponding IDs """ rawcsv_df = pd.read_csv(fname, sep=',') if delete.lower() in ['y', 'yes']: rawcsv_df.drop(rawcsv_df.filter(regex='DELETE'),1,inplace=True) print('Dropped "DELETE" columns in ' + fname) else: print('Did not drop "DELETE" columns in ' + fname) return rawcsv_df def read_metadata(metadata_dir, sep=','): """Find and load .metadata.csv files from a given directory Parameters ---------- metadata_dir : str the directory where the .metadata.csv file is located sep : str, optional the seperator used to read the csv file (default: ',') Returns ------- metadata : pandas dataframe dataframe containing the respective metadata """ os.chdir(metadata_dir) # change directory for fname in os.listdir(metadata_dir): # search directory if (fname.endswith('.metadata.csv')): # find metadata metadata = pd.read_csv(os.path.join(metadata_dir, fname), sep) # open metadata print('Metadata from ' +fname+ ' successfully loaded') return metadata def _read_names(DIR_NAME, file, prefix): """ Reads the column names from .out files and adds a prefix if none exists Parameters ---------- DIR_NAM : str directory containing .out files file : str .out file to read prefix : str, optional (default ='Rat') desired ID prefix. (ex. 'Rat' for Rat1, Rat2, Rat3, etc.) Returns ------- names : list list of column names """ # read row with names from .out names = pd.read_csv(os.path.join(DIR_NAME, file), engine = 'python', skiprows = 10, nrows = 1, header= 0, sep = 'Subject ID ', skipinitialspace = True) names = names.drop(names.columns[0], axis=1) # drop first blank column names = names.columns.ravel() # remove brackets from numbers # if int change to char and add prefix if names.dtype.type is np.int_: names = np.char.mod('%d', names) names = [prefix + i for i in names] # np array to list and remove whitespace names = names.tolist() names = [x.strip() for x in names] return names def _read_data(DIR_NAME, file, index): """ Reads the data from specified columns in .out files Parameters ---------- DIR_NAM : str directory containing .out files file : str .out file to read index : list indexes of the columns containing behavioral data. (i.e. not 'DELETE' columns) Returns ------- data : array an array (matrix) of threshold data from .out files """ df = pd.read_csv(os.path.join(DIR_NAME, file), delimiter='\t', skiprows = 13, header=None,) df = df.drop(df.columns[0], axis=1) # drop first column (blank) data = df.iloc[:, index].values # only get desired indexes return data # ================================== # Functions for detecting freezing # ================================== def detect_freezing(Threshold_df, threshold = 10): """ Detects freezing using a threshold from raw motion (MedPC Threshold) data. This function loops through the array one row at a time and determines if the values are < 'threshold' for at least one second. A new array of 1s and 0s are created denoting freezing and not freezing, respectively. Note: This code will need to be updated with inputs defining Fs and freezing (ex. immobile for < 1 sec or more/less) to be broadly useful outside the Maren Lab. Parameters ---------- Threshold_df : pandas dataframe dataframe generated from readRaw() threshold : int, optional desired threshold, 10 by default Returns ------- Behav_df : pandas dataframe dataframe containing both freezing (key: 'Freezing') and raw motion (key: 'Threshold') data. Freezing data is an array of 1s and 0s denoting freezing and not-freezing. """ Threshold_values = Threshold_df.values rows = np.size(Threshold_values, 0) columns = np.size(Threshold_values, 1) Freezing_np = np.zeros((rows, columns)) for c in range(columns): for r in range(5, rows): data2check = Threshold_values[r-5:r, c] # 1 second of data to check if all(n <= threshold for n in data2check): Freezing_np[r, c] = 1 Freezing_df = pd.DataFrame(Freezing_np) Corrected_Freezing = _correct_freezing(Freezing_df) Corrected_Freezing.columns = Threshold_df.columns Corrected_Freezing = Corrected_Freezing.multiply(100) Behav_df = pd.concat([Threshold_df, Corrected_Freezing],keys=['Threshold', 'Freezing']) return Behav_df def _correct_freezing(Freezing_df): """ Corrects freezing detected by detectFreezing(), which only defines freezing one sample at a time,and thus cannot account for freezing onset in which 1 second of freezing must be counted. For example, at freezing onset 5 samples (1 sec) must be below below threhsold values, but only detectFreezing() only defines 0.2 sec of freezing at time. So, this function looks for freezing onset and changes that '1' to a '5' to account for this. Note: This code will also need to be updated with Fs to be used outside the Maren Lab. Parameters ---------- Freezing_df : pandas dataframe dataframe generated from detectFreezing() Returns ------- Corrected_Freezing_df : pandas dataframe dataframe containing 0s, 1s, and 5s denoting not-freezing, freezing, and freezing-onset. """ # prep data Freezing_values = Freezing_df.values rows = np.size(Freezing_values,0) columns = np.size(Freezing_values,1) # correct freezing Freezing_final = np.zeros((rows,columns)) for c in range(0,columns): for r in range(4,rows): previous = Freezing_values[r-1,c] current = Freezing_values[r,c] if current == 0: Freezing_final[r, c] = 0 elif current == 1 and previous == 0: Freezing_final[r, c] = 5 elif current == 1 and previous == 1: Freezing_final[r, c] = 1 Corrected_Freezing_df = pd.DataFrame(Freezing_final) return Corrected_Freezing_df # ============================ # Functions for slicing data # ============================ def slicedata(df, n_trials, start_time, length, ITI, fs=5, Behav='Freezing'): """Gets timestamps then slices and averages data accordingly Parameters ---------- df : pandas dataframe dataframe generated from Threshold2Freezing() n_trials : int, optional number of trials start_time : int, optional time of first onset of specified stimulus (CS, US, ISI, etc.) length : int, optional length in seconds of specified stimulus ITI : int, optional lenth in seconds of ITI fs : int, optional sampling frequency (default=5 Hz) Behav : str desired behavioral data ('Freezing' or 'Threshold'; default='Freezing') Returns ------- final_data a pandas dataframe of averaged data slices from the specified stimulus """ # TODO: Need to make this its own function. Would be useful for other things # get timestamps timestamps = np.zeros([n_trials,2],dtype=int) # initialize for trial in range(0,n_trials): # loop through trials timestamps[trial] = [start_time+ITI*trial, start_time+length+ITI*trial] # start, stop timestamps # slice data with timestamps and average final_data = np.array([]) # initialize for (start, stop) in timestamps: # loop through timestamps averaged_trial = df.xs(Behav)[start*fs+1:stop*fs+1].mean().values # slice and average final_data = np.append(final_data, averaged_trial) # append return final_data def get_averagedslices(df,Trials,BL=180,CS=10,US=2,ISI=58,fs=5,Behav='Freezing',Group=[]): """Slices and averages data for baseline and individual stimuli within trials Parameters ---------- df : pandas dataframe dataframe generated from Threshold2Freezing() BL : int, optional length of baseline period in seconds CS : int, optional lengths of CS in seconds US : int, optional length in seconds of US ISI : int, optional lenth in seconds of ISI Trials : int, optional numbers of trials fs : int, optional sampling frequency (default=5 Hz) Behav : str desired behavioral data ('Freezing' or 'Threshold'; default='Freezing') Group: str group metadata to assign. mainly useful for within-subjects data where the same subjects have different experimental conditions. Leave as default if not within-subjects. Returns ------- BL_df a pandas dataframe with the averaged baseline data Trials_df a pandas dataframe with averaged CS, US, and ISI data """ # Baseline ID = df.xs(Behav).columns # get IDs BL_timestamps = [0,BL*fs] # BL timestamps BL_data = df.xs(Behav)[BL_timestamps[0]:BL_timestamps[1]].mean().values # slice and average data dict4pandas = {'ID': ID, 'BL': BL_data} # BL dataframe BL_df = pd.DataFrame(dict4pandas) # Trial prep ID_metadata = np.tile(ID,Trials) # ID metadata Trial_metadata = [ele for ele in range(1,Trials+1) for i in range(len(ID))] # trial metadata length of n_rats ITI = CS+US+ISI # ITI length # CS CS_data = slicedata(df, n_trials=Trials, start_time=BL, # slice data length=CS, ITI=ITI, Behav=Behav) dict4pandas = {'ID': ID_metadata, 'Trial': Trial_metadata, 'CS': CS_data} # CS dataframe CS_df = pd.DataFrame(dict4pandas) # US start_time = BL + CS # start time US_data = slicedata(df, n_trials=Trials, start_time=start_time, # slice data length=US, ITI=ITI, Behav=Behav) dict4pandas = {'ID': ID_metadata, 'Trial': Trial_metadata, 'US': US_data} # US dataframe US_df = pd.DataFrame(dict4pandas) # ISI start_time = BL + CS + US # start time ISI_data = slicedata(df, n_trials=Trials, start_time=start_time, # slice data length = ISI, ITI = ITI, Behav=Behav) dict4pandas = {'ID': ID_metadata, 'Trial': Trial_metadata, 'ISI': ISI_data} # ISI dataframe ISI_df = pd.DataFrame(dict4pandas) # Make Trials df Trials_df = pd.merge(CS_df, US_df, on=['ID', 'Trial'], copy='True') # combine CS and US data Trials_df = pd.merge(Trials_df, ISI_df, on=['ID', 'Trial'], copy='True') # add ISI data # Add Group metadata, if any if any(Group): Group_metadata = [ele for ele in [Group] for i in range(len(ID))] # group metadata dict4pandas = {'ID': ID, 'Group': Group_metadata} # group dataframe Group_df = pd.DataFrame(dict4pandas) # merge group df to others BL_df =
pd.merge(Group_df,BL_df,on='ID',copy='True')
pandas.merge
## == JHU data location == ## path_JHUdata = '../../COVID-19/csse_covid_19_data/csse_covid_19_daily_reports/' ## == province_state translation dictionary == ## stateTranslation = [ # ['Alberta', 'AB'], ['British Columbia', 'BC'], # ['Manitoba', 'MB'], # ['New Brunswick', 'NB'], ['Newfoundland and Labrador', 'NL'], ['Northwest Territories', 'NWT'], # ['Nova Scotia', 'NS'], # ['Nunavut', 'NU'], ['Ontario', 'ON'], ['Prince Edward Island', 'PEI'], ['Quebec', 'QC'], # ['Saskatchewan', 'SK'], # ['Yukon', 'YT'], ] stateDict = {} for el in stateTranslation: stateDict[ el[1] ] = el[0] ## == translate inconsistent provine_state names == ## def translateState(row): state = str(row["Province_State"]).strip() if ("," in state): if state == "Calgary, Alberta" or state == "Edmonton, Alberta": row["Province_State"] = "Alberta" else: stateCode = state[-2:] if stateCode in stateDict: row["Province_State"] = stateDict[stateCode] return row ## == process file == ## def processDate(date): print(date) # read file df = pd.read_csv(path_JHUdata + date + ".csv") # rename column headings for consistency if 'Country/Region' in df: df = df.rename(columns={ 'Country/Region': 'Country_Region', 'Province/State': 'Province_State' }) # remove cruise ship entries df = df[ df['Province_State'].str.contains('Diamond Princess') != True ] df = df[ df['Province_State'].str.contains('Grand Princess') != True ] # translate province_state names df = df.apply( translateState, axis=1 ) # group and sum country data, set province_state as empty countrydata = df.groupby(['Country_Region']).agg('sum').reset_index() countrydata['Province_State'] = "" df = countrydata.sort_values(by='Country_Region') # calculate 'active' cases if not provided if 'Active' not in df: df['Active'] = df['Confirmed'] - df['Recovered'] - df['Deaths'] else: for value in df['Active']: if value <= 0 or value == "": df['Active'] = df['Confirmed'] - df['Recovered'] - df['Deaths'] else: continue # select only columns used for website df = df[ ["Country_Region", "Province_State", "Confirmed", "Recovered", "Active", "Deaths"] ] # set date of current data df["Date"] = datetime.strptime(date, '%m-%d-%Y') return df ## == main process == ## import pandas as pd import os import time from datetime import datetime # start time startTime = time.time() # create output storage variable df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright (c) 2018-2022, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import json import logging from datetime import datetime from enum import Enum from typing import List, Optional, Tuple, Union import pandas as pd from numpy.distutils.misc_util import as_list from wetterdienst.core.scalar.request import ScalarRequestCore from wetterdienst.core.scalar.values import ScalarValuesCore from wetterdienst.metadata.columns import Columns from wetterdienst.metadata.datarange import DataRange from wetterdienst.metadata.kind import Kind from wetterdienst.metadata.period import Period, PeriodType from wetterdienst.metadata.provider import Provider from wetterdienst.metadata.resolution import Resolution, ResolutionType from wetterdienst.metadata.timezone import Timezone from wetterdienst.metadata.unit import OriginUnit, SIUnit from wetterdienst.util.cache import CacheExpiry from wetterdienst.util.network import download_file from wetterdienst.util.parameter import DatasetTreeCore log = logging.getLogger(__file__) class EaHydrologyResolution(Enum): MINUTE_15 = Resolution.MINUTE_15.value HOUR_6 = Resolution.HOUR_6.value DAILY = Resolution.DAILY.value class EaHydrologyParameter(DatasetTreeCore): class MINUTE_15(Enum): FLOW = "flow" GROUNDWATER_LEVEL = "groundwater_level" class HOUR_6(Enum): FLOW = "flow" GROUNDWATER_LEVEL = "groundwater_level" class DAILY(Enum): FLOW = "flow" GROUNDWATER_LEVEL = "groundwater_level" PARAMETER_MAPPING = {"flow": "Water Flow", "groundwater_level": "Groundwater level"} class EaHydrologyUnit(DatasetTreeCore): class MINUTE_15(Enum): FLOW = OriginUnit.CUBIC_METERS_PER_SECOND.value, SIUnit.CUBIC_METERS_PER_SECOND.value GROUNDWATER_LEVEL = OriginUnit.METER.value, SIUnit.METER.value class HOUR_6(Enum): FLOW = OriginUnit.CUBIC_METERS_PER_SECOND.value, SIUnit.CUBIC_METERS_PER_SECOND.value GROUNDWATER_LEVEL = OriginUnit.METER.value, SIUnit.METER.value class DAILY(Enum): FLOW = OriginUnit.CUBIC_METERS_PER_SECOND.value, SIUnit.CUBIC_METERS_PER_SECOND.value GROUNDWATER_LEVEL = OriginUnit.METER.value, SIUnit.METER.value class EaHydrologyPeriod(Enum): HISTORICAL = Period.HISTORICAL.value class EaHydrologyValues(ScalarValuesCore): _base_url = "https://environment.data.gov.uk/hydrology/id/stations/{station_id}.json" @property def _irregular_parameters(self) -> Tuple[str]: return () @property def _string_parameters(self) -> Tuple[str]: return () @property def _date_parameters(self) -> Tuple[str]: return () @property def _data_tz(self) -> Timezone: return Timezone.UK def _collect_station_parameter(self, station_id: str, parameter: Enum, dataset: Enum) -> pd.DataFrame: endpoint = self._base_url.format(station_id=station_id) payload = download_file(endpoint, CacheExpiry.NO_CACHE) measures_list = json.loads(payload.read())["items"] measures_list = (
pd.Series(measures_list)
pandas.Series
