prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np from pandas.tseries.holiday import USFederalHolidayCalendar import datetime import pandas as pd def mape(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def rmse(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.sqrt(np.mean((y_true - y_pred) ** 2)) def DR_Temp_data_cleaning(dataframe): ''' inplace change of the dataframe, for the structure purpose, return this dataframe ''' dataframe['Date'] = pd.to_datetime(dataframe['Date']) test = dataframe[ ['Date', 'Hour', 'Weekday', 'Month', 'Load', 'Mean_Temp', 'Mean_Humi', 'RIV_Temp', 'RIV_Humi', 'LAX_Temp', 'LAX_Humi', 'USC_Temp', 'USC_Humi', 'WJF_Temp', 'WJF_Humi', 'TRM_Temp', 'TRM_Humi']] test.loc[:, 'RIV_Temp_Log'] = np.log(dataframe['RIV_Temp']) test.loc[:, 'LAX_Temp_Log'] = np.log(dataframe['LAX_Temp']) test.loc[:, 'USC_Temp_Log'] = np.log(dataframe['USC_Temp']) test.loc[:, 'WJF_Temp_Log'] = np.log(dataframe['WJF_Temp']) test.loc[:, 'TRM_Temp_Log'] = np.log(dataframe['TRM_Temp']) test.loc[:, 'Load_Log'] = np.log(dataframe['Load']) test['Load_Lag_48'] = test['Load_Log'].shift(48, axis=0) test['Humi_Lag_48'] = test['Mean_Humi'].shift(48, axis=0) test['RIV_Temp_Log_Lag_48'] = test['RIV_Temp_Log'].shift(48, axis=0) test['LAX_Temp_Log_Lag_48'] = test['LAX_Temp_Log'].shift(48, axis=0) test['USC_Temp_Log_Lag_48'] = test['USC_Temp_Log'].shift(48, axis=0) test['WJF_Temp_Log_Lag_48'] = test['WJF_Temp_Log'].shift(48, axis=0) test['TRM_Temp_Log_Lag_48'] = test['TRM_Temp_Log'].shift(48, axis=0) cal = USFederalHolidayCalendar() holidays = cal.holidays(start='2014-01-01', end=str(datetime.datetime.now()), return_name=True) holidays =
pd.DataFrame(holidays)
pandas.DataFrame
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # %%capture # Compile and import local pyrossgeo module import os, sys owd = os.getcwd() os.chdir('../../') sys.path.insert(0,'../../') # !python setup.py build_ext --inplace os.chdir(owd) import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pyrossgeo import pandas as pd import json # - # # Generate the configuration files # ### Define model # + model = { "settings" : { "classes" : ["S", "E", "A", "I", "R"], "stochastic_threshold_from_below" : [1000, 1000, 1000, 1000, 1000], "stochastic_threshold_from_above" : [500, 500, 500, 500, 500], "infection_scaling" : "powerlaw", "infection_scaling_parameters" : [0, 0.004, 0.5] # a + b * rho^c }, "S" : { "linear" : [], "infection" : [ ["I", "-betaI"], ["A", "-betaA"] ] }, "E" : { "linear" : [ ["E", "-gammaE"] ], "infection" : [ ["I", "betaI"], ["A", "betaA"] ] }, "A" : { "linear" : [ ["E", "gammaE"], ["A", "-gammaA"] ], "infection" : [] }, "I" : { "linear" : [ ["A", "gammaA"], ["I", "-gammaI"] ], "infection" : [] }, "R" : { "linear" : [ ["I", "gammaI"] ], "infection" : [] } } model_classes = model['settings']['classes'] model_dim = len(model_classes) # - # ### Configuration generation parameters # # Here we define some parameters with which all the configuration files will be generated. Edit these if you want to change the simulation. # + sim_config_path = 'london_simulation' min_num_moving = 20 # Remove all commuting edges where less than `min_num_moving` are moving # Decide which classes are allowed to commute allow_class = [ ('S', True), ('E', True), ('A', True), ('Ia1', True), ('Ia2', True), ('Ia3', True), ('Is1', True), ('Is2', False), ('Is3', False), ('R', True), ] # Decide where to seed with infecteds seed_pop = [ (0, 1, 'E', 100), # Home, age group, model class, seed quantity (10, 2, 'E', 100), (23, 0, 'E', 100), (622, 4, 'E', 100), (232, 4, 'E', 100) ] # Node parameters n_betaI = 0.02 n_betaA = 0.02 n_gammaE = 1/3.0 n_gammaA = 1/3.0 n_gammaI = 1/3.0 # Cnode parameters cn_betaI = n_betaI cn_betaA = n_betaA cn_gammaE = n_gammaE cn_gammaA = n_gammaA cn_gammaI = n_gammaI # Time steps t_start = 0 t_end = 24*60*100 _, dts = pyrossgeo.utils.get_dt_schedule([ (0, 1*60), (7*60, 2), (10*60, 2*60), (17*60, 2), (19*60, 2*60) ], end_time=24*60) # - # ### Format the commuting network # + cn =
pd.read_csv("%s/commuter_networks.csv" % sim_config_path)
pandas.read_csv
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from utils.utils import CONSTANTS from utils.utils import publication_plot_pred_act, publication_plot_residuals from use_crabnet import predict_crabnet from use_densenet import predict_densenet from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error # %% plt.rcParams.update({'font.size': 16}) cons = CONSTANTS() mat_props_units = cons.mp_units_dict mat_props = cons.mps mat_props_names = cons.mp_names pretty_mp_names = cons.mp_names_dict # %% def plot_compare_lcs(times, maes, mat_prop, classic_results=None, ax=None): mp_sym_dict = cons.mp_sym_dict mp_units_dict = cons.mp_units_dict fig = None if classic_results is not None: classic_time = classic_results[0] classic_mae = classic_results[1] crab_time, dense_time = times crab_mae, dense_mae = maes x_crab = np.arange(len(crab_mae)) x_dense = np.arange(len(dense_mae)) x_crab = np.linspace(0, crab_time, len(crab_mae)) x_dense = np.linspace(0, dense_time, len(dense_mae)) # Plot training curve if ax is None: fig, ax = plt.subplots(figsize=(6, 6)) ax.plot(x_crab, crab_mae, '-', color=cons.crab_red, marker='o', ms=0, alpha=1, label='CrabNet') ax.plot(x_dense, dense_mae, '-', color=cons.dense_blue, marker='s', ms=0, alpha=1, label='DenseNet') ax.axhline(np.min(dense_mae), color=cons.dense_blue, linestyle='--', alpha=1) ax.set_xlabel('Training time [s]') ax.plot([crab_time, dense_time], [crab_mae.iloc[-5:].mean(), dense_mae.iloc[-5:].mean()], 'kX', ms=14, mfc='gold', label='1000 epochs') ymax = 1.5*np.mean(dense_mae) if classic_results is not None: classic_x = classic_time classic_y = 1.5*np.mean(dense_mae) if classic_time > 1.2 * np.max(crab_time): classic_x = np.max(crab_time) ax.plot([classic_x*(14/20), classic_x], [classic_mae, classic_mae], 'g-', linewidth=5) ax.plot(classic_x, classic_mae, '>', mec='green', ms=12, mfc='white', mew=3, label='Best classic') ax.text(classic_x, classic_mae, f'({classic_time:0.0f} s) \n', horizontalalignment='right', verticalalignment='center') elif classic_mae > ymax: classic_mae = ymax * 0.97 ax.plot([classic_x, classic_x], [classic_mae*(16.5/20), classic_mae], 'g-', linewidth=5) ax.plot(classic_x, classic_mae, '^', mec='green', ms=12, mfc='white', mew=3, label='Best classic') txt = f'\n\n({classic_mae:0.2f} {mp_units_dict[mat_prop]}) ' ax.text(classic_x, classic_mae*(16.5/20), txt, horizontalalignment='center', verticalalignment='center') else: ax.plot(classic_x, classic_mae, 'o', mec='green', ms=12, mfc='white', mew=4, label='Best classic') ax.set_ylabel(f'MAE of {mp_sym_dict[mat_prop]} ' f'[{mp_units_dict[mat_prop]}]') ax.set_ylim(np.min(crab_mae)/1.5, ymax) ax.tick_params(left=True, top=True, right=True, direction='in', length=7) ax.tick_params(which='minor', left=True, top=True, right=True, direction='in', length=4) minor_locator_x = AutoMinorLocator(2) minor_locator_y = AutoMinorLocator(2) ax.xaxis.set_minor_locator(minor_locator_x) ax.yaxis.set_minor_locator(minor_locator_y) # Get all plot labels for legend and label legend lines, labels = ax.get_legend_handles_labels() ax.legend(lines, labels, loc='best', prop={'size': 12}) if fig is not None: return fig def multi_plots_lcs(nn_dir, classics_dir): files = os.listdir(classics_dir) classics_results_csv = classics_dir + [file for file in files if 'test_scores.csv' in file][0] df_classics = pd.read_csv(classics_results_csv) files = os.listdir(nn_dir) # print(files) nn_results_csv = nn_dir + [file for file in files if 'all_results' in file if '.csv' in file][0] df_nn = pd.read_csv(nn_results_csv) mat_props = df_nn['mat_prop'].unique() seeds = df_nn['rng_seed'].unique() seed_values = {seed: 0 for seed in seeds} df_crabnet = df_nn[df_nn['model_type'] == 'CrabNet'] for mp in mat_props: df_mp = df_crabnet mp_bools = df_mp['mat_prop'] == mp best_mae = np.min(df_mp[mp_bools]['mae_val']) pc_mae = (df_mp[mp_bools]['mae_val'] - best_mae) / best_mae imp_col = pd.Series(pc_mae, name='improvement') df_mp = pd.concat([df_mp, imp_col], axis=1) df_mp = df_mp[df_mp['mat_prop'] == mp].sort_values(by='improvement') df_mp_seeds = df_mp['rng_seed'] for i, seed in enumerate(df_mp_seeds): seed_values[seed] += (df_mp.iloc[i]['improvement']) ranked_seeds = pd.Series(seed_values).sort_values() seed = ranked_seeds.index[0] df_nn = df_nn[df_nn['rng_seed'] == seed] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12)) mats = ['energy_atom', 'Egap', 'agl_thermal_conductivity_300K', 'ael_debye_temperature'] for mp, ax in zip(mats, axes.ravel()): run_ids = df_nn[df_nn['mat_prop'] == mp] crab_id = run_ids[run_ids['model_type'] == 'CrabNet']['id'].values[0] dense_id = run_ids[run_ids['model_type'] == 'DenseNet']['id'].values[0] crab_df = pd.read_csv(f'{nn_dir}/{crab_id}/progress.csv') dense_df = pd.read_csv(f'{nn_dir}/{dense_id}/progress.csv') crab_maes = crab_df['mae_val'] dense_maes = dense_df['mae_val'] crab_bools = run_ids['model_type'] == 'CrabNet' dense_bools = run_ids['model_type'] == 'DenseNet' crab_time = run_ids[crab_bools]['fit_time'].values[0] dense_time = run_ids[dense_bools]['fit_time'].values[0] df_classic = df_classics[df_classics['mat_prop'] == mp] classic_mae = df_classic['mae_test'].values[0] classic_time = df_classic['fit_time'].values[0] plot_compare_lcs((crab_time, dense_time), (crab_maes, dense_maes), mp, (classic_time, classic_mae), ax=ax) plt.subplots_adjust(wspace=0.22) out_dir = r'figures/learning_curves/' os.makedirs(out_dir, exist_ok=True) fig_file = os.path.join(out_dir, f'four_panel_learning_curve.png') if fig is not None: fig.savefig(fig_file, dpi=300, bbox_inches='tight') # %% def plot_dense_crab_preds(mp, ax): test_file = f'test_files/{mp}_test.csv' fig = None if ax is None: fig, ax = plt.subplots(1, 2, figsize=(12, 6)) y_act_dense, y_pred_dense = predict_densenet(mp, test_file) fig_dense = publication_plot_pred_act(y_act_dense, y_pred_dense, mat_prop=mp, model='DenseNet', ax=ax[0]) y_act_crab, y_pred_crab = predict_crabnet(mp, test_file) fig_crab = publication_plot_pred_act(y_act_crab, y_pred_crab, mat_prop=mp, model='CrabNet', ax=ax[1]) if fig is not None: return fig def multi_plots_preds(): mat_props = ['energy_atom', 'Egap'] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12)) for i, mp in enumerate(mat_props): ax = axes[i, :] ax = plot_dense_crab_preds(mp, ax) plt.subplots_adjust(wspace=0.22) out_dir = r'figures/pred_vs_act/' os.makedirs(out_dir, exist_ok=True) fig_file = os.path.join(out_dir, f'four_panel_pred_vs_act.png') if fig is not None: fig.savefig(fig_file, dpi=300, bbox_inches='tight') # %% def plot_dense_crab_residuals(mp, ax): test_file = f'test_files/{mp}_test.csv' fig = None if ax is None: fig, ax = plt.subplots(1, 2, figsize=(12, 6)) y_act_dense, y_pred_dense = predict_densenet(mp, test_file) fig_dense = publication_plot_residuals(y_act_dense, y_pred_dense, mat_prop=mp, model='DenseNet', ax=ax[0]) y_act_crab, y_pred_crab = predict_crabnet(mp, test_file) fig_crab = publication_plot_residuals(y_act_crab, y_pred_crab, mat_prop=mp, model='CrabNet', ax=ax[1]) y0_min, y0_max = ax[0].get_ylim() y1_min, y1_max = ax[1].get_ylim() y_min_min = np.min([y0_min, y1_min]) y_max_max = np.max([y0_max, y1_max]) ax[0].set_ylim(y_min_min, y_max_max) ax[1].set_ylim(y_min_min, y_max_max) if fig is not None: return fig def multi_plots_residuals(): mat_props = ['energy_atom', 'Egap'] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 12)) for i, mp in enumerate(mat_props): ax = axes[i, :] ax = plot_dense_crab_residuals(mp, ax) plt.subplots_adjust(wspace=0.22) out_dir = r'figures/residuals/' os.makedirs(out_dir, exist_ok=True) fig_file = os.path.join(out_dir, f'four_panel_residuals.png') if fig is not None: fig.savefig(fig_file, dpi=300, bbox_inches='tight') # %% def get_figures(nn_dir, classics_dir): files = os.listdir(classics_dir) classics_results_csv = classics_dir + [file for file in files if 'test_scores.csv' in file][0] df_classics =
pd.read_csv(classics_results_csv)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[62]: import pandas as pd import plotly.graph_objects as go import france_data_management as data import datetime as dt from datetime import timedelta from dateutil.relativedelta import relativedelta PATH = "../../" # In[63]: df_vacsi = data.import_data_vacsi_fra() # In[ ]: # In[64]: def nbWithSpaces(nb): str_nb = str(int(round(nb))) if(nb>100000): return str_nb[:3] + " " + str_nb[3:] elif(nb>10000): return str_nb[:2] + " " + str_nb[2:] elif(nb>1000): return str_nb[:1] + " " + str_nb[1:] else: return str_nb # In[185]: fig = go.Figure() DATE_DEBUT = "2021-09-01" date_5_mois = (pd.to_datetime(DATE_DEBUT) - relativedelta(months=5) - timedelta(days=2)).strftime(format="%Y-%m-%d") date_7_mois = (
pd.to_datetime(DATE_DEBUT)
pandas.to_datetime
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/3/21 17:40 Desc: 天天基金网-基金档案-投资组合 http://fundf10.eastmoney.com/ccmx_000001.html """ import pandas as pd import requests from bs4 import BeautifulSoup from akshare.utils import demjson def fund_portfolio_hold_em(symbol: str = "162411", date: str = "2020") -> pd.DataFrame: """ 天天基金网-基金档案-投资组合-基金持仓 http://fundf10.eastmoney.com/ccmx_000001.html :param symbol: 基金代码 :type symbol: str :param date: 查询年份 :type date: str :return: 基金持仓 :rtype: pandas.DataFrame """ url = "http://fundf10.eastmoney.com/FundArchivesDatas.aspx" params = { "type": "jjcc", "code": symbol, "topline": "200", "year": date, "month": "", "rt": "0.913877030254846", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -1]) soup = BeautifulSoup(data_json["content"], "lxml") item_label = [ item.text.split("\xa0\xa0")[1] for item in soup.find_all("h4", attrs={"class": "t"}) ] big_df = pd.DataFrame() for item in range(len(item_label)): temp_df = pd.read_html(data_json["content"], converters={"股票代码": str})[item] del temp_df["相关资讯"] temp_df["占净值比例"] = temp_df["占净值比例"].str.split("%", expand=True).iloc[:, 0] temp_df.rename(columns={"持股数(万股)": "持股数", "持仓市值(万元)": "持仓市值"}, inplace=True) temp_df.rename(columns={"持股数(万股)": "持股数", "持仓市值(万元人民币)": "持仓市值"}, inplace=True) temp_df["季度"] = item_label[item] temp_df = temp_df[ [ "序号", "股票代码", "股票名称", "占净值比例", "持股数", "持仓市值", "季度", ] ] big_df = big_df.append(temp_df, ignore_index=True) big_df["占净值比例"] = pd.to_numeric(big_df["占净值比例"], errors="coerce") big_df["持股数"] = pd.to_numeric(big_df["持股数"], errors="coerce") big_df["持仓市值"] = pd.to_numeric(big_df["持仓市值"], errors="coerce") big_df["序号"] = range(1, len(big_df) + 1) return big_df def fund_portfolio_bond_hold_em(symbol: str = "000001", date: str = "2021") -> pd.DataFrame: """ 天天基金网-基金档案-投资组合-债券持仓 http://fundf10.eastmoney.com/ccmx1_000001.html :param symbol: 基金代码 :type symbol: str :param date: 查询年份 :type date: str :return: 债券持仓 :rtype: pandas.DataFrame """ url = "http://fundf10.eastmoney.com/FundArchivesDatas.aspx" params = { "type": "zqcc", "code": symbol, "year": date, "rt": "0.913877030254846", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -1]) soup = BeautifulSoup(data_json["content"], "lxml") item_label = [ item.text.split("\xa0\xa0")[1] for item in soup.find_all("h4", attrs={"class": "t"}) ] big_df = pd.DataFrame() for item in range(len(item_label)): temp_df = pd.read_html(data_json["content"], converters={"债券代码": str})[item] temp_df["占净值比例"] = temp_df["占净值比例"].str.split("%", expand=True).iloc[:, 0] temp_df.rename(columns={"持仓市值(万元)": "持仓市值"}, inplace=True) temp_df["季度"] = item_label[item] temp_df = temp_df[ [ "序号", "债券代码", "债券名称", "占净值比例", "持仓市值", "季度", ] ] big_df = big_df.append(temp_df, ignore_index=True) big_df["占净值比例"] = pd.to_numeric(big_df["占净值比例"], errors="coerce") big_df["持仓市值"] = pd.to_numeric(big_df["持仓市值"], errors="coerce") big_df["序号"] = range(1, len(big_df) + 1) return big_df def fund_portfolio_industry_allocation_em(symbol: str = "000001", date: str = "2021") -> pd.DataFrame: """ 天天基金网-基金档案-投资组合-行业配置 http://fundf10.eastmoney.com/hytz_000001.html :param symbol: 基金代码 :type symbol: str :param date: 查询年份 :type date: str :return: 行业配置 :rtype: pandas.DataFrame """ url = "http://api.fund.eastmoney.com/f10/HYPZ/" headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Host': 'api.fund.eastmoney.com', 'Pragma': 'no-cache', 'Referer': 'http://fundf10.eastmoney.com/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.82 Safari/537.36', } params = { 'fundCode': symbol, 'year': date, 'callback': 'jQuery183006997159478989867_1648016188499', '_': '1648016377955', } r = requests.get(url, params=params, headers=headers) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -1]) temp_list = [] for item in data_json["Data"]["QuarterInfos"]: temp_list.extend(item["HYPZInfo"]) temp_df = pd.DataFrame(temp_list) temp_df.reset_index(inplace=True) temp_df['index'] = temp_df.index + 1 temp_df.columns = [ "序号", "-", "截止时间", "-", "行业类别", "市值", "-", "占净值比例", "-", "-", "-", "-", "-", "-", "-", "-", "-", ] temp_df = temp_df[ [ "序号", "行业类别", "占净值比例", "市值", "截止时间", ] ] temp_df["市值"] = pd.to_numeric(temp_df["市值"]) temp_df["占净值比例"] = pd.to_numeric(temp_df["占净值比例"], errors="coerce") return temp_df def fund_portfolio_change_em( symbol: str = "003567", indicator: str = "累计买入", date: str = "2020" ) -> pd.DataFrame: """ 天天基金网-基金档案-投资组合-重大变动 http://fundf10.eastmoney.com/ccbd_000001.html :param symbol: 基金代码 :type symbol: str :param indicator: choice of {"累计买入", "累计卖出"} :type indicator: str :param date: 查询年份 :type date: str :return: 重大变动 :rtype: pandas.DataFrame """ indicator_map = { "累计买入": "1", "累计卖出": "2", } url = "http://fundf10.eastmoney.com/FundArchivesDatas.aspx" params = { "type": "zdbd", "code": symbol, "zdbd": indicator_map[indicator], "year": date, "rt": "0.913877030254846", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[data_text.find("{") : -1]) soup = BeautifulSoup(data_json["content"], "lxml") item_label = [ item.text.split("\xa0\xa0")[1] for item in soup.find_all("h4", attrs={"class": "t"}) ] big_df =
pd.DataFrame()
pandas.DataFrame
from sapextractor.database_connection.interface import DatabaseConnection from sapextractor.utils.string_matching import find_corr import pandas as pd from getpass import getpass from sapextractor.utils import constants import time class OracleConnection(DatabaseConnection): def __init__(self, hostname="127.0.0.1", port="1521", sid="xe", username="system", password="<PASSWORD>"): import cx_Oracle self.TIMESTAMP_FORMAT = "%Y%m%d %H%M%S" self.DATE_FORMAT_INTERNAL = "%Y%m%d" self.HOUR_FORMAT_INTERNAL = "%H%M%S" self.DATE_FORMAT = "%Y%m%d" constants.TIMESTAMP_FORMAT = self.TIMESTAMP_FORMAT constants.DATE_FORMAT_INTERNAL = self.DATE_FORMAT_INTERNAL constants.HOUR_FORMAT_INTERNAL = self.HOUR_FORMAT_INTERNAL constants.DATE_FORMAT = self.DATE_FORMAT self.table_prefix = "SAPSR3." self.con = cx_Oracle.connect(username, password, hostname + ":" + str(port) + "/" + str(sid), encoding="UTF-8", events=True) DatabaseConnection.__init__(self) def execute_read_sql(self, sql, columns): cursor = self.con.cursor() cursor.prefetchrows = constants.ORACLE_ARRAYSIZE cursor.arraysize = constants.ORACLE_ARRAYSIZE print(time.time(), "executing: "+sql) cursor.execute(sql) stream = [] df = [] while True: res = cursor.fetchmany(10000) if len(res) == 0: break for row in res: el = {} for idx, col in enumerate(columns): el[col] = row[idx] stream.append(el) this_dataframe = pd.DataFrame(stream) df.append(this_dataframe) stream = None stream = [] if df: df = pd.concat(df) else: df =
pd.DataFrame({x: [] for x in columns})
pandas.DataFrame
# -*- coding: utf-8 -*- from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt from tkinter import filedialog from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from scipy.interpolate import make_interp_spline, BSpline from mpldatacursor import datacursor from matplotlib import style from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from bisect import bisect_left from scipy import interpolate import math import matplotlib.pyplot as plt import matplotlib import tkinter as tk import pandas as pd import glob import numpy as np import matplotlib.pylab as pylab from scipy.optimize import root_scalar params = {'legend.fontsize': 'x-large', 'figure.figsize': (15, 5), 'axes.labelsize': 'xx-large', 'axes.titlesize':'x-large', 'xtick.labelsize':'x-large', 'ytick.labelsize':'x-large'} pylab.rcParams.update(params) matplotlib.use('Qt5Agg') style.use("ggplot") def dBm2W(dBm): return 10**(dBm/10) def graficoBunito(x, y, points): xnew = np.linspace(x.min(), x.max(), int(points)) spl = make_interp_spline(x, y, k=3) #BSpline object ynew = spl(xnew) return xnew, ynew, spl class Ui_MainWindow(QtWidgets.QMainWindow): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1280, 720) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout_3 = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout_3.setObjectName("gridLayout_3") self.tabWidget = QtWidgets.QTabWidget(self.centralwidget) self.tabWidget.setEnabled(True) self.tabWidget.setFocusPolicy(QtCore.Qt.NoFocus) self.tabWidget.setObjectName("tabWidget") self.diagRad = QtWidgets.QWidget() self.diagRad.setObjectName("diagRad") self.gridLayout_2 = QtWidgets.QGridLayout(self.diagRad) self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout_8 = QtWidgets.QVBoxLayout() self.verticalLayout_8.setObjectName("verticalLayout_8") self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") self.label = QtWidgets.QLabel(self.diagRad) self.label.setObjectName("label") self.verticalLayout.addWidget(self.label) self.label_2 = QtWidgets.QLabel(self.diagRad) self.label_2.setObjectName("label_2") self.verticalLayout.addWidget(self.label_2) self.horizontalLayout.addLayout(self.verticalLayout) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setObjectName("verticalLayout_2") self.folderPath = QtWidgets.QLineEdit(self.diagRad) self.folderPath.setEnabled(True) self.folderPath.setReadOnly(True) self.folderPath.setObjectName("folderPath") self.verticalLayout_2.addWidget(self.folderPath) self.folderPath_4 = QtWidgets.QLineEdit(self.diagRad) self.folderPath_4.setReadOnly(True) self.folderPath_4.setClearButtonEnabled(False) self.folderPath_4.setObjectName("folderPath_4") self.verticalLayout_2.addWidget(self.folderPath_4) self.horizontalLayout.addLayout(self.verticalLayout_2) self.verticalLayout_7 = QtWidgets.QVBoxLayout() self.verticalLayout_7.setObjectName("verticalLayout_7") self.browseFolder = QtWidgets.QPushButton(self.diagRad) self.browseFolder.setObjectName("browseFolder") self.verticalLayout_7.addWidget(self.browseFolder) self.browseFolder_4 = QtWidgets.QPushButton(self.diagRad) self.browseFolder_4.setObjectName("browseFolder_4") self.verticalLayout_7.addWidget(self.browseFolder_4) self.horizontalLayout.addLayout(self.verticalLayout_7) self.verticalLayout_8.addLayout(self.horizontalLayout) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.label_freq = QtWidgets.QLabel(self.diagRad) self.label_freq.setObjectName("label_freq") self.horizontalLayout_2.addWidget(self.label_freq) self.cb_frequency_4 = QtWidgets.QComboBox(self.diagRad) self.cb_frequency_4.setObjectName("cb_frequency_4") self.horizontalLayout_2.addWidget(self.cb_frequency_4) self.horizontalLayout_4.addLayout(self.horizontalLayout_2) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setObjectName("horizontalLayout_3") self.label_what_plot = QtWidgets.QLabel(self.diagRad) self.label_what_plot.setObjectName("label_what_plot") self.horizontalLayout_3.addWidget(self.label_what_plot) self.cb_what_plot = QtWidgets.QComboBox(self.diagRad) self.cb_what_plot.setObjectName("cb_what_plot") self.horizontalLayout_3.addWidget(self.cb_what_plot) self.horizontalLayout_4.addLayout(self.horizontalLayout_3) self.saveCsv = QtWidgets.QPushButton(self.diagRad) self.saveCsv.setObjectName("saveCsv") self.horizontalLayout_4.addWidget(self.saveCsv) self.verticalLayout_8.addLayout(self.horizontalLayout_4) self.gridLayout_2.addLayout(self.verticalLayout_8, 0, 0, 1, 1) ''' self.graphicsView = QtWidgets.QGraphicsView(self.diagRad) self.graphicsView.setObjectName("graphicsView") ''' self.canvas = FigureCanvas(Figure(figsize=(7, 7))) self.ax = self.canvas.figure.add_subplot(111, polar=True) self.ax.set_theta_zero_location("N") self.ax.autoscale(enable = False) self.ax.set_rmax(-15) self.ax.set_rmin(-45) self.gridLayout_2.addWidget(self.canvas, 1, 0, 1, 1) self.toolbar = NavigationToolbar(self.canvas, self) self.gridLayout_2.addWidget(self.toolbar, 2, 0, 1, 1) self.splitter = QtWidgets.QSplitter(self.diagRad) self.splitter.setOrientation(QtCore.Qt.Horizontal) self.splitter.setObjectName("splitter") self.normalize = QtWidgets.QCheckBox(self.splitter) self.normalize.setObjectName("normalize") self.hold = QtWidgets.QCheckBox(self.splitter) self.hold.setObjectName("hold") self.clearBtn_2 = QtWidgets.QPushButton(self.splitter) self.clearBtn_2.setObjectName("clearBtn_2") self.gridLayout_2.addWidget(self.splitter, 3, 0, 1, 1) self.tabWidget.addTab(self.diagRad, "") self.dist = QtWidgets.QWidget() self.dist.setObjectName("dist") self.gridLayout_4 = QtWidgets.QGridLayout(self.dist) self.gridLayout_4.setObjectName("gridLayout_4") self.horizontalLayout_25 = QtWidgets.QHBoxLayout() self.horizontalLayout_25.setObjectName("horizontalLayout_25") self.horizontalLayout_26 = QtWidgets.QHBoxLayout() self.horizontalLayout_26.setObjectName("horizontalLayout_26") self.label_13 = QtWidgets.QLabel(self.dist) self.label_13.setObjectName("label_13") self.horizontalLayout_26.addWidget(self.label_13) self.folderPath_2 = QtWidgets.QLineEdit(self.dist) self.folderPath_2.setObjectName("folderPath_2") self.folderPath_2.setReadOnly(True) self.horizontalLayout_26.addWidget(self.folderPath_2) self.horizontalLayout_25.addLayout(self.horizontalLayout_26) self.browseFolder_2 = QtWidgets.QPushButton(self.dist) self.browseFolder_2.setObjectName("browseFolder_2") self.horizontalLayout_25.addWidget(self.browseFolder_2) self.gridLayout_4.addLayout(self.horizontalLayout_25, 0, 0, 1, 1) self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.horizontalLayout_27 = QtWidgets.QHBoxLayout() self.horizontalLayout_27.setObjectName("horizontalLayout_27") self.label_14 = QtWidgets.QLabel(self.dist) self.label_14.setObjectName("label_14") self.horizontalLayout_27.addWidget(self.label_14) self.cb_frequency_2 = QtWidgets.QComboBox(self.dist) self.cb_frequency_2.setObjectName("cb_frequency_2") self.horizontalLayout_27.addWidget(self.cb_frequency_2) self.horizontalLayout_5.addLayout(self.horizontalLayout_27) self.horizontalLayout_28 = QtWidgets.QHBoxLayout() self.horizontalLayout_28.setObjectName("horizontalLayout_28") self.label_15 = QtWidgets.QLabel(self.dist) self.label_15.setObjectName("label_15") self.horizontalLayout_28.addWidget(self.label_15) self.cb_what_plot_2 = QtWidgets.QComboBox(self.dist) self.cb_what_plot_2.setObjectName("cb_what_plot_2") self.horizontalLayout_28.addWidget(self.cb_what_plot_2) self.horizontalLayout_5.addLayout(self.horizontalLayout_28) self.saveCsv_2 = QtWidgets.QPushButton(self.dist) self.saveCsv_2.setObjectName("saveCsv_2") self.horizontalLayout_5.addWidget(self.saveCsv_2) self.gridLayout_4.addLayout(self.horizontalLayout_5, 1, 0, 1, 1) self.canvas_2 = FigureCanvas(Figure(figsize=(7, 7))) self.ax_2 = self.canvas_2.figure.add_subplot(111) self.gridLayout_4.addWidget(self.canvas_2, 2, 0, 1, 1) self.toolbar_2 = NavigationToolbar(self.canvas_2, self) self.gridLayout_4.addWidget(self.toolbar_2, 3, 0, 1 ,1) self.splitter_4 = QtWidgets.QSplitter(self.dist) self.splitter_4.setOrientation(QtCore.Qt.Horizontal) self.splitter_4.setObjectName("splitter_4") self.normalize_2 = QtWidgets.QCheckBox(self.splitter_4) self.normalize_2.setObjectName("normalize_2") self.hold_2 = QtWidgets.QCheckBox(self.splitter_4) self.hold_2.setObjectName("hold_2") self.clearBtn_3 = QtWidgets.QPushButton(self.splitter_4) self.clearBtn_3.setObjectName("clearBtn_3") self.gridLayout_4.addWidget(self.splitter_4, 4, 0, 1, 1) self.tabWidget.addTab(self.dist, "") self.perdas = QtWidgets.QWidget() self.perdas.setObjectName("perdas") self.gridLayout_5 = QtWidgets.QGridLayout(self.perdas) self.gridLayout_5.setObjectName("gridLayout_5") self.verticalLayout_15 = QtWidgets.QVBoxLayout() self.verticalLayout_15.setObjectName("verticalLayout_15") self.verticalLayout_16 = QtWidgets.QVBoxLayout() self.verticalLayout_16.setObjectName("verticalLayout_16") self.verticalLayout_17 = QtWidgets.QVBoxLayout() self.verticalLayout_17.setObjectName("verticalLayout_17") self.horizontalLayout_31 = QtWidgets.QHBoxLayout() self.horizontalLayout_31.setObjectName("horizontalLayout_31") self.horizontalLayout_32 = QtWidgets.QHBoxLayout() self.horizontalLayout_32.setObjectName("horizontalLayout_32") self.label_16 = QtWidgets.QLabel(self.perdas) self.label_16.setObjectName("label_16") self.horizontalLayout_32.addWidget(self.label_16) self.folderPath_3 = QtWidgets.QLineEdit(self.perdas) self.folderPath_3.setObjectName("folderPath_3") self.folderPath_3.setReadOnly(True) self.horizontalLayout_32.addWidget(self.folderPath_3) self.horizontalLayout_31.addLayout(self.horizontalLayout_32) self.browseFolder_3 = QtWidgets.QPushButton(self.perdas) self.browseFolder_3.setObjectName("browseFolder_3") self.horizontalLayout_31.addWidget(self.browseFolder_3) self.verticalLayout_17.addLayout(self.horizontalLayout_31) self.verticalLayout_16.addLayout(self.verticalLayout_17) self.canvas_3 = FigureCanvas(Figure(figsize=(7, 7))) self.ax_3 = self.canvas_3.figure.add_subplot(111) self.verticalLayout_16.addWidget(self.canvas_3) self.toolbar_3 = NavigationToolbar(self.canvas_3, self) self.verticalLayout_16.addWidget(self.toolbar_3) self.verticalLayout_15.addLayout(self.verticalLayout_16) self.splitter_5 = QtWidgets.QSplitter(self.perdas) self.splitter_5.setOrientation(QtCore.Qt.Horizontal) self.splitter_5.setObjectName("splitter_5") self.verticalLayout_15.addWidget(self.splitter_5) self.gridLayout_5.addLayout(self.verticalLayout_15, 0, 0, 1, 1) self.tabWidget.addTab(self.perdas, "") self.tab = QtWidgets.QWidget() self.tab.setEnabled(True) self.tab.setObjectName("tab") self.gridLayout_7 = QtWidgets.QGridLayout(self.tab) self.gridLayout_7.setObjectName("gridLayout_7") self.splitter_2 = QtWidgets.QSplitter(self.tab) self.splitter_2.setOrientation(QtCore.Qt.Horizontal) self.splitter_2.setObjectName("splitter_2") self.layoutWidget = QtWidgets.QWidget(self.splitter_2) self.layoutWidget.setObjectName("layoutWidget") self.horizontalLayout_8 = QtWidgets.QHBoxLayout(self.layoutWidget) self.horizontalLayout_8.setContentsMargins(0, 0, 0, 0) self.horizontalLayout_8.setObjectName("horizontalLayout_8") self.verticalLayout_4 = QtWidgets.QVBoxLayout() self.verticalLayout_4.setObjectName("verticalLayout_4") self.label_3 = QtWidgets.QLabel(self.layoutWidget) self.label_3.setObjectName("label_3") self.verticalLayout_4.addWidget(self.label_3) self.label_4 = QtWidgets.QLabel(self.layoutWidget) self.label_4.setObjectName("label_4") self.verticalLayout_4.addWidget(self.label_4) self.label_freq_2 = QtWidgets.QLabel(self.layoutWidget) self.label_freq_2.setObjectName("label_freq_2") self.verticalLayout_4.addWidget(self.label_freq_2) self.horizontalLayout_8.addLayout(self.verticalLayout_4) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setObjectName("verticalLayout_5") self.folderPath_5 = QtWidgets.QLineEdit(self.layoutWidget) self.folderPath_5.setMinimumSize(QtCore.QSize(81, 0)) self.folderPath_5.setObjectName("folderPath_5") self.folderPath_5.setReadOnly(True) self.verticalLayout_5.addWidget(self.folderPath_5) self.folderPath_6 = QtWidgets.QLineEdit(self.layoutWidget) self.folderPath_6.setMinimumSize(QtCore.QSize(81, 20)) self.folderPath_6.setObjectName("folderPath_6") self.folderPath_6.setReadOnly(True) self.verticalLayout_5.addWidget(self.folderPath_6) self.cb_frequency_3 = QtWidgets.QComboBox(self.layoutWidget) self.cb_frequency_3.setMinimumSize(QtCore.QSize(81, 20)) self.cb_frequency_3.setObjectName("cb_frequency_3") self.verticalLayout_5.addWidget(self.cb_frequency_3) self.horizontalLayout_8.addLayout(self.verticalLayout_5) self.verticalLayout_6 = QtWidgets.QVBoxLayout() self.verticalLayout_6.setObjectName("verticalLayout_6") self.browseFolder_6 = QtWidgets.QPushButton(self.layoutWidget) self.browseFolder_6.setObjectName("browseFolder_6") self.verticalLayout_6.addWidget(self.browseFolder_6) self.browseFolder_5 = QtWidgets.QPushButton(self.layoutWidget) self.browseFolder_5.setObjectName("browseFolder_5") self.verticalLayout_6.addWidget(self.browseFolder_5) self.saveCsv_3 = QtWidgets.QPushButton(self.layoutWidget) self.saveCsv_3.setObjectName("saveCsv_3") self.verticalLayout_6.addWidget(self.saveCsv_3) self.horizontalLayout_8.addLayout(self.verticalLayout_6) self.line = QtWidgets.QFrame(self.splitter_2) self.line.setMaximumSize(QtCore.QSize(3, 16777215)) self.line.setFrameShape(QtWidgets.QFrame.VLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.widget = QtWidgets.QWidget(self.splitter_2) self.widget.setObjectName("widget") self.gridLayout_6 = QtWidgets.QGridLayout(self.widget) self.gridLayout_6.setContentsMargins(0, 0, 0, 0) self.gridLayout_6.setObjectName("gridLayout_6") self.verticalLayout_12 = QtWidgets.QVBoxLayout() self.verticalLayout_12.setObjectName("verticalLayout_12") self.GainCheckBox = QtWidgets.QCheckBox(self.widget) self.GainCheckBox.setObjectName("GainCheckBox") self.verticalLayout_12.addWidget(self.GainCheckBox) self.horizontalLayout_7 = QtWidgets.QHBoxLayout() self.horizontalLayout_7.setObjectName("horizontalLayout_7") self.label_5 = QtWidgets.QLabel(self.widget) self.label_5.setObjectName("label_5") self.horizontalLayout_7.addWidget(self.label_5) self.cb_Gain_1 = QtWidgets.QComboBox(self.widget) self.cb_Gain_1.setMinimumSize(QtCore.QSize(81, 20)) self.cb_Gain_1.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.cb_Gain_1.setObjectName("cb_Gain_1") self.horizontalLayout_7.addWidget(self.cb_Gain_1) self.verticalLayout_12.addLayout(self.horizontalLayout_7) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.label_6 = QtWidgets.QLabel(self.widget) self.label_6.setObjectName("label_6") self.horizontalLayout_6.addWidget(self.label_6) self.cb_Gain_2 = QtWidgets.QComboBox(self.widget) self.cb_Gain_2.setMinimumSize(QtCore.QSize(81, 20)) self.cb_Gain_2.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.cb_Gain_2.setObjectName("cb_Gain_2") self.horizontalLayout_6.addWidget(self.cb_Gain_2) self.verticalLayout_12.addLayout(self.horizontalLayout_6) self.gridLayout_6.addLayout(self.verticalLayout_12, 0, 0, 1, 1) self.verticalLayout_3 = QtWidgets.QVBoxLayout() self.verticalLayout_3.setObjectName("verticalLayout_3") self.label_10 = QtWidgets.QLabel(self.widget) self.label_10.setText("") self.label_10.setObjectName("label_10") self.verticalLayout_3.addWidget(self.label_10) self.label_7 = QtWidgets.QLabel(self.widget) self.label_7.setObjectName("label_7") self.verticalLayout_3.addWidget(self.label_7) self.line_Gain_Output = QtWidgets.QLineEdit(self.widget) self.line_Gain_Output.setMinimumSize(QtCore.QSize(81, 20)) self.line_Gain_Output.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.line_Gain_Output.setObjectName("line_Gain_Output") self.line_Gain_Output.setReadOnly(True) self.verticalLayout_3.addWidget(self.line_Gain_Output) self.gridLayout_6.addLayout(self.verticalLayout_3, 0, 1, 1, 1) self.gridLayout_7.addWidget(self.splitter_2, 0, 0, 1, 1) self.canvas_4 = FigureCanvas(Figure(figsize=(7, 7))) self.ax_4 = self.canvas_4.figure.add_subplot(111) self.gridLayout_7.addWidget(self.canvas_4, 1, 0, 1, 1) self.toolbar_4 = NavigationToolbar(self.canvas_4, self) self.gridLayout_7.addWidget(self.toolbar_4, 2, 0, 1, 1) self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.normalize_3 = QtWidgets.QCheckBox(self.tab) self.normalize_3.setObjectName("normalize_3") self.gridLayout.addWidget(self.normalize_3, 3, 0, 1, 1) self.hold_3 = QtWidgets.QCheckBox(self.tab) self.hold_3.setObjectName("hold_3") self.gridLayout.addWidget(self.hold_3, 3, 1, 1, 1) self.clearBtn_4 = QtWidgets.QPushButton(self.tab) self.clearBtn_4.setObjectName("clearBtn_4") self.gridLayout.addWidget(self.clearBtn_4, 3, 2, 1, 1) self.gridLayout_7.addLayout(self.gridLayout, 3, 0, 1, 1) self.tabWidget.addTab(self.tab, "") self.tab_2 = QtWidgets.QWidget() self.tab_2.setObjectName("tab_2") self.gridLayout_9 = QtWidgets.QGridLayout(self.tab_2) self.gridLayout_9.setObjectName("gridLayout_9") self.gridLayout_8 = QtWidgets.QGridLayout() self.gridLayout_8.setObjectName("gridLayout_8") self.horizontalLayout_9 = QtWidgets.QHBoxLayout() self.horizontalLayout_9.setObjectName("horizontalLayout_9") self.verticalLayout_9 = QtWidgets.QVBoxLayout() self.verticalLayout_9.setObjectName("verticalLayout_9") self.label_8 = QtWidgets.QLabel(self.tab_2) self.label_8.setMaximumSize(QtCore.QSize(52, 16)) self.label_8.setObjectName("label_8") self.verticalLayout_9.addWidget(self.label_8) self.label_9 = QtWidgets.QLabel(self.tab_2) self.label_9.setMaximumSize(QtCore.QSize(52, 16)) self.label_9.setObjectName("label_9") self.verticalLayout_9.addWidget(self.label_9) self.label_12 = QtWidgets.QLabel(self.tab_2) self.label_12.setObjectName("label_12") self.label_12.setMaximumSize(QtCore.QSize(52, 16)) self.verticalLayout_9.addWidget(self.label_12) self.horizontalLayout_9.addLayout(self.verticalLayout_9) self.verticalLayout_10 = QtWidgets.QVBoxLayout() self.verticalLayout_10.setObjectName("verticalLayout_10") self.line_med1 = QtWidgets.QLineEdit(self.tab_2) self.line_med1.setObjectName("line_med1") self.verticalLayout_10.addWidget(self.line_med1) self.line_med2 = QtWidgets.QLineEdit(self.tab_2) self.line_med2.setObjectName("line_med2") self.verticalLayout_10.addWidget(self.line_med2) self.line_perdas = QtWidgets.QLineEdit(self.tab_2) self.line_perdas.setObjectName("line_perdas") self.verticalLayout_10.addWidget(self.line_perdas) self.horizontalLayout_9.addLayout(self.verticalLayout_10) self.verticalLayout_11 = QtWidgets.QVBoxLayout() self.verticalLayout_11.setObjectName("verticalLayout_11") self.estimate_gain_1_btn = QtWidgets.QPushButton(self.tab_2) self.estimate_gain_1_btn.setMaximumSize(QtCore.QSize(75, 20)) self.estimate_gain_1_btn.setObjectName("estimate_gain_1_btn") self.verticalLayout_11.addWidget(self.estimate_gain_1_btn) self.estimate_gain_2_btn = QtWidgets.QPushButton(self.tab_2) self.estimate_gain_2_btn.setMaximumSize(QtCore.QSize(75, 20)) self.estimate_gain_2_btn.setObjectName("estimate_gain_2_btn") self.verticalLayout_11.addWidget(self.estimate_gain_2_btn) self.estimate_gain_3_btn = QtWidgets.QPushButton(self.tab_2) self.estimate_gain_3_btn.setMaximumSize(QtCore.QSize(75, 20)) self.estimate_gain_3_btn.setObjectName("estimate_gain_3_btn") self.verticalLayout_11.addWidget(self.estimate_gain_3_btn) self.horizontalLayout_9.addLayout(self.verticalLayout_11) self.verticalLayout_13 = QtWidgets.QVBoxLayout() self.verticalLayout_13.setObjectName("verticalLayout_13") self.label_11 = QtWidgets.QLabel(self.tab_2) self.label_11.setObjectName("label_11") self.verticalLayout_13.addWidget(self.label_11) self.gainEstimateFrequency = QtWidgets.QComboBox(self.tab_2) self.gainEstimateFrequency.setObjectName("gainEstimateFrequency") self.verticalLayout_13.addWidget(self.gainEstimateFrequency) self.horizontalLayout_9.addLayout(self.verticalLayout_13) self.gridLayout_8.addLayout(self.horizontalLayout_9, 0, 0, 1, 1) self.canvas_5 = FigureCanvas(Figure(figsize=(7, 7))) self.ax_5 = self.canvas_5.figure.add_subplot(111) self.gridLayout_8.addWidget(self.canvas_5, 1, 0, 1, 1) self.toolbar_5 = NavigationToolbar(self.canvas_5, self) self.gridLayout_8.addWidget(self.toolbar_5, 2, 0, 1, 1) ''' self.graphicsView_estimativa = QtWidgets.QGraphicsView(self.tab_2) self.graphicsView_estimativa.setObjectName("graphicsView_estimativa") self.gridLayout_8.addWidget(self.graphicsView_estimativa, 1, 0, 1, 1) ''' self.gridLayout_9.addLayout(self.gridLayout_8, 0, 0, 1, 1) self.tabWidget.addTab(self.tab_2, "") self.gridLayout_3.addWidget(self.tabWidget, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 782, 21)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") self.menuHelp = QtWidgets.QMenu(self.menubar) self.menuHelp.setObjectName("menuHelp") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.actionQuit = QtWidgets.QAction(MainWindow) self.actionQuit.setObjectName("actionQuit") self.actionHelp = QtWidgets.QAction(MainWindow) self.actionHelp.setObjectName("actionHelp") self.actionAbout = QtWidgets.QAction(MainWindow) self.actionAbout.setObjectName("actionAbout") self.menuFile.addAction(self.actionQuit) self.menuHelp.addAction(self.actionHelp) self.menuHelp.addSeparator() self.menuHelp.addAction(self.actionAbout) self.menubar.addAction(self.menuFile.menuAction()) self.menubar.addAction(self.menuHelp.menuAction()) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.browseFolder.clicked.connect(self.load_csv) self.browseFolder_2.clicked.connect(self.load_csv_2) self.browseFolder_3.clicked.connect(self.load_csv_file) self.browseFolder_4.clicked.connect(self.load_csv_file_3) self.browseFolder_5.clicked.connect(self.load_csv_file_2) self.browseFolder_6.clicked.connect(self.load_csv_3) self.clearBtn_2.clicked.connect(self.clear_plot) self.clearBtn_3.clicked.connect(self.clear_plot_3) self.clearBtn_4.clicked.connect(self.clear_plot_2) self.saveCsv.clicked.connect(self.save_csv) self.saveCsv_2.clicked.connect(self.save_csv_2) self.saveCsv_3.clicked.connect(self.save_csv_3) self.cb_frequency_4.activated.connect(self.update_plot) self.cb_frequency_2.activated.connect(self.update_plot_2) self.cb_frequency_3.activated.connect(self.update_plot_3) self.cb_what_plot.activated.connect(self.what_plot) self.cb_what_plot_2.activated.connect(self.what_plot_2) self.GainCheckBox.stateChanged.connect(self.GainEstimateEnabled) self.cb_Gain_1.activated.connect(self.GainEstimate) self.cb_Gain_2.activated.connect(self.GainEstimate) self.GainEstimateEnabled = False self.estimate_gain_1_btn.clicked.connect(self.LoadGainMeasurement1) self.estimate_gain_2_btn.clicked.connect(self.LoadGainMeasurement2) self.estimate_gain_3_btn.clicked.connect(self.LoadGainLossMeasurement) self.gainEstimateFrequency.activated.connect(self.EstimateGain) self.folderLoaded = False self.folderLoaded_2 = False self.lossLoaded = False self.lossLoaded_perda = False self.med1Loaded = False self.med2Loaded = False self.medPerdaLoaded = False self.scatGain = False def EstimateGain(self): if not self.med1Loaded: QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("Medição 1 não foi carregada corretamente!"), QtWidgets.QMessageBox.Ok) elif not self.med2Loaded: QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("Medição 2 não foi carregada corretamente!"), QtWidgets.QMessageBox.Ok) elif not self.medPerdaLoaded: QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("Medição de Perdas não foi carregada corretamente!"), QtWidgets.QMessageBox.Ok) else: def func(k): return G1dB*(1 - math.exp(-k*float(D2))) - G2dB*(1 - math.exp(-k*float(D1))) def Alfredo(k, gain, x): return gain*(1 - np.exp(-k*x)) D1 = self.GainMed1_path.name.replace('.CSV', '')[-3:] D2 = self.GainMed2_path.name.replace('.CSV', '')[-3:] desFreq = round(float(self.gainEstimateFrequency.currentText())*1e9) D1S21 = self.GainMed1[self.GainMed1.Frequency == float(desFreq)].S21.values[0] D2S21 = self.GainMed2[self.GainMed2.Frequency == float(desFreq)].S21.values[0] #D1S21 = S21D1[S21D1.Distancia == float(D1)].S21.values[0] #D2S21 = S21D2[S21D2.Distancia == float(D2)].S21.values[0] D1 = float(D1)/100 D2 = float(D2)/100 perda = self.funcaoPerdaGain(desFreq/1e9) D1S21W = dBm2W(D1S21 - perda) D2S21W = dBm2W(D2S21 - perda) lmbda = 3e8/desFreq G1 = np.sqrt(D1S21W)*(4*np.pi*float(D1))/lmbda G2 = np.sqrt(D2S21W)*(4*np.pi*float(D2))/lmbda if float(D1) != 0.0 and float(D2) != 0.0 and D1 != D2: G1dB = 10*np.log10(G1) G2dB = 10*np.log10(G2) if self.scatGain: print('Tem Scat', self.scatGain) self.scatGain.remove() #self.approxGain.pop(0).remove() self.canvas_5.draw_idle() self.scatGain = self.ax_5.scatter([float(D1)*100, float(D2)*100], [G1dB, G2dB], label='Medições') print(self.scatGain) self.canvas_5.draw_idle() #print(f'\nOrigi = {D1S21}, perda = {perda}, S21 = {D1S21 - perda}, S21W = {D1S21W}, dist = {D1}, ganho = {G1dB}') #print(f'Origi = {D2S21}, perda = {perda},S21 = {D2S21 - perda}, S21W = {D2S21W}, dist = {D2}, ganho = {G2dB}') kmax = [0.1, 1000] try: sol = root_scalar(func, method='toms748', bracket = kmax) k = sol.root Gcd = G1dB/(1-math.exp(-k*float(D1))) print(f'k = {k}, Gcd = {Gcd}') x2 = np.arange(0, 6, 0.10) self.approxGain = self.ax_5.plot(x2*100, Alfredo(k, Gcd, x2), label=f'G = {round(Gcd,2)} dB') legenda = self.ax_5.legend(bbox_to_anchor=(0, 1.02, 1, .102), borderaxespad=0, loc="right") legenda.set_draggable(True) except: pass QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Estimativa Erro"), QtWidgets.qApp.tr("Não foi possível achar uma solução para k = [0.1, 1000]"), QtWidgets.QMessageBox.Ok) def LoadGainMeasurement1(self): root = tk.Tk() root.withdraw() self.GainMed1_path = filedialog.askopenfile() try: self.GainMed1= pd.read_csv(self.GainMed1_path, header=2, engine='python') self.line_med1.setText(self.GainMed1_path.name) dist1 = self.GainMed1_path.name.replace('.CSV', '')[-3:] self.GainMed1.rename(columns = {self.GainMed1.columns[1]: 'S21', self.GainMed1.columns[2]: 'Phase'}, inplace = True) self.gainFreq1 = self.GainMed1.Frequency.unique()/1e9 print(f'Frequências 1 = {self.gainFreq1}') # self.freq_loss = self.df_4.iloc[:,0]/1e9 #self.loss = self.df_4.iloc[:,1] #nada, fon, self.funcao_perda = graficoBunito(self.freq_loss, self.loss, self.freq_loss.size*3) self.med1Loaded = True except: pass QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("Erro ao abrir Medição 1!"), QtWidgets.QMessageBox.Ok) def LoadGainMeasurement2(self): root = tk.Tk() root.withdraw() self.GainMed2_path = filedialog.askopenfile() try: self.GainMed2= pd.read_csv(self.GainMed2_path, header=2, engine='python') self.line_med2.setText(self.GainMed2_path.name) dist1 = self.GainMed2_path.name.replace('.CSV', '')[-3:] self.GainMed2.rename(columns = {self.GainMed2.columns[1]: 'S21', self.GainMed2.columns[2]: 'Phase'}, inplace = True) self.gainFreq2 = self.GainMed2.Frequency.unique()/1e9 print(f'Frequências 1 = {self.gainFreq2}') # self.freq_loss = self.df_4.iloc[:,0]/1e9 #self.loss = self.df_4.iloc[:,1] #nada, fon, self.funcao_perda = graficoBunito(self.freq_loss, self.loss, self.freq_loss.size*3) self.med2Loaded = True except: pass QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("Erro ao abrir Medição 2!"), QtWidgets.QMessageBox.Ok) if self.med1Loaded and self.med2Loaded: print('Ambas Medições Carregadas') if np.array_equal(self.gainFreq1, self.gainFreq2): self.gainEstimateFrequency.clear() self.gainEstimateFrequency.addItems([str(freq) for freq in self.gainFreq1]) else: QtWidgets.QMessageBox.information(None, QtWidgets.qApp.tr("Open File"), QtWidgets.qApp.tr("As medições não possuem o mesmo range de frequências medidas!"), QtWidgets.QMessageBox.Ok) def LoadGainLossMeasurement(self): root = tk.Tk() root.withdraw() self.gainPerdaPath = filedialog.askopenfile() try: self.gainPerda=
pd.read_csv(self.gainPerdaPath, header=2, engine='python')
pandas.read_csv
""" A warehouse for constant values required to initilize the PUDL Database. This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate static lists within the data packages or for data cleaning purposes. """ import importlib.resources import pandas as pd import sqlalchemy as sa ###################################################################### # Constants used within the init.py module. ###################################################################### prime_movers = [ 'steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine' ] """list: A list of the types of prime movers""" rto_iso = { 'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'MISO': 'Midcontinent ISO', 'ISO-NE': 'ISO New England', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool' } """dict: A dictionary containing ISO/RTO abbreviations (keys) and names (values) """ us_states = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } """dict: A dictionary containing US state abbreviations (keys) and names (values) """ canada_prov_terr = { 'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NS': 'Nova Scotia', 'NL': 'Newfoundland and Labrador', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory', } """dict: A dictionary containing Canadian provinces' and territories' abbreviations (keys) and names (values) """ cems_states = {k: v for k, v in us_states.items() if v not in {'Alaska', 'American Samoa', 'Guam', 'Hawaii', 'Northern Mariana Islands', 'National', 'Puerto Rico', 'Virgin Islands'} } """dict: A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset """ # This is imperfect for states that have split timezones. See: # https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory # For states that are split, I went with where there seem to be more people # List of timezones in pytz.common_timezones # Canada: https://en.wikipedia.org/wiki/Time_in_Canada#IANA_time_zone_database state_tz_approx = { "AK": "US/Alaska", # Alaska; Not in CEMS "AL": "US/Central", # Alabama "AR": "US/Central", # Arkansas "AS": "Pacific/Pago_Pago", # American Samoa; Not in CEMS "AZ": "US/Arizona", # Arizona "CA": "US/Pacific", # California "CO": "US/Mountain", # Colorado "CT": "US/Eastern", # Connecticut "DC": "US/Eastern", # District of Columbia "DE": "US/Eastern", # Delaware "FL": "US/Eastern", # Florida (split state) "GA": "US/Eastern", # Georgia "GU": "Pacific/Guam", # Guam; Not in CEMS "HI": "US/Hawaii", # Hawaii; Not in CEMS "IA": "US/Central", # Iowa "ID": "US/Mountain", # Idaho (split state) "IL": "US/Central", # Illinois "IN": "US/Eastern", # Indiana (split state) "KS": "US/Central", # Kansas (split state) "KY": "US/Eastern", # Kentucky (split state) "LA": "US/Central", # Louisiana "MA": "US/Eastern", # Massachusetts "MD": "US/Eastern", # Maryland "ME": "US/Eastern", # Maine "MI": "America/Detroit", # Michigan (split state) "MN": "US/Central", # Minnesota "MO": "US/Central", # Missouri "MP": "Pacific/Saipan", # Northern Mariana Islands; Not in CEMS "MS": "US/Central", # Mississippi "MT": "US/Mountain", # Montana "NC": "US/Eastern", # North Carolina "ND": "US/Central", # North Dakota (split state) "NE": "US/Central", # Nebraska (split state) "NH": "US/Eastern", # New Hampshire "NJ": "US/Eastern", # New Jersey "NM": "US/Mountain", # New Mexico "NV": "US/Pacific", # Nevada "NY": "US/Eastern", # New York "OH": "US/Eastern", # Ohio "OK": "US/Central", # Oklahoma "OR": "US/Pacific", # Oregon (split state) "PA": "US/Eastern", # Pennsylvania "PR": "America/Puerto_Rico", # Puerto Rico; Not in CEMS "RI": "US/Eastern", # Rhode Island "SC": "US/Eastern", # South Carolina "SD": "US/Central", # South Dakota (split state) "TN": "US/Central", # Tennessee "TX": "US/Central", # Texas "UT": "US/Mountain", # Utah "VA": "US/Eastern", # Virginia "VI": "America/Puerto_Rico", # Virgin Islands; Not in CEMS "VT": "US/Eastern", # Vermont "WA": "US/Pacific", # Washington "WI": "US/Central", # Wisconsin "WV": "US/Eastern", # West Virginia "WY": "US/Mountain", # Wyoming # Canada (none of these are in CEMS) "AB": "America/Edmonton", # Alberta "BC": "America/Vancouver", # British Columbia (split province) "MB": "America/Winnipeg", # Manitoba "NB": "America/Moncton", # New Brunswick "NS": "America/Halifax", # Nova Scotia "NL": "America/St_Johns", # Newfoundland and Labrador (split province) "NT": "America/Yellowknife", # Northwest Territories (split province) "NU": "America/Iqaluit", # Nunavut (split province) "ON": "America/Toronto", # Ontario (split province) "PE": "America/Halifax", # Prince Edwards Island "QC": "America/Montreal", # Quebec (split province) "SK": "America/Regina", # Saskatchewan (split province) "YT": "America/Whitehorse", # Yukon Territory } """dict: A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values) """ # Construct a dictionary mapping a canonical fuel name to a list of strings # which are used to represent that fuel in the FERC Form 1 Reporting. Case is # ignored, as all fuel strings can be converted to a lower case in the data # set. # Previous categories of ferc1_biomass_strings and ferc1_stream_strings have # been deleted and their contents redistributed to ferc1_waste_strings and # ferc1_other_strings ferc1_coal_strings = [ 'coal', 'coal-subbit', 'lignite', 'coal(sb)', 'coal (sb)', 'coal-lignite', 'coke', 'coa', 'lignite/coal', 'coal - subbit', 'coal-subb', 'coal-sub', 'coal-lig', 'coal-sub bit', 'coals', 'ciak', 'petcoke', 'coal.oil', 'coal/gas', 'bit coal', 'coal-unit #3', 'coal-subbitum', 'coal tons', 'coal mcf', 'coal unit #3', 'pet. coke', 'coal-u3', 'coal&coke', 'tons' ] """ list: A list of strings which are used to represent coal fuel in FERC Form 1 reporting. """ ferc1_oil_strings = [ 'oil', '#6 oil', '#2 oil', 'fuel oil', 'jet', 'no. 2 oil', 'no.2 oil', 'no.6& used', 'used oil', 'oil-2', 'oil (#2)', 'diesel oil', 'residual oil', '# 2 oil', 'resid. oil', 'tall oil', 'oil/gas', 'no.6 oil', 'oil-fuel', 'oil-diesel', 'oil / gas', 'oil bbls', 'oil bls', 'no. 6 oil', '#1 kerosene', 'diesel', 'no. 2 oils', 'blend oil', '#2oil diesel', '#2 oil-diesel', '# 2 oil', 'light oil', 'heavy oil', 'gas.oil', '#2', '2', '6', 'bbl', 'no 2 oil', 'no 6 oil', '#1 oil', '#6', 'oil-kero', 'oil bbl', 'biofuel', 'no 2', 'kero', '#1 fuel oil', 'no. 2 oil', 'blended oil', 'no 2. oil', '# 6 oil', 'nno. 2 oil', '#2 fuel', 'oill', 'oils', 'gas/oil', 'no.2 oil gas', '#2 fuel oil', 'oli', 'oil (#6)', 'oil/diesel', '2 oil', '#6 hvy oil', 'jet fuel', 'diesel/compos', 'oil-8', 'oil {6}', 'oil-unit #1', 'bbl.', 'oil.', 'oil #6', 'oil (6)', 'oil(#2)', 'oil-unit1&2', 'oil-6', '#2 fue oil', 'dielel oil', 'dielsel oil', '#6 & used', 'barrels', 'oil un 1 & 2', 'jet oil', 'oil-u1&2', 'oiul', 'pil', 'oil - 2', '#6 & used', 'oial' ] """ list: A list of strings which are used to represent oil fuel in FERC Form 1 reporting. """ ferc1_gas_strings = [ 'gas', 'gass', 'methane', 'natural gas', 'blast gas', 'gas mcf', 'propane', 'prop', 'natural gas', 'nat.gas', 'nat gas', 'nat. gas', 'natl gas', 'ga', 'gas`', 'syngas', 'ng', 'mcf', 'blast gaa', 'nat gas', 'gac', 'syngass', 'prop.', 'natural', 'coal.gas', 'n. gas', 'lp gas', 'natuaral gas', 'coke gas', 'gas #2016', 'propane**', '* propane', 'propane **', 'gas expander', 'gas ct', '# 6 gas', '#6 gas', 'coke oven gas' ] """ list: A list of strings which are used to represent gas fuel in FERC Form 1 reporting. """ ferc1_solar_strings = [] ferc1_wind_strings = [] ferc1_hydro_strings = [] ferc1_nuke_strings = [ 'nuclear', 'grams of uran', 'grams of', 'grams of ura', 'grams', 'nucleur', 'nulear', 'nucl', 'nucleart', 'nucelar', 'gr.uranium', 'grams of urm', 'nuclear (9)', 'nulcear', 'nuc', 'gr. uranium', 'nuclear mw da', 'grams of ura' ] """ list: A list of strings which are used to represent nuclear fuel in FERC Form 1 reporting. """ ferc1_waste_strings = [ 'tires', 'tire', 'refuse', 'switchgrass', 'wood waste', 'woodchips', 'biomass', 'wood', 'wood chips', 'rdf', 'tires/refuse', 'tire refuse', 'waste oil', 'waste', 'woodships', 'tire chips' ] """ list: A list of strings which are used to represent waste fuel in FERC Form 1 reporting. """ ferc1_other_strings = [ 'steam', 'purch steam', 'all', 'tdf', 'n/a', 'purch. steam', 'other', 'composite', 'composit', 'mbtus', 'total', 'avg', 'avg.', 'blo', 'all fuel', 'comb.', 'alt. fuels', 'na', 'comb', '/#=2\x80â\x91?', 'kã\xadgv¸\x9d?', "mbtu's", 'gas, oil', 'rrm', '3\x9c', 'average', 'furfural', '0', 'watson bng', 'toal', 'bng', '# 6 & used', 'combined', 'blo bls', 'compsite', '*', 'compos.', 'gas / oil', 'mw days', 'g', 'c', 'lime', 'all fuels', 'at right', '20', '1', 'comp oil/gas', 'all fuels to', 'the right are', 'c omposite', 'all fuels are', 'total pr crk', 'all fuels =', 'total pc', 'comp', 'alternative', 'alt. fuel', 'bio fuel', 'total prairie', '' ] """list: A list of strings which are used to represent other fuels in FERC Form 1 reporting. """ # There are also a bunch of other weird and hard to categorize strings # that I don't know what to do with... hopefully they constitute only a # small fraction of the overall generation. ferc1_fuel_strings = {"coal": ferc1_coal_strings, "oil": ferc1_oil_strings, "gas": ferc1_gas_strings, "solar": ferc1_solar_strings, "wind": ferc1_wind_strings, "hydro": ferc1_hydro_strings, "nuclear": ferc1_nuke_strings, "waste": ferc1_waste_strings, "other": ferc1_other_strings } """dict: A dictionary linking fuel types (keys) to lists of various strings representing that fuel (values) """ # Similarly, dictionary for cleaning up fuel unit strings ferc1_ton_strings = ['toms', 'taons', 'tones', 'col-tons', 'toncoaleq', 'coal', 'tons coal eq', 'coal-tons', 'ton', 'tons', 'tons coal', 'coal-ton', 'tires-tons', 'coal tons -2 ', 'coal tons 200', 'ton-2000', 'coal tons -2', 'coal tons', 'coal-tone', 'tire-ton', 'tire-tons', 'ton coal eqv'] """list: A list of fuel unit strings for tons.""" ferc1_mcf_strings = \ ['mcf', "mcf's", 'mcfs', 'mcf.', 'gas mcf', '"gas" mcf', 'gas-mcf', 'mfc', 'mct', ' mcf', 'msfs', 'mlf', 'mscf', 'mci', 'mcl', 'mcg', 'm.cu.ft.', 'kcf', '(mcf)', 'mcf *(4)', 'mcf00', 'm.cu.ft..'] """list: A list of fuel unit strings for thousand cubic feet.""" ferc1_bbl_strings = \ ['barrel', 'bbls', 'bbl', 'barrels', 'bbrl', 'bbl.', 'bbls.', 'oil 42 gal', 'oil-barrels', 'barrrels', 'bbl-42 gal', 'oil-barrel', 'bb.', 'barrells', 'bar', 'bbld', 'oil- barrel', 'barrels .', 'bbl .', 'barels', 'barrell', 'berrels', 'bb', 'bbl.s', 'oil-bbl', 'bls', 'bbl:', 'barrles', 'blb', 'propane-bbl', 'barriel', 'berriel', 'barrile', '(bbl.)', 'barrel *(4)', '(4) barrel', 'bbf', 'blb.', '(bbl)', 'bb1', 'bbsl', 'barrrel', 'barrels 100%', 'bsrrels', "bbl's", '*barrels', 'oil - barrels', 'oil 42 gal ba', 'bll', 'boiler barrel', 'gas barrel', '"boiler" barr', '"gas" barrel', '"boiler"barre', '"boiler barre', 'barrels .'] """list: A list of fuel unit strings for barrels.""" ferc1_gal_strings = ['gallons', 'gal.', 'gals', 'gals.', 'gallon', 'gal', 'galllons'] """list: A list of fuel unit strings for gallons.""" ferc1_1kgal_strings = ['oil(1000 gal)', 'oil(1000)', 'oil (1000)', 'oil(1000', 'oil(1000ga)'] """list: A list of fuel unit strings for thousand gallons.""" ferc1_gramsU_strings = [ # noqa: N816 (U-ranium is capitalized...) 'gram', 'grams', 'gm u', 'grams u235', 'grams u-235', 'grams of uran', 'grams: u-235', 'grams:u-235', 'grams:u235', 'grams u308', 'grams: u235', 'grams of', 'grams - n/a', 'gms uran', 's e uo2 grams', 'gms uranium', 'grams of urm', 'gms. of uran', 'grams (100%)', 'grams v-235', 'se uo2 grams' ] """list: A list of fuel unit strings for grams.""" ferc1_kgU_strings = [ # noqa: N816 (U-ranium is capitalized...) 'kg of uranium', 'kg uranium', 'kilg. u-235', 'kg u-235', 'kilograms-u23', 'kg', 'kilograms u-2', 'kilograms', 'kg of', 'kg-u-235', 'kilgrams', 'kilogr. u235', 'uranium kg', 'kg uranium25', 'kilogr. u-235', 'kg uranium 25', 'kilgr. u-235', 'kguranium 25', 'kg-u235' ] """list: A list of fuel unit strings for thousand grams.""" ferc1_mmbtu_strings = ['mmbtu', 'mmbtus', 'mbtus', '(mmbtu)', "mmbtu's", 'nuclear-mmbtu', 'nuclear-mmbt'] """list: A list of fuel unit strings for million British Thermal Units.""" ferc1_mwdth_strings = \ ['mwd therman', 'mw days-therm', 'mwd thrml', 'mwd thermal', 'mwd/mtu', 'mw days', 'mwdth', 'mwd', 'mw day', 'dth', 'mwdaysthermal', 'mw day therml', 'mw days thrml', 'nuclear mwd', 'mmwd', 'mw day/therml' 'mw days/therm', 'mw days (th', 'ermal)'] """list: A list of fuel unit strings for megawatt days thermal.""" ferc1_mwhth_strings = ['mwh them', 'mwh threm', 'nwh therm', 'mwhth', 'mwh therm', 'mwh', 'mwh therms.', 'mwh term.uts', 'mwh thermal', 'mwh thermals', 'mw hr therm', 'mwh therma', 'mwh therm.uts'] """list: A list of fuel unit strings for megawatt hours thermal.""" ferc1_fuel_unit_strings = {'ton': ferc1_ton_strings, 'mcf': ferc1_mcf_strings, 'bbl': ferc1_bbl_strings, 'gal': ferc1_gal_strings, '1kgal': ferc1_1kgal_strings, 'gramsU': ferc1_gramsU_strings, 'kgU': ferc1_kgU_strings, 'mmbtu': ferc1_mmbtu_strings, 'mwdth': ferc1_mwdth_strings, 'mwhth': ferc1_mwhth_strings } """ dict: A dictionary linking fuel units (keys) to lists of various strings representing those fuel units (values) """ # Categorizing the strings from the FERC Form 1 Plant Kind (plant_kind) field # into lists. There are many strings that weren't categorized, # Solar and Solar Project were not classified as these do not indicate if they # are solar thermal or photovoltaic. Variants on Steam (e.g. "steam 72" and # "steam and gas") were classified based on additional research of the plants # on the Internet. ferc1_plant_kind_steam_turbine = [ 'coal', 'steam', 'steam units 1 2 3', 'steam units 4 5', 'steam fossil', 'steam turbine', 'steam a', 'steam 100', 'steam units 1 2 3', 'steams', 'steam 1', 'steam retired 2013', 'stream', 'steam units 1,2,3', 'steam units 4&5', 'steam units 4&6', 'steam conventional', 'unit total-steam', 'unit total steam', '*resp. share steam', 'resp. share steam', 'steam (see note 1,', 'steam (see note 3)', 'mpc 50%share steam', '40% share steam' 'steam (2)', 'steam (3)', 'steam (4)', 'steam (5)', 'steam (6)', 'steam (7)', 'steam (8)', 'steam units 1 and 2', 'steam units 3 and 4', 'steam (note 1)', 'steam (retired)', 'steam (leased)', 'coal-fired steam', 'oil-fired steam', 'steam/fossil', 'steam (a,b)', 'steam (a)', 'stean', 'steam-internal comb', 'steam (see notes)', 'steam units 4 & 6', 'resp share stm note3' 'mpc50% share steam', 'mpc40%share steam', 'steam - 64%', 'steam - 100%', 'steam (1) & (2)', 'resp share st note3', 'mpc 50% shares steam', 'steam-64%', 'steam-100%', 'steam (see note 1)', 'mpc 50% share steam', 'steam units 1, 2, 3', 'steam units 4, 5', 'steam (2)', 'steam (1)', 'steam 4, 5', 'steam - 72%', 'steam (incl i.c.)', 'steam- 72%', 'steam;retired - 2013', "respondent's sh.-st.", "respondent's sh-st", '40% share steam', 'resp share stm note3', 'mpc50% share steam', 'resp share st note 3', '\x02steam (1)', ] """ list: A list of strings from FERC Form 1 for the steam turbine plant kind. """ ferc1_plant_kind_combustion_turbine = [ 'combustion turbine', 'gt', 'gas turbine', 'gas turbine # 1', 'gas turbine', 'gas turbine (note 1)', 'gas turbines', 'simple cycle', 'combustion turbine', 'comb.turb.peak.units', 'gas turbine', 'combustion turbine', 'com turbine peaking', 'gas turbine peaking', 'comb turb peaking', 'combustine turbine', 'comb. turine', 'conbustion turbine', 'combustine turbine', 'gas turbine (leased)', 'combustion tubine', 'gas turb', 'gas turbine peaker', 'gtg/gas', 'simple cycle turbine', 'gas-turbine', 'gas turbine-simple', 'gas turbine - note 1', 'gas turbine #1', 'simple cycle', 'gasturbine', 'combustionturbine', 'gas turbine (2)', 'comb turb peak units', 'jet engine', 'jet powered turbine', '*gas turbine', 'gas turb.(see note5)', 'gas turb. (see note', 'combutsion turbine', 'combustion turbin', 'gas turbine-unit 2', 'gas - turbine', 'comb turbine peaking', 'gas expander turbine', 'jet turbine', 'gas turbin (lease', 'gas turbine (leased', 'gas turbine/int. cm', 'comb.turb-gas oper.', 'comb.turb.gas/oil op', 'comb.turb.oil oper.', 'jet', 'comb. turbine (a)', 'gas turb.(see notes)', 'gas turb(see notes)', 'comb. turb-gas oper', 'comb.turb.oil oper', 'gas turbin (leasd)', 'gas turbne/int comb', 'gas turbine (note1)', 'combution turbin', '* gas turbine', 'add to gas turbine', 'gas turbine (a)', 'gas turbinint comb', 'gas turbine (note 3)', 'resp share gas note3', 'gas trubine', '*gas turbine(note3)', 'gas turbine note 3,6', 'gas turbine note 4,6', 'gas turbine peakload', 'combusition turbine', 'gas turbine (lease)', 'comb. turb-gas oper.', 'combution turbine', 'combusion turbine', 'comb. turb. oil oper', 'combustion burbine', 'combustion and gas', 'comb. turb.', 'gas turbine (lease', 'gas turbine (leasd)', 'gas turbine/int comb', '*gas turbine(note 3)', 'gas turbine (see nos', 'i.c.e./gas turbine', 'gas turbine/intcomb', 'cumbustion turbine', 'gas turb, int. comb.', 'gas turb, diesel', 'gas turb, int. comb', 'i.c.e/gas turbine', 'diesel turbine', 'comubstion turbine', 'i.c.e. /gas turbine', 'i.c.e/ gas turbine', 'i.c.e./gas tubine', ] """list: A list of strings from FERC Form 1 for the combustion turbine plant kind. """ ferc1_plant_kind_combined_cycle = [ 'Combined cycle', 'combined cycle', 'combined', 'gas & steam turbine', 'gas turb. & heat rec', 'combined cycle', 'com. cyc', 'com. cycle', 'gas turb-combined cy', 'combined cycle ctg', 'combined cycle - 40%', 'com cycle gas turb', 'combined cycle oper', 'gas turb/comb. cyc', 'combine cycle', 'cc', 'comb. cycle', 'gas turb-combined cy', 'steam and cc', 'steam cc', 'gas steam', 'ctg steam gas', 'steam comb cycle', 'gas/steam comb. cycl', 'steam (comb. cycle)' 'gas turbine/steam', 'steam & gas turbine', 'gas trb & heat rec', 'steam & combined ce', 'st/gas turb comb cyc', 'gas tur & comb cycl', 'combined cycle (a,b)', 'gas turbine/ steam', 'steam/gas turb.', 'steam & comb cycle', 'gas/steam comb cycle', 'comb cycle (a,b)', 'igcc', 'steam/gas turbine', 'gas turbine / steam', 'gas tur & comb cyc', 'comb cyc (a) (b)', 'comb cycle', 'comb cyc', 'combined turbine', 'combine cycle oper', 'comb cycle/steam tur', 'cc / gas turb', 'steam (comb. cycle)', 'steam & cc', 'gas turbine/steam', 'gas turb/cumbus cycl', 'gas turb/comb cycle', 'gasturb/comb cycle', 'gas turb/cumb. cyc', 'igcc/gas turbine', 'gas / steam', 'ctg/steam-gas', 'ctg/steam -gas' ] """ list: A list of strings from FERC Form 1 for the combined cycle plant kind. """ ferc1_plant_kind_nuke = [ 'nuclear', 'nuclear (3)', 'steam(nuclear)', 'nuclear(see note4)' 'nuclear steam', 'nuclear turbine', 'nuclear - steam', 'nuclear (a)(b)(c)', 'nuclear (b)(c)', '* nuclear', 'nuclear (b) (c)', 'nuclear (see notes)', 'steam (nuclear)', '* nuclear (note 2)', 'nuclear (note 2)', 'nuclear (see note 2)', 'nuclear(see note4)', 'nuclear steam', 'nuclear(see notes)', 'nuclear-steam', 'nuclear (see note 3)' ] """list: A list of strings from FERC Form 1 for the nuclear plant kind.""" ferc1_plant_kind_geothermal = [ 'steam - geothermal', 'steam_geothermal', 'geothermal' ] """list: A list of strings from FERC Form 1 for the geothermal plant kind.""" ferc_1_plant_kind_internal_combustion = [ 'ic', 'internal combustion', 'internal comb.', 'internl combustion' 'diesel turbine', 'int combust (note 1)', 'int. combust (note1)', 'int.combustine', 'comb. cyc', 'internal comb', 'diesel', 'diesel engine', 'internal combustion', 'int combust - note 1', 'int. combust - note1', 'internal comb recip', 'reciprocating engine', 'comb. turbine', 'internal combust.', 'int. combustion (1)', '*int combustion (1)', "*internal combust'n", 'internal', 'internal comb.', 'steam internal comb', 'combustion', 'int. combustion', 'int combust (note1)', 'int. combustine', 'internl combustion', '*int. combustion (1)' ] """ list: A list of strings from FERC Form 1 for the internal combustion plant kind. """ ferc1_plant_kind_wind = [ 'wind', 'wind energy', 'wind turbine', 'wind - turbine', 'wind generation' ] """list: A list of strings from FERC Form 1 for the wind plant kind.""" ferc1_plant_kind_photovoltaic = [ 'solar photovoltaic', 'photovoltaic', 'solar', 'solar project' ] """list: A list of strings from FERC Form 1 for the photovoltaic plant kind.""" ferc1_plant_kind_solar_thermal = ['solar thermal'] """ list: A list of strings from FERC Form 1 for the solar thermal plant kind. """ # Making a dictionary of lists from the lists of plant_fuel strings to create # a dictionary of plant fuel lists. ferc1_plant_kind_strings = { 'steam': ferc1_plant_kind_steam_turbine, 'combustion_turbine': ferc1_plant_kind_combustion_turbine, 'combined_cycle': ferc1_plant_kind_combined_cycle, 'nuclear': ferc1_plant_kind_nuke, 'geothermal': ferc1_plant_kind_geothermal, 'internal_combustion': ferc_1_plant_kind_internal_combustion, 'wind': ferc1_plant_kind_wind, 'photovoltaic': ferc1_plant_kind_photovoltaic, 'solar_thermal': ferc1_plant_kind_solar_thermal } """ dict: A dictionary of plant kinds (keys) and associated lists of plant_fuel strings (values). """ # This is an alternative set of strings for simplifying the plant kind field # from Uday & Laura at CPI. For the moment we have reverted to using our own # categorizations which are more detailed, but these are preserved here for # comparison and testing, if need be. cpi_diesel_strings = ['DIESEL', 'Diesel Engine', 'Diesel Turbine', ] """ list: A list of strings for fuel type diesel compiled by Climate Policy Initiative. """ cpi_geothermal_strings = ['Steam - Geothermal', ] """ list: A list of strings for fuel type geothermal compiled by Climate Policy Initiative. """ cpi_natural_gas_strings = [ 'Combined Cycle', 'Combustion Turbine', 'GT', 'GAS TURBINE', 'Comb. Turbine', 'Gas Turbine #1', 'Combine Cycle Oper', 'Combustion', 'Combined', 'Gas Turbine/Steam', 'Gas Turbine Peaker', 'Gas Turbine - Note 1', 'Resp Share Gas Note3', 'Gas Turbines', 'Simple Cycle', 'Gas / Steam', 'GasTurbine', 'Combine Cycle', 'CTG/Steam-Gas', 'GTG/Gas', 'CTG/Steam -Gas', 'Steam/Gas Turbine', 'CombustionTurbine', 'Gas Turbine-Simple', 'STEAM & GAS TURBINE', 'Gas & Steam Turbine', 'Gas', 'Gas Turbine (2)', 'COMBUSTION AND GAS', 'Com Turbine Peaking', 'Gas Turbine Peaking', 'Comb Turb Peaking', 'JET ENGINE', 'Comb. Cyc', 'Com. Cyc', 'Com. Cycle', 'GAS TURB-COMBINED CY', 'Gas Turb', 'Combined Cycle - 40%', 'IGCC/Gas Turbine', 'CC', 'Combined Cycle Oper', 'Simple Cycle Turbine', 'Steam and CC', 'Com Cycle Gas Turb', 'I.C.E/ Gas Turbine', 'Combined Cycle CTG', 'GAS-TURBINE', 'Gas Expander Turbine', 'Gas Turbine (Leased)', 'Gas Turbine # 1', 'Gas Turbine (Note 1)', 'COMBUSTINE TURBINE', 'Gas Turb, Int. Comb.', 'Combined Turbine', 'Comb Turb Peak Units', 'Combustion Tubine', 'Comb. Cycle', 'COMB.TURB.PEAK.UNITS', 'Steam and CC', 'I.C.E. /Gas Turbine', 'Conbustion Turbine', 'Gas Turbine/Int Comb', 'Steam & CC', 'GAS TURB. & HEAT REC', 'Gas Turb/Comb. Cyc', 'Comb. Turine', ] """list: A list of strings for fuel type gas compiled by Climate Policy Initiative. """ cpi_nuclear_strings = ['Nuclear', 'Nuclear (3)', ] """list: A list of strings for fuel type nuclear compiled by Climate Policy Initiative. """ cpi_other_strings = [ 'IC', 'Internal Combustion', 'Int Combust - Note 1', 'Resp. Share - Note 2', 'Int. Combust - Note1', 'Resp. Share - Note 4', 'Resp Share - Note 5', 'Resp. Share - Note 7', 'Internal Comb Recip', 'Reciprocating Engine', 'Internal Comb', 'Resp. Share - Note 8', 'Resp. Share - Note 9', 'Resp Share - Note 11', 'Resp. Share - Note 6', 'INT.COMBUSTINE', 'Steam (Incl I.C.)', 'Other', 'Int Combust (Note 1)', 'Resp. Share (Note 2)', 'Int. Combust (Note1)', 'Resp. Share (Note 8)', 'Resp. Share (Note 9)', 'Resp Share (Note 11)', 'Resp. Share (Note 4)', 'Resp. Share (Note 6)', 'Plant retired- 2013', 'Retired - 2013', ] """list: A list of strings for fuel type other compiled by Climate Policy Initiative. """ cpi_steam_strings = [ 'Steam', 'Steam Units 1, 2, 3', 'Resp Share St Note 3', 'Steam Turbine', 'Steam-Internal Comb', 'IGCC', 'Steam- 72%', 'Steam (1)', 'Steam (1)', 'Steam Units 1,2,3', 'Steam/Fossil', 'Steams', 'Steam - 72%', 'Steam - 100%', 'Stream', 'Steam Units 4, 5', 'Steam - 64%', 'Common', 'Steam (A)', 'Coal', 'Steam;Retired - 2013', 'Steam Units 4 & 6', ] """list: A list of strings for fuel type steam compiled by Climate Policy Initiative. """ cpi_wind_strings = ['Wind', 'Wind Turbine', 'Wind - Turbine', 'Wind Energy', ] """list: A list of strings for fuel type wind compiled by Climate Policy Initiative. """ cpi_solar_strings = [ 'Solar Photovoltaic', 'Solar Thermal', 'SOLAR PROJECT', 'Solar', 'Photovoltaic', ] """list: A list of strings for fuel type photovoltaic compiled by Climate Policy Initiative. """ cpi_plant_kind_strings = { 'natural_gas': cpi_natural_gas_strings, 'diesel': cpi_diesel_strings, 'geothermal': cpi_geothermal_strings, 'nuclear': cpi_nuclear_strings, 'steam': cpi_steam_strings, 'wind': cpi_wind_strings, 'solar': cpi_solar_strings, 'other': cpi_other_strings, } """dict: A dictionary linking fuel types (keys) to lists of strings associated by Climate Policy Institute with those fuel types (values). """ # Categorizing the strings from the FERC Form 1 Type of Plant Construction # (construction_type) field into lists. # There are many strings that weren't categorized, including crosses between # conventional and outdoor, PV, wind, combined cycle, and internal combustion. # The lists are broken out into the two types specified in Form 1: # conventional and outdoor. These lists are inclusive so that variants of # conventional (e.g. "conventional full") and outdoor (e.g. "outdoor full" # and "outdoor hrsg") are included. ferc1_const_type_outdoor = [ 'outdoor', 'outdoor boiler', 'full outdoor', 'outdoor boiler', 'outdoor boilers', 'outboilers', 'fuel outdoor', 'full outdoor', 'outdoors', 'outdoor', 'boiler outdoor& full', 'boiler outdoor&full', 'outdoor boiler& full', 'full -outdoor', 'outdoor steam', 'outdoor boiler', 'ob', 'outdoor automatic', 'outdoor repower', 'full outdoor boiler', 'fo', 'outdoor boiler & ful', 'full-outdoor', 'fuel outdoor', 'outoor', 'outdoor', 'outdoor boiler&full', 'boiler outdoor &full', 'outdoor boiler &full', 'boiler outdoor & ful', 'outdoor-boiler', 'outdoor - boiler', 'outdoor const.', '4 outdoor boilers', '3 outdoor boilers', 'full outdoor', 'full outdoors', 'full oudoors', 'outdoor (auto oper)', 'outside boiler', 'outdoor boiler&full', 'outdoor hrsg', 'outdoor hrsg', 'outdoor-steel encl.', 'boiler-outdr & full', 'con.& full outdoor', 'partial outdoor', 'outdoor (auto. oper)', 'outdoor (auto.oper)', 'outdoor construction', '1 outdoor boiler', '2 outdoor boilers', 'outdoor enclosure', '2 outoor boilers', 'boiler outdr.& full', 'boiler outdr. & full', 'ful outdoor', 'outdoor-steel enclos', 'outdoor (auto oper.)', 'con. & full outdoor', 'outdore', 'boiler & full outdor', 'full & outdr boilers', 'outodoor (auto oper)', 'outdoor steel encl.', 'full outoor', 'boiler & outdoor ful', 'otdr. blr. & f. otdr', 'f.otdr & otdr.blr.', 'oudoor (auto oper)', 'outdoor constructin', 'f. otdr. & otdr. blr', ] """list: A list of strings from FERC Form 1 associated with the outdoor construction type. """ ferc1_const_type_semioutdoor = [ 'more than 50% outdoo', 'more than 50% outdos', 'over 50% outdoor', 'over 50% outdoors', 'semi-outdoor', 'semi - outdoor', 'semi outdoor', 'semi-enclosed', 'semi-outdoor boiler', 'semi outdoor boiler', 'semi- outdoor', 'semi - outdoors', 'semi -outdoor' 'conven & semi-outdr', 'conv & semi-outdoor', 'conv & semi- outdoor', 'convent. semi-outdr', 'conv. semi outdoor', 'conv(u1)/semiod(u2)', 'conv u1/semi-od u2', 'conv-one blr-semi-od', 'convent semioutdoor', 'conv. u1/semi-od u2', 'conv - 1 blr semi od', 'conv. ui/semi-od u2', 'conv-1 blr semi-od', 'conven. semi-outdoor', 'conv semi-outdoor', 'u1-conv./u2-semi-od', 'u1-conv./u2-semi -od', 'convent. semi-outdoo', 'u1-conv. / u2-semi', 'conven & semi-outdr', 'semi -outdoor', 'outdr & conventnl', 'conven. full outdoor', 'conv. & outdoor blr', 'conv. & outdoor blr.', 'conv. & outdoor boil', 'conv. & outdr boiler', 'conv. & out. boiler', 'convntl,outdoor blr', 'outdoor & conv.', '2 conv., 1 out. boil', 'outdoor/conventional', 'conv. boiler outdoor', 'conv-one boiler-outd', 'conventional outdoor', 'conventional outdor', 'conv. outdoor boiler', 'conv.outdoor boiler', 'conventional outdr.', 'conven,outdoorboiler', 'conven full outdoor', 'conven,full outdoor', '1 out boil, 2 conv', 'conv. & full outdoor', 'conv. & outdr. boilr', 'conv outdoor boiler', 'convention. outdoor', 'conv. sem. outdoor', 'convntl, outdoor blr', 'conv & outdoor boil', 'conv & outdoor boil.', 'outdoor & conv', 'conv. broiler outdor', '1 out boilr, 2 conv', 'conv.& outdoor boil.', 'conven,outdr.boiler', 'conven,outdr boiler', 'outdoor & conventil', '1 out boilr 2 conv', 'conv & outdr. boilr', 'conven, full outdoor', 'conven full outdr.', 'conven, full outdr.', 'conv/outdoor boiler', "convnt'l outdr boilr", '1 out boil 2 conv', 'conv full outdoor', 'conven, outdr boiler', 'conventional/outdoor', 'conv&outdoor boiler', 'outdoor & convention', 'conv & outdoor boilr', 'conv & full outdoor', 'convntl. outdoor blr', 'conv - ob', "1conv'l/2odboilers", "2conv'l/1odboiler", 'conv-ob', 'conv.-ob', '1 conv/ 2odboilers', '2 conv /1 odboilers', 'conv- ob', 'conv -ob', 'con sem outdoor', 'cnvntl, outdr, boilr', 'less than 50% outdoo', 'under 50% outdoor', 'under 50% outdoors', '1cnvntnl/2odboilers', '2cnvntnl1/1odboiler', 'con & ob', 'combination (b)', 'indoor & outdoor', 'conven. blr. & full', 'conv. & otdr. blr.', 'combination', 'indoor and outdoor', 'conven boiler & full', "2conv'l/10dboiler", '4 indor/outdr boiler', '4 indr/outdr boilerr', '4 indr/outdr boiler', 'indoor & outdoof', ] """list: A list of strings from FERC Form 1 associated with the semi - outdoor construction type, or a mix of conventional and outdoor construction. """ ferc1_const_type_conventional = [ 'conventional', 'conventional', 'conventional boiler', 'conv-b', 'conventionall', 'convention', 'conventional', 'coventional', 'conven full boiler', 'c0nventional', 'conventtional', 'convential' 'underground', 'conventional bulb', 'conventrional', '*conventional', 'convential', 'convetional', 'conventioanl', 'conventioinal', 'conventaional', 'indoor construction', 'convenional', 'conventional steam', 'conventinal', 'convntional', 'conventionl', 'conventionsl', 'conventiional', 'convntl steam plants', 'indoor const.', 'full indoor', 'indoor', 'indoor automatic', 'indoor boiler', '(peak load) indoor', 'conventionl,indoor', 'conventionl, indoor', 'conventional, indoor', 'comb. cycle indoor', '3 indoor boiler', '2 indoor boilers', '1 indoor boiler', '2 indoor boiler', '3 indoor boilers', 'fully contained', 'conv - b', 'conventional/boiler', 'cnventional', 'comb. cycle indooor', 'sonventional', ] """list: A list of strings from FERC Form 1 associated with the conventional construction type. """ # Making a dictionary of lists from the lists of construction_type strings to # create a dictionary of construction type lists. ferc1_const_type_strings = { 'outdoor': ferc1_const_type_outdoor, 'semioutdoor': ferc1_const_type_semioutdoor, 'conventional': ferc1_const_type_conventional, } """dict: A dictionary of construction types (keys) and lists of construction type strings associated with each type (values) from FERC Form 1. """ ferc1_power_purchase_type = { 'RQ': 'requirement', 'LF': 'long_firm', 'IF': 'intermediate_firm', 'SF': 'short_firm', 'LU': 'long_unit', 'IU': 'intermediate_unit', 'EX': 'electricity_exchange', 'OS': 'other_service', 'AD': 'adjustment' } """dict: A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1. """ # Dictionary mapping DBF files (w/o .DBF file extension) to DB table names ferc1_dbf2tbl = { 'F1_1': 'f1_respondent_id', 'F1_2': 'f1_acb_epda', 'F1_3': 'f1_accumdepr_prvsn', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_5': 'f1_adit_190_detail', 'F1_6': 'f1_adit_190_notes', 'F1_7': 'f1_adit_amrt_prop', 'F1_8': 'f1_adit_other', 'F1_9': 'f1_adit_other_prop', 'F1_10': 'f1_allowances', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_20': 'f1_csscslc_pcsircs', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_33': 'f1_gnrt_plant', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_40': 'f1_mtrl_spply', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_43': 'f1_note_fin_stmnt', # 37% of DB 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', # 52% of DB 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_106_2009': 'f1_106_2009', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security' # 'F1_PINS': 'f1_pins', # private data, not publicized. # 'F1_FREEZE': 'f1_freeze', # private data, not publicized } """dict: A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names (values). """ ferc1_huge_tables = { 'f1_footnote_tbl', 'f1_footnote_data', 'f1_note_fin_stmnt', } """set: A set containing large FERC Form 1 tables. """ # Invert the map above so we can go either way as needed ferc1_tbl2dbf = {v: k for k, v in ferc1_dbf2tbl.items()} """dict: A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension) (values). """ # This dictionary maps the strings which are used to denote field types in the # DBF objects to the corresponding generic SQLAlchemy Column types: # These definitions come from a combination of the dbfread example program # dbf2sqlite and this DBF file format documentation page: # http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm # Un-mapped types left as 'XXX' which should obviously make an error... dbf_typemap = { 'C': sa.String, 'D': sa.Date, 'F': sa.Float, 'I': sa.Integer, 'L': sa.Boolean, 'M': sa.Text, # 10 digit .DBT block number, stored as a string... 'N': sa.Float, 'T': sa.DateTime, '0': sa.Integer, # based on dbf2sqlite mapping 'B': 'XXX', # .DBT block number, binary string '@': 'XXX', # Timestamp... Date = Julian Day, Time is in milliseconds? '+': 'XXX', # Autoincrement (e.g. for IDs) 'O': 'XXX', # Double, 8 bytes 'G': 'XXX', # OLE 10 digit/byte number of a .DBT block, stored as string } """dict: A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column types. """ # This is the set of tables which have been successfully integrated into PUDL: ferc1_pudl_tables = ( 'fuel_ferc1', # Plant-level data, linked to plants_steam_ferc1 'plants_steam_ferc1', # Plant-level data 'plants_small_ferc1', # Plant-level data 'plants_hydro_ferc1', # Plant-level data 'plants_pumped_storage_ferc1', # Plant-level data 'purchased_power_ferc1', # Inter-utility electricity transactions 'plant_in_service_ferc1', # Row-mapped plant accounting data. # 'accumulated_depreciation_ferc1' # Requires row-mapping to be useful. ) """tuple: A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL. """ ferc714_pudl_tables = ( "respondent_id_ferc714", "id_certification_ferc714", "gen_plants_ba_ferc714", "demand_monthly_ba_ferc714", "net_energy_load_ba_ferc714", "adjacency_ba_ferc714", "interchange_ba_ferc714", "lambda_hourly_ba_ferc714", "lambda_description_ferc714", "description_pa_ferc714", "demand_forecast_pa_ferc714", "demand_hourly_pa_ferc714", ) table_map_ferc1_pudl = { 'fuel_ferc1': 'f1_fuel', 'plants_steam_ferc1': 'f1_steam', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'purchased_power_ferc1': 'f1_purchased_pwr', # 'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn' } """dict: A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names. """ # This is the list of EIA923 tables that can be successfully pulled into PUDL eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923') """tuple: A tuple containing the EIA923 tables that can be successfully integrated into PUDL. """ epaipm_pudl_tables = ( 'transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm', ) """tuple: A tuple containing the EPA IPM tables that can be successfully integrated into PUDL. """ # List of entity tables entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm', ] """list: A list of PUDL entity tables. """ xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps' """string: The location of the xlsx maps within the PUDL package data. """ ############################################################################## # EIA 923 Spreadsheet Metadata ############################################################################## # patterns for matching columns to months: month_dict_eia923 = {1: '_january$', 2: '_february$', 3: '_march$', 4: '_april$', 5: '_may$', 6: '_june$', 7: '_july$', 8: '_august$', 9: '_september$', 10: '_october$', 11: '_november$', 12: '_december$'} """dict: A dictionary mapping column numbers (keys) to months (values). """ ############################################################################## # EIA 860 Spreadsheet Metadata ############################################################################## # This is the list of EIA860 tables that can be successfully pulled into PUDL eia860_pudl_tables = ( 'boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860' ) """tuple: A tuple containing the list of EIA 860 tables that can be successfully pulled into PUDL. """ eia861_pudl_tables = ( "service_territory_eia861", ) # The set of FERC Form 1 tables that have the same composite primary keys: [ # respondent_id, report_year, report_prd, row_number, spplmnt_num ]. # TODO: THIS ONLY PERTAINS TO 2015 AND MAY NEED TO BE ADJUSTED BY YEAR... ferc1_data_tables = ( 'f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev') """tuple: A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, report_year, report_prd, row_number, spplmnt_num]. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 pages 204-207, Electric Plant in Service. # Descriptions from: https://www.law.cornell.edu/cfr/text/18/part-101 ferc_electric_plant_accounts = pd.DataFrame.from_records([ # 1. Intangible Plant (2, '301', 'Intangible: Organization'), (3, '302', 'Intangible: Franchises and consents'), (4, '303', 'Intangible: Miscellaneous intangible plant'), (5, 'subtotal_intangible', 'Subtotal: Intangible Plant'), # 2. Production Plant # A. steam production (8, '310', 'Steam production: Land and land rights'), (9, '311', 'Steam production: Structures and improvements'), (10, '312', 'Steam production: Boiler plant equipment'), (11, '313', 'Steam production: Engines and engine-driven generators'), (12, '314', 'Steam production: Turbogenerator units'), (13, '315', 'Steam production: Accessory electric equipment'), (14, '316', 'Steam production: Miscellaneous power plant equipment'), (15, '317', 'Steam production: Asset retirement costs for steam production\ plant'), (16, 'subtotal_steam_production', 'Subtotal: Steam Production Plant'), # B. nuclear production (18, '320', 'Nuclear production: Land and land rights (Major only)'), (19, '321', 'Nuclear production: Structures and improvements (Major\ only)'), (20, '322', 'Nuclear production: Reactor plant equipment (Major only)'), (21, '323', 'Nuclear production: Turbogenerator units (Major only)'), (22, '324', 'Nuclear production: Accessory electric equipment (Major\ only)'), (23, '325', 'Nuclear production: Miscellaneous power plant equipment\ (Major only)'), (24, '326', 'Nuclear production: Asset retirement costs for nuclear\ production plant (Major only)'), (25, 'subtotal_nuclear_produciton', 'Subtotal: Nuclear Production Plant'), # C. hydraulic production (27, '330', 'Hydraulic production: Land and land rights'), (28, '331', 'Hydraulic production: Structures and improvements'), (29, '332', 'Hydraulic production: Reservoirs, dams, and waterways'), (30, '333', 'Hydraulic production: Water wheels, turbines and generators'), (31, '334', 'Hydraulic production: Accessory electric equipment'), (32, '335', 'Hydraulic production: Miscellaneous power plant equipment'), (33, '336', 'Hydraulic production: Roads, railroads and bridges'), (34, '337', 'Hydraulic production: Asset retirement costs for hydraulic\ production plant'), (35, 'subtotal_hydraulic_production', 'Subtotal: Hydraulic Production\ Plant'), # D. other production (37, '340', 'Other production: Land and land rights'), (38, '341', 'Other production: Structures and improvements'), (39, '342', 'Other production: Fuel holders, producers, and accessories'), (40, '343', 'Other production: Prime movers'), (41, '344', 'Other production: Generators'), (42, '345', 'Other production: Accessory electric equipment'), (43, '346', 'Other production: Miscellaneous power plant equipment'), (44, '347', 'Other production: Asset retirement costs for other production\ plant'), (None, '348', 'Other production: Energy Storage Equipment'), (45, 'subtotal_other_production', 'Subtotal: Other Production Plant'), (46, 'subtotal_production', 'Subtotal: Production Plant'), # 3. Transmission Plant, (48, '350', 'Transmission: Land and land rights'), (None, '351', 'Transmission: Energy Storage Equipment'), (49, '352', 'Transmission: Structures and improvements'), (50, '353', 'Transmission: Station equipment'), (51, '354', 'Transmission: Towers and fixtures'), (52, '355', 'Transmission: Poles and fixtures'), (53, '356', 'Transmission: Overhead conductors and devices'), (54, '357', 'Transmission: Underground conduit'), (55, '358', 'Transmission: Underground conductors and devices'), (56, '359', 'Transmission: Roads and trails'), (57, '359.1', 'Transmission: Asset retirement costs for transmission\ plant'), (58, 'subtotal_transmission', 'Subtotal: Transmission Plant'), # 4. Distribution Plant (60, '360', 'Distribution: Land and land rights'), (61, '361', 'Distribution: Structures and improvements'), (62, '362', 'Distribution: Station equipment'), (63, '363', 'Distribution: Storage battery equipment'), (64, '364', 'Distribution: Poles, towers and fixtures'), (65, '365', 'Distribution: Overhead conductors and devices'), (66, '366', 'Distribution: Underground conduit'), (67, '367', 'Distribution: Underground conductors and devices'), (68, '368', 'Distribution: Line transformers'), (69, '369', 'Distribution: Services'), (70, '370', 'Distribution: Meters'), (71, '371', 'Distribution: Installations on customers\' premises'), (72, '372', 'Distribution: Leased property on customers\' premises'), (73, '373', 'Distribution: Street lighting and signal systems'), (74, '374', 'Distribution: Asset retirement costs for distribution plant'), (75, 'subtotal_distribution', 'Subtotal: Distribution Plant'), # 5. Regional Transmission and Market Operation Plant (77, '380', 'Regional transmission: Land and land rights'), (78, '381', 'Regional transmission: Structures and improvements'), (79, '382', 'Regional transmission: Computer hardware'), (80, '383', 'Regional transmission: Computer software'), (81, '384', 'Regional transmission: Communication Equipment'), (82, '385', 'Regional transmission: Miscellaneous Regional Transmission\ and Market Operation Plant'), (83, '386', 'Regional transmission: Asset Retirement Costs for Regional\ Transmission and Market Operation\ Plant'), (84, 'subtotal_regional_transmission', 'Subtotal: Transmission and Market\ Operation Plant'), (None, '387', 'Regional transmission: [Reserved]'), # 6. General Plant (86, '389', 'General: Land and land rights'), (87, '390', 'General: Structures and improvements'), (88, '391', 'General: Office furniture and equipment'), (89, '392', 'General: Transportation equipment'), (90, '393', 'General: Stores equipment'), (91, '394', 'General: Tools, shop and garage equipment'), (92, '395', 'General: Laboratory equipment'), (93, '396', 'General: Power operated equipment'), (94, '397', 'General: Communication equipment'), (95, '398', 'General: Miscellaneous equipment'), (96, 'subtotal_general', 'Subtotal: General Plant'), (97, '399', 'General: Other tangible property'), (98, '399.1', 'General: Asset retirement costs for general plant'), (99, 'total_general', 'TOTAL General Plant'), (100, '101_and_106', 'Electric plant in service (Major only)'), (101, '102_purchased', 'Electric plant purchased'), (102, '102_sold', 'Electric plant sold'), (103, '103', 'Experimental plant unclassified'), (104, 'total_electric_plant', 'TOTAL Electric Plant in Service')], columns=['row_number', 'ferc_account_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in Service. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 page 219, ACCUMULATED PROVISION FOR DEPRECIATION # OF ELECTRIC UTILITY PLANT (Account 108). ferc_accumulated_depreciation = pd.DataFrame.from_records([ # Section A. Balances and Changes During Year (1, 'balance_beginning_of_year', 'Balance Beginning of Year'), (3, 'depreciation_expense', '(403) Depreciation Expense'), (4, 'depreciation_expense_asset_retirement', \ '(403.1) Depreciation Expense for Asset Retirement Costs'), (5, 'expense_electric_plant_leased_to_others', \ '(413) Exp. of Elec. Plt. Leas. to Others'), (6, 'transportation_expenses_clearing',\ 'Transportation Expenses-Clearing'), (7, 'other_clearing_accounts', 'Other Clearing Accounts'), (8, 'other_accounts_specified',\ 'Other Accounts (Specify, details in footnote):'), # blank: might also be other charges like line 17. (9, 'other_charges', 'Other Charges:'), (10, 'total_depreciation_provision_for_year',\ 'TOTAL Deprec. Prov for Year (Enter Total of lines 3 thru 9)'), (11, 'net_charges_for_plant_retired', 'Net Charges for Plant Retired:'), (12, 'book_cost_of_plant_retired', 'Book Cost of Plant Retired'), (13, 'cost_of_removal', 'Cost of Removal'), (14, 'salvage_credit', 'Salvage (Credit)'), (15, 'total_net_charges_for_plant_retired',\ 'TOTAL Net Chrgs. for Plant Ret. (Enter Total of lines 12 thru 14)'), (16, 'other_debit_or_credit_items',\ 'Other Debit or Cr. Items (Describe, details in footnote):'), # blank: can be "Other Charges", e.g. in 2012 for PSCo. (17, 'other_charges_2', 'Other Charges 2'), (18, 'book_cost_or_asset_retirement_costs_retired',\ 'Book Cost or Asset Retirement Costs Retired'), (19, 'balance_end_of_year', \ 'Balance End of Year (Enter Totals of lines 1, 10, 15, 16, and 18)'), # Section B. Balances at End of Year According to Functional Classification (20, 'steam_production_end_of_year', 'Steam Production'), (21, 'nuclear_production_end_of_year', 'Nuclear Production'), (22, 'hydraulic_production_end_of_year',\ 'Hydraulic Production-Conventional'), (23, 'pumped_storage_end_of_year', 'Hydraulic Production-Pumped Storage'), (24, 'other_production', 'Other Production'), (25, 'transmission', 'Transmission'), (26, 'distribution', 'Distribution'), (27, 'regional_transmission_and_market_operation', 'Regional Transmission and Market Operation'), (28, 'general', 'General'), (29, 'total', 'TOTAL (Enter Total of lines 20 thru 28)')], columns=['row_number', 'line_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108). """ ###################################################################### # Constants from EIA From 923 used within init.py module ###################################################################### # From Page 7 of EIA Form 923, Census Region a US state is located in census_region = { 'NEW': 'New England', 'MAT': 'Middle Atlantic', 'SAT': 'South Atlantic', 'ESC': 'East South Central', 'WSC': 'West South Central', 'ENC': 'East North Central', 'WNC': 'West North Central', 'MTN': 'Mountain', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', } """dict: A dictionary mapping Census Region abbreviations (keys) to Census Region names (values). """ # From Page 7 of EIA Form923 # Static list of NERC (North American Electric Reliability Corporation) # regions, used for where plant is located nerc_region = { 'NPCC': 'Northeast Power Coordinating Council', 'ASCC': 'Alaska Systems Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'SERC': 'SERC Reliability Corporation', 'RFC': 'Reliability First Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'FRCC': 'Florida Reliability Coordinating Council', 'WECC': 'Western Electricity Coordinating Council' } """dict: A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values). """ # From Page 7 of EIA Form 923 EIA’s internal consolidated NAICS sectors. # For internal purposes, EIA consolidates NAICS categories into seven groups. sector_eia = { # traditional regulated electric utilities '1': 'Electric Utility', # Independent power producers which are not cogenerators '2': 'NAICS-22 Non-Cogen', # Independent power producers which are cogenerators, but whose # primary business purpose is the sale of electricity to the public '3': 'NAICS-22 Cogen', # Commercial non-cogeneration facilities that produce electric power, # are connected to the gird, and can sell power to the public '4': 'Commercial NAICS Non-Cogen', # Commercial cogeneration facilities that produce electric power, are # connected to the grid, and can sell power to the public '5': 'Commercial NAICS Cogen', # Industrial non-cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '6': 'Industrial NAICS Non-Cogen', # Industrial cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '7': 'Industrial NAICS Cogen' } """dict: A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values). """ # EIA 923: EIA Type of prime mover: prime_movers_eia923 = { 'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'OT': 'Other', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'PV': 'Photovoltaic', 'WT': 'Wind Turbine, Onshore', 'WS': 'Wind Turbine, Offshore' } """dict: A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values). """ # EIA 923: The fuel code reported to EIA.Two or three letter alphanumeric: fuel_type_eia923 = { 'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.' } """dict: A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values). """ # Fuel type strings for EIA 923 generator fuel table fuel_type_eia923_gen_fuel_coal_strings = [ 'ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: The list of EIA 923 Generation Fuel strings associated with coal fuel. """ fuel_type_eia923_gen_fuel_oil_strings = [ 'dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: The list of EIA 923 Generation Fuel strings associated with oil fuel. """ fuel_type_eia923_gen_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: The list of EIA 923 Generation Fuel strings associated with gas fuel. """ fuel_type_eia923_gen_fuel_solar_strings = ['sun', ] """list: The list of EIA 923 Generation Fuel strings associated with solar power. """ fuel_type_eia923_gen_fuel_wind_strings = ['wnd', ] """list: The list of EIA 923 Generation Fuel strings associated with wind power. """ fuel_type_eia923_gen_fuel_hydro_strings = ['wat', ] """list: The list of EIA 923 Generation Fuel strings associated with hydro power. """ fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc', ] """list: The list of EIA 923 Generation Fuel strings associated with nuclear power. """ fuel_type_eia923_gen_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'] """list: The list of EIA 923 Generation Fuel strings associated with solid waste fuel. """ fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh', ] """list: The list of EIA 923 Generation Fuel strings associated with geothermal power. """ fuel_type_eia923_gen_fuel_simple_map = { 'coal': fuel_type_eia923_gen_fuel_coal_strings, 'oil': fuel_type_eia923_gen_fuel_oil_strings, 'gas': fuel_type_eia923_gen_fuel_gas_strings, 'solar': fuel_type_eia923_gen_fuel_solar_strings, 'wind': fuel_type_eia923_gen_fuel_wind_strings, 'hydro': fuel_type_eia923_gen_fuel_hydro_strings, 'nuclear': fuel_type_eia923_gen_fuel_nuclear_strings, 'waste': fuel_type_eia923_gen_fuel_waste_strings, 'other': fuel_type_eia923_gen_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # Fuel type strings for EIA 923 boiler fuel table fuel_type_eia923_boiler_fuel_coal_strings = [ 'ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type coal. """ fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type oil. """ fuel_type_eia923_boiler_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type gas. """ fuel_type_eia923_boiler_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type waste. """ fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type other. """ fuel_type_eia923_boiler_fuel_simple_map = { 'coal': fuel_type_eia923_boiler_fuel_coal_strings, 'oil': fuel_type_eia923_boiler_fuel_oil_strings, 'gas': fuel_type_eia923_boiler_fuel_gas_strings, 'waste': fuel_type_eia923_boiler_fuel_waste_strings, 'other': fuel_type_eia923_boiler_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # PUDL consolidation of EIA923 AER fuel type strings into same categories as # 'energy_source_eia923' plus additional renewable and nuclear categories. # These classifications are not currently used, as the EIA fuel type and energy # source designations provide more detailed information. aer_coal_strings = ['col', 'woc', 'pc'] """list: A list of EIA 923 AER fuel type strings associated with coal. """ aer_gas_strings = ['mlg', 'ng', 'oog'] """list: A list of EIA 923 AER fuel type strings associated with gas. """ aer_oil_strings = ['dfo', 'rfo', 'woo'] """list: A list of EIA 923 AER fuel type strings associated with oil. """ aer_solar_strings = ['sun'] """list: A list of EIA 923 AER fuel type strings associated with solar power. """ aer_wind_strings = ['wnd'] """list: A list of EIA 923 AER fuel type strings associated with wind power. """ aer_hydro_strings = ['hps', 'hyc'] """list: A list of EIA 923 AER fuel type strings associated with hydro power. """ aer_nuclear_strings = ['nuc'] """list: A list of EIA 923 AER fuel type strings associated with nuclear power. """ aer_waste_strings = ['www'] """list: A list of EIA 923 AER fuel type strings associated with waste. """ aer_other_strings = ['geo', 'orw', 'oth'] """list: A list of EIA 923 AER fuel type strings associated with other fuel. """ aer_fuel_type_strings = { 'coal': aer_coal_strings, 'gas': aer_gas_strings, 'oil': aer_oil_strings, 'solar': aer_solar_strings, 'wind': aer_wind_strings, 'hydro': aer_hydro_strings, 'nuclear': aer_nuclear_strings, 'waste': aer_waste_strings, 'other': aer_other_strings } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923: A partial aggregation of the reported fuel type codes into # larger categories used by EIA in, for example, # the Annual Energy Review (AER).Two or three letter alphanumeric. # See the Fuel Code table (Table 5), below: fuel_type_aer_eia923 = { 'SUN': 'Solar PV and thermal', 'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste' } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'] """list: A list of strings from EIA 860 associated with fuel type coal. """ fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'] """list: A list of strings from EIA 860 associated with fuel type oil. """ fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'] """list: A list of strings from EIA 860 associated with fuel type gas. """ fuel_type_eia860_solar_strings = ['sun', 'solar'] """list: A list of strings from EIA 860 associated with solar power. """ fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt'] """list: A list of strings from EIA 860 associated with wind power. """ fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro'] """list: A list of strings from EIA 860 associated with hydro power. """ fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear'] """list: A list of strings from EIA 860 associated with nuclear power. """ fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'] """list: A list of strings from EIA 860 associated with fuel type waste. """ fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'] """list: A list of strings from EIA 860 associated with fuel type other. """ fuel_type_eia860_simple_map = { 'coal': fuel_type_eia860_coal_strings, 'oil': fuel_type_eia860_oil_strings, 'gas': fuel_type_eia860_gas_strings, 'solar': fuel_type_eia860_solar_strings, 'wind': fuel_type_eia860_wind_strings, 'hydro': fuel_type_eia860_hydro_strings, 'nuclear': fuel_type_eia860_nuclear_strings, 'waste': fuel_type_eia860_waste_strings, 'other': fuel_type_eia860_other_strings, } """dict: A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923/860: Lumping of energy source categories. energy_source_eia_simple_map = { 'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'solar': ['SUN'], 'wind': ['WND'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'] } """dict: A dictionary mapping EIA fuel types (keys) to fuel codes (values). """ fuel_group_eia923_simple_map = { 'coal': ['coal', 'petroleum coke'], 'oil': ['petroleum'], 'gas': ['natural gas', 'other gas'] } """dict: A dictionary mapping EIA 923 simple fuel types("oil", "coal", "gas") (keys) to fuel types (values). """ # EIA 923: The type of physical units fuel consumption is reported in. # All consumption is reported in either short tons for solids, # thousands of cubic feet for gases, and barrels for liquids. fuel_units_eia923 = { 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)', 'barrels': 'Barrels (for liquids)' } """dict: A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values). """ # EIA 923: Designates the purchase type under which receipts occurred # in the reporting month. One or two character alphanumeric: contract_type_eia923 = { 'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)' } """dict: A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel Receipts and Costs table. """ # EIA 923: The fuel code associated with the fuel receipt. # Defined on Page 7 of EIA Form 923 # Two or three character alphanumeric: energy_source_eia923 = { 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BM': 'Biomass', 'BIT': 'Bituminous Coal', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'OG': 'Other Gas', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.', } """dict: A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel Receipts and Costs table. """ # EIA 923 Fuel Group, from Page 7 EIA Form 923 # Groups fossil fuel energy sources into fuel groups that are located in the # Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke. fuel_group_eia923 = ( 'coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas' ) """tuple: A tuple containing EIA 923 fuel groups. """ # EIA 923: Type of Coal Mine as defined on Page 7 of EIA Form 923 coalmine_type_eia923 = { 'P': 'Preparation Plant', 'S': 'Surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground', 'SU': 'Both an underground and surface mine with most coal extracted from surface', } """dict: A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values). """ # EIA 923: State abbreviation related to coal mine location. # Country abbreviations are also used in this category, but they are # non-standard because of collisions with US state names. Instead of using # the provided non-standard names, we convert to ISO-3166-1 three letter # country codes https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 coalmine_country_eia923 = { 'AU': 'AUS', # Australia 'CL': 'COL', # Colombia 'CN': 'CAN', # Canada 'IS': 'IDN', # Indonesia 'PL': 'POL', # Poland 'RS': 'RUS', # Russia 'UK': 'GBR', # United Kingdom of Great Britain 'VZ': 'VEN', # Venezuela 'OC': 'other_country', 'IM': 'unknown' } """dict: A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values). """ # EIA 923: Mode for the longest / second longest distance. transport_modes_eia923 = { 'RR': 'Rail: Shipments of fuel moved to consumers by rail \ (private or public/commercial). Included is coal hauled to or \ away from a railroad siding by truck if the truck did not use public\ roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. \ Not included are shipments to Great Lakes coal loading docks, \ tidewater piers, or coastal ports.', 'GL': 'Great Lakes: Shipments of coal moved to consumers via \ the Great Lakes. These shipments are moved via the Great Lakes \ coal loading docks, which are identified by name and location as \ follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; \ NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; \ Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; \ KCBX Terminals Inc., Chicago, Illinois; \ Superior Midwest Energy Terminal, Superior, Wisconsin', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to \ Tidewater Piers and Coastal Ports for further shipments to consumers \ via coastal water or ocean. The Tidewater Piers and Coastal Ports \ are identified by name and location as follows: Dominion Terminal \ Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, \ Alabama; IC Railmarine Terminal, Convent, Louisiana; \ International Marine Terminals, Myrtle Grove, Louisiana; \ Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; \ Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, \ Inc., Los Angeles, California; Levin-Richmond Terminal Corp., \ Richmond, California; Baltimore Terminal, Baltimore, Maryland; \ Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; \ Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, \ Newport News, Virginia; Electro-Coal Transport Corp., Davant, \ Louisiana', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers \ by tramway or conveyor.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers \ by slurry pipeline.', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline' } """dict: A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values). """ # we need to include all of the columns which we want to keep for either the # entity or annual tables. The order here matters. We need to harvest the plant # location before harvesting the location of the utilites for example. entities = { 'plants': [ # base cols ['plant_id_eia'], # static cols ['balancing_authority_code', 'balancing_authority_name', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'nerc_region', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], # annual cols ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], # need type fixing {}, # {'plant_id_eia': 'int64', # 'grid_voltage_2_kv': 'float64', # 'grid_voltage_3_kv': 'float64', # 'grid_voltage_kv': 'float64', # 'longitude': 'float64', # 'latitude': 'float64', # 'primary_purpose_naics_id': 'float64', # 'sector_id': 'float64', # 'zip_code': 'float64', # 'utility_id_eia': 'float64'}, ], 'generators': [ # base cols ['plant_id_eia', 'generator_id'], # static cols ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], # annual cols ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'minimum_load_mw', 'technology_description', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia'], # need type fixing {} # {'plant_id_eia': 'int64', # 'generator_id': 'str'}, ], # utilities must come after plants. plant location needs to be # removed before the utility locations are compiled 'utilities': [ # base cols ['utility_id_eia'], # static cols ['utility_name_eia', 'entity_type'], # annual cols ['street_address', 'city', 'state', 'zip_code', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', ], # need type fixing {'utility_id_eia': 'int64', }, ], 'boilers': [ # base cols ['plant_id_eia', 'boiler_id'], # static cols ['prime_mover_code'], # annual cols [], # need type fixing {}, ]} """dict: A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values). """ # EPA CEMS constants ##### epacems_rename_dict = { "STATE": "state", # "FACILITY_NAME": "plant_name", # Not reading from CSV "ORISPL_CODE": "plant_id_eia", "UNITID": "unitid", # These op_date, op_hour, and op_time variables get converted to # operating_date, operating_datetime and operating_time_interval in # transform/epacems.py "OP_DATE": "op_date", "OP_HOUR": "op_hour", "OP_TIME": "operating_time_hours", "GLOAD (MW)": "gross_load_mw", "GLOAD": "gross_load_mw", "SLOAD (1000 lbs)": "steam_load_1000_lbs", "SLOAD (1000lb/hr)": "steam_load_1000_lbs", "SLOAD": "steam_load_1000_lbs", "SO2_MASS (lbs)": "so2_mass_lbs", "SO2_MASS": "so2_mass_lbs", "SO2_MASS_MEASURE_FLG": "so2_mass_measurement_code", # "SO2_RATE (lbs/mmBtu)": "so2_rate_lbs_mmbtu", # Not reading from CSV # "SO2_RATE": "so2_rate_lbs_mmbtu", # Not reading from CSV # "SO2_RATE_MEASURE_FLG": "so2_rate_measure_flg", # Not reading from CSV "NOX_RATE (lbs/mmBtu)": "nox_rate_lbs_mmbtu", "NOX_RATE": "nox_rate_lbs_mmbtu", "NOX_RATE_MEASURE_FLG": "nox_rate_measurement_code", "NOX_MASS (lbs)": "nox_mass_lbs", "NOX_MASS": "nox_mass_lbs", "NOX_MASS_MEASURE_FLG": "nox_mass_measurement_code", "CO2_MASS (tons)": "co2_mass_tons", "CO2_MASS": "co2_mass_tons", "CO2_MASS_MEASURE_FLG": "co2_mass_measurement_code", # "CO2_RATE (tons/mmBtu)": "co2_rate_tons_mmbtu", # Not reading from CSV # "CO2_RATE": "co2_rate_tons_mmbtu", # Not reading from CSV # "CO2_RATE_MEASURE_FLG": "co2_rate_measure_flg", # Not reading from CSV "HEAT_INPUT (mmBtu)": "heat_content_mmbtu", "HEAT_INPUT": "heat_content_mmbtu", "FAC_ID": "facility_id", "UNIT_ID": "unit_id_epa", } """dict: A dictionary containing EPA CEMS column names (keys) and replacement names to use when reading those columns into PUDL (values). """ # Any column that exactly matches one of these won't be read epacems_columns_to_ignore = { "FACILITY_NAME", "SO2_RATE (lbs/mmBtu)", "SO2_RATE", "SO2_RATE_MEASURE_FLG", "CO2_RATE (tons/mmBtu)", "CO2_RATE", "CO2_RATE_MEASURE_FLG", } """set: The set of EPA CEMS columns to ignore when reading data. """ # Specify dtypes to for reading the CEMS CSVs epacems_csv_dtypes = { "STATE": pd.StringDtype(), # "FACILITY_NAME": str, # Not reading from CSV "ORISPL_CODE": pd.Int64Dtype(), "UNITID": pd.StringDtype(), # These op_date, op_hour, and op_time variables get converted to # operating_date, operating_datetime and operating_time_interval in # transform/epacems.py "OP_DATE": pd.StringDtype(), "OP_HOUR": pd.Int64Dtype(), "OP_TIME": float, "GLOAD (MW)": float, "GLOAD": float, "SLOAD (1000 lbs)": float, "SLOAD (1000lb/hr)": float, "SLOAD": float, "SO2_MASS (lbs)": float, "SO2_MASS": float, "SO2_MASS_MEASURE_FLG": pd.StringDtype(), # "SO2_RATE (lbs/mmBtu)": float, # Not reading from CSV # "SO2_RATE": float, # Not reading from CSV # "SO2_RATE_MEASURE_FLG": str, # Not reading from CSV "NOX_RATE (lbs/mmBtu)": float, "NOX_RATE": float, "NOX_RATE_MEASURE_FLG": pd.StringDtype(), "NOX_MASS (lbs)": float, "NOX_MASS": float, "NOX_MASS_MEASURE_FLG": pd.StringDtype(), "CO2_MASS (tons)": float, "CO2_MASS": float, "CO2_MASS_MEASURE_FLG": pd.StringDtype(), # "CO2_RATE (tons/mmBtu)": float, # Not reading from CSV # "CO2_RATE": float, # Not reading from CSV # "CO2_RATE_MEASURE_FLG": str, # Not reading from CSV "HEAT_INPUT (mmBtu)": float, "HEAT_INPUT": float, "FAC_ID": pd.Int64Dtype(), "UNIT_ID": pd.Int64Dtype(), } """dict: A dictionary containing column names (keys) and data types (values) for EPA CEMS. """ epacems_tables = ("hourly_emissions_epacems") """tuple: A tuple containing tables of EPA CEMS data to pull into PUDL. """ epacems_additional_plant_info_file = importlib.resources.open_text( 'pudl.package_data.epa.cems', 'plant_info_for_additional_cems_plants.csv') """typing.TextIO: Todo: Return to """ files_dict_epaipm = { 'transmission_single_epaipm': '*table_3-21*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', } """dict: A dictionary of EPA IPM tables and strings that files of those tables contain. """ epaipm_url_ext = { 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', 'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', } """dict: A dictionary of EPA IPM tables and associated URLs extensions for downloading that table's data. """ read_excel_epaipm_dict = { 'transmission_single_epaipm': dict( skiprows=3, usecols='B:F', index_col=[0, 1], ), 'transmission_joint_epaipm': {}, 'load_curves_epaipm': dict( skiprows=3, usecols='B:AB', ), 'plant_region_map_epaipm_active': dict( sheet_name='NEEDS v6_Active', usecols='C,I', ), 'plant_region_map_epaipm_retired': dict( sheet_name='NEEDS v6_Retired_Through2021', usecols='C,I', ), } """ dict: A dictionary of dictionaries containing EPA IPM tables and associated information for reading those tables into PUDL (values). """ epaipm_region_names = [ 'ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK', ] """list: A list of EPA IPM region names.""" epaipm_region_aggregations = { 'PJM': [ 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC' ], 'NYISO': [ 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K' ], 'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': [ 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS' ], 'SPP': [ 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE' ], 'WECC_NW': [ 'WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY' ] } """ dict: A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values). """ epaipm_rename_dict = { 'transmission_single_epaipm': { 'From': 'region_from', 'To': 'region_to', 'Capacity TTC (MW)': 'firm_ttc_mw', 'Energy TTC (MW)': 'nonfirm_ttc_mw', 'Transmission Tariff (2016 mills/kWh)': 'tariff_mills_kwh', }, 'load_curves_epaipm': { 'day': 'day_of_year', 'region': 'region_id_epaipm', }, 'plant_region_map_epaipm': { 'ORIS Plant Code': 'plant_id_eia', 'Region Name': 'region', }, } glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn') """ dict: A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along with the replacement name (values). """ data_sources = ( 'eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', # 'pudl' ) """tuple: A tuple containing the data sources we are able to pull into PUDL.""" # All the years for which we ought to be able to download these data sources data_years = { 'eia860': tuple(range(2001, 2019)), 'eia861': tuple(range(1990, 2019)), 'eia923': tuple(range(2001, 2020)), 'epacems': tuple(range(1995, 2019)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2019)), } """ dict: A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for each data source (values). """ # The full set of years we currently expect to be able to ingest, per source: working_years = { 'eia860': tuple(range(2009, 2019)), 'eia861': tuple(range(1999, 2019)), 'eia923': tuple(range(2009, 2019)), 'epacems': tuple(range(1995, 2019)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2019)), } """ dict: A dictionary of data sources (keys) and tuples containing the years for each data source that are able to be ingested into PUDL. """ pudl_tables = { 'eia860': eia860_pudl_tables, 'eia861': eia861_pudl_tables, 'eia923': eia923_pudl_tables, 'epacems': epacems_tables, 'epaipm': epaipm_pudl_tables, 'ferc1': ferc1_pudl_tables, 'ferc714': ferc714_pudl_tables, 'glue': glue_pudl_tables, } """ dict: A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be pulled into PUDL (values). """ base_data_urls = { 'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'pudl': 'https://catalyst.coop/pudl/' } """ dict: A dictionary containing data sources (keys) and their base data URLs (values). """ need_fix_inting = { 'plants_steam_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_hydro_ferc1': ('construction_year', 'installation_year',), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa',), } """ dict: A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null values need fixing. """ contributors = { "catalyst-cooperative": { "title": "C<NAME>ooperative", "path": "https://catalyst.coop/", "role": "publisher", "email": "<EMAIL>", "organization": "Catalyst Cooperative", }, "zane-selvans": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://amateurearthling.org/", "role": "wrangler", "organization": "Catalyst Cooperative" }, "christina-gosnell": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "steven-winter": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "alana-wilson": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "karl-dunkle-werner": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://karldw.org/", "role": "contributor", "organization": "UC Berkeley", }, 'greg-schivley': { "title": "<NAME>", "role": "contributor", }, } """ dict: A dictionary of dictionaries containing organization names (keys) and their attributes (values). """ data_source_info = { "eia860": { "title": "EIA Form 860", "path": "https://www.eia.gov/electricity/data/eia860/", }, "eia861": { "title": "EIA Form 861", "path": "https://www.eia.gov/electricity/data/eia861/", }, "eia923": { "title": "EIA Form 923", "path": "https://www.eia.gov/electricity/data/eia923/", }, "eiawater": { "title": "EIA Water Use for Power", "path": "https://www.eia.gov/electricity/data/water/", }, "epacems": { "title": "EPA Air Markets Program Data", "path": "https://ampd.epa.gov/ampd/", }, "epaipm": { "title": "EPA Integrated Planning Model", "path": "https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6", }, "ferc1": { "title": "FERC Form 1", "path": "https://www.ferc.gov/docs-filing/forms/form-1/data.asp", }, "ferc714": { "title": "FERC Form 714", "path": "https://www.ferc.gov/docs-filing/forms/form-714/data.asp", }, "ferceqr": { "title": "FERC Electric Quarterly Report", "path": "https://www.ferc.gov/docs-filing/eqr.asp", }, "msha": { "title": "Mining Safety and Health Administration", "path": "https://www.msha.gov/mine-data-retrieval-system", }, "phmsa": { "title": "Pipelines and Hazardous Materials Safety Administration", "path": "https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview", }, "pudl": { "title": "The Public Utility Data Liberation Project (PUDL)", "path": "https://catalyst.coop/pudl/", "email": "<EMAIL>", }, } """ dict: A dictionary of dictionaries containing datasources (keys) and associated attributes (values) """ contributors_by_source = { "pudl": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", "karl-dunkle-werner", ], "eia923": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", ], "eia860": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "ferc1": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "epacems": [ "catalyst-cooperative", "karl-dunkle-werner", "zane-selvans", ], "epaipm": [ "greg-schivley", ], } """ dict: A dictionary of data sources (keys) and lists of contributors (values). """ licenses = { "cc-by-4.0": { "name": "CC-BY-4.0", "title": "Creative Commons Attribution 4.0", "path": "https://creativecommons.org/licenses/by/4.0/" }, "us-govt": { "name": "other-pd", "title": "U.S. Government Work", "path": "http://www.usa.gov/publicdomain/label/1.0/", } } """ dict: A dictionary of dictionaries containing license types and their attributes. """ output_formats = [ 'sqlite', 'parquet', 'datapkg', 'notebook', ] """list: A list of types of PUDL output formats.""" keywords_by_data_source = { 'pudl': [ 'us', 'electricity', ], 'eia860': [ 'electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration' ], 'eia923': [ 'fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content' ], 'epacems': [ 'epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourly' 'environmental protection agency', 'ampd', 'air markets program data', ], 'ferc1': [ 'electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity' ], 'epaipm': [ 'epaipm', 'integrated planning', ] } """dict: A dictionary of datasets (keys) and keywords (values). """ column_dtypes = { "ferc1": { # Obviously this is not yet a complete list... "construction_year": pd.Int64Dtype(), "installation_year": pd.Int64Dtype(), 'utility_id_ferc1': pd.Int64Dtype(), 'plant_id_pudl': pd.Int64Dtype(), 'plant_id_ferc1': pd.Int64Dtype(), 'utility_id_pudl': pd.Int64Dtype(), 'report_year': pd.Int64Dtype(), 'report_date': 'datetime64[ns]', }, "ferc714": { # INCOMPLETE "report_year": pd.Int64Dtype(), "utility_id_ferc714": pd.Int64Dtype(), "utility_id_eia": pd.Int64Dtype(), "utility_name_ferc714": pd.StringDtype(), "timezone": pd.CategoricalDtype(categories=[ "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "Pacific/Honolulu"]), "utc_datetime": "datetime64[ns]", "peak_demand_summer_mw": float, "peak_demand_winter_mw": float, }, "epacems": { 'state': pd.StringDtype(), 'plant_id_eia': pd.Int64Dtype(), # Nullable Integer 'unitid': pd.StringDtype(), 'operating_datetime_utc': "datetime64[ns]", 'operating_time_hours': float, 'gross_load_mw': float, 'steam_load_1000_lbs': float, 'so2_mass_lbs': float, 'so2_mass_measurement_code': pd.StringDtype(), 'nox_rate_lbs_mmbtu': float, 'nox_rate_measurement_code': pd.StringDtype(), 'nox_mass_lbs': float, 'nox_mass_measurement_code': pd.StringDtype(), 'co2_mass_tons': float, 'co2_mass_measurement_code': pd.StringDtype(), 'heat_content_mmbtu': float, 'facility_id': pd.Int64Dtype(), # Nullable Integer 'unit_id_epa': pd.Int64Dtype(), # Nullable Integer }, "eia": { 'ash_content_pct': float, 'ash_impoundment': pd.BooleanDtype(), 'ash_impoundment_lined': pd.BooleanDtype(), # TODO: convert this field to more descriptive words 'ash_impoundment_status': pd.StringDtype(), 'associated_combined_heat_power': pd.BooleanDtype(), 'balancing_authority_code': pd.StringDtype(), 'balancing_authority_id_eia': pd.Int64Dtype(), 'balancing_authority_name': pd.StringDtype(), 'bga_source': pd.StringDtype(), 'boiler_id': pd.StringDtype(), 'bypass_heat_recovery': pd.BooleanDtype(), 'capacity_mw': float, 'carbon_capture': pd.BooleanDtype(), 'chlorine_content_ppm': float, 'city': pd.StringDtype(), 'cofire_fuels': pd.BooleanDtype(), 'contact_firstname': pd.StringDtype(), 'contact_firstname2': pd.StringDtype(), 'contact_lastname': pd.StringDtype(), 'contact_lastname2': pd.StringDtype(), 'contact_title': pd.StringDtype(), 'contact_title2': pd.StringDtype(), 'contract_expiration_date': 'datetime64[ns]', 'contract_type_code': pd.StringDtype(), 'county': pd.StringDtype(), 'county_id_fips': pd.StringDtype(), # Must preserve leading zeroes 'current_planned_operating_date': 'datetime64[ns]', 'deliver_power_transgrid': pd.BooleanDtype(), 'duct_burners': pd.BooleanDtype(), 'energy_source_code': pd.StringDtype(), 'energy_source_code_1': pd.StringDtype(), 'energy_source_code_2': pd.StringDtype(), 'energy_source_code_3': pd.StringDtype(), 'energy_source_code_4': pd.StringDtype(), 'energy_source_code_5': pd.StringDtype(), 'energy_source_code_6': pd.StringDtype(), 'energy_storage': pd.BooleanDtype(), 'entity_type': pd.StringDtype(), 'ferc_cogen_docket_no': pd.StringDtype(), 'ferc_cogen_status': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator_docket_no': pd.StringDtype(), 'ferc_small_power_producer': pd.BooleanDtype(), 'ferc_small_power_producer_docket_no': pd.StringDtype(), 'fluidized_bed_tech': pd.BooleanDtype(), 'fraction_owned': float, 'fuel_consumed_for_electricity_mmbtu': float, 'fuel_consumed_for_electricity_units': float, 'fuel_consumed_mmbtu': float, 'fuel_consumed_units': float, 'fuel_cost_per_mmbtu': float, 'fuel_group_code': pd.StringDtype(), 'fuel_group_code_simple': pd.StringDtype(), 'fuel_mmbtu_per_unit': float, 'fuel_qty_units': float, # are fuel_type and fuel_type_code the same?? # fuel_type includes 40 code-like things.. WAT, SUN, NUC, etc. 'fuel_type': pd.StringDtype(), # from the boiler_fuel_eia923 table, there are 30 code-like things, like NG, BIT, LIG 'fuel_type_code': pd.StringDtype(), 'fuel_type_code_aer': pd.StringDtype(), 'fuel_type_code_pudl': pd.StringDtype(), # this is a mix of integer-like values (2 or 5) and strings like AUGSF 'generator_id': pd.StringDtype(), 'grid_voltage_2_kv': float, 'grid_voltage_3_kv': float, 'grid_voltage_kv': float, 'heat_content_mmbtu_per_unit': float, 'iso_rto_code': pd.StringDtype(), 'latitude': float, 'liquefied_natural_gas_storage': pd.BooleanDtype(), 'longitude': float, 'mercury_content_ppm': float, 'mine_id_msha': pd.Int64Dtype(), 'mine_id_pudl': pd.Int64Dtype(), 'mine_name': pd.StringDtype(), 'mine_type_code': pd.StringDtype(), 'minimum_load_mw': float, 'moisture_content_pct': float, 'multiple_fuels': pd.BooleanDtype(), 'nameplate_power_factor': float, 'natural_gas_delivery_contract_type_code': pd.StringDtype(), 'natural_gas_local_distribution_company': pd.StringDtype(), 'natural_gas_pipeline_name_1': pd.StringDtype(), 'natural_gas_pipeline_name_2': pd.StringDtype(), 'natural_gas_pipeline_name_3': pd.StringDtype(), 'natural_gas_storage': pd.BooleanDtype(), 'natural_gas_transport_code': pd.StringDtype(), 'nerc_region': pd.StringDtype(), 'net_generation_mwh': float, 'net_metering': pd.BooleanDtype(), 'nuclear_unit_id': pd.Int64Dtype(), 'original_planned_operating_date': 'datetime64[ns]', 'operating_date': 'datetime64[ns]', 'operating_switch': pd.StringDtype(), # TODO: double check this for early 860 years 'operational_status': pd.StringDtype(), 'operational_status_code': pd.StringDtype(), 'other_combustion_tech': pd.BooleanDtype(), 'other_modifications_date': 'datetime64[ns]', 'other_planned_modifications': pd.BooleanDtype(), 'owner_city': pd.StringDtype(), 'owner_name': pd.StringDtype(), 'owner_state': pd.StringDtype(), 'owner_street_address': pd.StringDtype(), 'owner_utility_id_eia':
pd.Int64Dtype()
pandas.Int64Dtype
import yfinance as yf import pandas as pd import sys from datetime import datetime class FinanceAnalysis: def analyze(self, best_n=25): # Load data from file, generate data by running the `ticker_counts.py` script date_created = datetime.today().strftime('%Y-%m-%d') csv_filename = f"{date_created}_tick_df" data_directory = "./data" full_input_path = f"{data_directory}/{csv_filename}.csv" tick_df = pd.read_csv(full_input_path).sort_values(by=["Mentions", "Ticker"], ascending=False) tick_df.dropna(axis=1) dataColumns = ["Name", "Industry", "Previous Close", "5d Low", "5d High", "1d Change (%)", "5d Change (%)", "1mo Change (%)"] df_best = tick_df.head(best_n) df_best[dataColumns] = df_best.Ticker.apply(self.get_ticker_info) # Save to file to load into yahoo analysis script csv_filename = f"df_best_{best_n}" full_output_path = f"{data_directory}/{csv_filename}.csv" df_best.to_csv(full_output_path, index=False) print(df_best.head()) def calculate_change(self, start: float, end: float) -> float: """Use Yahoo Finance API to get the relevant data.""" return round(((end - start) / start) * 100, 2) def get_change(self, ticker: str, period: str = "1d") -> float: return self.calculate_change( yf.Ticker(ticker).history(period)["Open"].to_list()[0], yf.Ticker(ticker).history(period)["Close"].to_list()[-1] ) def get_ticker_info(self, ticker): # Standard Data info = yf.Ticker(ticker).info tickerName = info.get("longName") tickerIndustry = info.get("industry") # previous Day close tickerClose = yf.Ticker(ticker).history(period="1d")["Close"].to_list()[-1] # Highs and Lows highLow = yf.Ticker(ticker).history(period="5d") Low5d = min(highLow["Low"].to_list()) High5d = max(highLow["High"].to_list()) # Changes change1d = self.get_change(ticker) change5d = self.get_change(ticker, "5d") change1mo = self.get_change(ticker, "1mo") return
pd.Series([tickerName, tickerIndustry, tickerClose, Low5d, High5d, change1d, change5d, change1mo])
pandas.Series
import pandas as pd import numpy as np from copy import deepcopy import os from data.download import DatasetDownloader import tarfile import sys from scipy.interpolate import interp1d from pyts.visualization import plot_paa from pyts.transformation import PAA import pickle from scipy.spatial.distance import cdist, squareform from data.DTWThread import DTWThread import psutil class Preprocessor: """ Class for preprocessing routines on the mobility data set. """ # Names of columns in all dataframes. Used to inject columns into empty dataframes. DATAFRAME_COLUMN_NAMES = { "cell": ['time', 'cid', 'lac', 'asu'], "annotation": ['time', 'mode', 'notes'], "location": ['time', 'gpstime', 'provider', 'longitude', 'latitude', 'altitude', 'speed', 'bearing', 'accuracy'], "sensor": ['sensor', 'time', 'x', 'y', 'z', 'total'], "mac": ['time', 'ssid', 'level'], "marker": ['time', 'marker'], "event": ['time', 'event', 'state'] } @staticmethod def preprocess(tokens, filename: str = None, distance_metric: str = "euclidean", use_individual_columns: bool = False, load_preprocessed: str = None): """ Executes all preprocessing steps. :param tokens: List with keys of tokens to preprocess. :param filename: Specifies name of file data should be dumped to. Not persisted to disk if specified value is None. Note that filename is relative; all files are stored in /data/preprocessed. :param distance_metric: Distance metric to apply for comparison between trip segments. :param use_individual_columns: Defines whether individual columns (x, y, z) or the total (n2) value should be used for distance calculation. :load_preprocessed: str, default=None, specifies a path to a pickled preprocessed_data.dat file. if this parameter is not None the preprocessing step is skipped and the pickled data will be loaded. :return: Dictionary with preprocessed data. Specified tokens are used as keys. """ # 1. Preprocess data per token. if load_preprocessed is not None: # Load dataframes from disk. preprocessed_data = Preprocessor.restore_preprocessed_data_from_disk(filename=load_preprocessed) else: preprocessed_data = Preprocessor._preprocess_data_per_token(tokens=tokens) # 2. Cut all trips in 30 second snippets trips_cut_per_30_sec = Preprocessor.get_cut_trip_snippets_for_targets( preprocessed_data, snippet_length=30, sensor_type="acceleration", target_column_names=["total", "x", "y", "z"] ) # 3. Apply distance metric and calculate distance matrix distance_matrix = None if distance_metric is not None: if use_individual_columns: distance_matrix = Preprocessor.calculate_distance_for_individual_columns( dataframes=trips_cut_per_30_sec[1:4] ) else: distance_matrix = Preprocessor.calculate_distance_for_n2( trips_cut_per_30_sec[0], metric=distance_metric ) # 4. Dump data to file, if requested. if filename is not None: Preprocessor.persist_results( filename=filename, preprocessed_data=preprocessed_data, trips_cut_per_30_sec=trips_cut_per_30_sec, distance_metric=distance_metric, distance_matrix_n2=distance_matrix, use_individual_columns=use_individual_columns ) return preprocessed_data @staticmethod def _preprocess_data_per_token(tokens: list): """ List of tokens whose data is to be processed. :param tokens: :return: Dictionary with preprocessed data per token. """ preprocessed_data = {} for token in tokens: # 1. Get travel data per token, remove dataframes without annotations. dfs = Preprocessor.replace_none_values_with_empty_dataframes( # Drop dataframes w/o annotations. Preprocessor._remove_dataframes_without_annotation( # Get travel data per token. Preprocessor.get_data_per_token(token) ) ) # 2. Remove trips less than 10 minutes long. dfs = Preprocessor.replace_none_values_with_empty_dataframes( Preprocessor._remove_dataframes_by_duration_limit(dfs, 10 * 60) ) # 3. Cut first and last 30 seconds from scripted trips. dfs = Preprocessor.replace_none_values_with_empty_dataframes( Preprocessor._cut_off_start_and_end_in_dataframes( dataframes=dfs, list_of_dataframe_names_to_cut=["sensor", "location"], cutoff_in_seconds=60 ) ) # 4. Perform PAA. resampled_sensor_values = Preprocessor.replace_none_values_with_empty_dataframes( Preprocessor.calculate_paa(dfs) ) # Prepare dictionary with results. preprocessed_data[token] = resampled_sensor_values return preprocessed_data @staticmethod def persist_results(filename: str, preprocessed_data: dict, trips_cut_per_30_sec: list, distance_metric: str, distance_matrix_n2: pd.DataFrame, use_individual_columns=False): """ Stores preprocessing results on disk. :param filename: :param preprocessed_data: :param trips_cut_per_30_sec: :param distance_metric: :param distance_matrix_n2: :param use_individual_columns: indicates if individual columns were used :return: """ data_dir = DatasetDownloader.get_data_dir() preprocessed_path = os.path.join(data_dir, "preprocessed") # make sure the directory exists DatasetDownloader.setup_directory(preprocessed_path) full_path = os.path.join(preprocessed_path, filename) with open(full_path, "wb") as file: file.write(pickle.dumps(preprocessed_data)) trips_cut_per_30_sec[0].to_csv(full_path[:-4] + "_total.csv", sep=";", index=False) trips_cut_per_30_sec[1].to_csv(full_path[:-4] + "_x.csv", sep=";", index=False) trips_cut_per_30_sec[2].to_csv(full_path[:-4] + "_y.csv", sep=";", index=False) trips_cut_per_30_sec[3].to_csv(full_path[:-4] + "_z.csv", sep=";", index=False) if distance_metric is not None: if use_individual_columns: distance_matrix_n2_path = full_path[:-4] + "_" + "individual" + "_" + distance_metric + "_xyz" +".csv" else: distance_matrix_n2_path = full_path[:-4] + "_" + distance_metric + ".csv" distance_matrix_n2.to_csv(distance_matrix_n2_path, sep=";", index=False) @staticmethod def replace_none_values_with_empty_dataframes(dataframe_dicts: list): """ Checks every dictionary in every dictionary in specified list for None values, replaces them with empty data- frames. :param dataframe_dicts: List of dictionaries containing one dataframe for each key. :return: List in same format with Nones replaced by empty dataframes. """ # For every key in every dictionary in list: Create new dictionary with Nones replaced by empty dataframes; # concatenate new dictionaries to list. return [ { key: pd.DataFrame(columns=Preprocessor.DATAFRAME_COLUMN_NAMES[key]) if df_dict[key] is None else df_dict[key] for key in df_dict } for df_dict in dataframe_dicts ] @staticmethod def get_cut_trip_snippets_for_targets(dfs, target_column_names: list, snippet_length=30, sensor_type="acceleration"): """ This method gets a dictionary of trips per token and cuts them in the specified snippet_length. It uses the columns of the specified names (i. e. one or several of: "total", "x", "y", "z") in the sensor table. Parameters ---------- dfs: dictionary with the assumed nested structure dict[token] = list of trips per token and each trip consists of tables for at least "annotation" and "sensor" snippet_length: int, default=30, specifies the length of the time snippets in seconds sensor_type: string, default="acceleration" specifies which sensor type should be used for each entry target_column_names: list Specifies which columns should represent trip observation. Returns ------- result: returns a list of pandas.DataFrames where each row is a snippet with length snippet_length and each column is one recording step. Each entry corresponds to the total aka n2 value of the original data. Additional columns are: "mode","notes","scripted","token","trip_id", where scripted is a binary variable where scripted=1 and ordinary=0. "trip_id" helps to identify which snippet, belongs to which trip. Each element in the list corresponds to one of the specified target columns (in the same sequence). """ return [ Preprocessor.get_cut_trip_snippets_for_target( dfs=dfs, snippet_length=snippet_length, sensor_type=sensor_type, target_column_name=target_column ) for target_column in target_column_names ] @staticmethod def get_cut_trip_snippets_for_target(dfs, snippet_length=30, sensor_type="acceleration", target_column_name: str = "total"): """ This method gets a dictionary of trips per token and cuts them in the specified snippet_length. It uses the one dimensional column of the specified name (i. e. one of: "total", "x", "y", "z") in the sensor table. Parameters ---------- dfs: dictionary with the assumed nested structure dict[token] = list of trips per token and each trip consists of tables for at least "annotation" and "sensor" snippet_length: int, default=30, specifies the length of the time snippets in seconds sensor_type: string, default="acceleration" specifies which sensor type should be used for each entry target_column_name: string, default="total" Specifies which column should represent trip observation. Returns ------- result: returns a pandas.DataFrame where each row is a snippet with length snippet_length and each column is one recording step. Each entry corresponds to the total aka n2 value of the original data. Additional columns are: "mode","notes","scripted","token","trip_id", where scripted is a binary variable where scripted=1 and ordinary=0. "trip_id" helps to identify which snippet, belongs to which trip. """ HERTZ_RATE = 20 column_names = ["snippet_"+str(i) for i in range(snippet_length * HERTZ_RATE)] column_names = column_names + ["mode","notes","scripted","token", "trip_id"] result = pd.DataFrame(columns=column_names) trip_index = 0 for token_i, trips in sorted(dfs.items()): for trip_i in trips: sensor_data, mode, notes, scripted = Preprocessor._get_row_entries_for_trip(trip_i, sensor_type=sensor_type) splitted_trip = Preprocessor._cut_trip( sensor_data=sensor_data, target_column_name=target_column_name, snippet_length=snippet_length, column_names=column_names ) splitted_trip["mode"]=mode if str(notes).lower() == "nan": splitted_trip["notes"]="empty" else: splitted_trip["notes"]=notes splitted_trip["scripted"]=scripted splitted_trip["token"]=token_i splitted_trip["trip_id"]=trip_index trip_index += 1 result = pd.concat([result, splitted_trip]) result.reset_index(drop=True, inplace=True) return result @staticmethod def calculate_distance_for_n2(data, metric="euclidean"): """ This method calculates the specified distance metric for norms of the x,y,z signal, also called n2 or total in the assignment. Parameters ---------- data: pandas.DataFrame of the trip segments and the ["mode","notes","scripted","token", "trip_id"] columns metric: string, default="euclidean", specifies which distance metric method should be used. The distance is calculated with the highly optimized cdist function of scipy.spatial.distance. This makes it simple to use a wide variety of distance metrics, some of them listed below. Mandatory Distance Calculations: "euclidean" : calculates the euclidean distance "cityblock" : calculates the manhattan distance "cosine" : calculates the cosine distance "dtw" : Calculates distance with dynamic time warping. Utilizes l1 norm. for a full list of all distances see: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html Returns ------- result: returns a pandas.DataFrame where each each point in the distance matrix is the distance of one trip segment to another one and each row of the distance matrix corresponds to the trips segment distances to all other trip segments. Additional columns are: "mode","notes","scripted","token", where scripted is a binary variable where scripted=1 and ordinary=0 Note that the dimensionality of the result can be (for most cases) different to the dimensionality of the incoming data pandas.DataFrame. """ categorical_colnames=["mode","notes","scripted","token", "trip_id"] small_df = data.drop(categorical_colnames, axis=1) #column_names = list(small_df.columns.values) nr_of_rows = small_df.shape[0] nr_of_columns = small_df.shape[1] # The new dataframe has dimensionality of nr_of_rows x nr_of_rows column_names = ["distance_"+str(i) for i in range(nr_of_rows)] result = pd.DataFrame(columns=column_names) distance_matrix = \ cdist(small_df, small_df, metric=metric) if metric != 'dtw' \ else Preprocessor._calculate_distance_with_dtw(small_df, 1) result = pd.concat([result, pd.DataFrame(distance_matrix, columns=column_names)]) # Reappend the categorical columns for colname in categorical_colnames: result[colname] = data[colname] return result @staticmethod def calculate_distance_for_individual_columns(dataframes: list): """ This method calculates the specified distance metric for the individual x, y, z columns. Note that due to the data structure required for calculating distances between the individual columns currently only the Euclidean norm is supported, since I haven't found a way to concile scipy's cdist-function with the additional dimension (individual columns) in the dataset. Parameters ---------- dataframes: List of pandas.DataFrame of the trip segments and the ["mode","notes","scripted","token", "trip_id"] columns with length 3 - has to contain dataframe for columns "x", "y" and "z". Returns ------- result: returns a pandas.DataFrame where each each point in the distance matrix is the distance of one trip segment to another one and each row of the distance matrix corresponds to the trips segment distances to all other trip segments. Additional columns are: "mode","notes","scripted","token", where scripted is a binary variable where scripted=1 and ordinary=0 Note that the dimensionality of the result can be (for most cases) different to the dimensionality of the incoming data pandas.DataFrame. """ categorical_colnames=["mode","notes","scripted","token", "trip_id"] # Drop categorical column names for all dataframes. small_dfs = [data.drop(categorical_colnames, axis=1) for data in dataframes] # The new dataframe has dimensionality of nr_of_rows x nr_of_rows nr_of_rows = small_dfs[0].shape[0] column_names = ["distance_" + str(i) for i in range(nr_of_rows)] result = pd.DataFrame(columns=column_names) # Calculating distance matrix manually, since cdist(...) doesn't take 3D-arrays and I don't know how to solve # this more elegantly. distance_matrix = np.zeros([nr_of_rows, nr_of_rows]) for i in range(0, nr_of_rows): for j in range(i + 1, nr_of_rows): distance_matrix[i, j] = np.sqrt( ( (small_dfs[0].iloc[i] - small_dfs[0].iloc[j]) ** 2 + (small_dfs[1].iloc[i] - small_dfs[1].iloc[j]) ** 2 + (small_dfs[2].iloc[i] - small_dfs[2].iloc[j]) ** 2 ).sum() ) distance_matrix[j, i] = distance_matrix[i, j] result = pd.concat([result, pd.DataFrame(distance_matrix, columns=column_names)]) # Reappend the categorical columns for colname in categorical_colnames: result[colname] = dataframes[0][colname] return result @staticmethod def _calculate_distance_with_dtw(data, norm: int = 1): """ Calculates metric for specified dataframe using dynamic time warping utilizing norm. :param data: :param norm: Defines which L-norm is to be used. :return result: A 2D-nd-array containing distance from each segment to each other segment (same as with scipy's cdist() - zeros(shape, dtype=float, order='C')) """ # Initialize empty distance matrix. dist_matrix = np.zeros((data.shape[0], data.shape[0]), dtype=float) # Note regarding multithreading: Splitting up by rows leads to imbalance amongst thread workloads. # Instead, we split up all possible pairings to ensure even workloads and collect the results (and assemble # the distance matrix) after the threads finished their calculations. # Generate all pairings. segment_pairings = [(i, j) for i in range(0, data.shape[0]) for j in range(0, data.shape[0]) if j > i] # Set up multithreading. Run as many threads as logical cores are available on this machine - 1. num_threads = psutil.cpu_count(logical=True) threads = [] for i in range(0, num_threads): # Calculate distance with fastDTW between each pairing of segments. Distances between elements to themselves # are ignored and hence retain their intial value of 0. thread = DTWThread(thread_id=i, num_threads=num_threads, segment_pairings=segment_pairings, distance_matrix=dist_matrix, data_to_process=data, norm=norm) threads.append(thread) thread.start() # Wait for threads to finish. for thread in threads: thread.join() return dist_matrix @staticmethod def _cut_trip(sensor_data, target_column_name: str, snippet_length=30, column_names=None): """ Helper function to cut one trip into segments of snippet_length and return the new pandas.DataFrame that includes the "total" of each value. :param target_column_name: Name of column to use as observation in trip (i. e. one of: "total", "x", "y", "z"). """ HERTZ_RATE = 20 nr_of_trip_columns = HERTZ_RATE * snippet_length categorical_colnames = ["mode","notes","scripted","token", "trip_id"] if column_names is None: column_names = ["snippet_"+str(i) for i in range(nr_of_trip_columns)] column_names = column_names + categorical_colnames result = pd.DataFrame(columns=column_names).drop(categorical_colnames, axis=1) copied_sensor_data = sensor_data.reset_index(drop=True) copied_sensor_data = copied_sensor_data end_index = copied_sensor_data.index[-1] # // floor division syntax # the last segment wich is smaller than 30 seconds will be dropped nr_of_rows = end_index // nr_of_trip_columns start_index = 0 for row_index in range(nr_of_rows): to_index = start_index + nr_of_trip_columns row_i = copied_sensor_data.loc[start_index:to_index-1, target_column_name] result.loc[row_index,:] = list(row_i) start_index = to_index return result @staticmethod def _get_row_entries_for_trip(trip, sensor_type="acceleration"): """ Helper function which splits on trip into the four parts sensor_data, mode, notes and scripted, where scripted is a binary variable where scripted=1 and ordinary=0 """ sensor_data, mode, notes, scripted = None, None, None, None for table_name, table_content in trip.items(): if table_name == "sensor": sensor_data = table_content[table_content["sensor"] == sensor_type] if table_name == "annotation": annotation_data = table_content mode = annotation_data["mode"][0] notes = annotation_data["notes"][0] if "scripted" in str(notes).lower(): scripted = 1 else: scripted = 0 return sensor_data, mode, notes, scripted @staticmethod def unpack_all_trips(dfs: dict, keep_tokens=False): """ Helper method that takes a dictionary of the trips per token and returns a list of all trips. Assumed nested structure is: dict[token] = list of trips per token :param keep_tokens: bool, default=False, if True, the token is appended to the annotation dataframe. This makes it easier to identify the trips later. """ result = [] dfs_copy = deepcopy(dfs) for token, trips in sorted(dfs_copy.items()): if keep_tokens: for trip_i in trips: if trip_i["annotation"] is not None: trip_i["annotation"]["token"]=token result += trips return result @staticmethod def restore_preprocessed_data_from_disk(filename: str): """ Loads pickled object from disk. :param filename: File name/relative path in /data/preprocessed. :return: Dictionary holding data for tokens (same format as returned by Preprocessor.preprocess(). """ data_dir = DatasetDownloader.get_data_dir() full_path = os.path.join(data_dir, "preprocessed", filename) with open(full_path, "rb") as file: preprocessed_data = file.read() # https://media.giphy.com/media/9zXWAIcr6jycE/giphy.gif return pickle.loads(preprocessed_data) @staticmethod def _filter_nan_values(dataframes: list, properties_to_check: list, allowed_nan_ratio: float = 0.2): """ Filter NAN values from dataframes sensor data. Note that dataframe is dismissed if at least (!) one of the specified columns exceeds the allowed ratio of NANs. :param dataframes: :param properties_to_check: Properties to check for NAN values (e.g.: "sensor", "location"). :param allowed_nan_ratio: Dataframe is removed if ratio (0 to 1) of NAN values relative to total count exceeds defined threshold. :return: """ filtered_dataframes = [] for i, df in enumerate(dataframes): # Check if threshold was reached for one of the specified columns. threshold_reached = True if np.count_nonzero( [ df[prop].isnull().sum().sum() / float(len(df[prop])) > allowed_nan_ratio for prop in properties_to_check ] ) > 0 else False # Dismiss dataframe if share of NAN values is above defined_threshold. if not threshold_reached: # Drop rows with NANs. for key in properties_to_check: df[key].dropna(axis=0, how='any', inplace=True) # Append to list. filtered_dataframes.append(df) return filtered_dataframes @staticmethod def _recalculate_accerelometer_2norm(resampled_dataframes): """ Recalculates 2-norm for x-/y-/z-values in accerelometer data. Note that the original column 'total' is overwritten with the new value. :param resampled_dataframes: :return: List of dataframes with updated values for column 'total'. """ for i, df in enumerate(resampled_dataframes): # Chain x-/y-/z-valuees for all entries in current dataframe and apply 2-norm on resulting (2, n)-shaped # vector. resampled_dataframes[i]["total"] = np.linalg.norm( np.array([df["x"], df["y"], df["z"]]), ord=2, axis=0 ) return resampled_dataframes @staticmethod def _cut_off_start_and_end_in_dataframes(dataframes, list_of_dataframe_names_to_cut, cutoff_in_seconds=30): """ Auxiliary method with boilerplate code for cutting off start and end of timeseries in specified list of dataframes. :param dataframes: :param list_of_dataframe_names_to_cut: :param cutoff_in_seconds: :return: List of cleaned/cut dataframes. """ trips = {"scripted": {"TRAM": 0, "METRO": 0, "WALK": 0}, "unscripted": {"TRAM": 0, "METRO": 0, "WALK": 0}} for i, df in enumerate(dataframes): # Assuming "notes" only has one entry per trip and scripted trips' notes contain the word "scripted", # while ordinary trips' notes don't. if "scripted" in str(df["annotation"]["notes"][0]).lower(): trips["scripted"][df["annotation"]["mode"][0]] += 1 for dataframe_name in list_of_dataframe_names_to_cut: # Cut off time series data. dataframes[i][dataframe_name] = Preprocessor._cut_off_start_and_end_in_dataframe( dataframe=df[dataframe_name], cutoff_in_seconds=cutoff_in_seconds ) else: trips["unscripted"][df["annotation"]["mode"][0]] += 1 return dataframes @staticmethod def _cut_off_start_and_end_in_dataframe(dataframe, cutoff_in_seconds=30): """ Removes entries with first and last cutoff_in_seconds in series. Assumes time in dataframe is specified in milliseconds. :param dataframe: Dataframe containing time series data. Expects specified dataframe to have a column "time". :param cutoff_in_seconds: :return: Cleaned dataframe. """ # Only cut if enough values exist. If not (e. g. "location" data not available) return None. if not dataframe.empty: # Calculate time thresholds. lower_time_threshold = dataframe.head(1)["time"].values[0] upper_time_threshold = dataframe.tail(1)["time"].values[0] # Assuming time is specified as UTC timestamp in milliseconds, so let's convert the cutoff to milliseconds. cutoff_in_seconds *= 1000 # Drop all rows with a time value less than 30 seconds after the initial entry and less than 30 seconds # before the last entry. dataframe = dataframe[ (dataframe["time"] >= lower_time_threshold + cutoff_in_seconds) & (dataframe["time"] <= upper_time_threshold - cutoff_in_seconds) ] return dataframe else: return None @staticmethod def _resample_trip_time_series(dataframes): """ Resamples trips' time series to hardcoded value (? per second). Returns list of dataframes with resampled time series. :param dataframes: List of dataframes with trip information. :return: List of resampled time series. """ return [ Preprocessor.downsample_time_series_per_category(df["sensor"], categorical_colnames=["sensor"]) for df in dataframes ] @staticmethod def _remove_dataframes_without_annotation(dataframes): """ Removes dataframes w/o annotation data (since we don't know the transport mode and hence can't use it for training. :param dataframes: ist of dataframes with trip data. :return: """ filtered_dataframes = [] for df in dataframes: if ("annotation" in df.keys()) and (not df["annotation"].empty): filtered_dataframes.append(df) return filtered_dataframes @staticmethod def _remove_dataframes_by_duration_limit(dataframes, min_duration=0, max_duration=sys.maxsize): """ Removes dataframes outside the defined time thresholds. :param dataframes: ist of dataframes with trip data. :param min_duration: Minimum duration in seconds. :param max_duration: Maximum duration in seconds. :return: """ # Fetch summaries for all trips. trip_summaries = Preprocessor.get_trip_summaries(dataframes, convert_time=True) filtered_dataframes = [] for i, df in enumerate(dataframes): trip_length = trip_summaries.iloc[i]["trip_length"].total_seconds() if trip_length >= min_duration and trip_length >= min_duration: filtered_dataframes.append(df) return filtered_dataframes @staticmethod def _convert_timestamps_from_dataframe(df, unit="ms", time_col_names=["time", "gpstime"]): """ This method converts integer timestamp columns in a pandas.DataFrame object to datetime objects. DataFrames in mobility data with datetime columns: cell, event, location, marker, sensor Parameters ---------- data: input data pandas DataFrame. unit: string, default="ms" time unit for transformation of the input integer timestamps. Possible values: D,s,ms,us,ns see "unit" at: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html for further information. Returns ------- result: returns a deepcopy of the data with transformed time columns. """ result = pd.DataFrame() if df is not None: df_column_names = list(df.columns.values) if any(name_i in time_col_names for name_i in df_column_names): result = deepcopy(df) for time_column_name in time_col_names: if time_column_name in df_column_names: index_copy = result.index result.set_index(time_column_name,inplace=True) result.index = pd.to_datetime(result.index, unit=unit) result.reset_index(inplace=True) result.index = index_copy return result @staticmethod def _convert_timestamps_from_dictionary_of_dataframes(d, unit="ms", time_col_names=["time","gpstime"]): """ Convenience function to loop over dicionary of one track recording. """ result = dict() for df_name, df in d.items(): result[df_name] = Preprocessor._convert_timestamps_from_dataframe(df,unit=unit, time_col_names=time_col_names) return result @staticmethod def _convert_timestamps_from_list_of_total_trips(all_trips, unit="ms", time_col_names=["time","gpstime"]): """ Convenience function to loop over list af all track recordings. """ result = [] for i, trip_i in enumerate(all_trips): result.append(Preprocessor._convert_timestamps_from_dictionary_of_dataframes(trip_i, unit=unit, time_col_names=time_col_names)) return result @staticmethod def convert_timestamps(data, unit="ms", time_col_names=["time","gpstime"]): """ This function converts the integer timestamps in the specified columns to datetime objects in the format YYYY-MM-DD HH-MM-SS-uu-.., where uu stands for the specified unit. It is assumed that the time colums are integer as it is the case for the mobility data. Accepted input types are pandas.DataFrame, dict, list which follow the convention of the projects nesting structure. Special case if data is of type pandas.DataFrame then the behaviour of this function equals _convert_timestamps_from_dataframe: Parameters ---------- data: input data, can be a list of all tracks, a dict of one track or a pandas DataFrame of one table. unit: string, default="ms" time unit for transformation of the input integer timestamps. Possible values: D,s,ms,us,ns see "unit" at: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html for further information. time_col_names: list of strings, default=["time","gpstime"] names of the time colums in the table which should be transformed. Returns ------- result: returns a deepcopy of the data with transformed time columns. The datatype of data will be the same as of the input type. Accepted input types are pandas.DataFrame, dict, list. """ result = pd.DataFrame() if type(data) is pd.DataFrame: result = Preprocessor._convert_timestamps_from_dataframe(data, unit, time_col_names) elif type(data) is dict: result = Preprocessor._convert_timestamps_from_dictionary_of_dataframes(data, unit, time_col_names) elif type(data) is list: result = Preprocessor._convert_timestamps_from_list_of_total_trips(data, unit, time_col_names) return result @staticmethod def downsample_time_series(series, time_interval="S", time_col_name="time"): """ Downsamples a pandas time series DataFrame from milliseconds to a new user specified time interval. The aggregation for the new time bins will be calculated via the mean. To make sure that the right time column is used you have to set the time columns name in time_col_name or set it as index before calling this function. Otherwise it is assumed that the time column has the name time_col_name="time". For further information about examples for pandas resampling function see: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling https://machinelearningmastery.com/resample-interpolate-time-series-data-python/ Parameters ---------- series: a pandas DataFrame object with a DatetimeIndex, if there is no DatetimeIndex set, it is assumed that there is a Datetime column with name time_col_name="time" time_interval: string, default="S", specifies the new time interval to which the series will be downsampled. Valid values are "S" for seconds, "T" for minutes etc. It is also possible to sample in a special interval e.g. 5 seconds, by passing "5S". For all possible frequencies see: https://stackoverflow.com/questions/17001389/pandas-resample-documentation#17001474 time_col_name: string, default="time" The name of the time column name. Returns ------- data: returns the data with downsampled time columns, where each new bin is aggregated via the mean. """ if isinstance(series.index, pd.DatetimeIndex): resampled = series.resample(time_interval).mean() elif time_col_name in list(series.columns.values): # In case the column has not been converted to Datetime object # it will be converted here. if series[time_col_name].dtype in [np.dtype("Int64")]: series = deepcopy(series) series = Preprocessor.convert_timestamps(series, time_col_names=[time_col_name]) resampled = series.set_index(time_col_name).resample(time_interval).mean() resampled = resampled.reset_index() else: resampled = series return resampled @staticmethod def downsample_time_series_per_category(series, categorical_colnames, time_interval="S", time_col_name="time"): """ Downsamples a pandas time series DataFrame from milliseconds to a new user specified time interval and takes care of the right interpolation of categorical variables. The aggregation for the new time bins will be calculated via the mean. To make sure that the right time column is used you have to set the time columns name in time_col_name. Otherwise it is assumed that the time column has the name time_col_name="time". For further information about examples for pandas resampling function see: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling https://machinelearningmastery.com/resample-interpolate-time-series-data-python/ Parameters ---------- series: a pandas DataFrame object with a DatetimeIndex, if there is no DatetimeIndex set, it is assumed that there is a Datetime column with name time_col_name="time" categorical_colnames: a list of strings of colum names e.g. ["sensor"] time_interval: string, default="S", specifies the new time interval to which the series will be downsampled. Valid values are "S" for seconds, "T" for minutes etc. It is also possible to sample in a special interval e.g. 5 seconds, by passing "5S". For all possible frequencies see: https://stackoverflow.com/questions/17001389/pandas-resample-documentation#17001474 time_col_name: string, default="time" The name of the time column name. set to "index" if you want to transform the index column Returns ------- data: returns the data with downsampled time columns, where each new bin is aggregated via the mean and keeps the categorical values. """ copied_series = deepcopy(series) series_column_names = list(copied_series.columns.values) result = pd.DataFrame(columns = series_column_names) # In case the column or index has not been converted to Datetime object # it will be converted here. if (time_col_name=="index") and (copied_series.index.dtype in [np.dtype("Int64")]): copied_series.index = pd.to_datetime(copied_series.index, unit="ms") if time_col_name in series_column_names: if copied_series[time_col_name].dtype in [np.dtype("Int64")]: copied_series = Preprocessor._convert_timestamps_from_dataframe(copied_series, time_col_names=[time_col_name]) # Start actual downsampling if isinstance(copied_series.index, pd.DatetimeIndex) or (time_col_name in series_column_names): for categorical_colname_i in categorical_colnames: categories = list(copied_series[categorical_colname_i].unique()) for category_i in categories: series_for_category = copied_series[copied_series[categorical_colname_i]==category_i] resampled = Preprocessor.downsample_time_series(series_for_category, time_interval, time_col_name) resampled[categorical_colname_i] = category_i result = pd.concat([result, resampled]) if isinstance(result.index, pd.DatetimeIndex): result = result.sort_index() else: result = result.set_index(time_col_name).sort_index() # need to reset index otherwise indices could be not unique anymore result = result.reset_index() else: result = copied_series return result @staticmethod def get_trip_summaries(all_trips, convert_time=False): """ This method returns a summary of all recorded trips. The summary includes start, stop time, trip_length, recording mode and notes. Parameters ---------- all_trips : a list of all trips convert_time : bool, default=False indicates whether or not the time values should be converted to datetime objects. Returns ------- result : pandas DataFrame a pandas dataframe with the summaries for each trip """ nr_of_recorded_trips = len(all_trips) result = pd.DataFrame() if convert_time: all_trips_copy = Preprocessor.convert_timestamps(all_trips) else: all_trips_copy = all_trips start_times = [] end_times = [] for index in range(0, nr_of_recorded_trips): trip_i = all_trips_copy[index] if ("annotation" in trip_i.keys()) and (not trip_i["annotation"].empty): result = pd.concat([result, trip_i["annotation"]]) start_times.append(trip_i["marker"].iloc[0,0]) end_times.append(trip_i["marker"].iloc[-1,0]) result["Start"] = start_times result["Stop"] = end_times result["trip_length"] = [end-start for end,start in zip(end_times,start_times)] result = result.reset_index(drop=True) return result @staticmethod def extract_csv_file_name(csv_name): """ Extracts the name from the csv file name e.g. annotation, cell, event, location, mac, marker, sensor. Parameters ---------- csv_name: full name of the csv file in tar.gz directory Returns ------- extracted_name: string, """ csv_name = str(csv_name) extracted_name = "" for name in DatasetDownloader.VALID_NAMES: if name in csv_name: extracted_name = name return extracted_name return extracted_name @staticmethod def read_tar_file_from_dir(file_path): """ This method reads a tar.gz file from a specified file path and appends each .csv file to a dictionary where the key is specified as one of the VALID_NAMES: ["annotation", "cell", "event", "location", "mac", "marker", "sensor"], which are the names given to identify the different collected mobility data. """ tar = tarfile.open(file_path, "r:gz") csv_files_per_name = {} for member in tar.getmembers(): f = tar.extractfile(member) if f is not None: name = Preprocessor.extract_csv_file_name(member) csv_files_per_name[name] = pd.read_csv(f, header=0, sep=',', quotechar='"') tar.close() return csv_files_per_name @staticmethod def get_data_per_trip(dir_name="raw"): """ This method reads all downloaded data and returns a list of dictionaries which include the pandas dataframes for each trip. Each trip DataFrame can be accessed via its name e.g. annotation, cell, event, location, mac, marker, sensor. Parameters ------- dir_name : string, default="raw", specifies the name of the directory inside the data directory from which the data should be read. Returns ------- data_frames : a list of pandas DataFrame's in a dictionary """ file_path = os.path.join(DatasetDownloader.get_data_dir(), dir_name) tar_file_names = DatasetDownloader.get_file_names(file_path) dfs = [] for tar_name in tar_file_names: path_to_tar_file = os.path.join(file_path, tar_name) csv_files_per_name = Preprocessor.read_tar_file_from_dir(path_to_tar_file) dfs.append(csv_files_per_name) return dfs @staticmethod def get_data_per_token(token): """ This method reads the downloaded data for one user and returns a list of dictionaries which include the pandas dataframes for each trip. Each trip DataFrame can be accessed via its name e.g. annotation, cell, event, location, mac, marker, sensor. Returns ------- data_frames : a list of pandas DataFrame's in a dictionary """ file_path = os.path.join(DatasetDownloader.get_data_dir(), "raw") tar_file_names = DatasetDownloader.get_file_names_for(file_path, token) dfs = [] for tar_name in tar_file_names: path_to_tar_file = os.path.join(file_path, tar_name) csv_files_per_name = Preprocessor.read_tar_file_from_dir(path_to_tar_file) dfs.append(csv_files_per_name) return dfs @staticmethod def _get_shallow_copy(dfs: list): """ Helper function to get a shallow copy of the list of dictionaries as only sensor data is modified and the rest can be references. """ nr_of_trips = len(dfs) result = [{} for trip in range(nr_of_trips)] for trip_index, trip_i in enumerate(dfs): for key, values in trip_i.items(): if key == "sensor": result[trip_index][key] = None else: result[trip_index][key] = values return result @staticmethod def calculate_paa(dfs, verbose=False): newDict = Preprocessor._get_shallow_copy(dfs) nr_of_trips = len(dfs) for i in range(0, nr_of_trips): if verbose: print('Frame ', i) #get single trip sensor_trip = dfs[i]['sensor'] #get all sensors sensor_set = set(sensor_trip['sensor']) #create new data frame helper = pd.DataFrame() for sensor in sensor_set: if verbose: print("sensor: ", sensor) sensor_data = sensor_trip[sensor_trip['sensor'] == sensor] if verbose: print('init time frame') print(Preprocessor.convert_timestamps(sensor_data.head(1))) print(Preprocessor.convert_timestamps(sensor_data.tail(1))) sensor_data = sensor_data.drop(['sensor', 'total'], axis=1) sensor_data.reset_index(drop=True,inplace=True) sensor_data_approximated = Preprocessor.approx_sensor(sensor_data, 100) start_index = 0 stop_index = 1 end_of_df = len(sensor_data_approximated) buffer_helper = pd.DataFrame() filler = pd.DataFrame() if verbose: print("end_of_df:", end_of_df) while stop_index <= end_of_df: if start_index + 30000 <= end_of_df: stop_index = stop_index + 30000 else: stop_index = end_of_df+1 buffer_helper = Preprocessor.normalize_trip(sensor_data_approximated.iloc[start_index:stop_index,:]) filler = filler.append(buffer_helper) start_index = stop_index filler['sensor'] = sensor filler['total'] = np.linalg.norm(np.array([filler['x'], filler['y'], filler['z']]),ord=2, axis=0) helper = pd.concat([helper,filler]) if verbose: print("complete frame") print(Preprocessor.convert_timestamps(helper.head(1))['time']) print(Preprocessor.convert_timestamps(helper.tail(1))['time']) print('----------------------------') newDict[i]['sensor'] = helper return Preprocessor.convert_timestamps(newDict) @staticmethod def approx_sensor(acc, hz=None, atd_ms=None): """ This method interpolates the observations at equidistant time stamps. e.g. specifying hz=20 will result in a data frame containing 20 observaitons per second. Returns ------- df : a pandas DataFrame containing the interpolated series """ # interpolate to a common sampling rate # # acc ... data.table(time,x,y,z) # atd_ms ... approximated time difference in milliseconds, default value = 10 if(hz is None and atd_ms is None): atd_ms = 10 elif (hz is not None and atd_ms is None): atd_ms = 1000/hz elif (hz is not None and atd_ms is not None): print("hz is overruled with atd_ms") new_time = np.arange(acc['time'][0], acc['time'][len(acc['time'])-1], atd_ms) f_ax = interp1d(acc['time'],acc['x']) ax = list(f_ax(new_time)) f_ay = interp1d(acc['time'],acc['y']) ay = list(f_ay(new_time)) f_az = interp1d(acc['time'],acc['z']) az = list(f_az(new_time)) df = pd.DataFrame({ 'time':new_time, 'x':ax, 'y':ay, 'z':az, 'total': np.linalg.norm( np.array([ax, ay, az]), ord=2, axis=0 ) }) return df @staticmethod def normalize_trip(trip): """ This method performs a Piecewise Aggregate Approximation of a trip. trip... a dataframe which should be used w_size... the bin size. REQUIREMENT: package 'future' Returns ------- df : a pandas DataFrame containing the interpolated series """ paa = PAA(window_size=5, output_size=None, overlapping=False) container = [] for label in trip.columns: # this creates a new object, change to float32 increases speed arr = np.array([trip[label]], dtype=np.float64) transf = paa.transform(arr) container.append(list(transf[0])) df = pd.DataFrame(container,trip.columns).T df['time'] = [int(i) for i in df['time']] return df # Note by rmitsch: Commented out since variable 'feature' is not defined. To remove? # @staticmethod # def plot_paa(sensor_data, w_size=5, seconds=2): # # # plot_paa(feature, window_size=w_size,output_size=None,overlapping=False,marker='o') @staticmethod def print_start_and_end_of_recording_per_sensor(df): set_of_sensors = set(df['sensor']) for sensor in set_of_sensors: print("sensor: ", sensor) # get all sensor data for specific sensor sensor_data = deepcopy(df[df["sensor"] == sensor]) sensor_data.reset_index(drop=True,inplace=True) start = min(sensor_data['time']) start =
pd.to_datetime(start, unit="ms")
pandas.to_datetime
import pandas as pd import pytest from pandas.testing import assert_frame_equal from powersimdata.design.generation.clean_capacity_scaling import ( add_new_capacities_collaborative, add_new_capacities_independent, add_shortfall_to_targets, ) def test_independent_new_capacity(): area_names = ["Pacific", "Atlantic", "Arctic", "Indian"] # Atlantic tests a 'simple' case # Pacific tests expected additional curtailment # Arctic tests external additional clean energy # Indian tests new capacity solar percentage targets = pd.DataFrame( { "ce_target_fraction": [0.25, 0.3, 0.25, 0.25], "allowed_resources": [ "solar,wind,geo", "solar, wind, geo, hydro", "solar,wind,geo", "solar, wind, geo", ], "demand": [2e8, 3e8, 2e8, 2e8], "solar_percentage": [None, None, None, 0.75], "external_ce_addl_historical_amount": [0, 0, 1.4e7, 0], "geo.prev_capacity": [4000, 4500, 4000, 4000], "geo.prev_cap_factor": [1, 1, 1, 1], "geo.prev_generation": [8e6, 8.5e6, 8e6, 8e6], "hydro.prev_capacity": [3900, 4400, 3900, 3900], "hydro.prev_cap_factor": [1, 1, 1, 1], "hydro.prev_generation": [7e6, 7.5e6, 7e6, 7e6], "solar.prev_capacity": [3700, 4200, 3700, 3700], "solar.prev_cap_factor": [0.25, 0.3, 0.215379, 0.215379], "solar.prev_generation": [8.1252e6, 1.106784e7, 7e6, 7e6], "wind.prev_capacity": [3600, 4100, 3600, 3600], "wind.prev_cap_factor": [0.4, 0.35, 0.347854, 0.347854], "wind.prev_generation": [1.264896e7, 1.260504e7, 1.1e7, 1.1e7], }, index=area_names, ) addl_curtailment = pd.DataFrame( { "geo": [0, 0, 0, 0], "hydro": [0, 0, 0, 0], "solar": [0.4, 0, 0, 0], "wind": [0, 0, 0, 0], }, index=area_names, ) expected_return = pd.DataFrame( { "solar.next_capacity": [ (3700 + 4481.582), (4200 + 8928.948), (3700 + 2055.556), (3700 + 8246.260), ], "wind.next_capacity": [ (3600 + 4360.459), (4100 + 8716.354), (3600 + 2000), (3600 + 2748.753), ], "prev_ce_generation": [2.877416e7, 3.967288e7, 2.6e7, 2.6e7], "ce_shortfall": [2.122584e7, 5.032712e7, 1e7, 2.4e7], }, index=area_names, ) targets = add_shortfall_to_targets(targets) targets = add_new_capacities_independent( targets, scenario_length=8784, addl_curtailment=addl_curtailment ) test_columns = [ "prev_ce_generation", "ce_shortfall", "solar.next_capacity", "wind.next_capacity", ]
assert_frame_equal(targets[test_columns], expected_return[test_columns])
pandas.testing.assert_frame_equal
import glob import os import tarfile import luigi import pandas as pd import wget from research_user_interest.utils.template import GokartTask class GetTextfileTask(GokartTask): textfile_url: str = luigi.Parameter() def run(self): wget.download(self.textfile_url) self.dump("get text file task") class ExtractTextfileTask(GokartTask): tarfile_path: str = luigi.Parameter() output_path: str = luigi.Parameter() def requires(self): return GetTextfileTask() def run(self): # 解凍 tar = tarfile.open(self.tarfile_path, "r:gz") tar.extractall(self.output_path) tar.close() self.dump("extract textfile task") class ExtractMainTextTask(GokartTask): textfile_path: str = luigi.Parameter() def requires(self): return ExtractTextfileTask() def extract_categories(self): # カテゴリーのフォルダのみを抽出 categories = [ name for name in os.listdir(self.textfile_path) if os.path.isdir(f"{self.textfile_path}/{name}") ] return categories def extract_text(self, file_name): with open(file_name) as text_file: # 今回はタイトル行は外したいので、3要素目以降の本文のみ使用 title_text = text_file.readlines()[2:] title = title_text[0].strip() text = title_text[1:] # titleの前処理 title = title.translate( str.maketrans({"\n": "", "\t": "", "\r": "", "\u3000": ""}) ) # 3要素目以降にも本文が入っている場合があるので、リストにして、後で結合させる text = [sentence.strip() for sentence in text] # 空白文字(スペースやタブ、改行)の削除 text = list(filter(lambda line: line != "", text)) text = "".join(text) text = text.translate( str.maketrans({"\n": "", "\t": "", "\r": "", "\u3000": ""}) ) # 改行やタブ、全角スペースを消す return title, text def run(self): # リストに前処理した本文と、カテゴリーのラベルを追加していく list_title = [] list_body = [] list_label = [] for cat in self.extract_categories(): text_files = glob.glob(f"{self.textfile_path}/{cat}/*.txt") # 前処理extract_main_txtを実施して本文を取得 text_list = [ (self.extract_text(text_file)[0], self.extract_text(text_file)[1]) for text_file in text_files ] title = [text[0] for text in text_list] body = [text[1] for text in text_list] label = [cat] * len(body) # 文の数だけカテゴリー名のラベルのリストを作成 list_title.extend(title) list_body.extend(body) list_label.extend(label) title_body_label_list = list(zip(list_title, list_body, list_label)) self.dump(title_body_label_list) class MakeTextLabelDataFrameTask(GokartTask): def requires(self): return ExtractMainTextTask() def run(self): title_body_label_list = self.load() title = [text[0] for text in title_body_label_list] body = [text[1] for text in title_body_label_list] label = [text[2] for text in title_body_label_list] df =
pd.DataFrame({"title": title, "body": body, "label": label})
pandas.DataFrame
#!/usr/bin/python3 # # CS224W Fall 2019-2020 # @<NAME>, <NAME>, <NAME> # import datetime as datetime import numpy as np import os import pandas as pd import pathlib # Where files listed in DATASETS are located. DATASET_DIR = '/shared/data' DATASETS = { 'bad': [ 'iran_201906_1_tweets_csv_hashed.csv', ], 'benign': [ 'json/democratic_party_timelines', 'json/republican_party_timelines', ] } # Where processed datasets will be located. PROCESSED_DATA_DIR = './datasets/compiled' # ============================================================================== # Utilities parsing and processing dataframe values # ============================================================================== def pd_float_to_int(float_or_nan): """ @params [float, possibly nan] @return [integer, never nan] Casts the float as an integer, or 0 if it's nan. """ return 0 if pd.isnull(float_or_nan) else int(float_or_nan) def pd_str_to_list(str_or_nan): """ @params [a string representing a list or nan] @returns [a list] Interprets a string or nan as a list. Empty strings = empty lists. """ if pd.notnull(str_or_nan): return [] if str_or_nan == '' or str_or_nan == '[]' else str_or_nan[1:-1].split(',') else: return [] def reformat_datetime(datetime_str, out_format): """ @params [a UTC datetime string with a specific format (see below)] @returns: [a date string in the format of out_format] Reformats a UTC datetime string returned by the Twitter API for compatibility. """ in_format = "%a %b %d %H:%M:%S %z %Y" parsed_datetime = datetime.datetime.strptime(datetime_str, in_format) return datetime.datetime.strftime(parsed_datetime, out_format) # ============================================================================== # Dataset code # ============================================================================== def load_datasets(): """ @params: [dataset_grouping (str)] @returns: (Pandas Dataframe) Reads all csv's from dataset_grouping's input partition in DATASETS, and concatenates these to a single pandas dataframe. Returns the dataframe. """ li = [] for dataset in DATASETS['bad']: path = os.path.join(DATASET_DIR, dataset) print('Reading data from %s' % path) df = pd.read_csv(path) df = format_csv_df(df) li.append(df) return pd.concat(li, axis=0, ignore_index=True) def load_json(): """ @params: [] @returns: (Pandas Dataframe) Reads all json's from dataset_grouping's input partition in DATASETS, and concatenates these to a single pandas dataframe. Returns the dataframe. """ li = [] for dataset in DATASETS['benign']: path = os.path.join(DATASET_DIR, dataset) print('Reading data from %s' % path) df = pd.read_json(path, lines=True) df = convert_to_csv_df(df) li.append(df) return