import numpy as np import time from tqdm import tqdm import pandas as pd from drawer import NetworkDrawer import cv2 # want to test this hypothesis: # randomly selecting peers is inviable for producing the lowest average + max path length between any two nodes MAX_PEERS = 8 class Peer(object): def __init__(self, index, ttl, bandwidth=8): self.index = index self.peers = [] self.ttl = int(ttl) self.alive = 0 self.bandwidth = max(4, int(bandwidth)) self.team = -1 def random_connect(self, peers_list): if len(self.peers) == 0: # connect first to a random peer free_peers = list( filter( lambda x: x not in self.peers and len(x.peers) < x.bandwidth and x.index != self.index, peers_list, ) ) if len(free_peers): i = np.random.randint(len(free_peers)) # print("rc connect") self.connect(free_peers[i]) if len(self.peers) > 0 and len(self.peers) < self.bandwidth: # now bfs through peer's peers and add more connections queue = self.peers[:] closed = set(self.peers + [self]) while len(queue): v = queue.pop(0) if len(v.peers) < v.bandwidth and v not in closed: # found a free peer! # print("bfs connect") self.connect(v) if len(self.peers) == self.bandwidth: break closed.add(v) queue.extend( list( filter( lambda peer: peer not in closed and peer not in queue, v.peers, ) ) ) for peer in self.peers: assert self in peer.peers def connect(self, peer): assert len(self.peers) < self.bandwidth assert len(peer.peers) < peer.bandwidth assert peer not in self.peers and self not in peer.peers peer.peers.append(self) self.peers.append(peer) def disconnect(self, peer): assert peer in self.peers and self in peer.peers peer.peers.remove(self) self.peers.remove(peer) def step(self, peers_list): self.alive += 1 for peer in self.peers: assert self in peer.peers, f"{self} {peer}" if self.alive > self.ttl: # disconnect from the network for peer in self.peers[:]: self.disconnect(peer) peers_list.remove(self) return if len(self.peers) < self.bandwidth: self.random_connect(peers_list) def bfs(self, target): queue = self.peers[:] closed = set() came_from = {} while len(queue): v = queue.pop(0) if v.index == target.index: # found target path = [v] while v in came_from: v = came_from[v] path.append(v) return path else: closed.add(v) for peer in filter( lambda peer: peer not in closed and peer not in queue, v.peers ): queue.append(peer) came_from[peer] = v def __repr__(self): return f"<Peer {self.index} {self.ttl} {list(map(lambda x : x.index, self.peers))}>" def simulate(n=10000, ttl_mu=20, ttl_sigma=5, neighbours_mu=8, draw=False): network = [] drawer = NetworkDrawer() for i in tqdm(range(n)): # print(f"iter {i}") # print(network) for peer in network: peer.step(network) # print(network) for peer in network: for other in peer.peers: assert other in network if len(network) < 1000: new_peer = Peer( i, np.random.normal(ttl_mu, ttl_sigma), np.random.normal(neighbours_mu, 2), ) network.append(new_peer) new_peer.random_connect(network) if len(new_peer.peers) == 0 and i > 0: # new peer couldn't connect, remove them network.remove(new_peer) # if draw and i % 1000 == 0: # for i in range(1): # drawer.step(network) total_dist = 0 max_dist, min_dist = 0, 0 total_pairs = 0 no_paths = 0 # print(network) for a in network: for b in network: if b.index > a.index: total_pairs += 1 path = a.bfs(b) if path is not None: total_dist += len(path) max_dist = max(max_dist, len(path)) min_dist = min(min_dist, len(path)) else: no_paths += 1 return network, total_pairs, total_dist, max_dist, min_dist, no_paths data = { "ttl_mu": [], "nmax_mu": [], "network": [], "pairs": [], "dist": [], "max_dist": [], "min_dist": [], "no_paths": [], "subsets": [], } for ttl_mu in [20, 50, 100, 200]: for neighbours_mu in [4, 6, 8, 10, 12]: network, pairs, dist, max_dist, min_dist, no_paths = simulate( 2000, ttl_mu=ttl_mu, neighbours_mu=neighbours_mu, draw=True ) data["ttl_mu"].append(ttl_mu) data["nmax_mu"].append(neighbours_mu) data["network"].append(len(network)) data["pairs"].append(pairs) data["dist"].append(dist) data["max_dist"].append(max_dist) data["min_dist"].append(min_dist) data["no_paths"].append(no_paths) drawer = NetworkDrawer() subsets = drawer.connect_subsets(network) data["subsets"].append(subsets) df =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import logging import operator from abc import abstractmethod from enum import Enum from typing import Dict, Generator, List, Tuple, Union import numpy as np import pandas as pd from pint import Quantity from pytz import timezone from tqdm import tqdm from wetterdienst.core.scalar.result import StationsResult, ValuesResult from wetterdienst.metadata.columns import Columns from wetterdienst.metadata.resolution import Resolution from wetterdienst.metadata.timezone import Timezone from wetterdienst.metadata.unit import REGISTRY, OriginUnit, SIUnit from wetterdienst.util.enumeration import parse_enumeration_from_template from wetterdienst.util.logging import TqdmToLogger log = logging.getLogger(__name__) class ScalarValuesCore: """ Core for sources of point data where data is related to a station """ # Fields for type coercion, needed for separation from fields with actual data # that have to be parsed differently when having data in tabular form @property def _meta_fields(self) -> List[str]: """ Metadata fields that are independent of actual values and should be parsed differently :return: list of strings representing the metadata fields/columns """ if not self.stations.stations.tidy: fields = [ Columns.STATION_ID.value, Columns.DATE.value, ] else: fields = [ Columns.STATION_ID.value, Columns.DATASET.value, Columns.PARAMETER.value, Columns.DATE.value, Columns.VALUE.value, Columns.QUALITY.value, ] return fields # Fields for date coercion _date_fields = [Columns.DATE.value, Columns.FROM_DATE.value, Columns.TO_DATE.value] # TODO: add data type (forecast, observation, ...) # @property # @abstractmethod # def _has_quality(self) -> bool: # """Attribute that tells if a weather service has quality, which otherwise will # have to be set to NaN""" # pass @property def data_tz(self) -> timezone: """ Timezone of the published data """ return timezone(self._data_tz.value) @property @abstractmethod def _data_tz(self) -> Timezone: """ Timezone enumeration of published data. """ pass @property @abstractmethod def _irregular_parameters(self) -> Tuple[str]: """Declaration of irregular parameters which will have to be parsed differently then others e.g. when a parameter is a date.""" pass @property @abstractmethod def _integer_parameters(self) -> Tuple[str]: """ Integer parameters that will be parsed to integers. """ pass @property @abstractmethod def _string_parameters(self) -> Tuple[str]: """ String parameters that will be parsed to integers. """ pass @property def _complete_dates(self) -> pd.DatetimeIndex: """ Complete datetime index for the requested start and end date, used for building a complementary pandas DataFrame with the date column on which other DataFrames can be joined on :return: pandas.DatetimeIndex """ start_date, end_date = self.stations.start_date, self.stations.end_date if self.stations.stations.resolution == Resolution.MONTHLY: end_date += pd.Timedelta(days=31) elif self.stations.stations.resolution == Resolution.ANNUAL: end_date += pd.Timedelta(year=366) date_range = pd.date_range( start_date, end_date, freq=self.stations.frequency.value, tz=self.data_tz, ) return date_range @property def _base_df(self) -> pd.DataFrame: """ Base dataframe which is used for creating empty dataframes if no data is found or for merging other dataframes on the full dates :return: pandas DataFrame with a date column with complete dates """ return pd.DataFrame({Columns.DATE.value: self._complete_dates}) def convert_values_to_si(self, df: pd.DataFrame, dataset) -> pd.DataFrame: """ Function to convert values to metric units with help of conversion factors :param df: pandas DataFrame that should be converted to SI units :param dataset: dataset for which the conversion factors are created :return: pandas DataFrame with converted (SI) values """ def _convert_values_to_si(series): """ Helper function to apply conversion factors column wise to a pandas DataFrame :param series: pandas Series that should be converted :return: converted pandas Series """ op, factor = conversion_factors.get(series.name, (None, None)) if not op or not factor: return series return op(series, factor) conversion_factors = self._create_conversion_factors(dataset) df = df.apply(_convert_values_to_si, axis=0) return df def _create_conversion_factors( self, dataset ) -> Dict[str, Tuple[Union[operator.add, operator.mul], float]]: """ Function to create conversion factors based on a given dataset :param dataset: dataset for which conversion factors are created :return: dictionary with conversion factors for given parameter name """ dataset = dataset.name dataset_accessor = self.stations.stations._dataset_accessor if self.stations.stations._unique_dataset: units = self.stations.stations._unit_tree[dataset_accessor] else: units = self.stations.stations._unit_tree[dataset_accessor][dataset] conversion_factors = {} # TODO eventually we may split this into smaller functions for parameter in units: origin_unit, si_unit = parameter.value # Get parameter name parameter = parameter.name if self.stations.stations._unique_dataset: parameter_value = self.stations.stations._dataset_tree[ dataset_accessor ][parameter].value else: parameter_value = self.stations.stations._dataset_tree[ dataset_accessor ][dataset][parameter].value if si_unit == SIUnit.KILOGRAM_PER_SQUARE_METER.value: # Fixed conversion factors to kg / m², as it only applies # for water with density 1 g / cm³ if origin_unit == OriginUnit.MILLIMETER.value: conversion_factors[parameter_value] = (operator.mul, 1) else: raise ValueError( "manually set conversion factor for precipitation unit" ) elif si_unit == SIUnit.DEGREE_KELVIN.value: # Apply offset addition to temperature measurements # Take 0 as this is appropriate for adding on other numbers # (just the difference) degree_offset = Quantity(0, origin_unit).to(si_unit).magnitude conversion_factors[parameter_value] = (operator.add, degree_offset) elif si_unit == SIUnit.PERCENT.value: factor = REGISTRY(str(origin_unit)).to(str(si_unit)).magnitude conversion_factors[parameter_value] = (operator.mul, factor) else: # For multiplicative units we need to use 1 as quantity to apply the # appropriate factor conversion_factors[parameter_value] = ( operator.mul, Quantity(1, origin_unit).to(si_unit).magnitude, ) return conversion_factors def __init__(self, stations: StationsResult) -> None: self.stations = stations @classmethod def from_stations(cls, stations: StationsResult): return cls(stations) def __eq__(self, other): """ Equal method of request object """ return ( self.stations.station_id == other.stations.station_id and self.stations.parameter == other.stations.parameter and self.stations.start_date == other.stations.start_date and self.stations.end_date == other.stations.end_date ) pass def __str__(self): """ Str representation of request object """ # TODO: include source # TODO: include data type station_ids_joined = "& ".join( [str(station_id) for station_id in self.stations.station_id] ) parameters_joined = "& ".join( [ parameter.value for parameter, parameter_set in self.stations.stations.parameter ] ) return ", ".join( [ f"station_ids {station_ids_joined}", f"parameters {parameters_joined}", str(self.stations.start_date), str(self.stations.end_date), ] ) pass def _create_empty_station_parameter_df( self, station_id: str, parameter: Enum, dataset: Enum ) -> pd.DataFrame: """ Function to create an empty DataFrame :param station_id: :param parameter: :return: """ dataset_tree = self.stations.stations._dataset_tree resolution = self.stations.stations.resolution # if parameter is a whole dataset, take every parameter from the dataset instead if parameter == dataset: if self.stations.stations._unique_dataset: parameter = [*dataset_tree[resolution.name]] else: parameter = [*dataset_tree[resolution.name][dataset.name]] if self.stations.stations.tidy: if not self.stations.stations.start_date: return pd.DataFrame(None, columns=self._meta_fields) data = [] for par in pd.Series(parameter): if par.name.startswith("QUALITY"): continue par_df = self._base_df par_df[Columns.PARAMETER.value] = par.value data.append(par_df) df = pd.concat(data) df[Columns.STATION_ID.value] = station_id df[Columns.DATASET.value] = dataset.name df[Columns.VALUE.value] = pd.NA df[Columns.QUALITY.value] = pd.NA return df else: parameter = pd.Series(parameter).map(lambda x: x.value).tolist() # Base columns columns = [*self._meta_fields, *parameter] if self.stations.stations.start_date: return pd.DataFrame(None, columns=columns) df = self._base_df df = df.reindex(columns=columns) df[Columns.STATION_ID.value] = station_id return df def _build_complete_df( self, df: pd.DataFrame, station_id: str, parameter: Enum, dataset: Enum ) -> pd.DataFrame: # For cases where requests are not defined by start and end date but rather by # periods, use the returned df without modifications # We may put a standard date range here if no data is found if not self.stations.start_date: return df if parameter != dataset or not self.stations.stations.tidy: df = pd.merge( left=self._base_df, right=df, left_on=Columns.DATE.value, right_on=Columns.DATE.value, how="left", ) df[Columns.STATION_ID.value] = station_id if self.stations.tidy: df[Columns.PARAMETER.value] = parameter.value df[Columns.PARAMETER.value] = pd.Categorical( df[Columns.PARAMETER.value] ) if dataset: df[Columns.DATASET.value] = dataset.name.lower() df[Columns.DATASET.value] = pd.Categorical( df[Columns.DATASET.value] ) return df else: data = [] for parameter, group in df.groupby(Columns.PARAMETER.value, sort=False): if self.stations.stations._unique_dataset: parameter_ = parse_enumeration_from_template( parameter, self.stations.stations._parameter_base[ self.stations.resolution.name ], ) else: parameter_ = parse_enumeration_from_template( parameter, self.stations.stations._dataset_tree[ self.stations.resolution.name ][dataset.name], ) df = pd.merge( left=self._base_df, right=group, left_on=Columns.DATE.value, right_on=Columns.DATE.value, how="left", ) df[Columns.STATION_ID.value] = station_id df[Columns.PARAMETER.value] = parameter_.value df[Columns.DATASET.value] = dataset.name.lower() df[Columns.DATASET.value] = pd.Categorical(df[Columns.DATASET.value]) data.append(df) return pd.concat(data) def _organize_df_columns(self, df: pd.DataFrame) -> pd.DataFrame: """ Method to reorder index to always have the same order of columns :param df: :return: """ columns = self._meta_fields columns.extend(df.columns.difference(columns, sort=False)) df = df.reindex(columns=columns) return df def query(self) -> Generator[ValuesResult, None, None]: """ Core method for data collection, iterating of station ids and yielding a DataFrame for each station with all found parameters. Takes care of type coercion of data, date filtering and humanizing of parameters. :return: """ for station_id in self.stations.station_id: # TODO: add method to return empty result with correct response string e.g. # station id not available station_data = [] for parameter, dataset in self.stations.parameter: parameter_df = self._collect_station_parameter( station_id, parameter, dataset ) if parameter_df.empty: continue # Merge on full date range if values are found to ensure result # even if no actual values exist self._coerce_date_fields(parameter_df) parameter_df = self._coerce_parameter_types(parameter_df) if self.stations.stations.si_units: parameter_df = self.convert_values_to_si(parameter_df, dataset) if self.stations.stations.tidy: parameter_df = self.tidy_up_df(parameter_df, dataset) if parameter != dataset: parameter_df = parameter_df[ parameter_df[Columns.PARAMETER.value] == parameter.value.lower() ] parameter_df = self._build_complete_df( parameter_df, station_id, parameter, dataset ) parameter_df = self._organize_df_columns(parameter_df) station_data.append(parameter_df) try: station_df = pd.concat(station_data, ignore_index=True) except ValueError: station_df = self._create_empty_station_parameter_df( station_id, parameter ) station_df = self._coerce_meta_fields(station_df) # Filter for dates range if start_date and end_date are defined if not station_df.empty and self.stations.start_date: station_df = station_df[ (station_df[Columns.DATE.value] >= self.stations.start_date) & (station_df[Columns.DATE.value] <= self.stations.end_date) ] station_df = self._coerce_parameter_types(station_df) # Assign meaningful parameter names (humanized). if self.stations.humanize: station_df = self._humanize(station_df) # Empty dataframe should be skipped if station_df.empty: continue # TODO: add more meaningful metadata here yield ValuesResult(stations=self.stations, df=station_df) @abstractmethod def _collect_station_parameter( self, station_id: str, parameter: Enum, dataset: Enum ) -> pd.DataFrame: """ Implementation of data collection for a station id plus parameter from the specified weather service. Takes care of the gathering of the data and putting it in shape, either tabular with one parameter per column or tidied with a set of station id, date, parameter, value and quality in one row. :param station_id: station id for which the data is being collected :param parameter: parameter for which the data is collected :param dataset: dataset for which the data is collected :return: pandas.DataFrame with the data for given station id and parameter """ pass def tidy_up_df(self, df: pd.DataFrame, dataset: Enum) -> pd.DataFrame: """ Function to tidy a DataFrame :param df: :param dataset: :return: """ df = self._tidy_up_df(df, dataset) df[Columns.DATASET.value] = pd.Series( dataset.name.lower(), index=df.index, dtype=str ) df[Columns.VALUE.value] = pd.to_numeric(df[Columns.VALUE.value]).astype(float) if Columns.QUALITY.value not in df: df[Columns.QUALITY.value] = np.nan df[Columns.QUALITY.value] = pd.to_numeric(df[Columns.QUALITY.value]).astype( float ) df.loc[df[Columns.VALUE.value].isna(), Columns.QUALITY.value] = np.NaN return df @abstractmethod def _tidy_up_df(self, df: pd.DataFrame, dataset) -> pd.DataFrame: """ Abstract method to be implemented by services to tidy a DataFrame :param df: :return: """ pass def _coerce_date_fields(self, df: pd.DataFrame) -> pd.DataFrame: """ Function for coercion of possible date fields :param df: :return: """ for column in ( Columns.DATE.value, Columns.FROM_DATE.value, Columns.TO_DATE.value, ): try: df[column] = self._coerce_dates(df[column]) except KeyError: pass return df def _coerce_meta_fields(self, df: pd.DataFrame) -> pd.DataFrame: """ Method that coerces meta fields. Those fields are expected to be found in the DataFrame in a columnar shape. Thore are basically the station id and the date fields. Furthermore if the data is tidied parameter can be found as well as quality. For station id, parameter and quality those columns are additionally coerced to categories to reduce consumption of the DataFrame. :param df: pandas.DataFrame with the "fresh" data :return: pandas.DataFrame with meta fields being coerced """ df[Columns.STATION_ID.value] = self._parse_station_id( df[Columns.STATION_ID.value] ).astype("category") if self.stations.stations.tidy: for column in (Columns.DATASET.value, Columns.PARAMETER.value): df[column] = self._coerce_strings(df[column]).astype("category") df[Columns.VALUE.value] = pd.to_numeric(df[Columns.VALUE.value]).astype( float ) df[Columns.QUALITY.value] = pd.to_numeric(df[Columns.QUALITY.value]).astype( float ) return df def _parse_station_id(self, series: pd.Series) -> pd.Series: """ Dedicated method for parsing station ids, by default uses the same method as parse_strings but could be modified by the implementation class :param series: :return: """ return self.stations.stations._parse_station_id(series) def _coerce_dates(self, series: pd.Series) -> pd.Series: """ Method to parse dates in the pandas.DataFrame. Leverages the data timezone attribute to ensure correct comparison of dates. :param series: :return: """ return pd.to_datetime(series, infer_datetime_format=True).dt.tz_localize( self.data_tz ) @staticmethod def _coerce_integers(series: pd.Series) -> pd.Series: """ Method to parse integers for type coercion. Uses pandas.Int64Dtype() to allow missing values. :param series: :return: """ return ( pd.to_numeric(series, errors="coerce") .astype(pd.Float64Dtype()) .astype(pd.Int64Dtype()) ) @staticmethod def _coerce_strings(series: pd.Series) -> pd.Series: """ Method to parse strings for type coercion. :param series: :return: """ return series.astype(pd.StringDtype()) @staticmethod def _coerce_floats(series: pd.Series) -> pd.Series: """ Method to parse floats for type coercion. :param series: :return: """ return