pd.concat(li, axis=0, ignore_index=True)
pandas.concat
__author__ = 'saeedamen' # # Copyright 2015 Thalesians Ltd. - http//www.thalesians.com / @thalesians # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # """ plotly_examples Shows how to plot using Plotly library (uses Jorge Santos' Cufflinks wrapper) """ import datetime from chartesians.graphs.graphproperties import GraphProperties from chartesians.graphs.plotfactory import PlotFactory from pythalesians.market.loaders.lighttimeseriesfactory import LightTimeSeriesFactory from pythalesians.market.requests.timeseriesrequest import TimeSeriesRequest from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs if True: import pandas df =
pandas.read_csv("volsurface.csv")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 """ This file is part of MADIP: Molecular Atlas Data Integration Pipeline This module loads the data for step_1_collect_protein_data.ipynb jupyter notebook. Age in days is only approximate and not involved in the downstream analysis. Qualitative age category is defined based on the original data sources. Copyright 2021 Blue Brain Project / EPFL Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import numpy as np def get_hamezah_2019_dataframe(): """ Return pandas dataframe for Hamezah 2019 :return: pandas.core.frame.DataFrame: dataframe containing Hamezah 2019 data. """ print("Importing Hamezah 2019 pandas dataframe.") # NEWDATA 1. Hamezah 2019 (Mice Hippocampus, Medial Prefrontal Cortex, and Striatum) hamezah_2019_f = pd.ExcelFile('../data/source_data/Hameezah_2019_formatted.xlsx') hamezah_2019_hippocampus = hamezah_2019_f.parse("Hippocampus", index_col=None) hamezah_2019_pfc = hamezah_2019_f.parse("MedialPrefrontalCortex", index_col=None) hamezah_2019_striatum = hamezah_2019_f.parse("Striatum", index_col=None) hamezah_2019_hippocampus['location'] = 'hippocampus' hamezah_2019_pfc['location'] = 'cortex' # prefrontal cortex hamezah_2019_striatum['location'] = 'striatum' hamezah_2019 = pd.concat([hamezah_2019_hippocampus, hamezah_2019_pfc, hamezah_2019_striatum]) hamezah_2019['Gene names'] = hamezah_2019['Gene names'].str.upper() hamezah_2019['Calc: LFQ intensity WT'] = 2 ** hamezah_2019['Average LFQ intensity (Log2) WT-Ctrl'] hamezah_2019['Calc: LFQ intensity Alzheimer Tg'] = 2 ** hamezah_2019['Average LFQ intensity (Log2) Tg-ctrl'] # hamezah_2019 = hamezah_2019.reset_index(drop=True) hamezah_2019['Gene names'] = hamezah_2019['Gene names'].str.upper() hamezah_2019 = hamezah_2019.drop(columns=['Protein names', 'Average LFQ intensity (Log2) WT-Ctrl', 'Average LFQ intensity (Log2) Tg-ctrl', 'Number of\npeptides', 'Maxquant\nscore', 'MS/MS\ncount', 'p-value', 'q-value' ]) hamezah_2019 = hamezah_2019.rename(columns={'Protein\naccession': 'Uniprot', 'Gene names': 'gene_names', 'Molecular\nweight (kDa)': 'molecular_weight_kDa', 'Calc: LFQ intensity WT': 'LFQintensity_WT', 'Calc: LFQ intensity Alzheimer Tg': 'LFQintensity_Alzheimer' }) hamezah_2019_df = pd.wide_to_long(hamezah_2019, stubnames='LFQintensity', i=['Uniprot', 'gene_names', 'molecular_weight_kDa', 'location'], j='condition', sep='_', suffix=r'\w+') hamezah_2019_df = hamezah_2019_df.reset_index() hamezah_2019_df['Study'] = 'Hamezah 2019' hamezah_2019_df['Organism'] = 'mouse' hamezah_2019_df['Age_days'] = 365 + 3 * 30 + 21 # Five-month-old mice ... for a duration of 10 months -> 15 months hamezah_2019_df['raw_data_units'] = 'LFQintensity' hamezah_2019_df = hamezah_2019_df.rename(columns={'LFQintensity': 'raw_data'}) return hamezah_2019_df def get_hamezah_2018_dataframe(): """ Return pandas dataframe for Hamezah 2018 :return: pandas.core.frame.DataFrame: dataframe containing Hamezah 2018 data """ # ### Hamezah_2018 print("Importing pandas Hamezah 2018 dataframe.") hamezah_2018f = pd.ExcelFile('../data/source_data/1-s2.0-S0531556518303097-mmc2.xlsx') hamezah_2018_hippocampus = hamezah_2018f.parse('Sheet1') hamezah_2018_pfc = hamezah_2018f.parse('Sheet2') # medial prefrontal cortex hamezah_2018_striatum = hamezah_2018f.parse('Sheet3') hamezah_2018_hippocampus['location'] = 'hippocampus' hamezah_2018_pfc['location'] = 'cortex' # prefrontal cortex hamezah_2018_striatum['location'] = 'striatum' hamezah_2018 = pd.concat([hamezah_2018_hippocampus, hamezah_2018_pfc, hamezah_2018_striatum]) hamezah_2018['Gene names'] = hamezah_2018['Gene names'].str.upper() hamezah_2018['Calc: LFQ intensity 14 months'] = 2 ** hamezah_2018['Average LFQ intensity (Log2) 14 months'] hamezah_2018['Calc: LFQ intensity 18 months'] = 2 ** hamezah_2018['Average LFQ intensity (Log2) 18 months'] hamezah_2018['Calc: LFQ intensity 23 months'] = 2 ** hamezah_2018['Average LFQ intensity (Log2) 23 months'] hamezah_2018['Calc: LFQ intensity 27 months'] = 2 ** hamezah_2018['Average LFQ intensity (Log2) 27 months'] hamezah_2018 = hamezah_2018.reset_index(drop=True) hamezah_2018['Gene names'] = hamezah_2018['Gene names'].str.upper() hamezah_2018 = hamezah_2018.drop(columns=['Protein names', 'Average LFQ intensity (Log2) 14 months', 'Average LFQ intensity (Log2) 18 months', 'Average LFQ intensity (Log2) 23 months', 'Average LFQ intensity (Log2) 27 months', 'Number of\npeptides', 'Maxquant\nscore', 'MS/MS\ncount', 'ANOVA significant' ]) hamezah_2018 = hamezah_2018.rename(columns={'Protein\naccession': 'Uniprot', 'Gene names': 'gene_names', 'Molecular\nweight (kDa)': 'molecular_weight_kDa', 'Calc: LFQ intensity 14 months': 'LFQintensity_14months', 'Calc: LFQ intensity 18 months': 'LFQintensity_18months', 'Calc: LFQ intensity 23 months': 'LFQintensity_23months', 'Calc: LFQ intensity 27 months': 'LFQintensity_27months' }) hamezah_2018_df = pd.wide_to_long(hamezah_2018, stubnames='LFQintensity', i=['Uniprot', 'gene_names', 'molecular_weight_kDa', 'location'], j='sample_id', sep='_', suffix=r'\w+') hamezah_2018_df = hamezah_2018_df.reset_index() hamezah_2018_df['Study'] = 'Hamezah 2018' hamezah_2018_df['Organism'] = 'rat' hamezah_2018_df.loc[hamezah_2018_df['sample_id'] == '14months', 'Age_days'] = 365 + 2 * 30 + 21 # 446 # 365 + 2*30 + 21 # '14 months' hamezah_2018_df.loc[hamezah_2018_df['sample_id'] == '18months', 'Age_days'] = 365 + 6 * 30 + 21 # 365 + 6*30 +21 # '18 months' hamezah_2018_df.loc[hamezah_2018_df['sample_id'] == '23months', 'Age_days'] = 721 # 365*2 -30 +21 # '23 months' hamezah_2018_df.loc[hamezah_2018_df['sample_id'] == '27months', 'Age_days'] = 841 # 365*2 + 30*3 +21 # '27 months' hamezah_2018_df['raw_data_units'] = 'LFQintensity' hamezah_2018_df = hamezah_2018_df.rename(columns={'LFQintensity': 'raw_data'}) return hamezah_2018_df def get_chuang_2018_dataframe(): """ Return pandas dataframe for Chuang 2018 :return: pandas.core.frame.DataFrame: dataframe containing Chuang 2018 data. """ print("Importing Chuang 2018 pandas dataframe.") chuang2018f = pd.ExcelFile('../data/source_data/Supporting File S-3_The lists of the proteins identified in the axon and whole-cell samples.xlsx') chuang2018_axon = chuang2018f.parse('Axon samples, 2548', skiprows=3, index_col=None) chuang2018_wholecell = chuang2018f.parse('Whole-cell samples, 2752', skiprows=3, index_col=None) chuang2018_wholecell = chuang2018_wholecell.drop( ['Fasta headers', 'Number of proteins', 'Peptides axon', 'Peptides whole-cell', 'Razor + unique peptides axon', 'Razor + unique peptides whole-cell', 'Score', 'Sequence coverage axon [%]', 'Sequence coverage whole-cell [%]', 'Fasta headers.1', 'Number of proteins.1', 'Peptides axon.1', 'Peptides whole-cell.1', 'Razor + unique peptides axon.1', 'Razor + unique peptides whole-cell.1', 'Score.1', 'Sequence coverage axon [%].1', 'Sequence coverage whole-cell [%].1'], axis=1) chuang2018_axon = chuang2018_axon.drop(['Fasta headers', 'Number of proteins', 'Peptides axon', 'Peptides whole-cell', 'Razor + unique peptides axon', 'Razor + unique peptides whole-cell', 'Score', 'Sequence coverage axon [%]', 'Sequence coverage whole-cell [%]', 'Fasta headers.1', 'Number of proteins.1', 'Peptides axon.1', 'Peptides whole-cell.1', 'Razor + unique peptides axon.1', 'Razor + unique peptides whole-cell.1', 'Score.1', 'Sequence coverage axon [%].1', 'Sequence coverage whole-cell [%].1'], axis=1) chuang2018_axon = chuang2018_axon.rename(columns={'GN': 'gene_names', 'Accession': 'Uniprot', 'Protein IDs': 'Experiment1:Protein IDs', 'Protein IDs.1': 'Experiment2:Protein IDs.1', 'iBAQ axon': 'iBAQ_Experiment1', 'iBAQ axon.1': 'iBAQ_Experiment2'}) chuang2018_wholecell = chuang2018_wholecell.rename(columns={'GN': 'gene_names', 'Accession': 'Uniprot', 'Protein IDs': 'Experiment1:Protein IDs', 'Protein IDs.1': 'Experiment2:Protein IDs.1', 'iBAQ whole-cell': 'iBAQ_Experiment1', 'iBAQ whole-cell.1': 'iBAQ_Experiment2'}) chuang2018_axon['gene_names'] = chuang2018_axon['gene_names'].str.upper() chuang2018_wholecell['gene_names'] = chuang2018_wholecell['gene_names'].str.upper() chuang2018_axon['location'] = 'axon' chuang2018_wholecell['location'] = 'neurons' # 'neuron_whole_cell' chuang2018 = pd.concat([chuang2018_axon, chuang2018_wholecell], sort=False) chuang2018 = chuang2018.reset_index(drop=True) chuang2018 = chuang2018.drop(['Description', 'Experiment1:Protein IDs', 'Experiment2:Protein IDs.1'], axis=1) chuang2018 = chuang2018.rename(columns={'Mol. weight [kDa]': 'molecular_weight_kDa'}) chuang2018_df = pd.wide_to_long(chuang2018, stubnames='iBAQ', i=['Uniprot', 'gene_names', 'molecular_weight_kDa', 'location'], j='sample_id', sep='_', suffix=r'\w+') chuang2018_df = chuang2018_df.reset_index() chuang2018_df['Study'] = 'Chuang 2018' chuang2018_df['Organism'] = 'rat' chuang2018_df['Age_days'] = 18 # E18 chuang2018_df['Age_cat'] = 'embr' chuang2018_df['raw_data_units'] = 'iBAQ' chuang2018_df = chuang2018_df.rename(columns={'iBAQ': 'raw_data'}) return chuang2018_df def get_duda_2018_dataframe(): """ Return pandas dataframe for Duda 2018 :return: pandas.core.frame.DataFrame: dataframe containing Duda 2018 data. """ print("Importing Duda 2018 pandas dataframe.") dudaf = pd.ExcelFile('../data/source_data/dataProt.xlsx') duda_hippocampus = dudaf.parse('hippocampus') duda_cerebellum = dudaf.parse('cerebellum') duda_cortex = dudaf.parse('cortex') # fill merged cells with the same values # merged cells processed manually to avoid artefacts # duda_hippocampus = duda_hippocampus.fillna(method='ffill') # duda_cerebellum = duda_cerebellum.fillna(method='ffill') # duda_cortex = duda_cortex.fillna(method='ffill') duda_hippocampus['location'] = 'hippocampus' duda_cerebellum['location'] = 'cerebellum' duda_cortex['location'] = 'cortex' duda = pd.concat([duda_hippocampus, duda_cerebellum, duda_cortex], sort=False) duda = duda.reset_index(drop=True) duda['gene_names'] = duda['gene_names'].str.upper() # young = 1 month; old = 12 months duda['duplicated'] = duda.duplicated(subset=['Young Mean concentration', 'Adult Mean concentration', 'location'], keep=False) duda = duda.drop(columns='duplicated') duda = duda.rename(columns={'Young Mean concentration': 'MeanConcentration_young', 'Adult Mean concentration': 'MeanConcentration_adult'}) duda_2018_df = pd.wide_to_long(duda, stubnames='MeanConcentration', i=['gene_names', 'location'], j='condition', sep='_', suffix=r'\w+') duda_2018_df = duda_2018_df.reset_index() duda_2018_df['Study'] = 'Duda 2018' duda_2018_df['Organism'] = 'mouse' duda_2018_df.loc[duda_2018_df['condition'] == 'young', 'Age_days'] = 51 # P30 = 21 embryonic days + 30 postnatal duda_2018_df.loc[duda_2018_df['condition'] == 'adult', 'Age_days'] = 386 # 365 + 21 embryonic days #'12 months' duda_2018_df['raw_data_units'] = 'Mean concentration [mol/(g total protein)]' duda_2018_df = duda_2018_df.rename(columns={'MeanConcentration': 'raw_data'}) return duda_2018_df def get_krogager_2018_dataframe(): """ Return pandas dataframe for Krogager 2018 :return: krogager_df :pandas.core.frame.DataFrame: dataframe containing Krogager 2018 data. """ print("Importing Krogager 2018 pandas dataframe.") krogagerf = pd.ExcelFile('../data/source_data/MouseBrainProteomeKrogager2018_supp.xlsx') krogager = krogagerf.parse('Sheet1') krogager = krogager.drop(columns=['Significant (S0:1, FDR:0.05)', '-LOG(P-value)', 'Log2(SORT Output / Control Output)', 'Protein names', 'Intensity', 'MS/MS Count']) # in this case we combine samples due to many NaN in individual samples col1 = krogager.loc[:, ['Log2(LFQ) Control Output 1', 'Log2(LFQ) Control Output 2', 'Log2(LFQ) Control Output 3', 'Log2(LFQ) Control Output 4', 'Log2(LFQ) Control Output 5', 'Log2(LFQ) Control Output 6']] krogager['Log2(LFQ) Control median'] = col1.median(axis=1) col2 = krogager.loc[:, ['Log2(LFQ) SORT Output 1', 'Log2(LFQ) SORT Output 2', 'Log2(LFQ) SORT Output 3']] krogager['Log2(LFQ) SORT median'] = col2.median(axis=1) krogager['LFQintensity_control'] = 2 ** krogager['Log2(LFQ) Control median'] krogager['LFQintensity_SORT'] = 2 ** krogager['Log2(LFQ) SORT median'] krogager['Gene names'] = krogager['Gene names'].str.upper() krogager = krogager.rename(columns={'Gene names': 'gene_names', 'Majority protein IDs': 'Uniprot' }) krogager_drop = krogager.drop(['Log2(LFQ) Control Output 1', 'Log2(LFQ) Control Output 2', 'Log2(LFQ) Control Output 3', 'Log2(LFQ) Control Output 4', 'Log2(LFQ) Control Output 5', 'Log2(LFQ) Control Output 6', 'Log2(LFQ) SORT Output 1', 'Log2(LFQ) SORT Output 2', 'Log2(LFQ) SORT Output 3', 'Log2(LFQ) Control median', 'Log2(LFQ) SORT median'], axis=1) krogager_df = pd.wide_to_long(krogager_drop, stubnames='LFQintensity', i=['Uniprot', 'gene_names'], j='condition', sep='_', suffix=r'\w+') krogager_df = krogager_df.reset_index() krogager_df['Study'] = 'Krogager 2018' krogager_df['Organism'] = 'mouse' krogager_df['Age_days'] = 13 * 7 + 21 # 13*7 +21 # 10 weeks + 2weeks after surgery + 1 week treatment krogager_df.loc[krogager_df['condition'] == 'SORT', 'location'] = 'neurons' # striatum neurons krogager_df.loc[krogager_df['condition'] == 'control', 'location'] = 'striatum' # striatum neurons krogager_df['raw_data_units'] = 'LFQintensity' krogager_df = krogager_df.rename(columns={'LFQintensity': 'raw_data'}) return krogager_df def get_hosp_2017_dataframe(): """ Return pandas dataframe for Hosp 2017 :return: pandas.core.frame.DataFrame: dataframe containing Hosp 2017 data. """ print("Importing Hosp 2017 pandas dataframe. This can last a while.") hosp_solf = pd.ExcelFile('../data/source_data/1-s2.0-S2211124717315772-mmc2.xlsx') hosp_sol = hosp_solf.parse('S1A_soluble proteome') hosp_sol2f = pd.ExcelFile('../data/source_data/1-s2.0-S2211124717315772-mmc3.xlsx') hosp_sol2 = hosp_sol2f.parse('S2A_CSF_proteome') hosp_insolf = pd.ExcelFile('../data/source_data/1-s2.0-S2211124717315772-mmc4.xlsx') hosp_insol = hosp_insolf.parse('S3A_insolube_proteome_data') hosp_sol = hosp_sol.drop( ['GOBP name', 'GOMF name', 'GOCC name', 'KEGG name', 'Pfam', 'GSEA', 'Keywords', 'Corum', 'Peptides', 'Razor + unique peptides', 'Razor + unique peptides', 'Sequence coverage [%]', 'Unique + razor sequence coverage [%]', 'Unique sequence coverage [%]', 'Q-value'], axis=1) hosp_sol = hosp_sol[hosp_sol.columns.drop(list(hosp_sol.filter(regex=r'LFQ')))] hosp_sol = hosp_sol[hosp_sol.columns.drop(list(hosp_sol.filter(regex=r'_R6\/2_')))] hosp_sol2 = hosp_sol2.drop( ['GOBP name', 'GOMF name', 'GOCC name', 'KEGG name', 'Pfam', 'GSEA', 'Fasta headers', 'Corum', 'Peptides', 'Razor + unique peptides', 'Razor + unique peptides', 'Sequence coverage [%]', 'Unique + razor sequence coverage [%]', 'Unique sequence coverage [%]', 'Q-value'], axis=1) hosp_sol2 = hosp_sol2[hosp_sol2.columns.drop(list(hosp_sol2.filter(regex=r'LFQ')))] hosp_sol2 = hosp_sol2[hosp_sol2.columns.drop(list(hosp_sol2.filter(regex=r'_R6\/2_')))] hosp_insol = hosp_insol.drop( ['GOBP name', 'GOMF name', 'GOCC name', 'KEGG name', 'Pfam', 'GSEA', 'Fasta headers', 'Corum', 'Coiled-coil domain', 'LCR motif', 'polyQ domain', 'coiled-coil length', 'LCR length', 'polyQ length', 'Peptides', 'Razor + unique peptides', 'Razor + unique peptides', 'Sequence coverage [%]', 'Unique + razor sequence coverage [%]', 'Unique sequence coverage [%]', 'Q-value'], axis=1) hosp_insol = hosp_insol[hosp_insol.columns.drop(list(hosp_insol.filter(regex=r'LFQ')))] hosp_insol = hosp_insol[hosp_insol.columns.drop(list(hosp_insol.filter(regex=r'_R6\/2_')))] hosp_sol['Gene names'] = hosp_sol['Gene names'].str.upper() hosp_sol2['Gene names'] = hosp_sol2['Gene names'].str.upper() hosp_insol['Gene names'] = hosp_insol['Gene names'].str.upper() ### hosp_sol = hosp_sol.rename(columns={'Gene names': 'gene_names', 'Majority protein IDs': 'Uniprot', 'Mol. weight [kDa]': 'molecular_weight_kDa'}) hosp_sol = hosp_sol.drop([ 'Protein IDs', 'Protein names', 'Unique peptides', 'Intensity', 'MS/MS Count', 'iBAQ', 'iBAQ library'], axis=1) hosp_sol2 = hosp_sol2.rename(columns={'Gene names': 'gene_names', 'Majority protein IDs': 'Uniprot', 'Mol. weight [kDa]': 'molecular_weight_kDa'}) hosp_sol2 = hosp_sol2.drop([ 'Protein IDs', 'Protein names', 'Unique peptides', 'Score', 'Intensity', 'MS/MS Count', 'iBAQ_total'], axis=1) hosp_insol = hosp_insol.rename(columns={'Gene names': 'gene_names', 'Majority protein IDs': 'Uniprot', 'Mol. weight [kDa]': 'molecular_weight_kDa'}) hosp_insol = hosp_insol.drop([ 'Protein IDs', 'Protein names', 'Unique peptides', 'Score', 'Intensity', 'MS/MS Count', 'iBAQ'], axis=1) hosp_sol.columns = ['Uniprot', 'gene_names', 'molecular_weight_kDa', 'iBAQ_5wWTce1', 'iBAQ_5wWTce2', 'iBAQ_5wWTce3', 'iBAQ_5wWTce4', 'iBAQ_5wWTco1', 'iBAQ_5wWTco2', 'iBAQ_5wWTco3', 'iBAQ_5wWTco4', 'iBAQ_5wWThc1', 'iBAQ_5wWThc2', 'iBAQ_5wWThc3', 'iBAQ_5wWThc4', 'iBAQ_5wWTst1', 'iBAQ_5wWTst2', 'iBAQ_5wWTst3', 'iBAQ_5wWTst4', 'iBAQ_8wWTce1', 'iBAQ_8wWTce2', 'iBAQ_8wWTce3', 'iBAQ_8wWTco1', 'iBAQ_8wWTco2', 'iBAQ_8wWTco3', 'iBAQ_8wWThc1', 'iBAQ_8wWThc2', 'iBAQ_8wWThc3', 'iBAQ_8wWTst1', 'iBAQ_8wWTst2', 'iBAQ_8wWTst3', 'iBAQ_12wWTce1', 'iBAQ_12wWTce2', 'iBAQ_12wWTce3', 'iBAQ_12wWTco1', 'iBAQ_12wWTco2', 'iBAQ_12wWTco3', 'iBAQ_12wWThc1', 'iBAQ_12wWThc2', 'iBAQ_12wWThc3', 'iBAQ_12wWTst1', 'iBAQ_12wWTst2', 'iBAQ_12wWTst3'] hosp_sol2.columns = ['Uniprot', 'gene_names', 'molecular_weight_kDa', 'iBAQ_5wWT1', 'iBAQ_5wWT2', 'iBAQ_5wWT3', 'iBAQ_8wWT1', 'iBAQ_8wWT2', 'iBAQ_8wWT3', 'iBAQ_12wWT1', 'iBAQ_12wWT2', 'iBAQ_12wWT3' ] hosp_insol.columns = ['Uniprot', 'gene_names', 'molecular_weight_kDa', 'iBAQ_5wWTce1', 'iBAQ_5wWTce2', 'iBAQ_5wWTce3', 'iBAQ_5wWTce4', 'iBAQ_5wWTco1', 'iBAQ_5wWTco2', 'iBAQ_5wWTco3', 'iBAQ_5wWTco4', 'iBAQ_5wWThc1', 'iBAQ_5wWThc2', 'iBAQ_5wWThc3', 'iBAQ_5wWThc4', 'iBAQ_5wWTst1', 'iBAQ_5wWTst2', 'iBAQ_5wWTst3', 'iBAQ_5wWTst4', 'iBAQ_8wWTce1', 'iBAQ_8wWTce2', 'iBAQ_8wWTce3', 'iBAQ_8wWTco1', 'iBAQ_8wWTco2', 'iBAQ_8wWTco3', 'iBAQ_8wWThc1', 'iBAQ_8wWThc2', 'iBAQ_8wWThc3', 'iBAQ_8wWTst1', 'iBAQ_8wWTst2', 'iBAQ_8wWTst3', 'iBAQ_12wWTce1', 'iBAQ_12wWTce2', 'iBAQ_12wWTce3', 'iBAQ_12wWTco1', 'iBAQ_12wWTco2', 'iBAQ_12wWTco3', 'iBAQ_12wWThc1', 'iBAQ_12wWThc2', 'iBAQ_12wWThc3', 'iBAQ_12wWTst1', 'iBAQ_12wWTst2', 'iBAQ_12wWTst3', 'iBAQ_5wWTcex/yiBAQ_inc5wWTce', 'iBAQ_5wWTcox/yiBAQ_inc5wWTco', 'iBAQ_5wWThcx/yiBAQ_inc5wWThc', 'iBAQ_5wWTstx/yiBAQ_inc5wWTst', 'iBAQ_8wWTcex/yiBAQ_inc8wWTce', 'iBAQ_8wWTcox/yiBAQ_inc8wWTco', 'iBAQ_8wWThcx/yiBAQ_inc8wWThc', 'iBAQ_8wWTstx/yiBAQ_inc8wWTst', 'iBAQ_12wWTcex/yiBAQ_inc12wWTce', 'iBAQ_12wWTcox/yiBAQ_inc12wWTco', 'iBAQ_12wWThcx/yiBAQ_inc12wWThc', 'iBAQ_12wWTstx/yiBAQ_inc12wWTst'] hosp_insol = hosp_insol.drop(['iBAQ_5wWTcex/yiBAQ_inc5wWTce', 'iBAQ_5wWTcox/yiBAQ_inc5wWTco', 'iBAQ_5wWThcx/yiBAQ_inc5wWThc', 'iBAQ_5wWTstx/yiBAQ_inc5wWTst', 'iBAQ_8wWTcex/yiBAQ_inc8wWTce', 'iBAQ_8wWTcox/yiBAQ_inc8wWTco', 'iBAQ_8wWThcx/yiBAQ_inc8wWThc', 'iBAQ_8wWTstx/yiBAQ_inc8wWTst', 'iBAQ_12wWTcex/yiBAQ_inc12wWTce', 'iBAQ_12wWTcox/yiBAQ_inc12wWTco', 'iBAQ_12wWThcx/yiBAQ_inc12wWThc', 'iBAQ_12wWTstx/yiBAQ_inc12wWTst'], axis=1) hosp_sol_df = pd.wide_to_long(hosp_sol, stubnames='iBAQ', i=['Uniprot', 'gene_names', 'molecular_weight_kDa'], j='sample_id', sep='_', suffix=r'\w+') hosp_sol_df = hosp_sol_df.reset_index() hosp_sol_df['Study'] = 'Hosp 2017, soluble' hosp_sol_df['Organism'] = 'mouse' hosp_sol_df['raw_data_units'] = 'iBAQ' hosp_sol_df = hosp_sol_df.rename(columns={'iBAQ': 'raw_data'}) hosp_sol2_df = pd.wide_to_long(hosp_sol2, stubnames='iBAQ', i=['Uniprot', 'gene_names', 'molecular_weight_kDa'], j='sample_id', sep='_', suffix=r'\w+') hosp_sol2_df = hosp_sol2_df.reset_index() hosp_sol2_df['Study'] = 'Hosp 2017, CSF' hosp_sol2_df['Organism'] = 'mouse' hosp_sol2_df['raw_data_units'] = 'iBAQ' hosp_sol2_df = hosp_sol2_df.rename(columns={'iBAQ': 'raw_data'}) hosp_insol_df = pd.wide_to_long(hosp_insol, stubnames='iBAQ', i=['Uniprot', 'gene_names', 'molecular_weight_kDa'], j='sample_id', sep='_', suffix=r'\w+') hosp_insol_df = hosp_insol_df.reset_index() hosp_insol_df['Study'] = 'Hosp 2017, insoluble' hosp_insol_df['Organism'] = 'mouse' hosp_insol_df['raw_data_units'] = 'iBAQ' hosp_insol_df = hosp_insol_df.rename(columns={'iBAQ': 'raw_data'}) hosp_3 = pd.concat([hosp_sol_df, hosp_sol2_df, hosp_insol_df ], ignore_index=True, sort=False) hosp_3.loc[hosp_3['sample_id'].isin(['5wWTce1', '5wWTce2', '5wWTce3', '5wWTce4', '5wWTco1', '5wWTco2', '5wWTco3', '5wWTco4', '5wWThc1', '5wWThc2', '5wWThc3', '5wWThc4', '5wWTst1', '5wWTst2', '5wWTst3', '5wWTst4', '5wWT1', '5wWT2', '5wWT3']), 'Age_days'] = 35 + 21 # 35 +21 #'5 weeks' hosp_3.loc[hosp_3['sample_id'].isin(['8wWTce1', '8wWTce2', '8wWTce3', '8wWTco1', '8wWTco2', '8wWTco3', '8wWThc1', '8wWThc2', '8wWThc3', '8wWTst1', '8wWTst2', '8wWTst3', '8wWT1', '8wWT2', '8wWT3']), 'Age_days'] = 56 + 21 # 56 +21 #'8 weeks' hosp_3.loc[ hosp_3['sample_id'].isin(['12wWTce1', '12wWTce2', '12wWTce3', '12wWTco1', '12wWTco2', '12wWTco3', '12wWThc1', '12wWThc2', '12wWThc3', '12wWTst1', '12wWTst2', '12wWTst3', '12wWT1', '12wWT2', '12wWT3']), 'Age_days'] = 12 * 7 + 21 # 12*7 +21 #'12 weeks' hosp_3.loc[hosp_3['sample_id'].isin(['5wWTce1', '5wWTce2', '5wWTce3', '5wWTce4', '8wWTce1', '8wWTce2', '8wWTce3', '12wWTce1', '12wWTce2', '12wWTce3']), 'location'] = 'cerebellum' hosp_3.loc[hosp_3['sample_id'].isin(['5wWTco1', '5wWTco2', '5wWTco3', '5wWTco4', '8wWTco1', '8wWTco2', '8wWTco3', '12wWTco1', '12wWTco2', '12wWTco3']), 'location'] = 'cortex' hosp_3.loc[hosp_3['sample_id'].isin(['5wWThc1', '5wWThc2', '5wWThc3', '5wWThc4', '8wWThc1', '8wWThc2', '8wWThc3', '12wWThc1', '12wWThc2', '12wWThc3']), 'location'] = 'hippocampus' hosp_3.loc[hosp_3['sample_id'].isin( ['5wWTst1', '5wWTst2', '5wWTst3', '5wWTst4', '8wWTst1', '8wWTst2', '8wWTst3', '12wWTst1', '12wWTst2', '12wWTst3']), 'location'] = 'striatum' hosp_3.loc[hosp_3['sample_id'].isin( ['5wWT1', '5wWT2', '5wWT3', '8wWT1', '8wWT2', '8wWT3', '12wWT1', '12wWT2', '12wWT3']), 'location'] = 'csf' return hosp_3 def get_itzhak_2017_dataframe(): """ Return pandas dataframe for Itzhak 2017 :return: pandas.core.frame.DataFrame: dataframe containing Itzhak 2017 data. """ print("Importing itzhak 2017 pandas dataframe. This can last a while.") itzhak_concf =
pd.ExcelFile('../data/source_data/1-s2.0-S2211124717311889-mmc4.xlsx')
pandas.ExcelFile
"""A script for running an already trained SSD model on a video, saving the result as both a video file which can be inspected by humans, and also as a text file. Only uses imageio for video input/output which is nice for when OpenCV is built without video encoding support. """ import cv2 import imageio as io import numpy as np import pandas as pd import click from visualize import draw, class_colors from ssd import SSD300 from create_prior_box import create_prior_box from ssd_utils import BBoxUtility from keras.applications.imagenet_utils import preprocess_input from apply_mask import Masker from classnames import get_classnames from util import parse_resolution, print_flush from folder import runs_path def rescale(df, index, factor): """ Rescales a data frame row, as integers. Used since detections are stored on scale 0-1 """ s = df[index] s2 = [int(factor*x) for x in s] df[index] = s2 def get_model(name, experiment, input_shape, num_classes=6, verbose=True): """ Gets an SSD model, with trained weights Arguments: name -- name of the dataset experiment -- name of this training run input_shape -- size of images fed to SSD as a tuple like (640,480,3) num_classes -- the number of different object classes (including background) """ model = SSD300((input_shape[1],input_shape[0],input_shape[2]), num_classes=num_classes) weights_files = list((runs_path / "{}_{}".format(name,experiment) / "checkpoints").glob('*.hdf5')) weights_files_loss = np.array([float(wf.stem.split('-')[-1]) for wf in weights_files]) weights_file = weights_files[np.argmin(weights_files_loss)] model.load_weights(weights_file, by_name=True) if verbose: print_flush('Model loaded from {}'.format(weights_file)) return model def test_on_video(model, name, experiment, videopath, outvideopath, classnames, batch_size=32, input_shape=(480,640,3), soft=False, width=480, height=640, conf_thresh=0.75, csv_conf_thresh=0.75): """ Applies a trained SSD model to a video Arguments: model -- the SSD model, e.g. from get_model name -- name of dataset experiment -- name of training run videopath -- path to input video outvideopath -- path to output video showing the detections classnames -- list of all the classes batch_size -- number of images processed in parallell, lower this if you get out-of-memory errors input_shape -- size of images fed to SSD soft -- Whether to do soft NMS or normal NMS width -- Width to scale detections with (can be set to 1 if detections are already on right scale) height -- Height to scale detections with (can be set to 1 if detections are already on right scale) conf_thresh -- Detections with confidences below this are not shown in output video. Set to negative to not visualize confidences. csv_conf_thresh -- Detections with confidences below this are ignored. This should be same as conf_thresh unless conf_thresh is negative. """ masker = Masker(name) num_classes = len(classnames)+1 colors = class_colors(num_classes) make_vid = True suffix = outvideopath.split('.')[-1] if suffix == 'csv': make_vid = False csvpath = outvideopath else: csvpath = outvideopath.replace('.{}'.format(suffix), '.csv') print_flush('Generating priors') im_in = np.random.random((1,input_shape[1],input_shape[0],input_shape[2])) priors = model.predict(im_in,batch_size=1)[0, :, -8:] bbox_util = BBoxUtility(num_classes, priors) vid = io.get_reader(videopath) if make_vid: outvid = io.get_writer(outvideopath, fps=30) inputs = [] frames = [] all_detections = [] for i,frame in enumerate(vid): frame = masker.mask(frame) resized = cv2.resize(frame, (input_shape[0], input_shape[1])) frames.append(frame.copy()) inputs.append(resized) if len(inputs) == batch_size: inputs = np.array(inputs).astype(np.float64) inputs = preprocess_input(inputs) preds = model.predict(inputs, batch_size=batch_size, verbose=0) results = bbox_util.detection_out(preds, soft=soft) for result, frame, frame_number in zip(results, frames, range(i-batch_size, i)): result = [r if len(r) > 0 else np.zeros((1, 6)) for r in result] raw_detections = pd.DataFrame(np.vstack(result), columns=['class_index', 'confidence', 'xmin', 'ymin', 'xmax', 'ymax']) rescale(raw_detections, 'xmin', width) rescale(raw_detections, 'xmax', width) rescale(raw_detections, 'ymin', height) rescale(raw_detections, 'ymax', height) rescale(raw_detections, 'class_index', 1) ci = raw_detections['class_index'] cn = [classnames[int(x)-1] for x in ci] raw_detections['class_name'] = cn raw_detections['frame_number'] = (frame_number+2) all_detections.append(raw_detections[raw_detections.confidence>csv_conf_thresh]) if make_vid: frame = draw(frame, raw_detections, colors, conf_thresh=conf_thresh) outvid.append_data(frame) frames = [] inputs = [] if i%(10*batch_size) == 0: print_flush(i) detections =
pd.concat(all_detections)
pandas.concat
"""Run unit tests. Use this to run tests and understand how tasks.py works. Example: Create directories:: mkdir -p test-data/input mkdir -p test-data/output Run tests:: pytest test_combine.py -s Notes: * this will create sample csv, xls and xlsx files * test_combine_() test the main combine function """ from d6tstack.combine_csv import * from d6tstack.sniffer import CSVSniffer import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import ntpath import pytest cfg_fname_base_in = 'test-data/input/test-data-' cfg_fname_base_out_dir = 'test-data/output' cfg_fname_base_out = cfg_fname_base_out_dir+'/test-data-' cnxn_string = 'sqlite:///test-data/db/{}.db' #************************************************************ # fixtures #************************************************************ class TestLogPusher(object): def __init__(self, event): pass def send_log(self, msg, status): pass def send(self, data): pass logger = TestLogPusher('combiner') # sample data def create_files_df_clean(): # create sample data df1=pd.DataFrame({'date':pd.date_range('1/1/2011', periods=10), 'sales': 100, 'cost':-80, 'profit':20}) df2=pd.DataFrame({'date':pd.date_range('2/1/2011', periods=10), 'sales': 200, 'cost':-90, 'profit':200-90}) df3=pd.DataFrame({'date':pd.date_range('3/1/2011', periods=10), 'sales': 300, 'cost':-100, 'profit':300-100}) # cfg_col = [ 'date', 'sales','cost','profit'] # return df1[cfg_col], df2[cfg_col], df3[cfg_col] return df1, df2, df3 def create_files_df_clean_combine(): df1,df2,df3 = create_files_df_clean() df_all = pd.concat([df1,df2,df3]) df_all = df_all[df_all.columns].astype(str) return df_all def create_files_df_clean_combine_with_filename(fname_list): df1, df2, df3 = create_files_df_clean() df1['filename'] = os.path.basename(fname_list[0]) df2['filename'] = os.path.basename(fname_list[1]) df3['filename'] = os.path.basename(fname_list[2]) df_all = pd.concat([df1, df2, df3]) df_all = df_all[df_all.columns].astype(str) return df_all def create_files_df_colmismatch_combine(cfg_col_common): df1, df2, df3 = create_files_df_clean() df3['profit2']=df3['profit']*2 if cfg_col_common: df_all = pd.concat([df1, df2, df3], join='inner') else: df_all = pd.concat([df1, df2, df3]) df_all = df_all[df_all.columns].astype(str) return df_all def create_files_df_colmismatch_combine2(cfg_col_common): df1, df2, df3 = create_files_df_clean() for i in range(15): df3['profit'+str(i)]=df3['profit']*2 if cfg_col_common: df_all = pd.concat([df1, df2, df3], join='inner') else: df_all = pd.concat([df1, df2, df3]) df_all = df_all[df_all.columns].astype(str) return df_all # csv standard @pytest.fixture(scope="module") def create_files_csv(): df1,df2,df3 = create_files_df_clean() # save files cfg_fname = cfg_fname_base_in+'input-csv-clean-%s.csv' df1.to_csv(cfg_fname % 'jan',index=False) df2.to_csv(cfg_fname % 'feb',index=False) df3.to_csv(cfg_fname % 'mar',index=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_csv_colmismatch(): df1,df2,df3 = create_files_df_clean() df3['profit2']=df3['profit']*2 # save files cfg_fname = cfg_fname_base_in+'input-csv-colmismatch-%s.csv' df1.to_csv(cfg_fname % 'jan',index=False) df2.to_csv(cfg_fname % 'feb',index=False) df3.to_csv(cfg_fname % 'mar',index=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_csv_colmismatch2(): df1,df2,df3 = create_files_df_clean() for i in range(15): df3['profit'+str(i)]=df3['profit']*2 # save files cfg_fname = cfg_fname_base_in+'input-csv-colmismatch2-%s.csv' df1.to_csv(cfg_fname % 'jan',index=False) df2.to_csv(cfg_fname % 'feb',index=False) df3.to_csv(cfg_fname % 'mar',index=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_csv_colreorder(): df1,df2,df3 = create_files_df_clean() cfg_col = [ 'date', 'sales','cost','profit'] cfg_col2 = [ 'date', 'sales','profit','cost'] # return df1[cfg_col], df2[cfg_col], df3[cfg_col] # save files cfg_fname = cfg_fname_base_in+'input-csv-reorder-%s.csv' df1[cfg_col].to_csv(cfg_fname % 'jan',index=False) df2[cfg_col].to_csv(cfg_fname % 'feb',index=False) df3[cfg_col2].to_csv(cfg_fname % 'mar',index=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_csv_noheader(): df1,df2,df3 = create_files_df_clean() # save files cfg_fname = cfg_fname_base_in+'input-noheader-csv-%s.csv' df1.to_csv(cfg_fname % 'jan',index=False, header=False) df2.to_csv(cfg_fname % 'feb',index=False, header=False) df3.to_csv(cfg_fname % 'mar',index=False, header=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_csv_col_renamed(): df1, df2, df3 = create_files_df_clean() df3 = df3.rename(columns={'sales':'revenue'}) cfg_col = ['date', 'sales', 'profit', 'cost'] cfg_col2 = ['date', 'revenue', 'profit', 'cost'] cfg_fname = cfg_fname_base_in + 'input-csv-renamed-%s.csv' df1[cfg_col].to_csv(cfg_fname % 'jan', index=False) df2[cfg_col].to_csv(cfg_fname % 'feb', index=False) df3[cfg_col2].to_csv(cfg_fname % 'mar', index=False) return [cfg_fname % 'jan', cfg_fname % 'feb', cfg_fname % 'mar'] def test_create_files_csv_col_renamed(create_files_csv_col_renamed): pass def create_files_csv_dirty(cfg_sep=",", cfg_header=True): df1,df2,df3 = create_files_df_clean() df1.to_csv(cfg_fname_base_in+'debug.csv',index=False, sep=cfg_sep, header=cfg_header) return cfg_fname_base_in+'debug.csv' # excel single-tab def create_files_xls_single_helper(cfg_fname): df1,df2,df3 = create_files_df_clean() df1.to_excel(cfg_fname % 'jan',index=False) df2.to_excel(cfg_fname % 'feb',index=False) df3.to_excel(cfg_fname % 'mar',index=False) return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_xls_single(): return create_files_xls_single_helper(cfg_fname_base_in+'input-xls-sing-%s.xls') @pytest.fixture(scope="module") def create_files_xlsx_single(): return create_files_xls_single_helper(cfg_fname_base_in+'input-xls-sing-%s.xlsx') def write_file_xls(dfg, fname, startrow=0,startcol=0): writer = pd.ExcelWriter(fname) dfg.to_excel(writer, 'Sheet1', index=False,startrow=startrow,startcol=startcol) dfg.to_excel(writer, 'Sheet2', index=False,startrow=startrow,startcol=startcol) writer.save() # excel multi-tab def create_files_xls_multiple_helper(cfg_fname): df1,df2,df3 = create_files_df_clean() write_file_xls(df1,cfg_fname % 'jan') write_file_xls(df2,cfg_fname % 'feb') write_file_xls(df3,cfg_fname % 'mar') return [cfg_fname % 'jan',cfg_fname % 'feb',cfg_fname % 'mar'] @pytest.fixture(scope="module") def create_files_xls_multiple(): return create_files_xls_multiple_helper(cfg_fname_base_in+'input-xls-mult-%s.xls') @pytest.fixture(scope="module") def create_files_xlsx_multiple(): return create_files_xls_multiple_helper(cfg_fname_base_in+'input-xls-mult-%s.xlsx') #************************************************************ # tests - helpers #************************************************************ def test_file_extensions_get(): fname_list = ['a.csv','b.csv'] ext_list = file_extensions_get(fname_list) assert ext_list==['.csv','.csv'] fname_list = ['a.xls','b.xls'] ext_list = file_extensions_get(fname_list) assert ext_list==['.xls','.xls'] def test_file_extensions_all_equal(): ext_list = ['.csv']*2 assert file_extensions_all_equal(ext_list) ext_list = ['.xls']*2 assert file_extensions_all_equal(ext_list) ext_list = ['.csv','.xls'] assert not file_extensions_all_equal(ext_list) def test_file_extensions_valid(): ext_list = ['.csv']*2 assert file_extensions_valid(ext_list) ext_list = ['.xls']*2 assert file_extensions_valid(ext_list) ext_list = ['.exe','.xls'] assert not file_extensions_valid(ext_list) #************************************************************ #************************************************************ # combine_csv #************************************************************ #************************************************************ def test_csv_sniff_single(create_files_csv, create_files_csv_noheader): sniff = CSVSniffer(create_files_csv[0]) sniff.get_delim() assert sniff.delim == ',' assert sniff.count_skiprows() == 0 assert sniff.has_header() fname = create_files_csv_dirty("|") sniff = CSVSniffer(fname) sniff.get_delim() assert sniff.delim == "|" assert sniff.has_header() df1,df2,df3 = create_files_df_clean() assert sniff.nrows == df1.shape[0]+1 # no header test sniff = CSVSniffer(create_files_csv_noheader[0]) sniff.get_delim() assert sniff.delim == ',' assert sniff.count_skiprows() == 0 assert not sniff.has_header() def test_csv_sniff_multi(create_files_csv, create_files_csv_noheader): sniff = CSVSnifferList(create_files_csv) assert sniff.get_delim() == ',' assert sniff.count_skiprows() == 0 assert sniff.has_header() # no header test sniff = CSVSnifferList(create_files_csv_noheader) sniff.get_delim() assert sniff.get_delim() == ',' assert sniff.count_skiprows() == 0 assert not sniff.has_header() def test_CombinerCSV_columns(create_files_csv, create_files_csv_colmismatch, create_files_csv_colreorder): with pytest.raises(ValueError) as e: c = CombinerCSV([]) fname_list = create_files_csv combiner = CombinerCSV(fname_list=fname_list, all_strings=True) col_preview = combiner.preview_columns() # todo: cache the preview dfs somehow? reading the same in next step assert col_preview['is_all_equal'] assert col_preview['columns_all']==col_preview['columns_common'] assert col_preview['columns_all']==['cost', 'date', 'profit', 'sales'] fname_list = create_files_csv_colmismatch combiner = CombinerCSV(fname_list=fname_list, all_strings=True) col_preview = combiner.preview_columns() # todo: cache the preview dfs somehow? reading the same in next step assert not col_preview['is_all_equal'] assert not col_preview['columns_all']==col_preview['columns_common'] assert col_preview['columns_all']==['cost', 'date', 'profit', 'profit2', 'sales'] assert col_preview['columns_common']==['cost', 'date', 'profit', 'sales'] assert col_preview['columns_unique']==['profit2'] fname_list = create_files_csv_colreorder combiner = CombinerCSV(fname_list=fname_list, all_strings=True) col_preview = combiner.preview_columns() assert not col_preview['is_all_equal'] assert col_preview['columns_all']==col_preview['columns_common'] def test_CombinerCSV_combine(create_files_csv, create_files_csv_colmismatch, create_files_csv_colreorder): # all columns present fname_list = create_files_csv combiner = CombinerCSV(fname_list=fname_list, all_strings=True) df = combiner.combine() df = df.sort_values('date').drop(['filename'],axis=1) df_chk = create_files_df_clean_combine() assert df.equals(df_chk) df = combiner.combine() df = df.groupby('filename').head(combiner.nrows_preview) df_chk = combiner.preview_combine() assert df.equals(df_chk) # columns mismatch, all columns fname_list = create_files_csv_colmismatch combiner = CombinerCSV(fname_list=fname_list, all_strings=True, add_filename=True) df = combiner.combine() df = df.sort_values('date').drop(['filename'],axis=1) df_chk = create_files_df_colmismatch_combine(cfg_col_common=False) assert df.shape[1] == df_chk.shape[1] # columns mismatch, common columns df = combiner.combine(is_col_common=True) df = df.sort_values('date').drop(['filename'], axis=1) df_chk = create_files_df_colmismatch_combine(cfg_col_common=True) assert df.shape[1] == df_chk.shape[1] # Filename column True fname_list = create_files_csv combiner = CombinerCSV(fname_list=fname_list, all_strings=True) df = combiner.combine() df = df.sort_values('date') df_chk = create_files_df_clean_combine_with_filename(fname_list) assert df.equals(df_chk) # Filename column False combiner = CombinerCSV(fname_list=fname_list, all_strings=True, add_filename=False) df = combiner.combine() df = df.sort_values('date') df_chk = create_files_df_clean_combine() assert df.equals(df_chk) def test_CombinerCSV_combine_advanced(create_files_csv): # Check if rename worked correctly. fname_list = create_files_csv combiner = CombinerCSV(fname_list=fname_list, all_strings=True) adv_combiner = CombinerCSV(fname_list=fname_list, all_strings=True, columns_select=None, columns_rename={'date':'date1'}) df = adv_combiner.combine() assert 'date1' in df.columns.values assert 'date' not in df.columns.values df = adv_combiner.preview_combine() assert 'date1' in df.columns.values assert 'date' not in df.columns.values adv_combiner = CombinerCSV(fname_list=fname_list, all_strings=True, columns_select=['cost', 'date', 'profit', 'profit2', 'sales']) df = adv_combiner.combine() assert 'profit2' in df.columns.values assert df['profit2'].isnull().all() df = adv_combiner.preview_combine() assert 'profit2' in df.columns.values assert df['profit2'].isnull().all() def test_preview_dict(): df = pd.DataFrame({'col1':[0,1],'col2':[0,1]}) assert preview_dict(df) == {'columns': ['col1', 'col2'], 'rows': {0: [[0]], 1: [[1]]}} #************************************************************ # tests - CombinerCSV rename and select columns #************************************************************ def create_df_rename(): df11 = pd.DataFrame({'a':range(10)}) df12 = pd.DataFrame({'b': range(10)}) df21 = pd.DataFrame({'a':range(10),'c': range(10)}) df22 = pd.DataFrame({'b': range(10),'c': range(10)}) return df11, df12, df21, df22 # csv standard @pytest.fixture(scope="module") def create_files_csv_rename(): df11, df12, df21, df22 = create_df_rename() # save files cfg_fname = cfg_fname_base_in+'input-csv-rename-%s.csv' df11.to_csv(cfg_fname % '11',index=False) df12.to_csv(cfg_fname % '12',index=False) df21.to_csv(cfg_fname % '21',index=False) df22.to_csv(cfg_fname % '22',index=False) return [cfg_fname % '11',cfg_fname % '12',cfg_fname % '21',cfg_fname % '22'] def test_create_files_csv_rename(create_files_csv_rename): pass @pytest.fixture(scope="module") def create_out_files_csv_align_save(): cfg_outname = cfg_fname_base_out + 'input-csv-rename-%s-align-save.csv' return [cfg_outname % '11', cfg_outname % '12',cfg_outname % '21',cfg_outname % '22'] @pytest.fixture(scope="module") def create_out_files_parquet_align_save(): cfg_outname = cfg_fname_base_out + 'input-csv-rename-%s-align-save.parquet' return [cfg_outname % '11', cfg_outname % '12',cfg_outname % '21',cfg_outname % '22'] def test_apply_select_rename(): df11, df12, df21, df22 = create_df_rename() # rename 1, select all assert df11.equals(apply_select_rename(df12.copy(),[],{'b':'a'})) # rename and select 1 assert df11.equals(apply_select_rename(df22.copy(),['b'],{'b':'a'})) assert df11.equals(apply_select_rename(df22.copy(),['a'],{'b':'a'})) # rename and select 2 assert df21[list(dict.fromkeys(df21.columns))].equals(apply_select_rename(df22.copy(),['b','c'],{'b':'a'})) assert df21[list(dict.fromkeys(df21.columns))].equals(apply_select_rename(df22.copy(),['a','c'],{'b':'a'})) with pytest.warns(UserWarning, match="Renaming conflict"): assert df22.equals(apply_select_rename(df22.copy(), ['b', 'c'], {'c': 'b'})) def test_CombinerCSV_rename(create_files_csv_rename): df11, df12, df21, df22 = create_df_rename() df_chk1 = pd.concat([df11,df11]) df_chk2 = pd.concat([df11,df21]) def helper(fnames, cfg_col_sel,cfg_col_rename, df_chk, chk_filename=False, is_filename_col=True): if cfg_col_sel and cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_select=cfg_col_sel, columns_rename=cfg_col_rename) elif cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_rename=cfg_col_rename) else: c2 = CombinerCSV(fnames, add_filename=is_filename_col) dfc = c2.combine() if (not chk_filename) and is_filename_col: dfc = dfc.drop(['filename'], 1) assert dfc.equals(df_chk) if cfg_col_sel: fname_out = cfg_fname_base_out_dir + '/test_save.csv' c2.combine_save(fname_out) dfc = pd.read_csv(fname_out) if (not chk_filename) or is_filename_col: dfc = dfc.drop(['filename'], 1) assert dfc.equals(df_chk.reset_index(drop=True)) # rename 1, select all l = create_files_csv_rename[:2] helper(l,None,{'b':'a'},df_chk1) with pytest.raises(ValueError) as e: c2 = CombinerCSV(l, columns_select=['a','a']) # rename 1, select some l = [create_files_csv_rename[0],create_files_csv_rename[-1]] helper(l,['a'],{'b':'a'},df_chk1) helper(l,['b'],{'b':'a'},df_chk1) helper(l,None,{'b':'a'},df_chk2) l = [create_files_csv_rename[1],create_files_csv_rename[-1]] helper(l,['a'],{'b':'a'},df_chk1) helper(l,['b'],{'b':'a'},df_chk1) helper(l,None,{'b':'a'},df_chk2) with pytest.warns(UserWarning, match="Renaming conflict"): c2 = CombinerCSV(l, columns_rename={'b': 'a', 'c': 'a'}) c2.combine() # rename none, select all l = [create_files_csv_rename[0],create_files_csv_rename[2]] helper(l,None,None,df_chk2) # filename col True df31 = df11 df32 = df21 df31['filename'] = os.path.basename(l[0]) df32['filename'] = os.path.basename(l[1]) df_chk3 = pd.concat([df31, df32]) helper(l, None, None, df_chk3, is_filename_col=True, chk_filename=True) helper(l, None, None, df_chk2, is_filename_col=False, chk_filename=True) def test_CombinerCSV_align_save_advanced(create_files_csv_rename, create_out_files_csv_align_save): df11, df12, df21, df22 = create_df_rename() def helper(fnames, cfg_col_sel, cfg_col_rename, new_fnames, df_chks, is_filename_col=False): if cfg_col_sel and cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_select=cfg_col_sel, columns_rename=cfg_col_rename) elif cfg_col_sel: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_select=cfg_col_sel) elif cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_rename=cfg_col_rename) else: c2 = CombinerCSV(fnames, add_filename=is_filename_col) c2.align_save(output_dir=cfg_fname_base_out_dir, prefix="-align-save") for fname_out, df_chk in zip(new_fnames, df_chks): dfc = pd.read_csv(fname_out) assert dfc.equals(df_chk) # rename 1, select all l = create_files_csv_rename[:2] outl = create_out_files_csv_align_save[:2] helper(l, ['a'], {'b':'a'}, outl, [df11, df11]) # rename 1, select some l = [create_files_csv_rename[2]] outl = [create_out_files_csv_align_save[2]] helper(l, ['a'], {'b':'a'}, outl, [df11]) # rename none, select 1 l = [create_files_csv_rename[2]] outl = [create_out_files_csv_align_save[2]] helper(l, ['a'], None, outl, [df11]) # rename none, select all l = [create_files_csv_rename[2]] outl = [create_out_files_csv_align_save[2]] helper(l, ['a', 'c'], None, outl, [df21]) # rename none, select all, filename col true df21['filename'] = os.path.basename(outl[0]) helper(l, ['a', 'c'], None, outl, [df21], is_filename_col=True) def test_CombinerCSV_sql_advanced(create_files_csv_rename): df11, df12, df21, df22 = create_df_rename() def helper(fnames, cfg_col_sel, cfg_col_rename, df_chks, is_filename_col=False, stream=False): if cfg_col_sel and cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_select=cfg_col_sel, columns_rename=cfg_col_rename) elif cfg_col_sel: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_select=cfg_col_sel) elif cfg_col_rename: c2 = CombinerCSV(fnames, add_filename=is_filename_col, columns_rename=cfg_col_rename) else: c2 = CombinerCSV(fnames, add_filename=is_filename_col) df_chk = pd.DataFrame() for df in df_chks: df_chk = df_chk.append(df) table_name = 'test' db_cnxn_string = cnxn_string.format('test-combined-adv') if stream: c2.to_sql_stream(db_cnxn_string, table_name) else: c2.to_sql(db_cnxn_string, table_name) dfc = pd.read_sql("select * from test", db_cnxn_string) dfc = dfc.set_index('index') dfc.index.name = None pd.testing.assert_frame_equal(dfc, df_chk) assert dfc.equals(df_chk) # rename 1, select all l = create_files_csv_rename[:2] helper(l, ['a'], {'b': 'a'}, [df11, df11], stream=True) # test sql stream helper(l, ['a'], {'b': 'a'}, [df11, df11]) # rename 1, select some l = [create_files_csv_rename[2]] helper(l, ['a'], {'b': 'a'}, [df11]) # rename none, select 1 l = [create_files_csv_rename[2]] helper(l, ['a'], None, [df11]) # rename none, select all l = [create_files_csv_rename[2]] helper(l, ['a', 'c'], None, [df21]) # rename none, select all, filename col true df21['filename'] = os.path.basename(l[0]) helper(l, ['a', 'c'], None, [df21], is_filename_col=True) def test_CombinerCSV_sql(create_files_csv): def helper(fnames, is_col_common=False, is_filename_col=False, stream=False): combiner = CombinerCSV(fname_list=fnames, all_strings=True, add_filename=is_filename_col) table_name = 'test' db_cnxn_string = cnxn_string.format('test-combined-adv') if stream: combiner.to_sql_stream(db_cnxn_string, table_name, is_col_common=is_col_common) else: combiner.to_sql(db_cnxn_string, table_name, is_col_common=is_col_common) df = pd.read_sql("select * from test", db_cnxn_string) df = df.set_index('index') df.index.name = None return df # all columns present, to_sql fname_list = create_files_csv df_chk = create_files_df_clean_combine() assert df_chk.equals(helper(fname_list)) # to sql stream assert df_chk.equals(helper(fname_list, stream=True)) # columns mismatch, common columns, to_sql fname_list = create_files_csv_colmismatch() df_chk = create_files_df_colmismatch_combine(cfg_col_common=True) assert helper(fname_list, is_col_common=True).shape[1] == df_chk.shape[1] def test_combinercsv_to_csv(create_files_csv_rename, create_out_files_csv_align_save): fnames = create_files_csv_rename df11, df12, df21, df22 = create_df_rename() # error when separate files is False and no out_filename with pytest.raises(ValueError): c = CombinerCSV(fnames) c.to_csv(separate_files=False) # to_csv will call align_save fnames = create_files_csv_rename[:2] new_names = create_out_files_csv_align_save[:2] c2 = CombinerCSV(fnames, columns_select=['a'], columns_rename={'b': 'a'}, add_filename=False) c2.to_csv(output_dir=cfg_fname_base_out_dir, prefix="-align-save") df_chks = [df11, df11] for fname_out, df_chk in zip(new_names, df_chks): dfc = pd.read_csv(fname_out) assert dfc.equals(df_chk) # to_csv will call combine_save df_chk = pd.concat([df11, df11]) fnames = [create_files_csv_rename[0], create_files_csv_rename[-1]] c3 = CombinerCSV(fnames, columns_select=['a'], columns_rename={'b': 'a'}) dfc = c3.combine() dfc = dfc.drop(['filename'], 1) assert dfc.equals(df_chk) fname_out = cfg_fname_base_out_dir + '/test_save.csv' with pytest.warns(UserWarning, match="File already exists"): c3.to_csv(out_filename=fname_out, separate_files=False, streaming=True, overwrite=False) c3.to_csv(out_filename=fname_out, separate_files=False, streaming=True) dfc = pd.read_csv(fname_out) dfc = dfc.drop(['filename'], 1) assert dfc.equals(df_chk.reset_index(drop=True)) def test_combinercsv_to_parquet(create_files_csv_rename, create_out_files_parquet_align_save): fnames = create_files_csv_rename df11, df12, df21, df22 = create_df_rename() # error when separate files is False and no out_filename with pytest.raises(ValueError): c = CombinerCSV(fnames) c.to_parquet(separate_files=False) # to_csv will call align_save fnames = create_files_csv_rename[:2] new_names = create_out_files_parquet_align_save[:2] c2 = CombinerCSV(fnames, columns_select=['a'], columns_rename={'b': 'a'}, add_filename=False) c2.to_parquet(output_dir=cfg_fname_base_out_dir, prefix="-align-save") df_chks = [df11, df11] for fname_out, df_chk in zip(new_names, df_chks): table = pq.read_table(fname_out) dfc = table.to_pandas() assert dfc.equals(df_chk) # to_csv will call combine_save df_chk =
pd.concat([df11, df11])
pandas.concat
""" Functions to generate the set of endpoints for the time series benchmark on the HiRID database""" import glob import logging import math import os import os.path import pickle import random import sys import lightgbm as lgbm import numpy as np import pandas as pd import skfda.preprocessing.smoothing.kernel_smoothers as skks import skfda.representation.grid as skgrid import sklearn.linear_model as sklm import sklearn.metrics as skmetrics import sklearn.preprocessing as skpproc def load_pickle(fpath): """ Given a file path pointing to a pickle file, yields the object pickled in this file""" with open(fpath, 'rb') as fp: return pickle.load(fp) SUPPOX_TO_FIO2 = { 0: 21, 1: 26, 2: 34, 3: 39, 4: 45, 5: 49, 6: 54, 7: 57, 8: 58, 9: 63, 10: 66, 11: 67, 12: 69, 13: 70, 14: 73, 15: 75} def mix_real_est_pao2(pao2_col, pao2_meas_cnt, pao2_est_arr, bandwidth=None): """ Mix real PaO2 measurement and PaO2 estimates using a Gaussian kernel""" final_pao2_arr = np.copy(pao2_est_arr) sq_scale = 57 ** 2 # 1 hour has mass 1/3 approximately for idx in range(final_pao2_arr.size): meas_ref = pao2_meas_cnt[idx] real_val = None real_val_dist = None # Search forward and backward with priority giving to backward if equi-distant for sidx in range(48): if not idx - sidx < 0 and pao2_meas_cnt[idx - sidx] < meas_ref: real_val = pao2_col[idx - sidx + 1] real_val_dist = 5 * sidx break elif not idx + sidx >= final_pao2_arr.size and pao2_meas_cnt[idx + sidx] > meas_ref: real_val = pao2_col[idx + sidx] real_val_dist = 5 * sidx break if real_val is not None: alpha_mj = math.exp(-real_val_dist ** 2 / sq_scale) alpha_ej = 1 - alpha_mj final_pao2_arr[idx] = alpha_mj * real_val + alpha_ej * pao2_est_arr[idx] return final_pao2_arr def perf_regression_model(X_list, y_list, aux_list, configs=None): """ Initial test of a regression model to estimate the current Pao2 based on 6 features of the past. Also pass FiO2 to calculate resulting mistakes in the P/F ratio""" logging.info("Testing regression model for PaO2...") # Partition the data into 3 sets and run SGD regressor X_train = X_list[:int(0.6 * len(X_list))] X_train = np.vstack(X_train) y_train = np.concatenate(y_list[:int(0.6 * len(y_list))]) X_val = X_list[int(0.6 * len(X_list)):int(0.8 * len(X_list))] X_val = np.vstack(X_val) y_val = np.concatenate(y_list[int(0.6 * len(y_list)):int(0.8 * len(y_list))]) X_test = X_list[int(0.8 * len(X_list)):] X_test = np.vstack(X_test) y_test = np.concatenate(y_list[int(0.8 * len(y_list)):]) fio2_test = np.concatenate(aux_list[int(0.8 * len(aux_list)):]) if configs["sur_model_type"] == "linear": scaler = skpproc.StandardScaler() X_train_std = scaler.fit_transform(X_train) X_val_std = scaler.transform(X_val) X_test_std = scaler.transform(X_test) if configs["sur_model_type"] == "linear": alpha_cands = [0.0001, 0.001, 0.01, 0.1, 1.0] elif configs["sur_model_type"] == "lgbm": alpha_cands = [32] best_alpha = None best_score = np.inf # Search for the best model on the validation set for alpha in alpha_cands: logging.info("Testing alpha: {}".format(alpha)) if configs["sur_model_type"] == "linear": lmodel_cand = sklm.SGDRegressor(alpha=alpha, random_state=2021) elif configs["sur_model_type"] == "lgbm": lmodel_cand = lgbm.LGBMRegressor(num_leaves=alpha, learning_rate=0.05, n_estimators=1000, random_state=2021) if configs["sur_model_type"] == "linear": lmodel_cand.fit(X_train_std, y_train) elif configs["sur_model_type"] == "lgbm": lmodel_cand.fit(X_train_std, y_train, eval_set=(X_val_std, y_val), early_stopping_rounds=20, eval_metric="mae") pred_y_val = lmodel_cand.predict(X_val_std) mae_val = np.median(np.absolute(y_val - pred_y_val)) if mae_val < best_score: best_score = mae_val best_alpha = alpha lmodel = sklm.SGDRegressor(alpha=best_alpha, random_state=2021) lmodel.fit(X_train_std, y_train) pred_y_test = lmodel.predict(X_test_std) pred_pf_ratio_test = pred_y_test / fio2_test true_pf_ratio_test = y_test / fio2_test mae_test = skmetrics.mean_absolute_error(y_test, pred_y_test) logging.info("Mean absolute error in test set: {:.3f}".format(mae_test)) def percentile_smooth(signal_col, percentile, win_scope_mins): """ Window percentile smoother, where percentile is in the interval [0,100]""" out_arr = np.zeros_like(signal_col) mins_per_window = 5 search_range = int(win_scope_mins / mins_per_window / 2) for jdx in range(out_arr.size): search_arr = signal_col[max(0, jdx - search_range):min(out_arr.size, jdx + search_range)] out_arr[jdx] = np.percentile(search_arr, percentile) return out_arr def subsample_blocked(val_arr, meas_arr=None, ss_ratio=None, block_length=None, normal_value=None): """ Subsample blocked with ratio and block length""" val_arr_out = np.copy(val_arr) meas_arr_out = np.copy(meas_arr) meas_idxs = [] n_meas = 0 for idx in range(meas_arr.size): if meas_arr[idx] > n_meas: meas_idxs.append(idx) n_meas += 1 if len(meas_idxs) == 0: return (val_arr_out, meas_arr_out) meas_select = int((1 - ss_ratio) * len(meas_idxs)) begin_select = meas_select // block_length feas_begins = [meas_idxs[idx] for idx in np.arange(0, len(meas_idxs), block_length)] sel_meas_begins = sorted(random.sample(feas_begins, begin_select)) sel_meas_delete = [] for begin in sel_meas_begins: for add_idx in range(block_length): sel_meas_delete.append(begin + add_idx) # Rewrite the measuremnent array with deleted indices for midx, meas_idx in enumerate(meas_idxs): prev_cnt = 0 if meas_idx == 0 else meas_arr_out[meas_idx - 1] revised_cnt = prev_cnt if meas_idx in sel_meas_delete else prev_cnt + 1 if midx < len(meas_idxs) - 1: for rewrite_idx in range(meas_idx, meas_idxs[midx + 1]): meas_arr_out[rewrite_idx] = revised_cnt else: for rewrite_idx in range(meas_idx, len(meas_arr_out)): meas_arr_out[rewrite_idx] = revised_cnt # Rewrite the value array with deleted indices, with assuming forward filling for midx, meas_idx in enumerate(meas_idxs): prev_val = normal_value if meas_idx == 0 else val_arr_out[meas_idx - 1] cur_val = val_arr_out[meas_idx] revised_value = prev_val if meas_idx in sel_meas_delete else cur_val if midx < len(meas_idxs) - 1: for rewrite_idx in range(meas_idx, meas_idxs[midx + 1]): val_arr_out[rewrite_idx] = revised_value else: for rewrite_idx in range(meas_idx, len(meas_arr_out)): val_arr_out[rewrite_idx] = revised_value return (val_arr_out, meas_arr_out) def subsample_individual(val_arr, meas_arr=None, ss_ratio=None, normal_value=None): """ Subsample individual measurements completely randomly with random choice""" val_arr_out = np.copy(val_arr) meas_arr_out = np.copy(meas_arr) meas_idxs = [] n_meas = 0 for idx in range(meas_arr.size): if meas_arr[idx] > n_meas: meas_idxs.append(idx) n_meas += 1 if len(meas_idxs) == 0: return (val_arr_out, meas_arr_out) meas_select = int((1 - ss_ratio) * len(meas_idxs)) sel_meas_delete = sorted(random.sample(meas_idxs, meas_select)) # Rewrite the measuremnent array with deleted indices for midx, meas_idx in enumerate(meas_idxs): prev_cnt = 0 if meas_idx == 0 else meas_arr_out[meas_idx - 1] revised_cnt = prev_cnt if meas_idx in sel_meas_delete else prev_cnt + 1 if midx < len(meas_idxs) - 1: for rewrite_idx in range(meas_idx, meas_idxs[midx + 1]): meas_arr_out[rewrite_idx] = revised_cnt else: for rewrite_idx in range(meas_idx, len(meas_arr_out)): meas_arr_out[rewrite_idx] = revised_cnt # Rewrite the value array with deleted indices, with assuming forward filling for midx, meas_idx in enumerate(meas_idxs): prev_val = normal_value if meas_idx == 0 else val_arr_out[meas_idx - 1] cur_val = val_arr_out[meas_idx] revised_value = prev_val if meas_idx in sel_meas_delete else cur_val if midx < len(meas_idxs) - 1: for rewrite_idx in range(meas_idx, meas_idxs[midx + 1]): val_arr_out[rewrite_idx] = revised_value else: for rewrite_idx in range(meas_idx, len(meas_arr_out)): val_arr_out[rewrite_idx] = revised_value return (val_arr_out, meas_arr_out) def merge_short_vent_gaps(vent_status_arr, short_gap_hours): """ Merge short gaps in the ventilation status array""" in_gap = False gap_length = 0 before_gap_status = np.nan for idx in range(len(vent_status_arr)): cur_state = vent_status_arr[idx] if in_gap and (cur_state == 0.0 or np.isnan(cur_state)): gap_length += 5 elif not in_gap and (cur_state == 0.0 or np.isnan(cur_state)): if idx > 0: before_gap_status = vent_status_arr[idx - 1] in_gap = True in_gap_idx = idx gap_length = 5 elif in_gap and cur_state == 1.0: in_gap = False after_gap_status = cur_state if gap_length / 60. <= short_gap_hours: vent_status_arr[in_gap_idx:idx] = 1.0 return vent_status_arr def kernel_smooth_arr(input_arr, bandwidth=None): """ Kernel smooth an input array with a Nadaraya-Watson kernel smoother""" output_arr = np.copy(input_arr) fin_arr = output_arr[np.isfinite(output_arr)] time_axis = 5 * np.arange(len(output_arr)) fin_time = time_axis[np.isfinite(output_arr)] # Return the unsmoothed array if fewer than 2 observations if fin_arr.size < 2: return output_arr smoother = skks.NadarayaWatsonSmoother(smoothing_parameter=bandwidth) fgrid = skgrid.FDataGrid([fin_arr], fin_time) fd_smoothed = smoother.fit_transform(fgrid) output_smoothed = fd_smoothed.data_matrix.flatten() output_arr[np.isfinite(output_arr)] = output_smoothed return output_arr def delete_short_vent_events(vent_status_arr, short_event_hours): """ Delete short events in the ventilation status array""" in_event = False event_length = 0 for idx in range(len(vent_status_arr)): cur_state = vent_status_arr[idx] if in_event and cur_state == 1.0: event_length += 5 if not in_event and cur_state == 1.0: in_event = True event_length = 5 event_start_idx = idx if in_event and (cur_state == 0.0 or np.isnan(cur_state)): in_event = False if event_length / 60. < short_event_hours: vent_status_arr[event_start_idx:idx] = 0.0 return vent_status_arr def ellis(x_orig): """ ELLIS model converting SpO2 in 100 % units into a PaO2 ABGA estimate""" x_orig[np.isnan(x_orig)] = 98 # Normal value assumption x = x_orig / 100 x[x == 1] = 0.999 exp_base = (11700 / ((1 / x) - 1)) exp_sqrbracket = np.sqrt(pow(50, 3) + (exp_base ** 2)) exp_first = np.cbrt(exp_base + exp_sqrbracket) exp_second = np.cbrt(exp_base - exp_sqrbracket) exp_full = exp_first + exp_second return exp_full def correct_left_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col): """ Corrects the left edge of the ventilation status array, to pin-point the exact conditions""" on_left_edge = False in_event = False # Correct left ventilation edges of the ventilation zone for idx in range(len(vent_status_arr)): if vent_status_arr[idx] == 1.0 and not in_event: in_event = True on_left_edge = True if on_left_edge and in_event: if vent_status_arr[idx] == 0.0: in_event = False on_left_edge = False elif (idx == 0 and etco2_meas_cnt[idx] > 0 or etco2_meas_cnt[idx] - etco2_meas_cnt[idx - 1] >= 1) and \ etco2_col[idx] > 0.5: on_left_edge = False else: vent_status_arr[idx] = 0.0 return vent_status_arr def delete_small_continuous_blocks(event_arr, block_threshold=None): """ Given an event array, deletes small contiguous blocks that are sandwiched between two other blocks, one of which is longer, they both have the same label. For the moment we delete blocks smaller than 30 minutes. Note this requires only a linear pass over the array""" block_list = [] active_block = None # Build a block list for jdx in range(event_arr.size): new_block = event_arr[jdx] # Start a new block at the beginning if active_block is None: active_block = new_block left_block_idx = jdx # Change to a new block elif not active_block == new_block: block_list.append((active_block, left_block_idx, jdx - 1)) left_block_idx = jdx active_block = new_block # Same last block unconditionally if jdx == event_arr.size - 1: block_list.append((new_block, left_block_idx, jdx)) # Merge blocks while True: all_clean = True for bidx, block in enumerate(block_list): block_label, lidx, ridx = block block_len = ridx - lidx + 1 # Candidate for merging if block_len <= block_threshold: if len(block_list) == 1: all_clean = True break # Only right block elif bidx == 0: next_block = block_list[bidx + 1] nb_label, nb_lidx, nb_ridx = next_block nb_len = nb_ridx - nb_lidx + 1 # Merge blocks if nb_len > block_len and nb_len > block_threshold: block_list[bidx] = (nb_label, lidx, nb_ridx) block_list.remove(next_block) all_clean = False break # Only left block elif bidx == len(block_list) - 1: prev_block = block_list[bidx - 1] pb_label, pb_lidx, pb_ridx = prev_block pb_len = pb_ridx - pb_lidx + 1 if pb_len > block_len and pb_len > block_threshold: block_list[bidx] = (pb_label, pb_lidx, ridx) block_list.remove(prev_block) all_clean = False break # Interior block else: prev_block = block_list[bidx - 1] next_block = block_list[bidx + 1] pb_label, pb_lidx, pb_ridx = prev_block nb_label, nb_lidx, nb_ridx = next_block pb_len = pb_ridx - pb_lidx + 1 nb_len = nb_ridx - nb_lidx + 1 if pb_label == nb_label and (pb_len > block_threshold or nb_len > block_threshold): block_list[bidx] = (pb_label, pb_lidx, nb_ridx) block_list.remove(prev_block) block_list.remove(next_block) all_clean = False break # Traversed block list with no actions required if all_clean: break # Now back-translate the block list to the list out_arr = np.copy(event_arr) for blabel, lidx, ridx in block_list: out_arr[lidx:ridx + 1] = blabel # Additionally build an array where the two arrays are different diff_arr = (out_arr != event_arr).astype(np.bool) return (out_arr, diff_arr) def collect_regression_data(spo2_col, spo2_meas_cnt, pao2_col, pao2_meas_cnt, fio2_est_arr, sao2_col, sao2_meas_cnt, ph_col, ph_meas_cnt): """ Collect regression data at time-stamps where we have a real PaO2 measurement, return partial training X,y pairs for this patient""" X_arr_collect = [] y_arr_collect = [] aux_collect = [] cur_pao2_cnt = 0 cur_spo2_cnt = 0 cur_sao2_cnt = 0 cur_ph_cnt = 0 pao2_real_meas = [] spo2_real_meas = [] sao2_real_meas = [] ph_real_meas = [] for jdx in range(spo2_col.size): if spo2_meas_cnt[jdx] > cur_spo2_cnt: spo2_real_meas.append(jdx) cur_spo2_cnt = spo2_meas_cnt[jdx] if sao2_meas_cnt[jdx] > cur_sao2_cnt: sao2_real_meas.append(jdx) cur_sao2_cnt = sao2_meas_cnt[jdx] if ph_meas_cnt[jdx] > cur_ph_cnt: ph_real_meas.append(jdx) cur_ph_cnt = ph_meas_cnt[jdx] if pao2_meas_cnt[jdx] > cur_pao2_cnt: pao2_real_meas.append(jdx) cur_pao2_cnt = pao2_meas_cnt[jdx] # Only start fitting the model from the 2nd measurement onwards if len(pao2_real_meas) >= 2 and len(spo2_real_meas) >= 2 and len(sao2_real_meas) >= 2 and len( ph_real_meas) >= 2: # Dimensions of features # 0: Last real SpO2 measurement # 1: Last real PaO2 measurement # 2: Last real SaO2 measurement # 3: Last real pH measurement # 4: Time to last real SpO2 measurement # 5: Time to last real PaO2 measurement # 6: Closest SpO2 to last real PaO2 measurement x_vect = np.array([spo2_col[jdx - 1], pao2_col[jdx - 1], sao2_col[jdx - 1], ph_col[jdx - 1], jdx - spo2_real_meas[-2], jdx - pao2_real_meas[-2], spo2_col[pao2_real_meas[-2]]]) y_val = pao2_col[jdx] aux_val = fio2_est_arr[jdx] if np.isnan(x_vect).sum() == 0 and np.isfinite(y_val) and np.isfinite(aux_val): X_arr_collect.append(x_vect) y_arr_collect.append(y_val) aux_collect.append(aux_val) if len(X_arr_collect) > 0: X_arr = np.vstack(X_arr_collect) y_arr = np.array(y_arr_collect) aux_arr = np.array(aux_collect) assert (np.isnan(X_arr).sum() == 0 and np.isnan(y_arr).sum() == 0) return (X_arr, y_arr, aux_arr) else: return (None, None, None) def delete_low_density_hr_gap(vent_status_arr, hr_status_arr, configs=None): """ Deletes gaps in ventilation which are caused by likely sensor dis-connections""" in_event = False in_gap = False gap_idx = -1 for idx in range(len(vent_status_arr)): # Beginning of new event, not from inside gap if not in_event and not in_gap and vent_status_arr[idx] == 1.0: in_event = True # Beginning of potential gap that needs to be closed elif in_event and vent_status_arr[idx] == 0.0: in_gap = True gap_idx = idx in_event = False # The gap is over, re-assign the status of ventilation to merge the gap, enter new event if in_gap and vent_status_arr[idx] == 1.0: hr_sub_arr = hr_status_arr[gap_idx:idx] # Close the gap if the density of HR is too low in between if np.sum(hr_sub_arr) / hr_sub_arr.size <= configs["vent_hr_density_threshold"]: vent_status_arr[gap_idx:idx] = 1.0 in_gap = False in_event = True return vent_status_arr def suppox_to_fio2(suppox_val): """ Conversion of supplemental oxygen to FiO2 estimated value""" if suppox_val > 15: return 75 else: return SUPPOX_TO_FIO2[suppox_val] def conservative_state(state1, state2): """ Given two states, return the lower one """ if state1 == state2: return state1 for skey in ["event_0", "event_1", "event_2"]: if state1 == skey or state2 == skey: return skey return "event_3" def endpoint_gen_benchmark(configs): var_map = configs["VAR_IDS"] raw_var_map = configs["RAW_VAR_IDS"] sz_window = configs["length_fw_window"] abga_window = configs["length_ABGA_window"] missing_unm = 0 # Threshold statistics stat_counts_ready_and_failure = 0 stat_counts_ready_and_success = 0 stat_counts_nready_and_failure = 0 stat_counts_nready_and_success = 0 stat_counts_ready_nextube = 0 stat_counts_nready_nextube = 0 imputed_f = configs["imputed_path"] merged_f = os.path.join(configs["merged_h5"]) out_folder = os.path.join(configs["endpoint_path"]) if not os.path.exists(out_folder): os.mkdir(out_folder) batch_id = configs["batch_idx"] logging.info("Generating endpoints for batch {}".format(batch_id)) batch_fpath = os.path.join(imputed_f, "batch_{}.parquet".format(batch_id)) if not os.path.exists(batch_fpath): logging.info("WARNING: Input file does not exist, exiting...") sys.exit(1) df_batch = pd.read_parquet(os.path.join(imputed_f, "batch_{}.parquet".format(batch_id))) logging.info("Loaded imputed data done...") cand_raw_batch = glob.glob(os.path.join(merged_f, "part-{}.parquet".format(batch_id))) assert (len(cand_raw_batch) == 1) pids = list(df_batch.patientid.unique()) logging.info("Number of patients in batch: {}".format(len(df_batch.patientid.unique()))) first_write = True out_fp = os.path.join(out_folder, "batch_{}.parquet".format(batch_id)) event_count = {"FIO2_AVAILABLE": 0, "SUPPOX_NO_MEAS_12_HOURS_LIMIT": 0, "SUPPOX_MAIN_VAR": 0, "SUPPOX_HIGH_FLOW": 0, "SUPPOX_NO_FILL_STOP": 0} readiness_ext_count = 0 not_ready_ext_count = 0 readiness_and_extubated_cnt = 0 extubated_cnt = 0 df_static = pd.read_parquet(configs["general_data_table_path"]) X_reg_collect = [] y_reg_collect = [] aux_reg_collect = [] out_dfs = [] for pidx, pid in enumerate(pids): df_pid = df_batch[df_batch["patientid"] == pid] if df_pid.shape[0] == 0: logging.info("WARNING: No input data for PID: {}".format(pid)) continue df_merged_pid = pd.read_parquet(cand_raw_batch[0], filters=[("patientid", "=", pid)]) df_merged_pid.sort_values(by="datetime", inplace=True) suppox_val = {} suppox_ts = {} # Main route of SuppOx df_suppox_red_async = df_merged_pid[[var_map["SuppOx"], "datetime"]] df_suppox_red_async = df_suppox_red_async.dropna(how="all", thresh=2) suppox_async_red_ts = np.array(df_suppox_red_async["datetime"]) suppox_val["SUPPOX"] = np.array(df_suppox_red_async[var_map["SuppOx"]]) # Strategy is to create an imputed SuppOx column based on the spec using # forward filling heuristics # Relevant meta-variables fio2_col = np.array(df_pid[var_map["FiO2"]]) pao2_col = np.array(df_pid[var_map["PaO2"]]) etco2_col = np.array(df_pid[var_map["etCO2"]]) paco2_col = np.array(df_pid[var_map["PaCO2"]]) gcs_a_col = np.array(df_pid[var_map["GCS_Antwort"]]) gcs_m_col = np.array(df_pid[var_map["GCS_Motorik"]]) gcs_aug_col = np.array(df_pid[var_map["GCS_Augen"]]) weight_col = np.array(df_pid[var_map["Weight"][0]]) noreph_col = np.array(df_pid[var_map["Norephenephrine"][0]]) epineph_col = np.array(df_pid[var_map["Epinephrine"][0]]) vaso_col = np.array(df_pid[var_map["Vasopressin"][0]]) milri_col = np.array(df_pid[var_map["Milrinone"][0]]) dobut_col = np.array(df_pid[var_map["Dobutamine"][0]]) levosi_col = np.array(df_pid[var_map["Levosimendan"][0]]) theo_col = np.array(df_pid[var_map["Theophyllin"][0]]) lactate_col = np.array(df_pid[var_map["Lactate"][0]]) peep_col = np.array(df_pid[var_map["PEEP"]]) # Heartrate hr_col = np.array(df_pid[var_map["HR"]]) hr_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["HR"])]) # Temperature temp_col = np.array(df_pid[var_map["Temp"]]) temp_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["Temp"])]) rrate_col = np.array(df_pid[var_map["RRate"]]) tv_col = np.array(df_pid[var_map["TV"]]) map_col = np.array(df_pid[var_map["MAP"][0]]) airway_col = np.array(df_pid[var_map["Airway"]]) # Ventilator mode group columns vent_mode_col = np.array(df_pid[var_map["vent_mode"]]) spo2_col = np.array(df_pid[var_map["SpO2"]]) if configs["presmooth_spo2"]: spo2_col = percentile_smooth(spo2_col, configs["spo2_smooth_percentile"], configs["spo2_smooth_window_size_mins"]) sao2_col = np.array(df_pid[var_map["SaO2"]]) ph_col = np.array(df_pid[var_map["pH"]]) fio2_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["FiO2"])]) pao2_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["PaO2"])]) etco2_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["etCO2"])]) peep_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["PEEP"])]) hr_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["HR"])]) spo2_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["SpO2"])]) sao2_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["SaO2"])]) ph_meas_cnt = np.array(df_pid["{}_IMPUTED_STATUS_CUM_COUNT".format(var_map["pH"])]) abs_dtime_arr = np.array(df_pid["datetime"]) event_status_arr = np.zeros(shape=(fio2_col.size), dtype="<S10") # Status arrays pao2_avail_arr = np.zeros(shape=(fio2_col.size)) fio2_avail_arr = np.zeros(shape=(fio2_col.size)) fio2_suppox_arr = np.zeros(shape=(fio2_col.size)) fio2_ambient_arr = np.zeros(shape=(fio2_col.size)) pao2_sao2_model_arr = np.zeros(shape=(fio2_col.size)) pao2_full_model_arr = np.zeros(shape=(fio2_col.size)) ratio_arr = np.zeros(shape=(fio2_col.size)) sur_ratio_arr = np.zeros(shape=(fio2_col.size)) pao2_est_arr = np.zeros(shape=(fio2_col.size)) fio2_est_arr = np.zeros(shape=(fio2_col.size)) vent_status_arr = np.zeros(shape=(fio2_col.size)) readiness_ext_arr = np.zeros(shape=(fio2_col.size)) readiness_ext_arr[:] = np.nan # Votes arrays vent_votes_arr = np.zeros(shape=(fio2_col.size)) vent_votes_etco2_arr = np.zeros(shape=(fio2_col.size)) vent_votes_ventgroup_arr = np.zeros(shape=(fio2_col.size)) vent_votes_tv_arr = np.zeros(shape=(fio2_col.size)) vent_votes_airway_arr = np.zeros(shape=(fio2_col.size)) peep_status_arr = np.zeros(shape=(fio2_col.size)) peep_threshold_arr = np.zeros(shape=(fio2_col.size)) hr_status_arr = np.zeros(shape=(fio2_col.size)) etco2_status_arr = np.zeros(shape=(fio2_col.size)) event_status_arr.fill("UNKNOWN") # Array pointers tracking the current active value of each type suppox_async_red_ptr = -1 # ======================== VENTILATION ================================================================================================ # Label each point in the 30 minute window with ventilation in_vent_event = False for jdx in range(0, len(ratio_arr)): low_vent_idx = max(0, jdx - configs["peep_search_bw"]) high_vent_idx = min(len(ratio_arr), jdx + configs["peep_search_bw"]) low_peep_idx = max(0, jdx - configs["peep_search_bw"]) high_peep_idx = min(len(ratio_arr), jdx + configs["peep_search_bw"]) low_hr_idx = max(0, jdx - configs["hr_vent_search_bw"]) high_hr_idx = min(len(ratio_arr), jdx + configs["hr_vent_search_bw"]) win_etco2 = etco2_col[low_vent_idx:high_vent_idx] win_etco2_meas = etco2_meas_cnt[low_vent_idx:high_vent_idx] win_peep = peep_col[low_peep_idx:high_peep_idx] win_peep_meas = peep_meas_cnt[low_peep_idx:high_peep_idx] win_hr_meas = hr_meas_cnt[low_hr_idx:high_hr_idx] etco2_meas_win = win_etco2_meas[-1] - win_etco2_meas[0] > 0 peep_meas_win = win_peep_meas[-1] - win_peep_meas[0] > 0 hr_meas_win = win_hr_meas[-1] - win_hr_meas[0] > 0 current_vent_group = vent_mode_col[jdx] current_tv = tv_col[jdx] current_airway = airway_col[jdx] vote_score = 0 # EtCO2 requirement (still needed) if etco2_meas_win and (win_etco2 > 0.5).any(): vote_score += 2 vent_votes_etco2_arr[jdx] = 2 # Ventilation group requirement (still needed) if current_vent_group in [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0]: vote_score += 1 vent_votes_ventgroup_arr[jdx] += 1 elif current_vent_group in [1.0]: vote_score -= 1 vent_votes_ventgroup_arr[jdx] -= 1 elif current_vent_group in [11.0, 12.0, 13.0, 15.0, 17.0]: vote_score -= 2 vent_votes_ventgroup_arr[jdx] -= 2 # TV presence requirement (still needed) if current_tv > 0: vote_score += 1 vent_votes_tv_arr[jdx] = 1 # Airway requirement (still needed) if current_airway in [1, 2]: vote_score += 2 vent_votes_airway_arr[jdx] = 2 # No airway (still needed) if current_airway in [3, 4, 5, 6]: vote_score -= 1 vent_votes_airway_arr[jdx] = -1 vent_votes_arr[jdx] = vote_score if vote_score >= configs["vent_vote_threshold"]: in_vent_event = True vent_status_arr[jdx] = 1 else: in_vent_event = False if peep_meas_win: peep_status_arr[jdx] = 1 if (win_peep >= configs["peep_threshold"]).any(): peep_threshold_arr[jdx] = 1 if etco2_meas_win: etco2_status_arr[jdx] = 1 if hr_meas_win: hr_status_arr[jdx] = 1 if configs["detect_hr_gaps"]: vent_status_arr = delete_low_density_hr_gap(vent_status_arr, hr_status_arr, configs=configs) if configs["merge_short_vent_gaps"]: vent_status_arr = merge_short_vent_gaps(vent_status_arr, configs["short_gap_hours"]) if configs["delete_short_vent_events"]: vent_status_arr = delete_short_vent_events(vent_status_arr, configs["short_event_hours"]) # vent_status_arr=correct_left_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col) # vent_status_arr=correct_right_edge_vent(vent_status_arr, etco2_meas_cnt, etco2_col) # Ventilation period array vent_period_arr = np.copy(vent_status_arr) # Delete short ventilation periods if no HR gap before in_event = False event_length = 0 for idx in range(len(vent_period_arr)): cur_state = vent_period_arr[idx] if in_event and cur_state == 1.0: event_length += 5 if not in_event and cur_state == 1.0: in_event = True event_length = 5 event_start_idx = idx if in_event and (np.isnan(cur_state) or cur_state == 0.0): in_event = False # Short event at beginning of stay shall never be deleted... if event_start_idx == 0: delete_event = False else: search_hr_idx = event_start_idx - 1 while search_hr_idx >= 0: if hr_status_arr[search_hr_idx] == 1.0: hr_gap_length = 5 * (event_start_idx - search_hr_idx) delete_event = True break search_hr_idx -= 1 # Found no HR before event, do not delete event... if search_hr_idx == -1: delete_event = False # Delete event in principle, then check if short enough... if delete_event: event_length += hr_gap_length if event_length / 60. <= configs["short_event_hours_vent_period"]: vent_period_arr[event_start_idx:idx] = 0.0 # ============================== OXYGENATION ENDPOINTS ================================================================== # Label each point in the 30 minute window (except ventilation) for jdx in range(0, len(ratio_arr)): # Advance to the last SuppOx infos before grid point cur_time = abs_dtime_arr[jdx] while True: suppox_async_red_ptr = suppox_async_red_ptr + 1 if suppox_async_red_ptr >= len(suppox_async_red_ts) or suppox_async_red_ts[ suppox_async_red_ptr] > cur_time: suppox_async_red_ptr = suppox_async_red_ptr - 1 break # Estimate the current FiO2 value bw_fio2 = fio2_col[max(0, jdx - configs["sz_fio2_window"]):jdx + 1] bw_fio2_meas = fio2_meas_cnt[max(0, jdx - configs["sz_fio2_window"]):jdx + 1] bw_etco2_meas = etco2_meas_cnt[max(0, jdx - configs["sz_etco2_window"]):jdx + 1] fio2_meas = bw_fio2_meas[-1] - bw_fio2_meas[0] > 0 etco2_meas = bw_etco2_meas[-1] - bw_etco2_meas[0] > 0 mode_group_est = vent_mode_col[jdx] # FiO2 is measured since beginning of stay and EtCO2 was measured, we use FiO2 (indefinite forward filling) # if ventilation is active or the current estimate of ventilation mode group is NIV. if fio2_meas and (vent_status_arr[jdx] == 1.0 or mode_group_est == 4.0): event_count["FIO2_AVAILABLE"] += 1 fio2_val = bw_fio2[-1] / 100 fio2_avail_arr[jdx] = 1 # Use supplemental oxygen or ambient air oxygen else: # No real measurements up to now, or the last real measurement # was more than 8 hours away. if suppox_async_red_ptr == -1 or ( cur_time - suppox_async_red_ts[suppox_async_red_ptr]) > np.timedelta64( configs["suppox_max_ffill"], 'h'): event_count["SUPPOX_NO_MEAS_12_HOURS_LIMIT"] += 1 fio2_val = configs["ambient_fio2"] fio2_ambient_arr[jdx] = 1 # Find the most recent source variable of SuppOx else: suppox = suppox_val["SUPPOX"][suppox_async_red_ptr] # SuppOx information from main source if np.isfinite(suppox): event_count["SUPPOX_MAIN_VAR"] += 1 fio2_val = suppox_to_fio2(int(suppox)) / 100 fio2_suppox_arr[jdx] = 1 else: assert (False, "Impossible condition") bw_pao2_meas = pao2_meas_cnt[max(0, jdx - configs["sz_pao2_window"]):jdx + 1] bw_pao2 = pao2_col[max(0, jdx - configs["sz_pao2_window"]):jdx + 1] pao2_meas = bw_pao2_meas[-1] - bw_pao2_meas[0] >= 1 # PaO2 was just measured, just use the value if pao2_meas: pao2_estimate = bw_pao2[-1] pao2_avail_arr[jdx] = 1 # Have to forecast PaO2 from a previous SpO2 else: bw_spo2 = spo2_col[max(0, jdx - abga_window):jdx + 1] bw_spo2_meas = spo2_meas_cnt[max(0, jdx - abga_window):jdx + 1] spo2_meas = bw_spo2_meas[-1] - bw_spo2_meas[0] >= 1 # Standard case, take the last SpO2 measurement if spo2_meas: spo2_val = bw_spo2[-1] pao2_estimate = ellis(np.array([spo2_val]))[0] # Extreme edge case, there was SpO2 measurement in the last 24 hours else: spo2_val = 98 pao2_estimate = ellis(np.array([spo2_val]))[0] # Compute the individual components of the Horowitz index pao2_est_arr[jdx] = pao2_estimate fio2_est_arr[jdx] = fio2_val pao2_est_arr_orig = np.copy(pao2_est_arr) # Smooth individual components of the P/F ratio estimate if configs["kernel_smooth_estimate_pao2"]: pao2_est_arr = kernel_smooth_arr(pao2_est_arr, bandwidth=configs["smoothing_bandwidth"]) if configs["kernel_smooth_estimate_fio2"]: fio2_est_arr = kernel_smooth_arr(fio2_est_arr, bandwidth=configs["smoothing_bandwidth"]) # Test2 data-set for surrogate model pao2_sur_est = np.copy(pao2_est_arr) assert (np.sum(np.isnan(pao2_sur_est)) == 0) # Convex combination of the estimate if configs["mix_real_estimated_pao2"]: pao2_est_arr = mix_real_est_pao2(pao2_col, pao2_meas_cnt, pao2_est_arr, bandwidth=configs["smoothing_bandwidth"]) # Compute Horowitz indices (Kernel pipeline / Surrogate model pipeline) for jdx in range(len(ratio_arr)): ratio_arr[jdx] = pao2_est_arr[jdx] / fio2_est_arr[jdx] # Post-smooth Horowitz index if configs["post_smooth_pf_ratio"]: ratio_arr = kernel_smooth_arr(ratio_arr, bandwidth=configs["post_smoothing_bandwidth"]) if configs["pao2_version"] == "ellis_basic": pf_event_est_arr = np.copy(ratio_arr) elif configs["pao2_version"] == "original": assert (False) # Now label based on the array of estimated Horowitz indices for idx in range(0, len(event_status_arr) - configs["offset_back_windows"]): est_idx = pf_event_est_arr[idx:min(len(ratio_arr), idx + sz_window)] est_vent = vent_status_arr[idx:min(len(ratio_arr), idx + sz_window)] est_peep_dense = peep_status_arr[idx:min(len(ratio_arr), idx + sz_window)] est_peep_threshold = peep_threshold_arr[idx:min(len(ratio_arr), idx + sz_window)] if np.sum((est_idx <= 100) & ( (est_vent == 0.0) | (est_vent == 1.0) & (est_peep_dense == 0.0) | (est_vent == 1.0) & ( est_peep_dense == 1.0) & (est_peep_threshold == 1.0))) >= 2 / 3 * len(est_idx): event_status_arr[idx] = "event_3" elif np.sum((est_idx <= 200) & ( (est_vent == 0.0) | (est_vent == 1.0) & (est_peep_dense == 0.0) | (est_vent == 1.0) & ( est_peep_dense == 1.0) & (est_peep_threshold == 1.0))) >= 2 / 3 * len(est_idx): event_status_arr[idx] = "event_2" elif np.sum((est_idx <= 300) & ( (est_vent == 0.0) | (est_vent == 1.0) & (est_peep_dense == 0.0) | (est_vent == 1.0) & ( est_peep_dense == 1.0) & (est_peep_threshold == 1.0))) >= 2 / 3 * len(est_idx): event_status_arr[idx] = "event_1" elif np.sum(np.isnan(est_idx)) < 2 / 3 * len(est_idx): event_status_arr[idx] = "event_0" # Re-traverse the array and correct the right edges of events # Correct right edges of event 0 (correct level to level 0) on_right_edge = False in_event = False for idx in range(0, len(event_status_arr) - configs["offset_back_windows"]): cur_state = event_status_arr[idx].decode() if cur_state in ["event_0"] and not in_event: in_event = True elif in_event and cur_state not in ["event_0"]: in_event = False on_right_edge = True if on_right_edge: if pf_event_est_arr[idx] < 300: on_right_edge = False else: event_status_arr[idx] = "event_0" # Correct right edges of event 1 (correct to level 1) on_right_edge = False in_event = False for idx in range(0, len(event_status_arr) - configs["offset_back_windows"]): cur_state = event_status_arr[idx].decode() if cur_state in ["event_1"] and not in_event: in_event = True elif in_event and cur_state not in ["event_1"]: in_event = False on_right_edge = True if on_right_edge: if pf_event_est_arr[idx] < 200 or pf_event_est_arr[idx] >= 300: on_right_edge = False else: event_status_arr[idx] = "event_1" # Correct right edges of event 2 (correct to level 2) on_right_edge = False in_event = False for idx in range(0, len(event_status_arr) - configs["offset_back_windows"]): cur_state = event_status_arr[idx].decode() if cur_state in ["event_2"] and not in_event: in_event = True elif in_event and cur_state not in ["event_2"]: in_event = False on_right_edge = True if on_right_edge: if pf_event_est_arr[idx] < 100 or pf_event_est_arr[idx] >= 200: on_right_edge = False else: event_status_arr[idx] = "event_2" # Correct right edges of event 3 (correct to level 3) on_right_edge = False in_event = False for idx in range(0, len(event_status_arr) - configs["offset_back_windows"]): cur_state = event_status_arr[idx].decode() if cur_state in ["event_3"] and not in_event: in_event = True elif in_event and cur_state not in ["event_3"]: in_event = False on_right_edge = True if on_right_edge: if pf_event_est_arr[idx] >= 100: on_right_edge = False else: event_status_arr[idx] = "event_3" circ_status_arr = np.zeros_like(map_col) # Computation of the circulatory failure toy version of the endpoint for jdx in range(0, len(event_status_arr)): map_subarr = map_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] lact_subarr = lactate_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] milri_subarr = milri_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] dobut_subarr = dobut_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] levosi_subarr = levosi_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] theo_subarr = theo_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] noreph_subarr = noreph_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] epineph_subarr = epineph_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] vaso_subarr = vaso_col[max(0, jdx - 12):min(jdx + 12, len(event_status_arr))] map_crit_arr = ((map_subarr < 65) | (milri_subarr > 0) | (dobut_subarr > 0) | (levosi_subarr > 0) | ( theo_subarr > 0) | (noreph_subarr > 0) | \ (epineph_subarr > 0) | (vaso_subarr > 0)) lact_crit_arr = (lact_subarr > 2) if np.sum(map_crit_arr) >= 2 / 3 * len(map_crit_arr) and np.sum(lact_crit_arr) >= 2 / 3 * len(map_crit_arr): circ_status_arr[jdx] = 1.0 # Traverse the array and delete short gap event_status_arr, relabel_arr = delete_small_continuous_blocks(event_status_arr, block_threshold=configs[ "pf_event_merge_threshold"]) time_col = np.array(df_pid["datetime"]) rel_time_col = np.array(df_pid["rel_datetime"]) pid_col = np.array(df_pid["patientid"]) df_out_dict = {} df_out_dict["datetime"] = time_col df_out_dict["rel_datetime"] = rel_time_col df_out_dict["patientid"] = pid_col status_list = list(map(lambda raw_str: raw_str.decode("unicode_escape"), event_status_arr.tolist())) df_out_dict["resp_failure_status"] = status_list df_out_dict["resp_failure_status_relabel"] = relabel_arr # Status columns df_out_dict["fio2_available"] = fio2_avail_arr df_out_dict["fio2_suppox"] = fio2_suppox_arr df_out_dict["fio2_ambient"] = fio2_ambient_arr df_out_dict["fio2_estimated"] = fio2_est_arr df_out_dict["pao2_estimated"] = pao2_est_arr df_out_dict["pao2_estimated_sur"] = pao2_sur_est df_out_dict["pao2_available"] = pao2_avail_arr df_out_dict["pao2_sao2_model"] = pao2_sao2_model_arr df_out_dict["pao2_full_model"] = pao2_full_model_arr df_out_dict["estimated_ratio"] = ratio_arr df_out_dict["estimated_ratio_sur"] = sur_ratio_arr df_out_dict["vent_state"] = vent_status_arr df_out_dict["vent_period"] = vent_period_arr # Ventilation voting base columns df_out_dict["vent_votes"] = vent_votes_arr df_out_dict["vent_votes_etco2"] = vent_votes_etco2_arr df_out_dict["vent_votes_ventgroup"] = vent_votes_ventgroup_arr df_out_dict["vent_votes_tv"] = vent_votes_tv_arr df_out_dict["vent_votes_airway"] = vent_votes_airway_arr # Circulatory failure related df_out_dict["circ_failure_status"] = circ_status_arr df_out = pd.DataFrame(df_out_dict) out_dfs.append(df_out) all_df =
pd.concat(out_dfs, axis=0)
pandas.concat
import streamlit as st import pandas as pd import altair as alt import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from imblearn.over_sampling import RandomOverSampler from sklearn.metrics import confusion_matrix ################## CSS Stuff ################## # load in css file (from: https://discuss.streamlit.io/t/colored-boxes-around-sections-of-a-sentence/3201/2) def local_css(file_name): with open(file_name) as f: st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True) local_css("style.css") ################## Intro ################## st.title("Analyzing Credit Card Defaults") st.markdown("<p class='subtitle'>By <NAME> & <NAME></p>", unsafe_allow_html=True) st.markdown("<h2>I. What is a Default?</h2>", unsafe_allow_html=True) defaultDescription =""" <p class='important-container'> A <b>default</b> is a failure to make a payment on a credit card bill by the due date. The usual consequence for a default is a raise in interest rates to the default, or decrease the line of credit. </p> <p> Our Data: <a href='https://www.kaggle.com/mishra5001/credit-card?select=application_data.csv&fbclid=IwAR1BFzFdio_1DgfBYb_tc7uf6sCKYB4Ajz3aqUeqrEmkn41-J0hpX5HWFNk'>Source</a> </p> """ st.markdown(defaultDescription, unsafe_allow_html=True) @st.cache def load_data(url): return
pd.read_csv(url)
pandas.read_csv
import os import pandas from mlopenapp.pipelines import vectorization as vct,\ text_preprocessing as tpp, \ logistic_regression as lr, \ metrics as mtr from mlopenapp.utils import io_handler as io from mlopenapp.utils import plotter, data_handler # These will be replaced by user input train_paths = [ os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'data/user_data/train/pos/'), os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'data/user_data/train/neg/') ] train_sentiments = [1, 0] test_paths = [ os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'data/user_data/test/pos/'), os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir, 'data/user_data/test/neg/') ] test_sentiments = [1, 0] def get_params(run=True): if not run: params = {"train - pos samples": ("upload"), "train - neg samples": ("upload"), "test - pos samples": ("upload"), "test - neg samples": ("upload"), } return params else: return "" def train(inpt, params=None): """ Creates a model based on a train and a test dataframes, and calculates model metrics """ print("Preparing Data. . .") df_test = pandas.DataFrame() df_train =
pandas.DataFrame()
pandas.DataFrame
"""Tests for cell_img.common.df_style.""" from absl.testing import absltest from cell_img.common import df_style import numpy as np import numpy.testing as npt import pandas as pd class DfStyleTest(absltest.TestCase): def testColorizerWithInts(self): values = [1, 2, 3, 4] c = df_style.make_colorizer_from_series(pd.Series(values)) for v in values: self.assertTrue(c(v).startswith('background-color: #')) def testColorizerWithStrings(self): values = ['a', 'b', 'cc', 'd'] c = df_style.make_colorizer_from_series(pd.Series(values)) for v in values: self.assertTrue(c(v).startswith('background-color: #')) def testColorizerWithMixedTypes(self): values = [1, 2.0, 'cc', 'd'] c = df_style.make_colorizer_from_series(pd.Series(values)) for v in values: self.assertTrue(c(v).startswith('background-color: #')) def testColorizerWithNan(self): values = [np.nan] c = df_style.make_colorizer_from_series(pd.Series(values)) self.assertEqual(c(float(np.nan)), 'background-color: #cccccc') def testColorizerWithWrongValue(self): values = [0, 1, 2, 3] c = df_style.make_colorizer_from_series(
pd.Series(values)
pandas.Series
#!/usr/bin/env python # coding: utf-8 __author__ = "<NAME>" """ Dash Server for visualizing the decision boundrary of a DenseNet (or general CNN with adapdation) classifier. Several parts regarding the DB handling are adapted from <NAME>, github.com/choosehappy """ # In[5]: import re import colorsys import matplotlib.cm import argparse import flask import umap import tables import numpy as np import pandas as pd from textwrap import dedent as d from pathlib import Path # import jupyterlab_dash from sklearn.metrics import confusion_matrix import torch from torch import nn from torch.utils.data import DataLoader from torchvision.models import DenseNet from torch.utils.data.dataloader import default_collate import albumentations as albmt from albumentations.pytorch import ToTensor import dash import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output parser = argparse.ArgumentParser(description='Run a server for visualization of a CNN classifier') parser.add_argument('--load_from_file', '-l', action='store_true', default=False, help='Load the embedding from a csv file. Does not compute the embedding',) parser.add_argument('--target_class', '-t', default=None, help='Target Label, if the classifier was trained in one vs all fashion',) parser.add_argument('--port', '-p', help='Server Port', default=8050, type = int) parser.add_argument('database', help='Database containing image patches, labels ...',) parser.add_argument('filename', help='Creates a csv file of the embedding') parser.add_argument('model', help='Saved torch model dict, and architecture') arguments = parser.parse_args() file_name = arguments.filename use_existing = arguments.load_from_file target_class = arguments.target_class use_port = arguments.port db_path = arguments.database model_path = arguments.model batch_size = 32 patch_size = 224 server = flask.Flask(__name__) app = dash.Dash(__name__, server=server) # depending on how many colors needed taking either the tab 10 or tab20 pallete def color_pallete(n): num = int(min(np.ceil(5/10), 2)*10) colors = matplotlib.cm.get_cmap(f'tab{num}').colors if n > 20: return ['#%02x%02x%02x' % tuple( np.array(np.array(colorsys.hsv_to_rgb(i,0.613,246 ))*255, dtype=np.uint8)) for i in np.linspace(0, 1, n+1)][:-1] return ['#%02x%02x%02x' % tuple(np.array(np.array(i) * 255,dtype=np.uint8)) for i in colors] class Dataset(object): "Dabase handler for torch.utils.DataLoader written by <NAME>" def __init__(self, fname, img_transform=None): self.fname = fname self.img_transform = img_transform with tables.open_file(self.fname, 'r') as db: self.nitems = db.root.imgs.shape[0] self.imgs = None self.filenames = None self.label = None def __getitem__(self, index): # opening should be done in __init__ but seems to be # an issue with multithreading so doing here. need to do it everytime, otherwise hdf5 crashes with tables.open_file(self.fname, 'r') as db: self.imgs = db.root.imgs self.filenames = db.root.filenames self.label = db.root.labels # get the requested image and mask from the pytable img = self.imgs[index, :, :, :] fname = self.filenames[index] label = self.label[index] img_new = img if self.img_transform: img_new = self.img_transform(image=img)['image'] return img_new, img, label, fname def __len__(self): return self.nitems # In[7]: def get_dataloader(batch_size, patch_size, db_path): # + def id_collate(batch): new_batch = [] ids = [] for _batch in batch: new_batch.append(_batch[:-1]) ids.append(_batch[-1]) return default_collate(new_batch), ids # + img_transform = albmt.Compose([ albmt.RandomSizedCrop((patch_size, patch_size), patch_size, patch_size), ToTensor() ]) if db_path[0] != '/': db_path = f'./{db_path}' # more workers do not seem no improve perfomance dataset = Dataset(db_path, img_transform=img_transform) dataLoader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True, collate_fn=id_collate) print(f"dataset size:\t{len(dataset)}") # - return dataLoader, dataset def load_model(model_path): device = torch.device('cuda') checkpoint = torch.load( model_path, map_location=lambda storage, loc: storage) # load checkpoint to CPU and then put to device https://discuss.pytorch.org/t/saving-and-loading-torch-models-on-2-machines-with-different-number-of-gpu-devices/6666 model = DenseNet(growth_rate=checkpoint["growth_rate"], block_config=checkpoint["block_config"], num_init_features=checkpoint["num_init_features"], bn_size=checkpoint["bn_size"], drop_rate=checkpoint["drop_rate"], num_classes=checkpoint["num_classes"]).to(device) model.load_state_dict(checkpoint["model_dict"]) print( f"total params: \t{sum([np.prod(p.size()) for p in model.parameters()])}") model.eval() return model, device def load_embedding(dataLoader, model, device): out = {} def hook(module, input, output): out[module] = input[0] # works for torchvision.models.DenseNet, register_forward_hook on last layer before classifier. model.classifier.register_forward_hook(hook) # + # all_preds=[] all_last_layer = [] all_fnames = [] all_labels = [] all_predictions = [] # cmatrix = np.zeros((checkpoint['num_classes'], checkpoint['num_classes'])) # add notification sstuff? (X, xorig, label), fname = next(iter(dataLoader[phase])) for (X, xorig, label), fname in dataLoader: X = X.to(device) label_pred = model(X) last_layer = out[model.classifier].detach().cpu().numpy() all_last_layer.append(last_layer) # yflat = label.numpy() == target_class all_labels.extend(label.numpy()) pred_class = np.argmax(label_pred.detach().cpu().numpy(), axis=1) all_predictions.extend(pred_class) all_fnames.extend([Path(fn.decode()).name for fn in fname]) # cmatrix = cmatrix + \ # confusion_matrix(yflat, pred_class, labels=range( # checkpoint['num_classes'])) # print(cmatrix) # acc = (cmatrix/cmatrix.sum()).trace() # print(acc) features_hists = np.vstack(all_last_layer) # - # + reducer = umap.UMAP(n_neighbors=50, min_dist=0.0, n_components=3) embedding = reducer.fit_transform(features_hists) return embedding, all_labels, all_predictions, dataset, all_fnames def create_confusion_map(embedding_a, target_class): # n_classes = len(embedding_a.Prediction.unique()) pred = embedding_a.Prediction.values label = embedding_a.Label.values label = (label) label = np.array(label, dtype=np.uint8) conf = [f'{label[i]}{pred[i]}' for i in range(len(label))] return embedding_a.assign(Confusion=conf) text_style = dict(color='#444', fontFamily='sans-serif', fontWeight=300) dataLoader, dataset = get_dataloader(batch_size, patch_size, db_path) if use_existing is True: embedding_a = pd.read_csv(file_name) else: # model is not saved to variable to enable garbage collector to clean it after it is not used anymore embedding, all_labels, all_predictions, dataset, fnames = load_embedding( dataLoader, *load_model(model_path)) embedding_a = pd.DataFrame({"x": embedding[:, 0], "y": embedding[:, 1], "z": embedding[:, 2], "Label": all_labels, "Prediction": all_predictions, "index": [*range(len(all_labels))], "Slide": [i[:i.find(re.findall('[A-Za-z\.\s\_]*$', i)[0])] for i in fnames]}) embedding_a.to_csv(file_name) embedding_a = create_confusion_map(embedding_a, target_class) def plotly_figure(value, plot_type='2D'): colors = color_pallete(len(embedding_a[value].unique())) label_to_type = {'2D': 'scattergl', '3D': 'scatter3d'} type_to_size = {'2D': 15, '3D': 2.5} linesize = {'2D': 0.5, '3D': 0} return { 'data': [dict( x=embedding_a[embedding_a[value] == target]['x'], y=embedding_a[embedding_a[value] == target]['y'], z=embedding_a[embedding_a[value] == target]['z'], text=embedding_a[embedding_a[value] == target]['index'], index=embedding_a[embedding_a[value] == target]['index'], customdata=embedding_a[embedding_a[value] == target]['index'], mode='markers', type=label_to_type[plot_type], name=f'{target}', marker={ 'size': type_to_size[plot_type], 'opacity': 0.5, 'color': colors[i], 'line': {'width': linesize[plot_type], 'color': 'white'} } ) for i, target in enumerate(sorted(embedding_a[value].unique()))], 'layout': dict( xaxis={ 'title': "x", 'type': 'linear' }, yaxis={ 'title': "y", 'type': 'linear' }, margin={'l': 40, 'b': 30, 't': 10, 'r': 0}, height=750, width=850, hovermode='closest', clickmode='event+select', uirevision='no reset of zoom', legend={'itemsizing': 'constant'} ) } app.layout = html.Div([ html.H2('CNN Classification Viewer', style=text_style), # dcc.Input(id='predictor', placeholder='box', value=''), html.Div([ html.Div([ dcc.RadioItems( id='color-plot1', options=[{'label': i, 'value': i} for i in ['Label', 'Prediction', 'Confusion', 'Slide']], value='Label', labelStyle={} ), dcc.RadioItems( id='plot-type', options=[{'label': i, 'value': i} for i in ['2D', '3D']], value='2D',)], style={'width': '49%', 'display': 'inline'}), # , 'float': 'left', 'display': 'inline-block'}), html.Div([ dcc.Graph(id='plot1', figure=plotly_figure('Label')) ], style={'float': 'left', 'display': 'inline-block'}), html.Div([ html.Div([html.Img(id='image', width=patch_size, height=patch_size)], style={'display': 'inline-block'}), dcc.Markdown(d(""" **Image Properties** """)), html.Pre(id='hover-data'), dcc.Markdown(d(""" **Frequency in selected** """)), html.Pre(id='selected-data') ], style={'float': 'left', 'display': 'inline-block'}, className='three columns'), ])], style={'width': '65%'}) @app.callback( Output('selected-data', 'children'), [Input('plot1', 'selectedData')]) def display_selected_data(selectedData): text = "" if selectedData is not None: indices =
pd.DataFrame.from_dict(selectedData['points'])
pandas.DataFrame.from_dict
import pandas as pd from LS_STM import LSSTM from data_makers import make_data_stm from aiding_functions import load_obj from sklearn.svm import SVC import numpy as np import matplotlib.pyplot as plt raw_data = pd.read_csv('./finance_data/raw_data.csv') raw_data['Date'] =
pd.to_datetime(raw_data['Date'], format='%Y-%m-%d')
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # In[ ]: import itertools import json import operator import os from pathlib import Path from pprint import pprint import re import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.lines import Line2D import numpy as np import pandas as pd import seaborn as sns from scipy import stats from tqdm.notebook import tqdm get_ipython().run_line_magic('matplotlib', 'inline') from IPython.display import set_matplotlib_formats set_matplotlib_formats('png') # ## Load data and preprocess # ### Metadata # In[ ]: # Map from test suite tag to high-level circuit. circuits = { "Licensing": ["npi", "reflexive"], "Long-Distance Dependencies": ["fgd", "cleft"], "Agreement": ["number"], "Garden-Path Effects": ["npz", "mvrr"], "Gross Syntactic State": ["subordination"], "Center Embedding": ["center"], } tag_to_circuit = {tag: circuit for circuit, tags in circuits.items() for tag in tags} # In[ ]: # Map codenames to readable names for various columns. def format_pretrained(model_name): return "%s$^*$" % model_name PRETTY_COLUMN_MAPS = [ ("model_name", { "vanilla": "LSTM", "ordered-neurons": "ON-LSTM", "rnng": "RNNG", "ngram": "n-gram", "random": "Random", "gpt-2-pretrained": format_pretrained("GPT-2"), "gpt-2-xl-pretrained": format_pretrained("GPT-2-XL"), "gpt-2": "GPT-2", "transformer-xl": format_pretrained("Transformer-XL"), "grnn": format_pretrained("GRNN"), "jrnn": format_pretrained("JRNN"), }), ("corpus", lambda x: x.upper() if x else "N/A"), ] PRETTY_COLUMNS = ["pretty_%s" % col for col, _ in PRETTY_COLUMN_MAPS] # In[ ]: # Exclusions exclude_suite_re = re.compile(r"^fgd-embed[34]|^gardenpath|^nn-nv") exclude_models = ["1gram", "ngram-no-rand"] # "ngram", # In[ ]: ngram_models = ["1gram", "ngram", "ngram-single"] baseline_models = ["random"] # Models for which we designed a controlled training regime controlled_models = ["ngram", "ordered-neurons", "vanilla", "rnng", "gpt-2"] controlled_nonbpe_models = ["ngram", "ordered-neurons", "vanilla", "rnng"] # ### Load # In[ ]: ppl_data_path = Path("../data/raw/perplexity.csv") test_suite_results_path = Path("../data/raw/sg_results") # In[ ]: perplexity_df = pd.read_csv(ppl_data_path, index_col=["model", "corpus", "seed"]) perplexity_df.index.set_names("model_name", level=0, inplace=True) results_df = pd.concat([pd.read_csv(f) for f in test_suite_results_path.glob("*.csv")]) # Split model_id into constituent parts model_ids = results_df.model.str.split("_", expand=True).rename(columns={0: "model_name", 1: "corpus", 2: "seed"}) results_df = pd.concat([results_df, model_ids], axis=1).drop(columns=["model"]) results_df["seed"] = results_df.seed.fillna("0").astype(int) # Add tags results_df["tag"] = results_df.suite.transform(lambda s: re.split(r"[-_0-9]", s)[0]) results_df["circuit"] = results_df.tag.map(tag_to_circuit) tags_missing_circuit = set(results_df.tag.unique()) - set(tag_to_circuit.keys()) if tags_missing_circuit: print("Tags missing circuit: ", ", ".join(tags_missing_circuit)) # In[ ]: # Exclude test suites exclude_filter = results_df.suite.str.contains(exclude_suite_re) print("Dropping %i results / %i suites due to exclusions:" % (exclude_filter.sum(), len(results_df[exclude_filter].suite.unique()))) print(" ".join(results_df[exclude_filter].suite.unique())) results_df = results_df[~exclude_filter] # Exclude models exclude_filter = results_df.model_name.isin(exclude_models) print("Dropping %i results due to dropping models:" % exclude_filter.sum(), list(results_df[exclude_filter].model_name.unique())) results_df = results_df[~exclude_filter] # Exclude word-level controlled models with BPE tokenization exclude_filter = (results_df.model_name.isin(controlled_nonbpe_models)) & (results_df.corpus.str.endswith("bpe")) results_df = results_df[~exclude_filter] # Exclude GPT-2 with word-level or SentencePieceBPE tokenization exclude_filter = ((results_df.model_name=="gpt-2") & ~(results_df.corpus.str.endswith("gptbpe"))) results_df = results_df[~exclude_filter] # In[ ]: # Average across seeds of each ngram model. # The only difference between "seeds" of these model types are random differences in tie-breaking decisions. for ngram_model in ngram_models: # Create a synthetic results_df with one ngram model, where each item is correct if more than half of # the ngram seeds vote. ngram_results_df = (results_df[results_df.model_name == ngram_model].copy() .groupby(["model_name", "corpus", "suite", "item", "tag", "circuit"]) .agg({"correct": "mean"}) > 0.5).reset_index() ngram_results_df["seed"] = 0 # Drop existing model results. results_df = pd.concat([results_df[~(results_df.model_name == ngram_model)], ngram_results_df], sort=True) # In[ ]: # Prettify name columns, which we'll carry through data manipulations for column, map_fn in PRETTY_COLUMN_MAPS: pretty_column = "pretty_%s" % column results_df[pretty_column] = results_df[column].map(map_fn) if results_df[pretty_column].isna().any(): print("WARNING: In prettifying %s, yielded NaN values:" % column) print(results_df[results_df[pretty_column].isna()]) # ### Data prep # In[ ]: suites_df = results_df.groupby(["model_name", "corpus", "seed", "suite"] + PRETTY_COLUMNS).correct.mean().reset_index() suites_df["tag"] = suites_df.suite.transform(lambda s: re.split(r"[-_0-9]", s)[0]) suites_df["circuit"] = suites_df.tag.map(tag_to_circuit) # For controlled evaluation: # Compute a model's test suite accuracy relative to the mean accuracy on this test suite. # Only compute this on controlled models. def get_controlled_mean(suite_results): # When computing test suite mean, first collapse test suite accuracies within model--corpus, then combine resulting means. return suite_results[suite_results.model_name.isin(controlled_models)].groupby(["model_name", "corpus"]).correct.mean().mean() suite_means = suites_df.groupby("suite").apply(get_controlled_mean) suites_df["correct_delta"] = suites_df.apply(lambda r: r.correct - suite_means.loc[r.suite] if r.model_name in controlled_models else None, axis=1) # In[ ]: # We'll save this data to a CSV file for access from R, where we do # linear mixed-effects regression modeling. suites_df.to_csv("../data/suites_df.csv") # In[ ]: # Join PPL and accuracy data. joined_data = suites_df.groupby(["model_name", "corpus", "seed"] + PRETTY_COLUMNS)[["correct", "correct_delta"]].agg("mean") joined_data = pd.DataFrame(joined_data).join(perplexity_df).reset_index() joined_data.head() # Track BPE + size separately. joined_data["corpus_size"] = joined_data.corpus.str.split("-").apply(lambda tokens: tokens[1] if len(tokens) >= 2 else None) joined_data["corpus_bpe"] = joined_data.corpus.str.split("-").apply(lambda tokens: tokens[2] if len(tokens) > 2 else ("none" if len(tokens) >= 2 else None)) # In[ ]: # Join PPL and accuracy data, splitting on circuit. joined_data_circuits = suites_df.groupby(["model_name", "corpus", "seed", "circuit"] + PRETTY_COLUMNS)[["correct", "correct_delta"]].agg("mean") joined_data_circuits =
pd.DataFrame(joined_data_circuits)
pandas.DataFrame
# BSD 3-Clause License # # Copyright (c) 2019, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Run this module first thing, to test your installation of romcomma. **Contents**: **predict**: Prediction using a GaussianBundle. **test_input**: A rudimentary test input, for installation testing. """ from romcomma import distribution, function, data, model from romcomma.typing_ import NP, Tuple from numpy import zeros, eye, pi, full, array, transpose, diag, sign, ones, atleast_2d, abs, floor_divide, count_nonzero, mean, sqrt, \ concatenate, savetxt, loadtxt from numpy.linalg import norm, eigvalsh from pathlib import Path from pandas import concat, DataFrame, read_csv from json import load import shutil from time import time EFFECTIVELY_ZERO = 1.0E-64 BASE_PATH = Path('X:\\comma_group1\\Rom\\dat\\TestFunctions\\ROM\\0') RESULTS_PATH = BASE_PATH / "results" DOC_PATH = Path('X:\\comma_group1\\Rom\\doc\\Papers\\romgp-paper-1') K = 2 def linear_transformation(model_dir: Path) -> NP.Matrix: with open(model_dir / "__meta__.json", mode='r') as file: meta = load(file) function_with_parameters = meta['origin']['functions_with_parameters'][0].split("; matrix=") if len(function_with_parameters) > 1: function_with_parameters = eval(function_with_parameters[-1][:-1]) return array(function_with_parameters) else: return ones((meta['data']['M'], meta['data']['M']), dtype=float) def _random_str(random: bool) -> str: return "random" if random else "rom" def store_path(test_function: str, N: int, noise_std: float, random: bool, M: int = 5) -> Path: return BASE_PATH / (test_function + '.{0:d}.{1:.3f}.{2:d}.'.format(M, noise_std, N) + _random_str(random)) def choose_Mu(test_function: str) -> int: if test_function == "sobol_g": return 3 elif test_function == "ishigami": return 3 elif test_function == "sin.2": return 2 else: return 1 # def _run_test(test_function: str, N: int, noise_std: float, random: bool, gps: Tuple[str, ...], M: int): # store = store_path(test_function, N, noise_std, random, M) # Mu = choose_Mu(test_function) # kernel_parameters = model.gpy_.Kernel.ExponentialQuadratic.Parameters(lengthscale=full((1, Mu), 0.2, dtype=float)) # parameters = model.gpy_.GP.DEFAULT_PARAMETERS._replace(kernel=kernel_parameters, e_floor=1E-5, e=1E-10) # for k in range(K): # fold = data.Fold(store, k, Mu) # for gp in gps: # dst = fold.dir / "{0}.reduced".format(gp) # if dst.exists(): # shutil.rmtree(dst) # shutil.copytree(src=fold.dir / gp, dst=dst) # gp = model.gpy_.GP(fold, dst.name, parameters) # gp.optimize() # gp.test() # model.gpy_.Sobol(gp) # gp = None def _run_test(test_function: str, N: int, noise_std: float, random: bool, M: int): store = data.Store(store_path(test_function, N, noise_std, random, M)) Mu = choose_Mu(test_function) gp_optimizer_options = {'optimizer': 'bfgs', 'max_iters': 5000, 'gtol': 1E-16} kernel_parameters = model.gpy_.Kernel.ExponentialQuadratic.Parameters(lengthscale=full((1, 1), 2.5**(M/5), dtype=float)) parameters = model.gpy_.GP.DEFAULT_PARAMETERS._replace(kernel=kernel_parameters, e_floor=1E-6, e=0.003) name = 'rom.reduced' model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=Mu, parameters=parameters, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options) model.run.GPs(module=model.run.Module.GPY_, name=name, store=store, M_Used=Mu, parameters=None, optimize=True, test=True, sobol=True, optimizer_options=gp_optimizer_options, make_ard=True) def run_tests(test_functions: Tuple[str, ...], Ns: Tuple[int, ...], noise_stds: Tuple[float, ...], randoms: Tuple[bool, ...], gps: Tuple[str, ...], Ms: Tuple[int, ...] = (5, )): for M in Ms: for N in Ns: for test_function in test_functions: for noise_std in noise_stds: for random in randoms: _run_test(test_function, N, noise_std, random, M) def _test_stats(k: int, gp_path: Path) -> data.Frame: test = data.Frame(gp_path / "__test__.csv").df.copy() Y = test['Y'].values mean_ = test['Predictive Mean'].values std = test['Predictive Std'].values err = abs(Y - mean_) outliers = floor_divide(err, 2 * std) df = DataFrame({'fold': k, 'RMSE': sqrt(mean(err ** 2)) / 4, 'Prediction Std': mean(std), 'Outliers': count_nonzero(outliers) / len(std)}, index=[0]) return data.Frame(gp_path / "test_stats.csv", df) def _collect_test_stats(test_function: str, N: int, noise_std: float, random: bool, gps: Tuple[str, ...], M: int): store = store_path(test_function, N, noise_std, random, M) for k in range(K): fold = data.Fold(store, k) for gp in gps: gp_path = fold.dir / gp frame = _test_stats(k, gp_path) def collect_tests(test_functions: Tuple[str, ...], Ns: Tuple[int, ...], noise_stds: Tuple[float, ...], randoms: Tuple[bool, ...], gps: Tuple[str, ...], Ms: Tuple[int, ...] = (5, )): for M in Ms: for N in Ns: for test_function in test_functions: for noise_std in noise_stds: for random in randoms: _collect_test_stats(test_function, N, noise_std, random, gps, M) def _collect_std(test_function: str, N: int, noise_std: float, random: bool, M: int): store = data.Store(store_path(test_function, N, noise_std, random, M)) destination = store.dir / "results" shutil.rmtree(destination, ignore_errors=True) destination.mkdir(mode=0o777, parents=True, exist_ok=False) result = 0.0 for k in range(K): fold = data.Fold(store, k) result += fold.standard.df.iloc[-1, -1]/K savetxt(fname=(destination / "std.csv"), X=atleast_2d(result), delimiter=",") def _collect_result(test_function: str, N: int, noise_std: float, random: bool, gps: Tuple[str, ...], M: int): store = store_path(test_function, N, noise_std, random, M) destination = store / "results" destination.mkdir(mode=0o777, parents=True, exist_ok=True) for gp in gps: for sobol in (True, False): if sobol: lin_trans = linear_transformation(store) frame = data.Frame(destination / "{0}.{1}".format(gp, "True_Theta.csv"), DataFrame(lin_trans)) lin_trans = transpose(lin_trans) params = ("Theta.csv", "S.csv", "S1.csv") else: params = ("lengthscale.csv", "e.csv", "f.csv", "log_likelihood.csv", "test_stats.csv") for param in params: results = None avg = None for k in range(K): source = (store / "fold.{0:d}".format(k)) / gp source = source / "sobol" if sobol else source / "kernel" if param == "lengthscale.csv" else source result = data.Frame(source / param, **model.base.Model.CSV_PARAMETERS).df.copy(deep=True) result.insert(0, "fold", full(result.shape[0], k), True) if k == 0: results = result avg = result / K else: results =
concat([results, result], axis=0, ignore_index=True, sort=False)
pandas.concat
'''Tests for preprocess.py. ''' import pytest import pandas as pd import numpy as np from titanic import preprocess # ##### FIXTURES #################################################################################### # COLUMNS = ['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'] @pytest.fixture def test_df_one_line(): data = [[0, 1, 1, "Surname, Title Name", "male", 30, 1, 0, "113803", 7.25, np.nan, "C"]] return pd.DataFrame(data=data, columns=COLUMNS) @pytest.fixture def test_df_five_lines(): data = [[0, 0, 3, "<NAME>", "male", 30, 2, 2, "113803", 7.25, np.nan, "S"], [1, 1, 3, "<NAME>", "female", 27, 2, 2, "123456", 9.25, np.nan, "S"], [2, 1, 1, "Smith, <NAME>", "male", 45, 1, 0, "113803", 40, np.nan, "C"], [3, 0, 1, "<NAME>", "female", 40, 1, 0, "113803", 40, np.nan, "C"], [4, 1, 2, "<NAME>", "male", np.nan, 0, 0, "113803", 9, np.nan, "S"]] return
pd.DataFrame(data=data, columns=COLUMNS)
pandas.DataFrame
import sys import traceback import warnings from . import jhu import mechbayes.models.SEIRD import pandas as pd import matplotlib.pyplot as plt import numpy as onp import jax import jax.numpy as np from jax.random import PRNGKey import numpyro from numpyro.infer import MCMC, NUTS, Predictive from pathlib import Path import cachetools import scipy import scipy.stats from .compartment import SEIRModel from tqdm import tqdm """ ************************************************************ Data ************************************************************ """ def load_country_data(): countries = jhu.load_countries() info = jhu.get_country_info() names = set(info.index) & set(countries.columns.unique(level=0)) country_data = { k: {'data' : countries[k].copy(), 'pop' : info.loc[k, 'Population'], 'name' : info.loc[k, 'name']} for k in names } return country_data def load_state_data(): states = jhu.load_us_states() info = jhu.get_state_info() names = set(info.index) & set(states.columns.unique(level=0)) data = { k : {'data': states[k].copy(), 'pop': info.loc[k, 'Population'], 'name': info.loc[k, 'name'] } for k in names } return data def load_county_data(): US = jhu.load_us_counties() info = jhu.get_county_info() counties = set(info.index) & set(US.columns.unique(level=0)) data = { k : {'data': US[k].copy(), 'pop': info.loc[k, 'Population'], 'name': info.loc[k, 'name'] } for k in counties } return data def load_data(): state_data = load_state_data() country_data = load_country_data() county_data = load_county_data() return dict(country_data, **state_data, **county_data) def redistribute(df, date, n, k, col='death'): '''Redistribute n incident cases/deaths to previous k days''' # Note: modifies df in place # e.g., 100 incident deaths happen on day t # --> n/k incident deaths on days t-k+1, t-k+2, ..., t # --> n/3 incident deaths on days t-2, t-1, 2 # # the cumulative number by day t does not change ndays = onp.abs(k) a = n // ndays b = n % ndays new_incident = a * onp.ones(ndays) new_incident[:b] += 1 date = pd.to_datetime(date) if k > 0: new_incident = onp.concatenate([new_incident, [-n]]) new_cumulative = onp.cumsum(new_incident) end = date start = date - pd.Timedelta('1d') * ndays else: new_incident = onp.concatenate([[-n], new_incident]) new_cumulative = onp.cumsum(new_incident) start = date end = date + pd.Timedelta('1d') * ndays days = pd.date_range(start=start, end=end) #days = pd.date_range(end=date-pd.Timedelta('1d'), periods=k-1) df.loc[days, col] += new_cumulative def set_trailing_weekend_zeros_to_missing(data, forecast_date, no_sunday_data_places, no_weekend_data_places): # Set trailing zeros to missing for places that # don't report on weekends. # # This could potentially be more automated, but # there are issues to understand and constraints # on potential solutions: # # - there may be true zeros. this is rare for # cases, but fairly common for deaths. # # - we may want to set non-zero values to missing, # e.g., for US where counts are very low on # weekends due to most states not reporting # # - sometimes it is useful to manually adjust # whether weekend data is present to help fix # model fitting failures or very poor fits # # Note that we generally don't want to set _non-trailing_ # values to missing # # - The raw data is cumulative; setting one value # to nan in the middle of the time series will # lead to multiple nans after differencing to get # incident data. # # - Missing cases/deaths from weekends are reported later, # e.g., Monday is often a big spike. In the long run, we want # low counts on weekends to offset larger counts during the # week to get incidence correct at the weekly level. forecast_date = pd.to_datetime(forecast_date) # Changes data in place. no return value if forecast_date.dayofweek == 6: # forecast on sunday sunday = forecast_date saturday = forecast_date - pd.Timedelta('1d') for place in no_sunday_data_places + no_weekend_data_places: data[place]['data'].loc[sunday, :] = onp.nan for place in no_weekend_data_places: data[place]['data'].loc[saturday, :] = onp.nan elif forecast_date.dayofweek == 5: # forecast on saturday saturday = forecast_date for place in no_weekend_data_places: data[place]['data'].loc[saturday, :] = onp.nan def smooth_to_weekly(data, forecast_date, place, var, start_date, end_date=None): to_date = end_date or forecast_date series = data[place]['data'][var] reporting_dates = pd.date_range(start=start_date, end=to_date, freq=pd.Timedelta('1w')) for reporting_date in reporting_dates: # get total cases/deaths for week right = reporting_date left = reporting_date - pd.Timedelta("1w") cum_tot = series[right] weekly_tot = series[right] - series[left] # construct incident time series with cases/deaths # spread evenly through week avg = int(weekly_tot // 7) rem = int(weekly_tot % 7) # set each day equal to floor(average) incident = avg * onp.ones(7) # add remainder by adding 1 for first rem days in scrambled order scrambled_days = [3, 0, 6, 2, 5, 4, 1] incident[scrambled_days[:rem]] += 1 # now reconstruct cumulative series from incident series[left+pd.Timedelta("1d"):right] = series[left] + onp.cumsum(incident) assert(series[right] - series[left] == weekly_tot) assert(series[right] == cum_tot) # if we didn't explicitly stop smoothing (e.g., because location # went back to daily reporting), assume all observations after # final weekly reporting date are missing if end_date is None and len(reporting_dates) > 0: last_reporting_date = reporting_dates[-1] series[last_reporting_date + pd.Timedelta('1d'):] = onp.nan """ ************************************************************ Plotting ************************************************************ """ def plot_R0(mcmc_samples, start, ax=None): ax = plt.axes(ax) # Compute R0 over time gamma = mcmc_samples['gamma'][:,None] beta = mcmc_samples['beta'] t = pd.date_range(start=start, periods=beta.shape[1], freq='D') R0 = beta/gamma pi = onp.percentile(R0, (10, 90), axis=0) df = pd.DataFrame(index=t, data={'R0': onp.median(R0, axis=0)}) df.plot(style='-o', ax=ax) ax.fill_between(t, pi[0,:], pi[1,:], alpha=0.1) ax.axhline(1, linestyle='--') def plot_growth_rate(mcmc_samples, start, model=SEIRModel, ax=None): ax = plt.axes(ax) # Compute growth rate over time beta = mcmc_samples['beta'] sigma = mcmc_samples['sigma'][:,None] gamma = mcmc_samples['gamma'][:,None] t = pd.date_range(start=start, periods=beta.shape[1], freq='D') growth_rate = SEIRModel.growth_rate((beta, sigma, gamma)) pi = onp.percentile(growth_rate, (10, 90), axis=0) df = pd.DataFrame(index=t, data={'growth_rate': onp.median(growth_rate, axis=0)}) df.plot(style='-o', ax=ax) ax.fill_between(t, pi[0,:], pi[1,:], alpha=0.1) ax.axhline(0, linestyle='--') """ ************************************************************ Running ************************************************************ """ def run_place(data, place, model_type=mechbayes.models.SEIRD.SEIRD, start = '2020-03-04', end = None, save = True, init_values = None, num_warmup = 1000, num_samples = 1000, num_chains = 1, num_prior_samples = 0, T_future=4*7, prefix = "results", resample_low=0, resample_high=100, save_fields=['beta0', 'beta', 'sigma', 'gamma', 'dy0', 'dy', 'dy_future', 'dz0', 'dz', 'dz_future', 'y0', 'y', 'y_future', 'z0', 'z', 'z_future' ], **kwargs): numpyro.enable_x64() print(f"Running {place} (start={start}, end={end})") place_data = data[place]['data'][start:end] T = len(place_data) model = model_type( data = place_data, T = T, N = data[place]['pop'], **kwargs ) print(" * running MCMC") mcmc_samples = model.infer(num_warmup=num_warmup, num_samples=num_samples, init_values=init_values) if resample_low > 0 or resample_high < 100: print(" * resampling") mcmc_samples = model.resample(low=resample_low, high=resample_high, **kwargs) # Prior samples prior_samples = None if num_prior_samples > 0: print(" * collecting prior samples") prior_samples = model.prior(num_samples=num_prior_samples) # In-sample posterior predictive samples (don't condition on observations) print(" * collecting in-sample predictive samples") post_pred_samples = model.predictive() # Forecasting posterior predictive (do condition on observations) print(" * collecting forecast samples") forecast_samples = model.forecast(T_future=T_future) if save: # Save samples path = Path(prefix) / 'samples' path.mkdir(mode=0o775, parents=True, exist_ok=True) filename = path / f'{place}.npz' save_samples(filename, prior_samples, mcmc_samples, post_pred_samples, forecast_samples, save_fields=save_fields) path = Path(prefix) / 'summary' path.mkdir(mode=0o775, parents=True, exist_ok=True) filename = path / f'{place}.txt' write_summary(filename, model.mcmc) def save_samples(filename, prior_samples, mcmc_samples, post_pred_samples, forecast_samples, save_fields=None): def trim(d): if d is not None: d = {k : v for k, v in d.items() if k in save_fields} return d file_exists = filename.exists() onp.savez_compressed(filename, prior_samples = trim(prior_samples), mcmc_samples = trim(mcmc_samples), post_pred_samples = trim(post_pred_samples), forecast_samples = trim(forecast_samples)) if not file_exists: filename.chmod(0o664) def write_summary(filename, mcmc): # Write diagnostics to file file_exists = filename.exists() orig_stdout = sys.stdout with open(filename, 'w') as f: sys.stdout = f mcmc.print_summary() sys.stdout = orig_stdout if not file_exists: filename.chmod(0o664) def load_samples(filename): x = np.load(filename, allow_pickle=True) prior_samples = x['prior_samples'].item() mcmc_samples = x['mcmc_samples'].item() post_pred_samples = x['post_pred_samples'].item() forecast_samples = x['forecast_samples'].item() return prior_samples, mcmc_samples, post_pred_samples, forecast_samples def gen_forecasts(data, place, model_type=mechbayes.models.SEIRD.SEIRD, start = '2020-03-04', end=None, save = True, show = True, prefix='results', **kwargs): # Deal with paths samples_path = Path(prefix) / 'samples' vis_path = Path(prefix) / 'vis' vis_path.mkdir(parents=True, exist_ok=True) model = model_type() confirmed = data[place]['data'].confirmed[start:end] death = data[place]['data'].death[start:end] T = len(confirmed) N = data[place]['pop'] filename = samples_path / f'{place}.npz' _, mcmc_samples, post_pred_samples, forecast_samples = load_samples(filename) for daily in [False, True]: for scale in ['log', 'lin']: for T in [28]: fig, axes = plt.subplots(nrows = 2, figsize=(8,12), sharex=True) if daily: variables = ['dy', 'dz'] observations = [confirmed.diff(), death.diff()] else: variables = ['y', 'z'] observations= [confirmed, death] for variable, obs, ax in zip(variables, observations, axes): model.plot_forecast(variable, post_pred_samples, forecast_samples, start, T_future=T, obs=obs, ax=ax, scale=scale) name = data[place]['name'] plt.suptitle(f'{name} {T} days ') plt.tight_layout() if save: filename = vis_path / f'{place}_scale_{scale}_daily_{daily}_T_{T}.png' plt.savefig(filename) if show: plt.show() fig, ax = plt.subplots(figsize=(5,4)) plot_growth_rate(mcmc_samples, start, ax=ax) plt.title(place) plt.tight_layout() if save: filename = vis_path / f'{place}_R0.png' file_exists = filename.exists() plt.savefig(filename) if not file_exists: filename.chmod(0o664) if show: plt.show() """ ************************************************************ Performance metrics ************************************************************ """ def construct_daily_df(forecast_date, forecast_samples, target, truth_data=None, pad_strategy="shift"): # Construct df indexed by time with samples in columns # - starts one day after forecast date (usually Monday) t = pd.date_range(start=forecast_date + pd.Timedelta("1d"), periods=forecast_samples.shape[1], freq='D') daily_df = pd.DataFrame(index=t, data=np.transpose(forecast_samples)) # For incident forecasts made on Sunday, pad to include a value for Sunday # so the first week is complete. This does not apply to forecasts made on # other days because: # # -- we will never submit a forecast on Monday for the current week, # because the data is not available until ~midnight on Monday # # -- forecasts submitted on Tuesday--Thursday are for the following week # if target.startswith("inc") and forecast_date.dayofweek == 6: if pad_strategy == "shift": daily_df.index -= pd.Timedelta("1d") elif pad_strategy == "truth": if truth_data is None: raise ValueError("Must supply truth_data with pad_strategy='truth'") sunday = forecast_date saturday = sunday - pd.Timedelta("1d") truth_val = np.maximum(truth_data.loc[sunday] - truth_data.loc[saturday], 0.) new_row = pd.DataFrame([], index=[sunday]) daily_df = pd.concat([new_row, daily_df], ignore_index=False) daily_df.loc[sunday, :] = truth_val else: raise ValueError(f"Unsuported pad_strategy {pad_strategy}") # Always starts on forecast date return daily_df def resample_to_weekly(daily_df, target, full_weeks=True, label="left"): if target.startswith("inc"): if full_weeks: # truncate to start on Sunday and end on Saturday before aggregating start = daily_df.index[0] end = daily_df.index[-1] first_sunday = start if start.dayofweek==6 else start + pd.offsets.Week(weekday=6) final_saturday = end if end.dayofweek==5 else end - pd.offsets.Week(weekday=5) daily_df = daily_df.loc[first_sunday:final_saturday] weekly_df = daily_df.resample("1w", closed='left', label=label).sum() elif target.startswith("cum"): if full_weeks: # truncate end on Saturday before aggregating end = daily_df.index[-1] final_saturday = end if end.dayofweek==5 else end - pd.offsets.Week(weekday=5) daily_df = daily_df.loc[:final_saturday] weekly_df = daily_df.resample("1w", closed='left', label=label).last() else: raise ValueError(f"uncrecognized target {target}") weekly_df[weekly_df < 0.] = 0. return weekly_df def score_place(forecast_date, data, place, model_type=mechbayes.models.SEIRD.SEIRD, prefix="results", target="cum death", freq="week", periods=None, pad_strategy="shift"): '''Gives performance metrics for each time horizon for one place''' if target == 'cum death': forecast_field = 'z' obs_field = 'death' elif target == 'inc death': forecast_field = 'dz' obs_field = 'death' elif target == 'cum case': forecast_field = 'y' obs_field = 'confirmed' elif target == 'inc case': forecast_field = 'dy' obs_field = 'confirmed' else: raise ValueError(f"Invalid or unsupported target {target}") filename = Path(prefix) / 'samples' / f'{place}.npz' prior_samples, mcmc_samples, post_pred_samples, forecast_samples = \ load_samples(filename) model = model_type() forecast_date = pd.to_datetime(forecast_date) # Get observed values for forecast period if target.startswith('cum'): start = forecast_date + pd.Timedelta("1d") obs = data[place]['data'][obs_field][start:] elif target.startswith('inc') and forecast_date.dayofweek==6: # For incident forecasts made on Sunday, also get the Sunday # truth data, because we will pad forecasts to include Sunday start = forecast_date obs = data[place]['data'][obs_field].diff()[start:] # incident elif target.startswitch('inc'): start = forecast_date +
pd.Timedelta("1d")
pandas.Timedelta
#SPDX-License-Identifier: MIT """ Helper methods constant across all workers """ import requests import datetime import time import traceback import json import os import sys import math import logging import numpy import copy import concurrent import multiprocessing import psycopg2 import psycopg2.extensions import csv import io from logging import FileHandler, Formatter, StreamHandler from multiprocessing import Process, Queue, Pool, Value from os import getpid import sqlalchemy as s import pandas as pd from pathlib import Path from urllib.parse import urlparse, quote from sqlalchemy.ext.automap import automap_base from augur.config import AugurConfig from augur.logging import AugurLogging from sqlalchemy.sql.expression import bindparam from concurrent import futures import dask.dataframe as dd class Persistant(): ROOT_AUGUR_DIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def __init__(self, worker_type, data_tables=[],operations_tables=[]): self.db_schema = None self.helper_schema = None self.worker_type = worker_type #For database functionality self.data_tables = data_tables self.operations_tables = operations_tables self._root_augur_dir = Persistant.ROOT_AUGUR_DIR # count of tuples inserted in the database ( to store stats for each task in op tables) self.update_counter = 0 self.insert_counter = 0 self._results_counter = 0 # Update config with options that are general and not specific to any worker self.augur_config = AugurConfig(self._root_augur_dir) #TODO: consider taking parts of this out for the base class and then overriding it in WorkerGitInterfaceable self.config = { 'worker_type': self.worker_type, 'host': self.augur_config.get_value('Server', 'host') } self.config.update(self.augur_config.get_section("Logging")) try: worker_defaults = self.augur_config.get_default_config()['Workers'][self.config['worker_type']] self.config.update(worker_defaults) except KeyError as e: logging.warn('Could not get default configuration for {}'.format(self.config['worker_type'])) worker_info = self.augur_config.get_value('Workers', self.config['worker_type']) self.config.update(worker_info) worker_port = self.config['port'] while True: try: r = requests.get('http://{}:{}/AUGWOP/heartbeat'.format( self.config['host'], worker_port)).json() if 'status' in r: if r['status'] == 'alive': worker_port += 1 except: break #add credentials to db config. Goes to databaseable self.config.update({ 'port': worker_port, 'id': "workers.{}.{}".format(self.worker_type, worker_port), 'capture_output': False, 'location': 'http://{}:{}'.format(self.config['host'], worker_port), 'port_broker': self.augur_config.get_value('Server', 'port'), 'host_broker': self.augur_config.get_value('Server', 'host'), 'host_database': self.augur_config.get_value('Database', 'host'), 'port_database': self.augur_config.get_value('Database', 'port'), 'user_database': self.augur_config.get_value('Database', 'user'), 'name_database': self.augur_config.get_value('Database', 'name'), 'password_database': self.augur_config.get_value('Database', 'password') }) # Initialize logging in the main process self.initialize_logging() # Clear log contents from previous runs open(self.config["server_logfile"], "w").close() open(self.config["collection_logfile"], "w").close() # Get configured collection logger self.logger = logging.getLogger(self.config["id"]) self.logger.info('Worker (PID: {}) initializing...'.format(str(os.getpid()))) #Return string representation of an object with all information needed to recreate the object (Think of it like a pickle made out of text) #Called using repr(*object*). eval(repr(*object*)) == *object* def __repr__(self): return f"{self.config['id']}" def initialize_logging(self): #Get the log level in upper case from the augur config's logging section. self.config['log_level'] = self.config['log_level'].upper() if self.config['debug']: self.config['log_level'] = 'DEBUG' if self.config['verbose']: format_string = AugurLogging.verbose_format_string else: format_string = AugurLogging.simple_format_string #Use stock python formatter for stdout formatter = Formatter(fmt=format_string) #User custom for stderr, Gives more info than verbose_format_string error_formatter = Formatter(fmt=AugurLogging.error_format_string) worker_dir = AugurLogging.get_log_directories(self.augur_config, reset_logfiles=False) + "/workers/" Path(worker_dir).mkdir(exist_ok=True) logfile_dir = worker_dir + f"/{self.worker_type}/" Path(logfile_dir).mkdir(exist_ok=True) #Create more complex sublogs in the logfile directory determined by the AugurLogging class server_logfile = logfile_dir + '{}_{}_server.log'.format(self.worker_type, self.config["port"]) collection_logfile = logfile_dir + '{}_{}_collection.log'.format(self.worker_type, self.config["port"]) collection_errorfile = logfile_dir + '{}_{}_collection.err'.format(self.worker_type, self.config["port"]) self.config.update({ 'logfile_dir': logfile_dir, 'server_logfile': server_logfile, 'collection_logfile': collection_logfile, 'collection_errorfile': collection_errorfile }) collection_file_handler = FileHandler(filename=self.config['collection_logfile'], mode="a") collection_file_handler.setFormatter(formatter) collection_file_handler.setLevel(self.config['log_level']) collection_errorfile_handler = FileHandler(filename=self.config['collection_errorfile'], mode="a") collection_errorfile_handler.setFormatter(error_formatter) collection_errorfile_handler.setLevel(logging.WARNING) logger = logging.getLogger(self.config['id']) logger.handlers = [] logger.addHandler(collection_file_handler) logger.addHandler(collection_errorfile_handler) logger.setLevel(self.config['log_level']) logger.propagate = False if self.config['debug']: self.config['log_level'] = 'DEBUG' console_handler = StreamHandler() console_handler.setFormatter(formatter) console_handler.setLevel(self.config['log_level']) logger.addHandler(console_handler) if self.config['quiet']: logger.disabled = True self.logger = logger #database interface, the git interfaceable adds additional function to the super method. def initialize_database_connections(self): DB_STR = 'postgresql://{}:{}@{}:{}/{}'.format( self.config['user_database'], self.config['password_database'], self.config['host_database'], self.config['port_database'], self.config['name_database'] ) # Create an sqlalchemy engine for both database schemas self.logger.info("Making database connections") self.db_schema = 'augur_data' self.db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.db_schema)}) # , 'client_encoding': 'utf8' self.helper_schema = 'augur_operations' self.helper_db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.helper_schema)}) metadata = s.MetaData() helper_metadata = s.MetaData() # Reflect only the tables we will use for each schema's metadata object metadata.reflect(self.db, only=self.data_tables) helper_metadata.reflect(self.helper_db, only=self.operations_tables) Base = automap_base(metadata=metadata) HelperBase = automap_base(metadata=helper_metadata) Base.prepare() HelperBase.prepare() # So we can access all our tables when inserting, updating, etc for table in self.data_tables: setattr(self, '{}_table'.format(table), Base.classes[table].__table__) try: self.logger.info(HelperBase.classes.keys()) except: pass for table in self.operations_tables: try: setattr(self, '{}_table'.format(table), HelperBase.classes[table].__table__) except Exception as e: self.logger.error("Error setting attribute for table: {} : {}".format(table, e)) # Increment so we are ready to insert the 'next one' of each of these most recent ids self.logger.info("Trying to find max id of table...") try: self.history_id = self.get_max_id('worker_history', 'history_id', operations_table=True) + 1 except Exception as e: self.logger.info(f"Could not find max id. ERROR: {e}") #25151 #self.logger.info(f"Good, passed the max id getter. Max id: {self.history_id}") #Make sure the type used to store date is synced with the worker? def sync_df_types(self, subject, source, subject_columns, source_columns): type_dict = {} ## Getting rid of nan's and NoneTypes across the dataframe to start: subject = subject.fillna(value=numpy.nan) source = source.fillna(value=numpy.nan) for index in range(len(source_columns)): if type(source[source_columns[index]].values[0]) == numpy.datetime64: subject[subject_columns[index]] = pd.to_datetime( subject[subject_columns[index]], utc=True ) source[source_columns[index]] = pd.to_datetime( source[source_columns[index]], utc=True ) continue ## Dealing with an error coming from paginate endpoint and the GitHub issue worker ### For a release in mid september, 2021. #SPG This did not work on Ints or Floats # if type(source[source_columns[index]].values[0]).isnull(): # subject[subject_columns[index]] = pd.fillna(value=np.nan) # source[source_columns[index]] = pd.fillna(value=np.nan) # continue source_index = source_columns[index] try: source_index = source_columns[index] type_dict[subject_columns[index]] = type(source[source_index].values[0]) #self.logger.info(f"Source data column is {source[source_index].values[0]}") #self.logger.info(f"Type dict at {subject_columns[index]} is : {type(source[source_index].values[0])}") except Exception as e: self.logger.info(f"Source data registered exception: {source[source_index]}") self.print_traceback("", e, True) subject = subject.astype(type_dict) return subject, source #Convert safely from sql type to python type? def get_sqlalchemy_type(self, data, column_name=None): if type(data) == str: try: time.strptime(data, "%Y-%m-%dT%H:%M:%SZ") return s.types.TIMESTAMP except ValueError: return s.types.String elif ( isinstance(data, (int, numpy.integer)) or (isinstance(data, float) and column_name and 'id' in column_name) ): return s.types.BigInteger elif isinstance(data, float): return s.types.Float elif type(data) in [numpy.datetime64, pd._libs.tslibs.timestamps.Timestamp]: return s.types.TIMESTAMP elif column_name and 'id' in column_name: return s.types.BigInteger return s.types.String def _convert_float_nan_to_int(self, df): for column in df.columns: if ( df[column].dtype == float and ((df[column] % 1 == 0) | (df[column].isnull())).all() ): df[column] = df[column].astype("Int64").astype(object).where( pd.notnull(df[column]), None ) return df def _setup_postgres_merge(self, data_sets, sort=False): metadata = s.MetaData() data_tables = [] # Setup/create tables for index, data in enumerate(data_sets): data_table = s.schema.Table(f"merge_data_{index}_{os.getpid()}", metadata) df = pd.DataFrame(data) columns = sorted(list(df.columns)) if sort else df.columns df = self._convert_float_nan_to_int(df) for column in columns: data_table.append_column( s.schema.Column( column, self.get_sqlalchemy_type( df.fillna(method='bfill').iloc[0][column], column_name=column ) ) ) data_tables.append(data_table) metadata.create_all(self.db, checkfirst=True) # Insert data to tables for data_table, data in zip(data_tables, data_sets): self.bulk_insert( data_table, insert=data, increment_counter=False, convert_float_int=True ) session = s.orm.Session(self.db) self.logger.info("Session created for merge tables") return data_tables, metadata, session def _close_postgres_merge(self, metadata, session): session.close() self.logger.info("Session closed") # metadata.reflect(self.db, only=[new_data_table.name, table_values_table.name]) metadata.drop_all(self.db, checkfirst=True) self.logger.info("Merge tables dropped") def _get_data_set_columns(self, data, columns): if not len(data): return [] self.logger.info("Getting data set columns") df = pd.DataFrame(data, columns=data[0].keys()) final_columns = copy.deepcopy(columns) for column in columns: if '.' not in column: continue root = column.split('.')[0] if root not in df.columns: df[root] = None expanded_column = pd.DataFrame( df[root].where(df[root].notna(), lambda x: [{}]).tolist() ) expanded_column.columns = [ f'{root}.{attribute}' for attribute in expanded_column.columns ] if column not in expanded_column.columns: expanded_column[column] = None final_columns += list(expanded_column.columns) try: df = df.join(expanded_column) except ValueError: # columns already added (happens if trying to expand the same column twice) # TODO: Catch this before by only looping unique prefixs? self.logger.info("Columns have already been added, moving on...") pass self.logger.info(final_columns) self.logger.info(list(set(final_columns))) self.logger.info("Finished getting data set columns") return df[list(set(final_columns))].to_dict(orient='records') def organize_needed_data( self, new_data, table_values, action_map={}, in_memory=True ): """ This method determines which rows need to be inserted into the database (ensures data ins't inserted more than once) and determines which rows have data that needs to be updated :param new_data: list of dictionaries - needs to be compared with data in database to see if any updates are needed or if the data needs to be inserted :param table_values: list of SQLAlchemy tuples - data that is currently in the database :param action_map: dict with two keys (insert and update) and each key's value contains a list of the fields that are needed to determine if a row is unique or if a row needs to be updated :param in_memory: boolean - determines whether the method is done is memory or database (currently everything keeps the default of in_memory=True) :return: list of dictionaries that contain data that needs to be inserted into the database :return: list of dictionaries that contain data that needs to be updated in the database """ if len(table_values) == 0: return new_data, [] if len(new_data) == 0: return [], [] need_insertion = pd.DataFrame() need_updates = pd.DataFrame() if not in_memory: new_data_columns = action_map['insert']['source'] table_value_columns = action_map['insert']['augur'] if 'update' in action_map: new_data_columns += action_map['update']['source'] table_value_columns += action_map['update']['augur'] (new_data_table, table_values_table), metadata, session = self._setup_postgres_merge( [ self._get_data_set_columns(new_data, new_data_columns), self._get_data_set_columns(table_values, table_value_columns) ] ) need_insertion = pd.DataFrame(session.query(new_data_table).join(table_values_table, eval( ' and '.join([ f"table_values_table.c.{table_column} == new_data_table.c.{source_column}" \ for table_column, source_column in zip(action_map['insert']['augur'], action_map['insert']['source']) ]) ), isouter=True).filter( table_values_table.c[action_map['insert']['augur'][0]] == None ).all(), columns=table_value_columns) self.logger.info("need_insertion calculated successfully") need_updates = pd.DataFrame(columns=table_value_columns) if 'update' in action_map: need_updates = pd.DataFrame(session.query(new_data_table).join(table_values_table, s.and_( eval(' and '.join([f"table_values_table.c.{table_column} == new_data_table.c.{source_column}" for \ table_column, source_column in zip(action_map['insert']['augur'], action_map['insert']['source'])])), eval(' and '.join([f"table_values_table.c.{table_column} != new_data_table.c.{source_column}" for \ table_column, source_column in zip(action_map['update']['augur'], action_map['update']['source'])])) ) ).all(), columns=table_value_columns) self.logger.info("need_updates calculated successfully") self._close_postgres_merge(metadata, session) new_data_df = pd.DataFrame(new_data) need_insertion, new_data_df = self.sync_df_types( need_insertion, new_data_df, table_value_columns, new_data_columns ) need_insertion = need_insertion.merge( new_data_df, how='inner', left_on=table_value_columns, right_on=new_data_columns ) self.logger.info( f"Table needs {len(need_insertion)} insertions and " f"{len(need_updates)} updates.\n") else: #create panda tabluar data from the keys of the passed table values table_values_df = pd.DataFrame(table_values, columns=table_values[0].keys()) new_data_df = pd.DataFrame(new_data).dropna(subset=action_map['insert']['source']) new_data_df, table_values_df = self.sync_df_types(new_data_df, table_values_df, action_map['insert']['source'], action_map['insert']['augur']) #Throwing value errors. 'cannot use name of an existing column for indicator column' ''' This is how uniqueness, or whether a piece of data needs to be inserted, or if that data already exists. With regards to the comment_action_map (for insertion of issue_comments and pull_request_comments we need to recognize the following: paginate_endpoint() then gets a dataframe of all the data that needs to be inserted. Earlier, we added 'tool_source' to the augur side of the action map, and left 'id' alone on the source side (since tool_source) is our variable, and part of our natural key. --<NAME> and <NAME> 9/16/2021. Debugging duplicate insert errors for comments after initial collection. ''' try: need_insertion = new_data_df.merge(table_values_df, suffixes=('','_table'), how='outer', indicator=True, left_on=action_map['insert']['source'], right_on=action_map['insert']['augur']).loc[lambda x : x['_merge']=='left_only'] except ValueError as e: #Log the error, try to merge again without label to avoid ValueError self.logger.warning(f"Error thrown during pandas merge: {e}") need_insertion = new_data_df.merge(table_values_df, suffixes=('','_table'), how='outer', indicator=False, left_on=action_map['insert']['source'], right_on=action_map['insert']['augur']).loc[lambda x : x['_merge']=='left_only'] if 'update' in action_map: new_data_df, table_values_df = self.sync_df_types(new_data_df, table_values_df, action_map['update']['source'], action_map['update']['augur']) partitions = math.ceil(len(new_data_df) / 1000) attempts = 0 while attempts < 50: try: need_updates = pd.DataFrame() self.logger.info(f"Trying {partitions} partitions\n") for sub_df in numpy.array_split(new_data_df, partitions): self.logger.info(f"Trying a partition, len {len(sub_df)}\n") need_updates = pd.concat([ need_updates, sub_df.merge(table_values_df, left_on=action_map['insert']['source'], right_on=action_map['insert']['augur'], suffixes=('','_table'), how='inner', indicator=False).merge(table_values_df, left_on=action_map['update']['source'], right_on=action_map['update']['augur'], suffixes=('','_table'), how='outer', indicator=True).loc[lambda x : x['_merge']=='left_only'] ]) self.logger.info(f"need_updates merge: {len(sub_df)} worked\n") break except MemoryError as e: self.logger.info(f"new_data ({sub_df.shape}) is too large to allocate memory for " + f"need_updates df merge.\nMemoryError: {e}\nTrying again with {partitions + 1} partitions...\n") partitions += 1 attempts += 1 # self.logger.info(f"End attempt # {attempts}\n") if attempts >= 50: self.loggger.info("Max need_updates merge attempts exceeded, cannot perform " + "updates on this repo.\n") else: need_updates = need_updates.drop([column for column in list(need_updates.columns) if \ column not in action_map['update']['augur'] and column not in action_map['insert']['augur']], axis='columns') for column in action_map['insert']['augur']: need_updates[f'b_{column}'] = need_updates[column] need_updates = need_updates.drop([column for column in action_map['insert']['augur']], axis='columns') return need_insertion.to_dict('records'), need_updates.to_dict('records') def assign_tuple_action(self, new_data, table_values, update_col_map, duplicate_col_map, table_pkey, value_update_col_map={}): """ DEPRECATED SPG 9/15/2021 TODO -- Why is this deprecated? Include an extra key-value pair on each element of new_data that represents the action that should be taken with this element (i.e. 'need_insertion') :param new_data: List of dictionaries, data to be assigned an action to :param table_values: Pandas DataFrame, existing data in the database to check what action should be taken on the new_data depending on the presence of each element in this DataFrame :param update_col_map: Dictionary, maps the column names of the source data to the field names in our database for columns that should be checked for updates (if source data value != value in existing database row, then an update is needed). Key is source data column name, value is database field name. Example: {'id': 'gh_issue_id'} :param duplicate_col_map: Dictionary, maps the column names of the source data to the field names in our database for columns that should be checked for duplicates (if source data value == value in existing database row, then this element is a duplicate and would not need an insertion). Key is source data column name, value is database field name. Example: {'id': 'gh_issue_id'} :param table_pkey: String, the field name of the primary key of the table in the database that we are checking the table_values for. :param value_update_col_map: Dictionary, sometimes we add a new field to a table, and we want to trigger an update of that row in the database even if all of the data values are the same and would not need an update ordinarily. Checking for a specific existing value in the database field allows us to do this. The key is the name of the field in the database we are checking for a specific value to trigger an update, the value is the value we are checking for equality to trigger an update. Example: {'cntrb_id': None} :return: List of dictionaries, contains all the same elements of new_data, except each element now has an extra key-value pair with the key being 'flag', and the value being 'need_insertion', 'need_update', or 'none' """ need_insertion_count = 0 need_update_count = 0 if type(table_values) == list: if len(table_values) > 0: table_values = pd.DataFrame(table_values, columns=table_values[0].keys()) else: table_values = pd.DataFrame(table_values) for i, obj in enumerate(new_data): if type(obj) != dict: new_data[i] = {'flag': 'none'} continue obj['flag'] = 'none' # default of no action needed existing_tuple = None for db_dupe_key in list(duplicate_col_map.keys()): if table_values.isin([obj[duplicate_col_map[db_dupe_key]]]).any().any(): if table_values[table_values[db_dupe_key].isin( [obj[duplicate_col_map[db_dupe_key]]])].to_dict('records'): existing_tuple = table_values[table_values[db_dupe_key].isin( [obj[duplicate_col_map[db_dupe_key]]])].to_dict('records')[0] continue obj['flag'] = 'need_insertion' need_insertion_count += 1 break if obj['flag'] == 'need_insertion': continue if not existing_tuple: self.logger.info('An existing tuple was not found for this data ' + 'point and we have reached the check-updates portion of assigning ' + 'tuple action, so we will now move to next data point\n') continue # If we need to check the values of the existing tuple to determine if an update is needed ''' This "value_check" is really really what I think we want to be doing for the update to issue status TODO SPG 9/15/2021. ''' for augur_col, value_check in value_update_col_map.items(): not_nan_check = not (math.isnan(value_check) and math.isnan(existing_tuple[augur_col])) if value_check is not None else True if existing_tuple[augur_col] != value_check and not_nan_check: continue self.logger.info("Found a tuple that needs an update for column: {}\n".format(augur_col)) obj['flag'] = 'need_update' obj['pkey'] = existing_tuple[table_pkey] need_update_count += 1 if obj['flag'] == 'need_update': self.logger.info('Already determined that current tuple needs update, skipping checking further updates. ' 'Moving to next tuple.\n') continue # Now check the existing tuple's values against the response values to determine if an update is needed for col in update_col_map.keys(): if update_col_map[col] not in obj: continue if obj[update_col_map[col]] == existing_tuple[col]: continue self.logger.info("Found a tuple that needs an update for column: {}\n".format(col)) obj['flag'] = 'need_update' self.logger.info(existing_tuple) obj['pkey'] = existing_tuple[table_pkey] need_update_count += 1 self.logger.info("Page recieved has {} tuples, while filtering duplicates this ".format(len(new_data)) + "was reduced to {} tuples, and {} tuple updates are needed.\n".format(need_insertion_count, need_update_count)) return new_data def check_duplicates(self, new_data, table_values, key): """ Filters what items of the new_data json (list of dictionaries) that are not present in the table_values df :param new_data: List of dictionaries, new data to filter duplicates out of :param table_values: Pandas DataFrame, existing data to check what data is already present in the database :param key: String, key of each dict in new_data whose value we are checking duplicates with :return: List of dictionaries, contains elements of new_data that are not already present in the database """ need_insertion = [] for obj in new_data: if type(obj) != dict: continue if not table_values.isin([obj[key]]).any().any(): need_insertion.append(obj) self.logger.info("Page recieved has {} tuples, while filtering duplicates this ".format(str(len(new_data))) + "was reduced to {} tuples.\n".format(str(len(need_insertion)))) return need_insertion def get_max_id(self, table, column, default=25150, operations_table=False): """ Gets the max value (usually used for id/pk's) of any Integer column of any table :param table: String, the table that consists of the column you want to query a max value for :param column: String, the column that you want to query the max value for :param default: Integer, if there are no values in the specified column, the value of this parameter will be returned :param operations_table: Boolean, if True, this signifies that the table/column that is wanted to be queried is in the augur_operations schema rather than the augur_data schema. Default False :return: Integer, the max value of the specified column/table """ maxIdSQL = s.sql.text(""" SELECT max({0}.{1}) AS {1} FROM {0} """.format(table, column)) db = self.db if not operations_table else self.helper_db rs = pd.read_sql(maxIdSQL, db, params={}) if rs.iloc[0][column] is not None: max_id = int(rs.iloc[0][column]) + 1 self.logger.info("Found max id for {} column in the {} table: {}\n".format(column, table, max_id)) else: max_id = default self.logger.warning("Could not find max id for {} column in the {} table... " + "using default set to: {}\n".format(column, table, max_id)) return max_id def get_table_values(self, cols, tables, where_clause=""): """ Can query all values of any column(s) from any table(s) with an optional where clause :param cols: List of Strings, column(s) that user wants to query :param tables: List of Strings, table(s) that user wants to query :param where_clause: String, optional where clause to filter the values queried :return: Pandas DataFrame, contains all values queried in the columns, tables, and optional where clause provided """ table_str = tables[0] del tables[0] col_str = cols[0] del cols[0] for table in tables: table_str += ", " + table for col in cols: col_str += ", " + col table_values_sql = s.sql.text(""" SELECT {} FROM {} {} """.format(col_str, table_str, where_clause)) self.logger.info("Getting table values with the following PSQL query: \n{}\n".format( table_values_sql)) values = pd.read_sql(table_values_sql, self.db, params={}) return values def bulk_insert( self, table, insert=[], update=[], unique_columns=[], update_columns=[], max_attempts=3, attempt_delay=3, increment_counter=True, convert_float_int=False ): """ Performs bulk inserts/updates of the given data to the given table :param table: String, name of the table that we are inserting/updating rows :param insert: List of dicts, data points to insert :param update: List of dicts, data points to update, only needs key/value pairs of the update_columns and the unique_columns :param unique_columns: List of strings, column names that would uniquely identify any given data point :param update_columns: List of strings, names of columns that are being updated :param max_attempts: Integer, number of attempts to perform on inserting/updating before moving on :param attempt_delay: Integer, number of seconds to wait in between attempts :returns: SQLAlchemy database execution response object(s), contains metadata about number of rows inserted etc. This data is not often used. """ self.logger.info( f"{len(insert)} insertions are needed and {len(update)} " f"updates are needed for {table}" ) update_result = None insert_result = None if len(update) > 0: attempts = 0 update_start_time = time.time() while attempts < max_attempts: try: update_result = self.db.execute( table.update().where( eval( ' and '.join( [ f"self.{table}_table.c.{key} == bindparam('b_{key}')" for key in unique_columns ] ) ) ).values( {key: key for key in update_columns} ), update ) if increment_counter: self.update_counter += update_result.rowcount self.logger.info( f"Updated {update_result.rowcount} rows in " f"{time.time() - update_start_time} seconds" ) break except Exception as e: self.logger.info(f"Warning! Error bulk updating data: {e}") time.sleep(attempt_delay) attempts += 1 if len(insert) > 0: insert_start_time = time.time() def psql_insert_copy(table, conn, keys, data_iter): """ Execute SQL statement inserting data Parameters ---------- table : pandas.io.sql.SQLTable conn : sqlalchemy.engine.Engine or sqlalchemy.engine.Connection keys : list of str Column names data_iter : Iterable that iterates the values to be inserted """ # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as curs: s_buf = io.StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ', '.join('"{}"'.format(k) for k in keys) if table.schema: table_name = '{}.{}'.format(table.schema, table.name) else: table_name = table.name sql = 'COPY {} ({}) FROM STDIN WITH (FORMAT CSV, encoding "UTF-8")'.format( table_name, columns) #(FORMAT CSV, FORCE_NULL(column_name)) self.logger.debug(f'table name is: {table_name}, and columns are {columns}.') self.logger.debug(f'sql is: {sql}') #This causes the github worker to throw an error with pandas #cur.copy_expert(sql=sql, file=self.text_clean(s_buf)) # s_buf_encoded = s_buf.read().encode("UTF-8") #self.logger.info(f"this is the sbuf_encdoded {s_buf_encoded}") try: #Session=sessy.sessionmaker(bind=curs) #session=Session() #session.copy_expert(sql=sql, file=s_buf) #copy_expert(sql=sql, file=s_buf) curs.copy_expert(sql=sql, file=s_buf) #session.commit() #self.logger.info("message committed") dbapi_conn.commit() # self.logger.debug("good dog. record committed! Watson, come quick!!!") except psycopg2.errors.UniqueViolation as e: self.logger.info(f"{e}") dbapi_conn.rollback() except Exception as e: self.print_traceback("Bulk insert error", e, True) dbapi_conn.rollback() try: df = pd.DataFrame(insert) if convert_float_int: df = self._convert_float_nan_to_int(df) df.to_sql( schema = self.db_schema, name=table.name, con=self.db, if_exists="append", index=False, #method=None, method=psql_insert_copy, #dtype=dict, chunksize=1 ) if increment_counter: self.insert_counter += len(insert) self.logger.info( f"Inserted {len(insert)} rows in {time.time() - insert_start_time} seconds " "thanks to postgresql's COPY FROM CSV! :)" ) except Exception as e: self.logger.info(f"Bulk insert error 2: {e}. exception registered.") return insert_result, update_result def text_clean(self, data, field): """ "Cleans" the provided field of each dict in the list of dicts provided by removing NUL (C text termination) characters Example: "\u0000" :param data: List of dicts :param field: String :returns: Same data list with each element's field updated with NUL characters removed """ #self.logger.info(f"Original data point{field:datapoint[field]}") return [ { **data_point, #field: data_point[field].replace("\x00", "\uFFFD") #self.logger.info(f"Null replaced data point{field:datapoint[field]}") ## trying to use standard python3 method for text cleaning here. # This was after `data_point[field]` for a while as `, "utf-8"` and did not work # Nay, it cause silent errors without insert; or was part of that hot mess. # field: bytes(data_point[field]).decode("utf-8", "ignore") field: bytes(data_point[field], "utf-8").decode("utf-8", "ignore").replace("\x00", "\uFFFD") #0x00 } for data_point in data ] # def text_clean(self, data, field): # """ "Cleans" the provided field of each dict in the list of dicts provided # by removing NUL (C text termination) characters # Example: "\u0000" # :param data: List of dicts # :param field: String # :returns: Same data list with each element's field updated with NUL characters # removed # """ # return [ # { # **data_point, # field: data_point[field].replace("\x00", "\uFFFD") # } for data_point in data # ] def _add_nested_columns(self, df, column_names): # todo: support deeper nests (>1) and only expand necessary columns # todo: merge with _get_data_set_columns for column in column_names: self.logger.debug(f"column included: {column}.") if '.' not in column: continue # if the column is already present then we # dont' need to try to add it again if column in df.columns: continue root = column.split('.')[0] if root not in df.columns: df[root] = None expanded_column = pd.DataFrame( df[root].where(df[root].notna(), lambda x: [{}]).tolist() ) expanded_column.columns = [ f'{root}.{attribute}' for attribute in expanded_column.columns ] self.logger.debug('\n') self.logger.debug('\n') self.logger.debug('\n') self.logger.debug('\n') self.logger.debug(f'Expanded Columns Are:{expanded_column.columns}') self.logger.debug('\n') self.logger.debug('\n') self.logger.debug('\n') if column not in expanded_column.columns: expanded_column[column] = None try: df = df.join(expanded_column) except ValueError as e: # columns already added (happens if trying to expand the same column twice) # TODO: Catch this before by only looping unique prefixs? self.print_traceback("value error in _add_nested_columns", e, True) except Exception as e: self.print_traceback("_add_nested_columns", e, True) finally: self.logger.debug(f"finished _add_nested_columns.") return df def enrich_data_primary_keys( self, source_data, table, gh_merge_fields, augur_merge_fields, in_memory=True ): ''' the gh_merge_fields are almost always direct from the source in the action map. the augur_merge fields are the fieldnames where augur perists the source values. These are almost never (never) the primary keys on our table. They are the natural keys at the source, I think, with some probability close to 1 (SPG 9/13/2021).''' ''' SPG 9/15/2021: This seems method may be the source of duplicate inserts that seem like they should not actually get run because we are specifying the natural key in the insert map. I really don't completely understand what we are doing here. ''' self.logger.info("Preparing to enrich data.\n") if len(source_data) == 0: self.logger.info("There is no source data to enrich.\n") return source_data source_df = self._add_nested_columns(
pd.DataFrame(source_data)
pandas.DataFrame
import unittest import numpy as np import pandas as pd import random import kMeans as k class kMeans_spec(unittest.TestCase): def setUp(self): return 0 def test_random_element(self): df = pd.DataFrame([[1,0,2], [2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']) result = k.random_sample(df,2) #print(result) def test_create_clusters(self): df = pd.DataFrame([[1,0,2], [2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']) result = k.create_clusters(df) #print(result) def test_distance_equal(self): e1 = pd.Series([2,1,2]) e2 = pd.Series([2,1,2]) result = k.distance(e1,e2) self.assertEqual(0,result) def test_distance_different(self): e1 = pd.Series([2,1]) e2 = pd.Series([1,3]) result = k.distance(e1,e2) self.assertEqual(np.sqrt(5),result) def test_closest(self): element = pd.Series([2,1,2],['a1','a2','a3']) centers = pd.DataFrame([[1,0,2], [2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']) result = k.closest(element,centers) expected = pd.Series([2,0,2.5]) assert ((expected == result).all()) def test_find_center(self): df = pd.DataFrame([[1,0,2], [2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']) result = df.mean(axis=0) #print(result) def test_find_centers(self): clusters = [pd.DataFrame([[2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']), pd.DataFrame([[1,0,2 ]],None,['a1','a2','a3'])] result = k.find_centers(clusters) #print(result) def test_assign_clusters(self): df = pd.DataFrame([[1,0,2], [2,0,2.5], [3,6,1.5]],None,['a1','a2','a3']) centers = pd.DataFrame([[1,0.5,2 ], [2,0.5,2.5]],None,['a1','a2','a3']) clusters = [pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import multiprocessing as mp from tqdm import tqdm import h5py import os ########################################### def match_profile_coords(): # After applying profile mask, the masked df_profile should match the df_beads on both coordinates and seq. amino_acids = pd.read_csv('amino_acids.csv') vocab = {y.upper(): x for x, y in zip(amino_acids.AA, amino_acids.AA3C)} # profile_dir = 'training_100_profile' profile_dir = 'validation_profile' bead_dir = 'proteinnet_beads' pdb1 = pd.read_csv(f'{profile_dir}/flist.txt')['fname'] # pdb2 = pdb1.apply(lambda x: x.split('_')[0] + '_' + x.split('_')[2]) pdb2 = pdb1.apply(lambda x: x.split('_')[0][3:] + '_' + x.split('_')[2]) bad = [] good = [] for p1, p2 in tqdm(zip(pdb1, pdb2)): p2_path = f'{bead_dir}/{p2}_bead.csv' if not os.path.exists(p2_path): continue df1 = pd.read_csv(f'{profile_dir}/{p1}') df2 = pd.read_csv(p2_path) mask = df1['mask'] if df1[mask==1].shape[0] == df2.shape[0]: df1m = df1[mask==1].copy() ca1 = df1m[['x', 'y', 'z']].values ca2 = df2[['xca', 'yca', 'zca']].values seq1 = ''.join(df1m['group_name'].values) seq2 = ''.join(df2['group_name'].apply(lambda x: vocab[x]).values) if np.abs(ca1 - ca2).max()>0.002: # print(p1) bad.append(p1) elif seq1 != seq2: # print(p1, 'seq diff') bad.append(p1) else: good.append(p1) # df1m['xs'] = df2['xs'].values # df1m['ys'] = df2['ys'].values # df1m['zs'] = df2['zs'].values # df1m.to_csv(f'{data_dir}/{p1}_match.csv', index=False, float_format='%.4f') df = pd.DataFrame({'pdb': good}) # df.to_csv('bead_profile_match.csv', index=False) df.to_csv('bead_profile_match_validation.csv', index=False) ########################################### def _rotation_matrix(c1, c2): z = np.cross(c1, c2) x = c1 y = np.cross(z, x) x = x / np.sqrt(np.sum(x ** 2)) y = y / np.sqrt(np.sum(y ** 2)) z = z / np.sqrt(np.sum(z ** 2)) R = np.vstack([x, y, z]) # Rinv = np.linalg.inv(R.T) return R def extract_one_topk(pdb_id, df_beads, df_profile, local_rot_dir, k=10, mode='CA'): if df_beads.shape[0] < 20: return idx = (df_profile['mask'] == 1) group_num = df_profile['group_num'].values[idx] group_name = df_profile['group_name'].values[idx] if mode == 'CA': group_coords = df_beads[['xca', 'yca', 'zca']].values elif mode == 'CB': group_coords = df_beads[['xcb', 'ycb', 'zcb']].values elif mode == 'CAS': group_coords = (df_beads[['xca', 'yca', 'zca']].values + df_beads[['xs', 'ys', 'zs']].values) / 2 else: raise ValueError('mode should be CA / CB / CAS.') df_list = [] count_res = [] for i, gc in enumerate(group_num): if (gc-1 not in group_num) | (gc+1 not in group_num) | (gc-2 not in group_num) | (gc+2 not in group_num): continue # coords of the previous 2 and next 2 groups in local peptide segment cen_i = (group_num == gc) pre_i = (group_num == gc-1) next_i = (group_num == gc+1) pre2_i = (group_num == gc-2) next2_i = (group_num == gc+2) coords = group_coords - group_coords[cen_i] # center c1 = coords[pre_i] c2 = coords[next_i] if np.sum(c1**2) == 0: break if np.sum(c2**2) == 0: break rotate_mat = _rotation_matrix(c1, c2) # get central segment ind = (cen_i | pre_i | next_i | pre2_i | next2_i) gnum_seg = group_num[ind] gname_seg = group_name[ind] coords_seg = coords[ind] coords_seg = np.squeeze(np.matmul(rotate_mat[None, :, :], coords_seg[:, :, None])) # get nearest k residues from other residues gnum_others = group_num[~ind] gname_others = group_name[~ind] coords_others = coords[~ind] dist_i = np.sqrt((coords_others**2).sum(axis=1)) dist_i_arg = np.argsort(dist_i) topk_arg = dist_i_arg[:k] # topk_arg = (dist_i < 8) # count_6a = dist_i[dist_i < 6].shape[0] count_8a = dist_i[dist_i < 8].shape[0] count_10a = dist_i[dist_i < 10].shape[0] count_12a = dist_i[dist_i < 12].shape[0] # count_res.append(np.array([count_6a, count_8a, count_10a, count_12a])) gnum_topk = gnum_others[topk_arg] gname_topk = gname_others[topk_arg] coords_topk = coords_others[topk_arg] coords_topk = np.squeeze(np.matmul(rotate_mat[None, :, :], coords_topk[:, :, None])) # concat central segment and top_k gnum = np.append(gnum_seg, gnum_topk) gname = np.append(gname_seg, gname_topk) coords = np.vstack((coords_seg, coords_topk)) distance = np.sqrt(np.sum(coords**2, axis=1)) segment_info = np.ones(gnum.shape[0], dtype=int) * 5 segment_info[gnum == gc] = 0 segment_info[gnum == gc-1] = 1 segment_info[gnum == gc+1] = 2 segment_info[gnum == gc-2] = 3 segment_info[gnum == gc+2] = 4 df_g = pd.DataFrame({'center_num': gc, 'group_num': gnum, 'group_name': gname, 'x': coords[:, 0], 'y': coords[:, 1], 'z': coords[:, 2], 'distance': distance, 'segment': segment_info, 'count8a': count_8a, 'count10a': count_10a, 'count12a': count_12a}) # df_g = df_g.sort_values(by=['segment', 'distance']) def re_order_df_g(df_g): df_g = df_g.sort_values(by=['segment', 'group_num']) group_num = df_g['group_num'].values distance = df_g['distance'].values # set segment id seg = np.ones(15, dtype=np.int) seg[5] = 2 for i in range(6, 15): if group_num[i] == group_num[i - 1] + 1: seg[i] = seg[i - 1] else: seg[i] = seg[i - 1] + 1 # calculate mean distance of segment seg_dist = np.zeros(15) for i in range(5, 15): seg_dist[i] = distance[seg == seg[i]].mean() df_g['seg'] = seg df_g['seg_dist'] = seg_dist df_g = df_g.sort_values(by=['segment', 'seg_dist', 'group_num']) return df_g df_g = re_order_df_g(df_g) df_list.append(df_g) if len(df_list)>0: df = pd.concat(df_list, ignore_index=True) idx = df['group_num'].values for i in range(20): aa_i = f'aa{i}' df[aa_i] = df_profile[aa_i].values[idx] df.to_csv(f'{local_rot_dir}/{pdb_id}_{mode}.csv', index=False, float_format='%.4f') # count_res = np.vstack(count_res) # df_count = pd.DataFrame({'count_6a': count_res[:, 0], # 'count_8a': count_res[:, 1], # 'count_10a': count_res[:, 2], # 'count_12a': count_res[:, 3]}) # df_count.to_csv(f'{local_rot_dir}/{pdb_id}_count_res.csv', index=False) def extract_local_structure(): dataset = 'training_30' # dataset = 'validation' mode = 'CAS' if dataset == 'training_30': # match training_30_protein_id to bead_profile_match.csv data_dir = 'local_rot_training_30_v3' pdb_list = pd.read_csv('training_30_protein_id2.csv')['pdb_id'].values beads_list = pd.read_csv('bead_profile_match.csv')['pdb'].values elif dataset == 'validation': data_dir = 'local_rot_validation_v3' pdb_list = pd.read_csv('validation_protein_id2.csv')['pdb'].values beads_list = pd.read_csv('bead_profile_match_validation.csv')['pdb'].values else: raise ValueError('dataset not found') pdb_list = list(set(pdb_list) & set(beads_list)) def extract_batch(batch): for i in tqdm(batch): pdb_id = pdb_list[i] if dataset == 'training_30': pdb_id_bead = pdb_id.split('_')[0] + '_' + pdb_id.split('_')[2] profile_dir = 'training_100_profile' elif dataset == 'validation': pdb_id_bead = pdb_id.split('_')[0][3:] + '_' + pdb_id.split('_')[2] profile_dir = 'validation_profile' df_beads = pd.read_csv(f'proteinnet_beads/{pdb_id_bead}_bead.csv') df_profile = pd.read_csv(f'{profile_dir}/{pdb_id}_profile.csv') extract_one_topk(pdb_list[i], df_beads, df_profile, data_dir, mode=mode) count = len(pdb_list) num_cores = 40 batch_size = count // num_cores + 1 idx_list = np.arange(count) batch_list = [] for i in range(0, count, batch_size): batch = idx_list[i:i+batch_size] batch_list += [batch] # setup the multi-processes with mp.Pool(processes=num_cores) as pool: pool.map(extract_batch, batch_list) ############################################ def save_local_h5(): input_file = 'training_30' # input_file = 'validation' # input_file = 'testing' mode = 'CAS' local_rot_dir = f'local_rot_{input_file}_v3/' # flist = pd.read_csv(f'{local_rot_dir}/flist_{mode}.txt')['fname'].values # load tht hhsuite-proteinnet-pdb matched pdb list flist = pd.read_csv('hh_ca_pdb_list.txt')['pdb_profile'] flist = flist.apply(lambda x: x + f'_{mode}.csv') df_list = [] for fname in tqdm(flist): df = pd.read_csv(f'{local_rot_dir}/{fname}') df['pdb'] = fname[:-7] df_list.append(df) df = pd.concat(df_list, ignore_index=True) # save data to hdf5 amino_acids = pd.read_csv('amino_acids.csv') vocab = {x.upper(): y - 1 for x, y in zip(amino_acids.AA, amino_acids.idx)} # segment = df['segment'].values k = 15 seq = df['group_name'].apply(lambda x: vocab[x]) seq = seq.values.reshape((-1, k)) group_num = df['group_num'].values.reshape((-1, k)) coords = df[['x', 'y', 'z']].values.reshape((-1, k, 3)) profile = df[[f'aa{i}' for i in range(20)]].values.reshape((-1, k, 20)) pdb = df['pdb'].values.reshape((-1, k))[:, 0] seg = df['seg'].values seg = seg.reshape(-1, k) start_id = np.zeros_like(seg) idx = (seg[:, 1:] - seg[:, :-1] == 0) start_id[:, 1:][idx] = 1 res_counts = df[['count8a', 'count10a', 'count12a']].values.reshape(-1, k, 3)[:, 0, :] distance = df['distance'].values dist = distance.reshape(-1, k) dist_max = dist.max(axis=-1) print(seq.min(), coords.min(), profile.min(), group_num.max(), res_counts.max()) print(seq.shape, coords.shape, profile.shape, group_num.shape, res_counts.shape) # clean using residues distances # idx = (dist[:, 1] < 4) & (dist[:, 2] < 4) & (dist[:, 3] < 8) & (dist[:, 4] < 8) & (dist_max < 20) idx = (dist_max < 20) seq = seq[idx] group_num = group_num[idx] coords = coords[idx] profile = profile[idx] start_id = start_id[idx] res_counts = res_counts[idx] pdb = pdb[idx] print(seq.min(), coords.min(), profile.min(), group_num.max(), res_counts.max()) print(seq.shape, coords.shape, profile.shape, group_num.shape, res_counts.shape) # shuffle num = seq.shape[0] idx = np.arange(num) np.random.shuffle(idx) seq = seq[idx] group_num = group_num[idx] coords = coords[idx] profile = profile[idx] start_id = start_id[idx] res_counts = res_counts[idx] pdb = pdb[idx] df_pdb = pd.DataFrame({'pdb': pdb}) df_pdb['pdb'] = df_pdb['pdb'].apply(lambda x: x.split('_')[0] + '_' + x.split('_')[2]) df_pdb.to_csv(f'{input_file}_{mode}_pdb.csv', index=False) with h5py.File(f'{input_file}_{mode}_v2.h5', 'w') as f: dset = f.create_dataset("seq", shape=seq.shape, data=seq, dtype='i1') dset = f.create_dataset("group_num", shape=group_num.shape, data=group_num, dtype='i') dset = f.create_dataset("start_id", shape=start_id.shape, data=start_id, dtype='i1') dset = f.create_dataset("res_counts", shape=res_counts.shape, data=res_counts, dtype='i2') dset = f.create_dataset("coords", shape=coords.shape, data=coords, dtype='f4') dset = f.create_dataset("profile", shape=profile.shape, data=profile, dtype='f4') # if input_file == 'training_30': # N = 100000 # df_pdb[N:].to_csv(f'{input_file}_{mode}_pdb_train.csv', index=False) # # with h5py.File(f'{input_file}_{mode}_v2_train.h5', 'w') as f: # dset = f.create_dataset("seq", shape=seq[N:].shape, data=seq[N:], dtype='i1') # dset = f.create_dataset("group_num", shape=group_num[N:].shape, data=group_num[N:], dtype='i') # dset = f.create_dataset("start_id", shape=start_id[N:].shape, data=start_id[N:], dtype='i1') # dset = f.create_dataset("res_counts", shape=res_counts[N:].shape, data=res_counts[N:], dtype='i2') # dset = f.create_dataset("coords", shape=coords[N:].shape, data=coords[N:], dtype='f4') # dset = f.create_dataset("profile", shape=profile[N:].shape, data=profile[N:], dtype='f4') # # df_pdb[:N].to_csv(f'{input_file}_{mode}_pdb_val.csv', index=False) # with h5py.File(f'training_30_{mode}_v2_val.h5', 'w') as f: # dset = f.create_dataset("seq", shape=(N, k), data=seq[:N], dtype='i1') # dset = f.create_dataset("group_num", shape=(N, k), data=group_num[:N], dtype='i') # dset = f.create_dataset("start_id", shape=(N, k), data=start_id[:N], dtype='i1') # dset = f.create_dataset("res_counts", shape=(N, 3), data=res_counts[:N], dtype='i2') # dset = f.create_dataset("coords", shape=(N, k, 3), data=coords[:N], dtype='f4') # dset = f.create_dataset("profile", shape=(N, k, 20), data=profile[:N], dtype='f4') def save_small(): k = 15 input_file = 'training_30' mode = 'CA' df_pdb = pd.read_csv(f'{input_file}_{mode}_pdb_small.csv') data = h5py.File(f'{input_file}_{mode}_v2.h5', 'r') seq = data['seq'][()] group_num = data['group_num'][()] start_id = data['start_id'][()] res_counts = data['res_counts'][()] coords = data['coords'][()] profile = data['profile'][()] df_pdb[:1000].to_csv(f'{input_file}_{mode}_pdb_small.csv', index=False) with h5py.File(f'training_30_small_{mode}.h5', 'w') as f: dset = f.create_dataset("seq", shape=(1000, k), data=seq[:1000], dtype='i1') dset = f.create_dataset("group_num", shape=(1000, k), data=group_num[:1000], dtype='i') dset = f.create_dataset("start_id", shape=(1000, k), data=start_id[:1000], dtype='i1') dset = f.create_dataset("res_counts", shape=(1000, 3), data=res_counts[:1000], dtype='i2') dset = f.create_dataset("coords", shape=(1000, k, 3), data=coords[:1000], dtype='f4') dset = f.create_dataset("profile", shape=(1000, k, 20), data=profile[:1000], dtype='f4') #################################### def small_protein(): beads_list = pd.read_csv('bead_profile_match.csv')['pdb'].values selected = ['1BPI_1_A', '2F4K_1_A', '2F21_d2f21a1', '2HBA_1_A', '2WXC_1_A', '2JOF_1_A', '1FME_1_A', '2P6J_1_A', '2A3D_1_A'] for pdb in selected: if pdb in beads_list: print(pdb) pdb_bead = pdb.split('_')[0] + '_' + pdb.split('_')[2] os.system(f'cp proteinnet_beads/{pdb_bead}_bead.csv small_protein/') os.system(f'cp training_100_profile/{pdb}_profile.csv small_protein/') def full_chain(): beads_list = pd.read_csv('bead_profile_match.csv')['pdb'].values df = pd.read_csv('training_100-validation_protein_id2.csv') idx = (df['pdb_res_count'] == df['seq_len']) df = df[idx] pdb_list = df['pdb_id'].values match = np.zeros(pdb_list.shape[0], dtype=int) for i, p in tqdm(enumerate(pdb_list)): if p in beads_list: match[i] = 1 idx = (match == 1) df2 = df[idx] df2.to_csv('protein_no_missing_residue_bead_profile_match.csv', index=False) sample = df2.sample(n=100) sample.to_csv('sample.csv', index=False) for pdb in sample['pdb_id']: print(pdb) pdb_bead = pdb.split('_')[0] + '_' + pdb.split('_')[2] os.system(f'cp proteinnet_beads/{pdb_bead}_bead.csv protein_sample/') os.system(f'cp training_100_profile/{pdb}_profile.csv protein_sample/') # idx = (df2['seq_len']<60) & (df2['profile_info']<0.6) def reorder_local_struct(): input_file = 'training_30' # input_file = 'validation' # input_file = 'testing' local_rot_dir = f'local_rot_{input_file}/' local_rot_dir_v2 = f'local_rot_{input_file}_v2/' if not os.path.exists(f'{local_rot_dir_v2}'): os.system(f'mkdir -p {local_rot_dir_v2}') def extract_one(fname): df_list = [] df = pd.read_csv(f'{local_rot_dir}/{fname}') if (input_file == 'validation') | (input_file == 'testing'): df['pdb'] = fname[:-4] for gc in df['center_num'].unique(): df_g = df[df['center_num'] == gc] if df_g.shape[0] != 15: print(fname) continue df_g = df_g.sort_values(by=['segment', 'group_num']) group_num = df_g['group_num'].values distance = df_g['distance'].values # set segment id seg = np.ones(15, dtype=np.int) seg[5] = 2 for i in range(6, 15): if group_num[i] == group_num[i - 1] + 1: seg[i] = seg[i - 1] else: seg[i] = seg[i - 1] + 1 # calculate mean distance of segment seg_dist = np.zeros(15) for i in range(5, 15): seg_dist[i] = distance[seg == seg[i]].mean() df_g['seg'] = seg df_g['seg_dist'] = seg_dist df_g = df_g.sort_values(by=['segment', 'seg_dist', 'group_num']) df_list.append(df_g) df = pd.concat(df_list, ignore_index=True) df.to_csv(f'{local_rot_dir_v2}/{fname}', index=False, float_format='%.4f') def extract_batch(batch): for fname in tqdm(batch): extract_one(fname) flist = pd.read_csv(f'{local_rot_dir}/flist.txt')['fname'].values count = len(flist) np.random.shuffle(flist) num_cores = 40 batch_size = count // num_cores + 1 batch_list = [] for i in range(0, count, batch_size): batch = flist[i:i+batch_size] batch_list += [batch] with mp.Pool(processes=num_cores) as pool: pool.map(extract_batch, batch_list) def test_reorder_one(): local_rot_dir = f'local_rot_training_30/' fname = '12AS_1_A.csv' df_list = [] df =