pd.to_numeric(series, errors="coerce")
pandas.to_numeric
import pandas as pd import bioGRID as bg import traversalHelper as tr import numpy as np import os from collections import defaultdict from statistics import mean from scipy import stats def parse_uniProt_map(uniProtMapF): df = pd.read_csv(uniProtMapF, sep='\t') df.dropna(inplace=True) uniProtMapping = dict(zip([i.split(";")[0] for i in df['Cross-reference (STRING)']], list(df['Gene names (primary )']))) return uniProtMapping def parse_STRING(ppiFile='./data/STRING/4932.protein.links.v11.0.txt' , typeFile='./data/STRING/4932.protein.actions.v11.0.txt' , uniProtMap='./data/UniProt/uniprot-taxonomy_559292_STRING.tab', root='./' , wFile_GGI='./data/parsed/STRING_GGI.pkl', wFile_PPI='./data/parsed/STRING_PPI.pkl'): ppiFile, typeFile, wFile_GGI, wFile_PPI, uniProtMap = root+ppiFile, root+typeFile, root+wFile_GGI, root+wFile_PPI, root+uniProtMap if os.path.exists(wFile_GGI) and os.path.exists(wFile_PPI): return pd.read_pickle(wFile_GGI), pd.read_pickle(wFile_PPI) # Sys name (used by STRING) => gene name (used by this project) reverseGeneMap = parse_uniProt_map(uniProtMap) df_STRING =
pd.read_csv(ppiFile, sep=' ')
pandas.read_csv
import igraph import numpy as np import pandas as pd import geopandas from shapely.geometry import LineString from skimage.graph import MCP_Geometric, MCP from skimage import graph from pyproj import Transformer from scipy import stats def cost_tobler_hiking_function(S,symmetric=True): """ Applies Tobler's Hiking Function to slope data supplied in DEGREES. From Tobler. 1993. Three Presentation on Geographical Analysis and Modeling. Simple Example: C = lcp.cost_tobler_hiking_function(S,symmetric=True) Parameters: - 'S' is an array (any dimension) of slope values in DEGREES. - 'symmetric' flags whether to consider slope values symmetrically. Note that this_end is NOT the same as just taking the positive values. This returns an average of the positive and negative value for the given slope. Returns: - 'C' a cost surface of velocity in km/hr """ # Convert to dz/dx S = np.tan(np.deg2rad(S)) V = 6 * np.exp(-3.5 * np.abs(S + .05)) if symmetric: V2 = 6 * np.exp(-3.5 * np.abs(-S + .05)) V = (V + V2) / 2 return 1 / V def cost_rademaker(S,weight=50,pack_weight=0,terrain_coefficient=1.1,velocity=1.2): """ Applies Rademaker et al's model (2012) to slope values for LCP calculation. Simple Example: C = lcp.cost_rademaker(S,weight=50,pack_weight=0,terrain_coefficient=1.1,velocity=1.2) Parameters: - 'S' is an array (any dimension) of slope values in DEGREES. - 'weight' is weight of traveler is given in kg - 'pack_weight' is cargo weight, given in kg - 'terrain_coefficient' is a value to introduce "friction". Values greater than one have more than 'average' friction. - 'velocity' is mean walking speed in meters per second Returns: - 'C' a cost surface of shape S. """ # Rademaker assumes a grade in percent (0 to 100, rather than 0 to 1): G = 100 * np.arctan(np.deg2rad(S)) W = weight L = pack_weight tc = terrain_coefficient V = velocity # Cost, in MWatts MW = 1.5*W + 2.0 * (W + L) * ((L/W)**2) + tc * (W+L) * (1.5 * V**2 + .35 * V * G) return MW def cost_pingel_exponential(S,scale_factor=9.25): """ Applies the exponental LCP cost function described by Pingel (2010). Simple Example: C = lcp.cost_pingel_exponential(S,scale_factor=9.25) Parameters: - 'S' is an array (any dimension) of slope values in DEGREES. - 'scale_factor' is a value in degrees that generally corresponds to the mean slope (in degrees) of a path network. Larger values represent a larger tolerance for steeper slopes. Smaller values will cause an LCP to avoid steeper slopes. """ EXP = stats.expon.pdf(0,0,scale_factor) / stats.expon.pdf(S,0,scale_factor) return EXP def ve(S,ve=2.3): """ Applies a vertical exaggeration to a slope raster and returns it. Slope raster must be in DEGREES. Simple Example: S_ve = lcp.ve(S,2.3) """ S = np.tan(np.deg2rad(S)) S = np.rad2deg(np.arctan(ve * S)) return S def get_lists(nodes,edges): """ Simple Example: start_list, end_list, ids, start_coords, end_coords = lcp.get_lists(nodes, edges) Internal method to transform nodes and edges into lists of start coords and lists of lists of end coords. Returns: start_list, end_list, ids, start_coords, end_coords """ nodes['coords'] = list(zip(nodes.iloc[:,0], nodes.iloc[:,1])) start_list = edges.iloc[:,0].unique() end_list = [edges.iloc[:,1].loc[edges.iloc[:,0]==item].values for item in start_list] start_coords = [] end_coords = [] ids = [] for i, this_start in enumerate(start_list): these_ends = end_list[i] these_ids = [this_start + '_to_' + te for te in these_ends] these_start_coords = nodes.loc[this_start,'coords'] these_end_coords = nodes.loc[these_ends,'coords'].values start_coords.append(these_start_coords) end_coords.append(these_end_coords) ids.append(these_ids) return start_list, end_list, ids, start_coords, end_coords def direct_routes(nodes,edges): """ Returns a straight-line path between edges. Simple Example: gdf = lcp.direct_routes(nodes, edges) Parameters: - 'nodes' is a Pandas DataFrame where the first column is a unique ID, the second is an x coordinate (e.g., longitude) and the third is a y coordinate (e.g., latitude). - 'edges' is a Pandas DataFrame were the first column is a source ID (matching a node) and the second column is a destination. At the moment, we assume no directionality / edges are symmetric. - 'array' is a numpy array representing the cost surface. - 'meta' is a dictionary, that must contain 'crs' and 'transform' items corresponding to those returned by rasterio. neilpy.imread returns such a dictionary by default. - 'label' is used to identify the type of cost path/surface in the GeoDataFrame output rows. Output: - 'gdf' is a GeoPandas GeoDataFrame with fields 'ids' describing the source and target , 'label' corresponding to the label, and a geometry field containing the path in shapely / WKT format. """ start_list, end_list, ids, start_coords, end_coords = get_lists(nodes,edges) gdf = pd.DataFrame() for i,this_start in enumerate(start_coords): df = pd.DataFrame() these_end_coords = end_coords[i] df['ids'] = ids[i] df['label'] = 'direct' df['geometry'] = [LineString([this_start,this_end]) for this_end in these_end_coords] gdf = gdf.append(df,ignore_index=True) gdf = geopandas.GeoDataFrame(gdf,geometry=gdf['geometry'],crs=4326) return gdf def lcp_coordinate_conversion(start_coords,end_coords,crs,transform): """ Simple Example: network = lcp.create_raster_network(array) Parameters: - 'start_coords' is a list of tuples (lon,lat) - 'end_coords' is a list of lists of tuples. Each list of end points corresponds to a start point, so len(start_coords) must equal len(end_coords), although each list OF end points can be of any length one or greater. - 'crs' is a Coordinate Reference System of the type returned by rasterio (or neilpy). - 'transform' is an Affine transformation matrix as returned by rasterio (or neilpy). Output: - 'converted_start_coords' is a list of tuples of PIXEL coordinates. - 'converted_end_coords' is a list of list of tupes of pixel coordiantes. """ converted_start_coords = [] converted_end_coords = [] for i,this_start_coord in enumerate(start_coords): these_end_coords = end_coords[i] # Convert from lat/lon to map coordinates this_start_coord = coord_transform(*this_start_coord,4326,crs) these_end_coords = [coord_transform(*item,4326,crs) for item in these_end_coords] # Convert from map coordinates to pixel coordinates this_start_coord = (~transform*this_start_coord)[::-1] these_end_coords = [(~transform*item)[::-1] for item in these_end_coords] # Round them to ints this_start_coord = tuple(np.round(this_start_coord).astype(np.uint32)) these_end_coords = [tuple(item) for item in np.round(these_end_coords).astype(np.uint32)] converted_start_coords.append(this_start_coord) converted_end_coords.append(these_end_coords) return converted_start_coords, converted_end_coords def get_areal_routes(nodes,edges,surface,meta,label='areal'): """ Simple Example: gdf = lcp.get_areal_routes(nodes, edges, array, meta, label) Parameters: - 'nodes' is a Pandas DataFrame where the first column is a unique ID, the second is an x coordinate (e.g., longitude) and the third is a y coordinate (e.g., latitude). - 'edges' is a Pandas DataFrame were the first column is a source ID (matching a node) and the second column is a destination. At the moment, we assume no directionality / edges are symmetric. - 'array' is a numpy array representing the cost surface. - 'meta' is a dictionary, that must contain 'crs' and 'transform' items corresponding to those returned by rasterio. neilpy.imread returns such a dictionary by default. - 'label' is used to identify the type of cost path/surface in the GeoDataFrame output rows. Output: - 'gdf' is a GeoPandas GeoDataFrame with fields 'ids' describing the source and target , 'label' corresponding to the label, and a geometry field containing the path in shapely / WKT format. """ gdf = pd.DataFrame() print('Creating surface network for',label) m = MCP_Geometric(surface,fully_connected=True) print('Done creating surface network.') start_list, end_list, ids, start_coords, end_coords = get_lists(nodes,edges) conv_start_coords, conv_end_coords = lcp_coordinate_conversion(start_coords,end_coords,meta['crs'],meta['transform']) for i,this_start_coord in enumerate(conv_start_coords): these_end_coords = conv_end_coords[i] print('Calculating costs and routes.') costs, traceback_array = m.find_costs([this_start_coord],these_end_coords,find_all_ends=True) print('Done calculating costs and routes.') # Pull routes and convert routes = [m.traceback(this_end_coord) for this_end_coord in these_end_coords] geometries= [LineString(np.vstack(meta['transform']*np.fliplr(route).T).T) for route in routes] df = pd.DataFrame() df['ids'] = ids[i] df['label'] = label df['geometry'] = geometries gdf = gdf.append(df,ignore_index=True) gdf = geopandas.GeoDataFrame(gdf,geometry=gdf['geometry'],crs=meta['crs']) return gdf def create_raster_network(X): """ Simple Example: network = lcp.create_raster_network(array) Parameters: - 'array' is a numpy array representing the cost surface. Output: - 'network' is a Pandas DataFrame with fields 'source' and 'target' representing 1D (flattened) indices, source_value and target_value for pixel data, 'distance' which is the pixel distance (1 for orthogonal, 2**.5 for diagonal). These should be used directly by the operator to calculate a 'weight' field before passing to lcp.get_linear_routes() """ m,n = np.shape(X) I = np.reshape(np.arange(np.size(X),dtype=np.int32),np.shape(X)) df = pd.DataFrame() df['source'] = np.hstack((I[1:,1:].flatten(), I[1:,:].flatten(), I[1:,:-1].flatten(), I[:,:-1].flatten())) df['target'] = np.hstack((ashift(I,0)[1:,1:].flatten(), ashift(I,1)[1:,:].flatten(), ashift(I,2)[1:,:-1].flatten(), ashift(I,3)[:,:-1].flatten())) df['source_value'] = X.flatten()[df['source'].values] df['target_value'] = X.flatten()[df['target'].values] df['distance'] = np.hstack((2**.5*np.ones((m-1)*(n-1)), np.ones(n*(m-1)), 2**.5*np.ones((m-1)*(n-1)), np.ones(m*(n-1)))) return df def get_linear_routes(nodes,edges,df,meta,label='linear'): """ Simple Example: network = lcp.create_raster_network(array) network['weight'] = np.abs(network['source_value'] - network['target_value']) / network['distance'] gdf = lcp.get_linear_routes(nodes, edges, network, meta, label) Parameters: - 'nodes' is a Pandas DataFrame where the first column is a unique ID, the second is an x coordinate (e.g., longitude) and the third is a y coordinate (e.g., latitude). - 'edges' is a Pandas DataFrame were the first column is a source ID (matching a node) and the second column is a destination. At the moment, we assume no directionality / edges are symmetric. - 'network' is a Pandas DataFrame created by lcp.create_raster_network(). It MUST include a column called 'weight'. - 'meta' is a dictionary, that must contain 'crs' and 'transform' items corresponding to those returned by rasterio. It must also contain 'height' and 'width' items. neilpy.imread returns such a dictionary by default. - 'label' is used to identify the type of cost path/surface in the GeoDataFrame output rows. Output: - 'gdf' is a GeoPandas GeoDataFrame with fields 'ids' describing the source and target , 'label' corresponding to the label, and a geometry field containing the path in shapely / WKT format. """ img_dim = (meta['height'],meta['width']) G = igraph.Graph() G.add_vertices(img_dim[0] * img_dim[1]) G.add_edges(list(zip(df.source,df.target)),attributes={'weight':df.weight}) del df gdf =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import datetime import numpy as np import os import pandas as pd import pandas.testing as tm from fastparquet import ParquetFile from fastparquet import write, parquet_thrift from fastparquet import writer, encoding from pandas.testing import assert_frame_equal from pandas.api.types import CategoricalDtype import pytest from fastparquet.util import default_mkdirs from .util import s3, tempdir, sql, TEST_DATA from fastparquet import cencoding def test_uvarint(): values = np.random.randint(0, 15000, size=100) buf = np.zeros(30, dtype=np.uint8) o = cencoding.NumpyIO(buf) for v in values: o.seek(0) cencoding.encode_unsigned_varint(v, o) o.seek(0) out = cencoding.read_unsigned_var_int(o) assert v == out def test_bitpack(): for _ in range(10): values = np.random.randint(0, 15000, size=np.random.randint(10, 100), dtype=np.int32) width = cencoding.width_from_max_int(values.max()) buf = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf) cencoding.encode_bitpacked(values, width, o) o.seek(0) head = cencoding.read_unsigned_var_int(o) buf2 = np.zeros(300, dtype=np.int32) out = cencoding.NumpyIO(buf2.view("uint8")) cencoding.read_bitpacked(o, head, width, out) assert (values == buf2[:len(values)]).all() assert buf2[len(values):].sum() == 0 # zero padding assert out.tell() // 8 - len(values) < 8 def test_length(): lengths = np.random.randint(0, 15000, size=100) buf = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf) for l in lengths: o.seek(0) o.write_int(l) o.seek(0) out = buf.view('int32')[0] assert l == out def test_rle_bp(): for _ in range(10): values = np.random.randint(0, 15000, size=np.random.randint(10, 100), dtype=np.int32) buf = np.empty(len(values) + 5, dtype=np.int32) out = cencoding.NumpyIO(buf.view('uint8')) buf2 = np.zeros(900, dtype=np.uint8) o = cencoding.NumpyIO(buf2) width = cencoding.width_from_max_int(values.max()) # without length cencoding.encode_rle_bp(values, width, o) l = o.tell() o.seek(0) cencoding.read_rle_bit_packed_hybrid(o, width, length=l, o=out) assert (buf[:len(values)] == values).all() def test_roundtrip_s3(s3): data = pd.DataFrame({'i32': np.arange(1000, dtype=np.int32), 'i64': np.arange(1000, dtype=np.int64), 'f': np.arange(1000, dtype=np.float64), 