pd.read_csv(f'{local_rot_dir}/{fname}')
pandas.read_csv
import pandas as pd import numpy as np from sklearn.cluster import KMeans import collections import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import Helper import json import os import holoviews as hv from holoviews import opts, dim # hv.extension('bokeh') hv.extension('matplotlib') hv.output(fig='svg', size=200) #hv.output(fig='png', size=200) def set_user_id(df, threshold): # create the user_id col, from the diff of time and the optimal threshold # and the previous zone if zone_level is higher than 0 splitted_level = Helper.zone_level.split('.') if len(splitted_level) > 1 and int(splitted_level[0]) > 0: # lvl > 0 #df["user_id"] = ((df['diff'] > threshold) | (df['hashed_mac'] != df['hashed_mac'].shift()) | (df['father_zone'] != df['father_zone'].shift())).cumsum() #df["user_id"] = ((df['diff']>threshold) | (df['hashed_mac'] != df['hashed_mac'].shift()) | ( (df['father_zone'] != df['father_zone'].shift()) & ( ~df['father_zone'].isin(Helper.active_father_zones) | ~df['father_zone'].shift().isin(Helper.active_father_zones)) )).cumsum() df["user_id"] = ((df['diff']>threshold) | (df['hashed_mac'] != df['hashed_mac'].shift()) | ( (df['father_zone'] != df['father_zone'].shift()) & ( (df['father_zone'] != Helper.active_father_zone) | (df['father_zone'].shift() != Helper.active_father_zone) ) )).cumsum() else: # lvl 0 df["user_id"] = ((df['diff'] > threshold) | (df['hashed_mac'] != df['hashed_mac'].shift())).cumsum() # make the user_id as index df.index = df.user_id return df def clean_df(df): # delete from the df the samples with only 1 conection aux = df["user_id"].value_counts() df = df[df["user_id"].isin(aux.index[aux.gt(1)])] # drop unnecesary cols df = df.drop(columns=['hashed_mac', 'diff', 'user_id']) splitted_level = Helper.zone_level.split('.') if len(splitted_level) > 1 and int(splitted_level[0]) > 0: df = df.drop(columns=['father_zone']) return df def set_zone(df): # read json and set zones # remove all zones that are not of that level zones_info = Helper.read_json_file(Helper.project_path+Helper.config_paths['GeneralDirs']['info_zones']+"zonesLevel"+str(Helper.zone_level)+".json") # set zones_names as a global var Helper.new_global("zones_names", list(zones_info.keys())) df["zone"] = df["ap_name"].apply(lambda x: Helper.get_zone_name_from_dict(x, zones_info)) # remove rows with rm value in zone col (samples that are not of any zone of the actual level) df = df[df.zone != "rm"] return df def times_to_percentage(vector, total_time): for n, element in enumerate(vector): vector[n] = element/total_time*100 return vector def clean_repeated(df): # the index should be the user_id # necessary to create the aux col because the drop_duplicate # function dont detect the index col by its name df["aux"] = df.index df["aux2"] = (df.zone != df.zone.shift()).cumsum() df = df.drop_duplicates(subset=['aux', 'aux2']) df = df.drop(columns=["aux", "aux2"]) return df def add_in_out(df): in_df = df.groupby("user_id").first() in_df["zone"] = "AAA" out_df = df.groupby("user_id").last() out_df["zone"] = "ZZZ" df = df.append(in_df) df = df.append(out_df) df = df.sort_values(by=['user_id', 'date_time', 'zone'], ascending=True) df['zone'] = df['zone'].replace({'AAA': 'IN'}) df['zone'] = df['zone'].replace({'ZZZ': 'OUT'}) return df def time_on_zone(df): # create the vector for all users global first_zone_time, last_zone_time, actual_zone_time, actual_zone users = [] # loop through every user for user_id, user_data in df.groupby('user_id'): # initialize vector of % time in Buildings zones = [] for i in range(0, len(Helper.zones_names)): zones.append(0) # loop through every user connection for i, (u_id, sample) in enumerate(user_data.iterrows()): # first connection, imporant to save the time if i == 0: # this is the IN row # we dont want to do nothing in this case # because next row will start in exactly same time than that pass elif i == 1: first_zone_time = sample.date_time # initialize actual zone values actual_zone = sample.zone actual_zone_time = sample.date_time # if has changed of zone or is the last sample, add the connection time to the respective zone else: # dont need to check if has changed of zone or is the last zone because we know # that the zone of row i is different than row i+1, always # add the connection time to the respective zone (in seconds) zones[Helper.get_zone_index(actual_zone)] += (sample.date_time - actual_zone_time) / np.timedelta64(1, 's') # update actual zone values actual_zone = sample.zone actual_zone_time = sample.date_time # save last connection time if i == len(user_data) - 1: last_zone_time = sample.date_time # calculate total connection time (in seconds) total_user_time = (last_zone_time-first_zone_time) / np.timedelta64(1, 's') # convert the times to percentatges zones = times_to_percentage(zones, total_user_time) # add it to the users vector users.append(zones) if Helper.save_jsons: dir_json = Helper.get_route_according_validation('time_on_building') Helper.create_dir_if_not_exists(dir_json) with open(dir_json+"time_on_zone"+Helper.actual_day+".json", 'w') as fp: json.dump(users, fp, indent=3) return users def get_times_on_zone(df, threshold): df = set_user_id(df, threshold) df = set_zone(df) df = clean_df(df) df = add_in_out(df) df = clean_repeated(df) users_vector = time_on_zone(df) if Helper.save_csvs: # save csv before apply clustering dir_df = Helper.get_route_according_validation('df_before_clustering') Helper.create_dir_if_not_exists(dir_df) df.to_csv(dir_df+Helper.actual_day+".csv") return df, users_vector def apply_kmeans(df, vectors, n_clusters): # https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html n_clusters = int(n_clusters) # define the model model = KMeans(random_state=6969, n_clusters=n_clusters) # fit the model model.fit(vectors) # assign a cluster to each sample users_groups = model.predict(vectors) # add cluster results to df # create an auxiliar df with the clusters of each user aux_data = {"user_id": df.index.unique(),"kmeans_cluster": users_groups} aux_df =
pd.DataFrame(aux_data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Generate local files with the received delta translated excel files # Read file in added data order. # In[1]: import pandas as pd import openpyxl import json import os import re import glob import argparse # In[2]: def load_json_as_df(json_data): out_df = pd.DataFrame(list(json_data.items()), columns=['Key', 'value']) return out_df # In[3]: def read_json(json_file_path): with open(json_file_path) as f: data = json.load(f) return data # In[4]: def reformat_json(json_obj): json_dict = {} for key, value in json_obj: json_dict[key] = value return json_dict # In[5]: def set_values(df_row): try: if pd.notnull(df_row[lang]) and len(str(df_row[lang]).strip()) != 0: df_row['value'] = df_row[lang] except: print(df_row[lang]) return df_row # In[6]: def set_variables(df_row): for value in allowed_values: try: if pd.notna(df_row[value]): df_row[lang] = df_row[lang].replace('<'+ value + '>', df_row[value]) df_row['English value'] = df_row['English value'].replace('<'+ value + '>', df_row[value]) except: pass try: if pd.notna(df_row['a-tag-replacement']): start_index = df_row[lang].find('<a')+2 end_index = df_row[lang].find('>') df_row[lang] = df_row[lang][:start_index] + df_row['a-tag-replacement'] + df_row[lang][end_index:] df_row['English value'] = df_row['English value'][:start_index] + df_row['a-tag-replacement'] + df_row['English value'][end_index:] except: pass return df_row # In[7]: def write_df_to_json(df, output_json_path): jsonFile = df.to_json(orient='values') json_string = json.loads(jsonFile) reformatted_json = reformat_json(json_string) with open(output_json_path, 'w') as f: f.write(json.dumps(reformatted_json, indent = 4, ensure_ascii=False)) # In[8]: def get_matched_count(excel_df, merged_df): count = 0 for key in excel_df['Key']: for k_key in merged_df['Key']: if key == k_key: count+=1 break return count # In[9]: def read_excel_as_df(file, language_name): excel = pd.ExcelFile(file) for sheet_name in excel.sheet_names: sheet = excel.parse(sheet_name = sheet_name, header=0) if(len(sheet.columns) == 0): continue return sheet return pd.DataFrame([], columns=[english_col, language_name]) # In[10]: def clean_json_df(df): out_df = df.copy() out_df_dropped = out_df.drop_duplicates(subset=['Key'], keep='first') return out_df # In[11]: def clean_read_excel_df(df, language_name): FORMAT = [english_col,language_name] for value in allowed_values: if value in df.columns: FORMAT.append(value) filtered_sheet = df[FORMAT] sheet_no_na = filtered_sheet.dropna(subset = [english_col], inplace=False) sheet_new = sheet_no_na.rename(columns = {english_col: 'English value'}, inplace=False) return sheet_new # In[12]: def clean_excel_df(df, language_name): excel_df = df.copy() try: for i, row in excel_df.iterrows(): if pd.notna(row[language_name]): row[language_name] = str(row[language_name]).strip() except: pass excel_df = excel_df.drop_duplicates(subset=['English value'], keep='last') return excel_df # In[13]: def read_excels_as_df(translation_excel_files, language_code, language_name): excel_df = pd.DataFrame([], columns=[english_col, language_name]) for excel_file_name in translation_excel_files: excel = pd.ExcelFile(excel_file_name) for sheet_name in excel.sheet_names: sheet = excel.parse(sheet_name = sheet_name, header=0) if(len(sheet.columns) == 0): continue excel_df =
pd.concat([excel_df, sheet], axis=0)
pandas.concat
import os import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split from catboost import Pool from catboost import CatBoostClassifier import scipy.io.wavfile as wavfile import python_speech_features.base as speech class pohui: def __init__(self): if not os.path.exists('data/ours.csv'): raise Exception("No base data to train on (data/ours.csv missing)") if not os.path.exists('data/random.csv'): raise Exception("No base data to train on (data/random.csv missing)") self.ourdata = pd.read_csv('data/ours.csv') self.ourdata = self.ourdata.sample(frac=1) randoms =
pd.read_csv('data/random.csv')
pandas.read_csv
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import os, sys from scipy.spatial import distance from scipy.cluster import hierarchy from scipy import stats import matplotlib.patches as mpatches import io import base64 import random from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn import metrics, cluster from sklearn import neighbors import plotly.plotly as py import plotly.graph_objs as go import plotly import umap, numba #sns.set_style("white") metadata_in_dropdown = ['experiment', 'strain', 'cluster'] muted = {name: 'rgba(' + str(a) + ', ' + str(b) + ', ' + str(c) + ')' for name, (a, b, c) \ in zip(['blue', 'green', 'red', 'purple', 'yellow', 'cyan'], sns.color_palette("muted"))} def cluster_heatmap(data_df, feature_name_dict, categorical_df, categories, k_cluster=None, method='ward', metric='euclidean', row_method=None, row_metric=None, row_cluster=True, pairwise_complete_obs=True, n_pca=None, caterogy_color_l=0.65, caterogy_color_s=0.65, color_seed=0, figsize=(30,15), fontsize=(24, 20, 15), plot_x_labels=True, legend=True, mask=None, **kwargs): '''draw heatmap with hierachical clustering for all cells using Seaborn.''' np.all(data_df.index == categorical_df.index) if row_method is None: row_method = method if row_metric is None: row_metric = metric if pairwise_complete_obs and metric == 'correlation': # use pandas corr() data_scaled = (data_df - data_df.mean()) / data_df.std(ddof=0) dist_corr_obs = distance.squareform(1 - data_scaled.T.corr()) # pairwise complete (allow na) dist_corr_features = distance.squareform(1 - data_scaled.corr()) # pairwise complete (allow na) data_scaled = data_scaled.values row_linkage = hierarchy.linkage(dist_corr_features, method=row_method, metric=row_metric) col_linkage = hierarchy.linkage(dist_corr_obs, method=method, metric=metric) else: scaler = preprocessing.StandardScaler().fit(data_df) data_scaled = scaler.transform(data_df) data_scaled_obs = data_scaled dist_corr_features = data_scaled.T if not n_pca is None: pca = PCA(n_components = None) pca.fit(data_scaled) data_pca = pca.transform(data_scaled) print(pca.explained_variance_ratio_.cumsum()) data_scaled_obs = data_pca[:, :n_pca] row_linkage = hierarchy.linkage(dist_corr_features, method=row_method, metric=row_metric) col_linkage = hierarchy.linkage(data_scaled_obs, method=method, metric=metric) scaled_df = pd.DataFrame(data_scaled, columns=[feature_name_dict.get(x, x) for x in data_df.columns], index=data_df.index).T categorical_all = [] hclust_labels = None for feature in categories: if feature == 'cluster': if k_cluster is None: raise ValueError('k_cluster not provided.') hclust_labels = hierarchy.fcluster(col_linkage, k_cluster, criterion='maxclust') hclust_labels = pd.Series(hclust_labels, name='cluster', index=data_df.index) categorical_all.append(hclust_labels) else: categorical_all.append(categorical_df[feature]) if isinstance(caterogy_color_l, float): caterogy_color_l = [caterogy_color_l] * len(categorical_all) if isinstance(caterogy_color_s, float): caterogy_color_s = [caterogy_color_s] * len(categorical_all) # this may break if the inputs are not float or lists of the correct length cat, luts = list(zip(*[categorical_color_mapping(x, l=l, s=s, seed=color_seed) for x, l, s in zip(categorical_all, caterogy_color_l, caterogy_color_s)])) g = sns.clustermap(scaled_df, center=0, row_linkage=row_linkage, col_linkage=col_linkage, row_cluster=row_cluster, mask=mask, col_colors = pd.DataFrame(list(cat)).T, figsize=figsize, cmap='RdBu_r', **kwargs) _ = plt.setp(g.ax_heatmap.get_yticklabels(), rotation=0, fontsize=fontsize[0]) _ = plt.setp(g.ax_col_colors.get_yticklabels(), rotation=0, fontsize=fontsize[1]) g.ax_heatmap.set_xlabel("") if plot_x_labels: _ = plt.setp(g.ax_heatmap.get_xticklabels(), rotation=90, fontsize = fontsize[2]) last_anchor = -0.25 else: g.ax_heatmap.set_xticklabels([]) last_anchor = -0.05 if legend: for i, (lut, legend_name) in enumerate(zip(luts, categories)): legend_patches = [] legend_list = [(k, v) for k, v in lut.items()] legend_list = sorted(legend_list, key=lambda x: x[0]) for k, v in legend_list: legend_patches.append(mpatches.Patch(color=v, label=k)) avg_legend_len = np.mean([len(x) if isinstance(x, str) else 1 for x in lut.keys()]) ncol = int(figsize[0] * 3 / max(avg_legend_len, 10)) last_anchor -= 0.05 * (int((len(lut)-1)/ncol)+1+1) if i != len(luts) - 1: legend = g.ax_heatmap.legend(handles=legend_patches, fontsize=20, loc='lower center', bbox_to_anchor=[0.5, last_anchor], ncol=ncol, title=legend_name.title()) legend.get_title().set_fontsize(24) legend = g.ax_heatmap.add_artist(legend) else: legend = g.ax_heatmap.legend(handles=legend_patches, fontsize=20, loc='lower center', bbox_to_anchor=[0.5, last_anchor], ncol=ncol, title=legend_name.title()) legend.get_title().set_fontsize(24) return g, hclust_labels def run_pca(data_df): scaler = preprocessing.StandardScaler().fit(data_df) data_scaled = scaler.transform(data_df) pca = PCA(n_components = None) pca.fit(data_scaled) data_pca = pca.transform(data_scaled) return pca, data_pca, data_scaled def categorical_color_mapping(data, l=0.7, s=0.7, seed=0): categories = np.unique(data) colors = sns.hls_palette(len(categories), l=l, s=s) random.seed(seed) colors = random.sample(colors, len(colors), ) lut = dict(zip(categories, colors)) cat_color_mapping = data.map(lut) return cat_color_mapping, lut def byte_encode_img(fig): '''save the figure into memory buffer and byte encode it for html.''' buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) encoded_heatmap = base64.b64encode(buf.getvalue()) buf.close() # use decoded png on html decoded_heatmap = 'data:image/png;base64,{}'.format(encoded_heatmap.decode()) return decoded_heatmap def silhouette_plot(X_data, k_range=[5], method='ward', metric='euclidean', pairwise_complete_obs=True, n_pca=None): if metric == 'precomputed': dist = distance.squareform(X_data) else: if pairwise_complete_obs and metric == 'correlation': # use pandas corr() data_scaled = (X_data - X_data.mean()) / X_data.std(ddof=0) dist = distance.squareform(1 - data_scaled.T.corr()) # pairwise complete (allow na) else: scaler = preprocessing.StandardScaler().fit(X_data) data_scaled = scaler.transform(X_data) if not method == 'kmeans': if metric == 'precomputed' or (pairwise_complete_obs and metric == 'correlation'): linkage = hierarchy.linkage(dist, method=method, metric=metric) else: data_scaled_obs = data_scaled if not n_pca is None: pca = PCA(n_components = None) pca.fit(data_scaled) data_pca = pca.transform(data_scaled) print(pca.explained_variance_ratio_.cumsum()) data_scaled_obs = data_pca[:, :n_pca] linkage = hierarchy.linkage(data_scaled_obs, method=method, metric=metric) fig, axes = plt.subplots(1, len(k_range), figsize=(5*len(k_range),5)) for i, n_clusters in enumerate(k_range): ax = axes[i] if method == 'kmeans': clusterer = cluster.KMeans(n_clusters=n_clusters, random_state=0) cluster_labels = clusterer.fit_predict(data_scaled) else: cluster_labels = hierarchy.fcluster(linkage, n_clusters, criterion='maxclust') cluster_labels =
pd.Series(cluster_labels, name='cluster', index=X_data.index)
pandas.Series
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd import pandas.util.testing as pdt import qiime2 from q2_taxa import collapse, filter_table, filter_seqs class CollapseTests(unittest.TestCase): def assert_index_equal(self, a, b): # this method is derived from scikit-bio 0.5.1 pdt.assert_index_equal(a, b, exact=True, check_names=True, check_exact=True) def assert_data_frame_almost_equal(self, left, right): # this method is derived from scikit-bio 0.5.1 pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) self.assert_index_equal(left.index, right.index) def test_collapse(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;c', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_missing_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;__', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_bad_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) with self.assertRaisesRegex(ValueError, 'of 42 is larger'): collapse(table, taxonomy, 42) with self.assertRaisesRegex(ValueError, 'of 0 is too low'): collapse(table, taxonomy, 0) def test_collapse_missing_table_ids_in_taxonomy(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat3']) with self.assertRaisesRegex(ValueError, 'missing.*feat2'): collapse(table, taxonomy, 1) class FilterTable(unittest.TestCase): def test_filter_no_filters(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_table(table, taxonomy) def test_alt_delimiter(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_table(table, taxonomy, include='<EMAIL>', query_delimiter='@peanut@') pdt.assert_frame_equal(obs, table, check_like=True) # exclude with delimiter obs = filter_table(table, taxonomy, exclude='<EMAIL>', query_delimiter='@peanut@') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_filter_table_unknown_mode(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_table(table, taxonomy, include='bb', mode='not-a-mode') def test_filter_table_include(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, include='cc,ee') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='dd') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut!') def test_filter_table_include_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='bb', mode='exact') def test_filter_table_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='ab') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, exclude='xx') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='dd') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb') def test_filter_table_exclude_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='peanut!', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_table_include_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa', exclude='peanut!') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only - feat2 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - feat2 dropped at inclusion step obs = filter_table(table, taxonomy, include='cc', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at inclusion step obs = filter_table(table, taxonomy, include='ee', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features - all dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='aa', exclude='bb', mode='exact') # keep no features - one dropped at inclusion, one dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='cc', exclude='cc', mode='exact') # keep no features - all dropped at inclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut', exclude='bb', mode='exact') def test_filter_table_underscores_escaped(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep feat1 only - underscore not treated as a wild card obs = filter_table(table, taxonomy, include='cc,d_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - underscore in query matches underscore in # taxonomy annotation taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; c_', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) obs = filter_table(table, taxonomy, include='c_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_all_features_with_frequency_greater_than_zero_get_filtered(self): table = pd.DataFrame([[2.0, 0.0], [1.0, 0.0], [9.0, 0.0], [1.0, 0.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # empty - feat2, which is matched by the include term, has a frequency # of zero in all samples, so all samples end up dropped from the table with self.assertRaisesRegex(ValueError, expected_regex='greater than zero'): filter_table(table, taxonomy, include='dd') def test_extra_taxon_ignored(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee', 'aa; bb; cc'], index=pd.Index(['feat1', 'feat2', 'feat3'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) def test_missing_taxon_errors(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc'], index=pd.Index(['feat1'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, expected_regex='All.*feat2'): filter_table(table, taxonomy, include='bb') class FilterSeqs(unittest.TestCase): def test_filter_no_filters(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_seqs(seqs, taxonomy) def test_alt_delimiter(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_seqs(seqs, taxonomy, include='cc<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # exclude with delimiter obs = filter_seqs(seqs, taxonomy, exclude='ww<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) def test_filter_seqs_unknown_mode(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_seqs(seqs, taxonomy, include='bb', mode='not-a-mode') def test_filter_seqs_include(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='bb') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='cc,ee') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, include='cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, include='dd') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='peanut!') def test_filter_seqs_include_exact_match(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='bb', mode='exact') def test_filter_seqs_exclude(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, exclude='ab') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='xx') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, exclude='dd') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='dd ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, exclude='cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa; bb') def test_filter_seqs_exclude_exact_match(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, exclude='peanut!', mode='exact') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_seqs_include_exclude(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='aa', exclude='peanut!') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only - feat2 dropped at exclusion step obs = filter_seqs(seqs, taxonomy, include='aa', exclude='ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only - feat2 dropped at inclusion step obs = filter_seqs(seqs, taxonomy, include='cc', exclude='ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only - feat1 dropped at exclusion step obs = filter_seqs(seqs, taxonomy, include='aa', exclude='cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only - feat1 dropped at inclusion step obs = filter_seqs(seqs, taxonomy, include='ee', exclude='cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features - all dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='aa', exclude='bb', mode='exact') # keep no features - one dropped at inclusion, one dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='cc', exclude='cc', mode='exact') # keep no features - all dropped at inclusion with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='peanut', exclude='bb', mode='exact') def test_filter_seqs_underscores_escaped(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=
pd.Index(['feat1', 'feat2'], name='id')
pandas.Index
import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import matplotlib.pyplot as plt import random import seaborn as sns import gc import calendar import pickle import os from sklearn.preprocessing import StandardScaler from os.path import join from sklearn.metrics import confusion_matrix from IPython.display import clear_output, Image, display, HTML from datetime import datetime from IPython.display import display plt.style.use('fivethirtyeight') pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.options.display.float_format = '{:.4f}'.format def missing_data(data): total = data.isnull().sum() percent = (data.isnull().sum()/data.isnull().count()*100) tt = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) types = [] for col in data.columns: dtype = str(data[col].dtype) types.append(dtype) tt['Types'] = types return(np.transpose(tt)) ####################################################################### def read_Df(Path,name="data",format='pickle'): reader=eval("pd.read_"+format) data=reader(Path) print(name) display(data_characterization(data)) return data ######################################################################### def data_characterization(data): print("shape of data : "+str(data.shape)) data_characterization=pd.DataFrame() columns=data.columns Type=[] Count=[] unique_values=[] Max=[] Min=[] Mean=[] Nan_counts=data.isnull().sum().tolist() Nan_ratio=(data.isnull().sum()/len(data)).values Type=data.dtypes.tolist() J=0 for i in columns : unique=list(data[i].unique()) unique_values.append(unique) Count.append(len(unique)) if (data[i].dtypes.name == 'object') : Max.append(0) Min.append(0) Mean.append(0) elif ( (data[i].dtypes == '<M8[ns]') ) : Max.append(0) Min.append(0) Mean.append(0) elif ( (data[i].dtype.name=="category") ) : Max.append(0) Min.append(0) Mean.append(0) else : Max.append(data[i].max()) Min.append(data[i].min()) Mean.append(data[i].mean()) data_characterization["Columns name"]=columns data_characterization["Type "]=data.dtypes.tolist() data_characterization["Count unique values"]=Count data_characterization["Count Nan values"]=Nan_counts data_characterization["Ratio Nan values"]=Nan_ratio data_characterization["Unique values"]=unique_values data_characterization["Max"]=Max data_characterization["Min"]=Min data_characterization["Mean"]=Mean display(data_characterization) return None ######################################################################### def Label_encoder(data): data_new=data.copy() categoria_features=data_new.columns[data.dtypes == 'object'] labels={} for col in categoria_features : fact=data_new[col].factorize() data_new[col]= fact[0] labels[col]=fact[1] return data_new ,labels ################################################################################# def visualisation_data(data,labels): for i in data.columns : data[i].plot.hist(bins=60) plt.title(i) if i in labels.keys(): plt.xticks(np.arange(len(labels[i])), labels[i].tolist(), rotation=90) plt.show() ################################################################################### def correlation_matrix_color_bar(df): fig = plt.figure() fig.set_size_inches(18.5, 10.5) ax1 = fig.add_subplot(111) cmap = cm.get_cmap('jet', 30) cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) ax1.grid(True) plt.title('Abalone Feature Correlation') labels=df.columns.tolist() ax1.set_xticklabels(labels,fontsize=20) ax1.set_yticklabels(labels,fontsize=20) # Add colorbar, make sure to specify tick locations to match desired ticklabels fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) plt.show() def correlation_matrix_pandas(data): def magnify(): return [dict(selector="th", props=[("font-size", "9pt")]), dict(selector="td", props=[('padding', "0em 0em")]), dict(selector="th:hover", props=[("font-size", "12pt")]), dict(selector="tr:hover td:hover", props=[('max-width', '200px'), ('font-size', '12pt')]) ] corr=data.corr() cmap = cmap=sns.diverging_palette(5, 250, as_cmap=True) return corr.style.background_gradient(cmap, axis=1)\ .set_properties(**{'max-width': '80px', 'font-size': '10pt'})\ .set_caption("Hover to magify")\ .set_precision(2)\ .set_table_styles(magnify()) ########################################################### def xl_date_to_simple_date(excel_date): dt = datetime.fromordinal(datetime(1900, 1, 1).toordinal() + excel_date - 2) # tt = dt.timetuple() return int(dt.strftime('%Y%m%d')) ################################################################### def get_column_ratio(data,column): nbrs_unique_values=data["data"].value_counts() nbrs_unique_values.to_dict() for key in nbrs_unique_values.keys(): print("ratio of "+str(key)+" : " +str(nbrs_unique_values[key]/float(len(data_ano)))) return ################################################################################################ # from sklearn.model_selection import train_test_split # import xgboost as xgb # def get_importance_features(X,Y): # X_train, X_val, y_train, y_val = train_test_split(X, Y, test_size=0.2, random_state=1994 ) # dtrain = xgb.DMatrix(X_train, y_train,feature_names=X.columns.values) # dval = xgb.DMatrix(X_val, y_val,feature_names=X.columns.values) # xgb_params = { # 'eta': 0.1, # 'max_depth': 25, # 'subsample': 0.9, # 'colsample_bytree': 0.9, # 'objective': 'binary:logistic', # 'seed' : 10, # 'shuffle': True, # 'silent':1 , # 'n_jobs':-1 # } # # watchlist = [(dtrain, 'train'), (dval, 'test')] # model = xgb.train(xgb_params,dtrain,num_boost_round=50) # xgb.plot_importance(model, height=0.5) # plt.show() # return model ######################################################################################## # def strip_consts(graph_def, max_const_size=32): # """Strip large constant values from graph_def.""" # strip_def = tf.GraphDef() # for n0 in graph_def.node: # n = strip_def.node.add() # n.MergeFrom(n0) # if n.op == 'Const': # tensor = n.attr['value'].tensor # size = len(tensor.tensor_content) # if size > max_const_size: # tensor.tensor_content = "<stripped %d bytes>"%size # return strip_def # def show_graph(graph_def, max_const_size=32): # """Visualize TensorFlow graph.""" # if hasattr(graph_def, 'as_graph_def'): # graph_def = graph_def.as_graph_def() # strip_def = strip_consts(graph_def, max_const_size=max_const_size) # code = """ # <script> # function load() {{ # document.getElementById("{id}").pbtxt = {data}; # }} # </script> # <link rel="import" href="https://tensorboard.appspot.com/tf-graph-basic.build.html" onload=load()> # <div style="height:600px"> # <tf-graph-basic id="{id}"></tf-graph-basic> # </div> # """.format(data=repr(str(strip_def)), id='graph'+str(np.random.rand())) # iframe = """ # <iframe seamless style="width:1200px;height:620px;border:0" srcdoc="{}"></iframe> # """.format(code.replace('"', '&quot;')) # display(HTML(iframe)) # def factorize_features(catgo_features,list_data): # for c in catgo_features: # raw_vals = np.unique(list_data[0][c]) # val_map = {} # for i in range(len(raw_vals)): # val_map[raw_vals[i]] = i # for data in list_data : # data[c]=data[c].map(val_map) # return list_data def StandardScaler_features(features_to_standar,data): scaler = StandardScaler() for c in features_to_standar: data[c]=scaler.fit_transform(data[c].values.reshape((-1,1))) return data def StandardMax_features(features_to_standar,data): for c in features_to_standar: data[c]=data[c]/float(data[c].max()) return data def week_of_month(tgtdate): tgtdate = tgtdate.to_datetime() days_this_month = calendar.mdays[tgtdate.month] for i in range(1, days_this_month): d = datetime.datetime(tgtdate.year, tgtdate.month, i) if d.day - d.weekday() > 0: startdate = d break # now we canuse the modulo 7 appraoch return (tgtdate - startdate).days //7 + 1 def confusion_matrix_plot(y_true,y_pred,classs) : conf_arr=confusion_matrix(y_true,y_pred) norm_conf = [] for i in conf_arr: a = 0 tmp_arr = [] a = sum(i, 0) for j in i: tmp_arr.append(float(j)/float(a)) norm_conf.append(tmp_arr) fig=plt.figure(figsize = (10,7)) plt.clf() ax = fig.add_subplot(111) ax.set_title("Confusion Matrix") # ax.set_aspect(1) res = ax.imshow(np.array(norm_conf), cmap=plt.cm.Blues, interpolation='nearest') width, height = conf_arr.shape for x in range(width): for y in range(height): ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment='center', verticalalignment='center', size=25) cb = fig.colorbar(res) alphabet = classs plt.xticks(range(width), alphabet[:width]) plt.yticks(range(height), alphabet[:height]) plt.savefig('confusion_matrix.png', format='png') plt.show() return def info(object, spacing=5, collapse=1): """Print methods and doc strings. Takes module, class, list, dictionary, or string.""" methodList = [method for method in dir(object) if callable(getattr(object, method))] processFunc = collapse and (lambda s: " ".join(s.split())) or (lambda s: s) print( "\n".join(["%s %s" % (method.ljust(spacing), processFunc(str(getattr(object, method).__doc__))) for method in methodList])) def Save_df(data,path): data.to_pickle(path) print("DF was saved in :"+str(path)) import multiprocessing def _apply_df(args): dfs, func = args return func(dfs) def apply(df, func,workers): print("is working") pool = multiprocessing.Pool(processes=workers,maxtasksperchild=500) result = pool.map(_apply_df, [(d, func) for d in df ]) pool.close() return result def get_List_from_group(df): L=list(df) a=[data[1] for data in L] return a def multithreading(df,func ,workers=40): print("create list of DataFrame") L=get_List_from_group(df) result=apply(L,func ,workers) del L return result # def factorize_features(catgo_features,data): # dict_map={} # for c in catgo_features: # raw_vals = np.unique(data[c]) # val_map = {} # for i in range(len(raw_vals)): # val_map[raw_vals[i]] = i # data[c]=data[c].map(val_map) # dict_map[c]=val_map # return data ,dict_map def save_pickle(data , file_name): with open(file_name,"wb") as fil : pickle.dump(data,fil) def read_pickle(file_name): with open(file_name,"rb") as fil : return pickle.load(fil) def Create_year_woy_column(Data,Date_name,name=""): Data["date"]=pd.to_datetime(Data[Date_name],format="%Y%m%d") Data["year_woy"+name]= Data["date"].dt.year*100+ Data["date"].dt.weekofyear del Data["date"] ############################ Noramization ########################################################"" def Quantile_Transformer(Data,columns=None,train_test=True,random_state=1994): from sklearn.preprocessing import QuantileTransformer qt=QuantileTransformer(output_distribution="normal", random_state=0,subsample =len(Data[0])) if train_test : qt_fit=qt.fit(
pd.concat(Data,axis=0)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.split('_', expand=False) tm.assert_series_equal(result, exp) # regex split values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.split('[,_]') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) def test_rsplit(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.rsplit('__') tm.assert_series_equal(result, exp) result = values.str.rsplit('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.rsplit('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.rsplit('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]]) tm.assert_series_equal(result, exp) result = values.str.rsplit('_', expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series([u('a,b_c'), u('c_d,e'), NA, u('f,g,h')]) result = values.str.rsplit('[,_]') exp = Series([[u('a,b_c')], [u('c_d,e')], NA, [u('f,g,h')]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.rsplit('_', n=1) exp = Series([['a_b', 'c'], ['c_d', 'e'], NA, ['f_g', 'h']]) tm.assert_series_equal(result, exp) def test_split_noargs(self): # #1859 s = Series(['<NAME>', '<NAME>']) result = s.str.split() expected = ['Travis', 'Oliphant'] assert result[1] == expected result = s.str.rsplit() assert result[1] == expected def test_split_maxsplit(self): # re.split 0, str.split -1 s = Series(['bd asdf jfg', 'kjasdflqw asdfnfk']) result = s.str.split(n=-1) xp = s.str.split() tm.assert_series_equal(result, xp) result = s.str.split(n=0) tm.assert_series_equal(result, xp) xp = s.str.split('asdf') result = s.str.split('asdf', n=0) tm.assert_series_equal(result, xp) result = s.str.split('asdf', n=-1) tm.assert_series_equal(result, xp) def test_split_no_pat_with_nonzero_n(self): s = Series(['split once', 'split once too!']) result = s.str.split(n=1) expected = Series({0: ['split', 'once'], 1: ['split', 'once too!']}) tm.assert_series_equal(expected, result, check_index_type=False) def test_split_to_dataframe(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.split('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_unequal_splits', 'one_of_these_things_is_not']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'one'], 1: ['unequal', 'of'], 2: ['splits', 'these'], 3: [NA, 'things'], 4: [NA, 'is'], 5: [NA, 'not']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.split('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) with tm.assert_raises_regex(ValueError, "expand must be"): s.str.split('_', expand="not_a_boolean") def test_split_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.split('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_unequal_splits', 'one_of_these_things_is_not']) result = idx.str.split('_', expand=True) exp = MultiIndex.from_tuples([('some', 'unequal', 'splits', NA, NA, NA ), ('one', 'of', 'these', 'things', 'is', 'not')]) tm.assert_index_equal(result, exp) assert result.nlevels == 6 with tm.assert_raises_regex(ValueError, "expand must be"): idx.str.split('_', expand="not_a_boolean") def test_rsplit_to_dataframe_expand(self): s = Series(['nosplit', 'alsonosplit']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: Series(['nosplit', 'alsonosplit'])}) tm.assert_frame_equal(result, exp) s = Series(['some_equal_splits', 'with_no_nans']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=2) exp = DataFrame({0: ['some', 'with'], 1: ['equal', 'no'], 2: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) result = s.str.rsplit('_', expand=True, n=1) exp = DataFrame({0: ['some_equal', 'with_no'], 1: ['splits', 'nans']}) tm.assert_frame_equal(result, exp) s = Series(['some_splits', 'with_index'], index=['preserve', 'me']) result = s.str.rsplit('_', expand=True) exp = DataFrame({0: ['some', 'with'], 1: ['splits', 'index']}, index=['preserve', 'me']) tm.assert_frame_equal(result, exp) def test_rsplit_to_multiindex_expand(self): idx = Index(['nosplit', 'alsonosplit']) result = idx.str.rsplit('_', expand=True) exp = idx tm.assert_index_equal(result, exp) assert result.nlevels == 1 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True) exp = MultiIndex.from_tuples([('some', 'equal', 'splits'), ( 'with', 'no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 3 idx = Index(['some_equal_splits', 'with_no_nans']) result = idx.str.rsplit('_', expand=True, n=1) exp = MultiIndex.from_tuples([('some_equal', 'splits'), ('with_no', 'nans')]) tm.assert_index_equal(result, exp) assert result.nlevels == 2 def test_split_nan_expand(self): # gh-18450 s = Series(["foo,bar,baz", NA]) result = s.str.split(",", expand=True) exp = DataFrame([["foo", "bar", "baz"], [NA, NA, NA]]) tm.assert_frame_equal(result, exp) # check that these are actually np.nan and not None # TODO see GH 18463 # tm.assert_frame_equal does not differentiate assert all(np.isnan(x) for x in result.iloc[1]) def test_split_with_name(self): # GH 12617 # should preserve name s = Series(['a,b', 'c,d'], name='xxx') res = s.str.split(',') exp = Series([['a', 'b'], ['c', 'd']], name='xxx') tm.assert_series_equal(res, exp) res = s.str.split(',', expand=True) exp = DataFrame([['a', 'b'], ['c', 'd']]) tm.assert_frame_equal(res, exp) idx = Index(['a,b', 'c,d'], name='xxx') res = idx.str.split(',') exp = Index([['a', 'b'], ['c', 'd']], name='xxx') assert res.nlevels == 1 tm.assert_index_equal(res, exp) res = idx.str.split(',', expand=True) exp = MultiIndex.from_tuples([('a', 'b'), ('c', 'd')]) assert res.nlevels == 2 tm.assert_index_equal(res, exp) def test_partition_series(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([('a', '_', 'b_c'), ('c', '_', 'd_e'), NA, ('f', '_', 'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('a_b', '_', 'c'), ('c_d', '_', 'e'), NA, ('f_g', '_', 'h')]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.partition('__', expand=False) exp = Series([('a', '__', 'b__c'), ('c', '__', 'd__e'), NA, ('f', '__', 'g__h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('__', expand=False) exp = Series([('a__b', '__', 'c'), ('c__d', '__', 'e'), NA, ('f__g', '__', 'h')]) tm.assert_series_equal(result, exp) # None values = Series(['a b c', 'c d e', NA, 'f g h']) result = values.str.partition(expand=False) exp = Series([('a', ' ', 'b c'), ('c', ' ', 'd e'), NA, ('f', ' ', 'g h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition(expand=False) exp = Series([('a b', ' ', 'c'), ('c d', ' ', 'e'), NA, ('f g', ' ', 'h')]) tm.assert_series_equal(result, exp) # Not splited values = Series(['abc', 'cde', NA, 'fgh']) result = values.str.partition('_', expand=False) exp = Series([('abc', '', ''), ('cde', '', ''), NA, ('fgh', '', '')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([('', '', 'abc'), ('', '', 'cde'), NA, ('', '', 'fgh')]) tm.assert_series_equal(result, exp) # unicode values = Series([u'a_b_c', u'c_d_e', NA, u'f_g_h']) result = values.str.partition('_', expand=False) exp = Series([(u'a', u'_', u'b_c'), (u'c', u'_', u'd_e'), NA, (u'f', u'_', u'g_h')]) tm.assert_series_equal(result, exp) result = values.str.rpartition('_', expand=False) exp = Series([(u'a_b', u'_', u'c'), (u'c_d', u'_', u'e'), NA, (u'f_g', u'_', u'h')]) tm.assert_series_equal(result, exp) # compare to standard lib values =
Series(['A_B_C', 'B_C_D', 'E_F_G', 'EFGHEF'])
pandas.Series
#Library of functions called by SimpleBuildingEngine import pandas as pd import numpy as np def WALLS(Btest=None): #Building height h_building = 2.7#[m] h_m_building = h_building / 2 h_cl = 2.7# heigth of a storey #number of walls n_walls = 7 A_fl = 48 #WALLS CHARACTERISTICS #Orientation ori = pd.Series([('S'), ('W'), ('N'), ('E'), ('R'), ('F'), ('C')]) #Surface azimuth surf_az = pd.Series([0, 90, 180 - 90, 0, 0, 0]) #Slopes (90:vertical; 0:horizontal) slope = pd.Series([90, 90, 90, 90, 0, 0, 0]) #Masks f_low_diff = pd.Series([1, 1, 1, 1, 1, 1, 1]) f_low_dir = pd.Series([1, 1, 1, 1, 1, 1, 1]) #U VALUES U_hopw = pd.Series([0.5144, 0.5144, 0.5144, 0.5144, 0.3177, 0, 0]) U_lopw = pd.Series([3, 3, 3, 3, 3, 3, 3]) U_fr = pd.Series([2.4, 2.4, 2.4, 2.4, 2.4, 2.4, 2.4]) U_gl = pd.Series([3, 3, 3, 3, 3, 3, 3]) if (Btest == 195 or Btest == 395): #SURFACES #Heavy Opaque walls A_hopw = pd.Series([21.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) elif (Btest == 200 or Btest == 210 or Btest == 230 or Btest == 240 or Btest == 250 or Btest == 400 or Btest == 410 or Btest == 420 or Btest == 430 or Btest == 800): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([12, 0, 0, 0, 0, 0, 0]) elif (Btest == 270 or Btest == 320 or Btest == 600 or Btest == 640 or Btest == 650 or Btest == 810 or Btest == 900 or Btest == 940 or Btest == 950 or Btest == 6001 or Btest == 9001 or Btest == 6501 or Btest == 9501): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([12, 0, 0, 0, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) elif (Btest == 300 or Btest == 620 or Btest == 920): #Heavy Opaque walls A_hopw = pd.Series([9.6, 16.2, 21.6, 16.2, 48, 48, 48]) #Windows A_wd = pd.Series([0, 6, 0, 6, 0, 0, 0]) #Frame FWR = pd.Series([0, 0, 0, 0, 0, 0, 0]) A_fr = FWR * A_wd #Glazing A_gl = A_wd - A_fr #Light Opaque walls A_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Total A_hopw_t = A_hopw.sum() A_wd_t = A_wd.sum() A_fr_t = A_fr.sum() A_lopw_t = A_lopw.sum() A_gl_t = max(0, A_wd_t - A_fr_t) A_t = A_hopw_t + A_lopw_t + A_wd_t + A_fr_t #CAPACITIES if (Btest == 800 or Btest == 900 or Btest == 920 or Btest == 940 or Btest == 950 or Btest == 9001 or Btest == 9501): C_hopw = ([145154, 145154, 145154, 145154, 18170, 112121, 0]) C_lopw = ([0, 0, 0, 0, 0, 0, 0]) else: C_hopw = ([14534, 14534, 14534, 14534, 18170, 19620, 0]) C_lopw = ([0, 0, 0, 0, 0, 0, 0]) C_m = sum((A_lopw * C_lopw + A_hopw * C_hopw)) #Effective mass area [m^2] A_m = C_m ** 2 / sum((A_lopw * np.exp2(C_lopw) + A_hopw * np.exp2(C_hopw))) return n_walls, f_low_diff, f_low_dir, ori, surf_az, slope, A_t, A_fl, A_lopw_t, A_hopw_t, A_gl_t, A_fr_t, A_lopw,\ A_hopw, A_gl, h_cl, C_m, A_m, U_hopw, U_lopw, U_fr, U_gl def w_t_RH(p_atm=None, t=None, RH=None): from math import exp #Humidity ratio as function of drybulb temperature and humidity ratio p_w_s = exp((17.438 * t / (239.78 + t)) + 6.4147)#partial pressure of saturated water vapor p_w = RH * p_w_s w = (p_w * 0.62198) / (p_atm - p_w) return w def ZENITHANG(Lat=None, Long=None, Long_st=None, n=None, h=None): from math import pi,cos,sin,acos from numpy import fix #ZENITH ANGLE #Ref: Duffie,J.A.,<NAME>. 1980. Solar engineering of thermal #processes. 2nd Edition. <NAME> & Sons. #OUTPUTS # -h_sol: Solar time (in hours) # -h_sol_per: Solar time (in hours per day) # -phi: Latitude in radians # -delta: Declination angle in radians # -omega: Hour angle in radians # -theta_z: Zenith angle in radians, i.e. angle of incidence of beam radiation on a horizontal surface #INPUTS # -Lat: Latitude of the location (north positive) -90<Lat<90 # -Long: Longitude of the location (west positive) 0<Long<180 # -Long_st: Longitude of the standard meridian of the time zone # -n: day 1<n<365 # -h: hour 1<h<8760 #Angles in radians% phi = Lat * pi / 180 #Summer time correction (Masy, 2008) epsilon_summer = 1 #Equation of time (minutes) B = (n - 1) * 360 / 365 * pi / 180 E = 229.2 * (0.000075 + 0.001868 * cos(B) - 0.032077 * sin(B) - 0.014615 * cos(2 * B) - 0.04089 * sin(2 * B)) #Solar time (in hours) h_sol = h + (4 * (Long_st - Long) + E) / 60 - epsilon_summer #Solar time (in hours per day) h_sol_per_1 = h_sol - 24 * fix(h_sol / 24) if h_sol_per_1 <= 1E-6: h_sol_per = 24 else: h_sol_per = h_sol_per_1 #Declination (angular position of the sun at solar noon, north positive) #-23.45<delta<23.45 delta = 23.45 * sin(360 * (284 + n) / 365 * pi / 180) * pi / 180#(daily basis, Cooper in Duffie & Beckmann) #Hour angle (morning negative, afternoon positive) omega = (h_sol_per - 12) * 15 * pi / 180 #Zenith angle (between the vertical and the line to the sun) theta_z = max(1E-5, acos(cos(delta) * cos(phi) * cos(omega) + sin(delta) * sin(phi))) return phi, delta, omega, theta_z, h_sol def CSITH(Lat=None, Long=None, Long_st=None, n=None, h=None): from math import cos,exp #Clear sky solar radiation #OUTPUTS # -I_th_cs: Clear sky theoretical solar radiation (in W/m2) #INPUTS # -Lat: Latitude of the location (north positive) -90<Lat<90 # -Long: Longitude of the location (west positive) 0<Long<180 # -Long_st: Longitude of the standard meridian of the time zone # -n: day 1<n<365 # -h: hour 1<h<8760 #Main angles and solar time for location phi, delta, omega, theta_z, h_sol = ZENITHANG(Lat, Long, Long_st, n, h) #Extraterrestrial radiation G_sc = 1353#W/m2 - Solar constant I_on = G_sc * (1 + 0.033 * cos(360 * (h_sol / 24) / 365))#Normal extraterrestrial radiation #Atmospheric transmittance for beam radiation (altitude = 0m) tau_b = 0.12814 + 0.7568875 * exp(-0.387225 / (cos(theta_z))) #Clear sky beam normal radiation I_cnb = I_on * tau_b #Clear sky horizontal beam radiation I_cb = I_cnb * cos(theta_z) #Atmospheric transmittance for diffuse radiation (altitude = 0m) tau_d = 0.271 - 0.294 * tau_b #Clear sky horizontal diffuse radiation I_cd = I_on * tau_d * cos(theta_z) #Total horizontal clear sky radiation I_th_cs = max(0, (I_cb + I_cd)) #Simplified calculation (G.Masy) I_th_cs2 = max(0, (0.7 * I_on * cos(theta_z))) return I_th_cs,I_th_cs2 def Btest_cases(Btest=None, h=None): if (Btest == 195 or Btest == 200): #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) epsilon_ir_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) epsilon_ir_gl = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 210 or Btest == 220: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 230: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 0 #infiltrations ACH_inf = 1 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) alpha_lopw = pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0]) #Solar Shadings e_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #0=no solar shading; 1=interior solar shadings; 2=exterior solar shadings mode_solshad = pd.Series([1, 1, 1, 1, 1, 0, 0]) #1=manual solar shadings; 2=automatic solar shadings NL_ext_max = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Exterior natural lighting intensity for control of shadings IAC_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Indoor solar Attenuation Coefficient (fraction of SHGC with solar shadings) f_c_solshad = pd.Series([0, 0, 0, 0, 0, 0, 0]) #Convective fraction of solar gains with solar shadings #Ventilation V_dot_vent = 0 elif Btest == 240: #set points T_i_set_h = 20 T_i_set_c = 20 #internal gain Q_dot_appl = 200 #infiltrations ACH_inf = 0 #SOLAR PROPERTIES #SHGC SHGC_gl_0 = pd.Series([0.789, 0.789, 0.789, 0.789, 0.789, 0, 0]) #IR emittance epsilon_ir_hopw = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) epsilon_ir_lopw = pd.Series([0, 0, 0, 0, 0, 0, 0]) epsilon_ir_gl = pd.Series([0.9, 0.9, 0.9, 0.9, 0.9, 0, 0]) #Solar absorbance alpha_hopw =
pd.Series([0.1, 0.1, 0.1, 0.1, 0.1, 0, 0])
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # IRM Analysis # This notebook will compare the performance of IRM on an unseen platform's worth of gene expression to that of ERM. These results will be used for the preliminary data section for Aim 2 in my prelim proposal. # # For more information on what IRM and ERM are, read [Invariant Risk Minimization by Arjovsky et al.](https://arxiv.org/abs/1907.02893) # # The EDA code is [here](#EDA), or to skip to the analysis, go [here](#eval) # <a id='eda'></a> # ## Sepsis EDA # # To have a good measure of training performance, ideally we'll have one platform's data held out as a validation set. To see how possible that is, we'll do exploratory data analysis on the sepsis studies in the dataset. # In[1]: import itertools import json import os import sys from pathlib import Path import pandas as pd import sklearn.metrics as metrics import sklearn.preprocessing as preprocessing import torch from plotnine import * from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from whistl import datasets from whistl.datasets import CompendiumDataset from whistl import models from whistl import train from whistl import utils # In[2]: import random import numpy as np torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(42) random.seed(42) # In[3]: curr_path = str(Path('.')) map_file = str(Path('../../data/sample_classifications.pkl')) sample_to_label = utils.parse_map_file(map_file) sample_ids = sample_to_label.keys() metadata_file = str(Path('../../data/all_metadata.json')) metadata_json = json.load(open(metadata_file)) sample_metadata = metadata_json['samples'] sample_ids = utils.filter_invalid_samples(sample_metadata, sample_ids) sample_to_platform = utils.map_sample_to_platform(metadata_json, sample_ids) sample_to_study = utils.map_sample_to_study(metadata_json, sample_ids) # In[4]: compendium_path = str(Path('../../data/subset_compendium.tsv')) compendium_df = datasets.load_compendium_file(compendium_path) compendium_df.head() # In[5]: sepsis_samples = [sample for sample in sample_ids if sample_to_label[sample] == 'sepsis'] sepsis_platforms = [sample_to_platform[sample] for sample in sepsis_samples] sepsis_studies = [sample_to_study[sample] for sample in sepsis_samples] print(len(sepsis_samples)) print(len(sepsis_platforms)) print(len(sepsis_studies)) # In[6]: sepsis_metadata_dict = {'sample': sepsis_samples, 'platform': sepsis_platforms, 'study': sepsis_studies} sepsis_metadata_df = pd.DataFrame(sepsis_metadata_dict) sepsis_metadata_df = sepsis_metadata_df.set_index('sample') sepsis_metadata_df.head() # In[7]: sepsis_metadata_df['platform'].value_counts() # In[8]: sepsis_metadata_df[sepsis_metadata_df['platform'] == 'affymetrix human genome u133a array (hgu133a)'] # In[9]: # Remove platform with only one sample to reduce downstream variance sepsis_metadata_df = sepsis_metadata_df.drop(labels='GSM301847', axis=0) print(len(sepsis_metadata_df.index)) # In[10]: sepsis_metadata_df['study'].value_counts() # <a id='eval'></a> # ## IRM Evaluation # ### Setup # In[11]: curr_path = os.path.dirname(os.path.abspath(os.path.abspath(''))) map_file = str(Path('../../data/sample_classifications.pkl')) sample_to_label = utils.parse_map_file(map_file) metadata_path = str(Path('../../data/all_metadata.json')) compendium_path = str(Path('../../data/subset_compendium.tsv')) # ### More setup # Initialize the model and encoder for the training process # In[12]: classes = ['sepsis', 'healthy'] encoder = preprocessing.LabelEncoder() encoder.fit(classes) # ### Tune split # We will get a rough estimate of performance with leave-one-out cross-validation. To know when to stop training, though, we will need a tuning dataset. # In[13]: tune_df = sepsis_metadata_df[sepsis_metadata_df['platform'] == 'affymetrix human genome u219 array (hgu219)'] train_df = sepsis_metadata_df[sepsis_metadata_df['platform'] != 'affymetrix human genome u219 array (hgu219)'] print(len(tune_df.index)) print(len(train_df.index)) tune_studies = tune_df['study'].unique() tune_dataset = CompendiumDataset(tune_studies, classes, sample_to_label, metadata_path, compendium_path, encoder) tune_loader = DataLoader(tune_dataset, batch_size=1) # ### Filter Platforms # Remove a platform that corresponds to a study present in the labeled data, but not the human compendium # In[14]: platforms = train_df['platform'].unique() platforms = [p for p in platforms if p != 'affymetrix human human exon 1.0 st array (huex10st)' ] num_seeds = 5 # ## Training # # The models are trained with two platforms held out. # One platform (huex10st) is left out in all runs, and is used as a tuning set to determine which version of the model should be saved. # The second platform (referred to going forward as the 'held-out platform') is held out during training, then the trained model's performance is evaluated by trying to predict whether each sample corresponds to sepsis or healthy expression. # In[15]: irm_result_list = [] erm_result_list = [] for hold_out_platform in platforms: train_platforms = train_df[train_df['platform'] != hold_out_platform]['platform'].unique() train_loaders = [] total_irm_samples = 0 for platform in train_platforms: studies = train_df[train_df['platform'] == platform]['study'] train_dataset = CompendiumDataset([platform], classes, sample_to_label, metadata_path, compendium_path, encoder, mode='platform') total_irm_samples += len(train_dataset) if len(train_dataset) > 0: train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True) train_loaders.append(train_loader) platform_file = hold_out_platform.split('(')[-1].strip(')') full_train_studies = train_df[train_df['platform'] != hold_out_platform]['study'].unique() full_train_dataset = CompendiumDataset(train_platforms, classes, sample_to_label, metadata_path, compendium_path, encoder, mode='platform') full_train_loader = DataLoader(full_train_dataset, batch_size=8, shuffle=True) assert total_irm_samples == len(full_train_dataset) for seed in range(num_seeds): np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False net = models.ThreeLayerNet(len(compendium_df.index)) writer_path = Path('./logs/erm_analysis_{}_{}.tfrecord'.format(platform_file, seed)) writer = SummaryWriter(writer_path) save_file = Path('./logs/erm_analysis_{}_{}.pkl'.format(platform_file, seed)) results = train.train_with_erm(net, full_train_loader, tune_loader, num_epochs=400, save_file=save_file, writer=writer) erm_result_list.append(results) net = models.ThreeLayerNet(len(compendium_df.index)) writer_path = Path('./logs/irm_analysis_{}_{}.tfrecord'.format(platform_file, seed)) writer = SummaryWriter(writer_path) save_file = Path('./logs/irm_analysis_{}_{}.pkl'.format(platform_file, seed)) results = train.train_with_irm(net, train_loaders, tune_loader, num_epochs=400, loss_scaling_factor=1, save_file=save_file, writer=writer, burn_in_epochs=0) irm_result_list.append(results) # In[16]: def eval_model(net, loader): all_labels = [] all_preds = [] for batch in loader: expression, labels, ids = batch expression = expression.float().to('cuda') labels = labels.numpy() all_labels.extend(labels) output = net(expression) preds = [1 if p > 0 else 0 for p in output] all_preds.extend(preds) f1 = metrics.f1_score(all_labels, all_preds) return f1 # In[17]: irm_f1_scores = [] erm_f1_scores = [] for hold_out_platform in platforms: for seed in range(num_seeds): # Load data try: hold_out_studies = train_df[train_df['platform'] == hold_out_platform]['study'] hold_out_dataset = CompendiumDataset(hold_out_studies, classes, sample_to_label, metadata_path, compendium_path, encoder) hold_out_loader = DataLoader(hold_out_dataset, batch_size=1, shuffle=False) # Load IRM model platform_file = hold_out_platform.split('(')[-1].strip(')') save_file = Path('./logs/irm_analysis_{}_{}.pkl'.format(platform_file, seed)) net = torch.load(save_file, 'cuda') #Evaluate ERM model f1_score = eval_model(net, hold_out_loader) irm_f1_scores.append(f1_score) # Load ERM model save_file = Path('./logs/erm_analysis_{}_{}.pkl'.format(platform_file, seed)) net = torch.load(save_file, 'cuda') # Evaluate IRM model f1_score = eval_model(net, hold_out_loader) erm_f1_scores.append(f1_score) except FileNotFoundError as e: print(e) # In[18]: print(irm_f1_scores) print(erm_f1_scores) held_out_platform_list = [] for platform in platforms: p = [platform] * 2 * num_seeds held_out_platform_list.extend(p) #print(held_out_platform_list) score_list = list(itertools.chain(*zip(irm_f1_scores, erm_f1_scores))) print(score_list) label_list = (['irm'] + ['erm']) * (len(score_list) // 2) print(label_list) # In[29]: held_out_platform_list = [plat.split('(')[-1].strip(')') for plat in held_out_platform_list] result_dict = {'f1_score': score_list, 'irm/erm': label_list, 'held_out_platform': held_out_platform_list} result_df =
pd.DataFrame(result_dict)
pandas.DataFrame
def test_get_number_rows_cols_for_fig(): from mspypeline.helpers import get_number_rows_cols_for_fig assert get_number_rows_cols_for_fig([1, 1, 1, 1]) == (2, 2) assert get_number_rows_cols_for_fig(4) == (2, 2) def test_fill_dict(): from mspypeline.helpers import fill_dict def test_default_to_regular(): from mspypeline.helpers import default_to_regular from collections import defaultdict d = defaultdict(int) d["a"] += 1 assert isinstance(d, defaultdict) d = default_to_regular(d) assert isinstance(d, dict) assert not isinstance(d, defaultdict) def test_get_analysis_design(): from mspypeline.helpers import get_analysis_design assert get_analysis_design(["A1_1", "A1_2", "A2_1", "A2_2"]) == { 'A1': {'1': 'A1_1', '2': 'A1_2'}, 'A2': {'1': 'A2_1', '2': 'A2_2'} } assert get_analysis_design(["A_1_1"]) == {"A": {"1": {"1": "A_1_1"}}} def test_plot_annotate_line(): from mspypeline.helpers import plot_annotate_line def test_venn_names(): from mspypeline.helpers import venn_names def test_install_r_dependencies(): from mspypeline.helpers.Utils import install_r_dependencies def test_get_number_of_non_na_values(): from mspypeline.helpers import get_number_of_non_na_values as gna assert gna(20) > gna(10) > gna(5) > gna(3) assert gna(3) == gna(2) and gna(3) == gna(1) def test_get_intersection_and_unique(): from mspypeline.helpers import get_intersection_and_unique import pandas as pd df1 = pd.DataFrame() df2 = pd.DataFrame() assert all(map(pd.Series.equals, get_intersection_and_unique(df1, df2), (pd.Series([], dtype=bool), pd.Series([], dtype=bool), pd.Series([], dtype=bool)))) df1 = pd.DataFrame([[1, 1, 1], [1, 1, 1], [0, 0, 0], [1, 0, 0]]) df2 =
pd.DataFrame([[1, 1, 1], [0, 0, 0], [1, 1, 1], [1, 0, 0]])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 14:42:02 2018 @author: rwilson """ import pandas as pd import numpy as np import scipy.linalg as linalg import random import os import h5py import matplotlib.pyplot as plt import itertools from numba import njit from numba import prange import os import shutil import gc class utilities(): ''' Some helper functions ''' def src_rec_pairs(channels, exclude=None, reciprocity=False, randSample=None): '''Generate a list of source receiver pairs for all excluding a certain channels. Parameters ---------- channels : list list of channels from which src rec pairs should be generated exclude : list (Default = None) list of channels which should be excluded from the list of channels reciprocity : bool (Default = False) Include reciprocal pairs. randSample : int (Default = None) Extract a random subset from the list of length ``randSample`` Returns ------- src_rec : list list of unique source receiver pairs ''' if reciprocity: src_rec = [(i, j) for i in channels for j in channels if i!=j and i!=np.all(exclude) and j!=np.all(exclude)] elif not reciprocity: src_rec = [(i, j) for i in channels for j in channels if i!=j and i!=np.all(exclude) and j!=np.all(exclude) and i<j] if randSample: return random.sample(src_rec, randSample) else: return src_rec def read_channelPos(file, dimensions): '''Read in csv containing each channel position. Currently expecting that the channel position csv is of a specific type and needs shifting to bottom zeroed coord. system. Parameters ---------- file : str Location of csv containing the channel locations dimensions : dict The ``height`` of the mesh. Returns ------- dfChan : DataFrame Database of each channel location ''' dfChan = pd.read_csv(file, delim_whitespace=True, skiprows=2, usecols=[0,1,2,3,4]) dfChan.index = dfChan.index.droplevel() dfChan.drop(inplace=True, columns=dfChan.columns[-2:].tolist()) dfChan.columns = ['x','y','z'] # Shift coords to mesh bottom zeroed dfChan.z = dfChan.z + np.abs(dfChan.z.min()) + dimensions['height']/2 - np.abs(dfChan.z.min()) print('Channel Positions:\n', [(dfChan.iloc[i].x, dfChan.iloc[i].y, dfChan.iloc[i].z) for i in range(dfChan.shape[0])]) print('Channel index:\n',[str(chan) for _,chan in enumerate(dfChan.index.values)]) return dfChan def HDF5_data_save(HDF5File, group, name, data, attrb={'attr': 0}, ReRw='w'): '''Saves data into a hdf5 database, if data name already exists, then an attempt to overwrite the data will be made Parameters ---------- HDF5File : str Relative location of database group : str The expected group name name : str The name of the data to be saved within group attrb : dict attribute dictionary to store along with the database. ReRw : str (Default = 'w') The read/write format ''' toscreen = '----- Attributes added to database %s %s, table %s ----- \n' \ %(HDF5File,group, name) with h5py.File(HDF5File, ReRw) as f: try: dset = f.create_dataset(os.path.join(group, name), data=data, dtype='f') print(toscreen) for key,item in zip(attrb.keys(), attrb.values()): print('Key:', key,'| item:', item) dset.attrs[key] = item except RuntimeError: del f[os.path.join(group, name)] dset = f.create_dataset(os.path.join(group, name), data=data, dtype='f') print(toscreen) for key,item in zip(attrb.keys(), attrb.values()): print('Key:', key,'| item:', item) dset.attrs[key] = item def HDF5_data_del(HDF5File, group, names): '''Deletes data from a hdf5 database within some group. Parameters ---------- HDF5File : str Relative location of database group : str The expected group name names : str The names of the data groups to be deleted from ``group`` ''' with h5py.File(HDF5File, 'a') as f: for name in names: try: path = os.path.join(group,name) del f[path] except KeyError: print(name, "was not in", group) def HDF5_data_read(HDF5File, group, name, ReRw='r'): '''Saves data into a hdf5 database Parameters ---------- HDF5File : str Relative location of database group : str The expected group name attrb : tuple/list attribute to store along with the database. ReRw : str (Default = 'w') The read/write format Returns ------- dset : () Data contained within group/name ''' with h5py.File(HDF5File, ReRw) as f: dset = f[os.path.join(group,name)].value return dset def HDF5_attri_read(HDF5File, group, name, ReRw='r'): '''Read keys and attributes from hdf5 database. Parameters ---------- HDF5File : str Relative location of database group : str The expected group name attrb : tuple/list attribute to store along with the database. ReRw : str (Default = 'w') The read/write format Returns ------- dic : dict A dictionary of all the attributes stored within the group/name. ''' with h5py.File(HDF5File, ReRw) as f: return {item[0]:item[1] for item in f[os.path.join(group,name)].attrs.items()} def WindowTcent(TS, wdws): '''Determine the centre of each correlation window in time from the input time-series database. Parameters ---------- TS : float Sampling period wdws : list(str) Containing the windows range in sample points separated by - ''' wdws_cent = [int(np.mean([int(wdw.split('-')[0]), int(wdw.split('-')[1]) ])) for wdw in wdws] wdws_cent = np.array(wdws_cent) * TS return wdws_cent def DiffRegress(Tseries, dfChan, Emaxt0, plotOut=False): '''Perform linear regression to fit the 1D diffusion equation to an input time series. The output of this function is an estimation of the diffusivity and dissipation. (<NAME> et. al. 2001) Parameters ---------- Tseries : array-like The input time series dfChan : DataFrame Containing the channel positsion columns x, y, z Emaxt0 : int The index corresponding to the arrival time (onset of) maximum energy Returns ------- popt[1] : float The diffusitivty determined from the least squared fit. Units depends upon input t and z units check units popt[2] : float The Dissipation ''' from scipy import optimize # Determine absolute distance between source and receiver recPos = dfChan.loc[Tseries['recNo']] srcPos = dfChan.loc[Tseries['srcNo']] absDist = np.sqrt(abs(recPos.x - srcPos.x)**2 + abs(recPos.y - srcPos.y)**2 + abs(recPos.z - srcPos.z)**2) # Define the 1D diffusion equation, logE(z,t) def diffusivity(t, z, D, sigma): return np.log(1/(2*np.sqrt(np.pi*D))) \ - 0.5*np.log(t) - z**2/(4*D*t) - sigma*t # The energy density y_data = np.log(Tseries['Tseries']**2)[Emaxt0:] # The time axis zeroed to the onset of Emaxt0 x_data = (np.arange(0, Tseries['TracePoints']) * Tseries['TSamp'])[Emaxt0-1:] x_data = (x_data-x_data[0])[1:] popt, pcov = optimize.curve_fit(diffusivity, x_data, y_data, p0=[absDist, 1, 1], bounds=([absDist*0.9, 0.1, 0.1], [absDist*1.1, np.inf, np.inf])) if plotOut: # Plot the resulting fit plt.figure(figsize=(6, 4)) plt.scatter(x_data, y_data, label='Data') plt.plot(x_data, diffusivity(x_data, popt[0], popt[1], popt[2]), label='Fitted function', color='red') plt.legend(loc='best') plt.show() return popt[1], popt[2] def src_recNo(CCdata): '''Extract the source receiver paris within CCdata, excluding common pairs. Parameters ---------- CCdata : dataframe CCdata dataframe Returns ------- src_recNo : list List of the source receiver numbers ''' src_rec = list(sorted(set( [(srcNo, recNo) for srcNo, recNo in zip(CCdata.index.get_level_values('srcNo'), CCdata.index.get_level_values('recNo')) if srcNo != recNo] ))) return src_rec def traceAttributes(SurveyDB, Col): '''Extract a single trace and its attributes from single survey dataframe, into a dictionary. Parameters ---------- TStrace : DataFrame Containing all traces for a single survey. Col : int The column to extract from the database. Returns ------- traceDict: dict Containing the trace along with all header information. ''' traceDict = {key: SurveyDB.columns.get_level_values(key)[Col] for key in SurveyDB.columns.names} traceDict['Tseries'] = SurveyDB.iloc[:, Col].values return traceDict def d_obs_time(CCdata, src_rec, lag, window, parameter='CC', staTime=None, stopTime=None): '''Construct the d_obs dataframe over time from the input CCdata, for a select list of source-receiver pairs. Parameters ---------- CCdata : dataframe CCdata dataframe src_rec : list(tuples) A list of tuples for each source receiver pair. lag : list(tuples) The lag value from which the extraction is made. window : str/list(str) string of windows or list of str of windows. parameter : str (Default='CC') Parameter from which to extract from the dataframe staTime : str The start time from which ``d_obs`` is extracted stopTime : str The stop time before which ``d_obs`` is extracted. Returns ------- d_obs_time : dataframe dataframe containing the in each row the d_obs vector for all requested source-receiver pairs, increasing with time. ''' if staTime and stopTime: mask = (pd.to_datetime(CCdata.index.get_level_values('Time')) > pd.to_datetime(staTime)) & \ (pd.to_datetime(CCdata.index.get_level_values('Time')) < pd.to_datetime(stopTime)) CCdata = CCdata.copy().loc[mask] elif staTime: mask = (pd.to_datetime(CCdata.index.get_level_values('Time')) > pd.to_datetime(staTime)) CCdata = CCdata.copy().loc[mask] elif stopTime: mask = (pd.to_datetime(CCdata.index.get_level_values('Time')) < pd.to_datetime(stopTime)) CCdata = CCdata.copy().loc[mask] # Time index for each survey based on second src_rec pair. time_index = np.array([0]) for sr in src_rec: index = pd.to_datetime(CCdata.loc[([sr[0]], [sr[1]]), (lag, window[0], parameter)]. unstack(level=[0, 1]).index) if index.shape[0]>time_index.shape[0]: time_index = index if len(window)>1: temp = [] for wdw in window: df = pd.concat([CCdata.loc[([sr[0]], [sr[1]]), (lag, wdw, parameter)]. unstack(level=[0, 1]). reset_index(drop=True) for sr in src_rec], axis=1) temp.append(df) d_obs_time = pd.concat(temp, axis=1) else: d_obs_time = pd.concat([CCdata.loc[([sr[0]], [sr[1]]), (lag, window, parameter)]. unstack(level=[0, 1]). reset_index(drop=True) for sr in src_rec], axis=1) d_obs_time.index = time_index return d_obs_time.dropna().astype(float) def measNorange(CCdata, staTime, endTime): '''Determines the measurement survey number between given time interval. This function is intended to allow the user to quickly determine the measurement number range of interest, thereby allowing the reporcessing of the raw data over this region only. This requires that the user passes a CCdata which represents the entire raw dataset. Parameters ---------- CCdata : dataframe CCdata dataframe staTime : str The start time of the interval/. endTime : str The start time of the interval/. Returns ------- None : tuple Measurement survey numbers within the range given. ''' mask = (pd.to_datetime(CCdata.index.get_level_values('Time').values) > pd.to_datetime(staTime)) & \ (pd.to_datetime(CCdata.index.get_level_values('Time').values) < pd.to_datetime(endTime)) measNo = [i for i, x in enumerate(mask) if x] return (measNo[0], measNo[-1]) def surveyNorange(TSsurveys, staTime, endTime): '''Determines the survey number between given time interval. This function is intended to allow the user to quickly determine the survey number range of interest, thereby allowing the reporcessing of the raw data over this region only. This requires that the user passes a CCdata which represents the entire raw dataset. Parameters ---------- TSsurveys : list The survey folder numbers staTime : str The start time of the interval/. endTime : str The start time of the interval/. Returns ------- None : tuple Measurement survey numbers within the range given. ''' surveyTimes = [pd.to_datetime(group.split('survey')[1]) for group in TSsurveys] mask = [(group >
pd.to_datetime(staTime)
pandas.to_datetime
__author__ = '<NAME>' from sklearn.cluster import KMeans import scipy.stats as stats from collections import OrderedDict import matplotlib.pyplot as plt import math import pandas as pd import numpy as np import operator class Optimizer(object): """ Head of opmizer operations. Provide statistic and ML algorithms in code execution. Argumens: performance: configuration performance data in execution fitted_population: population after fittness function run """ def __init__(self, performance, fitted_population): self.performance = performance self.fitted_population = fitted_population def elbow(self): """ Find elbow point inside KMeans clustering. To get the most effective number of clusters according to the dataset Returns: number of cluster in the (elbow) """ sum_of_squared_distances = [] for cluster in range(1, int(self.fitted_population.shape[0]) + 1): clusters_no = KMeans(n_clusters=cluster) clusters_no = clusters_no.fit(self.fitted_population[['Chromosome', 'Total']]) sum_of_squared_distances.append(clusters_no.inertia_) # plt.plot(range(1, int(self.population.shape[0])), Sum_of_squared_distances, 'bx-') # plt.xlabel('cluster number') # plt.ylabel('Sum_of_squared_distances') # plt.title('Elbow method for optimal number of clusters') # plt.show() return self.linear_group_size(sum_of_squared_distances) def linear_group_size(self, sum_of_squared_distances): """ Algorithms for elbow method. It is a normal fuction which connects vertex of integrals and calculates height of points: Returns: The highest point distance """ slope = (sum_of_squared_distances[int(self.fitted_population.shape[0])-1] - sum_of_squared_distances[0]) / (int(self.fitted_population.shape[0]) - 1) intercept = sum_of_squared_distances[0] - slope distance = [] for label in range(len(sum_of_squared_distances)): distance.append(abs((slope * label) - (sum_of_squared_distances[label]) + intercept)/(math.sqrt(slope**2 + intercept**2))) return distance.index(max(distance)) def group_population(self, save=False, data=False): """ Use KMeans clustering alogrithms form scikit-learn framework to cluster groups of parents in order to perform parent selection later. Returns: population_groups: get labels and cluster centers in posterior parent selection algorithm """ self.fitted_population['Chromosome'] = self.fitted_population['Chromosome'] * self.performance['chromosome_weight'] population_groups = KMeans(n_clusters=self.elbow()) population_groups.fit(self.fitted_population[['Chromosome', 'Total']]) self.fitted_population = pd.concat([self.fitted_population, pd.Series(self.change_order(population_groups), name='Labels')], axis=1) # plt.title('Fitted chromosomes groups') # plt.xlabel('Number of chromosome') # plt.ylabel('Total fitted value') # plt.scatter(self.fitted_population['Chromosome'], self.fitted_population['Total'], c=population_groups.labels_) # plt.scatter(population_groups.cluster_centers_[:,0], population_groups.cluster_centers_[:,1], marker='x') # plt.show() if (save and data): plt.title('Fitted chromosomes groups') plt.xlabel('Number of chromosome') plt.ylabel('Total fitted value') plt.scatter(self.fitted_population['Chromosome'], self.fitted_population['Total'], c=population_groups.labels_) plt.scatter(population_groups.cluster_centers_[:,0], population_groups.cluster_centers_[:,1], marker='x') # plt.show() plt.savefig(data) else: return population_groups @staticmethod def change_order(population_groups) -> list: """ By default number sign of clusters are selected randomly which affects wrongly estimation of distances between cluster centers later. To avoid this problem this function change every data set order from the smallest to the biggest. Args: population_groups: unordered population groups Returns: new_order: population groups with ascending order of notation """ order = {} pivot_order = {} new_order = [] for k,v in enumerate(population_groups.cluster_centers_): order[int(k)] = v[1] pivot_order = list(OrderedDict(sorted(order.items(), key=operator.itemgetter(1))).keys()) for label in list(population_groups.labels_): new_order.append(pivot_order.index(int(label))) return new_order # --------------------------------------------------------------------------------- @staticmethod def cluster_distances(population_groups) -> list: """ Measure distance between each cluster recursively in order to set list of data converted later for probability in roulette wheel Args: population_groups: ouput generated from KMeans Returns: centroid_dists: list of distances between centroids measurement """ centroid_dists = [] centroids = list(population_groups.cluster_centers_) centroids.sort(key=lambda x: x[1]) for destination_cluster, value in enumerate(centroids): dists = [] for source_cluster, value in enumerate(centroids): if (centroids[source_cluster][0] == centroids[destination_cluster][0]) and (centroids[source_cluster][1] == centroids[destination_cluster][1]): pass else: dist = math.sqrt((centroids[source_cluster][0] - centroids[destination_cluster][0])**2 + (centroids[source_cluster][1] - centroids[destination_cluster][1])**2) dists.append(dist) centroid_dists.append(dists) return centroid_dists def roulette_wheel_selection(self, population_groups) -> dict: """ Exchange cluster distances into probability of cluster selection in second parent selection/ Args: population_groups: ouput generated from KMeans Returns: probability: dict of each cluster probabilities to draw second parent in child creation """ centroid_dists = self.cluster_distances(population_groups) max_prob = [sum(dist) for dist in centroid_dists] cluster = 0 probability = {} for centroid in centroid_dists: dist = [] for target in centroid: dist.append(target / max_prob[cluster]) dist.insert(cluster, 0) probability[cluster] = dist cluster += 1 return probability def next_generation(self, population_groups, population): """ Develop next generation of population according to fitted population ingredients Args: population_groups: ouput generated from KMeans population: clean population dataset without add ons Returns: population: new population with inserted childrens and worse parent removed """ probability = self.roulette_wheel_selection(population_groups) self.fitted_population['Chromosome'] = self.fitted_population['Chromosome'] / self.performance['chromosome_weight'] self.fitted_population['Selected'] = pd.Series(data=[False for row in range(self.fitted_population.shape[0])]) # print(self.fitted_population) try: similarity = 0 while ((self.fitted_population['Selected'] == True).sum() / self.fitted_population.shape[0]) < self.performance['shuffle_scale']: first_parent = None second_parent = None while True: first_parent = self.choose_first_parent() second_parent = self.choose_second_parent(probability, first_parent) if int(first_parent.isnull().sum(axis = 1)) == int(second_parent.isnull().sum(axis=1)): break F_test = stats.f_oneway(first_parent.iloc[:, 0: self.fitted_population.columns.get_loc('Total')].values[0], second_parent.iloc[:, 0: self.fitted_population.columns.get_loc('Total')].values[0]) worse_parent_total = min(float(first_parent['Total']), float(second_parent['Total'])) better_parent_total = max(float(first_parent['Total']), float(second_parent['Total'])) parent_survived = first_parent if int(first_parent['Labels']) > int(second_parent['Labels']) else second_parent child = self.child(first_parent, second_parent) child_F_test = stats.f_oneway(child.iloc[:, 0: self.fitted_population.columns.get_loc('Total')].values[0], parent_survived.iloc[:, 0: self.fitted_population.columns.get_loc('Total')].values[0]) # print(self.fitted_population) if (child_F_test[0] != 0) and (F_test[0] > child_F_test[0]) and ((better_parent_total + worse_parent_total) < (better_parent_total + float(child['Total'])) * self.performance['variety']): child = pd.concat([child, pd.Series(int(second_parent['Chromosome']) if int(first_parent['Labels']) > int(second_parent['Labels']) else int(first_parent['Chromosome']), name='Chromosome'), pd.Series(min(int(first_parent['Labels']), int(second_parent['Labels'])), name='Labels'),
pd.Series(True, name='Selected')
pandas.Series
import ast import importlib import re import numpy as np import pandas as pd import woodwork as ww def import_or_none(library): ''' Attemps to import the requested library. Args: library (str): the name of the library Returns: the library if it is installed, else None ''' try: return importlib.import_module(library) except ImportError: return None def camel_to_snake(s): s = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', s) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s).lower() def _convert_input_to_set(semantic_tags, error_language='semantic_tags'): """Takes input as a single string, a list of strings, or a set of strings and returns a set with the supplied values. If no values are supplied, an empty set will be returned.""" if not semantic_tags: return set() if type(semantic_tags) not in [list, set, str]: raise TypeError(f"{error_language} must be a string, set or list") if isinstance(semantic_tags, str): return {semantic_tags} if isinstance(semantic_tags, list): semantic_tags = set(semantic_tags) if not all([isinstance(tag, str) for tag in semantic_tags]): raise TypeError(f"{error_language} must contain only strings") return semantic_tags def _get_mode(series): """Get the mode value for a series""" mode_values = series.mode() if len(mode_values) > 0: return mode_values[0] return None def read_csv(filepath=None, name=None, index=None, time_index=None, semantic_tags=None, logical_types=None, use_standard_tags=True, **kwargs): """Read data from the specified CSV file and return a Woodwork DataTable Args: filepath (str): A valid string path to the file to read name (str, optional): Name used to identify the datatable. index (str, optional): Name of the index column in the dataframe. time_index (str, optional): Name of the time index column in the dataframe. semantic_tags (dict, optional): Dictionary mapping column names in the dataframe to the semantic tags for the column. The keys in the dictionary should be strings that correspond to columns in the underlying dataframe. There are two options for specifying the dictionary values: (str): If only one semantic tag is being set, a single string can be used as a value. (list[str] or set[str]): If multiple tags are being set, a list or set of strings can be used as the value. Semantic tags will be set to an empty set for any column not included in the dictionary. logical_types (dict[str -> LogicalType], optional): Dictionary mapping column names in the dataframe to the LogicalType for the column. LogicalTypes will be inferred for any columns not present in the dictionary. use_standard_tags (bool, optional): If True, will add standard semantic tags to columns based on the inferred or specified logical type for the column. Defaults to True. **kwargs: Additional keyword arguments to pass to the underlying ``pandas.read_csv`` function. For more information on available keywords refer to the pandas documentation. Returns: woodwork.DataTable: DataTable created from the specified CSV file """ dataframe = pd.read_csv(filepath, **kwargs) return ww.DataTable(dataframe, name=name, index=index, time_index=time_index, semantic_tags=semantic_tags, logical_types=logical_types, use_standard_tags=use_standard_tags) def _new_dt_including(datatable, new_data): ''' Creates a new DataTable with specified data and columns Args: datatable (DataTable): DataTable with desired information new_data (DataFrame): subset of original DataTable Returns: DataTable: New DataTable with attributes from original DataTable but data from new DataTable ''' cols = new_data.columns new_logical_types = {} new_semantic_tags = {} new_column_descriptions = {} new_column_metadata = {} for col_name, col in datatable.columns.items(): if col_name not in cols: continue new_logical_types[col_name] = col.logical_type new_semantic_tags[col_name] = col.semantic_tags new_column_descriptions[col_name] = col.description new_column_metadata[col_name] = col.metadata new_index = datatable.index if datatable.index in cols else None new_time_index = datatable.time_index if datatable.time_index in cols else None if new_index is not None: new_semantic_tags[new_index] = new_semantic_tags[new_index].difference({'index'}) if new_time_index is not None: new_semantic_tags[new_time_index] = new_semantic_tags[new_time_index].difference({'time_index'}) return ww.DataTable(new_data, name=datatable.name, index=new_index, time_index=new_time_index, semantic_tags=new_semantic_tags, logical_types=new_logical_types, use_standard_tags=datatable.use_standard_tags, table_metadata=datatable.metadata, column_metadata=new_column_metadata, column_descriptions=new_column_descriptions) def import_or_raise(library, error_msg): ''' Attempts to import the requested library. If the import fails, raises an ImportError with the supplied error message. Args: library (str): the name of the library error_msg (str): error message to return if the import fails ''' try: return importlib.import_module(library) except ImportError: raise ImportError(error_msg) def _is_s3(string): ''' Checks if the given string is a s3 path. Returns a boolean. ''' return "s3://" in string def _is_url(string): ''' Checks if the given string is an url path. Returns a boolean. ''' return 'http' in string def _reformat_to_latlong(latlong, use_list=False): """Reformats LatLong columns to be tuples of floats. Uses np.nan for null values. """ if _is_null_latlong(latlong): return np.nan if isinstance(latlong, str): try: # Serialized latlong columns from csv or parquet will be strings, so null values will be # read as the string 'nan' in pandas and Dask and 'NaN' in Koalas # neither of which which is interpretable as a null value if 'nan' in latlong: latlong = latlong.replace('nan', 'None') if 'NaN' in latlong: latlong = latlong.replace('NaN', 'None') latlong = ast.literal_eval(latlong) except ValueError: pass if isinstance(latlong, (tuple, list)): if len(latlong) != 2: raise ValueError(f'LatLong values must have exactly two values. {latlong} does not have two values.') latitude, longitude = map(_to_latlong_float, latlong) # (np.nan, np.nan) should be counted as a single null value if pd.isnull(latitude) and
pd.isnull(longitude)
pandas.isnull
## 1. Introduction ## import pandas as pd titanic_survival =
pd.read_csv("titanic_survival.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ test function application """ import pytest from string import ascii_lowercase from pandas import (date_range, Timestamp, Index, MultiIndex, DataFrame, Series) from pandas.util.testing import assert_frame_equal, assert_series_equal from pandas.compat import product as cart_product import numpy as np import pandas.util.testing as tm import pandas as pd from .common import MixIn # describe # -------------------------------- class TestDescribe(MixIn): def test_apply_describe_bug(self): grouped = self.mframe.groupby(level='first') grouped.describe() # it works! def test_series_describe_multikey(self): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() assert_series_equal(result['mean'], grouped.mean(), check_names=False) assert_series_equal(result['std'], grouped.std(), check_names=False) assert_series_equal(result['min'], grouped.min(), check_names=False) def test_series_describe_single(self): ts = tm.makeTimeSeries() grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) expected = grouped.describe().stack() assert_series_equal(result, expected) def test_series_index_name(self): grouped = self.df.loc[:, ['C']].groupby(self.df['A']) result = grouped.agg(lambda x: x.mean()) assert result.index.name == 'A' def test_frame_describe_multikey(self): grouped = self.tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() desc_groups = [] for col in self.tsframe: group = grouped[col].describe() # GH 17464 - Remove duplicate MultiIndex levels group_col = pd.MultiIndex( levels=[[col], group.columns], labels=[[0] * len(group.columns), range(len(group.columns))]) group = pd.DataFrame(group.values, columns=group_col, index=group.index) desc_groups.append(group) expected = pd.concat(desc_groups, axis=1) tm.assert_frame_equal(result, expected) groupedT = self.tsframe.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, axis=1) result = groupedT.describe() expected = self.tsframe.describe().T expected.index = pd.MultiIndex( levels=[[0, 1], expected.index], labels=[[0, 0, 1, 1], range(len(expected.index))]) tm.assert_frame_equal(result, expected) def test_frame_describe_tupleindex(self): # GH 14848 - regression from 0.19.0 to 0.19.1 df1 = DataFrame({'x': [1, 2, 3, 4, 5] * 3, 'y': [10, 20, 30, 40, 50] * 3, 'z': [100, 200, 300, 400, 500] * 3}) df1['k'] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 df2 = df1.rename(columns={'k': 'key'}) pytest.raises(ValueError, lambda: df1.groupby('k').describe()) pytest.raises(ValueError, lambda: df2.groupby('key').describe()) def test_frame_describe_unstacked_format(self): # GH 4792 prices = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990, pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499, pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499} volumes = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000} df = pd.DataFrame({'PRICE': prices, 'VOLUME': volumes}) result = df.groupby('PRICE').VOLUME.describe() data = [df[df.PRICE == 24990].VOLUME.describe().values.tolist(), df[df.PRICE == 25499].VOLUME.describe().values.tolist()] expected = pd.DataFrame(data, index=pd.Index([24990, 25499], name='PRICE'), columns=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # nunique # -------------------------------- class TestNUnique(MixIn): def test_series_groupby_nunique(self): def check_nunique(df, keys, as_index=True): for sort, dropna in cart_product((False, True), repeat=2): gr = df.groupby(keys, as_index=as_index, sort=sort) left = gr['julie'].nunique(dropna=dropna) gr = df.groupby(keys, as_index=as_index, sort=sort) right = gr['julie'].apply(Series.nunique, dropna=dropna) if not as_index: right = right.reset_index(drop=True) assert_series_equal(left, right, check_names=False) days = date_range('2015-08-23', periods=10) for n, m in cart_product(10 ** np.arange(2, 6), (10, 100, 1000)): frame = DataFrame({ 'jim': np.random.choice( list(ascii_lowercase), n), 'joe': np.random.choice(days, n), 'julie': np.random.randint(0, m, n) }) check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) frame.loc[1::17, 'jim'] = None frame.loc[3::37, 'joe'] = None frame.loc[7::19, 'julie'] = None frame.loc[8::19, 'julie'] = None frame.loc[9::19, 'julie'] = None check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) check_nunique(frame, ['jim'], as_index=False) check_nunique(frame, ['jim', 'joe'], as_index=False) def test_nunique(self): df = DataFrame({ 'A': list('abbacc'), 'B': list('abxacc'), 'C': list('abbacx'), }) expected = DataFrame({'A': [1] * 3, 'B': [1, 2, 1], 'C': [1, 1, 2]}) result = df.groupby('A', as_index=False).nunique() tm.assert_frame_equal(result, expected) # as_index expected.index = list('abc') expected.index.name = 'A' result = df.groupby('A').nunique() tm.assert_frame_equal(result, expected) # with na result = df.replace({'x': None}).groupby('A').nunique(dropna=False)
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
""" Copyright 2021 <NAME> - <EMAIL> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from datetime import datetime, timedelta import ee import numpy as np import pandas as pd from geedim import export, collection, root_path, info, image from tests.util import _test_image_file, _test_search_results, _setup_test class TestApi(unittest.TestCase): """ Class to test backend (API) search, composite and export functionality. """ @classmethod def setUpClass(cls): """ Initialise Earth Engine once for all the tests here. """ _setup_test() def _test_image(self, image_id, mask=False): """ Test the validity of a geedim.image.MaskedImage by checking metadata. """ ee_coll_name = image.split_id(image_id)[0] gd_coll_name = info.ee_to_gd[ee_coll_name] gd_image = image.get_class(gd_coll_name).from_id(image_id, mask=mask) self.assertTrue(gd_image.id == image_id, 'IDs match') sr_band_df = pd.DataFrame.from_dict(info.collection_info[gd_coll_name]['bands']) for key in ['bands', 'properties', 'id', 'crs', 'scale']: self.assertTrue(key in gd_image.info.keys(), msg='Image gd_info complete') self.assertTrue(gd_image.info[key] is not None, msg='Image gd_info complete') self.assertTrue(gd_image.scale > 0 and gd_image.scale < 5000, 'Scale in range') self.assertTrue(gd_image.crs != 'EPSG:4326', 'Non wgs84') im_band_df = pd.DataFrame.from_dict(gd_image.info['bands']) self.assertTrue(im_band_df.shape[0] >= sr_band_df.shape[0], 'Enough bands') for id in ['VALID_MASK', 'CLOUD_MASK', 'SHADOW_MASK', 'FILL_MASK', 'SCORE']: self.assertTrue(id in im_band_df.id.values, msg='Image has auxiliary bands') for id in sr_band_df.id.values: self.assertTrue(id in im_band_df.id.values, msg='Image has SR bands') # test reflectance statistics for a specific region region = {"type": "Polygon", "coordinates": [[[24, -33.6], [24, -33.53], [23.93, -33.53], [23.93, -33.6], [24, -33.6]]]} sr_band_ids = sr_band_df.id.tolist() sr_image = gd_image.ee_image.select(sr_band_ids) std_refl = sr_image.reduceRegion(reducer='stdDev', geometry=region, scale=2 * gd_image.scale).getInfo() self.assertTrue(all(np.array(list(std_refl.values())) > 100), 'Std(SR) > 100') def test_image(self): """ Test geedim.image.MaskedImage sub-classes. """ im_param_list = [ {'image_id': 'COPERNICUS/S2_SR/20190321T075619_20190321T081839_T35HKC', 'mask': False}, {'image_id': 'LANDSAT/LC08/C02/T1_L2/LC08_172083_20190301', 'mask': True}, {'image_id': 'MODIS/006/MCD43A4/2019_01_01', 'mask': True}, ] for im_param_dict in im_param_list: with self.subTest('Image', **im_param_dict): self._test_image(**im_param_dict) def test_search(self): """ Test search on all supported image collections. """ region = {"type": "Polygon", "coordinates": [[[24, -33.6], [24, -33.53], [23.93, -33.53], [23.93, -33.6], [24, -33.6]]]} start_date = datetime.strptime('2019-02-01', '%Y-%m-%d') end_date = start_date + timedelta(days=32) valid_portion = 10 for gd_coll_name in info.gd_to_ee.keys(): with self.subTest('Search', gd_coll_name=gd_coll_name): gd_collection = collection.Collection(gd_coll_name) res_df = gd_collection.search(start_date, end_date, region, valid_portion=valid_portion) _test_search_results(self, res_df, start_date, end_date, valid_portion=valid_portion) def test_download(self): """ Test download of images from different collections, and with different crs, and scale params. """ region = {"type": "Polygon", "coordinates": [[[24, -33.6], [24, -33.53], [23.93, -33.53], [23.93, -33.6], [24, -33.6]]]} im_param_list = [ {'image_id': 'COPERNICUS/S2_SR/20190321T075619_20190321T081839_T35HKC', 'mask': True, 'crs': None, 'scale': 30, 'resampling': 'bilinear'}, {'image_id': 'LANDSAT/LC08/C02/T1_L2/LC08_172083_20190301', 'mask': True, 'crs': None, 'scale': None, 'resampling': 'bicubic'}, {'image_id': 'MODIS/006/MCD43A4/2019_01_01', 'mask': True, 'crs': 'EPSG:3857', 'scale': 500, 'resampling': 'near'}, ] for impdict in im_param_list: ee_coll_name = image.split_id(impdict['image_id'])[0] gd_coll_name = info.ee_to_gd[ee_coll_name] with self.subTest('Download', **impdict): # create image.MaskedImage gd_image = image.get_class(gd_coll_name)._from_id(impdict["image_id"], mask=impdict['mask'], region=region) # create a filename for these parameters name = impdict["image_id"].replace('/', '-') crs_str = impdict["crs"].replace(':', '_') if impdict["crs"] else 'None' filename = root_path.joinpath(f'data/outputs/tests/{name}_{crs_str}_{impdict["scale"]}m.tif') export.download_image(gd_image, filename, region=region, crs=impdict["crs"], scale=impdict["scale"], resampling=impdict["resampling"], overwrite=True) impdict.pop('image_id') _test_image_file(self, image_obj=gd_image, filename=filename, region=region, **impdict) def test_export(self): """ Test export of an image, without waiting for completion. """ region = {"type": "Polygon", "coordinates": [[[24, -33.6], [24, -33.53], [23.93, -33.53], [23.93, -33.6], [24, -33.6]]]} image_id = 'LANDSAT/LC08/C02/T1_L2/LC08_172083_20190128' ee_image = ee.Image(image_id) export.export_image(ee_image, image_id.replace('/', '-'), folder='geedim_test', region=region, wait=False) def _test_composite(self, ee_image): """ Test the metadata of a composite ee.Image for validity. """ gd_image = image.Image(ee_image) ee_coll_name = image.split_id(gd_image.id)[0] gd_coll_name = info.ee_to_gd[ee_coll_name] sr_band_df = pd.DataFrame.from_dict(info.collection_info[gd_coll_name]['bands']) for key in ['bands', 'properties', 'id']: self.assertTrue(key in gd_image.info.keys(), msg='Image gd_info complete') self.assertTrue(gd_image.info[key] is not None, msg='Image gd_info complete') for key in ['crs', 'scale']: self.assertTrue(gd_image.info[key] is None, msg='Composite in WGS84') im_band_df =
pd.DataFrame.from_dict(gd_image.info['bands'])
pandas.DataFrame.from_dict
""" pygemfxns_preprocessing.py is a list of the model functions that are used to preprocess the data into the proper format. """ # Built-in libraries import os #import glob import argparse # External libraries import pandas as pd import numpy as np #import xarray as xr #import netCDF4 as nc #from time import strftime #from datetime import datetime #from scipy.spatial.distance import cdist #from scipy.optimize import minimize #import matplotlib.pyplot as plt # Local libraries import pygem.pygem_input as pygem_prms import pygemfxns_modelsetup as modelsetup #%% TO-DO LIST: # - clean up create lapse rate input data (put it all in pygem_prms.py) #%% def getparser(): """ Use argparse to add arguments from the command line Parameters ---------- option_createlapserates : int Switch for processing lapse rates (default = 0 (no)) option_wgms : int Switch for processing wgms data (default = 0 (no)) Returns ------- Object containing arguments and their respective values. """ parser = argparse.ArgumentParser(description="select pre-processing options") # add arguments parser.add_argument('-option_wgms', action='store', type=int, default=1, help='option to pre-process wgms data (1=yes, 0=no)') return parser parser = getparser() args = parser.parse_args() #%% #rgi_regionsO1 = [13,14,15] #main_glac_rgi_all = pd.DataFrame() #for region in rgi_regionsO1: # main_glac_rgi_region = modelsetup.selectglaciersrgitable(rgi_regionsO1=[region], rgi_regionsO2='all', # rgi_glac_number='all') # main_glac_rgi_all = main_glac_rgi_all.append(main_glac_rgi_region) #%% if args.option_wgms == 1: wgms_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/WGMS/DOI-WGMS-FoG-2019-12/' wgms_ee_fn = 'WGMS-FoG-2019-12-EE-MASS-BALANCE.csv' wgms_e_fn = 'WGMS-FoG-2019-12-E-MASS-BALANCE-OVERVIEW.csv' wgms_id_fn = 'WGMS-FoG-2019-12-AA-GLACIER-ID-LUT.csv' wgms_e_df = pd.read_csv(wgms_fp + wgms_e_fn, encoding='unicode_escape') wgms_ee_df = pd.read_csv(wgms_fp + wgms_ee_fn, encoding='unicode_escape') wgms_id_df =
pd.read_csv(wgms_fp + wgms_id_fn, encoding='unicode_escape')
pandas.read_csv
import re import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series import pandas._testing as tm from pandas.tseries.offsets import BDay class TestXS: def test_xs(self, float_frame, datetime_frame): idx = float_frame.index[5] xs = float_frame.xs(idx) for item, value in xs.items(): if np.isnan(value): assert np.isnan(float_frame[item][idx]) else: assert value == float_frame[item][idx] # mixed-type xs test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}} frame = DataFrame(test_data) xs = frame.xs("1") assert xs.dtype == np.object_ assert xs["A"] == 1 assert xs["B"] == "1" with pytest.raises( KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00', freq='B')") ): datetime_frame.xs(datetime_frame.index[0] - BDay()) # xs get column series = float_frame.xs("A", axis=1) expected = float_frame["A"] tm.assert_series_equal(series, expected) # view is returned if possible series = float_frame.xs("A", axis=1) series[:] = 5 assert (expected == 5).all() def test_xs_corner(self): # pathological mixed-type reordering case df = DataFrame(index=[0]) df["A"] = 1.0 df["B"] = "foo" df["C"] = 2.0 df["D"] = "bar" df["E"] = 3.0 xs = df.xs(0) exp = pd.Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0) tm.assert_series_equal(xs, exp) # no columns but Index(dtype=object) df = DataFrame(index=["a", "b", "c"]) result = df.xs("a") expected = Series([], name="a", index=
pd.Index([])
pandas.Index
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import os # In[2]: train_encoded = pd.read_csv("../data/train_store_encoded_onehot.csv") # In[3]: train_df = pd.read_csv("../data/train.csv") store_df = pd.read_csv("../data/store.csv") # In[4]: cate_df = store_df.apply(lambda x: (x["Store"], x["StoreType"] + x["Assortment"]), axis = 1).map(lambda x: x[-1]).copy().reset_index() cate_df.columns = ["Store", "cate"] cate_df["Store"] = cate_df["Store"] + 1 # In[5]: def calculate_days_num(data_df, cate_df): import gc data_df["Date"] = pd.to_datetime(data_df["Date"]) merge_df = pd.merge(data_df[["Date", "Store", "Sales"]], cate_df, on = "Store", how = "inner") print("merge_df shape : {}".format(merge_df.shape)) from functools import reduce ordered_intersection_dates = sorted(pd.to_datetime(sorted(reduce(lambda a, b: a.intersection(b),map(lambda x: set(x.tolist()),merge_df.groupby("cate").apply(dict).map(lambda inner_dict:inner_dict["Date"]).values.tolist()))))) ordered_intersection_dates = pd.Series(ordered_intersection_dates) #return ordered_intersection_dates sales_date_intersection = merge_df.copy() del merge_df gc.collect() sales_date_intersection = sales_date_intersection[sales_date_intersection["Date"].isin(ordered_intersection_dates)].copy() def transform_dict_to_df(row): Store, dict_ = row["cate"], row[0] Date = dict_["Date"].tolist() Sales = dict_["Sales"].tolist() df = pd.DataFrame(list(zip(*[Date, Sales]))) df.columns = ["Date", Store] return df before_reduce_list = sales_date_intersection.groupby("cate").apply(dict).reset_index().apply( transform_dict_to_df , axis = 1).values.tolist() #return before_reduce_list before_reduce_list = list(map(lambda x: x.groupby("Date").sum().reset_index(), before_reduce_list)) sales_cate_format_df = reduce(lambda a, b: pd.merge(a, b, on = "Date", how = "inner"), before_reduce_list) return sales_cate_format_df # In[6]: sales_cate_format_df = calculate_days_num(train_df, cate_df[cate_df["cate"].isin(cate_df["cate"].value_counts()[cate_df["cate"].value_counts() > 70].index.tolist())]) # In[7]: sales_cate_format_df["total"] = sales_cate_format_df.iloc[:, 1:].apply(lambda x: x.sum(), axis = 1) # In[8]: from functools import reduce sales_cate_format_df_up = sales_cate_format_df[sales_cate_format_df.iloc[:, 1:].apply(lambda x: reduce(lambda a, b: a * b ,map(int,map(bool, x))), axis = 1) > 0] # In[9]: df = sales_cate_format_df_up.copy() df.index =
pd.to_datetime(df["Date"])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Wed Feb 26 08:00:00 2020 @author: <NAME> contact : <EMAIL> Ceci correspond aux fonctions utilisées pour traiter les données dans le cadre du projet ODIASP """ from __future__ import absolute_import, division, print_function, unicode_literals import scipy from scipy.ndimage import zoom, center_of_mass import matplotlib.pyplot as plt import numpy as np import cupy as cp from cupyx.scipy import ndimage as MAGIC import pydicom from pydicom.dataset import Dataset, FileDataset from pydicom.uid import ExplicitVRLittleEndian import pydicom._storage_sopclass_uids import os import pandas from PIL import Image import random from shutil import copy2, move from copy import copy import skimage.io as io import skimage.transform as trans from alive_progress import alive_bar import datetime import scipy import openpyxl import time import tensorflow as tf from tensorflow import keras from tensorflow.keras import Model from tensorflow.keras.models import Sequential from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras.losses import * from tensorflow.keras.optimizers import * from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler import tensorflow.keras.backend as K from Settings import COMPUTE_CAPACITY def DirVerification (name,DossierProjet=None,verbose = 1): if os.path.exists(name): if verbose ==1 : print("Le dossier " + str(name) + " existe déja : ", os.path.abspath(name)) return name else : if DossierProjet!=None: dir_path = os.path.join(DossierProjet,name) else : dir_path = name if os.path.exists(dir_path): if verbose ==1 : print("Le dossier " + str(name) + " existe déja : ") print(name, " : ", dir_path) else : os.mkdir(dir_path) if verbose == 1 : print("Création du dossier " + str(name)+ " : ") print(name, " : ", dir_path) return dir_path #___________________________________________________________________________________________ #___________________FONCTIONS POUR LA CREATION DES DATASETS ________________________________ #___________________________________________________________________________________________ def readCSV(csv_path,name=None,indexing=None): """ Fonction simple pour lire le CSV et le garder en mémoire sous la forme d'un datafile, plus facilement lisible en utilisant pandas si on rentre name (un des fichiers numpy disponibles), la fonction affiche cette valeur On peut rentrer un string pour l'arg indexing pour demander a classer selon la colonne. """ df=pandas.read_csv(csv_path, delimiter=",",dtype=str) if indexing != None : df.set_index(indexing, inplace=True) if name: print(df.loc[name]) return df #___________________________________________________________________________________________ #___________________FONCTIONS POUR IMPORTER LES FICHIERS DICOM______________________________ #___________________________________________________________________________________________ def fast_scandir(dir): """ Prend un dossier contenant atant de sous-dossiers et sous-sous-dossiers que voulu et en crée la liste des sous dossiers. Utile pour généraliser une fonction adaptée à un dossier à autant de dossiers que voulus en une seule fois. Rq : le dossier dir n'est pas inclus dans la liste Parameters ---------- - dir : string, chemin vers le dossier racine Returns ------- - subfloders : liste, contient tous les sous-dossiers """ subfolders= [f.path for f in os.scandir(dir) if f.is_dir()] for dir in list(subfolders): subfolders.extend(fast_scandir(dir)) return subfolders def TESTINGPRED(prediction,classes,mode="ProportionGlobale", nombredecoupes=1, numerocoupeinitial = 0, verbose=1): longueur = len(prediction) proportion =0 if numerocoupeinitial>longueur: #utilisé à des fins de DEBUGGING uniquement : a priori non possible. print("error") numerocoupeinitial=longueur if (nombredecoupes+numerocoupeinitial)>longueur: nombredecoupes = longueur - numerocoupeinitial if mode=="ProportionGlobale": #test de l'ensemble du volume nombredecoupes =longueur for i in range(0,longueur): proportion += prediction[i] if verbose >0 : for item in range(0,len(classes)): print(mode,"sur",nombredecoupes,"coupes de",classes[item], '{:.3f}'.format(proportion[item]/nombredecoupes)) if mode=="ProportionFinale": #test des "nombredecoupes" dernières coupes if nombredecoupes>longueur : #au cas où l'on ait choisi trop de coupes nombredecoupes=longueur for i in range(numerocoupeinitial,nombredecoupes+numerocoupeinitial): proportion += prediction[-i] if verbose >0 : for item in range(0,len(classes)): print(mode,"sur",nombredecoupes,"coupes de",classes[item], '{:.3f}'.format(proportion[item]/nombredecoupes)) if mode=="ProportionInitiale": #test des "nombredecoupes" dernières coupes if nombredecoupes>longueur : #au cas où l'on ait choisi trop de coupes nombredecoupes=longueur for i in range(numerocoupeinitial,nombredecoupes+numerocoupeinitial): proportion += prediction[i] if verbose >0 : for item in range(0,len(classes)): print(mode,"sur",nombredecoupes,"coupes de",classes[item], '{:.3f}'.format(proportion[item]/nombredecoupes), "à partir de la coupe", numerocoupeinitial) return proportion/nombredecoupes def import_dicom_to_abdopelv(rootdir, metadata, csv_path, save=False, model = None, verbose = 2, Compute_capacity = COMPUTE_CAPACITY, CUPY = True ): """ Cette fonction charge un dossier contenant des fichiers DICOM. Elle peut s'arréter automatiquement si les métadonnées ou le nombre d'image ne correspondent pas. Sinon elle charge toutes les coupes pour les analyser et les labeliser. Si le scanner contient une partie abdomonopelvienne il est mis en mémoire (voire sauvegarder si "save" est rempli) puis les infos sont enregistrées dans le csv Parameters ---------- - rootdir : string, chemin complet vers un dossier contenant des fichiers DICOM - metadata : correspond à la liste des Metadata que l'on veut récupérer dans les DICOM - csv_path : chemin (complet) vers le csv pour enregistrer les metadatas du scanner. Le CSV sera créé automatiquement si celui-ci n'existe pas encore - save=False, False ou string, indique le chemin pour sauvegarder les volumes .npy correspondant aux scanners chargés. Optionnel (False : garde les numpy en mémoire.) Remarque : les numpy sont lourds, plus que les DICOM (qui sont compressés), environ 700Mo pour un scan abdo, on peut vite remplir un disque dur en utilisant cete fonction sur un dossier comprenant beaucoup de scanners ! - model : le model de labelisation - Compute_capacity = COMPUTE_CAPACITY : int, la capacité de calcul des gpu, voir site nvidia. Pour adapter automatiquement le calcul réalisé par le reseau en fonction de la capacité de l'ordinateur - verbose : qt de verbose. 0 pas de verbose ; 1 : texte seulement ; 2 : texte et images (met le terminal en pause à chaque image) Returns ------- Si le scanner a été chargé : - volume_numpy : le volume chargé. - perduSUP, perduBAS : les coupes non chargées sur la partie supérieure et la partie basse du scanner - facteur : facteur d'agrandissement - NOMFICHIER : le nom du fichier qui a été utilisé pour remplir le .csv Si la fonction s'est arrêtée spontanément : - volume_numpy = None - perduSUP = "Arret" - perduBAS = 0 - facteur = "niveau1" ou "niveau2" - None Notes ----- """ classtotest = ['Abdomen','Cervical','Diaphragme','Membreinf','Pelvien','Thorax'] #Verification que le dossier de sortie existe if save != False : save = DirVerification (save, verbose = 0) #Ecriture du csv if os.path.isfile(csv_path)==False: titres="" titres += "Name" for ele in metadata: titres += ","+ str(ele) titres += ",OriginalSlices,DeletedSlices,Facteur,Path,L3Position,Certitude,L3Original" if verbose>0:print("Creation du csv") with open(csv_path,"wt", encoding="utf-8") as file : file.write(titres) file.close() #Création des variables dont nous allons avoir besoin : stopNow = False perduSUP = 0 perduBAS = 0 facteur = 1 erreur = " " volume_numpy = np.empty(0) inter = {} start = time.perf_counter() list_files = os.listdir(rootdir) if len(list_files) <150: erreur = " Pas assez de coupes ({} fichiers)".format(len(list_files)) perduSUP = "Arret" facteur = "niveau1" if verbose>0:print(" Arrêt précoce de niveau 1. Les images n'ont pas été chargées : ",erreur) return volume_numpy, perduSUP, perduBAS, facteur, None #le volume numpy est donc vide si le dossier n'avait pas les informations requises. else : test1 = 1 test2 = 100 echantillon1 = os.path.join(rootdir, list_files[test1]) echantillon2 = os.path.join(rootdir, list_files[test2]) while os.path.isdir(echantillon1): test1 +=1 echantillon1 = os.path.join(rootdir, list_files[test1]) while os.path.isdir(echantillon1): test2 +=1 echantillon2 = os.path.join(rootdir, list_files[test2]) if not os.path.isdir(echantillon1): _ds_1 = pydicom.dcmread(echantillon1,force =True) """ Donnons un nom à cette série """ if (0x20, 0x000E) in _ds_1: NameSerie = str(_ds_1["SeriesInstanceUID"].value) NameSerie = NameSerie.replace('.','') NameSerie = NameSerie[-30:] else : NameSerie = "000000000000000000000000000000" NOMFICHIER = str(os.path.basename(rootdir))+"_"+NameSerie+r".npy" """ Verifions que cette serie n'a pas deja ete analysee en quel cas on s'arrête. """ if os.path.isfile(csv_path)==True: df = readCSV(csv_path,name=None,indexing="Name") if df.index.str.contains(NameSerie).any() : erreur = " Scanner déjà analysé." if verbose>0:print(" Arrêt précoce de niveau 1. Les images n'ont pas été chargées : ",erreur) perduSUP = "Arret" facteur = "niveau1" return volume_numpy, perduSUP, perduBAS, facteur, None """ Nous essayons de déterminer s'il s'agit d'un scanner AP ou TAP à partir uniquement des métadonnées du dicom Cela permet si ce n'est pas le cas de réaliser une fonction rapide, qui ne charge quasiment aucune image. """ if (0x08, 0x60) in _ds_1: modalite = _ds_1["Modality"].value if str(modalite) != "CT": #Limitation si ce n'est pas un scanner ! erreur += " Le fichier DICOM n'est pas un scanner." stopNow = True if (0x18, 0x50) in _ds_1: thickness = _ds_1["SliceThickness"].value if thickness >2.5: #Limitation si coupe trop épaisses : MIP...etc erreur += " Epaisseur de coupe trop importante." stopNow = True if (0x28, 0x1050) in _ds_1: WindowCenter = _ds_1["WindowCenter"].value try : if WindowCenter <0: erreur += " Scanner Pulmonaire." #Limitation si fenetre pulmonaire stopNow = True except : erreur += " Erreur inconnue sur le WindowCenter :" + str(WindowCenter) + "." stopNow = True if WindowCenter ==500: erreur += " Fenetrage Os." #Limitation si fenetre os (car trop de grain) stopNow = True if (0x18, 0x15) in _ds_1: BodyPartExamined = _ds_1["BodyPartExamined"].value if "HEAD" in str(BodyPartExamined) : #Limitation si imagerie cerebrale erreur += " BodyPartExamined : "+str(BodyPartExamined) stopNow = True #Verification de l'âge if (0x10, 0x10) in _ds_1: Age = _ds_1["PatientAge"].value if Age[-1:] != "Y" : erreur += " Patient mineur : "+str(Age) stopNow = True else : try : Age = Age[:-1] if float(Age) < 18. : #Limitation si patient mineur erreur += " Patient mineur : "+str(Age) stopNow = True except TypeError: print("Erreur dans la lecture de l'âge chez ce patient :", Age, type(Age)) pass if (0x18, 0x1160) in _ds_1: BodyPartExamined = _ds_1["FilterType"].value if "HEAD" in str(BodyPartExamined) : #Limitation si imagerie cerebrale (autre moyen de verification) erreur += " FilterType : " + str(BodyPartExamined) stopNow = True if (0x8, 0x103E) in _ds_1: BodyPartExamined = _ds_1["SeriesDescription"].value if "Crane" in str(BodyPartExamined) : #Limitation si imagerie cerebrale (autre moyen de verification) erreur += " Scanner Cranien." stopNow = True if not os.path.isdir(echantillon2): _ds_2 = pydicom.dcmread(echantillon2,force =True,specific_tags =["ImagePositionPatient","SliceThickness"]) position1 = [5.,10.,15.] position2 = [5.,10.,15.] #Lecture de la position pour ne pas prendre de MPR coro ou sag if (0x20, 0x32) in _ds_1: position1 = _ds_1["ImagePositionPatient"].value if (0x20, 0x32) in _ds_2: position2 = _ds_2["ImagePositionPatient"].value if position1[0] != position2[0]: erreur += " Reconstruction Sagittale." stopNow = True if position1[1] != position2[1]: erreur += " Reconstruction Coronale." stopNow = True if stopNow == True: """ Si le scanner n'est ni AP ni TAP la fonction s'arrête dès maintenant. """ if verbose>0:print(" Arrêt précoce de niveau 1. Les images n'ont pas été chargées : ",erreur) perduSUP = "Arret" facteur = "niveau1" if verbose>1:print("Mise à jour du fichier csv :", csv_path) #Essai remplir csv meme pour les arrets values=[] for de2 in metadata: if de2 in _ds_1: if _ds_1[de2].VR == "SQ": values = values + "sequence" elif _ds_1[de2].name != "Pixel Data": _ds = str(_ds_1[de2].value)[:64] raw_ds = _ds.replace('\n','__') raw_ds = raw_ds.replace('\r','__') raw_ds = raw_ds.replace('\t',"__") raw_ds = raw_ds.replace(',',"__") values.append(raw_ds) end = time.perf_counter() Timing = end-start dictMETADATAS = dict(zip(metadata, values)) dictODIASP = {'Name' : NOMFICHIER, "Duree" : Timing, "Erreur" : erreur,'OriginalSlices' : len(list_files), 'Path' : rootdir, "Archive" : None} dict3 = {**dictMETADATAS , **dictODIASP} df=pandas.read_csv(csv_path, delimiter=",") modDfObj = df.append(dict3, ignore_index=True) modDfObj.to_csv(csv_path, index=False) return volume_numpy, perduSUP, perduBAS, facteur, None #le volume numpy est donc vide si le dossier n'avait pas les informations requises. if stopNow == False: """ Maintenant que l'on a arrêté la fonction précocement selon certains criteres, regardons la liste des images """ for f in list_files: if not os.path.isdir(f): f_long = os.path.join(rootdir, f) _ds_ = pydicom.dcmread(f_long,specific_tags =["ImagePositionPatient","SliceThickness"]) inter[f_long]=_ds_.ImagePositionPatient[2] inter_sorted=sorted(inter.items(), key=lambda x: x[1], reverse=True) #il faut les trier dans l'ordre de lasequece d escanner (ce qui n'est pas l'ordre alphabetique du nom des fichiers) liste_fichiers=[x[0] for x in inter_sorted] path_img1=liste_fichiers[0] ds_img1=pydicom.dcmread(path_img1,stop_before_pixels=True) x_dim=int(ds_img1[0x28,0x10].value) y_dim=int(ds_img1[0x28,0x11].value) nbcoupes = len(liste_fichiers) if verbose>0:print(len(liste_fichiers), " fichiers trouvés pour ce scanner") if verbose>0:print("Creation d'un volume echantillon pour labelisation") x_dimDIV=x_dim/4 y_dimDIV=y_dim/4 ratioECHANTILLONAGE = 5 #Nous allons tester le volume à cet intervalle de coupe hauteur = len(liste_fichiers)//ratioECHANTILLONAGE volume_pour_label=np.zeros((hauteur,int(x_dimDIV),int(y_dimDIV),3)) for k in range (0,hauteur): dicom_file = pydicom.read_file(liste_fichiers[ratioECHANTILLONAGE*k]) img_orig_dcm = (dicom_file.pixel_array) slope=float(dicom_file[0x28,0x1053].value) intercept=float(dicom_file[0x28,0x1052].value) img_modif_dcm=(img_orig_dcm*slope) + intercept if (0x28, 0x1050) in dicom_file: WindowCenter = dicom_file["WindowCenter"].value if not isinstance(WindowCenter, float) : WindowCenter = 40 if (0x28, 0x1051) in dicom_file: WindowWidth = dicom_file["WindowWidth"].value arraytopng = zoom(img_modif_dcm, (1/4, 1/4)) arraytopng = np.stack((arraytopng,)*3, axis=-1) volume_pour_label[k,:,:,:]=arraytopng del arraytopng volume_pour_label = np.asarray(volume_pour_label, dtype=np.float16) volume_pour_label,a,b = normalize(volume_pour_label) volume_pour_label = WL_scaled(WindowCenter,WindowWidth,volume_pour_label,a,b) if verbose>1:affichage3D(volume_pour_label, 64, axis=2) if verbose >0 : print("Analyse du volume pour obtention d'un scanner abdominopelvien") if verbose >0 : AA=1 #Permet de mettre corriger le verbose si celui_ci était de 2. else : AA=0 AUTO_BATCH = int(Compute_capacity*5.3) prediction = model.predict(volume_pour_label, verbose =AA, batch_size=AUTO_BATCH) prediction0_1 = np.zeros_like(prediction, dtype=None, order='K', subok=True, shape=None) for i in range (0,np.shape(prediction)[0]): prediction0_1[i][np.argmax(prediction[i])] = 1 moyenne = TESTINGPRED(prediction0_1,classtotest,"ProportionGlobale",verbose=0) if moyenne[4] <0.2: stopNow = True erreur = "Le scanner ne possède pas assez de coupes pelviennes" fin = TESTINGPRED(prediction0_1,classtotest, "ProportionFinale", nombredecoupes=50//ratioECHANTILLONAGE, numerocoupeinitial = 0,verbose=0) if (fin[1]+fin[2]+fin[0]+fin[5]) >0.35 : #plus de 35 % finaux sont cervical, diaphragme, abdo ou thorax stopNow = True erreur = "La fin du volume n'est pas un scanner abdominopelvien" if stopNow == True: volume_numpy = np.empty(0) if verbose>0:print(" Arrêt précoce de niveau 2. Les images ont été chargées partiellement puis arrêtées : ",erreur) perduSUP = "Arret" facteur = "niveau2" if verbose>1:print("Mise à jour du fichier csv :", csv_path) #Essai remplir csv meme pour les arrets values=[] for de2 in metadata: if de2 in ds_img1: if ds_img1[de2].VR == "SQ": values = values + "sequence" elif ds_img1[de2].name != "Pixel Data": _ds = str(ds_img1[de2].value)[:64] raw_ds = _ds.replace('\n','__') raw_ds = raw_ds.replace('\r','__') raw_ds = raw_ds.replace('\t',"__") raw_ds = raw_ds.replace(',',"__") values.append(raw_ds) end = time.perf_counter() Timing = end-start dictMETADATAS = dict(zip(metadata, values)) dictODIASP = {'Name' : NOMFICHIER, "Duree" : Timing, "Erreur" : erreur,'OriginalSlices' : len(list_files), 'Path' : rootdir, "Archive" : None} dict3 = {**dictMETADATAS , **dictODIASP} df=pandas.read_csv(csv_path, delimiter=",") modDfObj = df.append(dict3, ignore_index=True) modDfObj.to_csv(csv_path, index=False) return volume_numpy, perduSUP, perduBAS, facteur, None if stopNow == False: if verbose==0: print("Chargement, cela peut être long ...") """ Nous allons maintenant retirer les coupes initiales ou coupes finales si jamais elles n'appartiennent pas au volume abdopelv """ total = len(prediction) tranchedelecture = 30 #Lecture des 30 premieres coupes : for i in range(0,total,tranchedelecture//ratioECHANTILLONAGE): debut = TESTINGPRED(prediction0_1,classtotest, "ProportionInitiale", nombredecoupes=tranchedelecture//ratioECHANTILLONAGE, numerocoupeinitial=i,verbose=0) if debut[5]+debut[1] > (debut[0]+debut[2]+debut[4]) : # plus de thorax et cervical que abdopelv if verbose>1:print(" Sur les ", tranchedelecture, " premières coupes : proportion de crane,cervical :", debut[1], "thorax :", debut[5]," diaphragme :", debut[2]," abdo :", debut[0]," pelv :", debut[4]," mbinf :", debut[3]) liste_fichiers= liste_fichiers[tranchedelecture:] perduSUP += tranchedelecture if verbose>0:print("Supression de ",tranchedelecture," coupes dont la majorité est du crane, cervical ou thorax.") if verbose>0 and perduSUP==0 :print("... Pas de coupes crane ni cervical ni thorax majoritaires initialement.") total = len(prediction) #mise à jour suite à la découpe faite juste au dessus tranchedelecture = 30 for i in range(0,total,tranchedelecture//ratioECHANTILLONAGE): fin = TESTINGPRED(prediction0_1,classtotest, "ProportionFinale", nombredecoupes=tranchedelecture//ratioECHANTILLONAGE, numerocoupeinitial=i,verbose=0) if fin[3] > (fin[4]+fin[0]) : # plus de mb inf que pelvien ou abdo if verbose>1:print(" Sur les ", tranchedelecture, " dernières coupes : proportion de crane,cervical :", debut[1], "thorax :", debut[5]," diaphragme :", debut[2]," abdo :", debut[0]," pelv :", debut[4]," mbinf :", debut[3]) #if verbose>1:print("Proportion de abdominopelvien:", debut[0]) liste_fichiers= liste_fichiers[:-tranchedelecture] perduBAS += tranchedelecture if verbose>0:print("Supression de ",tranchedelecture," coupes finales dont la majorité est du membre inférieur.") if verbose>0 and perduBAS==0 :print("... Pas de coupes membres inférieurs majoritaires à la fin.") del volume_pour_label #Creation du volume representant le scanner dont on garde les coupes volume_numpy=np.zeros((len(liste_fichiers),x_dim,y_dim)) slope=float(ds_img1[0x28,0x1053].value) intercept=float(ds_img1[0x28,0x1052].value) for k in range (0,len(liste_fichiers)): dicom_file = pydicom.read_file(liste_fichiers[k]) img_orig_dcm = (dicom_file.pixel_array) img_modif_dcm=(img_orig_dcm*slope) + intercept img_modif_dcm= np.asarray(img_modif_dcm, dtype=np.float16) volume_numpy[k,:,:]=img_modif_dcm #ecrit une ligne correspondant à l'image volume_numpy = np.asarray(volume_numpy, dtype=np.float16) if len(liste_fichiers)>384 : #Cette partie de la fonction permet de s'affranchir des inégalités dépaisseurs de coupes. facteur = 384/(len(liste_fichiers)) nbcoupesfinal = int(len(liste_fichiers)*facteur) if facteur !=1 : if verbose>0:print(len(liste_fichiers)," coupes ont été chargées puis le volume est ramené à ", nbcoupesfinal, " coupes") #volume_numpy = zoom(volume_numpy, (facteur, 1, 1)) #CUPY if CUPY == True: cp.cuda.Device(0).use() x_gpu_0 = cp.asarray(volume_numpy) x_gpu_0 = MAGIC.zoom(x_gpu_0, (facteur, 1, 1)) volume_numpy = cp.asnumpy(x_gpu_0) x_gpu_0 = None else : volume_numpy = zoom(volume_numpy, (facteur, 1, 1)) else : if verbose>0: print(len(liste_fichiers), " coupes ont étés chargées") #Sauvegarde .npy if save != False: if verbose>0: print("Sauvegarde de "+NOMFICHIER+" ("+str(nbcoupesfinal)+" coupes) dans le dossier "+save) np.save(os.path.join(save,NOMFICHIER),volume_numpy) #Affichage if verbose>1: print("...dont voici l'image sagittale centrale") volume_numpy = np.asarray(volume_numpy, dtype=np.float16) affichage3D(volume_numpy, int(x_dim//2), axis=2) #Mise a jour du csv if verbose>1:print("Mise à jour du fichier csv :", csv_path) values=[] for de2 in metadata: if de2 in ds_img1: if ds_img1[de2].VR == "SQ": values = values + "sequence" elif ds_img1[de2].name != "Pixel Data": _ds = str(ds_img1[de2].value)[:64] raw_ds = _ds.replace('\n','__') raw_ds = raw_ds.replace('\r','__') raw_ds = raw_ds.replace('\t',"__") raw_ds = raw_ds.replace(',',"__") values.append(raw_ds) end = time.perf_counter() Timing = end-start dictMETADATAS = dict(zip(metadata, values)) dictODIASP = {'Name' : NOMFICHIER, "Duree" : Timing,'OriginalSlices' : nbcoupes, 'DeletedSlices' : str(perduSUP)+r"+"+str(perduBAS),'Facteur' : facteur , 'Path' : rootdir, "Archive" : None} dict3 = {**dictMETADATAS , **dictODIASP} df=pandas.read_csv(csv_path, delimiter=",") modDfObj = df.append(dict3, ignore_index=True) modDfObj.to_csv(csv_path, index=False) return volume_numpy, perduSUP, perduBAS, facteur, NOMFICHIER #___________________________________________________________________________________________ #___________________FONCTIONS POUR AFFICHAGE DES IMAGES_____________________________________ #___________________________________________________________________________________________ def ApplyWindowLevel (Global_Level,Global_Window,image): """ Utilisée dans FindL3 Les valeurs des voxels en DICOM sont entre -2000 et +4000, pour afficher une image en echelle de gris (255 possibilités de gris sur un oridnateur classique) il faut réduire les 6000 possibilités à 255. Cette fonction est nécessaire avant d'afficher une image mais fait perdre des données (passage de 16 bits à 8 bits par pixel). Obligatoire pour sauvegarder une image png ou jpg mais fait perdre de l'information ! On redéfinit les valeurs des pixels selon une largeur de fenetre et un centre Parameters ---------- - Global_Level : centre de la fenetre (en UH) - Global_Window : largeur de la fenetre (en UH) - image : image ou volume numpy chargé en mémoire Returns ------- - image_ret : l'image ou le volume après réglage du contraste. Notes ----- Ne fonctionne PAS si l'image a déjà été normalisée. Dans ce cas utiliser WL_scaled en fournissant a et b (obtenu par la fonction normalize). """ li=Global_Level-(Global_Window/2) ls=Global_Level+(Global_Window/2) image_ret=np.clip(image, li, ls) image_ret=image_ret-li image_ret=image_ret/(ls-li) image_ret=image_ret*255 return image_ret def Norm0_1 (volume_array): """ les scanners ont des voxels dont la valeur est négative, ce qui sera mal interprété pour une image, il faut donc normaliser entre 0 et 1. Cela permet notamment de les afficher sous formlat image apres un facteur de *255. """ a,b,c=volume_array.min(),volume_array.max(),volume_array.mean() volume_array_scale=(volume_array-a)/(b-a) return volume_array_scale,a,b,c def WL_scaled (Global_Level,Global_Window,array,a,b): """ Idem que ApplyWindowLevel mais corrigé par les facteurs a et b qui correpsondent au min et max, >>> à utiliser à la place de ApplyWindowLevel si on a utilisé Norm0_1 ou normalize Utilisée dans FindL3 Les valeurs des voxels en DICOM sont entre -2000 et +4000, pour afficher une image en echelle de gris (255 possibilités de gris sur un oridnateur classique) il faut réduire les 6000 possibilités à 255. Cette fonction est nécessaire avant d'afficher une image mais fait perdre des données (passage de 16 bits à 8 bits par pixel). Obligatoire pour sauvegarder une image png ou jpg mais fait perdre de l'information ! On redéfinit les valeurs des pixels selon une largeur de fenetre et un centre On sauvegarde les bornes initiales dans les variables a et b dans le cas où l'on veuille modifier le contraste après coup Parameters ---------- - Global_Level : centre de la fenetre (en UH) - Global_Window : largeur de la fenetre (en UH) - array : image ou volume numpy chargé en mémoire - a : minimum en UH avant normalize - b : maximum en UH avant normalize Returns ------- - image_ret : l'image ou le volume après réglage du contraste. Notes ----- Ne fonctionne QUE si l'image a déjà été normalisée. """ li=Global_Level-(Global_Window/2) ls=Global_Level+(Global_Window/2) li=li/b ls=ls/b image_ret=np.clip(array, li, ls) image_ret=image_ret-li image_ret=image_ret/(ls-li) return image_ret #___________________________________________________________________________________________ #___________________FONCTIONS POUR VALIDER LA SEGMENTATION__________________________________ #___________________________________________________________________________________________ def normalize (volume_array): """ Utilisée dans FindL3 Les valeurs des voxels en DICOM sont entre -2000 et +4000, pour limiter les calculs du réseau de neurones il est conseillé de diminuer ces valeurs entre -1 et 1. On sauvegarde les bornes initiales dans les variables a et b dans le cas où l'on veule modifier le contraste après coup Parameters ---------- - volume_array : volume numpy chargé en mémoire Returns ------- - volume_array : volume numpy chargé en mémoire - a : valeur minimum du volume avant la fonction - b : valeur maximum du volume avant la fonction Notes ----- a et b peuvent être rentrés tels quels dans la fonction de réglage du contraste WL_scaled """ a,b=np.float(volume_array.min()),np.float(volume_array.max()) volume_array = volume_array.astype(np.float) if abs(a)>abs(b) : c = abs(a) else: c= abs(b) if c != 0: volume_array_scale=volume_array/c return volume_array_scale,a,b def axial_to_sag (volume_array, sens=1): """ Utilisée dans FindL3 rotation pour passer le volume de axial à sagittal Parameters ---------- - volume_array : volume numpy chargé en mémoire - sens : int, 0 ou 1 """ volume_array = np.rot90(volume_array,k=sens,axes=(0,1)) volume_array = np.rot90(volume_array,k=sens,axes=(2,0)) return volume_array def affichage3D(volume, k, axis=0): """ affiche la coupe numéro k d'un volume, selon son axe axis Parameters ---------- - volume : volume numpy chargé en mémoire - k : int, numéro de coupe - axis : int, 0 : axial ; 1 : coronal ; 2 : sag (dans le cas d'un volume chargé en axial) """ f = plt.figure() if axis == 0: image1 = volume[k,:,:] if axis == 1: image1 = volume[:,k,:] if axis == 2: image1 = volume[:,:,k] plt.imshow(image1,cmap='gray') plt.show() return def affichage2D(volume): """ affiche un plan numpy 2D Parameters ---------- - volume : plan numpy chargé en mémoire, en 2 dimensions """ f = plt.figure() image1 = volume plt.imshow(image1,cmap='gray') plt.show() return def AffichageMulti(volume, frequence, axis=0, FIGSIZE = 40): """ affiche toutes les coupes d'un volume selon l'axe axis, avec une frequence entre les coupes définie Parameters ---------- - volume : volume numpy chargé en mémoire - frequence : int, espace inter coupe (en voxels) - axis : int, 0 : axial ; 1 : coronal ; 2 : sag (dans le cas d'un volume chargé en axial) - FIGSIZE : taille des images pour l'affichage. """ coupes = np.shape(volume)[axis] nb_images = coupes // frequence fig=plt.figure(figsize=(FIGSIZE, FIGSIZE)) columns = 6 if nb_images % columns >0 : rows = (nb_images // columns)+1 else : rows = nb_images // columns for i in range(nb_images): i+=1 fig.add_subplot(rows, columns, i) dix = frequence * i if axis == 0: plt.imshow(volume[dix,:,:], cmap='gray') elif axis == 1: plt.imshow(volume[:,dix,:], cmap='gray') elif axis == 2: plt.imshow(volume[:,:,dix], cmap='gray') plt.show(block=True) return #___________________________________________________________________________________________ #___________________FONCTIONS POUR UTILISER LE RESEAU SUR UN VOLUME INTACT__________________ #___________________________________________________________________________________________ def NPY_to_DICOM (numpy=None, mode="name", csvpath=None, dossier = "L3", dirgeneral = r"C:\Users\alexa\OneDrive\Documents\ODIASP", Center = 40, Width = 400, numerocoupe = None): """ ---DEPRECATED--- Cette fonction sert à créer un fichier dicom à partir des infos contenues dans le CSV et en entrant un volume numpy en entrée. On peut l'utiliser seule ou automatiquement dans la fonction FindL3 a noter : Parameters ---------- - numpy : nom du numpy selon le csv. Optionnel si mode dossier. - mode : "name" ou "dossier : - en mode "name" : il faut nourrir l'argument "numpy" avec un string correspondant au nom d'un fichier .npy situé dans le dossier "dossier" - en mode "dossier" : l'arg "numpy" ne sert à rien, la fonction va scanner tout le dossier "dossier" et créer un fichier dicom pour chaque numpy trouvé - csv_path : chemin (complet) vers le csv où ont été enregistrées les metadatas de All-in-one - dossier : sous-dossier dans lequel se trouvent les numpy (si mode "dossier") - dirgeneral : Dossier de travail où ce situent les autres sous-dossier - Center = 40 et Width = 400 : ne pas toucher. Correspondent aux réglages de contraste pour l'image de sortie - numerocoupe : rentre l'information du numero de coupe Notes ----- En l'état cette fonction n'est pas utilisée par FindL3 dans All-in-one : elle n'est pas nécessaire car nous récupérons directement le fichier dicom d'origine. Cette fonction pouvant s'avérer utile par ailleurs, nous la laissons donc en l'état. """ if mode=="name" : if numpy==None: raise Error PATHduNUMPY = os.path.join(os.path.join(dirgeneral,dossier),numpy) VOLUME = np.load(PATHduNUMPY) image2d = VOLUME.astype(np.uint16) df=pandas.read_csv(csvpath, delimiter=",") df.set_index("Name", inplace=True) #Setting file meta information... meta = pydicom.Dataset() meta.MediaStorageSOPClassUID = pydicom._storage_sopclass_uids.MRImageStorage #<<<<<<<<<<<<<<<<<<<<<<<<<<< meta.MediaStorageSOPInstanceUID = pydicom.uid.generate_uid() meta.TransferSyntaxUID = pydicom.uid.ExplicitVRLittleEndian #remplissage des metadonnées du dicom ds = Dataset() ds.file_meta = meta ds.is_little_endian = True ds.is_implicit_VR = False ds.SOPClassUID = pydicom._storage_sopclass_uids.MRImageStorage ds.PatientName = "Test^Firstname" ds.PatientID = "123456" ds.Modality = "CT" ds.SeriesInstanceUID = pydicom.uid.generate_uid() ds.StudyInstanceUID = pydicom.uid.generate_uid() ds.FrameOfReferenceUID = pydicom.uid.generate_uid() ds.BitsStored = 16 ds.BitsAllocated = 16 ds.SamplesPerPixel = 1 ds.HighBit = 15 ds.ImagesInAcquisition = "1" ds.Rows = image2d.shape[0] ds.Columns = image2d.shape[1] ds.InstanceNumber = 1 ds.ImagePositionPatient = r"0\0\1" ds.ImageOrientationPatient = r"1\0\0\0\-1\0" ds.ImageType = r"ORIGINAL\PRIMARY\AXIAL" ds.RescaleIntercept = "0" ds.RescaleSlope = "1" if numerocoupe != None: ds.InstanceNumber = int(numerocoupe) #TaillePixel = str(df.at[numpy,"PixelSpacing"])[3:...] #DEBUG #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #ds.PixelSpacing = str(TaillePixel) + "\\" +str(TaillePixel) #DEBUG ds.PhotometricInterpretation = "MONOCHROME2" ds.PixelRepresentation = 1 ds.WindowCenter = Center ds.WindowWidth = Width pydicom.dataset.validate_file_meta(ds.file_meta, enforce_standard=True) print("Setting pixel data... for ", numpy) ds.PixelData = image2d.tobytes() #enregistrement dans le dossier os.chdir(os.path.join(dirgeneral,dossier)) ds.save_as(r"{0}.dcm".format(str(numpy)[0:-4])) if mode=="dossier": listfiles = os.listdir(os.path.join(dirgeneral,dossier)) for item in listfiles : if str(item)[-4:] == ".npy": NPY_to_DICOM (item, mode="name", csvpath=csvpath, dossier=dossier, dirgeneral=dirgeneral) #___________________________________________________________________________________________ #___________________FONCTIONS POUR LA VERSION DATA AUGMENT DU RESEAU _______________________ #___________________________________________________________________________________________ def Norm_and_Scale_andCrop(VOLUME,downsample = 0.5,CUPY=True): """ prend un volume intact et commence à le traiter permet de diminuer la taille des fichiers """ if CUPY== True: cp.cuda.Device(0).use() VOLUME = axial_to_sag(VOLUME) #volume_array_gpu = cp.asarray(VOLUME) #volume_array_gpu = cp.rot90(volume_array_gpu,1,axes=(0,1)) #volume_array_gpu = cp.rot90(volume_array_gpu,1,axes=(2,0)) hauteur = np.shape(VOLUME)[1] correction =("ok",1,0) if hauteur<384: ratio =384/hauteur volume_array_gpu = cp.asarray(VOLUME) volume_array_gpu = MAGIC.zoom(volume_array_gpu, (1, ratio, 1)) VOLUME = cp.asnumpy(volume_array_gpu) volume_array_gpu = None correction = ("trop petit",hauteur, ratio) if hauteur>384: #a noter que ceci n'est pas censé arriver, la fonction d'import limitant la taille a 384 ! VOLUME = VOLUME[:,-384:,:] delta = hauteur-384. correction = ("trop grand", hauteur, delta) VOLUME = VOLUME[170:342,:,96:-32] if downsample != 1 : volume_array_gpu = cp.asarray(VOLUME) volume_array_gpu = MAGIC.zoom(volume_array_gpu, (1, downsample, downsample)) VOLUME = cp.asnumpy(volume_array_gpu) volume_array_gpu = None VOLUMEnorm,a,b = normalize(VOLUME) #Version CPU else: VOLUME = axial_to_sag(VOLUME) hauteur = np.shape(VOLUME)[1] correction =("ok",1,0) if hauteur<384: ratio =384/hauteur VOLUME = zoom(VOLUME, (1, ratio, 1)) correction = ("trop petit",hauteur, ratio) if hauteur>384: #a noter que ceci n'est pas censé arriver, la fonction d'import limitant la taille a 384 ! VOLUME = VOLUME[:,-384:,:] delta = hauteur-384. correction = ("trop grand", hauteur, delta) VOLUME,a,b = normalize(VOLUME) VOLUME = VOLUME[170:342,:,96:-32] if downsample != 1 : VOLUME = zoom(VOLUME, (1, downsample, downsample)) return VOLUMEnorm, correction,a,b, VOLUME def FindCoupeMediane(volume, verbose =0): x=0 while np.sum(volume[:,x:,:]) > np.sum(volume[:,:x,:]): x+=1 if verbose >0 : affichage2D(volume[:,x,:]) if verbose >0 : affichage3D(volume, int(np.shape(volume)[0]/2), axis=0) return x #________________________________________________________________________________________ def Find_L3 (name, model, NUMPY = "from_hardrive", downsample =0.5, csv_path = False, dirgeneral = r"C:\\Users\\alexa\\OneDrive\\Documents\\ODIASP", level = 40, window = 400, # savepng=False, savedcm=False, nombredecoupesperduesSUP = 0, nombredecoupesperduesBAS = 0, facteurAgrandissement = 1, verbose = 2, Compute_capacity = COMPUTE_CAPACITY, CUPY=True ): """ Cette fonction prend un volume numpy et le rentre dans le réseau de neurones. On peut appeler ce volume de deux facons : - s'il est sauvegardé en rentrant son nom et en laissant NUMPY= "from_hardrive" - s'il est en mémoire en donnant le nom voulu pour name (pas d'importance hormis pour la cohérence du .csv) et en nourrisant le volume numpy dans l'argument NUMPY. Parameters ---------- - name : nom donné au volume (doit correspondre au csv) - model : le model unet pour la segmentation de L3. - NUMPY = "from_hardrive", par défaut le volume est chargé à partir des dossiers, sinon il suffit de nourrir ici un volumenumpy chargé en mémoire (c'est le cas dans la fonction all-in-one) - csv_path : chemin (complet) vers le csv où ont été enregistrées les metadatas de All-in-one - downsample : le downscaling qui a été utilisé pour le reseau de neurones. laisser à 0.5 si vous utilisez le reseau fourni. - dirgeneral : Dossier de travail où ce situent les autres sous-dossier - level = 40 et window = 400 : ne pas toucher. Correspondent aux réglages de contraste pour l'image de sortie - nombredecoupesperduesSUP = 0, nombredecoupesperduesBAS = 0 : nombres de coupes NON chargées, utilisés pour calculer la position sur le scanner initial. - facteurAgrandissement = 1 : zoom réalisé sur le volume chargé en amont. - verbose : qt de verbose. 0 pas de verbose ; 1 : texte seulement ; 2 : texte et images (met le terminal en pause à chaque image) - Compute_capacity = COMPUTE_CAPACITY : pour adapter automatiquement le calcul réalisé par le reseau en fonction de la capacité de l'ordinateur Returns ------- image : un volume numpy sans perte d'information correspondant à l'axial de L3 image_wl : une image, prête à être affichée (contraste pré-réglé mais avec perte d'information positionrelle : les coordonnés selon l'axe z du centre de L3 (sur le scanner entier, incluant les coupes non chargées) Par ailleurs, enregistre dans le csv les resultats et dans le dossier de sortie savepng les résultats en image png et savedcm en dicom Notes ----- La segmentation musculaire est accessoire à cette étape : - pro : permet d'afficher les résultats à la volée, la sauvegarde des images intermédiaires (image sagittale etc) est accessoire - con : plus lent que de segmenter par la suite avec ODIASP.PredictMUSCLES """ start = time.perf_counter() #Verification que le dossier de sortie existe if savepng != False : savepng = DirVerification (savepng, DossierProjet=dirgeneral,verbose = 0) if savedcm != False : savedcm = DirVerification (savedcm, DossierProjet=dirgeneral,verbose = 0) if type(NUMPY) == str : if type(NUMPY) == "from_hardrive" : NUMPY = Reading_Hardrive (name, Class="Images") else : NUMPY = NUMPY else : NUMPY = NUMPY #Traitement du volume pour qu'il soit accepté par le reseau de neurones. if verbose>0:print("Adaptation du volume avant recherche de L3") Model_import, correction,a,b, backup = Norm_and_Scale_andCrop(NUMPY,downsample=downsample,CUPY=CUPY) #enregistre la 'correction' réalisée dans le scaling backup = backup + abs(np.min(backup)) backup = (backup/np.max(backup))*255 backup= backup.astype(np.uint8) versionModel = Image.fromarray(backup[int(np.shape(backup)[0]/2),:,:])#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Model_import = Model_import[:,:,:,np.newaxis] if verbose>0:a=1 #au cas où verbose = 2 ce qui ne serait pas accepté par la Method predict else:a=0 if verbose>0:print("Localisation de L3...") AUTO_BATCH = int(Compute_capacity*1.3) prediction = model.predict(Model_import, verbose =a, batch_size=AUTO_BATCH) del Model_import #calcul du centre de gravité du volume donné au réseau pour obtenir le centre de L3 (et correction de sa valeur pour correspondre au volume numpy donné en entrée center = scipy.ndimage.center_of_mass(prediction, labels=None, index=None)#normal #center_median = FindCoupeMediane(prediction) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #prediction[prediction<(np.max(prediction)/2)]=0 #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_bary_threshold = scipy.ndimage.center_of_mass(prediction, labels=None, index=None) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_median_threshold = FindCoupeMediane(prediction) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< upsample=1/downsample position = center[1]*upsample #center_median *= upsample#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_bary_threshold = center_bary_threshold[1] * upsample#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_median_threshold *= upsample#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< if correction[0]=="trop petit": #lit la correction position=int(position/correction[2]) #center_median = int(center_median/correction[2]) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_bary_threshold = int(center_bary_threshold/correction[2]) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_median_threshold = int(center_median_threshold/correction[2])#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< elif correction[0]=="trop grand": position=int(position+correction[2]) #center_median = int(center_median+correction[2]) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_bary_threshold = int(center_bary_threshold+correction[2]) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_median_threshold = int(center_median_threshold+correction[2])#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< else : position = int(position) if verbose>0:print("Axial position : "+str(position), "dans ce volume") positionreelle = int((position*(1/facteurAgrandissement)) +nombredecoupesperduesSUP) #center_median = int((center_median*(1/facteurAgrandissement)) +nombredecoupesperduesSUP) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_bary_threshold = int((center_bary_threshold*(1/facteurAgrandissement)) +nombredecoupesperduesSUP) #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #center_median_threshold = int((center_median_threshold*(1/facteurAgrandissement)) +nombredecoupesperduesSUP)#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< if verbose>0 and positionreelle != position : print("Axial position : ",positionreelle, " dans le volume initial") #Standard_deviation = np.std(prediction) #Certitude = (Standard_deviation*100)**6 #if verbose>0:print("Estimation de la confiance : ", Certitude) NUMPY = np.asarray(NUMPY, dtype=np.float16) image = NUMPY[position,:,:] #image axiale centrée sur le baricentre image_wl=ApplyWindowLevel(level,window,image) #réglages de contraste sagittal = NUMPY[:,:,int(center[0])+170] #image sag centrée sur le baricentre #sagittal = NUMPY[:,:,int(center[0])+128] #image sag centrée sur le baricentre sagittal_wl=ApplyWindowLevel(level,window,sagittal) #réglages de contraste sagittal_wl[position,:] = np.amax(NUMPY)/6 #crée la ligne horizontale sur l'image sag montrant la coupe axiale trouvée sagittalPRED = prediction[int(center[0]),:,:] sagittalPRED = sagittalPRED[:,:,0] if correction[2] == 0:factueurdecorrection=1 else : factueurdecorrection=correction[2] sagittalPRED = zoom(sagittalPRED, (1/(factueurdecorrection*downsample),1/downsample)) sagittalPRED *=255 mask_a_afficher =np.zeros(np.shape(sagittal_wl)) mask_a_afficher[:,96:-32] = sagittalPRED mask_a_save = mask_a_afficher/np.max(mask_a_afficher) #Gestion des problèmes de nom de fichier vs nom de dossier if str(name)[-4:] == r".npy": nameNPY=str(name)[-43:] name__=str(name)[-43:-4] else: name__=str(name)[-39:] nameNPY=str(name)[-39:]+r".npy" if savepng != False: #saving the axial image arraytopng,_,_,_ = Norm0_1(image_wl) arraytopng *=255 arraytopng= arraytopng.astype(np.uint8) im = Image.fromarray(arraytopng) im.save(os.path.join(savepng,name__)+r"_axial.png") versionModel.save(os.path.join(savepng,name__)+r"VersionScaleModel.png") #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< #saving the sagittal image sagtopng,_,_,_ = Norm0_1(sagittal_wl+mask_a_save/6)#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< sagtopng *=255 sagtopng= sagtopng.astype(np.uint8) im2 = Image.fromarray(sagtopng) im2.save(os.path.join(savepng,name__)+r"_sag.png") if savedcm != False: #saving the dicom NPY_to_DICOM (numpy=nameNPY, mode="name", csvpath=csv_path, dossier = savedcm, dirgeneral = dirgeneral,numerocoupe = positionreelle) if verbose>1: _, ax = plt.subplots(1,2,figsize=(25,25)) ax[0].imshow(image_wl, cmap='gray') ax[1].imshow(sagittal_wl, cmap='gray') ax[1].imshow(mask_a_afficher, cmap='magma', alpha=0.5) plt.show() if csv_path != False: #mettre a jour le csv avec pandas end = time.perf_counter() Timing = end-start df=pandas.read_csv(csv_path, delimiter=",") df.set_index("Name", inplace=True) df.at[nameNPY,"L3Position"] = position #df.at[nameNPY,"Standard_deviation"] = Standard_deviation #df.at[nameNPY,"Certitude"] = Certitude df.at[nameNPY,"L3Original"] = positionreelle #df.at[nameNPY,"center_median"] = center_median #df.at[nameNPY,"center_bary_threshold"] = center_bary_threshold #df.at[nameNPY,"center_median_threshold"] = center_median_threshold df.at[nameNPY,"DureeL3"] = Timing df.to_csv(csv_path) return image, image_wl, positionreelle def All_in_One(dossierDICOM, METADATAS, csv_path, MODEL_niveau_de_coupe, Model_segmentation_L3, Model_segmentation_muscles = None, DIR_SORTIE = False, VERBOSE = 2, WINDOW_CENTER = 40, WINDOW_WIDTH = 400, DossierDeTravail = None, CUPY = True ): """ Charge les examens depuis un dossier, trouve les images correspondant au scan abdopelvien puis segmente ce volume pour trouver L3. On peut segmenter les muscles dans la même étape pour afficher le resultat en une seule fois mais ceci nécessite de charger le réseau de segmentation musculaire à chaque fois : cette méthode est plus consommatrice en ressources. il est conseillé de ne pas segmenter les muscles à cette étape mais de le faire en une seule fois par la suite. Parameters ---------- - dossierDICOM : Il s'agit du dossier d'import où se situent les images - METADATAS : les informations que l'on veut sauvegarder parmi les métadonnées des DICOM - csv_path : chemin (complet) vers le csv où ont été enregistrés, les metadatas de All-in-one - MODEL_niveau_de_coupe : le modele de labelisation - Model_segmentation_L3 : le modele de semgentation de L3 - Model_segmentation_muscles : le model (ODIASP) pour la segmentation musculaire, non obligatoire - DIR_SORTIE : Dossier dans lequel seront sauvegardés les images de résultats (les résultats sont de toute facon enregistrés en format texte dans le csv - VERBOSE : qt de verbose. 0 pas de verbose ; 1 : texte seulement ; 2 : texte et images (met le terminal en pause à chaque image) - WINDOW_CENTER = 40 et WINDOW_WIDTH = 400 : ne pas toucher. - DossierDeTravail : Dossier où seront enregistrées les infos, nécessaire si on utilise la segmentation musculaire par la suite. Optionnel si la segmentation musculaire est faire à la volée. Returns ------- Rien. Mais enregistre dans le csv les resultats et dans le dossier de sortie DIR_SORTIE les résultats Notes ----- La segmentation musculaire est accessoire à cette étape : - pro : permet d'afficher les résultats à la volée, la sauvegarde des images intermédiaires (image sagittale etc) est accessoire - con : plus lent que de segmenter par la suite avec ODIASP.PredictMUSCLES """ #la fonction fast_scandir est récursive et crée une liste des sous dossiers que l'on trouve dans le DossierGeneral dir_to_scan = fast_scandir(dossierDICOM) nb_niv1 = 0 nb_niv2 = 0 i=1 for dirs in dir_to_scan: print ("Chargement du dossier ", i,r"/",len(dir_to_scan)," : " + str(dirs)) i+=1 """ Import du scanner, labelisation avec le premier reseau et mise a jour du csv """ start_time = time.clock() #TIME volume_numpy, perduSUP, perduBAS, facteur, NOM = import_dicom_to_abdopelv(dirs, metadata = METADATAS, csv_path = csv_path, save= False, model = MODEL_niveau_de_coupe, verbose = VERBOSE, CUPY=CUPY) finImport_time = time.clock() #TIME print(finImport_time - start_time, "secondes pour l'import")#TIME if perduSUP == "Arret" : #export_dicomDir_to_numpyV2 renvoit la variable perdu = "Arret" si jamais elle s'est arrêtée seule if facteur == "niveau1" : nb_niv1 +=1 if facteur == "niveau2" : nb_niv2 +=1 if VERBOSE >1 : print ("\n \n") else : """ Transmission pour prediction de L3 """ image, image_wl, position = Find_L3 (NOM, model = Model_segmentation_L3, NUMPY = volume_numpy, downsample = 0.5, csv_path = csv_path, dirgeneral = DossierDeTravail, level = WINDOW_CENTER, window = WINDOW_WIDTH, savepng=DIR_SORTIE, savedcm=False, nombredecoupesperduesSUP = perduSUP,nombredecoupesperduesBAS = perduBAS, facteurAgrandissement = facteur, verbose = VERBOSE, CUPY=CUPY) finL3 = time.clock() #TIME print(finL3 - finImport_time, "secondes pour la segmentation L3 ")#TIME """ On recupere la postion de L3 pour aller chercher le fichier dicom d'origine qui lui correspond """ #il faut les trier dans l'ordre de la sequence de scanner (ce qui n'est pas l'ordre alphabetique du nom des fichiers) inter = {} list_files = os.listdir(dirs) for f in list_files: if not os.path.isdir(f): f_long = os.path.join(dirs, f) _ds_ = pydicom.dcmread(f_long,specific_tags =["ImagePositionPatient","SliceThickness"]) inter[f_long]=_ds_.ImagePositionPatient[2] inter_sorted=sorted(inter.items(), key=lambda x: x[1], reverse=True) liste_fichiers=[x[0] for x in inter_sorted] dicom_file = pydicom.dcmread(liste_fichiers[position], force=True) dicom_file.file_meta.TransferSyntaxUID = pydicom.uid.ImplicitVRLittleEndian img_orig_dcm = (dicom_file.pixel_array) slope=float(dicom_file[0x28,0x1053].value) intercept=float(dicom_file[0x28,0x1052].value) img_modif_dcm=(img_orig_dcm*slope) + intercept img_dcm_wl=ApplyWindowLevel(WINDOW_CENTER,WINDOW_WIDTH,img_modif_dcm) if DIR_SORTIE != False : DIR_SORTIE = DirVerification (DIR_SORTIE, DossierProjet=DossierDeTravail,verbose = 0) name = str(NOM)[:-4] name += "_" + str(liste_fichiers[position])[-8:] namepng = name + "_FichierOrigine.png" namedcm = name + "_FichierOrigine.dcm" SAVEPATH = os.path.join(DIR_SORTIE,namepng) im2 = Image.fromarray(img_dcm_wl) im2 = im2.convert("L") im2.save(SAVEPATH) copy2(liste_fichiers[position], os.path.join(DIR_SORTIE,namedcm)) if Model_segmentation_muscles != None : """ On teste notre coupe L3 pour segmenter le muscle automatiquement """ if VERBOSE >0 :a=1 else: a=0 image_wl = image_wl[np.newaxis,:,:,np.newaxis] imagepourreseau = image_wl/255 SEGMuscles = Model_segmentation_muscles.predict(imagepourreseau, verbose=a) """ Calcul de la surface segmentée """ pixelspacing=float(str(dicom_file[0x28,0x0030].value)[1:7]) mask = copy(img_modif_dcm) #Creation d'un masque pour ne garder que les pixels entre 29 et 150UH (cf litterature) mask[mask > 150] = -1000 mask[mask >= -29] = 1 mask[mask < -29] = 0 SEGMuscles_masked = copy(SEGMuscles[0,:,:,0]) SEGMuscles_masked[SEGMuscles_masked <= 0.5] = 0 SEGMuscles_masked[SEGMuscles_masked > 0.5] = 1 SEGMuscles_masked = np.multiply(SEGMuscles_masked,mask) surface_0 = np.sum(SEGMuscles_masked) if VERBOSE >1 : _, ax = plt.subplots(1,3,figsize=(25,25)) ax[0].imshow(image_wl[0,:,:,0], cmap='gray') #L'image provenant du numpy pour le calcul ax[1].imshow(img_dcm_wl, cmap='gray')#L'image provenant du dicom chargé à nouveau ax[1].imshow(SEGMuscles[0,:,:,0], cmap='magma', alpha=0.5) ax[2].imshow(SEGMuscles_masked, cmap='Reds') plt.show() if DIR_SORTIE != False : namemask = name + "_Mask.png" SAVEPATHmask = os.path.join(DIR_SORTIE,namemask) SEGMuscles_masked *=255 SEGMuscles_masked= SEGMuscles_masked.astype(np.uint8) im_mask = Image.fromarray(SEGMuscles_masked) im_mask.save(SAVEPATHmask) if csv_path != False: #mettre a jour le csv avec pandas df=
pandas.read_csv(csv_path, delimiter=",")
pandas.read_csv
"""Prepare plots of statistical significance of features.""" import os from joblib import Parallel, delayed import matplotlib.pyplot as plt from matplotlib import style import pandas as pd import seaborn as sns from sklearn.inspection import partial_dependence from camcan.processing import permutation_importance from camcan.utils import train_stacked_regressor # common subjects 574 CV = 10 N_JOBS = 4 PANDAS_OUT_FILE = '../../data/age_prediction_exp_data.h5' STRUCTURAL_DATA = '../../data/structural/structural_data.h5' CONNECT_DATA_CORR = '../../data/connectivity/connect_data_correlation.h5' CONNECT_DATA_TAN = '../../data/connectivity/connect_data_tangent.h5' MEG_SOURCE_SPACE_DATA = '../../data/meg_source_space_data.h5' FREQ_BANDS = ('alpha', 'beta_high', 'beta_low', 'delta', 'gamma_high', 'gamma_lo', 'gamma_mid', 'low', 'theta') # store mae, learning curves for summary plots regression_mae = pd.DataFrame(columns=range(0, CV), dtype=float) regression_r2 = pd.DataFrame(columns=range(0, CV), dtype=float) learning_curves = {} # read information about subjects subjects_data = pd.read_csv('../../data/participant_data.csv', index_col=0) # for storing predictors data subjects_predictions = pd.DataFrame(subjects_data.age, index=subjects_data.index, dtype=float) # 595 subjects meg_data = pd.read_hdf(MEG_SOURCE_SPACE_DATA, key='meg') columns_to_exclude = ('band', 'fmax', 'fmin', 'subject') parcellation_labels = [c for c in meg_data.columns if c not in columns_to_exclude] band_data = [meg_data[meg_data.band == bb].set_index('subject')[ parcellation_labels] for bb in FREQ_BANDS] meg_data = pd.concat(band_data, axis=1, join='inner', sort=False) meg_subjects = set(meg_data.index) # read features area_data = pd.read_hdf(STRUCTURAL_DATA, key='area') thickness_data = pd.read_hdf(STRUCTURAL_DATA, key='thickness') volume_data = pd.read_hdf(STRUCTURAL_DATA, key='volume') area_data = area_data.dropna() thickness_data = thickness_data.dropna() volume_data = volume_data.dropna() # take only subjects that are both in MEG and Structural MRI structural_subjects = set(area_data.index) common_subjects = meg_subjects.intersection(structural_subjects) area_data = area_data.loc[common_subjects] thickness_data = thickness_data.loc[common_subjects] volume_data = volume_data.loc[common_subjects] meg_data = meg_data.loc[common_subjects] # read connectivity data connect_data_tangent_basc = pd.read_hdf(CONNECT_DATA_TAN, key='basc197') connect_data_r2z_basc =
pd.read_hdf(CONNECT_DATA_CORR, key='basc197')
pandas.read_hdf
import sys from sqlalchemy import create_engine import pandas as pd import pickle import nltk from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import classification_report from sklearn.base import BaseEstimator, TransformerMixin def load_data(database_filepath): ''' Load dataframe from a database ''' engine = create_engine('sqlite:///'+database_filepath) df = pd.read_sql('SELECT * FROM message', engine) X = df.message y = df.iloc[:, 4:] category_names = list(y.columns) return X, y, category_names def tokenize(text): ''' Tokenize and lemmatize the text ''' tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() # tokenize and lemmatize every text, and save processed tokens into a list clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens class TextLengthExtractor(BaseEstimator, TransformerMixin): ''' A class to get the length of each tokenized text, and apply the function to all cells ''' def textlength(self, text): return len(tokenize(text)) def fit(self, x, y=None): return self def transform(self, X): X_tagged = pd.Series(X).apply(self.textlength) return pd.DataFrame(X_tagged) class StartingVerbExtractor(BaseEstimator, TransformerMixin): ''' A class to see if the first letter is a verb, and apply the function to all cells ''' def starting_verb(self, text): sentence_list = nltk.sent_tokenize(text) for sentence in sentence_list: pos_tags = nltk.pos_tag(tokenize(sentence)) first_word, first_tag = pos_tags[0] if first_tag in ['VB', 'VBP'] or first_word == 'RT': return True return False def fit(self, x, y=None): return self def transform(self, X): X_tagged =
pd.Series(X)
pandas.Series
# 지역, 서비스 코드 파서 import pandas as pd import numpy as np import re import datetime from .rq_class import * from .search import findTag, parseAll apinfo = ApiInfo('1a%2FLc1roxNrXp8QeIitbwvJdfpUYIFTcrbii4inJk3m%2BVpFvZSWjHFmOfWiH9T7TMbv07j5sDnJ5yefVDqHXfA%3D%3D', 'http://api.visitkorea.or.kr/openapi/service/rest/KorWithService/') def getCode(obj): result = {} for i in range(0, len(obj)): tmp = list(re.split('[<>]', str(obj[i]))) while '' in tmp: tmp.remove('') result[findTag(tmp, 'name')] = findTag(tmp, 'code') return result def geoCode(apinfo): # 대분류 gcode_req = tourReq('ETC', 'AppTest', apinfo.mykey) g_req = gcode_req.makeReq(apinfo.url, 'areaCode') g1_dic = getCode(parseAll(g_req)) result_tmp=[] for tags, codes in g1_dic.items(): input_tmp=[] gcode_req2 = tourReq('ETC', 'AppTest', apinfo.mykey) gcode_req2.addPara('areaCode', codes) req2 = gcode_req2.makeReq(apinfo.url, 'areaCode') g2_dic = getCode(parseAll(req2)) for tag2, code2 in g2_dic.items(): input_tmp.append(tags) input_tmp.append(codes) input_tmp.append(tag2) input_tmp.append(code2) # 리스트 단위로 행추가 result_tmp.append(input_tmp) # input_tmp=[] df_geo = pd.DataFrame(result_tmp, columns=['city','city_code','sigungu','sigungu_code']) # CSV로 내보내기 geo_code_date = datetime.datetime.today() geo_code_date = geo_code_date.strftime('%Y-%m-%d') df_geo.to_csv("resources/geo_code_{}.csv".format(geo_code_date), encoding='euc-kr') def serviceCode(apinfo): # 대분류 scode_req = tourReq('ETC', 'AppTest', apinfo.mykey) req_cat1 = scode_req.makeReq(apinfo.url, 'categoryCode') cat1_dic = getCode(parseAll(req_cat1)) result_tmp=[] for tags, codes in cat1_dic.items(): input_tmp = [] # 중분류 req2_tmp = tourReq('ETC', 'AppTest', apinfo.mykey) req2_tmp.addPara('cat1', codes) req2 = req2_tmp.makeReq(apinfo.url, 'categoryCode') cat2_dic = getCode(parseAll(req2)) # 소분류 for tag2, code2 in cat2_dic.items(): req2_tmp.addPara('cat2', code2) req3 = req2_tmp.makeReq(apinfo.url, 'categoryCode') cat3_dic = getCode(parseAll(req3)) for tag3, code3 in cat3_dic.items(): input_tmp.append(tags) input_tmp.append(codes) input_tmp.append(tag2) input_tmp.append(code2) input_tmp.append(tag3) input_tmp.append(code3) # 리스트단위로 행추가 result_tmp.append(input_tmp) # input_tmp = [] df_cat =
pd.DataFrame(result_tmp, columns=['tag1','code1','tag2','code2','tag3','code3'])
pandas.DataFrame
import numpy as np import pandas as pd pd.set_option('display.expand_frame_repr', False) from scipy.stats import mode import warnings import ntpath, pathlib import copy import itertools import os from .collect import Collect # d6tcollect.init(__name__) from .helpers import * from .utils import PrintLogger # ****************************************************************** # helpers # ****************************************************************** def _dfconact(df): return pd.concat(itertools.chain.from_iterable(df), sort=False, copy=False, join='inner', ignore_index=True) def _direxists(fname, logger): fdir = os.path.dirname(fname) if fdir and not os.path.exists(fdir): if logger: logger.send_log('creating ' + fdir, 'ok') os.makedirs(fdir) return True # ****************************************************************** # combiner # ****************************************************************** class CombinerCSV(object, metaclass=Collect): """ Core combiner class. Sniffs columns, generates preview, combines aka stacks to various output formats. Args: fname_list (list): file names, eg ['a.csv','b.csv'] sep (string): CSV delimiter, see pandas.read_csv() has_header (boolean): data has header row nrows_preview (int): number of rows in preview chunksize (int): number of rows to read into memory while processing, see pandas.read_csv() read_csv_params (dict): additional parameters to pass to pandas.read_csv() columns_select (list): list of column names to keep columns_select_common (bool): keep only common columns. Use this instead of `columns_select` columns_rename (dict): dict of columns to rename `{'name_old':'name_new'} add_filename (bool): add filename column to output data frame. If `False`, will not add column. apply_after_read (function): function to apply after reading each file. needs to return a dataframe log (bool): send logs to logger logger (object): logger object with `send_log()` """ def __init__(self, fname_list, sep=',', nrows_preview=3, chunksize=1e6, read_csv_params=None, columns_select=None, columns_select_common=False, columns_rename=None, add_filename=True, apply_after_read=None, log=True, logger=None): if not fname_list: raise ValueError("Filename list should not be empty") self.fname_list = np.sort(fname_list) self.nrows_preview = nrows_preview self.read_csv_params = read_csv_params if not self.read_csv_params: self.read_csv_params = {} if not 'sep' in self.read_csv_params: self.read_csv_params['sep'] = sep if not 'chunksize' in self.read_csv_params: self.read_csv_params['chunksize'] = chunksize self.logger = logger if not logger and log: self.logger = PrintLogger() if not log: self.logger = None self.sniff_results = None self.add_filename = add_filename self.columns_select = columns_select self.columns_select_common = columns_select_common if columns_select and columns_select_common: warnings.warn('columns_select will override columns_select_common, pick either one') self.columns_rename = columns_rename self._columns_reindex = None self._columns_rename_dict = None self.apply_after_read = apply_after_read self.df_combine_preview = None if self.columns_select: if max(collections.Counter(columns_select).values())>1: raise ValueError('Duplicate entries in columns_select') def _read_csv_yield(self, fname, read_csv_params): self._columns_reindex_available() dfs = pd.read_csv(fname, **read_csv_params) for dfc in dfs: if self.columns_rename and self._columns_rename_dict[fname]: dfc = dfc.rename(columns=self._columns_rename_dict[fname]) dfc = dfc.reindex(columns=self._columns_reindex) if self.apply_after_read: dfc = self.apply_after_read(dfc) if self.add_filename: dfc['filepath'] = fname dfc['filename'] = ntpath.basename(fname) yield dfc def sniff_columns(self): """ Checks column consistency by reading top nrows in all files. It checks both presence and order of columns in all files Returns: dict: results dictionary with files_columns (dict): dictionary with information, keys = filename, value = list of columns in file columns_all (list): all columns in files columns_common (list): only columns present in every file is_all_equal (boolean): all files equal in all files? df_columns_present (dataframe): which columns are present in which file? df_columns_order (dataframe): where in the file is the column? """ if self.logger: self.logger.send_log('sniffing columns', 'ok') read_csv_params = copy.deepcopy(self.read_csv_params) read_csv_params['dtype'] = str read_csv_params['nrows'] = self.nrows_preview read_csv_params['chunksize'] = None # read nrows of every file self.dfl_all = [] for fname in self.fname_list: # todo: make sure no nrows param in self.read_csv_params df = pd.read_csv(fname, **read_csv_params) self.dfl_all.append(df) # process columns dfl_all_col = [df.columns.tolist() for df in self.dfl_all] col_files = dict(zip(self.fname_list, dfl_all_col)) col_common = list_common(list(col_files.values())) col_all = list_unique(list(col_files.values())) # find index in column list so can check order is correct df_col_present = {} for iFileName, iFileCol in col_files.items(): df_col_present[iFileName] = [iCol in iFileCol for iCol in col_all] df_col_present =
pd.DataFrame(df_col_present, index=col_all)
pandas.DataFrame