'bhello': np.random.choice([b'hello', b'you', b'people'], size=1000).astype("O")}) data['hello'] = data.bhello.str.decode('utf8') data['bcat'] = data.bhello.astype('category') data.loc[100, 'f'] = np.nan data['cat'] = data.hello.astype('category') noop = lambda x: True myopen = s3.open write(TEST_DATA+'/temp_parq', data, file_scheme='hive', row_group_offsets=[0, 500], open_with=myopen, mkdirs=noop) myopen = s3.open pf = ParquetFile(TEST_DATA+'/temp_parq', open_with=myopen) df = pf.to_pandas(categories=['cat', 'bcat']) for col in data: assert (df[col] == data[col])[~df[col].isnull()].all() @pytest.mark.parametrize('scheme', ['simple', 'hive']) @pytest.mark.parametrize('row_groups', [[0], [0, 500]]) @pytest.mark.parametrize('comp', ['SNAPPY', None, 'GZIP']) def test_roundtrip(tempdir, scheme, row_groups, comp): data = pd.DataFrame({'i32': np.arange(1000, dtype=np.int32), 'i64': np.arange(1000, dtype=np.int64), 'u64': np.arange(1000, dtype=np.uint64), 'f': np.arange(1000, dtype=np.float64), 'bhello': np.random.choice([b'hello', b'you', b'people'], size=1000).astype("O")}) data['a'] = np.array([b'a', b'b', b'c', b'd', b'e']*200, dtype="S1") data['aa'] = data['a'].map(lambda x: 2*x).astype("S2") data['hello'] = data.bhello.str.decode('utf8') data['bcat'] = data.bhello.astype('category') data['cat'] = data.hello.astype('category') fname = os.path.join(tempdir, 'test.parquet') write(fname, data, file_scheme=scheme, row_group_offsets=row_groups, compression=comp) r = ParquetFile(fname) assert r.fmd.num_rows == r.count() == 1000 df = r.to_pandas() assert data.cat.dtype == 'category' for col in r.columns: assert (df[col] == data[col]).all() # tests https://github.com/dask/fastparquet/issues/250 assert isinstance(data[col][0], type(df[col][0])) def test_bad_coltype(tempdir): df = pd.DataFrame({'0': [1, 2], (0, 1): [3, 4]}) fn = os.path.join(tempdir, 'temp.parq') with pytest.raises((ValueError, TypeError)) as e: write(fn, df) assert "tuple" in str(e.value) def test_bad_col(tempdir): df = pd.DataFrame({'x': [1, 2]}) fn = os.path.join(tempdir, 'temp.parq') with pytest.raises(ValueError) as e: write(fn, df, has_nulls=['y']) @pytest.mark.parametrize('scheme', ('simple', 'hive')) def test_roundtrip_complex(tempdir, scheme,): import datetime data = pd.DataFrame({'ui32': np.arange(1000, dtype=np.uint32), 'i16': np.arange(1000, dtype=np.int16), 'ui8': np.array([1, 2, 3, 4]*250, dtype=np.uint8), 'f16': np.arange(1000, dtype=np.float16), 'dicts': [{'oi': 'you'}] * 1000, 't': [datetime.datetime.now()] * 1000, 'td': [datetime.timedelta(seconds=1)] * 1000, 'bool': np.random.choice([True, False], size=1000) }) data.loc[100, 't'] = None fname = os.path.join(tempdir, 'test.parquet') write(fname, data, file_scheme=scheme) r = ParquetFile(fname) df = r.to_pandas() for col in r.columns: assert (df[col] == data[col])[~data[col].isnull()].all() @pytest.mark.parametrize('df', [
pd.util.testing.makeMixedDataFrame()
pandas.util.testing.makeMixedDataFrame
## Real Estate price predictor import pandas as pd import numpy as np housing =
pd.read_csv("data.csv")
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, date_range, timedelta_range import pandas._testing as tm class TestTimeSeries: def test_contiguous_boolean_preserve_freq(self): rng = date_range("1/1/2000", "3/1/2000", freq="B") mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] assert expected.freq == rng.freq tm.assert_index_equal(masked, expected) mask[22] = True masked = rng[mask] assert masked.freq is None def test_promote_datetime_date(self): rng = date_range("1/1/2000", periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq("4H", method="ffill") expected = ts[5:].asfreq("4H", method="ffill") tm.assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) tm.assert_numpy_array_equal(result, expected) def test_series_map_box_timedelta(self): # GH 11349 s = Series(
timedelta_range("1 day 1 s", periods=5, freq="h")
pandas.timedelta_range
import os import sys import time import sqlite3 import pyupbit import pandas as pd from PyQt5.QtCore import QThread from pyupbit import WebSocketManager sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from utility.setting import * from utility.static import now, timedelta_sec, strf_time, timedelta_hour, strp_time class TraderUpbit(QThread): def __init__(self, windowQ, coinQ, queryQ, soundQ, cstgQ, teleQ): super().__init__() self.windowQ = windowQ self.coinQ = coinQ self.queryQ = queryQ self.soundQ = soundQ self.cstgQ = cstgQ self.teleQ = teleQ self.upbit = None # 매도수 주문 및 체결 확인용 객체 self.buy_uuid = None # 매수 주문 저장용 list: [티커명, uuid] self.sell_uuid = None # 매도 주문 저장용 list: [티커명, uuid] self.websocketQ = None # 실시간데이터 수신용 웹소켓큐 self.df_cj = pd.DataFrame(columns=columns_cj) # 체결목록 self.df_jg = pd.DataFrame(columns=columns_jg) # 잔고목록 self.df_tj = pd.DataFrame(columns=columns_tj) # 잔고평가 self.df_td = pd.DataFrame(columns=columns_td) # 거래목록 self.df_tt = pd.DataFrame(columns=columns_tt) # 실현손익 self.str_today = strf_time('%Y%m%d', timedelta_hour(-9)) self.dict_jcdt = {} # 종목별 체결시간 저장용 self.dict_intg = { '예수금': 0, '종목당투자금': 0, # 종목당 투자금은 int(예수금 / 최대매수종목수)로 계산 '최대매수종목수': 10, '업비트수수료': 0. # 0.5% 일경우 0.005로 입력 } self.dict_bool = { '모의투자': True, '알림소리': True } self.dict_time = { '매수체결확인': now(), # 1초 마다 매수 체결 확인용 '매도체결확인': now(), # 1초 마다 매도 체결 확인용 '거래정보': now() } def run(self): self.LoadDatabase() self.GetKey() self.GetBalances() self.EventLoop() def LoadDatabase(self): """ 프로그램 구동 시 당일 체결목록, 당일 거래목록, 잔고목록을 불러온다. 체결과 거래목록은 바로 갱신하고 잔고목록은 예수금을 불러온 이후 갱신한다. """ con = sqlite3.connect(db_tradelist) df = pd.read_sql(f"SELECT * FROM chegeollist WHERE 체결시간 LIKE '{self.str_today}%'", con) self.df_cj = df.set_index('index').sort_values(by=['체결시간'], ascending=False) df =
pd.read_sql(f'SELECT * FROM jangolist', con)
pandas.read_sql
""" This file is inspired by the work of the third place winner of the Rossman competition on Kaggle as well as this notebook by fast.ai: https://github.com/fastai/fastai/blob/master/courses/dl1/lesson3-rossman.ipynb The resulting csv of this notebook can be submitted on this page: https://www.kaggle.com/c/rossmann-store-sales The private leaderboard is the one to watch for the scoring """ import os import pandas as pd from multiprocessing import cpu_count import numpy as np import torch.nn.functional as F import isoweek import torch.optim as optim from tqdm import tqdm import datetime from sklearn.preprocessing import StandardScaler from torchlite.torch.learner import Learner from torchlite.torch.learner.cores import ClassifierCore import torchlite.torch.metrics as metrics from torchlite.data.fetcher import WebFetcher import torchlite.torch.shortcuts as shortcuts import torchlite.pandas.date as edate from torchlite.torch.train_callbacks import CosineAnnealingCallback from torchlite.pandas.tabular_encoder import TreeEncoder import torchlite.pandas.merger as tmerger import torchlite.pandas.splitter as tsplitter def to_csv(test_file, output_file, identifier_field, predicted_field, predictions, read_format='csv'): df = None if read_format == 'csv': df =
pd.read_csv(test_file)
pandas.read_csv
from __future__ import division from __future__ import print_function import functools import os import pickle import re import sys import time import warnings import nltk import numpy as np import pandas as pd from dostoevsky.models import FastTextSocialNetworkModel from dostoevsky.tokenization import RegexTokenizer from gensim.models import KeyedVectors from gensim.models import Word2Vec from nltk.translate import bleu_score, chrf_score from scipy import spatial from sklearn.decomposition import TruncatedSVD from sklearn.metrics.pairwise import paired_cosine_distances from sklearn.metrics.pairwise import paired_euclidean_distances from utils.features_processor_variables import MORPH_FEATS, FPOS_COMBINATIONS, count_words_x, \ count_words_y, pairs_words, relations_related from utils.synonyms_vocabulary import synonyms_vocabulary warnings.filterwarnings('ignore') import razdel def tokenize(text): result = ' '.join([tok.text for tok in razdel.tokenize(text)]) return result class FeaturesProcessor: CATEGORY = 'category_id' def __init__(self, model_dir_path: str, verbose=0, use_markers=True, use_morphology=True, embed_model_stopwords=True, use_w2v=True, use_sentiment=True): """ :param str model_dir_path: path with all the models :param int verbose: 0 for no logging, 1 for time counts logging and 2 for all warnings :param bool embed_model_stopwords: do count stopwords during w2v vectorization :param use_w2v: do w2v vectorization :param use_sentiment: do sentiment extraction """ self._model_dir_path = model_dir_path self._verbose = verbose self._use_markers = use_markers self._use_morphology = use_morphology self._embed_model_stopwords = embed_model_stopwords self._use_w2v = use_w2v self._use_sentiment = use_sentiment if self._verbose: print("Processor initialization...\t", end="", flush=True) self.relations_related = relations_related self.stop_words = nltk.corpus.stopwords.words('russian') self.count_words_x = count_words_x self.count_words_y = count_words_y self.pairs_words = pairs_words self.vectorizer = pickle.load(open(os.path.join(model_dir_path, 'tf_idf', 'pipeline.pkl'), 'rb')) # preprocessing functions self._uppercased = lambda snippet, length: sum( [word[0].isupper() if len(word) > 0 else False for word in snippet.split()]) / length self._start_with_uppercase = lambda snippet, length: sum( [word[0].isupper() if len(word) > 0 else False for word in snippet.split(' ')]) / length if self._use_w2v: self.embed_model_path = os.path.join(model_dir_path, 'w2v', 'default', 'model.vec') self._synonyms_vocabulary = synonyms_vocabulary # embeddings if self.embed_model_path[-4:] in ['.vec', '.bin']: self.word2vec_model = KeyedVectors.load_word2vec_format(self.embed_model_path, binary=self.embed_model_path[-4:] == '.bin') else: self.word2vec_model = Word2Vec.load(self.embed_model_path) test_word = ['дерево', 'NOUN'] try: self.word2vec_vector_length = len(self.word2vec_model.wv.get_vector(test_word[0])) self.word2vec_tag_required = False except KeyError: self.word2vec_vector_length = len(self.word2vec_model.wv.get_vector('_'.join(test_word))) self.word2vec_tag_required = True self.word2vec_stopwords = embed_model_stopwords self._remove_stop_words = lambda lemmatized_snippet: [word for word in lemmatized_snippet if word not in self.stop_words] self.fpos_combinations = FPOS_COMBINATIONS if self._use_sentiment: self.sentiment_model = FastTextSocialNetworkModel(tokenizer=RegexTokenizer()) # self._context_length = 3 if self._verbose: print('[DONE]') def _find_y(self, snippet_x, snippet_y, loc_x): result = self.annot_text.find(snippet_y, loc_x + len(snippet_x) - 1) if result < 1: result = self.annot_text.find(snippet_y, loc_x + 1) if result < 1: result = loc_x + 1 return result def __call__(self, df_, annot_text, annot_tokens, annot_sentences, annot_lemma, annot_morph, annot_postag, annot_syntax_dep_tree): df = df_[:] df.snippet_x = df.snippet_x.replace('\n', ' ', regex=True).replace(' ', ' ', regex=True) df.snippet_x = df.snippet_x.map(tokenize) df.snippet_y = df.snippet_y.replace('\n', ' ', regex=True).replace(' ', ' ', regex=True) df.snippet_y = df.snippet_y.map(tokenize) # self.annot_text = annot_text.replace('\n', ' ').replace(' ', ' ') self.annot_text = tokenize(annot_text) self.annot_tokens = annot_tokens self.annot_sentences = annot_sentences self.annot_lemma = annot_lemma self.annot_morph = annot_morph self.annot_postag = annot_postag self.annot_syntax_dep_tree = annot_syntax_dep_tree t, t_final = None, None if self._verbose: t = time.time() t_final = t print('1\t', end="", flush=True) df['is_broken'] = False # map discourse units to annotations if not 'loc_x' in df.keys(): df['loc_x'] = df.snippet_x.map(self.annot_text.find) if not 'loc_y' in df.keys(): df['loc_y'] = df.apply(lambda row: self._find_y(row.snippet_x, row.snippet_y, row.loc_x - 1), axis=1) df['token_begin_x'] = df.loc_x.map(self.locate_token) df['token_begin_y'] = df.loc_y.map(self.locate_token) try: df['token_end_y'] = df.apply(lambda row: self.locate_token(row.loc_y + len(row.snippet_y)), axis=1) # -1 df['token_end_y'] = df['token_end_y'] + (df['token_end_y'] == df['token_begin_y']) * 1 except: if self._verbose == 2: print(f'Unable to locate second snippet >>> {(df.snippet_x.values, df.snippet_y.values)}', file=sys.stderr) print(self.annot_text, file=sys.stderr) df['tokens_x'] = df.snippet_x.map(lambda row: row.split()) df['tokens_y'] = df.snippet_y.map(lambda row: row.split()) # df['left_context'] = ['_END_'] * self._context_length # df['right_context'] = ['_END_'] * self._context_length df['same_sentence'] = 0 df['is_broken'] = True return df # length of tokens sequence df['len_w_x'] = df['token_begin_y'] - df['token_begin_x'] df['len_w_y'] = df['token_end_y'] - df['token_begin_y'] # +1 df['snippet_x_locs'] = df.apply(lambda row: [[pair for pair in [self.token_to_sent_word(token) for token in range(row.token_begin_x, row.token_begin_y)]]], axis=1) df['snippet_x_locs'] = df.snippet_x_locs.map(lambda row: row[0]) # print(df[['snippet_x', 'snippet_y', 'snippet_x_locs']].values) broken_pair = df[df.snippet_x_locs.map(len) < 1] if not broken_pair.empty: print( f"Unable to locate first snippet >>> {df[df.snippet_x_locs.map(len) < 1][['snippet_x', 'snippet_y', 'token_begin_x', 'token_begin_y', 'loc_x', 'loc_y']].values}", file=sys.stderr) print(self.annot_text, file=sys.stderr) df = df[df.snippet_x_locs.map(len) > 0] # print(df[['snippet_x', 'snippet_y', 'token_begin_y', 'token_end_y']]) df['snippet_y_locs'] = df.apply(lambda row: [ [pair for pair in [self.token_to_sent_word(token) for token in range(row.token_begin_y, row.token_end_y)]]], axis=1) df['snippet_y_locs'] = df.snippet_y_locs.map(lambda row: row[0]) broken_pair = df[df.snippet_y_locs.map(len) < 1] if not broken_pair.empty: print( f"Unable to locate second snippet >>> {df[df.snippet_y_locs.map(len) < 1][['snippet_x', 'snippet_y', 'token_begin_x', 'token_begin_y', 'token_end_y', 'loc_x', 'loc_y']].values}", file=sys.stderr) print(self.annot_text, file=sys.stderr) df2 = df[df.snippet_y_locs.map(len) < 1] _df2 = pd.DataFrame({ 'snippet_x': df2['snippet_y'].values, 'snippet_y': df2['snippet_x'].values, 'loc_y': df2['loc_x'].values, 'token_begin_y': df2['token_begin_x'].values, }) df2 = _df2[:] df2['loc_x'] = df2.apply(lambda row: self.annot_text.find(row.snippet_x, row.loc_y - 3), axis=1) df2['token_begin_x'] = df2.loc_x.map(self.locate_token) # df2['loc_y'] = df2.apply(lambda row: self._find_y(row.snippet_x, row.snippet_y, row.loc_x), axis=1) df2['token_end_y'] = df2.apply(lambda row: self.locate_token(row.loc_y + len(row.snippet_y)), # + 1, axis=1) # -1 # df2['token_begin_x'] = df2['token_begin_y'] # df2['token_begin_y'] = df2.loc_y.map(self.locate_token) df2['len_w_x'] = df2['token_begin_y'] - df2['token_begin_x'] df2['len_w_y'] = df2['token_end_y'] - df2['token_begin_y'] # +1 df2['snippet_x_locs'] = df2.apply( lambda row: [[pair for pair in [self.token_to_sent_word(token) for token in range(row.token_begin_x, row.token_begin_y)]]], axis=1) df2['snippet_x_locs'] = df2.snippet_x_locs.map(lambda row: row[0]) df2['snippet_y_locs'] = df2.apply( lambda row: [[pair for pair in [self.token_to_sent_word(token) for token in range(row.token_begin_y, row.token_end_y)]]], axis=1) df2['snippet_y_locs'] = df2.snippet_y_locs.map(lambda row: row[0]) broken_pair = df2[df2.snippet_y_locs.map(len) < 1] if not broken_pair.empty: print( f"Unable to locate second snippet AGAIN >>> {df2[df2.snippet_y_locs.map(len) < 1][['snippet_x', 'snippet_y', 'token_begin_x', 'token_begin_y', 'token_end_y', 'loc_x', 'loc_y']].values}", file=sys.stderr) df = df[df.snippet_y_locs.map(len) > 0] df2 = df2[df2.snippet_x_locs.map(len) > 0] df = pd.concat([df, df2]) # print(df[['snippet_x', 'snippet_y', 'snippet_y_locs', 'loc_x', 'loc_y']].values) df.drop(columns=['loc_x', 'loc_y'], inplace=True) if self._verbose: print(time.time() - t) t = time.time() print('2\t', end="", flush=True) # define a number of sentences and whether x and y are in the same sentence df['sentence_begin_x'] = df.snippet_x_locs.map(lambda row: row[0][0]) df['sentence_begin_y'] = df.snippet_y_locs.map(lambda row: row[0][0]) df['sentence_end_y'] = df.snippet_y_locs.map(lambda row: row[-1][0]) df['number_sents_x'] = (df['sentence_begin_y'] - df['sentence_begin_x']) | 1 df['number_sents_y'] = (df['sentence_end_y'] - df['sentence_begin_y']) | 1 df['same_sentence'] = (df['sentence_begin_x'] == df['sentence_begin_y']).astype(int) df['same_paragraph'] = df.apply( lambda row: annot_text.find('\n', row.sentence_begin_x, row.sentence_end_y) != -1, axis=1).astype(int) df['same_paragraph'] = df['same_sentence'] | df['same_paragraph'] # find the common syntax root of x and y df['common_root'] = df.apply(lambda row: [self.locate_root(row)], axis=1) # find