import webbrowser import numpy as np import pandas as pd import tax_utils as tut from tax_calculator import TaxCalculator class NorwegianTax(TaxCalculator): """ to facilitate easy input add random text to trigger a code push... """ def __init__(self, salary=0, birth_year=1978, tax_year=None, gains_from_sale_fondskonto_share_comp=0, gains_from_sale_fondskonto_interest_comp=0, gains_from_sale_of_shares_ask=0, property_taxable_value=0, pension=0, pension_months=12, pension_percent=100, property_sale_proceeds=0, rental_income=0, property_sale_loss=0, bank_deposits=0, bank_interest_income=0, interest_expenses=0, dividends=0, mutual_fund_dividends=0, gains_from_sale_of_shares=0, mutual_fund_interest_comp_profit=0, mutual_fund_interest_comp_profit_combi_fund=0, mutual_fund_share_comp_profit=0, mutual_fund_share_comp_profit_combi_fund=0, loss_fondskonto_shares=0, loss_fondskonto_interest=0, loss_ask_sale=0, loss_from_sale_of_shares=0, loss_from_sale_mutual_fund_share_comp=0, loss_from_sale_mutual_fund_share_comp_combi_fund=0, loss_from_sale_mutual_fund_interest_comp=0, loss_from_sale_mutual_fund_interest_comp_combi_fund=0, mutual_fund_wealth_share_comp=0, mutual_fund_wealth_interest_comp=0, wealth_in_shares=0, wealth_in_unlisted_shares=0, wealth_ask_cash=0, wealth_ask_shares=0, wealth_fondskonto_cash_interest=0, wealth_fondskonto_shares=0, municipality='0402', case_idx=None): self._salary = salary self._birth_year = birth_year if tax_year is None: tax_year = pd.to_datetime('today').year tax_url = "https://skatteberegning.app.skatteetaten.no/%d" % tax_year self._gains_from_sale_fondskonto_share_comp = gains_from_sale_fondskonto_share_comp self._gains_from_sale_fondskonto_interest_comp = gains_from_sale_fondskonto_interest_comp self._gains_from_sale_of_shares_ask = gains_from_sale_of_shares_ask self._property_taxable_value = property_taxable_value self._pension = pension self._pension_months = pension_months self._pension_percent = pension_percent self._property_sale_proceeds = property_sale_proceeds self._rental_income = rental_income self._property_sale_loss = property_sale_loss self._bank_deposits = bank_deposits self._bank_interest_income = bank_interest_income self._interest_expenses = interest_expenses self._dividends = dividends self._mutual_fund_dividends = mutual_fund_dividends self._gains_from_sale_of_shares = gains_from_sale_of_shares self._mutual_fund_interest_comp_profit = mutual_fund_interest_comp_profit self._mutual_fund_interest_comp_profit_combi_fund = mutual_fund_interest_comp_profit_combi_fund self._mutual_fund_share_comp_profit = mutual_fund_share_comp_profit self._mutual_fund_share_comp_profit_combi_fund = mutual_fund_share_comp_profit_combi_fund self._loss_fondskonto_shares = loss_fondskonto_shares self._loss_fondskonto_interest = loss_fondskonto_interest self._loss_ask_sale = loss_ask_sale self._loss_from_sale_of_shares = loss_from_sale_of_shares self._loss_from_sale_mutual_fund_share_comp = loss_from_sale_mutual_fund_share_comp self._loss_from_sale_mutual_fund_share_comp_combi_fund = loss_from_sale_mutual_fund_share_comp_combi_fund self._loss_from_sale_mutual_fund_interest_comp = loss_from_sale_mutual_fund_interest_comp self._loss_from_sale_mutual_fund_interest_comp_combi_fund = loss_from_sale_mutual_fund_interest_comp_combi_fund self._mutual_fund_wealth_share_comp = mutual_fund_wealth_share_comp self._mutual_fund_wealth_interest_comp = mutual_fund_wealth_interest_comp self._wealth_in_shares = wealth_in_shares self._wealth_in_unlisted_shares = wealth_in_unlisted_shares self._wealth_ask_cash = wealth_ask_cash self._wealth_ask_shares = wealth_ask_shares self._wealth_fondskonto_cash_interest = wealth_fondskonto_cash_interest self._wealth_fondskonto_shares = wealth_fondskonto_shares self._municipality = municipality super().__init__( jurisdiction='NOR', tax_year=tax_year, tax_url=tax_url, case_idx=case_idx) @staticmethod def tax_payable(basis=0, rate=0, limit=0, deduction=0, apply_rounding=False): """ convenient utility function """ retval = max(basis - deduction - limit, 0) * rate if apply_rounding: return tut.tax_round(retval) return retval @property def salary(self): return self._salary @salary.setter def salary(self, value): self._salary = value @property def municipality(self): return self._municipality @municipality.setter def municipality(self, value): self._municipality = value @property def birth_year(self): return self._birth_year @birth_year.setter def birth_year(self, value): self._birth_year = value @property def gains_from_sale_fondskonto_share_comp(self): return self._gains_from_sale_fondskonto_share_comp @gains_from_sale_fondskonto_share_comp.setter def gains_from_sale_fondskonto_share_comp(self, value): self._gains_from_sale_fondskonto_share_comp = value @property def gains_from_sale_fondskonto_interest_comp(self): return self._gains_from_sale_fondskonto_interest_comp @gains_from_sale_fondskonto_interest_comp.setter def gains_from_sale_fondskonto_interest_comp(self, value): self._gains_from_sale_fondskonto_interest_comp = value @property def gains_from_sale_of_shares_ask(self): return self._gains_from_sale_of_shares_ask @gains_from_sale_of_shares_ask.setter def gains_from_sale_of_shares_ask(self, value): self._gains_from_sale_of_shares_ask = value @property def property_taxable_value(self): return self._property_taxable_value @property_taxable_value.setter def property_taxable_value(self, value): self._property_taxable_value = value @property def pension(self): return self._pension @pension.setter def pension(self, value): self._pension = value @property def pension_months(self): return self._pension_months @pension_months.setter def pension_months(self, value): self._pension_months = value @property def pension_percent(self): return self._pension_percent @pension_percent.setter def pension_percent(self, value): self._pension_percent = value @property def property_sale_proceeds(self): return self._property_sale_proceeds @property_sale_proceeds.setter def property_sale_proceeds(self, value): self._property_sale_proceeds = value @property def rental_income(self): return self._rental_income @rental_income.setter def rental_income(self, value): self._rental_income = value @property def property_sale_loss(self): return self._property_sale_loss @property_sale_loss.setter def property_sale_loss(self, value): self._property_sale_loss = value @property def bank_deposits(self): return self._bank_deposits @bank_deposits.setter def bank_deposits(self, value): self._bank_deposits = value @property def bank_interest_income(self): return self._bank_interest_income @bank_interest_income.setter def bank_interest_income(self, value): self._bank_interest_income = value @property def interest_expenses(self): return self._interest_expenses @interest_expenses.setter def interest_expenses(self, value): self._interest_expenses = value @property def dividends(self): return self._dividends @dividends.setter def dividends(self, value): self._dividends = value @property def mutual_fund_dividends(self): return self._mutual_fund_dividends @mutual_fund_dividends.setter def mutual_fund_dividends(self, value): self._mutual_fund_dividends = value @property def gains_from_sale_of_shares(self): return self._gains_from_sale_of_shares @gains_from_sale_of_shares.setter def gains_from_sale_of_shares(self, value): self._gains_from_sale_of_shares = value @property def mutual_fund_interest_comp_profit(self): return self._mutual_fund_interest_comp_profit @mutual_fund_interest_comp_profit.setter def mutual_fund_interest_comp_profit(self, value): self._mutual_fund_interest_comp_profit = value @property def mutual_fund_interest_comp_profit_combi_fund(self): return self._mutual_fund_interest_comp_profit_combi_fund @mutual_fund_interest_comp_profit_combi_fund.setter def mutual_fund_interest_comp_profit_combi_fund(self, value): self._mutual_fund_interest_comp_profit_combi_fund = value @property def mutual_fund_share_comp_profit(self): return self._mutual_fund_share_comp_profit @mutual_fund_share_comp_profit.setter def mutual_fund_share_comp_profit(self, value): self._mutual_fund_share_comp_profit = value @property def mutual_fund_share_comp_profit_combi_fund(self): return self._mutual_fund_share_comp_profit_combi_fund @mutual_fund_share_comp_profit_combi_fund.setter def mutual_fund_share_comp_profit_combi_fund(self, value): self._mutual_fund_share_comp_profit_combi_fund = value @property def loss_fondskonto_shares(self): return self._loss_fondskonto_shares @loss_fondskonto_shares.setter def loss_fondskonto_shares(self, value): self._loss_fondskonto_shares = value @property def loss_fondskonto_interest(self): return self._loss_fondskonto_interest @loss_fondskonto_interest.setter def loss_fondskonto_interest(self, value): self._loss_fondskonto_interest = value @property def loss_ask_sale(self): return self._loss_ask_sale @loss_ask_sale.setter def loss_ask_sale(self, value): self._loss_ask_sale = value @property def loss_from_sale_of_shares(self): return self._loss_from_sale_of_shares @loss_from_sale_of_shares.setter def loss_from_sale_of_shares(self, value): self._loss_from_sale_of_shares = value @property def loss_from_sale_mutual_fund_share_comp(self): return self._loss_from_sale_mutual_fund_share_comp @loss_from_sale_mutual_fund_share_comp.setter def loss_from_sale_mutual_fund_share_comp(self, value): self._loss_from_sale_mutual_fund_share_comp = value @property def loss_from_sale_mutual_fund_share_comp_combi_fund(self): return self._loss_from_sale_mutual_fund_share_comp_combi_fund @loss_from_sale_mutual_fund_share_comp_combi_fund.setter def loss_from_sale_mutual_fund_share_comp_combi_fund(self, value): self._loss_from_sale_mutual_fund_share_comp_combi_fund = value @property def loss_from_sale_mutual_fund_interest_comp(self): return self._loss_from_sale_mutual_fund_interest_comp @loss_from_sale_mutual_fund_interest_comp.setter def loss_from_sale_mutual_fund_interest_comp(self, value): self._loss_from_sale_mutual_fund_interest_comp = value @property def loss_from_sale_mutual_fund_interest_comp_combi_fund(self): return self._loss_from_sale_mutual_fund_interest_comp_combi_fund @loss_from_sale_mutual_fund_interest_comp_combi_fund.setter def loss_from_sale_mutual_fund_interest_comp_combi_fund(self, value): self._loss_from_sale_mutual_fund_interest_comp_combi_fund = value @property def mutual_fund_wealth_share_comp(self): return self._mutual_fund_wealth_share_comp @mutual_fund_wealth_share_comp.setter def mutual_fund_wealth_share_comp(self, value): self._mutual_fund_wealth_share_comp = value @property def mutual_fund_wealth_interest_comp(self): return self._mutual_fund_wealth_interest_comp @mutual_fund_wealth_interest_comp.setter def mutual_fund_wealth_interest_comp(self, value): self._mutual_fund_wealth_interest_comp = value @property def wealth_in_shares(self): return self._wealth_in_shares @wealth_in_shares.setter def wealth_in_shares(self, value): self._wealth_in_shares = value @property def wealth_in_unlisted_shares(self): return self._wealth_in_unlisted_shares @wealth_in_unlisted_shares.setter def wealth_in_unlisted_shares(self, value): self._wealth_in_unlisted_shares = value @property def wealth_ask_cash(self): return self._wealth_ask_cash @wealth_ask_cash.setter def wealth_ask_cash(self, value): self._wealth_ask_cash = value @property def wealth_ask_shares(self): return self._wealth_ask_shares @wealth_ask_shares.setter def wealth_ask_shares(self, value): self._wealth_ask_shares = value @property def wealth_fondskonto_cash_interest(self): return self._wealth_fondskonto_cash_interest @wealth_fondskonto_cash_interest.setter def wealth_fondskonto_cash_interest(self, value): self._wealth_fondskonto_cash_interest = value @property def wealth_fondskonto_shares(self): return self._wealth_fondskonto_shares @wealth_fondskonto_shares.setter def wealth_fondskonto_shares(self, value): self._wealth_fondskonto_shares = value @property def share_related_income(self): return self.gains_from_sale_fondskonto_share_comp + self.dividends + self.mutual_fund_dividends + self.gains_from_sale_of_shares + self.gains_from_sale_of_shares_ask + self.mutual_fund_share_comp_profit + \ self.mutual_fund_share_comp_profit_combi_fund - self.loss_fondskonto_shares - self.loss_from_sale_of_shares - \ self.loss_from_sale_mutual_fund_share_comp - \ self.loss_from_sale_mutual_fund_share_comp_combi_fund - self.loss_ask_sale @property def interest_related_income(self): return self.gains_from_sale_fondskonto_interest_comp - self.interest_expenses + self.mutual_fund_interest_comp_profit + self.mutual_fund_interest_comp_profit_combi_fund + \ self.bank_interest_income - self.loss_fondskonto_interest - self.loss_from_sale_mutual_fund_interest_comp - \ self.loss_from_sale_mutual_fund_interest_comp_combi_fund @property def property_related_income(self): return self.rental_income + self.property_sale_proceeds - self.property_sale_loss @property def non_pension_income(self): return self.salary + self.share_related_income + \ self.interest_related_income + self.property_related_income @property def income_tax_basis(self): if abs(self.non_pension_income) < 1e-4: return max(self.pension - self.pension_only_minimum_deduction, 0) if abs(self.pension) < 1e-4: return max(self.salary - self.salary_only_minimum_deduction + self.parameter('share_income_grossup') * self.share_related_income + self.interest_related_income + self.property_related_income, 0) return max(self.salary + self.pension - self.pension_and_income_minimum_deduction + self.parameter('share_income_grossup') * self.share_related_income + self.interest_related_income + self.property_related_income, 0) @property def state_wealth_tax_basis(self): return (self.mutual_fund_wealth_share_comp + self.wealth_in_shares + self.wealth_in_unlisted_shares + self.wealth_ask_shares + self.wealth_fondskonto_shares) * \ self.parameter('percentage_of_taxable_wealth_cap_shares') + self.bank_deposits + self.property_taxable_value + \ self.mutual_fund_wealth_interest_comp + \ self.wealth_fondskonto_cash_interest + self.wealth_ask_cash @property def pension_deduction_raw(self): return max(min(self.pension * self.parameter('pension_deduction_multiplier'), self.parameter('max_pension_deduction')), self.parameter('min_pension_deduction')) @property def income_deduction_raw(self): return max(min(self.salary * self.parameter('deduction_multiplier'), self.parameter('max_deduction_limit')), self.parameter('min_deduction_limit')) @property def pension_and_income_minimum_deduction(self): """ does what it says """ if (abs(self.pension) < 1e-4) and (abs(self.salary) < 1e-4): return 0 # you can't deduct more than what you earn: income_deduction = min(self.income_deduction_raw, self.salary) combo_deduction = self.pension_deduction_raw + \ max(min(self.salary * self.parameter('deduction_multiplier'), self.parameter('max_deduction_limit')), min(self.parameter('min_pension_deduction'), self.salary, self.pension)) return min(max(income_deduction, combo_deduction), self.parameter('max_deduction_limit')) @property def salary_only_minimum_deduction(self): """ this could be read from db, of course https://www.skatteetaten.no/en/rates/minimum-standard-deduction/ """ return int(min(self.income_deduction_raw, self.salary)) @property def pension_only_minimum_deduction(self): """ does what it says """ return min(self.pension_deduction_raw, self.pension) @property def bracket_tax(self): """ Calculates the bracket tax """ tot_inc = self.salary + self.pension if tot_inc <= self.parameter('trinnskatt_l1'): return 0 if self.parameter('trinnskatt_l1') < tot_inc <= self.parameter( 'trinnskatt_l2'): return tut.tax_round(self.parameter( 'trinnskatt_r1') * (tot_inc - self.parameter('trinnskatt_l1'))) if self.parameter('trinnskatt_l2') < tot_inc <= self.parameter( 'trinnskatt_l3'): return tut.tax_round(self.parameter('trinnskatt_r2') * (tot_inc - self.parameter('trinnskatt_l2')) + self.parameter('trinnskatt_r1') * (self.parameter('trinnskatt_l2') - self.parameter('trinnskatt_l1'))) if self.parameter('trinnskatt_l3') < tot_inc <= self.parameter( 'trinnskatt_l4'): return tut.tax_round(self.parameter('trinnskatt_r3') * (tot_inc - self.parameter('trinnskatt_l3')) + self.parameter('trinnskatt_r2') * (self.parameter('trinnskatt_l3') - self.parameter('trinnskatt_l2')) + self.parameter('trinnskatt_r1') * (self.parameter('trinnskatt_l2') - self.parameter('trinnskatt_l1'))) return tut.tax_round(self.parameter('trinnskatt_r4') * (tot_inc - self.parameter('trinnskatt_l4')) + self.parameter('trinnskatt_r3') * (self.parameter('trinnskatt_l4') - self.parameter('trinnskatt_l3')) + self.parameter('trinnskatt_r2') * (self.parameter('trinnskatt_l3') - self.parameter('trinnskatt_l2')) + self.parameter('trinnskatt_r1') * (self.parameter('trinnskatt_l2') - self.parameter('trinnskatt_l1'))) @property def age(self): return pd.to_datetime('today').year - self.birth_year @property def bracket_tax_level(self): """ for debugging the excel sheet """ tot_inc = self.salary + self.pension if tot_inc <= self.parameter('trinnskatt_l1'): return "Below level 1" if self.parameter('trinnskatt_l1') < tot_inc <= self.parameter( 'trinnskatt_l2'): return "Between level 1 and 2" if self.parameter('trinnskatt_l2') < tot_inc <= self.parameter( 'trinnskatt_l3'): return "Between lebel 2 and 3" if self.parameter('trinnskatt_l3') < tot_inc <= self.parameter( 'trinnskatt_l4'): return "Between level 3 and 4" return "Above level 4" @property def attribute_map(self): karta = {'salary': '2.1.1', 'pension': '2.2.1', 'bank_interest_income': '3.1.1', 'interest_expenses': '3.3.1', 'property_taxable_value': '4.3.2', 'property_sale_proceeds': '2.8.4', 'property_sale_loss': '3.3.6', 'rental_income': '2.8.2', 'bank_deposits': '4.1.1', 'gains_from_sale_fondskonto_share_comp': '3.1.4', 'gains_from_sale_fondskonto_interest_comp': '3.1.4', 'dividends': '3.1.5', 'mutual_fund_dividends': '3.1.6', 'gains_from_sale_of_shares': '3.1.8', 'gains_from_sale_of_shares_ask': '3.1.8'} for field in ['mutual_fund_interest_comp_profit', 'mutual_fund_interest_comp_profit_combi_fund', 'mutual_fund_share_comp_profit', 'mutual_fund_share_comp_profit_combi_fund']: karta[field] = '3.1.9' for field in ['loss_fondskonto_shares', 'loss_fondskonto_interest']: karta[field] = '3.3.7' for field in ['loss_ask_sale', 'loss_from_sale_of_shares']: karta[field] = '3.3.8' for field in ['loss_from_sale_mutual_fund_share_comp', 'loss_from_sale_mutual_fund_share_comp_combi_fund', 'loss_from_sale_mutual_fund_interest_comp', 'loss_from_sale_mutual_fund_interest_comp_combi_fund']: karta[field] = '3.3.9' karta['mutual_fund_wealth_share_comp'] = '4.1.4' karta['mutual_fund_wealth_interest_comp'] = '4.1.5' karta['wealth_in_shares'] = '4.1.7' for field in ['wealth_in_unlisted_shares', 'wealth_ask_cash', 'wealth_ask_shares']: karta[field] = '4.1.8' for field in ['wealth_fondskonto_cash_interest', 'wealth_fondskonto_shares']: karta[field] = '4.5.2' return karta def compare_calculated_tax_vs_correct_tax( self, atol=1e-8, rtol=1e-6, check_basis=False): """ compares the config vs our calculations It gives a more detailed breakdown so you can compare the components such as different basis etc. """ df_calc = self.tax_breakdown() df_true = self.parsed_official_response() out = [] elements = [['Formueskatt stat', 'formueskattTilStat'], ['Formueskatt kommune', 'formueskattTilKommune'], ['Inntektsskatt til kommune', 'inntektsskattTilKommune'], [ 'Inntektsskatt til fylkeskommune', 'inntektsskattTilFylkeskommune'], ['Fellesskatt', 'fellesskatt'], ['Trinnskatt', 'trinnskatt'], ['Trygdeavgift', 'sumTrygdeavgift'], ['Sum skattefradrag', 'Sum skattefradrag']] for calc_comp, correct_comp in elements: tax_calc = df_calc.query("Skatt == '%s'" % calc_comp) tax_calc_basis = tax_calc['Grunnlag'].item() tax_calc_value = tut.tax_round(tax_calc['Beloep'].item()) # pdb.set_trace() # if 'Inntekt' in calc_comp: # pdb.set_trace() tax_correct = df_true.query("tax_type == '%s'" % correct_comp) if tax_correct.empty: tax_correct_basis = 0 else: tax_correct_basis = tax_correct['tax_basis'].item() if 'skattefradrag' in calc_comp: tax_calc_value *= -1 if not tax_correct.empty: tax_correct_value = tax_correct['tax'].item() else: tax_correct_value = 0 error_basis = np.abs(tax_calc_basis - tax_correct_basis) tol_basis = atol + rtol * np.abs(tax_correct_basis) error_value = np.abs(tax_calc_value - tax_correct_value) tol_value = atol + rtol * np.abs(tax_correct_value) basis_pass = (error_basis <= tol_basis) value_pass = (error_value <= tol_value) if check_basis: test_string = '' if basis_pass and value_pass: test_string = '++' elif basis_pass and not value_pass: test_string = '+-' elif value_pass and not basis_pass: test_string = '-+' else: test_string = '--' else: test_string = '+' if value_pass else '-' if check_basis: out.append([calc_comp, tax_calc_basis, tax_correct_basis, tax_calc_value, tax_correct_value, error_basis, error_value, tol_basis, tol_value, test_string]) else: out.append([calc_comp, tax_calc_value, tax_correct_value, error_value, tol_value, test_string]) # check total tax: # pdb.set_trace() total_calculated_tax = df_calc.query( "Skatt == 'Din Skatt'").Beloep.item() total_tax = df_true.query("tax_type == 'total'").tax.item() error_value = np.abs(total_calculated_tax - total_tax) tol_value = atol + rtol * np.abs(total_tax) basis_pass = True value_pass = (error_value <= tol_value) if check_basis: test_string = '+' + '+' if value_pass else '-' out.append(['Total skatt', np.nan, np.nan, total_calculated_tax, total_tax, 0, error_value, 0, tol_value, test_string]) else: test_string = '+' if value_pass else '-' out.append(['Total skatt', total_calculated_tax, total_tax, error_value, tol_value, test_string]) if check_basis: return pd.DataFrame(out, columns=['component', 'basis_calc', 'basis_corr', 'value_calc', 'value_corr', 'basis_error', 'value_error', 'basis_tol', 'value_tol', 'test_pass']) return pd.DataFrame(out, columns=[ 'component', 'value_calc', 'value_corr', 'value_error', 'value_tol', 'test_pass']) def state_wealth_tax(self): return self.tax_payable(basis=self.state_wealth_tax_basis, rate=self.parameter( 'state_wealth_tax_rate'), limit=self.parameter('wealth_tax_lower_limit')) def municipal_wealth_tax(self): return self.tax_payable(basis=self.state_wealth_tax_basis, rate=self.parameter( 'municipal_wealth_tax_rate'), limit=self.parameter('wealth_tax_lower_limit')) def explain_attribute(self, attr='pension'): assert attr in self.attribute_map, "'%s' is not a valid attribute!" % attr return self.explain_tax_item(self.attribute_map[attr]) def explain_tax_item(self, item_no='3.1.8'): """ just show the web-page for the item """ text = item_no.replace('.', '/') url = "https://www.skatteetaten.no/person/skatt/skattemelding/finn-post/%s" % text return webbrowser.open(url) def _income_tax(self, basis_name='felles', apply_rounding=True): """ some gentle indirection """ if basis_name == 'felles': return self.tax_payable(basis=self.income_tax_basis, rate=self.parameter('felles_tax_rate'), deduction=self.parameter('personal_deduction'), apply_rounding=apply_rounding) if basis_name == 'fylke': return self.tax_payable(basis=self.income_tax_basis, rate=self.parameter('fylke_tax_rate'), deduction=self.parameter('personal_deduction'), apply_rounding=apply_rounding) if basis_name == 'kommun': return self.tax_payable(basis=self.income_tax_basis, rate=self.parameter('municipal_tax_rate'), deduction=self.parameter('personal_deduction'), apply_rounding=apply_rounding) raise Exception( "We only basis in {felles, fylke, kommun}, not '%s'" % basis_name) def municipal_income_tax(self): return self._income_tax(basis_name='kommun') def common_income_tax(self): return self._income_tax(basis_name='felles') def county_income_tax(self): return self._income_tax(basis_name='fylke') def national_insurance(self, apply_rounding=False): """ [NO] seems to be 8.2% above 81.4k, goes up linearly from low limit to that? ah, it can't be more than 25% of the amount above the lower limit (this isn't mentioned on the official site) https://no.wikipedia.org/wiki/Trygdeavgift """ rate = self.parameter('trygde_rate') if self.age > self.parameter('trygde_rate_cutoff_age_hi') or self.age < self.parameter( 'trygde_rate_cutoff_age_lo'): rate = self.parameter('trygde_rate_extreme') income = self.salary + self.pension if income <= self.parameter('trygde_income_limit'): return 0 overshooting_income = income - self.parameter('trygde_income_limit') # share_of_overshooting = raw_tax = rate * self.salary + \ self.parameter('trygde_rate_pension') * self.pension if raw_tax >= self.parameter('trygde_max_share') * overshooting_income: ans = self.parameter('trygde_max_share') * overshooting_income if apply_rounding: return tut.tax_round(ans) return ans if apply_rounding: return tut.tax_round(raw_tax) return raw_tax def deduction(self): if self.pension > 0: max_ded = self.parameter( 'max_pension_tax_deduction') * (self.pension_percent / 100) * (self.pension_months / 12) # pdb.set_trace() reduction_stage1 = self.parameter( 'pension_deduction_stage_one_threshold') * (self.pension_percent / 100) * (self.pension_months / 12) red_rate1 = self.parameter( 'stage_one_reduction_rate') reduction_stage2 = self.parameter( 'pension_deduction_stage_two_threshold') * (self.pension_percent / 100) * (self.pension_months / 12) red_rate2 = self.parameter( 'stage_two_reduction_rate') cutoff = min(np.round(max_ded - ((min(self.pension, reduction_stage2) - reduction_stage1) * red_rate1 + max((self.pension - reduction_stage2) * red_rate2, 0)), 0), max_ded) deductions = self.municipal_income_tax() + self.county_income_tax() + \ self.common_income_tax() + self.bracket_tax + self.national_insurance() return max(min(cutoff, deductions), 0) return 0 def tax(self, apply_rounding=True): if apply_rounding: return tut.tax_round(self.state_wealth_tax()) + tut.tax_round(self.municipal_wealth_tax()) + tut.tax_round(self.municipal_income_tax()) + tut.tax_round( self.county_income_tax()) + tut.tax_round(self.common_income_tax()) + tut.tax_round(self.bracket_tax) + tut.tax_round(self.national_insurance()) - tut.tax_round(self.deduction()) return self.state_wealth_tax() + self.municipal_wealth_tax() + self.municipal_income_tax() + self.county_income_tax() + \ self.common_income_tax() + self.bracket_tax + \ self.national_insurance() - self.deduction() def tax_breakdown(self): out = [['Formueskatt stat', self.state_wealth_tax_basis, self.state_wealth_tax()], [ 'Formueskatt kommune', self.state_wealth_tax_basis, self.municipal_wealth_tax()]] out += [['Inntektsskatt til kommune', self.income_tax_basis, self.municipal_income_tax()], ['Inntektsskatt til fylkeskommune', self.income_tax_basis, self.county_income_tax()], ['Fellesskatt', self.income_tax_basis, self.common_income_tax()], ['Trinnskatt', self.salary + self.pension, self.bracket_tax], ['Trygdeavgift', self.salary + self.pension, self.national_insurance()]] out += [['Sum skattefradrag', 0, self.deduction()]] # if apply_rounding: out += [['Din Skatt', np.nan, self.tax()]] return pd.DataFrame(out, columns=['Skatt', 'Grunnlag', 'Beloep']) def display_online_breakdown(self, refresh=False, session=None): """ this is the online ('true') figures """ frame = self.parsed_official_response() orig_df = frame.copy() frame.tax = frame.tax.map(tut.big_fmt) frame.tax_basis = frame.tax_basis.map(tut.big_fmt) for col in ['tax_basis', 'tax']: frame.loc[1, col] = '' tut.display_df(frame) return orig_df def parsed_official_response(self, refresh=False, session=None): resp = self.query_web_for_tax_results(refresh=refresh, session=session) # pdb.set_trace() raw = resp.json() data = raw['hovedperson']['beregnetSkattV3']['skattOgAvgift'] correct_tax = raw['hovedperson']['beregnetSkattV3']['informasjonTilSkattelister']['beregnetSkatt'] # if we don't have any wealth, we won't have those wealth tax keys in # data, seems we don't have deduction keys either? items = [ 'inntektsskattTilKommune', 'inntektsskattTilFylkeskommune', 'fellesskatt', 'trinnskatt', 'sumTrygdeavgift', 'formueskattTilStat', 'formueskattTilKommune'] missed_items = list(set(data.keys()) - set(items)) deductions = raw['hovedperson']['beregnetSkattV3'].get( 'sumSkattefradrag', {}).get('beloep', 0) if len(missed_items) > 0: print("Did not use these items: %s" % (','.join(missed_items))) # pdb.set_trace() not_in_res = list(set(items) - set(data.keys())) if len(not_in_res) > 0: print( "Did not find these items in response: %s" % (','.join(not_in_res))) out = [['Salary', self.salary, 0], ['', 0, 0]] for item in items: try: out.append( [item, data[item]['grunnlag'], data[item]['beloep']]) except Exception: # print(err.msg) out.append([item, 0, 0]) if deductions != 0: out.append(['Sum skattefradrag', 0, -deductions]) frame =
pd.DataFrame(out, columns=['tax_type', 'tax_basis', 'tax'])
pandas.DataFrame
"""Get Names from Vornam Koeln. Sources: - Official Source: https://offenedaten-koeln.de/ - Download Samples: https://github.com/fxnn/vornamen """ import pandas as pd urls = [ "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2017.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2016.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2015.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamensstatistik_2014_0.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2013.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2012.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2011.csv", "https://offenedaten-koeln.de/sites/default/files/Vornamen_Koeln_2010.csv", ] names_dfs = [] for url in urls: # The files aren't consistent with their delimiter selection # Some use comma & others a semi-colon df = pd.read_csv(url, sep=";") if df.shape[1] == 1: df = pd.read_csv(url, sep=",") # Translation mapping from German to English colnames_dict = { "vorname": "first_name", "geschlecht": "gender", } # Select the desired columns & translate df = df[list(colnames_dict.keys())] df.rename(columns=colnames_dict, inplace=True) names_dfs.append(df) # Combine all names_df =
pd.concat(names_dfs)
pandas.concat
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_dataf_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff_covar = pd.concat( [zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='contrib') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0), ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["PC1_cos2"] = loading_scale_input_df["PC1"] ** 2 loading_scale_input_df["PC2_cos2"] = loading_scale_input_df["PC2"] ** 2 loading_scale_input_df["PC1_contrib"] = \ (loading_scale_input_df["PC1_cos2"] * 100) / (loading_scale_input_df["PC1_cos2"].sum(axis=0)) loading_scale_input_df["PC2_contrib"] = \ (loading_scale_input_df["PC2_cos2"] * 100) / (loading_scale_input_df["PC2_cos2"].sum(axis=0)) loading_scale_input_df["contrib"] = loading_scale_input_df["PC1_contrib"] + loading_scale_input_df[ "PC2_contrib"] loading_scale_input_dataf = pd.concat( [loading_scale_input_df.iloc[:, 0:2], loading_scale_input_df.iloc[:, 6]], axis=1) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_dataf, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["PC1_cos2"] = loading_scale_input_outlier_df["PC1"] ** 2 loading_scale_input_outlier_df["PC2_cos2"] = loading_scale_input_outlier_df["PC2"] ** 2 loading_scale_input_outlier_df["PC1_contrib"] = \ (loading_scale_input_outlier_df["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df["PC2_contrib"] = \ (loading_scale_input_outlier_df["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df["contrib"] = loading_scale_input_outlier_df["PC1_contrib"] + \ loading_scale_input_outlier_df[ "PC2_contrib"] loading_scale_input_outlier_dataf = pd.concat( [loading_scale_input_outlier_df.iloc[:, 0:2], loading_scale_input_outlier_df.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat( [loading_scale_input_outlier_dataf, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='contrib') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["PC1_cos2"] = loading_scale_input_df_covar["PC1"] ** 2 loading_scale_input_df_covar["PC2_cos2"] = loading_scale_input_df_covar["PC2"] ** 2 loading_scale_input_df_covar["PC1_contrib"] = \ (loading_scale_input_df_covar["PC1_cos2"] * 100) / (loading_scale_input_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_df_covar["PC2_contrib"] = \ (loading_scale_input_df_covar["PC2_cos2"] * 100) / (loading_scale_input_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_df_covar["contrib"] = loading_scale_input_df_covar["PC1_contrib"] + \ loading_scale_input_df_covar[ "PC2_contrib"] loading_scale_input_dataf_covar = pd.concat( [loading_scale_input_df_covar.iloc[:, 0:2], loading_scale_input_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_dataf_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["PC1_cos2"] = loading_scale_input_outlier_df_covar["PC1"] ** 2 loading_scale_input_outlier_df_covar["PC2_cos2"] = loading_scale_input_outlier_df_covar["PC2"] ** 2 loading_scale_input_outlier_df_covar["PC1_contrib"] = \ (loading_scale_input_outlier_df_covar["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["PC2_contrib"] = \ (loading_scale_input_outlier_df_covar["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["contrib"] = loading_scale_input_outlier_df_covar["PC1_contrib"] + \ loading_scale_input_outlier_df_covar[ "PC2_contrib"] loading_scale_input_outlier_dataf_covar = pd.concat( [loading_scale_input_outlier_df_covar.iloc[:, 0:2], loading_scale_input_outlier_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat( [loading_scale_input_outlier_dataf_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff_covar = pd.concat( [zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='contrib') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_sort_covar variance = Var_scale_input_outlier_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0) )) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('download-link', 'download'), [Input('all-custom-choice', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(all_custom, outlier, matrix_type): if all_custom == 'All' and outlier == 'Yes' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'Yes' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_data.csv' return download @app.callback(Output('download-link', 'href'), [Input('all-custom-choice', 'value'), Input('feature-input', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')]) def update_link(all_custom, input, outlier, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) # COVARIANCE MATRIX REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) # COVARIANCE MATRIX OUTLIERS REMOVED x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar csv_string = dat.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return csv_string @app.callback(Output('download-link-correlation', 'download'), [Input('eigenA-outlier', 'value'), ]) def update_filename(outlier): if outlier == 'Yes': download = 'feature_correlation_removed_outliers_data.csv' elif outlier == 'No': download = 'feature_correlation_data.csv' return download @app.callback([Output('data-table-correlation', 'data'), Output('data-table-correlation', 'columns'), Output('download-link-correlation', 'href')], [Input("eigenA-outlier", 'value'), Input('csv-data', 'data')], ) def update_output(outlier, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff_table = correlation_dff * correlation_dff r2_dff_table.insert(0, 'Features', features) data_frame = r2_dff_table if outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier_table = correlation_dff_outlier * correlation_dff_outlier r2_dff_outlier_table.insert(0, 'Features', features_outlier) data_frame = r2_dff_outlier_table data = data_frame.to_dict('records') columns = [{"name": i, "id": i, "deletable": True, "selectable": True, 'type': 'numeric', 'format': Format(precision=3, scheme=Scheme.fixed)} for i in data_frame.columns] csv_string = data_frame.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return data, columns, csv_string @app.callback(Output('download-link-eigenA', 'download'), [Input("matrix-type-data-table", 'value'), Input('eigenA-outlier', 'value')]) def update_filename(matrix_type, outlier): if outlier == 'Yes' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_removed_outliers_data.csv' elif outlier == 'Yes' and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_removed_outliers_data.csv' elif outlier == 'No' and matrix_type == "Correlation": download = 'Eigen_Analysis_correlation_matrix_data.csv' elif outlier == "No" and matrix_type == "Covariance": download = 'Eigen_Analysis_covariance_matrix_data.csv' return download @app.callback([Output('data-table-eigenA', 'data'), Output('data-table-eigenA', 'columns'), Output('download-link-eigenA', 'href')], [Input('all-custom-choice', 'value'), Input("eigenA-outlier", 'value'), Input('feature-input', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')], ) def update_output(all_custom, outlier, input, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) Var_dfff = pd.concat([(Var_cumsum * 100)], axis=1) Eigen_Analysis = pd.concat([PC_df.T, Eigen_df.T, Var_df.T, Var_dfff.T], axis=0) Eigen_Analysis = Eigen_Analysis.rename(columns=Eigen_Analysis.iloc[0]) Eigen_Analysis = Eigen_Analysis.drop(Eigen_Analysis.index[0]) Eigen_Analysis.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) Var_dfff_outlier = pd.concat([Var_cumsum_outlier * 100], axis=1) Eigen_Analysis_Outlier = pd.concat( [PC_df_outlier.T, Eigen_df_outlier.T, Var_df_outlier.T, Var_dfff_outlier.T], axis=0) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.rename(columns=Eigen_Analysis_Outlier.iloc[0]) Eigen_Analysis_Outlier = Eigen_Analysis_Outlier.drop(Eigen_Analysis_Outlier.index[0]) Eigen_Analysis_Outlier.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_Outlier elif outlier == "No" and matrix_type == "Covariance": features1 = dff.columns features = list(features1) x_covar = dff.loc[:, features].values pca_covar = PCA(n_components=len(features)) principalComponents_covar = pca_covar.fit_transform(x_covar) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) dfff_covar = finalDf_covar loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) Var_dfff_covar = pd.concat([(Var_cumsum_covar * 100)], axis=1) Eigen_Analysis_covar = pd.concat([PC_df_covar.T, Eigen_df_covar.T, Var_df_covar.T, Var_dfff_covar.T], axis=0) Eigen_Analysis_covar = Eigen_Analysis_covar.rename(columns=Eigen_Analysis_covar.iloc[0]) Eigen_Analysis_covar = Eigen_Analysis_covar.drop(Eigen_Analysis_covar.index[0]) Eigen_Analysis_covar.insert(loc=0, column="Principal Components", value=["Eigenvalues", "Proportion of Explained Variance", "Cumulative Proportion of Explained Variance (%)"]) data_frame_EigenA = Eigen_Analysis_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier_covar = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier_covar = outlier_dff.loc[:, ].values pca_outlier_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier_covar) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) dfff_outlier_covar = finalDf_outlier_covar # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier_covar = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier_covar = math.ceil(PC_interp_outlier_covar) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar =
pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1)
pandas.concat
import numpy as np import matplotlib.pyplot as pls import pandas as pd import warnings from IPython.display import display, HTML import seaborn as sns import lightgbm as lgb from lightgbm import LGBMClassifier,LGBMRegressor import shap from .eda_anova import anova,two_way_anova,turkeyHSD warnings.filterwarnings("ignore") #=====================#=====================#===================== # single dataset eda #=====================#=====================#===================== #single dataset report def report(df,target=None,ignore=[],nbrmax=20): do_eda(df,target,ignore,nbrmax) #=====================#=====================#=====================# # shap #=====================#=====================#=====================# #shap values def plot_shaps(x, target,ignore=[],nbrmax=None,dependency=True): features=x.columns.to_list() features.remove(target) numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] #doesn't work on time columns, remove id columns (all values are different), columns with all nulls for f in x.columns.to_list(): if (isTime(x[f].dtype) or x[f].isnull().values.all() or (len(x[f].unique())>x.shape[0]/2.0 and str(x[f].dtype) not in numerics)) and f in features: features.remove(f) features=list(set(features)-set(ignore)) [print('Feature name {} cantains special JSON characters - Skip'.format(x)) for x in features if ':' in x ] features=[ x for x in features if not ':' in x ] #list of categorical features categorical_features=x[features].select_dtypes(exclude=numerics).columns.to_list() #change type to categorical for lightgbm backup={} for c in categorical_features: backup[c]=x[c].dtype x[c] = x[c].astype('category') target_type,target_cardinality,_=get_feature_info(x,target) binary_target=(target_type=='Numeric' and target_cardinality==2) if nbrmax==None: if len(features)>20: print('Shap values for 20 most important features will be plotted. If you need more please set nbrmax parameter') nbrmax=20 if binary_target: clf = LGBMClassifier( objective='binary' ,n_estimators=100 , min_data_in_leaf = 10 , min_sum_hessian_in_leaf = 10 , feature_fraction = 0.9 , bagging_fraction = 1 , bagging_freq = 1 , metric='auc' , learning_rate = 0.03 , num_leaves = 19 , num_threads = 2 , nrounds = 500 ) else: clf = LGBMRegressor( n_estimators=100 , min_data_in_leaf = 10 , min_sum_hessian_in_leaf = 10 , feature_fraction = 0.9 , bagging_fraction = 1 , bagging_freq = 1 , learning_rate = 0.03 , num_leaves = 19 , num_threads = 2 , nrounds = 500 ) clf.fit(x[features], x[target])#,categorical_feature=categorical_features) shap_values = shap.TreeExplainer(clf.booster_).shap_values(x[features]) shap.summary_plot(shap_values, x[features], max_display=nbrmax, auto_size_plot=True) if binary_target: vals= np.abs(shap_values).mean(0) else: vals= shap_values feature_importance = pd.DataFrame(list(zip(x[features].columns, sum(vals))), columns=['col_name','feature_importance_vals']) feature_importance.sort_values(by=['feature_importance_vals'], ascending=False,inplace=True) sorted_features=feature_importance['col_name'].to_list() X=x.copy() if binary_target: shap.summary_plot(shap_values[1], x[features]) if dependency: for f in categorical_features: X[f]= X[f].astype(object) X[f]=pd.factorize(X[f])[0] for name in sorted_features[:nbrmax]: #continue if name in categorical_features and x[name].astype(str).nunique()>100: continue fig, ax = pls.subplots(1,1,figsize=(20,10)) shap.dependence_plot(name, shap_values[1], X[features], display_features=x[features], interaction_index=None,ax=ax) pls.show() #restore type for c in categorical_features: x[c] = x[c].astype(backup[c]) return sorted_features #=====================#=====================#=====================#===================== # numerical continues #=====================#=====================#=====================#===================== def plot_cuts(df,feature,target,bins=None, figsize=(12,6)): if bins==None: bins=np.arange(df[feature].min(),df[feature].max(),(df[feature].max()-df[feature].min())/10.) fig, (ax1, ax2) = pls.subplots(ncols=2, figsize=figsize) pls.title('Histogram of {}'.format(feature)); ax1.set_xlabel(feature) ax1.set_ylabel('count') ax2.set_xlabel(feature) ax2.set_ylabel(target) df.groupby(pd.cut(df[feature], bins=bins))[target].count().plot(kind='bar',ax=ax1,grid=True) df.groupby(pd.cut(df[feature], bins=bins))[target].mean().plot(kind='bar',ax=ax2,grid=True) pls.show() def plot_qcuts(df,feature,target,q=None, figsize=(8,4)): if q==None: q = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,0.9, 1] fig, (ax1, ax2) = pls.subplots(ncols=2, figsize=figsize) pls.title('Histogram of {}'.format(feature)); ax1.set_xlabel(feature) ax1.set_ylabel('count') ax2.set_xlabel(feature) ax2.set_ylabel(target) df.groupby(pd.qcut(df[feature], q=q,duplicates='drop'))[target].count().plot(kind='bar',ax=ax1,grid=True) df.groupby(pd.qcut(df[feature], q=q,duplicates='drop'))[target].mean( ).plot(kind='bar',ax=ax2,grid=True) pls.show() #=====================#=====================#=====================#===================== # categorical #=====================#=====================#=====================#===================== def plot_stats(df,feature,target,max_nbr=20,sort='Count ',ax1=None,ax2=None): end=max_nbr createfig=(ax1==None or ax2==None) cat_count = df[feature].value_counts().reset_index() cat_count.columns = [feature,'Count '] cat_count.sort_values(by=sort, ascending=False, inplace=True) cat_perc = df[[feature, target]].groupby([feature],as_index=False).mean() cat_perc=pd.merge(cat_perc,cat_count,on=feature) cat_perc.sort_values(by=sort, ascending=False, inplace=True) size=(12,6) if len(cat_count[:max_nbr]) <=40 else (12,14) if createfig: fig, (ax1, ax2) = pls.subplots(ncols=2, figsize=size) sns.set_color_codes("pastel") s = sns.barplot(ax=ax1, x = feature, y="Count ",order=cat_count[feature][:max_nbr],data=cat_count[:max_nbr]) s.set_xticklabels(s.get_xticklabels(),rotation=90) s = sns.barplot(ax=ax2, x = feature, y=target, order=cat_perc[feature][:max_nbr], data=cat_perc[:max_nbr]) s.set_xticklabels(s.get_xticklabels(),rotation=90) pls.ylabel(target, fontsize=10) pls.tick_params(axis='both', which='major', labelsize=10) if createfig: pls.show() def plot_melt(df,feature,target1,target2,end=20): cat_count = df[feature].value_counts().reset_index() cat_count.columns =[feature,'Count '] cat_count.sort_values(by='Count ', ascending=False, inplace=True) cat_perc = df[[feature, target1]].groupby([feature],as_index=False).mean() cat_perc=pd.merge(cat_perc,cat_count,on=feature) cat_perc2 = df[[feature, target2]].groupby([feature],as_index=False).mean() cat_perc=
pd.merge(cat_perc,cat_perc2,on=feature)
pandas.merge
# coding: utf-8 import pandas as pd import baostock as bs from datetime import datetime, timedelta lg = bs.login() # 显示登陆返回信息 print('login respond error_code:' + lg.error_code) print('login respond error_msg:' + lg.error_msg) def get_stock_info(symbol): rs = bs.query_stock_basic(code=symbol) data_list = [] while (rs.error_code == '0') & rs.next(): # 获取一条记录,将记录合并在一起 data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) return result def get_index_stocks(symbol): """获取指数成份股 :param symbol: str 如 399300.SZ :param date: str or datetime 日期,如 2020-08-08 :return: list examples: ------- >>> symbols1 = get_index_stocks("000300.XSHG", date="2020-07-08") >>> symbols2 = get_index_stocks("000300.XSHG", date=datetime.now()) """ industry_list = [] if symbol == 'sz50': rs = bs.query_sz50_stocks() elif symbol == 'hs300': rs = bs.query_hs300_stocks() elif symbol == 'zz500': rs = bs.query_zz500_stocks() else: rs = bs.query_stock_industry() while (rs.error_code == '0') & rs.next(): # 获取一条记录,将记录合并在一起 industry_list.append(rs.get_row_data()) result = pd.DataFrame(industry_list, columns=rs.fields) return list(set([x for x in result.code])) def _get_start_date(end_date, freq): if isinstance(end_date, str): end_date = pd.to_datetime(end_date) if freq == '1': start_date = end_date - timedelta(days=30) elif freq == '5': start_date = end_date - timedelta(days=70) elif freq == '15': start_date = end_date - timedelta(days=200) elif freq == '30': start_date = end_date - timedelta(days=300) elif freq == '60': start_date = end_date - timedelta(days=500) elif freq == 'd': start_date = end_date - timedelta(weeks=500) elif freq == 'w': start_date = end_date - timedelta(weeks=1000) elif freq == 'm': start_date = end_date - timedelta(weeks=2000) else: raise ValueError("'freq' value error, current value is %s, " "optional valid values are ['1min', '5min', '30min', " "'D', 'W']" % freq) return start_date def get_kline(symbol, end_date, freq, start_date=None, count=None): """获取K线数据 :param symbol: str Tushare 标的代码 + Tushare asset 代码,如 000001.SH-I :param start_date: datetime 截止日期 :param end_date: datetime 截止日期 :param freq: str K线级别,可选值 ['1min', '5min', '30min', '60min', 'D', 'W', "M"] :param count: int K线数量,最大值为 5000 :return: pd.DataFrame >>> start_date = datetime.strptime("20200701", "%Y%m%d") >>> end_date = datetime.strptime("20200719", "%Y%m%d") >>> df1 = get_kline(symbol="000001.SH-I", start_date=start_date, end_date=end_date, freq="1min") >>> df2 = get_kline(symbol="000001.SH-I", end_date=end_date, freq="1min", count=1000) """ if count: start_date = _get_start_date(end_date, freq) start_date = start_date.date().__str__() if isinstance(end_date, str): end_date = pd.to_datetime(end_date) end_date = end_date + timedelta(days=1) end_date = end_date.date().__str__() if isinstance(end_date, datetime): end_date = end_date.date().__str__() if isinstance(start_date, datetime): start_date = start_date.date().__str__() rs = None if freq in ('d', 'w', 'm'): rs = bs.query_history_k_data_plus(symbol, "date,code,open,high,low,close,volume,amount", start_date=start_date, end_date=end_date, frequency=freq, adjustflag="2") else: rs = bs.query_history_k_data_plus(symbol, "time,code,open,high,low,close,volume,amount", start_date=start_date, end_date=end_date, frequency=freq, adjustflag="2") data_list = [] while (rs.error_code == '0') & rs.next(): # 获取一条记录,将记录合并在一起 data_list.append(rs.get_row_data()) df = pd.DataFrame(data_list, columns=rs.fields) # 统一 k 线数据格式为 6 列,分别是 ["symbol", "dt", "open", "close", "high", "low", "vr"] if freq in ('d', 'w', 'm'): df.rename(columns={'code': "symbol", "date": "dt", "volume": "vol"}, inplace=True) else: df.rename(columns={'code': "symbol", "time": "dt", "volume": "vol"}, inplace=True) df = df.dropna() df.drop_duplicates(subset='dt', keep='first', inplace=True) df.sort_values('dt', inplace=True) df['dt'] = df.dt.apply(str) df['open'] = df.open.apply(float) df['close'] = df.close.apply(float) df['high'] = df.high.apply(float) df['low'] = df.low.apply(float) df['vol'] = df.vol.apply(float) if freq in ('1','5','15','30','60'): # 清理 9:30 的空数据 df['not_start'] = df.dt.apply(lambda x: not x.endswith("09:30:00")) df = df[df['not_start']] if count: df = df.tail(count) df.reset_index(drop=True, inplace=True) # df.loc[:, "dt"] = pd.to_datetime(df['dt']) df["dt"] = df["dt"].apply(pd.to_datetime) k = df[['symbol', 'dt', 'open', 'close', 'high', 'low', 'vol']] for col in ['open', 'close', 'high', 'low']: k.loc[:, col] = k[col].apply(lambda x: round(x, 2)) return k def download_kline(symbol, freq, start_date, end_date, delta, save=True): """下载K线数据 :param save: :param symbol: :param end_date: :param freq: :param start_date: :param delta: :return: >>> start_date = datetime.strptime("20200101", "%Y%m%d") >>> end_date = datetime.strptime("20200719", "%Y%m%d") >>> df = download_kline("000001.SH-I", "1min", start_date, end_date, delta=timedelta(days=10), save=False) """ data = [] end_dt = start_date + delta print("开始下载数据:{} - {} - {}".format(symbol, start_date, end_date)) df_ = get_kline(symbol, start_date=start_date, end_date=end_dt, freq=freq) if not df_.empty: data.append(df_) while end_dt < end_date: df_ = get_kline(symbol, start_date=start_date, end_date=end_dt, freq=freq) if not df_.empty: data.append(df_) start_date = end_dt end_dt += delta print("当前下载进度:{} - {} - {}".format(symbol, start_date, end_dt)) df =
pd.concat(data, ignore_index=True)
pandas.concat
""" Author: <NAME> Modified: <NAME> """ import os import warnings import numpy as np import pandas as pd import pytest from numpy.testing import assert_almost_equal, assert_allclose from statsmodels.tools.sm_exceptions import EstimationWarning from statsmodels.tsa.holtwinters import (ExponentialSmoothing, SimpleExpSmoothing, Holt, SMOOTHERS, PY_SMOOTHERS) base, _ = os.path.split(os.path.abspath(__file__)) housing_data = pd.read_csv(os.path.join(base, 'results', 'housing-data.csv')) housing_data = housing_data.set_index('DATE') housing_data = housing_data.asfreq('MS') SEASONALS = ('add', 'mul', None) TRENDS = ('add', 'mul', None) def _simple_dbl_exp_smoother(x, alpha, beta, l0, b0, nforecast=0): """ Simple, slow, direct implementation of double exp smoothing for testing """ n = x.shape[0] l = np.zeros(n) b = np.zeros(n) xhat = np.zeros(n) f = np.zeros(nforecast) l[0] = l0 b[0] = b0 # Special case the 0 observations since index -1 is not available xhat[0] = l0 + b0 l[0] = alpha * x[0] + (1 - alpha) * (l0 + b0) b[0] = beta * (l[0] - l0) + (1 - beta) * b0 for t in range(1, n): # Obs in index t is the time t forecast for t + 1 l[t] = alpha * x[t] + (1 - alpha) * (l[t - 1] + b[t - 1]) b[t] = beta * (l[t] - l[t - 1]) + (1 - beta) * b[t - 1] xhat[1:] = l[0:-1] + b[0:-1] f[:] = l[-1] + np.arange(1, nforecast + 1) * b[-1] err = x - xhat return l, b, f, err, xhat class TestHoltWinters(object): @classmethod def setup_class(cls): # Changed for backwards compatibility with pandas # oildata_oil_json = '{"851990400000":446.6565229,"883526400000":454.4733065,"915062400000":455.662974,"946598400000":423.6322388,"978220800000":456.2713279,"1009756800000":440.5880501,"1041292800000":425.3325201,"1072828800000":485.1494479,"1104451200000":506.0481621,"1135987200000":526.7919833,"1167523200000":514.268889,"1199059200000":494.2110193}' # oildata_oil = pd.read_json(oildata_oil_json, typ='Series').sort_index() data = [446.65652290000003, 454.47330649999998, 455.66297400000002, 423.63223879999998, 456.27132790000002, 440.58805009999998, 425.33252010000001, 485.14944789999998, 506.04816210000001, 526.79198329999997, 514.26888899999994, 494.21101929999998] index = ['1996-12-31 00:00:00', '1997-12-31 00:00:00', '1998-12-31 00:00:00', '1999-12-31 00:00:00', '2000-12-31 00:00:00', '2001-12-31 00:00:00', '2002-12-31 00:00:00', '2003-12-31 00:00:00', '2004-12-31 00:00:00', '2005-12-31 00:00:00', '2006-12-31 00:00:00', '2007-12-31 00:00:00'] oildata_oil = pd.Series(data, index) oildata_oil.index = pd.DatetimeIndex(oildata_oil.index, freq=pd.infer_freq(oildata_oil.index)) cls.oildata_oil = oildata_oil # air_ausair_json = '{"662601600000":17.5534,"694137600000":21.8601,"725760000000":23.8866,"757296000000":26.9293,"788832000000":26.8885,"820368000000":28.8314,"851990400000":30.0751,"883526400000":30.9535,"915062400000":30.1857,"946598400000":31.5797,"978220800000":32.577569,"1009756800000":33.477398,"1041292800000":39.021581,"1072828800000":41.386432,"1104451200000":41.596552}' # air_ausair = pd.read_json(air_ausair_json, typ='Series').sort_index() data = [17.5534, 21.860099999999999, 23.886600000000001, 26.929300000000001, 26.888500000000001, 28.831399999999999, 30.075099999999999, 30.953499999999998, 30.185700000000001, 31.579699999999999, 32.577568999999997, 33.477398000000001, 39.021580999999998, 41.386431999999999, 41.596552000000003] index = ['1990-12-31 00:00:00', '1991-12-31 00:00:00', '1992-12-31 00:00:00', '1993-12-31 00:00:00', '1994-12-31 00:00:00', '1995-12-31 00:00:00', '1996-12-31 00:00:00', '1997-12-31 00:00:00', '1998-12-31 00:00:00', '1999-12-31 00:00:00', '2000-12-31 00:00:00', '2001-12-31 00:00:00', '2002-12-31 00:00:00', '2003-12-31 00:00:00', '2004-12-31 00:00:00'] air_ausair =
pd.Series(data, index)
pandas.Series
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [TS('2016-10-20'), TS('2016-11-21'), TS('2016-12-20')], index=['CLX16', 'CLZ16', 'CLF17'] ) def test_not_in_roll_one_generic_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:2] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) midx = pd.MultiIndex.from_product([timestamps, ['CLX16']]) midx.names = ['date', 'contract'] cols = pd.Index([0], name='generic') wts_exp = pd.DataFrame([1.0, 1.0], index=midx, columns=cols) # with DatetimeIndex wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) # with tuple wts = mappings.roller(tuple(timestamps), contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) def test_not_in_roll_one_generic_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_non_numeric_column_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([["CL1"], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [("CL1", 'CLX16', 1.0, ts)] assert wts == wts_exp def test_finished_roll_pre_expiry_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-2) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-9, -8] transition = pd.DataFrame([[1.0, 0.0], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_filtering_front_contracts_static_transition(dates): # NOQA contract_dates = dates.iloc[0:2] ts = dates.iloc[1] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_roll_with_holiday(dates): contract_dates = dates.iloc[-2:] ts = pd.Timestamp("2016-11-17") cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) holidays = [np.datetime64("2016-11-18")] # the holiday moves the roll schedule up one day, since Friday is # excluded as a day wts = mappings.static_transition(ts, contract_dates, transition, holidays) wts_exp = [(0, 'CLZ16', 0.5, ts), (0, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_zero_weight_back_contract_no_contract_static_transition(dates): # NOQA contract_dates = dates.iloc[0:1] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_aggregate_weights(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list) idx = pd.MultiIndex.from_product([[ts], ["CLX16", "CLZ16"]], names=["date", "contract"]) cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_aggregate_weights_drop_date(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list, drop_date=True) idx = pd.Index(["CLX16", "CLZ16"], name="contract") cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_static_bad_transitions(dates): contract_dates = dates.iloc[[0]] ts = dates.iloc[0] + BDay(-8) # transition does not contain 'front' column cols = pd.MultiIndex.from_product([[0], ['not_front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition does not sum to one across rows cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.0], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition is not monotonic increasing in back transition = pd.DataFrame([[0.7, 0.3], [0.8, 0.2], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) def test_no_roll_date_two_generics_static_transition(dates): dt = dates.iloc[0] contract_dates = dates ts = dt + BDay(-8) cols =
pd.MultiIndex.from_product([[0, 1], ['front', 'back']])
pandas.MultiIndex.from_product
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() tempr=tempr.append(df2, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values #if enough_reads(window,w,complete=True): if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','G','A'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHH' print("Done CHH for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) def CHGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) coverage = cov_context = 0 aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance MU=np.zeros((2,w)) start=datetime.datetime.now() for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)=='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)=='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # G dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2r = pd.DataFrame(data=dr) #df2.head() tempr=tempr.append(df2r, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): #temp.head() aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','G','N'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','C','T'],np.nan) methbin = aggreR # backup meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #total += w #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','A','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHG' print("Done CHG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) def split_bam(samplenames,Folder): # get bam size spbam_list = [] bamfile = samplenames + '.bam' statinfo_out = os.stat(Folder+bamfile) bamsize = statinfo_out.st_size samfile = pysam.Samfile(Folder+bamfile, "rb") fileout_base = os.path.splitext(bamfile)[0] # filename ext = '.bam' x = 0 fileout = Folder+fileout_base+"_" + str(x)+ext # filename_x.bam print("fileout",fileout) header = samfile.header outfile = pysam.Samfile(fileout, "wb", header = header) sum_Outfile_Size=0 for reads in samfile.fetch(): outfile.write(reads) statinfo_out = os.stat(fileout) outfile_Size = statinfo_out.st_size if(outfile_Size >=337374182 and sum_Outfile_Size <= bamsize): sum_Outfile_Size = sum_Outfile_Size + outfile_Size x = x + 1 spbam_list.append(fileout_base + "_" + str(x)+ext) outfile.close() pysam.index(fileout) fileout = Folder+fileout_base + "_" + str(x)+ext print("fileout",fileout) outfile = pysam.Samfile(fileout, "wb",header = header) outfile.close() pysam.index(fileout) import argparse parser = argparse.ArgumentParser() parser.add_argument("-w", "--windowsize",type=int, default=4 ,help='number of CGs') parser.add_argument("-c", "--cores",type=int, default=4, help='number of cores') parser.add_argument("-m", "--MeH",type=int, default=2, help='Methylation heterogeneity score 1:Abundance 2:PW 3:Phylogeny') parser.add_argument("-d", "--dist",type=int, default=1, help='Distance between methylation patterns 1:Hamming 2:WDK') parser.add_argument("--CG", default=False, action='store_true', help='Include genomic context CG') parser.add_argument("--CHG", default=False, action='store_true', help='Include genomic context CHG') parser.add_argument("--CHH", default=False, action='store_true', help='Include genomic context CHH') parser.add_argument("--opt", default=False, action='store_true', help='Outputs compositions of methylation patterns') parser.add_argument('--mlv', default=False, action='store_true', help='Outputs methylation levels') parser.add_argument('--imp', default=True, action='store_false', help='Implement BSImp (impute if valid)') args = parser.parse_args() import sys import time import os import pandas as pd import multiprocessing from joblib import Parallel, delayed #num_cores = multiprocessing.cpu_count() if __name__ == "__main__": open_log('MeHscreening.log') logm("Call genome screening.") #start = time.time() Folder = 'MeHdata/' files = os.listdir(Folder) bam_list = [] # all samples' bam files for file in files: filename, file_extension = os.path.splitext(file) if file_extension == '.fa': fa = filename if file_extension == '.bam': bam_list.append(filename) #if 'cores' in args: # num_cores = args.cores #else: # num_cores = 4 Parallel(n_jobs=args.cores)(delayed(split_bam)(bamfile,Folder=Folder) for bamfile in bam_list) spbam_list = [] tempfiles = os.listdir(Folder) for file in tempfiles: filename, file_extension = os.path.splitext(file) if file_extension=='.bam' and filename not in bam_list: spbam_list.append(filename) #print(spbam_list) topp = pd.DataFrame(columns=['sample','coverage','context_coverage','context']) #CG = [] #start=t.time() if args.CG: con='CG' CG=Parallel(n_jobs=args.cores)(delayed(CGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CG.") # merge MeH within sample for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False, header = True) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) #os.chdir('../') #os.chdir(outputFolder) logm("Merging ML within samples for CG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) logm("Merging ML between samples for CG.") # merge ML between samples if args.mlv: for sample in bam_list: tomerge_dir = Folder + con + '_ML_' + str(sample) + '.csv' res_dir = Folder + con + '_ML_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'ML': sample}) Result=Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result = Result.rename(columns={'ML': sample}) #Result = Result.drop(columns=['counts','pos','depth','dis']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) logm("Merging MeH between samples for CG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result.head() Result.dropna(axis = 0, thresh=4, inplace = True) Result = Result.rename(columns={'MeH': sample}) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) Result.to_csv(Folder + con + '_' +'Results.csv' ,index = False,header=True) print("All done.",len(bam_list),"bam files processed and merged for CG.") logm("All done. "+str(len(bam_list))+" bam files processed and merged for CG.") for i in CG: toout=pd.DataFrame({'sample':i[0],'coverage':i[1],'context_coverage':i[2],'context':i[3]},index=[0]) topp=topp.append(toout) if args.CHG: con='CHG' CG=Parallel(n_jobs=args.cores)(delayed(CHGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CHG.") for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging ML within samples for CHG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') #Count=Count.drop_duplicates() #print(Count) Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging MeH between samples for CHG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) #Tomerge = Tomerge.drop(columns=['dis','ML','depth']) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result.head() Result = Result.rename(columns={'MeH': sample}) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) logm("Merging ML between samples for CHG.") # merge ML between samples if args.mlv: for sample in bam_list: tomerge_dir = Folder + con + '_ML_' + str(sample) + '.csv' res_dir = Folder + con + '_ML_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'ML': sample}) Result=Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result = Result.rename(columns={'ML': sample}) #Result = Result.drop(columns=['counts','pos','depth','dis']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) logm("All done. "+str(len(bam_list))+" bam files processed and merged for CHG.") for i in CG: toout=pd.DataFrame({'sample':i[0],'coverage':i[1],'context_coverage':i[2],'context':i[3]},index=[0]) topp=topp.append(toout) if args.CHH: con='CHH' CG=Parallel(n_jobs=args.cores)(delayed(CHHgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CHH.") # merge MeH within sample for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod =
pd.read_csv(res_dir)
pandas.read_csv
from hetdesrun.component.registration import register from hetdesrun.datatypes import DataType import pandas as pd from scipy.signal import butter from scipy.signal import lfilter # ***** DO NOT EDIT LINES BELOW ***** # These lines may be overwritten if input/output changes. @register(inputs={"data": DataType.Series, "frequency": DataType.Float},outputs={"filtered": DataType.Series}) def main(*, data, frequency): """entrypoint function for this component""" # ***** DO NOT EDIT LINES ABOVE ***** # write your code here. nyq = 0.5 * data.size / ((data.index[-1] - data.index[0]).total_seconds()) normal_frequency = frequency / nyq b, a = butter(1, normal_frequency, btype="high", analog=False) filtered = lfilter(b, a, data) return {"filtered":
pd.Series(filtered, index=data.index)
pandas.Series
import numpy as np import pandas as pd import xarray as xr from raven import models from .common import TESTDATA import pytest @pytest.mark.skip class TestGR4JCemaneige(): def test_simple(self): time =
pd.date_range('2000-01-01', freq='D', periods=365 * 3)
pandas.date_range
# Implementation of support points generator # # Reference: # <NAME>, "Support Points" (2018) *The Annals of Statistics* __all__ = [ "tran_sp", "tf_sp", ] from grama import add_pipe from numpy import diag, eye, ma, newaxis, number, zeros from numpy.linalg import norm from numpy.random import choice, multivariate_normal from numpy.random import seed as setseed from pandas import DataFrame from toolz import curry from warnings import warn ## Helper functions ################################################## def _iterate_x(X, Y, ind): r"""Iterate a single candidate point Implementation of Equation (22) from Mak and Joseph (2018) Arguments: X (np.array): candidate points, X.shape == (n, p) Y (np.array): target points, Y.shape == (N, p) ind (int): candidate to iterate, 0 <= ind <= n - 1 Returns: np.array: updated candidate point """ ## Setup n = X.shape[0] N = Y.shape[0] ## Compute iteration # First term diffx = ma.array(X[ind] - X, mask=False) diffx[ind].mask = True diffx_norm = ma.array(norm(diffx, axis=1), mask=False) diffx_norm.mask[ind] = True t1 = (N / n) * (diffx / diffx_norm[:, newaxis]).sum(axis=0) # Second term diffy_norm = norm(X[ind] - Y, axis=1) q = (1 / diffy_norm).sum() t2 = (Y / diffy_norm[:, newaxis]).sum(axis=0) return (1 / q) * (t1 + t2) def _sp_cpp(X0, Y, delta=1e-6, iter_max=500): r"""Implementation of sp.cpp algorithm Implementation of sp.cpp algorithm from Mak and Joseph (2018). Note that this implementation takes Signature: X, d, iter_c = _sp_cpp(X0, Y) Arguments: X0 (np.array): initial candidate points, X0.shape == (n, p) Y (np.array): target points, Y.shape == (N, p) delta (float): convergence criterion, as average pairwise-distance between iterations iter_max (int): maximum iteration count Returns: X (np.array): optimized support points d (float): average pairwise-distance at termination iter_c (int): iteration count at termination """ ## Setup N, p = Y.shape n = X0.shape[0] Xn = X0.copy() ## Primary loop d = delta * 2 iter_c = 0 # Check convergence criterion while (d >= delta) and (iter_c < iter_max): # Update the candidate points for i in range(n): Xn[i] = _iterate_x(X0, Y, i) # Update loop variables d = norm(X0 - Xn, axis=1).mean() iter_c = iter_c + 1 # Overwrite X0 X0 = Xn.copy() ## DEBUG return Xn, d, iter_c def _perturbed_choice(Y, n): r"""Choose a set of perturbed points Arguments: Y (np.array): target points, Y.shape == (N, p) Returns: np.array: perturbed points, shape == (n, p) """ i0 = choice(Y.shape[0], size=n) # Add noise to initial proposal to avoid X-Y overlap; # random directions with fixed distance V_rand = multivariate_normal(zeros(Y.shape[1]), eye(Y.shape[1]), size=n) V_rand = V_rand / norm(V_rand, axis=1)[:, newaxis] X0 = Y[i0] + V_rand * Y.std(axis=0) return X0 ## Public interfaces ################################################## @curry def tran_sp( df, n=None, var=None, n_maxiter=500, tol=1e-3, seed=None, verbose=True, standardize=True, ): r"""Compact a dataset with support points Arguments: df (DataFrame): dataset to compact n (int): number of samples for compacted dataset var (list of str): list of variables to compact, must all be numeric n_maxiter (int): maximum number of iterations for support point algorithm tol (float): convergence tolerance verbose (bool): print messages to the console? standardize (bool): standardize columns before running sp? (Restores after sp) Returns: DataFrame: dataset compacted with support points Examples: >>> import grama as gr >>> from grama.data import df_diamonds >>> df_sp = gr.tran_sp(df_diamonds, n=50, var=["price", "carat"]) """ ## Setup setseed(seed) # Handle input variables if var is None: # Select numeric columns only var = list(df.select_dtypes(include=[number]).columns) if verbose: print("tran_sp has selected var = {}".format(var)) # Extract values Y = df[var].values if standardize: Y_mean = Y.mean(axis=0) Y_sd = Y.std(axis=0) Y = (Y - Y_mean) / Y_sd # Generate initial proposal points X0 = _perturbed_choice(Y, n) ## Run sp.ccp algorithm X, d, iter_c = _sp_cpp(X0, Y, delta=tol, iter_max=n_maxiter) if verbose: print( "tran_sp finished in {0:} iterations with distance criterion {1:4.3e}".format( iter_c, d ) ) if d > tol: warn( "Convergence tolerance not met; d = {0:4.3e} > tol = {1:4.3e}".format( d, tol ), RuntimeWarning, ) if standardize: X = X * Y_sd + Y_mean ## Package results return
DataFrame(data=X, columns=var)
pandas.DataFrame
import pandas as pd import numpy as np import logging import os import math import logging import sys import os import random SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) from global_variables import config as g # ROOT_DIR = os.path.dirname(os.path.abspath("top_level_file.txt")) ROOT_DIR = g.ROOT_DIR raw_data_dir = g.raw_data_dir processed_data_dir = g.processed_data_dir raw_data_dir = g.raw_data_dir FILL_NAN_WITH_ZERO = False FILL_NAN_WITH_MEDIAN = False FILL_NAN_WITH_MEAN = False INTERPOLATE_NAN_VALUES = False DELETE_NAN_ROWS = False REPLACE_WITH_PREVIOUS_DAY = True def import_and_merge_data(input_filepath:str=raw_data_dir, output_filepath:str=processed_data_dir): logger = logging.getLogger("def import_and_merge_data") da_prices = pd.read_csv(input_filepath + "da_prices.csv") loadcons =
pd.read_csv(input_filepath + "loadcons.csv")
pandas.read_csv
import pytest from hypothesis import given, settings import hypothesis.strategies as st import numpy as np import pandas as pd from generators import ( generate_votes, row_maker, ) def test_row_keys(): voting_machine = row_maker() row = voting_machine() assert list(row.keys()) == ["timestamp", "id", "region", "vote"] @settings(deadline=None) @given(st.integers(min_value=0, max_value=200)) def test_generated_as_many_votes_as_requested(length): votes = generate_votes(length) assert (length == 0 and votes.empty) or generate_votes(length).shape == (length, 4) @settings(deadline=None) @given(st.integers(min_value=0, max_value=200)) def test_votes_columns(length): data = generate_votes(length) assert (length == 0 and data.empty) or list(data.columns) == [ "timestamp", "id", "region", "vote", ] @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_id_lengths(length): string_lengths = generate_votes(length)["id"].apply(lambda x: len(x)) assert all(uid_len == 36 for uid_len in string_lengths) @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_ids_have_no_repetitions(length): assert generate_votes(length)["id"].drop_duplicates().shape[0] == length @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_timestamps_have_constant_date(length): dates = list(generate_votes(length)["timestamp"].dt.date.unique()) assert (length == 0 and not dates) or dates == [pd.Timestamp("2020-12-10")] @settings(deadline=None) @given(st.integers(min_value=1, max_value=200)) def test_timestamps_have_hours_within_range(length): hours = generate_votes(length)["timestamp"].dt.hour.unique() assert all(hour in range(8, 21) for hour in hours) @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1400)) def test_all_regions_appear(length): expected_regions = set(pd.read_csv("data/region_data.csv").region) actual_regions = set(generate_votes(length)["region"].unique()) assert expected_regions == actual_regions @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1800)) def test_regions_distribution(length): expected = pd.read_csv("data/region_data.csv", usecols=["region", "percent"]) regions = pd.DataFrame(generate_votes(length)["region"]) regions["cnt"] = 1 actual = (regions.groupby("region").agg("count") / length).reset_index() joined = pd.merge(expected, actual, on="region") assert joined.shape == (51, 3) joined["diff"] = np.abs(joined["percent"] - joined["cnt"]) assert joined["diff"].max() < 0.05 @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1500)) def test_votes_have_three_colours(length): expected = {"yellow", "blue", "red"} actual = set(generate_votes(length)["vote"].unique()) assert expected == actual @settings(deadline=None) @given(st.integers(min_value=1000, max_value=1500)) def test_timestamp_distribution_blue(length): colors = (
pd.read_csv("data/region_data.csv", usecols=["region", "color"])
pandas.read_csv
import sys import time import pandas as pd import numpy as np import copyreg, types from tqdm import tqdm import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-talk') plt.style.use('bmh') #plt.rcParams['font.family'] = 'DejaVu Sans Mono' plt.rcParams['font.size'] = 9.5 plt.rcParams['font.weight'] = 'medium' # ======================================================= # Symmetric CUSUM Filter [2.5.2.1] def getTEvents(gRaw, h): """cusum filter args ---- gRaw: array-like h: int() or float() returns ------- pd.DatetimeIndex() """ tEvents, sPos, sNeg = [], 0, 0 diff = np.log(gRaw).diff().dropna().abs() for i in tqdm(diff.index[1:]): try: pos, neg = float(sPos+diff.loc[i]), float(sNeg+diff.loc[i]) except Exception as e: print(e) print(sPos+diff.loc[i], type(sPos+diff.loc[i])) print(sNeg+diff.loc[i], type(sNeg+diff.loc[i])) break sPos, sNeg=max(0., pos), min(0., neg) if sNeg<-h: sNeg=0;tEvents.append(i) elif sPos>h: sPos=0;tEvents.append(i) return pd.DatetimeIndex(tEvents) # ======================================================= # Daily Volatility Estimator [3.1] ## for wtvr reason dates are not aligned for return calculation ## must account for it for computation def getDailyVol(close,span0=100): # daily vol reindexed to close df0=close.index.searchsorted(close.index-pd.Timedelta(days=1)) #bp() df0=df0[df0>0] #bp() df0=(pd.Series(close.index[df0-1], index=close.index[close.shape[0]-df0.shape[0]:])) #bp() try: df0=close.loc[df0.index]/close.loc[df0.values].values-1 # daily rets except Exception as e: print(e) print('adjusting shape of close.loc[df0.index]') cut = close.loc[df0.index].shape[0] - close.loc[df0.values].shape[0] df0=close.loc[df0.index].iloc[:-cut]/close.loc[df0.values].values-1 df0=df0.ewm(span=span0).std().rename('dailyVol') return df0 # ======================================================= # Triple-Barrier Labeling Method [3.2] def applyPtSlOnT1(close,events,ptSl,molecule): # apply stop loss/profit taking, if it takes place before t1 (end of event) events_=events.loc[molecule] out=events_[['t1']].copy(deep=True) if ptSl[0]>0: pt=ptSl[0]*events_['trgt'] else: pt=pd.Series(index=events.index) # NaNs if ptSl[1]>0: sl=-ptSl[1]*events_['trgt'] else: sl=pd.Series(index=events.index) # NaNs for loc,t1 in events_['t1'].fillna(close.index[-1]).iteritems(): df0=close[loc:t1] # path prices df0=(df0/close[loc]-1)*events_.at[loc,'side'] # path returns out.loc[loc,'sl']=df0[df0<sl[loc]].index.min() # earliest stop loss out.loc[loc,'pt']=df0[df0>pt[loc]].index.min() # earliest profit taking return out # ======================================================= # Gettting Time of First Touch (getEvents) [3.3] def getEvents(close, tEvents, ptSl, trgt, minRet, numThreads,t1=False, side=None): #1) get target trgt=trgt.loc[tEvents] trgt=trgt[trgt>minRet] # minRet #2) get t1 (max holding period) if t1 is False:t1=pd.Series(pd.NaT, index=tEvents) #3) form events object, apply stop loss on t1 if side is None:side_,ptSl_=pd.Series(1.,index=trgt.index), [ptSl[0],ptSl[0]] else: side_,ptSl_=side.loc[trgt.index],ptSl[:2] events=(pd.concat({'t1':t1,'trgt':trgt,'side':side_}, axis=1) .dropna(subset=['trgt'])) df0=mpPandasObj(func=applyPtSlOnT1,pdObj=('molecule',events.index), numThreads=numThreads,close=close,events=events, ptSl=ptSl_) events['t1']=df0.dropna(how='all').min(axis=1) #pd.min ignores nan if side is None:events=events.drop('side',axis=1) return events # ======================================================= # Adding Vertical Barrier [3.4] def addVerticalBarrier(tEvents, close, numDays=1): t1=close.index.searchsorted(tEvents+pd.Timedelta(days=numDays)) t1=t1[t1<close.shape[0]] t1=(pd.Series(close.index[t1],index=tEvents[:t1.shape[0]])) return t1 # ======================================================= # Labeling for side and size [3.5, 3.8] def getBins(events, close, t1=None): ''' Compute event's outcome (including side information, if provided). events is a DataFrame where: -events.index is event's starttime -events['t1'] is event's endtime -events['trgt'] is event's target -events['side'] (optional) implies the algo's position side -t1 is original vertical barrier series Case 1: ('side' not in events): bin in (-1,1) <-label by price action Case 2: ('side' in events): bin in (0,1) <-label by pnl (meta-labeling) ''' # 1) prices aligned with events events_ = events.dropna(subset=['t1']) px = events_.index.union(events_['t1'].values).drop_duplicates() px = close.reindex(px, method='bfill') # 2) create out object out = pd.DataFrame(index=events_.index) out['ret'] = px.loc[events_['t1'].values].values / px.loc[ events_.index] - 1 if 'side' in events_: out['ret'] *= events_['side'] # meta-labeling out['bin'] = np.sign(out['ret']) if 'side' not in events_: # only applies when not meta-labeling. # to update bin to 0 when vertical barrier is touched, we need the # original vertical barrier series since the events['t1'] is the time # of first touch of any barrier and not the vertical barrier # specifically. The index of the intersection of the vertical barrier # values and the events['t1'] values indicate which bin labels needs # to be turned to 0. vtouch_first_idx = events[events['t1'].isin(t1.values)].index out.loc[vtouch_first_idx, 'bin'] = 0. if 'side' in events_: out.loc[out['ret'] <= 0, 'bin'] = 0 # meta-labeling return out # ======================================================= # Expanding getBins to Incorporate Meta-Labeling [3.7] def getBinsOld(events, close): ''' Compute event's outcome (including side information, if provided). events is a DataFrame where: -events.index is event's starttime -events['t1'] is event's endtime -events['trgt'] is event's target -events['side'] (optional) implies the algo's position side Case 1: ('side' not in events): bin in (-1,1) <-label by price action Case 2: ('side' in events): bin in (0,1) <-label by pnl (meta-labeling) ''' #1) prices aligned with events events_=events.dropna(subset=['t1']) px=events_.index.union(events_['t1'].values).drop_duplicates() px=close.reindex(px,method='bfill') #2) create out object out=pd.DataFrame(index=events_.index) out['ret']=px.loc[events_['t1'].values].values/px.loc[events_.index]-1 if 'side' in events_:out['ret']*=events_['side'] # meta-labeling out['bin']=np.sign(out['ret']) if 'side' in events_:out.loc[out['ret']<=0,'bin']=0 # meta-labeling return out # ======================================================= # Dropping Unnecessary Labels [3.8] def dropLabels(events, minPct=.05): # apply weights, drop labels with insufficient examples while True: df0=events['bin'].value_counts(normalize=True) if df0.min()>minPct or df0.shape[0]<3:break print('dropped label: ', df0.argmin(),df0.min()) events=events[events['bin']!=df0.argmin()] return events # ======================================================= # Linear Partitions [20.4.1] def linParts(numAtoms,numThreads): # partition of atoms with a single loop parts=np.linspace(0,numAtoms,min(numThreads,numAtoms)+1) parts=np.ceil(parts).astype(int) return parts def nestedParts(numAtoms,numThreads,upperTriang=False): # partition of atoms with an inner loop parts,numThreads_=[0],min(numThreads,numAtoms) for num in range(numThreads_): part=1+4*(parts[-1]**2+parts[-1]+numAtoms*(numAtoms+1.)/numThreads_) part=(-1+part**.5)/2. parts.append(part) parts=np.round(parts).astype(int) if upperTriang: # the first rows are heaviest parts=np.cumsum(np.diff(parts)[::-1]) parts=np.append(np.array([0]),parts) return parts # ======================================================= # multiprocessing snippet [20.7] def mpPandasObj(func,pdObj,numThreads=24,mpBatches=1,linMols=True,**kargs): ''' Parallelize jobs, return a dataframe or series + func: function to be parallelized. Returns a DataFrame + pdObj[0]: Name of argument used to pass the molecule + pdObj[1]: List of atoms that will be grouped into molecules + kwds: any other argument needed by func Example: df1=mpPandasObj(func,('molecule',df0.index),24,**kwds) ''' import pandas as pd #if linMols:parts=linParts(len(argList[1]),numThreads*mpBatches) #else:parts=nestedParts(len(argList[1]),numThreads*mpBatches) if linMols:parts=linParts(len(pdObj[1]),numThreads*mpBatches) else:parts=nestedParts(len(pdObj[1]),numThreads*mpBatches) jobs=[] for i in range(1,len(parts)): job={pdObj[0]:pdObj[1][parts[i-1]:parts[i]],'func':func} job.update(kargs) jobs.append(job) if numThreads==1:out=processJobs_(jobs) else: out=processJobs(jobs,numThreads=numThreads) if isinstance(out[0],pd.DataFrame):df0=pd.DataFrame() elif isinstance(out[0],pd.Series):df0=pd.Series() else:return out for i in out:df0=df0.append(i) df0=df0.sort_index() return df0 # ======================================================= # single-thread execution for debugging [20.8] def processJobs_(jobs): # Run jobs sequentially, for debugging out=[] for job in jobs: out_=expandCall(job) out.append(out_) return out # ======================================================= # Example of async call to multiprocessing lib [20.9] import multiprocessing as mp import datetime as dt #________________________________ def reportProgress(jobNum,numJobs,time0,task): # Report progress as asynch jobs are completed msg=[float(jobNum)/numJobs, (time.time()-time0)/60.] msg.append(msg[1]*(1/msg[0]-1)) timeStamp=str(dt.datetime.fromtimestamp(time.time())) msg=timeStamp+' '+str(round(msg[0]*100,2))+'% '+task+' done after '+ \ str(round(msg[1],2))+' minutes. Remaining '+str(round(msg[2],2))+' minutes.' if jobNum<numJobs:sys.stderr.write(msg+'\r') else:sys.stderr.write(msg+'\n') return #________________________________ def processJobs(jobs,task=None,numThreads=24): # Run in parallel. # jobs must contain a 'func' callback, for expandCall if task is None:task=jobs[0]['func'].__name__ pool=mp.Pool(processes=numThreads) outputs,out,time0=pool.imap_unordered(expandCall,jobs),[],time.time() # Process asyn output, report progress for i,out_ in enumerate(outputs,1): out.append(out_) reportProgress(i,len(jobs),time0,task) pool.close();pool.join() # this is needed to prevent memory leaks return out # ======================================================= # Unwrapping the Callback [20.10] def expandCall(kargs): # Expand the arguments of a callback function, kargs['func'] func=kargs['func'] del kargs['func'] out=func(**kargs) return out # ======================================================= # Pickle Unpickling Objects [20.11] def _pickle_method(method): func_name=method.im_func.__name__ obj=method.im_self cls=method.im_class return _unpickle_method, (func_name,obj,cls) #________________________________ def _unpickle_method(func_name,obj,cls): for cls in cls.mro(): try:func=cls.__dict__[func_name] except KeyError:pass else:break return func.__get__(obj,cls) #________________________________ # ======================================================= # Estimating uniqueness of a label [4.1] def mpNumCoEvents(closeIdx,t1,molecule): ''' Compute the number of concurrent events per bar. +molecule[0] is the date of the first event on which the weight will be computed +molecule[-1] is the date of the last event on which the weight will be computed Any event that starts before t1[modelcule].max() impacts the count. ''' #1) find events that span the period [molecule[0],molecule[-1]] t1=t1.fillna(closeIdx[-1]) # unclosed events still must impact other weights t1=t1[t1>=molecule[0]] # events that end at or after molecule[0] t1=t1.loc[:t1[molecule].max()] # events that start at or before t1[molecule].max() #2) count events spanning a bar iloc=closeIdx.searchsorted(np.array([t1.index[0],t1.max()])) count=pd.Series(0,index=closeIdx[iloc[0]:iloc[1]+1]) for tIn,tOut in t1.iteritems():count.loc[tIn:tOut]+=1. return count.loc[molecule[0]:t1[molecule].max()] # ======================================================= # Estimating the average uniqueness of a label [4.2] def mpSampleTW(t1,numCoEvents,molecule): # Derive avg. uniqueness over the events lifespan wght=pd.Series(index=molecule) for tIn,tOut in t1.loc[wght.index].iteritems(): wght.loc[tIn]=(1./numCoEvents.loc[tIn:tOut]).mean() return wght # ======================================================= # Sequential Bootstrap [4.5.2] ## Build Indicator Matrix [4.3] def getIndMatrix(barIx,t1): # Get Indicator matrix indM=(pd.DataFrame(0,index=barIx,columns=range(t1.shape[0]))) for i,(t0,t1) in enumerate(t1.iteritems()):indM.loc[t0:t1,i]=1. return indM # ======================================================= # Compute average uniqueness [4.4] def getAvgUniqueness(indM): # Average uniqueness from indicator matrix c=indM.sum(axis=1) # concurrency u=indM.div(c,axis=0) # uniqueness avgU=u[u>0].mean() # avg. uniqueness return avgU # ======================================================= # return sample from sequential bootstrap [4.5] def seqBootstrap(indM,sLength=None): # Generate a sample via sequential bootstrap if sLength is None:sLength=indM.shape[1] phi=[] while len(phi)<sLength: avgU=pd.Series() for i in indM: indM_=indM[phi+[i]] # reduce indM avgU.loc[i]=getAvgUniqueness(indM_).iloc[-1] prob=avgU/avgU.sum() # draw prob phi+=[np.random.choice(indM.columns,p=prob)] return phi # ======================================================= # Determination of sample weight by absolute return attribution [4.10] def mpSampleW(t1,numCoEvents,close,molecule): # Derive sample weight by return attribution ret=np.log(close).diff() # log-returns, so that they are additive wght=pd.Series(index=molecule) for tIn,tOut in t1.loc[wght.index].iteritems(): wght.loc[tIn]=(ret.loc[tIn:tOut]/numCoEvents.loc[tIn:tOut]).sum() return wght.abs() # ======================================================= # fractionally differentiated features snippets # ======================================================= # get weights def getWeights(d,size): # thres>0 drops insignificant weights w=[1.] for k in range(1,size): w_ = -w[-1]/k*(d-k+1) w.append(w_) w=np.array(w[::-1]).reshape(-1,1) return w def getWeights_FFD(d,thres): w,k=[1.],1 while True: w_=-w[-1]/k*(d-k+1) if abs(w_)<thres:break w.append(w_);k+=1 return np.array(w[::-1]).reshape(-1,1) # ======================================================= # expanding window fractional differentiation def fracDiff(series, d, thres=0.01): ''' Increasing width window, with treatment of NaNs Note 1: For thres=1, nothing is skipped Note 2: d can be any positive fractional, not necessarily bounded between [0,1] ''' #1) Compute weights for the longest series w=getWeights(d, series.shape[0]) #2) Determine initial calcs to be skipped based on weight-loss threshold w_=np.cumsum(abs(w)) w_ /= w_[-1] skip = w_[w_>thres].shape[0] #3) Apply weights to values df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc in range(skip, seriesF.shape[0]): loc=seriesF.index[iloc] if not np.isfinite(series.loc[loc,name]).any():continue # exclude NAs try: df_.loc[loc]=np.dot(w[-(iloc+1):,:].T, seriesF.loc[:loc])[0,0] except: continue df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df # ======================================================= # fixed-width window fractional differentiation def fracDiff_FFD(series,d,thres=1e-5): # Constant width window (new solution) w = getWeights_FFD(d,thres) width = len(w)-1 df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc1 in range(width,seriesF.shape[0]): loc0,loc1=seriesF.index[iloc1-width], seriesF.index[iloc1] test_val = series.loc[loc1,name] # must resample if duplicate index if isinstance(test_val, (pd.Series, pd.DataFrame)): test_val = test_val.resample('1m').mean() if not np.isfinite(test_val).any(): continue # exclude NAs try: df_.loc[loc1]=np.dot(w.T, seriesF.loc[loc0:loc1])[0,0] except: continue df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df """ def fracDiff_FFD(series,d,thres=1e-5): ''' Constant width window (new solution) Note 1: thres determines the cut-off weight for the window Note 2: d can be any positive fractional, not necessarily bounded [0,1]. ''' #1) Compute weights for the longest series w=getWeights_FFD(d, thres) ## WHERE IS THIS FUNCTION IN THE BOOK width=len(w)-1 #2) Apply weights to values df={} for name in series.columns: seriesF, df_=series[[name]].fillna(method='ffill').dropna(), pd.Series() for iloc1 in range(width,seriesF.shape[0]): loc0,loc1=seriesF.index[iloc1-width], seriesF.index[iloc1] if not np.isfinite(series.loc[loc1,name]): continue # exclude NAs df_.loc[loc1]=np.dot(w.T, seriesF.loc[loc0:loc1])[0,0] df[name]=df_.copy(deep=True) df=pd.concat(df,axis=1) return df """ # ======================================================= # finding the min. D value that passes ADF test def plotMinFFD(df0, thres=1e-5): # pg. 85 from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt out=pd.DataFrame(columns=['adfStat','pVal','lags','nObs','95% conf','corr']) for d in np.linspace(0,1,11): df1=np.log(df0[['close']]).resample('1D').last() # downcast to daily obs df2=fracDiff_FFD(df1,d,thres=thres) corr=np.corrcoef(df1.loc[df2.index,'close'],df2['close'])[0,1] df2=adfuller(df2['close'],maxlag=1,regression='c',autolag=None) out.loc[d]=list(df2[:4])+[df2[4]['5%']]+[corr] # with critical value f,ax=plt.subplots(figsize=(9,5)) out[['adfStat','corr']].plot(ax=ax, secondary_y='adfStat') plt.axhline(out['95% conf'].mean(),linewidth=1,color='r',linestyle='dotted') return out # ======================================================= # Modeling snippets # ======================================================= # ======================================================= # Purging observations in the training set (7.1) def getTrainTimes(t1,testTimes): """ Given testTimes, find the times of the training observations -t1.index: Time when the observation started -t1.value: Time when the observation ended -testTimes: Times of testing observations """ trn=t1.copy(deep=True) for i,j in testTimes.iteritems(): df0=trn[(i<=trn.index)&(trn.index<=j)].index # train starts within test df1=trn[(i<=trn)&(trn<=j)].index # train ends within test df2=trn[(trn.index<=i)&(j<=trn)].index # train envelops test trn=trn.drop(df0.union(df1).union(df2)) return trn # ======================================================= # Embargo on Training Observations (7.2) def getEmbargoTimes(times,pctEmbargo): # Get embargo time for each bar step=int(times.shape[0]*pctEmbargo) if step==0: mbrg=pd.Series(times,index=times) else: mbrg=pd.Series(times[step:],index=times[:-step]) mbrg=mbrg.append(pd.Series(times[-1],index=times[-step:])) return mbrg ## Examples # testtimes=pd.Series(mbrg[dt1],index=[dt0]) # include embargo before purge # trainTimes=getTrainTimes(t1,testTimes) # testTimes=t1.loc[dt0:dt1].index # ======================================================= # Cross-validation class when observations overlap (7.3) from sklearn.model_selection._split import _BaseKFold class PurgedKFold(_BaseKFold): """ Extend KFold class to work with labels that span intervals The train is purged of observations overlapping test-label intervals Test set is assumed contiguous (shuffle=False), w/o training samples in between """ def __init__(self,n_splits=3,t1=None,pctEmbargo=0.): if not isinstance(t1,pd.Series): raise ValueError('Label Through Dates must be a pd.Series') super(PurgedKFold,self).__init__(n_splits,shuffle=False,random_state=None) self.t1=t1 self.pctEmbargo=pctEmbargo def split(self,X,y=None,groups=None): if (X.index==self.t1.index).sum()!=len(self.t1): raise ValueError('X and ThruDateValues must have the same index') # TODO: grouping function combinations insert here?? # manage groups by using label in dataframe? # use combinations + group label to split into chunks?? indices=np.arange(X.shape[0]) mbrg=int(X.shape[0]*self.pctEmbargo) test_starts=[ (i[0],i[-1]+1) for i in np.array_split(np.arange(X.shape[0]), self.n_splits) ] for i,j in test_starts: t0=self.t1.index[i] # start of test set test_indices=indices[i:j] maxT1Idx=self.t1.index.searchsorted(self.t1[test_indices].max()) train_indices=self.t1.index.searchsorted(self.t1[self.t1<=t0].index) if maxT1Idx<X.shape[0]: # right train ( with embargo) train_indices=np.concatenate((train_indices, indices[maxT1Idx+mbrg:])) yield train_indices,test_indices # ======================================================= # CV score implements purgedKfold & embargo (7.4) def cvScore(clf,X,y,sample_weight,scoring='neg_log_loss', t1=None,cv=None,cvGen=None,pctEmbargo=None): if scoring not in ['neg_log_loss','accuracy']: raise Exception('wrong scoring method.') from sklearn.metrics import log_loss,accuracy_score idx = pd.IndexSlice if cvGen is None: cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged score=[] for train,test in cvGen.split(X=X): fit=clf.fit(X=X.iloc[idx[train],:],y=y.iloc[idx[train]], sample_weight=sample_weight.iloc[idx[train]].values) if scoring=='neg_log_loss': prob=fit.predict_proba(X.iloc[idx[test],:]) score_=-log_loss(y.iloc[idx[test]], prob, sample_weight=sample_weight.iloc[idx[test]].values, labels=clf.classes_) else: pred=fit.predict(X.iloc[idx[test],:]) score_=accuracy_score(y.iloc[idx[test]],pred, sample_weight=sample_weight.iloc[idx[test]].values) score.append(score_) return np.array(score) # ======================================================= # Plot ROC-AUC for purgedKFold def crossValPlot(skf,classifier,X,y): """Code adapted from: sklearn crossval example """ from itertools import cycle from sklearn.metrics import roc_curve, auc from scipy import interp tprs = [] aucs = [] mean_fpr = np.linspace(0, 1, 100) idx = pd.IndexSlice f,ax = plt.subplots(figsize=(10,7)) i = 0 for train, test in skf.split(X, y): probas_ = (classifier.fit(X.iloc[idx[train]], y.iloc[idx[train]]) .predict_proba(X.iloc[idx[test]])) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y.iloc[idx[test]], probas_[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) tprs[-1][0] = 0.0 roc_auc = auc(fpr, tpr) aucs.append(roc_auc) ax.plot(fpr, tpr, lw=1, alpha=0.3, label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc)) i += 1 ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r', label='Luck', alpha=.8) mean_tpr = np.mean(tprs, axis=0) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) std_auc = np.std(aucs) ax.plot(mean_fpr, mean_tpr, color='b', label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc), lw=2, alpha=.8) std_tpr = np.std(tprs, axis=0) tprs_upper = np.minimum(mean_tpr + std_tpr, 1) tprs_lower = np.maximum(mean_tpr - std_tpr, 0) ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2, label=r'$\pm$ 1 std. dev.') ax.set_xlim([-0.05, 1.05]) ax.set_ylim([-0.05, 1.05]) ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') ax.set_title('Receiver operating characteristic example') ax.legend(bbox_to_anchor=(1,1)) #======================================================= # Feature Importance snippets #======================================================= #======================================================= # 8.2 Mean Decrease Impurity (MDI) def featImpMDI(fit,featNames): # feat importance based on IS mean impurity reduction # only works with tree based classifiers df0={i:tree.feature_importances_ for i,tree in enumerate(fit.estimators_)} df0=pd.DataFrame.from_dict(df0,orient='index') df0.columns=featNames df0=df0.replace(0,np.nan) # b/c max_features=1 imp=(pd.concat({'mean':df0.mean(), 'std':df0.std()*df0.shape[0]**-0.5}, axis=1)) imp/=imp['mean'].sum() return imp #======================================================= # 8.3 Mean Decrease Accuracy (MDA) def featImpMDA(clf,X,y,cv,sample_weight,t1,pctEmbargo,scoring='neg_log_loss'): # feat imporant based on OOS score reduction if scoring not in ['neg_log_loss','accuracy']: raise ValueError('wrong scoring method.') from sklearn.metrics import log_loss, accuracy_score cvGen=PurgedKFold(n_splits=cv,t1=t1,pctEmbargo=pctEmbargo) # purged cv scr0,scr1=pd.SEries(), pd.DataFrame(columns=X.columns) for i,(train,test) in enumerate(cvGen.split(X=X)): X0,y0,w0=X.iloc[train,:],y.iloc[train],sample_weight.iloc[train] X1,y1,w1=X.iloc[test,:],y.iloc[test],sample_weight.iloc[test] fit=clf.fit(X=X0,y=y0,sample_weight=w0.values) if scoring=='neg_log_loss': prob=fit.predict_proba(X1) scr0.loc[i]=-log_loss(y1,prob,sample_weight=w1.values, labels=clf.classes_) else: pred=fit.predict(X1) scr0.loc[i]=accuracy_score(y1,pred,sample_weight=w1.values) for j in X.columns: X1_=X1.copy(deep=True) np.random.shuffle(X1_[j].values) # permutation of a single column if scoring=='neg_log_loss': prob=fit.predict_proba(X1_) scr1.loc[i,j]=-log_loss(y1,prob,sample_weight=w1.values, labels=clf.classes_) else: pred=fit.predict(X1_) scr1.loc[i,j]=accuracy_score(y1,pred,sample_weight=w1.values) imp=(-scr1).add(scr0,axis=0) if scoring=='neg_log_loss':imp=imp/-scr1 else: imp=imp/(1.-scr1) imp=(pd.concat({'mean':imp.mean(), 'std':imp.std()*imp.shape[0]**-0.5}, axis=1)) return imp,scr0.mean() #======================================================= # 8.4 Single Feature Importance (SFI) def auxFeatImpSFI(featNames,clf,trnsX,cont,scoring,cvGen): imp=pd.DataFrame(columns=['mean','std']) for featName in featNames: df0=cvScore(clf,X=trnsX[[featName]],y=cont['bin'], sample_weight=cont['w'],scoring=scoring,cvGen=cvGen) imp.loc[featName,'mean']=df0.mean() imp.loc[featName,'std']=df0.std()*df0.shape[0]**-0.5 return imp #======================================================= # 8.5 Computation of Orthogonal Features def get_eVec(dot,varThres): # compute eVec from dot proc matrix, reduce dimension eVal,eVec=np.linalg.eigh(dot) idx=eVal.argsort()[::-1] # arugments for sorting eVal desc. eVal,eVec=eVal[idx],eVec[:,idx] #2) only positive eVals eVal=(pd.Series(eVal,index=['PC_'+str(i+1) for i in range(eVal.shape[0])])) eVec=(pd.DataFrame(eVec,index=dot.index,columns=eVal.index)) eVec=eVec.loc[:,eVal.index] #3) reduce dimension, form PCs cumVar=eVal.cumsum()/eVal.sum() dim=cumVar.values.searchsorted(varThres) eVal,eVec=eVal.iloc[:dim+1],eVec.iloc[:,:dim+1] return eVal,eVec def orthoFeats(dfx,varThres=0.95): # given a DataFrame, dfx, of features, compute orthofeatures dfP dfZ=dfx.sub(dfx.mean(),axis=1).div(dfx.std(),axis=1) # standardize dot=(pd.DataFrame(np.dot(dfZ.T,dfZ), index=dfx.columns, columns=dfx.columns)) eVal,eVec=get_eVec(dot,varThres) dfP=np.dot(dfZ,eVec) return dfP #======================================================= # 8.6 Computation of weighted kendall's tau between feature importance and inverse PCA ranking #from scipy.stats import weightedtau #featImp=np.array([0.55,0.33,0.07,0.05]) # feature importance #pcRank=np.array([1,2,3,4],dtype=np.float) # PCA rank #weightedtau(featImp,pcRank**-1)[0] #======================================================= # 8.7 Creating a Synthetic Dataset def getTestData(n_features=40,n_informative=10,n_redundant=10,n_samples=10_000): # generate a random dataset for a classification problem from sklearn.datasets import make_classification kwds=dict(n_samples=n_samples,n_features=n_feautres, n_informative=n_informative,n_redundant=n_redundant, random_state=0,shuffle=False) trnsX,cont=make_classification(**kwds) df0=(pd.DatetimeIndex(periods=n_samples, freq=pd.tseries.offsets.BDay(), end=pd.datetime.today())) trnsX,cont=(pd.DataFrame(trnsX,index=df0), pd.Series(cont,index=df0).to_frame('bin')) df0=['I_'+str(i) for i in range(n_informative)]+['R_'+str(i) for i in range(n_redundant)] df0+=['N_'+str(i) for i in range(n_features-len(df0))] trnsX.columns=df0 cont['w']=1./cont.shape[0] cont['t1']=pd.Series(cont.index,index=cont.index) return trnsX,cont #======================================================= # 8.8 Calling Feature Importance for Any Method def featImportances(trnsX,cont,n_estimators=1000,cv=10, max_samples=1.,numThreads=11,pctEmbargo=0, scoring='accuracy',method='SFI',minWLeaf=0.,**kargs): # feature importance from a random forest from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier #from mpEngine import mpPandasObj n_jobs=(-1 if numThreads>1 else 1) # run 1 thread w/ ht_helper in dirac1 #1) prepare classifier,cv. max_features=1, to prevent masking clf=DecisionTreeClassifier(criterion='entropy',max_features=1, class_weight='balanced', min_weight_fraction_leaf=minWLeaf) clf=BaggingClassifier(base_estimator=clf,n_estimators=n_estimators, max_features=1.,max_samples=max_samples, oob_score=True,n_jobs=n_jobs) fit=clf.fit(X=trnsX,y=cont['bin'],sample_weight=cont['w'].values) oob=fit.oob_score_ if method=='MDI': imp=featImpMDI(fit,featNames=trnsX.columns) oos=cvScore(clf,X=trnsX,y=cont['bin'],cv=cv,sample_weight=cont['w'], t1=cont['t1'],pctEmbargo=pctEmbargo,scoring=scoring).mean() elif method=='MDA': imp,oos=featImpMDA(clf,X=trnsX,y=cont['bin'],cv=cv, sample_weight=cont['w'],t1=cont['t1'], pctEmbargo=pctEmbargo,scoring=scoring) elif method=='SFI': cvGen=PurgedKFold(n_splits=cv,t1=cont['t1'],pctEmbargo=pctEmbargo) oos=cvScore(clf,X=trnsX,y=cont['bin'],sample_weight=cont['w'], scoring=scoring,cvGen=cvGen).mean() clf.n_jobs=1 # parallelize auxFeatImpSFI rather than clf imp=pmPandasObj(auxFeatImpSFI,('featNames',trnsX.columns),numThreads, clf=clf,trnsX=trnsX,cont=cont,scoring=scoring,cvGen=cvGen) return imp,oob,oos #======================================================= # 8.9 Calling All Components def testFunc(n_features=40,n_informative=10,n_redundant=10,n_estimators=1000, n_samples=10000,cv=10): # test the performance of the feat importance functions on artificial data # Nr noise features = n_featurs-n_informative-n_redundant trnsX,cont=getTestData(n_features,n_informative,n_redundant,n_samples) dict0={'minWLeaf':[0.],'scoring':['accuracy'],'method':['MDI','MDA','SFI'], 'max_samples':[1.]} jobs,out=(dict(zip(dict0,i))for i in product(*dict0.values())),[] kargs={'pathOut':PurePath(pdir/'testFunc').as_posix(), 'n_estimators':n_estimators,'tag':'testFunc','cv':cv} for job in jobs: job['simNum']=job['method']+'_'+job['scoring']+'_'+'%.2f'%job['minWLeaf']+\ '_'+str(job['max_samples']) print(job['simNum']) kargs.update(job) imp,oob,oos=featImportance(trnsX=trnsX,cont=cont,**kargs) plotFeatImportance(imp=imp,oob=oob,oos=oos,**kargs) df0=imp[['mean']]/imp['mean'].abs().sum() df0['type']=[i[0] for i in df0.index] df0=df0.groupby('type')['mean'].abs().sum() df0.update({'oob':oob,'oos':oos});df0.update(job) out.append(df0) out=(