its relative position in text # df['common_root_position'] = df.common_root.map(lambda row: self.map_to_token(row[0])) / len(annot_tokens) # define its fPOS # df['common_root_fpos'] = df.common_root.map(lambda row: self.get_postag(row)[0]) # 1 if it is located in y df['root_in_y'] = df.apply( lambda row: self.map_to_token(row.common_root[0]) > row.token_begin_y, axis=1).astype(int) df.drop(columns=['common_root'], inplace=True) if self._verbose: print(time.time() - t) t = time.time() print('3\t', end="", flush=True) # find certain markers for various relations if self._use_markers: for relation in self.relations_related: df[relation + '_count' + '_x'] = df.snippet_x.map(lambda row: self._relation_score(relation, row)) df[relation + '_count' + '_y'] = df.snippet_y.map(lambda row: self._relation_score(relation, row)) if self._verbose: print(time.time() - t) t = time.time() print('4\t', end="", flush=True) # get tokens df['tokens_x'] = df.apply(lambda row: self.get_tokens(row.token_begin_x, row.token_begin_y), axis=1) df['tokens_x'] = df.apply(lambda row: row.tokens_x if len(row.tokens_x) > 0 else row.snippet_x.split(), axis=1) df['tokens_y'] = df.apply(lambda row: self.get_tokens(row.token_begin_y, row.token_end_y - 1), axis=1) df['tokens_y'] = df.apply(lambda row: row.tokens_y if len(row.tokens_y) > 0 else row.snippet_y.split(), axis=1) # get lemmas df['lemmas_x'] = df.snippet_x_locs.map(self.get_lemma) df['lemmas_y'] = df.snippet_y_locs.map(self.get_lemma) if self._verbose: print(time.time() - t) t = time.time() print('5\t', end="", flush=True) # ratio of uppercased words df['upper_x'] = df.tokens_x.map(lambda row: sum(token.isupper() for token in row) / (len(row) + 1e-5)) df['upper_y'] = df.tokens_y.map(lambda row: sum(token.isupper() for token in row) / (len(row) + 1e-5)) # ratio of the words starting with upper case df['st_up_x'] = df.tokens_x.map(lambda row: sum(token[0].isupper() for token in row) / (len(row) + 1e-5)) df['st_up_y'] = df.tokens_y.map(lambda row: sum(token[0].isupper() for token in row) / (len(row) + 1e-5)) # whether DU starts with upper case df['du_st_up_x'] = df.tokens_x.map(lambda row: row[0][0].isupper()).astype(int) df['du_st_up_y'] = df.tokens_y.map(lambda row: row[0][0].isupper()).astype(int) if self._verbose: print(time.time() - t) t = time.time() print('6\t', end="", flush=True) # get morphology if self._use_morphology: df['morph_x'] = df.snippet_x_locs.map(self.get_morph) df['morph_y'] = df.snippet_y_locs.map(self.get_morph) # count presence and/or quantity of various language features in the whole DUs and at the beginning/end of them df = df.apply(lambda row: self._linguistic_features(row, tags=MORPH_FEATS), axis=1) df = df.apply(lambda row: self._first_and_last_pair(row), axis=1) if self._verbose: print(time.time() - t) t = time.time() print('7\t', end="", flush=True) # count various vectors similarity metrics for morphology if self._use_morphology: linknames_for_snippet_x = df[[name + '_x' for name in MORPH_FEATS]] linknames_for_snippet_y = df[[name + '_y' for name in MORPH_FEATS]] df.reset_index(inplace=True) df['morph_vec_x'] = pd.Series(self.columns_to_vectors_(linknames_for_snippet_x)) df['morph_vec_y'] = pd.Series(self.columns_to_vectors_(linknames_for_snippet_y)) df['morph_correlation'] = df[['morph_vec_x', 'morph_vec_y']].apply( lambda row: spatial.distance.correlation(*row), axis=1) df['morph_hamming'] = df[['morph_vec_x', 'morph_vec_y']].apply(lambda row: spatial.distance.hamming(*row), axis=1) df['morph_matching'] = df[['morph_vec_x', 'morph_vec_y']].apply( lambda row: self.get_match_between_vectors_(*row), axis=1) df.set_index('index', drop=True, inplace=True) df = df.drop(columns=['morph_vec_x', 'morph_vec_y']) if self._verbose: print(time.time() - t) t = time.time() print('8\t', end="", flush=True) # detect discourse markers if self._use_markers: for word in self.count_words_x: df[word + '_count' + '_x'] = df.snippet_x.map(lambda row: self.count_marker_(word, row)) for word in self.count_words_y: df[word + '_count' + '_y'] = df.snippet_y.map(lambda row: self.count_marker_(word, row)) # count stop words in the texts df['stopwords_x'] = df.lemmas_x.map(self._count_stop_words) df['stopwords_y'] = df.lemmas_y.map(self._count_stop_words) if self._verbose: print(time.time() - t) t = time.time() print('9\t', end="", flush=True) # dummy function needed for self.vectorizer (do NOT remove) def dummy(x): return x df.reset_index(drop=True, inplace=True) tf_idf_x = self.vectorizer.transform(df['tokens_x'].map(lambda row: [_token.lower() for _token in row])) tf_idf_y = self.vectorizer.transform(df['tokens_y'].map(lambda row: [_token.lower() for _token in row])) df['cos_tf_idf_dist'] = paired_cosine_distances(tf_idf_x, tf_idf_y) df['ang_cos_tf_idf_sim'] = 1. - np.arccos(df['cos_tf_idf_dist']) * 2. / np.pi tf_idf_x = pd.DataFrame(tf_idf_x).add_prefix('tf_idf_x_') tf_idf_y = pd.DataFrame(tf_idf_y).add_prefix('tf_idf_y_') df =
pd.concat([df, tf_idf_x, tf_idf_y], axis=1)
pandas.concat
import numpy as np import math import pandas as pd import requests import us from adjustText import adjust_text from matplotlib import pyplot as plt # Calculate studentized residuals - for detecting outliers def internally_studentized_residual(X, Y): """ https://stackoverflow.com/a/57155553/12366110 """ X = np.array(X, dtype=float) Y = np.array(Y, dtype=float) mean_X = np.mean(X) mean_Y = np.mean(Y) n = len(X) diff_mean_sqr = np.dot((X - mean_X), (X - mean_X)) beta1 = np.dot((X - mean_X), (Y - mean_Y)) / diff_mean_sqr beta0 = mean_Y - beta1 * mean_X y_hat = beta0 + beta1 * X residuals = Y - y_hat h_ii = (X - mean_X) ** 2 / diff_mean_sqr + (1 / n) Var_e = math.sqrt(sum((Y - y_hat) ** 2) / (n - 2)) SE_regression = Var_e * ((1 - h_ii) ** 0.5) studentized_residuals = residuals / SE_regression return studentized_residuals # ----- Scraping ----- # Get 2020 per-state presidential vote counts from Dave Leip's Election Atlas url = "https://uselectionatlas.org/RESULTS/data.php?year=2020&datatype=national&def=1&f=1&off=0&elect=0" header = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.183 Safari/537.36", "X-Requested-With": "XMLHttpRequest", } r = requests.get(url, headers=header) dfs_2020 = pd.read_html(r.text) # Truncate data to the 50 states (and D.C.) df_2020 = dfs_2020[2][1:52][["State", "Biden.1", "Trump.1"]] df_2020.columns = ["State", "2020 D", "2020 R"] # Repeat for 2016 url = "https://uselectionatlas.org/RESULTS/data.php?year=2016&datatype=national&def=1&f=1&off=0&elect=0" r = requests.get(url, headers=header) dfs_2016 = pd.read_html(r.text) df_2016 = dfs_2016[2][1:52][["State", "Clinton.1", "Trump.1"]] df_2016.columns = ["State", "2016 D", "2016 R"] # Get urbanization indexes from 538 article url = "https://fivethirtyeight.com/features/how-urban-or-rural-is-your-state-and-what-does-that-mean-for-the-2020-election/" r = requests.get(url, headers=header) dfs_538 = pd.read_html(r.text) urbanization_dfs = [ dfs_538[0][["State", "Urbanization Index"]], dfs_538[0][["State.1", "Urbanization Index.1"]], ] for df in urbanization_dfs: df.columns = ["State", "Urbanization Index"] urbanization_df = pd.concat(urbanization_dfs) # Merge dataframes, we lose D.C. as 538 doesn't provide an urbanization index df = pd.merge(df_2016, df_2020, on="State") df =
pd.merge(urbanization_df, df, on="State", how="inner")
pandas.merge
import pandas as pd from firebase import firebase as frb import json import os from dotenv import load_dotenv from datetime import datetime, date from time import gmtime, time, strftime, sleep from pytz import timezone import schedule from tzlocal import get_localzone load_dotenv() columns = ['Time', 'Price', 'Net Change', 'Sell', 'Buy', 'Trading Volume'] kospi_columns = ['Time', 'Price', 'Net Change', 'Trading Volume', 'Dollar Volume'] exg_columns = ['Inquiry', 'Standard Rate', 'Net Change', 'Cash Buy', 'Cash Sell'] def crawl_intraday_data(code, time): intra_df = pd.DataFrame() for i in range(1, 41): page_df = pd.read_html(os.getenv("INTRADAY_DATA_SOURCE_ADDRESS").format(code=code, time=time, page=i))[0] intra_df = intra_df.append(page_df) intra_df.dropna(inplace=True) intra_df.drop(intra_df.columns[6], axis=1, inplace=True) intra_df.reset_index(inplace=True, drop=True) intra_df.columns = columns yesterday_df = pd.read_html(os.getenv("DAILY_DATA_SOURCE_ADDRESS").format(code=code))[0] yesterday_df.dropna(inplace=True) price_yesterday = yesterday_df[yesterday_df.columns[1]].iloc[1] intra_df['Net Change'] = intra_df['Price'] - price_yesterday return intra_df def save_intraday_data(code, date, df): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) df.apply(lambda r: firebase.post('/stock/{code}/{date}'.format(code=code, date=date), json.loads(r.to_json())), axis=1) def retrieve_intraday_data(code, date): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) data = firebase.get('/stock/{code}/{date}'.format(code=code, date=date), None) result = pd.DataFrame.from_dict(data, orient='index') result = result[columns] result.reset_index(inplace=True, drop=True) return result def crawl_intraday_kospi_data(time): kospi_df = pd.DataFrame() for i in range(1, 3): page_df = pd.read_html(os.getenv("INTRADAY_KOSPI_SOURCE_ADDRESS").format(time=time, page=i))[0] kospi_df = kospi_df.append(page_df) kospi_df.dropna(inplace=True) kospi_df.drop(kospi_df.columns[3], axis=1, inplace=True) kospi_df.columns = kospi_columns yesterday_df = pd.read_html(os.getenv("DAILY_KOSPI_SOURCE_ADDRESS"))[0] yesterday_df.dropna(inplace=True) price_yesterday = yesterday_df[yesterday_df.columns[1]].iloc[1] kospi_df['Net Change'] = kospi_df['Price'] - price_yesterday kospi_df.reset_index(inplace=True, drop=True) return kospi_df def save_intraday_kospi_data(date, df): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) df.apply(lambda r: firebase.post('/stock/kospi/{date}'.format(date=date), json.loads(r.to_json())), axis=1) def retrieve_intraday_kospi_data(date): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) data = firebase.get('/stock/kospi/{date}'.format(date=date), None) result = pd.DataFrame.from_dict(data, orient='index') result = result[kospi_columns] result.reset_index(inplace=True, drop=True) return result def crawl_exchange_rate(): exg_df = pd.DataFrame() for i in range(1, 41): page_df = pd.read_html(os.getenv("EXCHANGE_RATE_DATA_SOURCE_ADDRESS").format(page=i))[0] page_df.drop(page_df.columns[4:8], axis=1, inplace=True) page_df.columns = exg_columns exg_df = exg_df.append(page_df) exg_df.sort_values(exg_df.columns[0], inplace=True) exg_df['Inquiry'] =
pd.to_numeric(exg_df['Inquiry'].str[:-1])
pandas.to_numeric
# -- # Load deps import keras import pandas as pd import urllib2 from hashlib import md5 from bs4 import BeautifulSoup from pprint import pprint from matplotlib import pyplot as plt import sys sys.path.append('/Users/BenJohnson/projects/what-is-this/wit/') from wit import *
pd.set_option('display.max_rows', 50)
pandas.set_option
# Copyright 2019 Verily Life Sciences LLC # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. import unittest from typing import List, Tuple, Type, Union # noqa: F401 import pandas as pd from ddt import data, ddt, unpack from purplequery.bq_abstract_syntax_tree import (EMPTY_NODE, AbstractSyntaxTreeNode, # noqa: F401 DatasetTableContext, EvaluationContext, _EmptyNode) from purplequery.bq_types import BQScalarType, TypedDataFrame from purplequery.dataframe_node import TableReference from purplequery.grammar import data_source from purplequery.join import ConditionsType # noqa: F401 from purplequery.join import DataSource, Join from purplequery.query_helper import apply_rule from purplequery.tokenizer import tokenize @ddt class JoinTest(unittest.TestCase): def setUp(self): # type: () -> None self.table_context = DatasetTableContext({ 'my_project': { 'my_dataset': { 'my_table': TypedDataFrame( pd.DataFrame([[1], [2]], columns=['a']), types=[BQScalarType.INTEGER] ), 'my_table2': TypedDataFrame( pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']), types=[BQScalarType.INTEGER, BQScalarType.INTEGER] ) } } }) def test_data_source(self): data_source = DataSource((TableReference(('my_project', 'my_dataset', 'my_table')), EMPTY_NODE), []) data_source_context = data_source.create_context(self.table_context) self.assertEqual(data_source_context.table.to_list_of_lists(), [[1], [2]]) self.assertEqual(list(data_source_context.table.dataframe), ['my_table.a']) self.assertEqual(data_source_context.table.types, [BQScalarType.INTEGER]) @data( dict( join_type='JOIN', table1=[[1, 9]], table2=[[1, 2], [3, 4]], result=[[1, 9, 1, 2]]), dict( join_type='INNER JOIN', table1=[[1, 9]], table2=[[1, 2], [3, 4]], result=[[1, 9, 1, 2]]), dict( join_type='left join', table1=[[1, 4], [2, 5], [3, 6]], table2=[[1, 3], [2, 4]], result=[[1, 4, 1, 3], [2, 5, 2, 4], [3, 6, None, None]]), dict( join_type='LEFT OUTER JOIN', table1=[[1, 4], [2, 5], [3, 6]], table2=[[1, 3], [2, 4]], result=[[1, 4, 1, 3], [2, 5, 2, 4], [3, 6, None, None]]), dict( join_type='RIGHT JOIN', table1=[[1, 5]], table2=[[1, 2], [3, 4]], result=[[1, 5, 1, 2], [None, None, 3, 4]]), dict( join_type='RIGHT OUTER JOIN', table1=[[1, 5]], table2=[[1, 2], [3, 4]], result=[[1, 5, 1, 2], [None, None, 3, 4]]), dict( join_type='FULL JOIN', table1=[[1, 3], [2, 5]], table2=[[1, 2], [3, 4]], result=[[1, 3, 1, 2], [2, 5, None, None], [None, None, 3, 4]]), dict( join_type='FULL OUTER JOIN', table1=[[1, 3], [2, 5]], table2=[[1, 2], [3, 4]], result=[[1, 3, 1, 2], [2, 5, None, None], [None, None, 3, 4]]), dict( join_type='CROSS JOIN', table1=[[1, 3], [2, 5]], table2=[[1, 2], [3, 4]], result=[[1, 3, 1, 2], [1, 3, 3, 4], [2, 5, 1, 2], [2, 5, 3, 4]]), dict( join_type=',', table1=[[1, 3], [2, 5]], table2=[[1, 2], [3, 4]], result=[[1, 3, 1, 2], [1, 3, 3, 4], [2, 5, 1, 2], [2, 5, 3, 4]]), ) @unpack def test_data_source_joins(self, join_type, # type: Union[_EmptyNode, str] table1, # type: List[List[int]] table2, # type: List[List[int]] result # type: List[List[int]] ): # type: (...) -> None table_context = DatasetTableContext({ 'my_project': { 'my_dataset': { 'my_table': TypedDataFrame( pd.DataFrame(table1, columns=['a', 'b']), types=[BQScalarType.INTEGER, BQScalarType.INTEGER] ), 'my_table2': TypedDataFrame( pd.DataFrame(table2, columns=['a', 'c']), types=[BQScalarType.INTEGER, BQScalarType.INTEGER] ) } } }) tokens = tokenize('my_table {} my_table2 {}'.format( join_type, 'USING (a)' if join_type not in (',', 'CROSS JOIN') else '')) data_source_node, leftover = apply_rule(data_source, tokens) self.assertFalse(leftover) assert isinstance(data_source_node, DataSource) context = data_source_node.create_context(table_context) self.assertEqual(context.table.to_list_of_lists(), result) self.assertEqual(list(context.table.dataframe), ['my_table.a', 'my_table.b', 'my_table2.a', 'my_table2.c']) @data( dict( join_type='INNER JOIN', result=[[1, 2]]), dict( join_type='CROSS JOIN', # With an on clause, CROSS functions like inner. result=[[1, 2]]), dict( join_type='LEFT OUTER JOIN', result=[[1, 2], [2, None]]), dict( join_type='RIGHT OUTER JOIN', result=[[1, 2], [None, 0]]), dict( join_type='FULL OUTER JOIN', result=[[1, 2], [2, None], [None, 0]]), ) @unpack def test_data_source_join_on_arbitrary_bool(self, join_type, # type: Union[_EmptyNode, str] result # type: List[List[int]] ): # type: (...) -> None table_context = DatasetTableContext({ 'my_project': { 'my_dataset': { 'my_table': TypedDataFrame(
pd.DataFrame([[1], [2]], columns=['a'])
pandas.DataFrame
import datetime import os from typing import Optional, Dict import pandas as pd from .. import QtCore from ..client import Client as InstrumentClient from . import read_config class LoggerParameters: """ Holds the different parameters the logger is tracking. It holds all of the metadata as well as fresh data :param name: Name of the parameter. :param source_type: Specifies how to gather the data for the parameter (parameter or broadcast). :param parameter_path: Full name with submodules of the qcodes parameter. :param server: Location of the server, defaults to 'localhost'. :param port: Port of the server, defaults to 5555. :param interval: Interval of time to gather new updates in seconds, only impactful if source_type is of the parameter type. defaults to 1. """ def __init__(self, name: str, source_type: str, parameter_path: str, server: Optional[str] = 'localhost', port: Optional[int] = 5555, interval: Optional[int] = 1): # load values self.name = name self.source_type = source_type self.parameter_path = parameter_path self.server = server self.port = port self.address = f"tcp://{self.server}:{self.port}" self.interval = interval self.data = [] self.time = [] # locate the instrument this parameter is located submodules = parameter_path.split('.') self.instrument_name = submodules[0] self.client = InstrumentClient(self.server, self.port) self.instrument = self.client.get_instrument(self.instrument_name) # get the name of the parameter with submodules parameter_name = '' for i in range(1, len(submodules)): parameter_name = parameter_name + submodules[i] self.parameter_name = parameter_name # record the time the parameter was created self.last_saved_t = datetime.datetime.now() def update(self): """ Updates the parameter and save a new data point in memory """ # check that the source type is parameter if self.source_type == 'parameter': # gather new data and save it in memory new_data = self.instrument.get(self.parameter_name) current_time = datetime.datetime.now() self.data.append(new_data) self.time.append(current_time) if self.source_type == 'broadcast': raise NotImplementedError class ParameterLogger(QtCore.QObject): """ Main class of the logger. All of the parameters are saved inside this class :param config: The dictionary from the config file. """ def __init__(self, config: Dict): super().__init__() self.parameters = [] # read the config file parameters, refresh, save_directory = read_config('logger', config) # create the LoggerParameters based on the config file for params in parameters: self.parameters.append(LoggerParameters(name=params[0], source_type=params[1], parameter_path=params[2], server=params[3], port=params[4], interval=params[5])) # check if the values are none. # if they are set the default one, if not, set the specified one in the config file if refresh is not None: self.refresh = refresh else: self.refresh = 10 if save_directory is not None: self.save_directory = save_directory else: self.save_directory = os.path.join(os.getcwd(), 'dashboard_data.csv') self.active = False self.last_saved_t = datetime.datetime.now() def save_data(self): """ Saves the data in the specified file indicated in the config dictionary. Deletes the data from memory once it has been saved to storage. """ # go through the parameters and create DataFrames with their data df_list = [] for params in self.parameters: holder_df = pd.DataFrame({'time': params.time, 'value': params.data, 'name': params.name, 'parameter_path': params.parameter_path, 'address': params.address }) df_list.append(holder_df) params.data = [] params.time = [] ret =
pd.concat(df_list, ignore_index=True)
pandas.concat
import yaml from tunetools import db_utils import numpy as np import pandas as pd from scipy import stats import json def _singleton_dict_to_tuple(singleton_dict): return list(singleton_dict.items())[0] def _check_param(param, total_param, mark_param: set): if param is None: return [] new_param = [] for x in param: if x.startswith(":"): x = x[1:] mark_param.add(x) if x not in total_param: raise ValueError("Unknown param: " + x + str(total_param)) new_param.append(x) return new_param def _parse(conn, yaml_path): yml_dict = yaml.load(open(yaml_path), Loader=yaml.FullLoader) total_params = [x[6:] for x in db_utils.get_columns(conn, "RESULT") if x.startswith("param_")] target_result = {} has_direction = False for x in yml_dict.get("target", []): if type(x) == dict: cur_tuple = _singleton_dict_to_tuple(x) target_result[cur_tuple[1]] = cur_tuple[0] has_direction = True else: target_result[x] = "" mark_params = set() group_by_params = _check_param(yml_dict.get("group_by", []), total_params, mark_params) find_best_params = _check_param(yml_dict.get("find_best", []), total_params, mark_params) ignore_params = _check_param(yml_dict.get("ignore", []), total_params, set()) if not has_direction and len(find_best_params) != 0: raise ValueError("Unknown direction for find best params: " + str(find_best_params)) if len(find_best_params) == 0: find_best_params = [group_by_params[0]] current_params = group_by_params + find_best_params left_params = [x for x in total_params if x not in current_params] where_list = yml_dict.get("where", []) where_clauses = ["STATUS = 'TERMINATED'"] where_clause_params = [] for where_condition in where_list: if type(where_condition) == dict: item = _singleton_dict_to_tuple(where_condition) where_clauses.append(str(item[0]) + "=?") where_clause_params.append(item[1]) elif type(where_condition) == str: where_clauses.append(where_condition) where_clauses_statement = " AND ".join(list(map(lambda x: "(%s)" % x, where_clauses))) statement = "SELECT * FROM RESULT" if len(where_clauses) != 0: statement += " WHERE " + where_clauses_statement cursor = db_utils.execute_sql(conn, statement, where_clause_params) columns = [description[0] for description in cursor.description] result = list(cursor) data =
pd.DataFrame(result, columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """Main module.""" import pandas as pd from sklearn.linear_model import LinearRegression, RandomizedLasso from sklearn.feature_selection import VarianceThreshold from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import Imputer import numpy as np from sklearn.pipeline import Pipeline import logging import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # TODO # Add MAPE instead of RMSE # setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class FeatureSelect(object): """ Base class for feature selection """ def __init__(self, path, target): self.path = path self.target = target self.df = pd.DataFrame() self.selected_features = [] self.quality_report = [] self.model = "" self.R2 = None self.mse = None def load_csv(self, sep='|'): """Function to load csv into python data fromae Args: path(str): path to csv file. sep (str): seperator. Returns: df: DataFrame of csv file. """ self.df = pd.read_csv(self.path, header=None, sep=sep) return self.df def data_check(self): """Function for creating a data quality report of data. Args: df (object): DataFrame. Returns: quality_check: Quality report. """ df = self.df data_types = pd.DataFrame(df.dtypes, columns=['dtype']) missing_data_counts = pd.DataFrame(df.isnull().sum(), columns=['missing']) present_data_counts = pd.DataFrame(df.count(), columns=['count']) unique_value_counts = pd.DataFrame(columns=['unique']) for v in list(df.columns.values): unique_value_counts.loc[v] = [df[v].nunique()] minimum_values =
pd.DataFrame(columns=['min'])
pandas.DataFrame
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from gators.model_building.train_test_split import TrainTestSplit @pytest.fixture() def data_ordered(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="ordered") X_train_expected = pd.DataFrame( { "A": {0: 0, 1: 5, 2: 10, 3: 15}, "B": {0: 1, 1: 6, 2: 11, 3: 16}, "C": {0: 2, 1: 7, 2: 12, 3: 17}, "D": {0: 3, 1: 8, 2: 13, 3: 18}, "E": {0: 4, 1: 9, 2: 14, 3: 19}, } ) X_test_expected = pd.DataFrame( { "A": {4: 20, 5: 25, 6: 30, 7: 35}, "B": {4: 21, 5: 26, 6: 31, 7: 36}, "C": {4: 22, 5: 27, 6: 32, 7: 37}, "D": {4: 23, 5: 28, 6: 33, 7: 38}, "E": {4: 24, 5: 29, 6: 34, 7: 39}, } ) y_train_expected = pd.Series({0: 0, 1: 1, 2: 2, 3: 0}, name=y_name) y_test_expected = pd.Series({4: 1, 5: 2, 6: 0, 7: 1}, name=y_name) return ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) @pytest.fixture() def data_random(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="random", random_state=0) X_train_expected = pd.DataFrame( { "A": {0: 0, 3: 15, 4: 20, 5: 25}, "B": {0: 1, 3: 16, 4: 21, 5: 26}, "C": {0: 2, 3: 17, 4: 22, 5: 27}, "D": {0: 3, 3: 18, 4: 23, 5: 28}, "E": {0: 4, 3: 19, 4: 24, 5: 29}, } ) X_test_expected = pd.DataFrame( { "A": {6: 30, 2: 10, 1: 5, 7: 35}, "B": {6: 31, 2: 11, 1: 6, 7: 36}, "C": {6: 32, 2: 12, 1: 7, 7: 37}, "D": {6: 33, 2: 13, 1: 8, 7: 38}, "E": {6: 34, 2: 14, 1: 9, 7: 39}, } ) y_train_expected = pd.Series({0: 0, 3: 0, 4: 1, 5: 2}, name=y_name) y_test_expected = pd.Series({6: 0, 2: 2, 1: 1, 7: 1}, name=y_name) return ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) @pytest.fixture() def data_stratified(): X = pd.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = pd.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="stratified", random_state=0) X_train_expected = pd.DataFrame( { "A": {0: 0, 1: 5, 2: 10}, "B": {0: 1, 1: 6, 2: 11}, "C": {0: 2, 1: 7, 2: 12}, "D": {0: 3, 1: 8, 2: 13}, "E": {0: 4, 1: 9, 2: 14}, } ) X_test_expected = pd.DataFrame( { "A": {6: 30, 3: 15, 7: 35, 4: 20, 5: 25}, "B": {6: 31, 3: 16, 7: 36, 4: 21, 5: 26}, "C": {6: 32, 3: 17, 7: 37, 4: 22, 5: 27}, "D": {6: 33, 3: 18, 7: 38, 4: 23, 5: 28}, "E": {6: 34, 3: 19, 7: 39, 4: 24, 5: 29}, } ) y_train_expected = pd.Series({0: 0, 1: 1, 2: 2}, name=y_name) y_test_expected = pd.Series({6: 0, 3: 0, 7: 1, 4: 1, 5: 2}, name=y_name) return ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) @pytest.fixture() def data_ordered_ks(): X = ks.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = ks.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="ordered") return obj, X, y @pytest.fixture() def data_random_ks(): X = ks.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = ks.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="random", random_state=0) return obj, X, y @pytest.fixture() def data_stratified_ks(): X = ks.DataFrame(np.arange(40).reshape(8, 5), columns=list("ABCDE")) y_name = "TARGET" y = ks.Series([0, 1, 2, 0, 1, 2, 0, 1], name=y_name) test_ratio = 0.5 obj = TrainTestSplit(test_ratio=test_ratio, strategy="stratified", random_state=0) return obj, X, y def test_ordered(data_ordered): ( obj, X, y, X_train_expected, X_test_expected, y_train_expected, y_test_expected, ) = data_ordered X_train, X_test, y_train, y_test = obj.transform(X, y) assert_frame_equal(X_train, X_train_expected) assert_frame_equal(X_test, X_test_expected)
assert_series_equal(y_train, y_train_expected)
pandas.testing.assert_series_equal
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 tm.assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int tm.assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float tm.assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] tm.assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! msg = ( "cannot do positional indexing on Float64Index with " r"these indexers \[1.0\] of type float" ) with pytest.raises(TypeError, match=msg): df.iloc[1.0:5] result = df.iloc[4:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() with pytest.raises(TypeError, match=_slice_msg): cp.iloc[1.0:5] = 0 with pytest.raises(TypeError, match=msg): result = cp.iloc[1.0:5] == 0 assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df tm.assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed_datetime(self): df = DataFrame( np.random.randn(5, 3), index=["a", "b", "c", "d", "e"], columns=["foo", "bar", "baz"], ) df["timestamp"] = Timestamp("20010102") # check our dtypes result = df.dtypes expected = Series( [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")], index=["foo", "bar", "baz", "timestamp"], ) tm.assert_series_equal(result, expected) # GH#16674 iNaT is treated as an integer when given by the user df.loc["b", "timestamp"] = iNaT assert not isna(df.loc["b", "timestamp"]) assert df["timestamp"].dtype == np.object_ assert df.loc["b", "timestamp"] == iNaT # allow this syntax (as of GH#3216) df.loc["c", "timestamp"] = np.nan assert isna(df.loc["c", "timestamp"]) # allow this syntax df.loc["d", :] = np.nan assert not isna(df.loc["c", :]).all() def test_setitem_mixed_datetime(self): # GH 9336 expected = DataFrame( { "a": [0, 0, 0, 0, 13, 14], "b": [ datetime(2012, 1, 1), 1, "x", "y", datetime(2013, 1, 1), datetime(2014, 1, 1), ], } ) df = DataFrame(0, columns=list("ab"), index=range(6)) df["b"] = pd.NaT df.loc[0, "b"] = datetime(2012, 1, 1) df.loc[1, "b"] = 1 df.loc[[2, 3], "b"] = "x", "y" A = np.array( [ [13, np.datetime64("2013-01-01T00:00:00")], [14, np.datetime64("2014-01-01T00:00:00")], ] ) df.loc[[4, 5], ["a", "b"]] = A tm.assert_frame_equal(df, expected) def test_setitem_frame_float(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_setitem_frame_mixed(self, float_string_frame): # GH 3216 # already aligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"] ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_rows_unaligned(self, float_string_frame): # GH#3216 rows unaligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], index=list(f.index[0:2]) + ["foo", "bar"], columns=["A", "B"], ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal( f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2] ) def test_setitem_frame_mixed_key_unaligned(self, float_string_frame): # GH#3216 key is unaligned with values f = float_string_frame.copy() piece = f.loc[f.index[:2], ["A"]] piece.index = f.index[-2:] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece piece["B"] = np.nan tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_ndarray(self, float_string_frame): # GH#3216 ndarray f = float_string_frame.copy() piece = float_string_frame.loc[f.index[:2], ["A", "B"]] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece.values tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_upcast(self): # needs upcasting df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"]) df2 = df.copy() df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5 expected = df.reindex(columns=["A", "B"]) expected += 0.5 expected["C"] = df["C"] tm.assert_frame_equal(df2, expected) def test_setitem_frame_align(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] piece.index = float_frame.index[-2:] piece.columns = ["A", "B"] float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc["foo"] expected = df[:2] tm.assert_frame_equal(result, expected) result = df.loc["bar"] expected = df.iloc[[2, 4]] tm.assert_frame_equal(result, expected) result = df.loc["baz"] expected = df.iloc[3] tm.assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc[["bar"]] exp = df.iloc[[2, 4]] tm.assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] tm.assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("bool_value", [True, False]) def test_getitem_setitem_ix_bool_keyerror(self, bool_value): # #2199 df = DataFrame({"a": [1, 2, 3]}) message = f"{bool_value}: boolean label can not be used without a boolean index" with pytest.raises(KeyError, match=message): df.loc[bool_value] msg = "cannot use a single bool to index into setitem" with pytest.raises(KeyError, match=msg): df.loc[bool_value] = 0 # TODO: rename? remove? def test_single_element_ix_dont_upcast(self, float_frame): float_frame["E"] = 1 assert issubclass(float_frame["E"].dtype.type, (int, np.integer)) result = float_frame.loc[float_frame.index[5], "E"] assert is_integer(result) # GH 11617 df = DataFrame({"a": [1.23]}) df["b"] = 666 result = df.loc[0, "b"] assert is_integer(result) expected = Series([666], [0], name="b") result = df.loc[[0], "b"] tm.assert_series_equal(result, expected) def test_iloc_row(self): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) result = df.iloc[1] exp = df.loc[2] tm.assert_series_equal(result, exp) result = df.iloc[2] exp = df.loc[4] tm.assert_series_equal(result, exp) # slice result = df.iloc[slice(4, 8)] expected = df.loc[8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[1, 2, 4, 6]] expected = df.reindex(df.index[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_row_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) original = df.copy() # verify slice is view # setting it makes it raise/warn subset = df.iloc[slice(4, 8)] assert np.shares_memory(df[2], subset[2]) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 2] = 0.0 exp_col = original[2].copy() # TODO(ArrayManager) verify it is expected that the original didn't change if not using_array_manager: exp_col[4:8] = 0.0 tm.assert_series_equal(df[2], exp_col) def test_iloc_col(self): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) result = df.iloc[:, 1] exp = df.loc[:, 2] tm.assert_series_equal(result, exp) result = df.iloc[:, 2] exp = df.loc[:, 4] tm.assert_series_equal(result, exp) # slice result = df.iloc[:, slice(4, 8)] expected = df.loc[:, 8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[:, [1, 2, 4, 6]] expected = df.reindex(columns=df.columns[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_col_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) original = df.copy() subset = df.iloc[:, slice(4, 8)] if not using_array_manager: # verify slice is view assert np.shares_memory(df[8]._values, subset[8]._values) # and that we are setting a copy msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 8] = 0.0 assert (df[8] == 0).all() else: # TODO(ArrayManager) verify this is the desired behaviour subset[8] = 0.0 # subset changed assert (subset[8] == 0).all() # but df itself did not change (setitem replaces full column) tm.assert_frame_equal(df, original) def test_loc_duplicates(self): # gh-17105 # insert a duplicate element to the index trange = date_range( start=Timestamp(year=2017, month=1, day=1), end=Timestamp(year=2017, month=1, day=5), ) trange = trange.insert(loc=5, item=Timestamp(year=2017, month=1, day=5)) df = DataFrame(0, index=trange, columns=["A", "B"]) bool_idx = np.array([False, False, False, False, False, True]) # assignment df.loc[trange[bool_idx], "A"] = 6 expected = DataFrame( {"A": [0, 0, 0, 0, 6, 6], "B": [0, 0, 0, 0, 0, 0]}, index=trange ) tm.assert_frame_equal(df, expected) # in-place df = DataFrame(0, index=trange, columns=["A", "B"]) df.loc[trange[bool_idx], "A"] += 6 tm.assert_frame_equal(df, expected) def test_setitem_with_unaligned_tz_aware_datetime_column(self): # GH 12981 # Assignment of unaligned offset-aware datetime series. # Make sure timezone isn't lost column = Series(date_range("2015-01-01", periods=3, tz="utc"), name="dates") df = DataFrame({"dates": column}) df["dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) df = DataFrame({"dates": column}) df.loc[[0, 1, 2], "dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) def test_loc_setitem_datetimelike_with_inference(self): # GH 7592 # assignment of timedeltas with NaT one_hour = timedelta(hours=1) df = DataFrame(index=date_range("20130101", periods=4)) df["A"] = np.array([1 * one_hour] * 4, dtype="m8[ns]") df.loc[:, "B"] = np.array([2 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "C"] = np.array([3 * one_hour] * 3, dtype="m8[ns]") df.loc[:, "D"] = np.array([4 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "E"] = np.array([5 * one_hour] * 3, dtype="m8[ns]") df["F"] = np.timedelta64("NaT") df.loc[df.index[:-1], "F"] = np.array([6 * one_hour] * 3, dtype="m8[ns]") df.loc[df.index[-3] :, "G"] = date_range("20130101", periods=3) df["H"] = np.datetime64("NaT") result = df.dtypes expected = Series( [np.dtype("timedelta64[ns]")] * 6 + [np.dtype("datetime64[ns]")] * 2, index=list("ABCDEFGH"), ) tm.assert_series_equal(result, expected) def test_getitem_boolean_indexing_mixed(self): df = DataFrame( { 0: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 1: { 35: np.nan, 40: 0.32632316859446198, 43: np.nan, 49: 0.32632316859446198, 50: 0.39114724480578139, }, 2: { 35: np.nan, 40: np.nan, 43: 0.29012581014105987, 49: np.nan, 50: np.nan, }, 3: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 4: { 35: 0.34215328467153283, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan, }, "y": {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}, } ) # mixed int/float ok df2 = df.copy() df2[df2 > 0.3] = 1 expected = df.copy() expected.loc[40, 1] = 1 expected.loc[49, 1] = 1 expected.loc[50, 1] = 1 expected.loc[35, 4] = 1 tm.assert_frame_equal(df2, expected) df["foo"] = "test" msg = "not supported between instances|unorderable types" with pytest.raises(TypeError, match=msg): df[df > 0.3] = 1 def test_type_error_multiindex(self): # See gh-12218 mi = MultiIndex.from_product([["x", "y"], [0, 1]], names=[None, "c"]) dg = DataFrame( [[1, 1, 2, 2], [3, 3, 4, 4]], columns=mi, index=Index([0, 1], name="i") ) with pytest.raises(InvalidIndexError, match="slice"): dg[:, 0] index = Index(range(2), name="i") columns = MultiIndex( levels=[["x", "y"], [0, 1]], codes=[[0, 1], [0, 0]], names=[None, "c"] ) expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index) result = dg.loc[:, (slice(None), 0)] tm.assert_frame_equal(result, expected) name = ("x", 0) index = Index(range(2), name="i") expected = Series([1, 3], index=index, name=name) result = dg["x", 0] tm.assert_series_equal(result, expected) def test_getitem_interval_index_partial_indexing(self): # GH#36490 df = DataFrame( np.ones((3, 4)), columns=pd.IntervalIndex.from_breaks(np.arange(5)) ) expected = df.iloc[:, 0] res = df[0.5] tm.assert_series_equal(res, expected) res = df.loc[:, 0.5] tm.assert_series_equal(res, expected) def test_setitem_array_as_cell_value(self): # GH#43422 df = DataFrame(columns=["a", "b"], dtype=object) df.loc[0] = {"a": np.zeros((2,)), "b": np.zeros((2, 2))} expected = DataFrame({"a": [np.zeros((2,))], "b": [np.zeros((2, 2))]}) tm.assert_frame_equal(df, expected) # with AM goes through split-path, loses dtype @td.skip_array_manager_not_yet_implemented def test_iloc_setitem_nullable_2d_values(self): df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") orig = df.copy() df.loc[:] = df.values[:, ::-1] tm.assert_frame_equal(df, orig) df.loc[:] = pd.core.arrays.PandasArray(df.values[:, ::-1]) tm.assert_frame_equal(df, orig) df.iloc[:] = df.iloc[:, :] tm.assert_frame_equal(df, orig) @pytest.mark.parametrize( "null", [pd.NaT, pd.NaT.to_numpy("M8[ns]"), pd.NaT.to_numpy("m8[ns]")] ) def test_setting_mismatched_na_into_nullable_fails( self, null, any_numeric_ea_dtype ): # GH#44514 don't cast mismatched nulls to pd.NA df =
DataFrame({"A": [1, 2, 3]}, dtype=any_numeric_ea_dtype)
pandas.DataFrame
# This script runs the RDD models for a paper on the impact of COVID-19 on academic publishing # Importing required modules import pandas as pd import datetime import numpy as np import statsmodels.api as stats from matplotlib import pyplot as plt import gender_guesser.detector as gender from ToTeX import restab # Defining a helper function for identifying COVID-19 related papers def covid(papers, row): string = str(papers.Title[row]) + str(papers.Abstract[row]) + str(papers.Keywords[row]) if 'covid' in string.lower(): return 1 else: return 0 # Defining a helper function for isolating the name of the first author def first_name(auths): a = auths.index("'") try: b = auths[a+1:].index(' ') except: b = auths[a+1:].index("'") return auths[a+1:b+2] # Defining a helper function for isolating the national affiliation of the first author def first_nationality(affils): if str(affils) == 'nan': affils = '' else: try: a = affils.index("',") except: a = len(affils) - 2 c = affils[:a].count(', ') for j in range(c): b = affils[:a].index(', ') affils = affils[b+2:a] return affils # Reading in the data print('Reading in the data.......') papers = pd.read_csv('C:/Users/User/Documents/Data/COVID-19/MDPI_data.csv') # Control for COVID-19 related papers # Creating the list print('Creating a flag for COVID-19 related papers.......') c19 = [covid(papers, row) for row in range(len(papers))] # Adding COVID data to data set print('Adding COVID-19 flag to the data set.......') c19 = pd.Series(c19, name = 'COVID') papers = pd.concat([papers, c19], axis = 1) # Checking the number of COVID-19 related papers after the time cut-off as an anecdote: # Note that this stat does not reflect dropping certain papers due to being publishing in unestablished journals post_study_papers = ['lol' for i in range(len(papers)) if datetime.datetime.strptime(papers.Submitted[i], '%Y-%m-%d') > datetime.datetime.strptime('2020-06-30', '%Y-%m-%d')] poststudy_covid = ['lol' for i in range(len(papers)) if datetime.datetime.strptime(papers.Submitted[i], '%Y-%m-%d') > datetime.datetime.strptime('2020-06-30', '%Y-%m-%d') and papers.COVID[i] == 1] # Create a list of journals which will be included in the study - those with pubs prior to 2020 print('Removing papers from journals first published post 2020-01-01.......') journals = [] for journal in papers.Journal.unique(): j = papers[papers.Journal == journal].reset_index() if datetime.datetime.strptime(min(j.Accepted), '%Y-%m-%d') < datetime.datetime.strptime('2020-01-01', '%Y-%m-%d') and datetime.datetime.strptime(max(j.Accepted), '%Y-%m-%d') > datetime.datetime.strptime('2019-01-01', '%Y-%m-%d'): journals.append(j.Journal[0]) # Subset data based on journals df = papers[papers.Journal.isin(journals)].reset_index(drop = True) # Subset data based on submission date print('Removing papers from outside of the study time frame.......') post1812 = [int(datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') > datetime.datetime.strptime('2018-12-31', '%Y-%m-%d')) for i in range(len(df))] pre2007 = [int(datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') < datetime.datetime.strptime('2020-07-01', '%Y-%m-%d')) for i in range(len(df))] study = pd.Series([post1812[i] * pre2007[i] for i in range(len(post1812))], name = 'Study') df = pd.concat([df, study], axis = 1) df = df[df.Study == 1].reset_index(drop = True) # Computing the number of authors print('Computing the number of authors for each paper.......') numb_authors = [df.Authors[i].count(',') + 1 for i in range(len(df))] numb_authors = pd.Series(numb_authors, name = 'Author_Count') df = pd.concat([df, numb_authors], axis = 1) # Predict perceived gender of the first author only print('Predicting the perceived gender of first authors for each paper.......') gd = gender.Detector() first_author_gender = [gd.get_gender(first_name(df.Authors[i])) for i in range(len(df))] first_author_gender = pd.Series(first_author_gender, name = 'Gender') df = pd.concat([df, first_author_gender], axis = 1) # Finding the nationality of the first author print('Finding the nationality of the first author for each paper.......') first_nat = [first_nationality(df.Affiliations[i]) for i in range(len(df))] first_nat = pd.Series(first_nat, name = 'Nationality') df = pd.concat([df, first_nat], axis = 1) # Estimating the percentage of male / female authors for each paper # Defining a helper function for the main function below def inp_trimmer(inp): a = inp.index("'") # mimic first_name try: b = inp[a+1:].index(' ') # mimic first_name except: b = inp[a+1:].index("'") # mimic first_name inp = inp[b+3:] # shorten inp try: c = inp.index("',") # find next name or end of inp inp = inp[c+3:] except: inp = ']' return inp # Defining a function to parse names and run them through the existing function for first author names def all_auths(inp,nu): if nu % 100 == 0: # Just a visual queue because this isn't particularly fast print('Working on records ' + str(nu+1) + ' through ' + str(nu+101) + ' of 167,703.......') gd = gender.Detector() listicle = [] while inp != ']': listicle.append(gd.get_gender(first_name(inp))) inp = inp_trimmer(inp) return listicle # Applying this function to predict the perceived genders of all authors # This is currently commented out because it takes quite a long time to run and too many authors are categorized as 'unknown' #all_genders = [all_auths(df.Authors[i].replace('"',"'"),i) for i in range(len(df))] # Below are lists of countries categorized by the World Bank Analytical Classification quartiles high = ['Andorra', 'Antigua and Barbuda', 'Aruba', 'Australia', 'Austria', 'The Bahamas', 'Bahrain', 'Barbados', 'Belgium', 'Bermuda', 'Brunei', 'Canada', 'The Cayman Islands', 'Channel Islands', 'Croatia', 'Cyprus', 'Czech Republic', 'Denmark', 'Equatorial Guinea', 'Estonia', 'Faeroe Islands', 'Finland', 'France', 'French Polynesia', 'Germany', 'Greece', 'Greenland', 'Hong Kong', 'Hungary', 'Iceland', 'Ireland', 'Isle of Man', 'Israel', 'Italy', 'Japan', 'Korea', 'Kuwait', 'Liechtenstein', 'Luxembourg', 'Macao', 'Malta', 'Monaco', 'The Netherlands', 'New Caledonia', 'New Zealand', 'Northern Mariana Islands', 'Norway', 'Oman', 'Portugal', 'Qatar', 'San Marino', 'Saudi Arabia', 'Singapore', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Taiwan', 'Trinidad and Tobago', 'United Arab Emirates', 'UK', 'USA'] upper_mid = ['Algeria', 'American Samoa', 'Argentina', 'Belarus', 'Bosnia and Herzegovina', 'Botswana', 'Brazil', 'Bulgaria', 'Chile', 'Colombia', 'Costa Rica', 'Cuba', 'Dominica', 'Dominican Republic', 'Fiji', 'Gabon', 'Grenada', 'Jamaica', 'Kazakhstan', 'Latvia', 'Lebanon', 'Libya', 'Lithuania', 'Macedonia', 'Malaysia', 'Mauritius', 'Mexico', 'Montenegro', 'Namibia', 'Palau', 'Panama', 'Peru', 'Poland', 'Romania', 'Russia', 'Serbia', 'Seychelles', 'South Africa', 'Saint Kitts and Nevis', 'Saint Lucia', 'Saint Vincent and the Grenadines', 'Suriname', 'Turkey', 'Uruguay', 'Venezuela'] lower_mid = ['Albania', 'Angola', 'Armenia', 'Azerbaijan', 'Belize', 'Bhutan', 'Bolivia', 'Cabo Verde', 'Cameroon', 'China', 'Republic of the Congo', 'Ivory Coast', 'Djibouti', 'Ecuador', 'Egypt', 'El Salvador', 'Georgia', 'Guatemala', 'Guyana', 'Honduras', 'India', 'Indonesia', 'Iran', 'Iraq', 'Jordan', 'Kiribati', 'Kosovo', 'Lesotho', 'Maldives', 'Marshall Islands', 'Micronesia', 'Moldova', 'Mongolia', 'Morocco', 'Nicaragua', 'Nigeria', 'Pakistan', 'Papua New Guinea', 'Paraguay', 'Philippines', 'Samoa', 'Sao Tome and Principe', 'Solomon Islands', 'Sri Lanka', 'Sudan', 'Eswatini', 'Syria', 'Palestine', 'Thailand', 'Timor-Leste', 'Tonga', 'Tunisia', 'Turkmenistan', 'Ukraine', 'Vanuatu', 'West Bank and Gaza'] low = ['Afghanistan', 'Bangladesh', 'Benin', 'Burkina Faso', 'Burundi', 'Cambodia', 'Central African Republic', 'Chad', 'Comoros', 'Democratic Republic of the Congo', 'Eritrea', 'Ethiopia', 'The Gambia', 'Ghana', 'Guinea', 'Guinea-Bissau', 'Haiti', 'Kenya', 'Korea, Dem. Rep.', 'Kyrgyzstan', 'Laos', 'Liberia', 'Madagascar', 'Malawi', 'Mali', 'Mauritania', 'Mozambique', 'Myanmar', 'Nepal', 'Niger', 'Rwanda', 'Senegal', 'Sierra Leone', 'Somalia', 'Tajikistan', 'Tanzania', 'Togo', 'Uganda', 'Uzbekistan', 'Vietnam', 'Yemen', 'Zambia', 'Zimbabwe'] # Defining a dictionary for determining the WBAC quartile qh = {h:'q1' for h in high} qu = {h:'q2' for h in upper_mid} qm = {h:'q3' for h in lower_mid} ql = {h:'q4' for h in low} qd = {**qh, **qu, **qm, **ql} # Defining a function for determining the quartile of the first author's nationality def f_quart(inp): try: res = qd[inp] except: res = '' return res # Determining the quartile of the affiliation of the first author fq = [f_quart(x) for x in df.Nationality] fq = pd.Series(fq, name = 'First_Quartile') df = pd.concat([df, fq], axis = 1) # Defining a function to determine the 'top quartile' for each paper def quart(inp,nu): if nu % 100 == 0: # Just a visual queue because this isn't particularly fast print('Working on records ' + str(nu+1) + ' through ' + str(nu+101) + ' of 167,703.......') listicle = [] while inp != ']': try: listicle.append(f_quart(first_nationality(inp))) inp = inp_trimmer(inp) except: inp = ']' if 'q1' in listicle: res = 'q1' elif 'q2' in listicle: res = 'q2' elif 'q3' in listicle: res = 'q3' else: res = 'q4' return res # Determining the 'top quartile' present in each paper print('Determining the top WBAC quartile present in each paper.......') quarts = [quart(df.Affiliations[i],i) for i in range(len(df.Affiliations))] # An indicator variable for whether or not a Q1 (high) nation contributed q1 = [1 if q == 'q1' else 0 for q in quarts] # Appending these two lists to the main df quarts = pd.Series(quarts, name = 'Top_Quartile') q1 = pd.Series(q1, name = 'Q1') df = pd.concat([df, quarts, q1], axis = 1) # 5443 of 167,703 had no discernable Nationality and are dropped here df = df[df.First_Quartile != ''].reset_index(drop = True) # Checking the number of COVID-19 related papers after the time cut-off as an anecdote: # Note that this stat does now reflect dropping certain papers due to being publishing in unestablished journals post_study_papers2 = ['lol' for i in range(len(papers)) if datetime.datetime.strptime(papers.Submitted[i], '%Y-%m-%d') > datetime.datetime.strptime('2020-06-30', '%Y-%m-%d')] poststudy_covid2 = ['lol' for i in range(len(papers)) if datetime.datetime.strptime(papers.Submitted[i], '%Y-%m-%d') > datetime.datetime.strptime('2020-06-30', '%Y-%m-%d') and papers.COVID[i] == 1] # Determining if the journal uses single blind or double blind peer review print('Determining if the journal uses single blind or double blind peer review.......') # Lists of journals with a double blind peer review policy db_journals = ['Adm. Sci.', 'AgriEngineering', 'Arts', 'Buildings', 'Economies', 'Educ. Sci.', 'Games', 'Genealogy', 'Humanities', 'J. Intell.', 'J. Open Innov. Technol. Mark. Complex.', 'Journal. Media.', 'Languages', 'Laws', 'Psych', 'Religions', 'Soc. Sci.', 'Societies', 'Toxins'] db = [1 if j in db_journals else 0 for j in df.Journal] db = pd.Series(db, name = 'Double_Blind') df = pd.concat([df, db], axis = 1) # Computing the distances print('Calculating distances from thresholds.......') # Distance from March 16 (middle of March) XX = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-16', '%Y-%m-%d') for i in range(len(df))] XX = [x.days for x in XX] XX = pd.Series(XX, name = 'X-c') df = pd.concat([df, XX], axis = 1) # Squared distance from March 16 (middle of March) XX2 = df['X-c']*df['X-c'] XX2 = pd.Series(XX2, name = '(X-c)^2') df = pd.concat([df, XX2], axis = 1) # Cubed distance from March 16 (middle of March) XX3 = df['X-c']*df['X-c']*df['X-c'] XX3 = pd.Series(XX3, name = '(X-c)^3') df = pd.concat([df, XX3], axis = 1) # Distance from surrounding days to serve as robustness checks # One week prior to March 16 XX01 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-17', '%Y-%m-%d') for i in range(len(df))] XX02 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-18', '%Y-%m-%d') for i in range(len(df))] XX03 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-19', '%Y-%m-%d') for i in range(len(df))] XX04 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-20', '%Y-%m-%d') for i in range(len(df))] XX05 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-21', '%Y-%m-%d') for i in range(len(df))] XX06 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-22', '%Y-%m-%d') for i in range(len(df))] XX07 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-23', '%Y-%m-%d') for i in range(len(df))] XX01 = [x.days for x in XX01] XX02 = [x.days for x in XX02] XX03 = [x.days for x in XX03] XX04 = [x.days for x in XX04] XX05 = [x.days for x in XX05] XX06 = [x.days for x in XX06] XX07 = [x.days for x in XX07] XX01 = pd.Series(XX01, name = 'X-1-c') XX02 = pd.Series(XX02, name = 'X-2-c') XX03 = pd.Series(XX03, name = 'X-3-c') XX04 = pd.Series(XX04, name = 'X-4-c') XX05 = pd.Series(XX05, name = 'X-5-c') XX06 = pd.Series(XX06, name = 'X-6-c') XX07 = pd.Series(XX07, name = 'X-7-c') df = pd.concat([df, XX01, XX02, XX03, XX04, XX05, XX06, XX07], axis = 1) # One week post March 16 XX11 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-15', '%Y-%m-%d') for i in range(len(df))] XX12 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-14', '%Y-%m-%d') for i in range(len(df))] XX13 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-13', '%Y-%m-%d') for i in range(len(df))] XX14 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-12', '%Y-%m-%d') for i in range(len(df))] XX15 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-11', '%Y-%m-%d') for i in range(len(df))] XX16 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-10', '%Y-%m-%d') for i in range(len(df))] XX17 = [datetime.datetime.strptime(df.Submitted[i], '%Y-%m-%d') - datetime.datetime.strptime('2020-03-09', '%Y-%m-%d') for i in range(len(df))] XX11 = [x.days for x in XX11] XX12 = [x.days for x in XX12] XX13 = [x.days for x in XX13] XX14 = [x.days for x in XX14] XX15 = [x.days for x in XX15] XX16 = [x.days for x in XX16] XX17 = [x.days for x in XX17] XX11 = pd.Series(XX11, name = 'X+1-c') XX12 = pd.Series(XX12, name = 'X+2-c') XX13 = pd.Series(XX13, name = 'X+3-c') XX14 = pd.Series(XX14, name = 'X+4-c') XX15 = pd.Series(XX15, name = 'X+5-c') XX16 = pd.Series(XX16, name = 'X+6-c') XX17 = pd.Series(XX17, name = 'X+7-c') df = pd.concat([df, XX11, XX12, XX13, XX14, XX15, XX16, XX17], axis = 1) # Adding the post-effect variables for the main regression D = [1 if df['X-c'][i] >= 0 else 0 for i in range(len(df))] D = pd.Series(D, name = 'D') DXc = D*df['X-c'] DXc2 = D*df['X-c']*df['X-c'] DXc3 = D*df['X-c']*df['X-c']*df['X-c'] DXc = pd.Series(DXc, name = 'D(X-c)') DXc2 = pd.Series(DXc2, name = 'D(X-c)^2') DXc3 = pd.Series(DXc3, name = 'D(X-c)^3') df = pd.concat([df, D, DXc, DXc2, DXc3], axis = 1) # Adding the post-effect variables for the robustness checks D01 = [1 if df['X-1-c'][i] >= 0 else 0 for i in range(len(df))] D02 = [1 if df['X-2-c'][i] >= 0 else 0 for i in range(len(df))] D03 = [1 if df['X-3-c'][i] >= 0 else 0 for i in range(len(df))] D04 = [1 if df['X-4-c'][i] >= 0 else 0 for i in range(len(df))] D05 = [1 if df['X-5-c'][i] >= 0 else 0 for i in range(len(df))] D06 = [1 if df['X-6-c'][i] >= 0 else 0 for i in range(len(df))] D07 = [1 if df['X-7-c'][i] >= 0 else 0 for i in range(len(df))] D01 = pd.Series(D01, name = 'D-1') D02 = pd.Series(D02, name = 'D-2') D03 = pd.Series(D03, name = 'D-3') D04 = pd.Series(D04, name = 'D-4') D05 = pd.Series(D05, name = 'D-5') D06 = pd.Series(D06, name = 'D-6') D07 = pd.Series(D07, name = 'D-7') D11 = [1 if df['X+1-c'][i] >= 0 else 0 for i in range(len(df))] D12 = [1 if df['X+2-c'][i] >= 0 else 0 for i in range(len(df))] D13 = [1 if df['X-3-c'][i] >= 0 else 0 for i in range(len(df))] D14 = [1 if df['X+4-c'][i] >= 0 else 0 for i in range(len(df))] D15 = [1 if df['X+5-c'][i] >= 0 else 0 for i in range(len(df))] D16 = [1 if df['X+6-c'][i] >= 0 else 0 for i in range(len(df))] D17 = [1 if df['X+7-c'][i] >= 0 else 0 for i in range(len(df))] D11 = pd.Series(D11, name = 'D+1') D12 = pd.Series(D12, name = 'D+2') D13 = pd.Series(D13, name = 'D+3') D14 = pd.Series(D14, name = 'D+4') D15 = pd.Series(D15, name = 'D+5') D16 = pd.Series(D16, name = 'D+6') D17 = pd.Series(D17, name = 'D+7') df = pd.concat([df, D01, D02, D03, D04, D05, D06, D07, D11, D12, D13, D14, D15, D16, D17], axis = 1) DXc01 = D01*df['X-1-c'] DXc02 = D02*df['X-2-c'] DXc03 = D03*df['X-3-c'] DXc04 = D04*df['X-4-c'] DXc05 = D05*df['X-5-c'] DXc06 = D06*df['X-6-c'] DXc07 = D07*df['X-7-c'] DXc11 = D11*df['X+1-c'] DXc12 = D12*df['X+2-c'] DXc13 = D13*df['X+3-c'] DXc14 = D14*df['X+4-c'] DXc15 = D15*df['X+5-c'] DXc16 = D16*df['X+6-c'] DXc17 = D17*df['X+7-c'] DXc01 = pd.Series(DXc01, name = 'D-1(X-c)') DXc02 = pd.Series(DXc02, name = 'D-2(X-c)') DXc03 = pd.Series(DXc03, name = 'D-3(X-c)') DXc04 = pd.Series(DXc04, name = 'D-4(X-c)') DXc05 = pd.Series(DXc05, name = 'D-5(X-c)') DXc06 = pd.Series(DXc06, name = 'D-6(X-c)') DXc07 = pd.Series(DXc07, name = 'D-7(X-c)') DXc11 = pd.Series(DXc11, name = 'D+1(X-c)') DXc12 = pd.Series(DXc12, name = 'D+2(X-c)') DXc13 = pd.Series(DXc13, name = 'D+3(X-c)') DXc14 = pd.Series(DXc14, name = 'D+4(X-c)') DXc15 = pd.Series(DXc15, name = 'D+5(X-c)') DXc16 = pd.Series(DXc16, name = 'D+6(X-c)') DXc17 = pd.Series(DXc17, name = 'D+7(X-c)') df = pd.concat([df, DXc01, DXc02, DXc03, DXc04, DXc05, DXc06, DXc07, DXc11, DXc12, DXc13, DXc14, DXc15, DXc16, DXc17], axis = 1) # Calculating a total author time to add to the data set as a potential dependent variable A = [df.Total[i] - df.Editor[i] for i in range(len(df))] A = pd.Series(A, name = 'Author') df = pd.concat([df, A], axis = 1) # Adding natural logarithm transformed arXiv data ln_arXiv7 = pd.Series(np.log(df.arXiv7.values), name = 'ln_arXiv7') ln_arXiv14 = pd.Series(np.log(df.arXiv14.values), name = 'ln_arXiv14') ln_arXiv30 = pd.Series(np.log(df.arXiv30.values), name = 'ln_arXiv30') ln_new7 = pd.Series(np.log(df.new7.values), name = 'ln_new7') ln_new14 = pd.Series(np.log(df.new14.values), name = 'ln_new14') ln_new30 = pd.Series(np.log(df.new30.values), name = 'ln_new30') df = pd.concat([df, ln_arXiv7, ln_arXiv14, ln_arXiv30, ln_new7, ln_new14, ln_new30], axis = 1) # Two journals had a bad date resulting in an infeasible value for Stage1 so they are dropped here df = df[df.Stage1 >= 0].reset_index(drop = True) # Defining a function for adding a month dummy def month(m): md = {'01':'JAN', '02':'FEB', '03':'MAR', '04':'APR', '05':'MAY', '06':'JUN', '07':'JUL', '08':'AUG', '09':'SEP', '10':'OCT', '11':'NOV', '12':'DEC', } # a month dictionary s = m[5:7] # the month as a number stored as a string mon = md[s]# getting the month from the dictionary return mon # Add a month dummy using the function months = [month(m) for m in df.Submitted] months = pd.Series(months, name = 'Month') df = pd.concat([df, months], axis = 1) # Prepping the data for the regressions Stage1 = np.log(df.Stage1.values) Stage2 = np.log(df.Stage2.values) Stage3 = np.log(df.Stage3.values) Total = np.log(df.Total.values) Editor = np.log(df.Editor.values) XX = stats.add_constant(df[['X-c', '(X-c)^2', '(X-c)^3', 'D', 'D(X-c)', 'D(X-c)^2', 'D(X-c)^3', 'COVID', 'Double_Blind', 'Author_Count', 'ln_arXiv14']]) # Creating the fixed effects dG =
pd.get_dummies(df['Gender'])
pandas.get_dummies
""" This is the streamlit web-app """ import streamlit as st import os import matplotlib.pyplot as plt import numpy as np from pathlib import Path import pandas as pd from gluonts.model.predictor import Predictor from gluonts.dataset.common import ListDataset from gluonts.transform import FieldName from gluonts.evaluation.backtest import make_evaluation_predictions import autodraft.visualization as viz import autodraft.gluonts as glu # @st.cache def load_arima(path='../data/output/arima_results_m3.p'): data =
pd.read_pickle(path)
pandas.read_pickle
import os import tempfile import pandas as pd import pytest from pandas.util import testing as pdt from .. import simulation as sim from ...utils.testing import assert_frames_equal def setup_function(func): sim.clear_sim() sim.enable_cache() def teardown_function(func): sim.clear_sim() sim.enable_cache() @pytest.fixture def df(): return pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=['x', 'y', 'z']) def test_tables(df): wrapped_df = sim.add_table('test_frame', df) @sim.table() def test_func(test_frame): return test_frame.to_frame() / 2 assert set(sim.list_tables()) == {'test_frame', 'test_func'} table = sim.get_table('test_frame') assert table is wrapped_df assert table.columns == ['a', 'b'] assert table.local_columns == ['a', 'b'] assert len(table) == 3 pdt.assert_index_equal(table.index, df.index) pdt.assert_series_equal(table.get_column('a'), df.a) pdt.assert_series_equal(table.a, df.a) pdt.assert_series_equal(table['b'], df['b']) table = sim._TABLES['test_func'] assert table.index is None assert table.columns == [] assert len(table) is 0 pdt.assert_frame_equal(table.to_frame(), df / 2) pdt.assert_frame_equal(table.to_frame(columns=['a']), df[['a']] / 2) pdt.assert_index_equal(table.index, df.index) pdt.assert_series_equal(table.get_column('a'), df.a / 2) pdt.assert_series_equal(table.a, df.a / 2) pdt.assert_series_equal(table['b'], df['b'] / 2) assert len(table) == 3 assert table.columns == ['a', 'b'] def test_table_func_cache(df): sim.add_injectable('x', 2) @sim.table(cache=True) def table(variable='x'): return df * variable pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.add_injectable('x', 3) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.get_table('table').clear_cached() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.add_injectable('x', 4) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.clear_cache() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 4) sim.add_injectable('x', 5) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 4) sim.add_table('table', table) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 5) def test_table_func_cache_disabled(df): sim.add_injectable('x', 2) @sim.table('table', cache=True) def asdf(x): return df * x sim.disable_cache() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.add_injectable('x', 3) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.enable_cache() sim.add_injectable('x', 4) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) def test_table_copy(df): sim.add_table('test_frame_copied', df, copy_col=True) sim.add_table('test_frame_uncopied', df, copy_col=False) sim.add_table('test_func_copied', lambda: df, copy_col=True) sim.add_table('test_func_uncopied', lambda: df, copy_col=False) @sim.table(copy_col=True) def test_funcd_copied(): return df @sim.table(copy_col=False) def test_funcd_uncopied(): return df @sim.table(copy_col=True) def test_funcd_copied2(test_frame_copied): # local returns original, but it is copied by copy_col. return test_frame_copied.local @sim.table(copy_col=True) def test_funcd_copied3(test_frame_uncopied): # local returns original, but it is copied by copy_col. return test_frame_uncopied.local @sim.table(copy_col=False) def test_funcd_uncopied2(test_frame_copied): # local returns original. return test_frame_copied.local @sim.table(copy_col=False) def test_funcd_uncopied3(test_frame_uncopied): # local returns original. return test_frame_uncopied.local sim.add_table('test_cache_copied', lambda: df, cache=True, copy_col=True) sim.add_table( 'test_cache_uncopied', lambda: df, cache=True, copy_col=False) @sim.table(cache=True, copy_col=True) def test_cached_copied(): return df @sim.table(cache=True, copy_col=False) def test_cached_uncopied(): return df # Create tables with computed columns. sim.add_table('test_copied_columns', pd.DataFrame(index=df.index), copy_col=True) sim.add_table('test_uncopied_columns', pd.DataFrame(index=df.index), copy_col=False) for column_name in ['a', 'b']: label = "test_frame_uncopied.{}".format(column_name) func = lambda col=label: col for table_name in ['test_copied_columns', 'test_uncopied_columns']: sim.add_column(table_name, column_name, func) for name in ['test_frame_uncopied', 'test_func_uncopied', 'test_funcd_uncopied', 'test_funcd_uncopied2', 'test_funcd_uncopied3', 'test_cache_uncopied', 'test_cached_uncopied', 'test_uncopied_columns', 'test_frame_copied', 'test_func_copied', 'test_funcd_copied', 'test_funcd_copied2', 'test_funcd_copied3', 'test_cache_copied', 'test_cached_copied', 'test_copied_columns']: table = sim.get_table(name) table2 = sim.get_table(name) # to_frame will always return a copy. pdt.assert_frame_equal(table.to_frame(), df) assert table.to_frame() is not df pdt.assert_frame_equal(table.to_frame(), table.to_frame()) assert table.to_frame() is not table.to_frame() pdt.assert_series_equal(table.to_frame()['a'], df['a']) assert table.to_frame()['a'] is not df['a'] pdt.assert_series_equal(table.to_frame()['a'], table.to_frame()['a']) assert table.to_frame()['a'] is not table.to_frame()['a'] if 'uncopied' in name: pdt.assert_series_equal(table['a'], df['a']) assert table['a'] is df['a'] pdt.assert_series_equal(table['a'], table2['a']) assert table['a'] is table2['a'] else: pdt.assert_series_equal(table['a'], df['a']) assert table['a'] is not df['a'] pdt.assert_series_equal(table['a'], table2['a']) assert table['a'] is not table2['a'] def test_columns_for_table(): sim.add_column( 'table1', 'col10', pd.Series([1, 2, 3], index=['a', 'b', 'c'])) sim.add_column( 'table2', 'col20', pd.Series([10, 11, 12], index=['x', 'y', 'z'])) @sim.column('table1') def col11(): return pd.Series([4, 5, 6], index=['a', 'b', 'c']) @sim.column('table2', 'col21') def asdf(): return pd.Series([13, 14, 15], index=['x', 'y', 'z']) t1_col_names = sim._list_columns_for_table('table1') assert set(t1_col_names) == {'col10', 'col11'} t2_col_names = sim._list_columns_for_table('table2') assert set(t2_col_names) == {'col20', 'col21'} t1_cols = sim._columns_for_table('table1') assert 'col10' in t1_cols and 'col11' in t1_cols t2_cols = sim._columns_for_table('table2') assert 'col20' in t2_cols and 'col21' in t2_cols def test_columns_and_tables(df): sim.add_table('test_frame', df) @sim.table() def test_func(test_frame): return test_frame.to_frame() / 2 sim.add_column('test_frame', 'c', pd.Series([7, 8, 9], index=df.index)) @sim.column('test_func', 'd') def asdf(test_func): return test_func.to_frame(columns=['b'])['b'] * 2 @sim.column('test_func') def e(column='test_func.d'): return column + 1 test_frame = sim.get_table('test_frame') assert set(test_frame.columns) == set(['a', 'b', 'c']) assert_frames_equal( test_frame.to_frame(), pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])) assert_frames_equal( test_frame.to_frame(columns=['a', 'c']), pd.DataFrame( {'a': [1, 2, 3], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])) test_func_df = sim._TABLES['test_func'] assert set(test_func_df.columns) == set(['d', 'e']) assert_frames_equal( test_func_df.to_frame(), pd.DataFrame( {'a': [0.5, 1, 1.5], 'b': [2, 2.5, 3], 'c': [3.5, 4, 4.5], 'd': [4., 5., 6.], 'e': [5., 6., 7.]}, index=['x', 'y', 'z'])) assert_frames_equal( test_func_df.to_frame(columns=['b', 'd']), pd.DataFrame( {'b': [2, 2.5, 3], 'd': [4., 5., 6.]}, index=['x', 'y', 'z'])) assert set(test_func_df.columns) == set(['a', 'b', 'c', 'd', 'e']) assert set(sim.list_columns()) == {('test_frame', 'c'), ('test_func', 'd'), ('test_func', 'e')} def test_column_cache(df): sim.add_injectable('x', 2) series = pd.Series([1, 2, 3], index=['x', 'y', 'z']) key = ('table', 'col') @sim.table() def table(): return df @sim.column(*key, cache=True) def column(variable='x'): return series * variable c = lambda: sim._COLUMNS[key] pdt.assert_series_equal(c()(), series * 2) sim.add_injectable('x', 3) pdt.assert_series_equal(c()(), series * 2) c().clear_cached() pdt.assert_series_equal(c()(), series * 3) sim.add_injectable('x', 4) pdt.assert_series_equal(c()(), series * 3) sim.clear_cache() pdt.assert_series_equal(c()(), series * 4) sim.add_injectable('x', 5) pdt.assert_series_equal(c()(), series * 4) sim.get_table('table').clear_cached() pdt.assert_series_equal(c()(), series * 5) sim.add_injectable('x', 6) pdt.assert_series_equal(c()(), series * 5) sim.add_column(*key, column=column, cache=True) pdt.assert_series_equal(c()(), series * 6) def test_column_cache_disabled(df): sim.add_injectable('x', 2) series = pd.Series([1, 2, 3], index=['x', 'y', 'z']) key = ('table', 'col') @sim.table() def table(): return df @sim.column(*key, cache=True) def column(x): return series * x c = lambda: sim._COLUMNS[key] sim.disable_cache() pdt.assert_series_equal(c()(), series * 2) sim.add_injectable('x', 3) pdt.assert_series_equal(c()(), series * 3) sim.enable_cache() sim.add_injectable('x', 4) pdt.assert_series_equal(c()(), series * 3) def test_update_col(df): wrapped = sim.add_table('table', df) wrapped.update_col('b', pd.Series([7, 8, 9], index=df.index)) pdt.assert_series_equal(wrapped['b'], pd.Series([7, 8, 9], index=df.index)) wrapped.update_col_from_series('a', pd.Series([]))
pdt.assert_series_equal(wrapped['a'], df['a'])
pandas.util.testing.assert_series_equal
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] =
tm.makeDataFrame()
pandas.util.testing.makeDataFrame