pd.DataFrame(out)
pandas.DataFrame
import time import pandas as pd import numpy as np CITY_DATA = { 'chicago': 'chicago.csv', 'new york city': 'new_york_city.csv', 'washington': 'washington.csv' } MONTHS = ["january","february", "march", "april",\ "may","june","all"] DAYS = ["monday","tuesday","wednesday","thursday",\ "friday","saturday","sunday","all"] def get_user_input(input_variable, allowed_inputs): """ Asks user to specify an input_variable among the list of allowed_inputs. Returns: (str) variable - value of the variable """ # Enter again flag enter_again = False keep_asking = True while keep_asking or enter_again: print("Enter variable - {}".format(input_variable)) print("Allowed values are - \n\t{}".format("\n\t".join(allowed_inputs))) # Take user input variable = input() # Remove whitespace and change to lower case variable = variable.strip().lower() # Check if variable is in allowed_inputs if variable in allowed_inputs: enter_again = False print("You selected: {} = {}".format(input_variable, variable)) choice_enter_again = input("Do you want to continue with this choice? Press y or Y to confirm. Press any other key to enter new value\n").strip().lower() if choice_enter_again != "" and choice_enter_again[0]=='y': keep_asking = False else: keep_asking = True enter_again = True else: print("Invalid input. Try again.") return variable def get_filters(): """ Asks user to specify a city, month, and day to analyze. Returns: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter """ print('Hello! Let\'s explore some US bikeshare data!') # TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs city = get_user_input("City", CITY_DATA.keys()) # TO DO: get user input for month (all, january, february, ... , june) month = get_user_input("Month", MONTHS) # TO DO: get user input for day of week (all, monday, tuesday, ... sunday) day = get_user_input("Weekday", DAYS) print('-'*40) return city, month, day def load_data(city, month, day): """ Loads data for the specified city and filters by month and day if applicable. Args: (str) city - name of the city to analyze (str) month - name of the month to filter by, or "all" to apply no month filter (str) day - name of the day of week to filter by, or "all" to apply no day filter Returns: df - pandas DataFrame containing city data filtered by month and day """ # load data file into a dataframe df = pd.read_csv(CITY_DATA[city]) # convert the Start Time column to datetime df['Start Time'] = pd.to_datetime(df['Start Time']) # extract month and day of week from Start Time to create new columns df['month'] = df['Start Time'].dt.month df['day_of_week'] = df['Start Time'].dt.weekday_name # filter by month if applicable if month != 'all': # use the index of the months list to get the corresponding int months = ['january', 'february', 'march', 'april', 'may', 'june'] month = months.index(month)+1 # filter by month to create the new dataframe df = df[df['month']==month] # filter by day of week if applicable if day != 'all': # filter by day of week to create the new dataframe df = df[df['day_of_week']==day.title()] return df def time_stats(df): """Displays statistics on the most frequent times of travel.""" print('\nCalculating The Most Frequent Times of Travel...\n') start_time = time.time() # Convert 'Start Time' to the datetime datatype df['Start Time'] =
pd.to_datetime(df['Start Time'])
pandas.to_datetime
import streamlit as st import numpy as np import pandas as pd import plotly.graph_objects as go import matplotlib.pyplot as plt import matplotlib.dates as mdates from PIL import Image from scrapping import DataFetcher from models import Models from seir import SeirModel corona = Image.open('images/title_logo.png') st.image(corona) st.write('Bem-vindo ao dashboard de acompanhamento de casos do Coronavírus no Brasil.') st.write('Os dados apresentados aqui são disponibilizados por meio de APIs públicas. Para ver as fontes, acesse o repositório do projeto no Github. A atualização dos dados acontece várias vezes ao dia. Apenas números confirmados são apresentados.') st.write('Utilize o menu ao lado para fazer a navegação.') st.write('A maioria dos gráficos apresentados aqui são interativos: mostram valores ao passar do mouse, permitem zoom e posição de tela cheia. Explore os dados com o mouse!') st.sidebar.title('Navegação') actions = ['Situação atual', 'Previsões'] choice = st.sidebar.selectbox('Selecione uma opção', actions) with st.spinner('Buscando dados...'): data = DataFetcher() st.write('________________________________') brazil_general_code, brazil_states_code, world_cases_code = data.get_apis_status_code() if choice == 'Situação atual': if brazil_general_code == 200: date, time = data.get_update_time() st.write('<i>Dados atualizados em </i>', date, ' <i>às</i> ', time, unsafe_allow_html=True) st.text('') st.text('') total_cases, deaths, recovers = data.get_main_counters() st.write('<b>Casos totais até o momento: </b>', total_cases, unsafe_allow_html=True) st.write('<b>Mortes confirmadas: </b>', deaths, unsafe_allow_html=True) st.write('<b>Pessoas recuperadas: </b>', recovers, unsafe_allow_html=True) else: st.write("Dados indisponíveis no momento...") if world_cases_code == 200: cases_df = data.get_cases_timeline() fig_daily_cases = go.Figure(data=go.Bar(x=cases_df['date'], y=cases_df['daily'])) fig_daily_cases.update_layout(title={'text':'<b>Novos casos por dia</b>', 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, yaxis_title='Novos casos confirmados', margin=dict(b=0, t=70)) st.plotly_chart(fig_daily_cases, use_container_width=True) fig_cumulative_cases = go.Figure() fig_cumulative_cases.add_trace(go.Scatter(x=cases_df['date'], y=cases_df['confirmed'], line=dict(color='#17becf', width=5), mode='lines+markers', marker=dict(size=8), name='Confirmados', fill='tozeroy')) fig_cumulative_cases.add_trace(go.Scatter(x=cases_df['date'], y=cases_df['deaths'], line=dict(color='firebrick', width=5), mode='lines+markers', marker=dict(size=8), name='Mortes', fill='tozeroy')) fig_cumulative_cases.update_layout(title={'text':'<b>Casos e mortes acumulado</b>', 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, yaxis_title='', margin=dict(t=70), legend_orientation='h') st.plotly_chart(fig_cumulative_cases, use_container_width=True) else: st.write("Dados indisponíveis no momento...") if brazil_states_code == 200: cases_by_state, _ = data.get_state_cases() st.text('') st.header('Situação dos estados') ### Using plotly table fig_states_table = go.Figure(data=[go.Table( columnwidth = [600,600], header=dict(values=list(cases_by_state.columns), fill_color='lightblue', align='center'), cells=dict(values=[cases_by_state['Estado'], cases_by_state['Casos Confirmados'], cases_by_state['Mortes'], cases_by_state['Letalidade']], fill_color='lavender', align='center') ) ]) fig_states_table.update_layout(margin=dict(l=0, r=0, t=10, b=0)) st.plotly_chart(fig_states_table, use_container_width=True, config={'displayModeBar': False}) fig_state_cases = data.get_states_cases_plot() st.plotly_chart(fig_state_cases, use_container_width=True) else: st.write("Dados indisponíveis no momento...") if choice == 'Previsões': st.sidebar.title('Selecione o modelo') # Modelo auto-regressivo e SEIR necessitam de ser desenvolvidos! model = st.sidebar.radio('', ['Exponencial e Polinomial', 'Rede Neural Artificial', 'SEIR (Simulação)']) if model == 'Exponencial e Polinomial': st.markdown('## Modelo Exponencial') st.write('O modelo exponencial é indicado para modelar a epidemia nos seus estágios iniciais.') st.write('Contudo, a análise da adequação da curva de casos ao modelo exponencial nos informa a respeito das medidas de contenção que estão sendo adotadas.') st.write('Caso o ajuste ao modelo não seja satisfatório, significa que as medidas de contenção estão surtindo efeito em freiar a epidemia que, caso as medidas de contenção fossem inexistentes, teria seu número casos acompanhando a curva exponencial.') st.write('Clique em "*compare data on hover*" para comparar a previsão e o real para cada dia.') model = Models() cases_last_20days, predictions, r2 = model.get_exponential_predictions() cases_df = data.get_cases_timeline() # Quality of last 10 days fitting to exponential model plot fig_quality = go.Figure() fig_quality.add_trace(go.Scatter(x=cases_last_20days['date'], y=cases_last_20days['log_cases'], line=dict(color='firebrick', width=4), mode='lines+markers', marker=dict(size=10), name='Real')) fig_quality.add_trace(go.Scatter(x=cases_last_20days['date'], y=np.log(predictions['pred_cases']), name='Ajustado')) fig_quality.update_layout(title={'text': '<b>Qualidade do ajuste exponencial em janela de 20 dias</b><br>(R² = {})'.format(r2), 'x': 0.5, 'xanchor': 'center'}, yaxis_title='log (casos totais)', legend=dict(x=.1, y=0.9)) st.plotly_chart(fig_quality, use_container_width=True) # Number of cases with predictions plot fig_pred = go.Figure() fig_pred.add_trace(go.Scatter(x=cases_df['date'], y=cases_df['confirmed'], line=dict(color='#7f7f7f', width=4), mode='lines+markers', marker=dict(size=10), name='Dados')) fig_pred.add_trace(go.Scatter(x=predictions['date'], y=predictions['pred_cases'], name='Ajuste', line=dict(color='red'))) fig_pred.update_layout(title={'text':'<b>Ajuste exponencial com previsão para os próximos 7 dias</b>', 'x': 0.5, 'xanchor': 'center'}, yaxis_title='Casos totais', legend=dict(x=.1, y=0.9)) st.plotly_chart(fig_pred, use_container_width=True) st.markdown('## Modelo Polinomial') st.write(''' O modelo polinomial não força a curva a um ajuste exponencial. Portanto, tem a característica de proporcionar um ajuste mais "suave", capaz de captar as tendências mais recentes. Para este ajuste, está sendo utilizado um modelo polinomial de terceiro grau. Clique em "*compare data on hover*" para comparar a previsão e o real para cada dia. ''') polinomial_predictions = model.get_polinomial_predictions() fig_pred_poli = go.Figure() fig_pred_poli.add_trace(go.Scatter(x=cases_df['date'], y=cases_df['confirmed'], line=dict(color='#7f7f7f', width=4), mode='lines+markers', marker=dict(size=10), name='Dados')) fig_pred_poli.add_trace(go.Scatter(x=polinomial_predictions['date'], y=polinomial_predictions['pred_cases'], name='Ajuste', line=dict(color='green'))) fig_pred_poli.update_layout(title={'text':'<b>Ajuste polinomial com previsão para os próximos 7 dias</b>', 'x': 0.5, 'xanchor': 'center'}, yaxis_title='Casos totais', legend=dict(x=.1, y=0.9)) st.plotly_chart(fig_pred_poli, use_container_width=True) if model == 'Rede Neural Artificial': st.markdown('## Rede Neural Artificial') st.write('Em desenvolvimento...') if model == 'SEIR (Simulação)': total_cases, deaths, recovers = data.get_main_counters() st.markdown('## Modelo SEIR') st.write( ''' SEIR é um modelo comportamental em epidemiologia que busca modelar como uma doença se espalha através de uma população. SEIR é um acrônimo para **S**usceptible, **E**xposed, **I**nfected, **R**ecovered, ou em português: Suscetíveis, Expostos, Infectados e Recuperados. A ideia básica é que, quando uma doença é introduzida em uma população, as pessoas se movem de um estágio do modelo para o outro. Ou seja, as pessoas suscetíveis podem se expor ao vírus, contraí-lo e eventualmente se recuperar ou padecer. ''') seir_image = Image.open('images/seir.png') st.image(seir_image, use_column_width=True) st.write( ''' A modelagem leva em consideração três parâmetros principais: $\\alpha$, $\\beta$ e $\\gamma$. * $\\alpha$ é o inverso do período de incubação do vírus. Tempo de incubação é o período em que o vírus fica no corpo da pessoa sem produzir sintomas. * $\\beta$ é a taxa de contato médio na população. Este é o parâmetro influenciado por medidas de contenção social. * $\\gamma$ é o inverso da média do período de infecção. Período de infecção é o tempo em que uma pessoa fica acometida pelo vírus e pode transmití-lo. Para essa modelagem, o valor de cada parâmetro foi retirado de artigos publicados na área, especificamente: * [Epidemic analysis of COVID-19 in China by dynamical modeling](https://arxiv.org/pdf/2002.06563.pdf) * [Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand](https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf) ''') st.markdown('### Como a modelagem foi feita para o Brasil') st.write( ''' Para o caso do Brasil, foi considerada uma população de 200 milhões de pessoas, sendo o número inicial de infectados o número total de casos mais recentes que temos. Foi considerado que toda a população é suscetível e que, inicialmente, o número de pessoas expostas (que contraíram o vírus mas estão em período de incubação) é 15 vezes o número de casos confirmados. O fator 15 foi retirado de uma estimativa realizada em declarações do Ministério da Saúde. A simulação sempre parte do cenário mais atual, ou seja, do dia de hoje considerando os números mais atualizados que temos. O objetivo é tentar prever o cenário futuro baseado nos números mais recentes que temos e também demonstrar, neste cenário, o impacto das medidas de isolamento social. Na simulação, o fator de contenção social foi levado em conta por meio do parâmetro *p*, que possui valores entre 0 e 1. O valor de *p* = 1 seria o caso em que nenhuma medida de contenção social é adotada, ou seja, a vida cotinua normalmente. O valor de *p* = 0 é apenas teórico, pois significaria zerar a taxa de transmissão do vírus, ou seja, absolutamente nenhuma transmissão entre a população. A seguir é possível verificar os resultados da simulação para o cenário brasileiro, partindo de hoje e considerando os números mais recentes. ''') seir_model = SeirModel(100, total_cases, recovered=deaths+recovers, p=1) S, E, I, R = seir_model.get_model_results() population = seir_model.N # Prepare dates for plotting start =
pd.Timestamp('now')
pandas.Timestamp
import pandas as pd from pandas.testing import assert_frame_equal from dtspec.core import markdown_to_df # pylint: disable=redefined-outer-name def test_convert_table_to_df(): given = """ | id | name | | - | - | | 1 | one | | 2 | two | | 3 | three | """ expected = pd.DataFrame({"id": ["1", "2", "3"], "name": ["one", "two", "three"]}) actual = markdown_to_df(given) assert_frame_equal(actual, expected) def test_convert_table_to_df_with_blanks(): given = """ | id | name | | - | - | | 1 | one | | 2 | | | 3 | three | """ expected = pd.DataFrame({"id": ["1", "2", "3"], "name": ["one", "", "three"]}) actual = markdown_to_df(given) assert_frame_equal(actual, expected) def test_ignores_trailing_comments(): given = """ | id | name | | - | - | | 1 | one | | 2 | two | # Some comment | 3 | three | """ expected = pd.DataFrame({"id": ["1", "2", "3"], "name": ["one", "two", "three"]}) actual = markdown_to_df(given) assert_frame_equal(actual, expected) def test_honors_embedded_octothorpes(): given = """ | id | name | | - | - | | 1 | one | | 2 | #2 | | 3 | three | """ expected =
pd.DataFrame({"id": ["1", "2", "3"], "name": ["one", "#2", "three"]})
pandas.DataFrame
import datetime import re from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, Int64Index, MultiIndex, RangeIndex, Series, _testing as tm, concat, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) from pandas.util import _test_decorators as td pytestmark = pytest.mark.single def test_format_type(setup_path): df = DataFrame({"A": [1, 2]}) with ensure_clean_path(setup_path) as path: with HDFStore(path) as store: store.put("a", df, format="fixed") store.put("b", df, format="table") assert store.get_storer("a").format_type == "fixed" assert store.get_storer("b").format_type == "table" def test_format_kwarg_in_constructor(setup_path): # GH 13291 msg = "format is not a defined argument for HDFStore" with tm.ensure_clean(setup_path) as path: with pytest.raises(ValueError, match=msg): HDFStore(path, format="table") def test_api_default_format(setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table msg = "Can only append to Tables" with pytest.raises(ValueError, match=msg): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError, match=msg): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_put(setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table msg = "Can only append to Tables" with pytest.raises(ValueError, match=msg): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError, match=msg): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError, match=msg): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(setup_path): with ensure_clean_store(setup_path) as store: index = Index([f"I am a very long string index: {i}" for i in range(20)]) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + [f"I am a very long string index: {i}" for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' msg = "Compression not supported on Fixed format stores" with pytest.raises(ValueError, match=msg): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(setup_path): df = tm.makeTimeDataFrame() with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
from datetime import date from flask import Flask, render_template, request, g import json import os import socket import pandas as pd from redis import Redis app = Flask(__name__) redisurl = os.getenv('REDIS_URL') hostname = socket.gethostname() # Button Colour buttoncolour = "blue" button = './static/{}.png'.format(buttoncolour) def get_redis(): if not hasattr(g, 'redis'): g.redis = Redis(host=redisurl, db=0, socket_timeout=5, decode_responses=True) return g.redis def generate_table(): redis = get_redis() result = pd.DataFrame(columns=['Date', 'Clicks']) keys = redis.keys('*') for key in keys: val = redis.get(key) raw = json.dumps([{'Date': key, 'Clicks': val}]) df =
pd.read_json(raw)
pandas.read_json
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '{end_dt}'".format(end_dt=end_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(self, setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '{beg_dt}' & index >= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes(self, setup_path): # GH 3499, losing frequency info on index recreation df = DataFrame( dict(A=Series(range(3), index=date_range("2000-1-1", periods=3, freq="H"))) ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "data") store.put("data", df, format="table") result = store.get("data") tm.assert_frame_equal(df, result) for attr in ["freq", "tz", "name"]: for idx in ["index", "columns"]: assert getattr(getattr(df, idx), attr, None) == getattr( getattr(result, idx), attr, None ) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("data", df2) assert store.get_storer("data").info["index"]["freq"] is None # this is ok _maybe_remove(store, "df2") df2 = DataFrame( dict( A=Series( range(3), index=[ Timestamp("20010101"), Timestamp("20010102"), Timestamp("20020101"), ], ) ) ) store.append("df2", df2) df3 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("df2", df3) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes2(self, setup_path): with ensure_clean_path(setup_path) as path: with catch_warnings(record=True): df = DataFrame( dict( A=Series( range(3), index=date_range("2000-1-1", periods=3, freq="H") ) ) ) df.to_hdf(path, "data", mode="w", append=True) df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) df2.to_hdf(path, "data", append=True) idx = date_range("2000-1-1", periods=3, freq="H") idx.name = "foo" df = DataFrame(dict(A=Series(range(3), index=idx))) df.to_hdf(path, "data", mode="w", append=True) assert read_hdf(path, "data").index.name == "foo" with catch_warnings(record=True): idx2 = date_range("2001-1-1", periods=3, freq="H") idx2.name = "bar" df2 = DataFrame(dict(A=Series(range(3), index=idx2))) df2.to_hdf(path, "data", append=True) assert read_hdf(path, "data").index.name is None def test_frame_select(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) with pytest.raises(ValueError): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(self, setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")] tm.assert_frame_equal(result, expected) # or result = store.select("df", 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select( "df", "(index>df.index[3] & " 'index<=df.index[6]) | string="bar"' ) expected = df.loc[ ((df.index > df.index[3]) & (df.index <= df.index[6])) | (df.string == "bar") ] tm.assert_frame_equal(result, expected) # invert result = store.select("df", 'string!="bar"') expected = df.loc[df.string != "bar"] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( with pytest.raises(NotImplementedError): store.select("df", '~(string="bar")') # invert ok for filters result = store.select("df", "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(["A", "B"])] tm.assert_frame_equal(result, expected) # in result = store.select("df", "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self, setup_path): with ensure_clean_path(["parms.hdf", "hist.hdf"]) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({"A": [1, 1, 2, 2, 3]}) parms.to_hdf(pp, "df", mode="w", format="table", data_columns=["A"]) selection = read_hdf(pp, "df", where="A=[2,3]") hist = DataFrame( np.random.randn(25, 1), columns=["data"], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=["l1", "l2"] ), ) hist.to_hdf(hh, "df", mode="w", format="table") expected = read_hdf(hh, "df", where="l1=[2, 3, 4]") # scope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select("df", where="l1=l") tm.assert_frame_equal(result, expected) store.close() result = read_hdf(hh, "df", where="l1=l") tm.assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, "df", where="l1=index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) # scope with index store = HDFStore(hh) result = store.select("df", where="l1=index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self, setup_path): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") # not implemented with pytest.raises(NotImplementedError): store.select("df", "columns=['A'] | columns=['B']") # in theory we could deal with this with pytest.raises(NotImplementedError): store.select("df", "columns=['A','B'] & columns=['C']") def test_string_select(self, setup_path): # GH 2973 with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df["x"] = "none" df.loc[2:7, "x"] = "" store.append("df", df, data_columns=["x"]) result = store.select("df", "x=none") expected = df[df.x == "none"] tm.assert_frame_equal(result, expected) result = store.select("df", "x!=none") expected = df[df.x != "none"] tm.assert_frame_equal(result, expected) df2 = df.copy() df2.loc[df2.x == "", "x"] = np.nan store.append("df2", df2, data_columns=["x"]) result = store.select("df2", "x!=none") expected = df2[isna(df2.x)] tm.assert_frame_equal(result, expected) # int ==/!= df["int"] = 1 df.loc[2:7, "int"] = 2 store.append("df3", df, data_columns=["int"]) result = store.select("df3", "int=2") expected = df[df.int == 2] tm.assert_frame_equal(result, expected) result = store.select("df3", "int!=2") expected = df[df.int != 2] tm.assert_frame_equal(result, expected) def test_read_column(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # GH 17912 # HDFStore.select_column should raise a KeyError # exception if the key is not a valid store with pytest.raises(KeyError, match="No object named df in the file"): store.select_column("df", "index") store.append("df", df) # error with pytest.raises( KeyError, match=re.escape("'column [foo] not found in the table'") ): store.select_column("df", "foo") with pytest.raises(Exception): store.select_column("df", "index", where=["index>5"]) # valid result = store.select_column("df", "index") tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column with pytest.raises(ValueError): store.select_column("df", "values_block_0") # a data column df2 = df.copy() df2["string"] = "foo" store.append("df2", df2, data_columns=["string"]) result = store.select_column("df2", "string") tm.assert_almost_equal(result.values, df2["string"].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3["string"] = "foo" df3.loc[4:6, "string"] = np.nan store.append("df3", df3, data_columns=["string"]) result = store.select_column("df3", "string") tm.assert_almost_equal(result.values, df3["string"].values) # start/stop result = store.select_column("df3", "string", start=2) tm.assert_almost_equal(result.values, df3["string"].values[2:]) result = store.select_column("df3", "string", start=-2) tm.assert_almost_equal(result.values, df3["string"].values[-2:]) result = store.select_column("df3", "string", stop=2) tm.assert_almost_equal(result.values, df3["string"].values[:2]) result = store.select_column("df3", "string", stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[:-2]) result = store.select_column("df3", "string", start=2, stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[2:-2]) result = store.select_column("df3", "string", start=-2, stop=2) tm.assert_almost_equal(result.values, df3["string"].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({"A": np.random.randn(10), "B": "foo"}) store.append("df4", df4, data_columns=True) expected = df4["B"] result = store.select_column("df4", "B") tm.assert_series_equal(result, expected) def test_coordinates(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append("df", df) # all c = store.select_as_coordinates("df") assert (c.values == np.arange(len(df.index))).all() # get coordinates back & test vs frame _maybe_remove(store, "df") df = DataFrame(dict(A=range(5), B=range(5))) store.append("df", df) c = store.select_as_coordinates("df", ["index<3"]) assert (c.values == np.arange(3)).all() result = store.select("df", where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates("df", ["index>=3", "index<=4"]) assert (c.values == np.arange(2) + 3).all() result = store.select("df", where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables _maybe_remove(store, "df1") _maybe_remove(store, "df2") df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) c = store.select_as_coordinates("df1", ["A>0", "B>0"]) df1_result = store.select("df1", c) df2_result = store.select("df2", c) result = concat([df1_result, df2_result], axis=1) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # pass array/mask as the coordinates with ensure_clean_store(setup_path) as store: df = DataFrame( np.random.randn(1000, 2), index=date_range("20000101", periods=1000) ) store.append("df", df) c = store.select_column("df", "index") where = c[DatetimeIndex(c).month == 5].index expected = df.iloc[where] # locations result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # boolean result = store.select("df", where=where) tm.assert_frame_equal(result, expected) # invalid with pytest.raises(ValueError): store.select("df", where=np.arange(len(df), dtype="float64")) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df) + 1)) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5) with pytest.raises(ValueError): store.select("df", where=np.arange(len(df)), start=5, stop=10) # selection with filter selection = date_range("20000101", periods=500) result = store.select("df", where="index in selection") expected = df[df.index.isin(selection)] tm.assert_frame_equal(result, expected) # list df = DataFrame(np.random.randn(10, 2)) store.append("df2", df) result = store.select("df2", where=[0, 3, 5]) expected = df.iloc[[0, 3, 5]] tm.assert_frame_equal(result, expected) # boolean where = [True] * 10 where[-2] = False result = store.select("df2", where=where) expected = df.loc[where] tm.assert_frame_equal(result, expected) # start/stop result = store.select("df2", start=5, stop=10) expected = df[5:10] tm.assert_frame_equal(result, expected) def test_append_to_multiple(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # exceptions with pytest.raises(ValueError): store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df3" ) with pytest.raises(ValueError): store.append_to_multiple({"df1": None, "df2": None}, df, selector="df3") with pytest.raises(ValueError): store.append_to_multiple("df1", df, "df1") # regular operation store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df1" ) result = store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df1" ) expected = df[(df.A > 0) & (df.B > 0)] tm.assert_frame_equal(result, expected) def test_append_to_multiple_dropna(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # dropna=True should guarantee rows are synchronized store.append_to_multiple( {"df1": ["A", "B"], "df2": None}, df, selector="df1", dropna=True ) result = store.select_as_multiple(["df1", "df2"]) expected = df.dropna() tm.assert_frame_equal(result, expected) tm.assert_index_equal(store.select("df1").index, store.select("df2").index) @pytest.mark.xfail( run=False, reason="append_to_multiple_dropna_false is not raising as failed" ) def test_append_to_multiple_dropna_false(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df1.iloc[1, df1.columns.get_indexer(["A", "B"])] = np.nan df = concat([df1, df2], axis=1) with ensure_clean_store(setup_path) as store: # dropna=False shouldn't synchronize row indexes store.append_to_multiple( {"df1a": ["A", "B"], "df2a": None}, df, selector="df1a", dropna=False ) with pytest.raises(ValueError): store.select_as_multiple(["df1a", "df2a"]) assert not store.select("df1a").index.equals(store.select("df2a").index) def test_select_as_multiple(self, setup_path): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame().rename(columns="{}_2".format) df2["foo"] = "bar" with ensure_clean_store(setup_path) as store: # no tables stored with pytest.raises(Exception): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") store.append("df1", df1, data_columns=["A", "B"]) store.append("df2", df2) # exceptions with pytest.raises(Exception): store.select_as_multiple(None, where=["A>0", "B>0"], selector="df1") with pytest.raises(Exception): store.select_as_multiple([None], where=["A>0", "B>0"], selector="df1") msg = "'No object named df3 in the file'" with pytest.raises(KeyError, match=msg): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) with pytest.raises(KeyError, match=msg): store.select_as_multiple(["df3"], where=["A>0", "B>0"], selector="df1") with pytest.raises(KeyError, match="'No object named df4 in the file'"): store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df4" ) # default select result = store.select("df1", ["A>0", "B>0"]) expected = store.select_as_multiple( ["df1"], where=["A>0", "B>0"], selector="df1" ) tm.assert_frame_equal(result, expected) expected = store.select_as_multiple( "df1", where=["A>0", "B>0"], selector="df1" ) tm.assert_frame_equal(result, expected) # multiple result = store.select_as_multiple( ["df1", "df2"], where=["A>0", "B>0"], selector="df1" ) expected = concat([df1, df2], axis=1) expected = expected[(expected.A > 0) & (expected.B > 0)] tm.assert_frame_equal(result, expected) # multiple (diff selector) result = store.select_as_multiple( ["df1", "df2"], where="index>df2.index[4]", selector="df2" ) expected = concat([df1, df2], axis=1) expected = expected[5:] tm.assert_frame_equal(result, expected) # test exception for diff rows store.append("df3", tm.makeTimeDataFrame(nper=50)) with pytest.raises(ValueError): store.select_as_multiple( ["df1", "df3"], where=["A>0", "B>0"], selector="df1" ) @pytest.mark.skipif( LooseVersion(tables.__version__) < LooseVersion("3.1.0"), reason=("tables version does not support fix for nan selection bug: GH 4858"), ) def test_nan_selection_bug_4858(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(cols=range(6), values=range(6)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[0] = np.nan expected = DataFrame( dict(cols=["13.0", "14.0", "15.0"], values=[3.0, 4.0, 5.0]), index=[3, 4, 5], ) # write w/o the index on that particular column store.append("df", df, data_columns=True, index=["cols"]) result = store.select("df", where="values>2.0") tm.assert_frame_equal(result, expected) def test_start_stop_table(self, setup_path): with ensure_clean_store(setup_path) as store: # table df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) store.append("df", df) result = store.select("df", "columns=['A']", start=0, stop=5) expected = df.loc[0:4, ["A"]] tm.assert_frame_equal(result, expected) # out of range result = store.select("df", "columns=['A']", start=30, stop=40) assert len(result) == 0 expected = df.loc[30:40, ["A"]] tm.assert_frame_equal(result, expected) def test_start_stop_multiple(self, setup_path): # GH 16209 with ensure_clean_store(setup_path) as store: df = DataFrame({"foo": [1, 2], "bar": [1, 2]}) store.append_to_multiple( {"selector": ["foo"], "data": None}, df, selector="selector" ) result = store.select_as_multiple( ["selector", "data"], selector="selector", start=0, stop=1 ) expected = df.loc[[0], ["foo", "bar"]] tm.assert_frame_equal(result, expected) def test_start_stop_fixed(self, setup_path): with ensure_clean_store(setup_path) as store: # fixed, GH 8287 df = DataFrame( dict(A=np.random.rand(20), B=np.random.rand(20)), index=pd.date_range("20130101", periods=20), ) store.put("df", df) result = store.select("df", start=0, stop=5) expected = df.iloc[0:5, :] tm.assert_frame_equal(result, expected) result = store.select("df", start=5, stop=10) expected = df.iloc[5:10, :] tm.assert_frame_equal(result, expected) # out of range result = store.select("df", start=30, stop=40) expected = df.iloc[30:40, :] tm.assert_frame_equal(result, expected) # series s = df.A store.put("s", s) result = store.select("s", start=0, stop=5) expected = s.iloc[0:5] tm.assert_series_equal(result, expected) result = store.select("s", start=5, stop=10) expected = s.iloc[5:10] tm.assert_series_equal(result, expected) # sparse; not implemented df = tm.makeDataFrame() df.iloc[3:5, 1:3] = np.nan df.iloc[8:10, -2] = np.nan def test_select_filter_corner(self, setup_path): df = DataFrame(np.random.randn(50, 100)) df.index = ["{c:3d}".format(c=c) for c in df.index] df.columns = ["{c:3d}".format(c=c) for c in df.columns] with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") crit = "columns=df.columns[:75]" result = store.select("frame", [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75]]) crit = "columns=df.columns[:75:2]" result = store.select("frame", [crit]) tm.assert_frame_equal(result, df.loc[:, df.columns[:75:2]]) def test_path_pathlib(self, setup_path): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, "df"), lambda p: pd.read_hdf(p, "df") ) tm.assert_frame_equal(df, result) @pytest.mark.parametrize("start, stop", [(0, 2), (1, 2), (None, None)]) def test_contiguous_mixed_data_table(self, start, stop, setup_path): # GH 17021 # ValueError when reading a contiguous mixed-data table ft. VLArray df = DataFrame( { "a": Series([20111010, 20111011, 20111012]), "b": Series(["ab", "cd", "ab"]), } ) with ensure_clean_store(setup_path) as store: store.append("test_dataset", df) result = store.select("test_dataset", start=start, stop=stop) tm.assert_frame_equal(df[start:stop], result) def test_path_pathlib_hdfstore(self, setup_path): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, "df") def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, "df") result = tm.round_trip_pathlib(writer, reader) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(self, setup_path): df = tm.makeDataFrame() result = tm.round_trip_pathlib( lambda p: df.to_hdf(p, "df"), lambda p: pd.read_hdf(p, "df") ) tm.assert_frame_equal(df, result) def test_path_localpath_hdfstore(self, setup_path): df = tm.makeDataFrame() def writer(path): with pd.HDFStore(path) as store: df.to_hdf(store, "df") def reader(path): with pd.HDFStore(path) as store: return pd.read_hdf(store, "df") result = tm.round_trip_localpath(writer, reader) tm.assert_frame_equal(df, result) def _check_roundtrip(self, obj, comparator, path, compression=False, **kwargs): options = {} if compression: options["complib"] = _default_compressor with ensure_clean_store(path, "w", **options) as store: store["obj"] = obj retrieved = store["obj"] comparator(retrieved, obj, **kwargs) def _check_double_roundtrip( self, obj, comparator, path, compression=False, **kwargs ): options = {} if compression: options["complib"] = compression or _default_compressor with ensure_clean_store(path, "w", **options) as store: store["obj"] = obj retrieved = store["obj"] comparator(retrieved, obj, **kwargs) store["obj"] = retrieved again = store["obj"] comparator(again, obj, **kwargs) def _check_roundtrip_table(self, obj, comparator, path, compression=False): options = {} if compression: options["complib"] = _default_compressor with ensure_clean_store(path, "w", **options) as store: store.put("obj", obj, format="table") retrieved = store["obj"] comparator(retrieved, obj) def test_multiple_open_close(self, setup_path): # gh-4409: open & close multiple times with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") # single store = HDFStore(path) assert "CLOSED" not in store.info() assert store.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open with ensure_clean_path(setup_path) as path: if pytables._table_file_open_policy_is_strict: # multiples store1 = HDFStore(path) with pytest.raises(ValueError): HDFStore(path) store1.close() else: # multiples store1 = HDFStore(path) store2 = HDFStore(path) assert "CLOSED" not in store1.info() assert "CLOSED" not in store2.info() assert store1.is_open assert store2.is_open store1.close() assert "CLOSED" in store1.info() assert not store1.is_open assert "CLOSED" not in store2.info() assert store2.is_open store2.close() assert "CLOSED" in store1.info() assert "CLOSED" in store2.info() assert not store1.is_open assert not store2.is_open # nested close store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store2.append("df2", df) store2.close() assert "CLOSED" in store2.info() assert not store2.is_open store.close() assert "CLOSED" in store.info() assert not store.is_open # double closing store = HDFStore(path, mode="w") store.append("df", df) store2 = HDFStore(path) store.close() assert "CLOSED" in store.info() assert not store.is_open store2.close() assert "CLOSED" in store2.info() assert not store2.is_open # ops on a closed store with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", mode="w", format="table") store = HDFStore(path) store.close() with pytest.raises(ClosedFileError): store.keys() with pytest.raises(ClosedFileError): "df" in store with pytest.raises(ClosedFileError): len(store) with pytest.raises(ClosedFileError): store["df"] with pytest.raises(AttributeError): store.df with pytest.raises(ClosedFileError): store.select("df") with pytest.raises(ClosedFileError): store.get("df") with pytest.raises(ClosedFileError): store.append("df2", df) with pytest.raises(ClosedFileError): store.put("df3", df) with pytest.raises(ClosedFileError): store.get_storer("df2") with pytest.raises(ClosedFileError): store.remove("df2") with pytest.raises(ClosedFileError, match="file is not open"): store.select("df") def test_pytables_native_read(self, datapath, setup_path): with ensure_clean_store( datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r" ) as store: d2 = store["detector/readout"] assert isinstance(d2, DataFrame) @pytest.mark.skipif( is_platform_windows(), reason="native2 read fails oddly on windows" ) def test_pytables_native2_read(self, datapath, setup_path): with ensure_clean_store( datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r" ) as store: str(store) d1 = store["detector"] assert isinstance(d1, DataFrame) @td.xfail_non_writeable def test_legacy_table_fixed_format_read_py2(self, datapath, setup_path): # GH 24510 # legacy table with fixed format written in Python 2 with ensure_clean_store( datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r" ) as store: result = store.select("df") expected = pd.DataFrame( [[1, 2, 3, "D"]], columns=["A", "B", "C", "D"], index=pd.Index(["ABC"], name="INDEX_NAME"), ) tm.assert_frame_equal(expected, result) def test_legacy_table_read_py2(self, datapath, setup_path): # issue: 24925 # legacy table written in Python 2 with ensure_clean_store( datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r" ) as store: result = store.select("table") expected = pd.DataFrame({"a": ["a", "b"], "b": [2, 3]}) tm.assert_frame_equal(expected, result) def test_copy(self, setup_path): with catch_warnings(record=True): def do_copy(f, new_f=None, keys=None, propindexes=True, **kwargs): try: store = HDFStore(f, "r") if new_f is None: import tempfile fd, new_f = tempfile.mkstemp() tstore = store.copy( new_f, keys=keys, propindexes=propindexes, **kwargs ) # check keys if keys is None: keys = store.keys() assert set(keys) == set(tstore.keys()) # check indices & nrows for k in tstore.keys(): if tstore.get_storer(k).is_table: new_t = tstore.get_storer(k) orig_t = store.get_storer(k) assert orig_t.nrows == new_t.nrows # check propindixes if propindexes: for a in orig_t.axes: if a.is_indexed: assert new_t[a.name].is_indexed finally: safe_close(store) safe_close(tstore) try: os.close(fd) except (OSError, ValueError): pass safe_remove(new_f) # new table df = tm.makeDataFrame() try: path = create_tempfile(setup_path) st = HDFStore(path) st.append("df", df, data_columns=["A"]) st.close() do_copy(f=path) do_copy(f=path, propindexes=False) finally: safe_remove(path) def test_store_datetime_fractional_secs(self, setup_path): with ensure_clean_store(setup_path) as store: dt = datetime.datetime(2012, 1, 2, 3, 4, 5, 123456) series = Series([0], [dt]) store["a"] = series assert store["a"].index[0] == dt def test_tseries_indices_series(self, setup_path): with ensure_clean_store(setup_path) as store: idx = tm.makeDateIndex(10) ser = Series(np.random.randn(len(idx)), idx) store["a"] = ser result = store["a"] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") idx = tm.makePeriodIndex(10) ser = Series(np.random.randn(len(idx)), idx) store["a"] = ser result = store["a"] tm.assert_series_equal(result, ser) assert result.index.freq == ser.index.freq tm.assert_class_equal(result.index, ser.index, obj="series index") def test_tseries_indices_frame(self, setup_path): with ensure_clean_store(setup_path) as store: idx = tm.makeDateIndex(10) df = DataFrame(np.random.randn(len(idx), 3), index=idx) store["a"] = df result = store["a"] tm.assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") idx = tm.makePeriodIndex(10) df = DataFrame(np.random.randn(len(idx), 3), idx) store["a"] = df result = store["a"] tm.assert_frame_equal(result, df) assert result.index.freq == df.index.freq tm.assert_class_equal(result.index, df.index, obj="dataframe index") def test_unicode_index(self, setup_path): unicode_values = ["\u03c3", "\u03c3\u03c3"] # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) s = Series(np.random.randn(len(unicode_values)), unicode_values) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_unicode_longer_encoded(self, setup_path): # GH 11234 char = "\u0394" df =
pd.DataFrame({"A": [char]})
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns))
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# Script designed to visulize the working time distribution from your time logger. # Copyright © 2020 <NAME> # Licensed under MIT License import sys import pandas as pd import numpy as np from matplotlib import pyplot as plt f_name = sys.argv[1] precision = str(sys.argv[2]) df =
pd.read_csv(f_name)
pandas.read_csv
from collections import defaultdict import pandas as pd prefixs = defaultdict(int) # https://www.kaggle.com/imoore/titanic-the-only-notebook-you-need-to-see/notebook personal_titles = set(t.lower() for t in ["Mr.", # "Miss.", != Miss "Mrs.", ]) def extract_feature(X): # Int64Index: 1309 entries, 0 to 417 # Data columns (total 12 columns): # # Column Non-Null Count Dtype # --- ------ -------------- ----- # 0 PassengerId 1309 non-null int64 # 1 Survived 891 non-null float64 # 2 Pclass 1309 non-null int64 # 3 Name 1309 non-null object # 4 Sex 1309 non-null object # 5 Age 1046 non-null float64 # 6 SibSp 1309 non-null int64 # 7 Parch 1309 non-null int64 # 8 Ticket 1309 non-null object # 9 Fare 1308 non-null float64 # 10 Cabin 295 non-null object # 11 Embarked 1307 non-null object # Name ... X['NameWordCount'] = X['Name'].apply(lambda x: len(x.split())) X['Personal Title'] = X['Name'].apply(extract_personal_title) # For numeric data, "Age" missing 20% records, "Fare" missing only 1 record. # Age of couple might be close # Name, Age, Ticket # Clark, Mr. <NAME> 27 13508 # Clark, Mrs. <NAME> (<NAME>) 26 13508 X['Age'] = X['Age'].fillna(X['Age'].median()) X['Fare'] = X['Fare'].fillna(X['Fare'].median()) # For categorical data, "Embarked" missing 2 records, "Cabin" missing 77% records. # Most of "Embarked" are "S" # Do NOT turn it into integer, which performs bad ... # X['Embarked'] = X['Embarked'].fillna('S') X['CabinInitChar'] = X['Cabin'].fillna( '').apply(extract_cabin_initial_char) X['CabinNumber'] = X['Cabin'].fillna('').apply(extract_cabin_number) X['TicketPrefix'] = X['Ticket'].fillna('').apply(extract_ticket_prefix) X['TicketNumber'] = X['Ticket'].fillna('').apply(extract_ticket_number) X = X.drop(columns=['Name', 'Ticket', 'Cabin']) return
pd.get_dummies(X)
pandas.get_dummies
__author__ = "saeedamen" # <NAME> # # Copyright 2016 Cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on a "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # import re import numpy as np import pandas as pd import datetime from datetime import timedelta from pandas.tseries.offsets import BDay, CustomBusinessDay, Day, \ CustomBusinessMonthEnd, DateOffset from findatapy.timeseries.timezone import Timezone from findatapy.util.dataconstants import DataConstants from findatapy.util.loggermanager import LoggerManager constants = DataConstants() # To speed up CustomBusinessDay # https://stackoverflow.com/questions/31523302/performance-of-pandas-custom-business-day-offset class Calendar(object): """Provides calendar based functions for working out options expiries, holidays etc. Note, that at present, the expiry _calculations are approximate. """ # Approximate mapping from tenor to number of business days _tenor_bus_day_dict = {'ON': 1, 'TN': 2, '1W': 5, '2W': 10, '3W': 15, '1M': 20, '2M': 40, '3M': 60, '4M': 80, '6M': 120, '9M': 180, '1Y': 252, '2Y': 252 * 2, '3Y': 252 * 3, '5Y': 252 * 5 } def __init__(self): self._holiday_df = pd.read_parquet(constants.holidays_parquet_table) def flatten_list_of_lists(self, list_of_lists): """Flattens lists of obj, into a single list of strings (rather than characters, which is default behavior). Parameters ---------- list_of_lists : obj (list) List to be flattened Returns ------- str (list) """ if isinstance(list_of_lists, list): rt = [] for i in list_of_lists: if isinstance(i, list): rt.extend(self.flatten_list_of_lists(i)) else: rt.append(i) return rt return list_of_lists def _get_full_cal(self, cal): holidays_list = [] # Calendars which have been hardcoded in the parquet file (which users # may also edit) if len(cal) == 6: # Eg. EURUSD (load EUR and USD calendars and combine the holidays) holidays_list.append( [self._get_full_cal(cal[0:3]), self._get_full_cal(cal[3:6])]) elif len(cal) == 9: holidays_list.append( [self._get_full_cal(cal[0:3]), self._get_full_cal(cal[3:6]), self._get_full_cal(cal[6:9])]) else: if cal == 'FX' or cal == 'NYX': # Filter for Christmas & New Year's Day for i in range(1999, 2025): holidays_list.append(pd.Timestamp(str(i) + "-12-25")) holidays_list.append(pd.Timestamp(str(i) + "-01-01")) elif cal == 'NYD' or cal == 'NEWYEARSDAY': # Filter for New Year's Day for i in range(1999, 2025): holidays_list.append(pd.Timestamp(str(i) + "-01-01")) elif cal == 'WDY' or cal == 'WEEKDAY': bday = CustomBusinessDay(weekmask='Sat Sun') holidays_list.append([x for x in pd.date_range('01 Jan 1999', '31 Dec 2025', freq=bday)]) elif cal == 'WKD': # pass # holidays_list.append() else: label = cal + ".holiday-dates" try: holidays_list = self._holiday_df[label].dropna().tolist() except: logger = LoggerManager().getLogger(__name__) logger.warning(cal + " holiday calendar not found.") return holidays_list def create_calendar_bus_days(self, start_date, end_date, cal='FX'): """Creates a calendar of business days Parameters ---------- start_date : DateTime start date of calendar end_date : DataFrame finish date of calendar cal : str business calendar to use Returns ------- list """ hols = self.get_holidays(start_date=start_date, end_date=end_date, cal=cal) return pd.bdate_range(start=start_date, end=end_date, freq='D', holidays=hols) def get_holidays(self, start_date=None, end_date=None, cal='FX', holidays_list=[]): """Gets the holidays for a given calendar Parameters ---------- start_date : DateTime start date of calendar end_date : DataFrame finish date of calendar cal : str business calendar to use Returns ------- list """ # holidays_list , = [] # TODO use Pandas CustomBusinessDays to get more calendars holidays_list = self._get_full_cal(cal) # .append(lst) # Use 'set' so we don't have duplicate dates if we are incorporating # multiple calendars holidays_list = np.array( list(set(self.flatten_list_of_lists(holidays_list)))) holidays_list = pd.to_datetime( holidays_list).sort_values().tz_localize('UTC') # Floor start date if start_date is not None: start_date = pd.Timestamp(start_date).floor('D') try: start_date = start_date.tz_localize('UTC') except: pass holidays_list = holidays_list[(holidays_list >= start_date)] if end_date is not None: # Ceiling end date end_date = pd.Timestamp(end_date).ceil('D') try: end_date = end_date.tz_localize('UTC') except: pass holidays_list = holidays_list[(holidays_list <= end_date)] # Remove all weekends unless it is WEEKDAY calendar if cal != 'WEEKDAY' or cal != 'WKY': holidays_list = holidays_list[holidays_list.dayofweek <= 4] return holidays_list def get_business_days_tenor(self, tenor): if tenor in self._tenor_bus_day_dict.keys(): return self._tenor_bus_day_dict[tenor] return None def get_dates_from_tenors(self, start, end, tenor, cal=None): freq = str(self.get_business_days_tenor(tenor)) + "B" return pd.DataFrame(index=pd.bdate_range(start, end, freq=freq)) def get_delta_between_dates(self, date1, date2, unit='days'): if unit == 'days': return (date2 - date1).days def get_delivery_date_from_horizon_date(self, horizon_date, tenor, cal=None, asset_class='fx'): if 'fx' in asset_class: tenor_unit = ''.join(re.compile(r'\D+').findall(tenor)) asset_holidays = self.get_holidays(cal=cal) if tenor_unit == 'ON': return horizon_date + CustomBusinessDay(n=1, holidays=asset_holidays) elif tenor_unit == 'TN': return horizon_date + CustomBusinessDay(n=2, holidays=asset_holidays) elif tenor_unit == 'SP': pass elif tenor_unit == 'SN': tenor_unit = 'D' tenor_digit = 1 else: tenor_digit = int(''.join(re.compile(r'\d+').findall(tenor))) horizon_date = self.get_spot_date_from_horizon_date( horizon_date, cal, asset_holidays=asset_holidays) if 'SP' in tenor_unit: return horizon_date elif tenor_unit == 'D': return horizon_date + CustomBusinessDay( n=tenor_digit, holidays=asset_holidays) elif tenor_unit == 'W': return horizon_date + Day( n=tenor_digit * 7) + CustomBusinessDay( n=0, holidays=asset_holidays) else: if tenor_unit == 'Y': tenor_digit = tenor_digit * 12 horizon_period_end = horizon_date + CustomBusinessMonthEnd( tenor_digit + 1) horizon_floating = horizon_date + DateOffset( months=tenor_digit) cbd = CustomBusinessDay(n=1, holidays=asset_holidays) delivery_date = [] if isinstance(horizon_period_end, pd.Timestamp): horizon_period_end = [horizon_period_end] if isinstance(horizon_floating, pd.Timestamp): horizon_floating = [horizon_floating] for period_end, floating in zip(horizon_period_end, horizon_floating): if floating < period_end: delivery_date.append(floating - cbd + cbd) else: delivery_date.append(period_end) return pd.DatetimeIndex(delivery_date) def get_expiry_date_from_horizon_date(self, horizon_date, tenor, cal=None, asset_class='fx-vol'): """Calculates the expiry date of FX options, based on the horizon date, the tenor and the holiday calendar associated with the asset. Uses expiry rules from <NAME>'s FX option pricing book Parameters ---------- horizon_date : pd.Timestamp (collection) Horizon date of contract tenor : str Tenor of the contract cal : str Holiday calendar (usually related to the asset) asset_class : str 'fx-vol' - FX options (default) Returns ------- pd.Timestamp (collection) """ if asset_class == 'fx-vol': tenor_unit = ''.join(re.compile(r'\D+').findall(tenor)) asset_holidays = self.get_holidays(cal=cal) if tenor_unit == 'ON': tenor_digit = 1; tenor_unit = 'D' else: tenor_digit = int(''.join(re.compile(r'\d+').findall(tenor))) if tenor_unit == 'D': return horizon_date + CustomBusinessDay( n=tenor_digit, holidays=asset_holidays) elif tenor_unit == 'W': return horizon_date + Day( n=tenor_digit * 7) + CustomBusinessDay( n=0, holidays=asset_holidays) else: horizon_date = self.get_spot_date_from_horizon_date( horizon_date, cal, asset_holidays=asset_holidays) if tenor_unit == 'M': pass elif tenor_unit == 'Y': tenor_digit = tenor_digit * 12 cbd = CustomBusinessDay(n=1, holidays=asset_holidays) horizon_period_end = horizon_date + CustomBusinessMonthEnd( tenor_digit + 1) horizon_floating = horizon_date + DateOffset( months=tenor_digit) delivery_date = [] if isinstance(horizon_period_end, pd.Timestamp): horizon_period_end = [horizon_period_end] if isinstance(horizon_floating, pd.Timestamp): horizon_floating = [horizon_floating] # TODO: double check this! for period_end, floating in zip(horizon_period_end, horizon_floating): if floating < period_end: delivery_date.append(floating - cbd + cbd) else: delivery_date.append(period_end) delivery_date =
pd.DatetimeIndex(delivery_date)
pandas.DatetimeIndex
import pandas as pd from utils.storage import load_frame, dump_frame, DATA_PATH, check_if_stepframe, check_if_vecframe def daySplitter(step_name, data_path=DATA_PATH): """ Splits entries into days and saves results as vecframe. """ stepframe = load_frame(step_name, data_path) check_if_stepframe(stepframe) vec_len = stepframe.loc[stepframe.day == 0].shape[0] columns = ['user', 'desc'] + list(range(vec_len)) vfs = [] for day in stepframe.day.unique(): vf = stepframe[stepframe.day == day].iloc[:, 4:999+4].T.astype('int32') vf.columns = list(range(vec_len)) vf['user'] = vf.index.to_numpy(dtype=pd.np.int) vf['desc'] = day vfs.append(vf) vecframe = pd.concat(vfs, sort=False, ignore_index=True) vecframe = vecframe[columns] vecframe.columns = vecframe.columns.astype(str) check_if_vecframe(vecframe) dump_frame(vecframe, '{}_dsp'.format(step_name)) def make_weekly_vecframe(step_name, vec_name='{}_week', data_path=DATA_PATH): ''' Transforms a stepframe into a vecframe without splittling the data. 'desc' will always be 0. :param step_name: name of the stepframe :param vec_name: name under which vecframe will be saved :param data_path: optional, path to data folder :return: ''' stepframe = load_frame(step_name, DATA_PATH) vecframe = stepframe.loc[:, '0':].transpose() vecframe.columns = [str(col) for col in vecframe.columns] vecframe['user'] = vecframe.index vecframe['user'] = vecframe['user'].apply(int) vecframe['desc'] = [0] * vecframe.shape[0] cols = list(vecframe.columns) vecframe = vecframe[cols[-2:] + cols[:-2]] # vecframe = vecframe.reset_index(drop=True) check_if_vecframe(vecframe) dump_frame(vecframe, vec_name.format(step_name), data_path) def processTime(epochsfile, step_name , data_path=DATA_PATH): epochs=
pd.read_csv(data_path+ epochsfile)
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA def perform_pca(data, n_components=3, y=None): """ data = Data on which to perform PCA n_components = 3. This is the number of Principal Components to consider for the analysis """ # Separating and standardizing the features features = data.copy(deep=True) if (y is not None): features = data.drop(y, axis=1) x = StandardScaler().fit_transform(features) pca = PCA(n_components=n_components) principalComponents = pca.fit_transform(x) principal_comp = pd.DataFrame( data=principalComponents, columns=['Principal Component ' + str(i) for i in range(1, (n_components+1))]) if (y is not None): final_df =
pd.concat([principal_comp, data[y]], axis=1)
pandas.concat
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gps_building_blocks.ml.statistical_inference.inference.""" from unittest import mock from absl.testing import parameterized import numpy as np import pandas as pd from scipy import stats from sklearn import datasets from sklearn import model_selection from absl.testing import absltest from gps_building_blocks.ml.statistical_inference import data_preparation class InferenceTest(parameterized.TestCase): _missing_data = pd.DataFrame( data=[[np.nan, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, np.nan]], columns=['first', 'second']) def test_missing_value_emits_warning_twice(self): with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) with self.assertWarns(data_preparation.MissingValueWarning): data_preparation.InferenceData(self._missing_data) def test_check_data_raises_exception_on_missing_data(self): inference_data = data_preparation.InferenceData(self._missing_data) with self.assertRaises(data_preparation.MissingValueError): inference_data.data_check(raise_on_error=True) def test_invalid_target_column_raise_exception(self): with self.assertRaises(KeyError): data_preparation.InferenceData( initial_data=self._missing_data, target_column='non_ci_sono') def test_impute_missing_values_replaced_with_mean(self): inference_data = data_preparation.InferenceData(self._missing_data) expected_result = pd.DataFrame( data=[[0.4000, 0.0000], [0.6000, 0.0000], [0.4000, 3.0000], [0.2000, 1.0000]], columns=['first', 'second']) result = inference_data.impute_missing_values(strategy='mean') pd.testing.assert_frame_equal(result, expected_result) def test_fixed_effect_raise_exception_on_categorical_covariate(self): data = pd.DataFrame( data=[['0', 0.0, '1', 3.0], ['1', 0.0, '2', 2.0], ['1', 1.0, '3', 2.0], ['1', 1.0, '4', 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) inference_data = data_preparation.InferenceData(data) with self.assertRaises(data_preparation.CategoricalCovariateError): inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1) def test_fixed_effect_demeaning_subtract_mean_in_groups(self): data = pd.DataFrame( data=[['0', 0.0, 1, 3.0], ['1', 0.0, 2, 2.0], ['1', 1.0, 3, 2.0], ['1', 1.0, 4, 1.0]], columns=['control_1', 'control_2', 'variable_1', 'variable_2'], index=['group1', 'group2', 'group3', 'group3']) expected_result = pd.DataFrame( data=[['0', 0.0, 2.5, 2.0], ['1', 0.0, 2.5, 2.0], ['1', 1.0, 2.0, 2.5], ['1', 1.0, 3.0, 1.5]], columns=data.columns, index=data.index).set_index(['control_1', 'control_2'], append=True) inference_data = data_preparation.InferenceData(data) result = inference_data.control_with_fixed_effect( strategy='quick', control_columns=['control_1', 'control_2'], min_frequency=1)
pd.testing.assert_frame_equal(result, expected_result)
pandas.testing.assert_frame_equal
from flask import Flask from flask import jsonify, send_from_directory from flask import request from flask import current_app from flask import make_response from flask import render_template from flask_pymongo import PyMongo import xsg import pymortar import pandas as pd import pendulum import toml import pytz import json import glob import os from bson import json_util from collections import defaultdict from functools import update_wrapper from datetime import datetime, timedelta from dashutil import get_start, generate_months, prevmonday, get_today app = Flask(__name__, static_url_path='/static') config = toml.load('config.toml') TZ = pytz.timezone('US/Pacific') client = pymortar.Client({ 'mortar_address': config['Mortar']['url'], 'username': config['Mortar']['username'], 'password': config['<PASSWORD>']['password'], }) sites = [config['Dashboard']['sitename']] # MongoDB configurations app.config['MONGO_DBNAME'] = 'modes' app.config["MONGO_URI"] = "mongodb://localhost:27017/modes" mongo = PyMongo(app) # Push default modes to mongodb once script starts INITIALIZED = False def crossdomain(origin=None, methods=None, headers=None, max_age=21600, attach_to_all=True, automatic_options=True): if methods is not None: methods = ', '.join(sorted(x.upper() for x in methods)) if headers is not None and not isinstance(headers, str): headers = ', '.join(x.upper() for x in headers) if not isinstance(origin, str): origin = ', '.join(origin) if isinstance(max_age, timedelta): max_age = max_age.total_seconds() def get_methods(): if methods is not None: return methods options_resp = current_app.make_default_options_response() return options_resp.headers['allow'] def decorator(f): def wrapped_function(*args, **kwargs): if automatic_options and request.method == 'OPTIONS': resp = current_app.make_default_options_response() else: resp = make_response(f(*args, **kwargs)) if not attach_to_all and request.method != 'OPTIONS': return resp h = resp.headers h['Access-Control-Allow-Origin'] = origin h['Access-Control-Allow-Methods'] = get_methods() h['Access-Control-Max-Age'] = str(max_age) if headers is not None: h['Access-Control-Allow-Headers'] = headers return resp f.provide_automatic_options = False return update_wrapper(wrapped_function, f) return decorator def state_to_string(state): if state == 0: return 'off' elif state == 1: return 'heat stage 1' elif state == 2: return 'cool stage 1' elif state == 4: return 'heat stage 2' elif state == 5: return 'cool stage 2' else: return 'unknown' def dofetch(views, dataframes, start=None, end=None): timeparams = None if start is not None and end is not None: timeparams=pymortar.TimeParams( start=start.isoformat(), end=end.isoformat(), ) req = pymortar.FetchRequest( sites=sites, views=views, dataFrames=dataframes, time=timeparams ) return client.fetch(req) meter_view = pymortar.View( name="meters", definition="""SELECT ?meter WHERE { ?meter rdf:type brick:Building_Electric_Meter };""", ) meter_df = pymortar.DataFrame( name="meters", aggregation=pymortar.MEAN, timeseries=[ pymortar.Timeseries( view="meters", dataVars=['?meter'], ) ] ) tstats_view = pymortar.View( name="tstats", definition="""SELECT ?rtu ?zone ?tstat ?csp ?hsp ?temp ?state WHERE { ?rtu rdf:type brick:RTU . ?tstat bf:controls ?rtu . ?rtu bf:feeds ?zone . ?tstat bf:hasPoint ?temp . ?temp rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?tstat bf:hasPoint ?csp . ?csp rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Heating_Setpoint . ?tstat bf:hasPoint ?hsp . ?hsp rdf:type/rdfs:subClassOf* brick:Supply_Air_Temperature_Cooling_Setpoint . ?tstat bf:hasPoint ?state . ?state rdf:type brick:Thermostat_Status . };""", ) tstats_df = pymortar.DataFrame( name="tstats", aggregation=pymortar.MAX, timeseries=[ pymortar.Timeseries( view="tstats", dataVars=['?csp','?hsp','?temp','?state'], ), ] ) room_temp_view = pymortar.View( name="room_temp", definition="""SELECT ?zone ?room ?sensor WHERE { ?zone rdf:type brick:HVAC_Zone . ?zone bf:hasPart ?room . ?sensor rdf:type/rdfs:subClassOf* brick:Temperature_Sensor . ?room bf:hasPoint ?sensor . };""", ) weather_view = pymortar.View( name="weather_temp", definition="""SELECT ?sensor WHERE { ?sensor rdf:type/rdfs:subClassOf* brick:Weather_Temperature_Sensor . };""", ) weather_df = pymortar.DataFrame( name="weather_temp", aggregation=pymortar.MEAN, window='15m', timeseries=[ pymortar.Timeseries( view="weather_temp", dataVars=['?sensor'], ) ], ) # Home page is requesting /api/power/day/in/15m @app.route('/api/power/<last>/in/<bucketsize>') @crossdomain(origin='*') def power_summary(last, bucketsize): # first, determine the start date from the 'last' argument start_date = get_start(last) if last == 'year' and bucketsize == 'month': ranges = generate_months(get_today().month - 1) readings = [] times = [] for t0, t1 in ranges: meter_df.window = '{0}d'.format((t0-t1).days) res = dofetch([meter_view], [meter_df], t1, t0) times.append(t1.tz_convert(TZ).timestamp()*1000) readings.append(res['meters'].fillna('myNullVal').values[0][0]) # print('power_summary(): ', dict(zip(times, readings))) return jsonify({'readings': dict(zip(times, readings))}) # otherwise, meter_df.window = bucketsize print('start_date', start_date) res = dofetch([meter_view], [meter_df], start_date, datetime.now(TZ)) # print('res: \n', res['meters']) res['meters'].columns = ['readings'] # print('power_summary(): ', res['meters'].tz_convert(TZ).fillna('myNullVal')) return res['meters'].tz_convert(TZ).fillna('myNullVal').to_json() # Home page is requesting /api/energy/year/in/month & /api/energy/month/in/1d @app.route('/api/energy/<last>/in/<bucketsize>') @crossdomain(origin='*') def energy_summary(last, bucketsize): start_date = get_start(last) if last == 'year' and bucketsize == 'month': ranges = generate_months(get_today().month - 1) readings = [] times = [] for t0, t1 in ranges: meter_df.window = '15m' res = dofetch([meter_view], [meter_df], t1, t0) df = res['meters'].copy() df.columns = ['readings'] df /= 4. # divide by 4 to get 15min (kW) -> kWh times.append(pd.to_datetime(t1.isoformat())) readings.append(df['readings'].sum()) df =
pd.DataFrame(readings, index=times, columns=['readings'])
pandas.DataFrame
# -*- coding: utf-8 -*- ''' Script for grabbing a csv from a Google Sheet id and outputting JSON [compatible with Timeline JS](https://timeline.knightlab.com/docs/json-format.html) Todo: - Support for slide types - Support for eras - Support for scale Usage: Update gsheet_id with Google Sheet ID below and run script ''' gsheet_id = '1Tb0kabLp4K8lP-s3wWqU5QwRo0RufcT-OmeHH-h7oP4' import csv, json import pandas as pd from sys import argv ''' Constants ''' gsheet_url = ["https://docs.google.com/spreadsheet/pub?key=","&output=csv"] tjs_json = {} start_date = ['s_year','s_month','s_day','s_time'] end_date = ['e_year','e_month','e_day','e_time'] display_date = ['display_date'] media = ["url","credit","caption","thumbnail"] text = ["headline","text"] slide = ["type", "group"] background = ["background"] date = ["year", "month", "day", "time","display_date"] time = ["hour","minute","second","millisecond"] ''' Return Timeline JS objects ''' def to_object(data,param): out_object = {} for i, col in enumerate(param): # handle background object if param == background: if data[i] != data[i]: pass elif data[i].find('http') > -1: out_object['url'] = data[i] else: out_object['color'] = data[i] # handle NaN elif not data.get(i) or data[i] != data[i]: out_object[col] = '' # handle floats elif type(data[i]) == float: out_object[col] = int(data[i]) # default case else: out_object[col] = data[i] # return time object if out_object.get('time'): out_time = out_object['time'].split(':') for i,col in enumerate(out_time): out_object[time[i]] = int(out_time[i]) out_object.pop('time',None) return out_object ''' Parse Google Sheet CSV ''' def parse_csv(gsheet_id, tjs_json): data = pd.read_csv(gsheet_url[0] + gsheet_id + gsheet_url[1], header=0, \ names = start_date + end_date + display_date + text + media + slide + background) df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected =
TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx')
pandas.TimedeltaIndex
import os import shutil #import re import sys import platform import subprocess import numpy as np import json import pickle import pandas as pd from pandas import Series import xml.etree.ElementTree as ET import glob import argparse try: import lvdb except: import pdb as lvdb print('using pdb instead of lvdb') pass def ensure_dir_exists (datadir): if not os.path.exists(datadir): os.makedirs(datadir) if not os.path.exists(datadir): themessage = 'Directory {} could not be created.'.format(datadir) if (int(platform.python_version()[0]) > 2): raise NotADirectoryError(themessage) else: # python 2 doesn't have the impressive exception vocabulary 3 does # so just raising a generic exception with a useful description raise BaseException(themessage) def rsync_the_file (from_location, to_location): # Assuming that the responses for how platform.system() responds to # different OSes given here are correct (though not assuming case): # https://stackoverflow.com/questions/1854/python-what-os-am-i-running-on if platform.system().lower() is 'windows': print('Windows detected. The rsync command that is about to be', \ 'executed assumes a Linux or Mac OS; no guarantee that it', \ 'will work with Windows. Please be ready to transfer files', \ 'via alternate means if necessary.') subprocess.call(['rsync', '-vaPhz', from_location, to_location]) def df_to_pickle(thedf, thefilename): thedf.to_pickle(thefilename); def df_to_csv(thedf, thefilename): thedf.to_csv(thefilename, index_label='index'); def df_to_json(thedf, thefilename): thedf.to_json(thefilename, orient='records', double_precision = 10, force_ascii = True); def glob2df(datadir, linecount, jobnum_list): print(datadir) thepaths = glob.iglob(datadir + '/*/') results_dirs_used = [] df_list = [] progress_counter = 1000; counter = 0; for dirname in sorted(thepaths): dirstructure = dirname.split('/') lastdir = dirstructure[-1] if '_job_' not in lastdir: # handle trailing slash if present lastdir = dirstructure[-2]; if '_job_' not in lastdir: # something's wrong; skip this case continue; if '_task_' not in lastdir: # something's wrong; skip this case continue; if 'latest' in lastdir: continue; filename = dirname + 'summary.csv' if not os.path.isfile(filename): print('No summary file at ', filename); # no summary file means no results, unless results saved using a # different mechanism, which is out of scope of this script continue; missionname = dirname + 'mission.xml' if not os.path.isfile(missionname): print('No mission file at ', missionname); continue; split_on_task = lastdir.split('_task_') tasknum = int(split_on_task[-1]) jobnum = int(split_on_task[0].split('_job_',1)[1]) if jobnum_list and jobnum not in jobnum_list: # lvdb.set_trace() # print('Job {} not in list of jobs; skipping'.format(jobnum)) continue; counter += 1; if counter > progress_counter: print('j ', jobnum, ', t ', tasknum) counter = 0; # thisjob_df = pd.DataFrame(index=range(1)) thisjob_df = pd.read_csv(filename) if thisjob_df.empty: # no actual content in df; maybe only header rows continue; # Add column to df for job number thisjob_df['job_num']=jobnum # and task number thisjob_df['task_num']=tasknum # and results directory thisjob_df['results_dir']=lastdir # add how many rows there are in the df so plot scripts know what to # expect thisjob_df['num_rows']=len(thisjob_df.index) df_to_append = pd.DataFrame() thisjob_params_df = xml_param_df_cols(missionname); num_lines = len(thisjob_df.index) if linecount > 0: if num_lines < linecount: continue; df_to_append = pd.concat([thisjob_params_df]*num_lines, ignore_index=True); if df_to_append.empty: continue; this_job_df = thisjob_df if not df_to_append.empty: this_job_df =
pd.concat([thisjob_df, df_to_append], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # 2019-01-21: Initial Data Exploration # # ### Authors # * <NAME> (<EMAIL>) # ## Preparations # In[1]: # --- Imports # Standard libraries import os import re # External packages import matplotlib.pyplot as plt import numpy import pandas # In[2]: # --- Configuration Parameters # Data directory data_dir = os.environ['DATA_DIR'] # Materials materials = { 'actinolite': 0, 'alunite': 1, 'calcite': 2, } # ### Data Preparation # In[3]: # --- Load data from files # Get file list data_files = [os.path.join(data_dir, file_name) for file_name in os.listdir(data_dir) if not file_name.startswith('.') and os.path.isfile(os.path.join(data_dir, file_name))] # Initialize spectra dataset spectra_data =
pandas.DataFrame()
pandas.DataFrame
# http://github.com/timestocome # take a look at the differences in daily returns for recent bull and bear markets # http://afoysal.blogspot.com/2016/08/arma-and-arima-timeseries-prediction.html # predictions appear to increase and decrease with actual returns but scale is much smaller # of course if it was this easy there'd be a lot of rich statisticians in the world. import numpy as np import pandas as pd from statsmodels.tsa.arima_model import ARMA, ARIMA from statsmodels.tsa.stattools import adfuller, arma_order_select_ic import matplotlib.pyplot as plt # pandas display options pd.options.display.max_rows = 1000 pd.options.display.max_columns = 25 pd.options.display.width = 1000 ###################################################################### # data ######################################################################## # read in datafile created in LoadAndMatchDates.py data = pd.read_csv('StockDataWithVolume.csv', index_col='Date', parse_dates=True) features = [data.columns.values] # create target --- let's try Nasdaq value 1 day change data['returns'] = (data['NASDAQ'] - data['NASDAQ'].shift(1)) / data['NASDAQ'] # remove nan row from target creation data = data.dropna() ######################################################################### # split into bear and bull markets ########################################################################## bull1_start = pd.to_datetime('01-01-1990') # beginning of this dataset bull1_end = pd.to_datetime('07-16-1990') iraq_bear_start = pd.to_datetime('07-17-1990') iraq_bear_end = pd.to_datetime('10-11-1990') bull2_start = pd.to_datetime('10-12-1990') bull2_end = pd.to_datetime('01-13-2000') dotcom_bear_start = pd.to_datetime('01-14-2000') dotcom_bear_end =
pd.to_datetime('10-09-2002')
pandas.to_datetime
import warnings import pytest from pandas import DataFrame, Series import pandas._testing as tm from pandas.core.algorithms import safe_sort class TestPairwise: # GH 7738 df1s = [ DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]), DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]), DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]), DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]), ] df2 = DataFrame( [[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]], columns=["Y", "Z", "X"], ) s = Series([1, 1, 3, 8]) def compare(self, result, expected): # since we have sorted the results # we can only compare non-nans result = result.dropna().values expected = expected.dropna().values tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()]) def test_no_flex(self, f): # DataFrame methods (which do not call _flex_binary_moment()) results = [f(df) for df in self.df1s] for (df, result) in zip(self.df1s, results): tm.assert_index_equal(result.index, df.columns) tm.assert_index_equal(result.columns, df.columns) for i, result in enumerate(results): if i > 0: self.compare(result, results[0]) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().cov(pairwise=True), lambda x: x.expanding().corr(pairwise=True), lambda x: x.rolling(window=3).cov(pairwise=True), lambda x: x.rolling(window=3).corr(pairwise=True), lambda x: x.ewm(com=3).cov(pairwise=True), lambda x: x.ewm(com=3).corr(pairwise=True), ], ) def test_pairwise_with_self(self, f): # DataFrame with itself, pairwise=True # note that we may construct the 1st level of the MI # in a non-monotonic way, so compare accordingly results = [] for i, df in enumerate(self.df1s): result = f(df) tm.assert_index_equal(result.index.levels[0], df.index, check_names=False) tm.assert_numpy_array_equal(
safe_sort(result.index.levels[1])
pandas.core.algorithms.safe_sort
import os from io import BytesIO import fastavro as fa import numpy as np import pandas as pd import pyarrow as pa import pyarrow.orc as orc import pytest import cudf from cudf.tests.utils import assert_eq if not os.environ.get("RUN_HDFS_TESTS"): pytestmark = pytest.mark.skip("Env not configured to run HDFS tests") basedir = "/tmp/test-hdfs" host = "localhost" # hadoop hostname port = 8020 # hadoop rpc port @pytest.fixture def hdfs(scope="module"): # Default Rpc port can be 8020/9000 depending on the hdfs config fs = pa.hdfs.connect(host=host, port=port) try: if not fs.exists(basedir): fs.mkdir(basedir) except pa.lib.ArrowIOError: pytest.skip("hdfs config probably incorrect") return fs @pytest.fixture def pdf(scope="module"): df = pd.DataFrame() df["Integer"] = np.array([2345, 11987, 9027, 9027]) df["Float"] = np.array([9.001, 8.343, 6, 2.781]) df["Integer2"] = np.array([2345, 106, 2088, 789277], dtype="uint64") df["String"] = np.array(["Alpha", "Beta", "Gamma", "Delta"]) df["Boolean"] = np.array([True, False, True, False]) return df @pytest.mark.parametrize("test_url", [False, True]) def test_read_csv(tmpdir, pdf, hdfs, test_url): fname = tmpdir.mkdir("csv").join("file.csv") # Write to local file system pdf.to_csv(fname) # Read from local file system as buffer with open(fname, mode="rb") as f: buffer = BytesIO(f.read()) # Write to hdfs hdfs.upload(basedir + "/file.csv", buffer) if test_url: hd_fpath = "hdfs://{}:{}{}/file.csv".format(host, port, basedir) else: hd_fpath = "hdfs://{}/file.csv".format(basedir) got = cudf.read_csv(hd_fpath) # Read pandas from byte buffer with hdfs.open(basedir + "/file.csv") as f: expect =
pd.read_csv(f)
pandas.read_csv
from market import getMarket as gm from market import getData as gd from price import getPrice as gp from dba import mysql as ms from settings import config import pandas as pd import datetime import time # 插入市场信息 def insert_market(): # idList, name = gm.run() idList = gd.get_id_list() name = gd.get_name_list() df = { "market_id": idList, "name": name, } df = pd.DataFrame(df) # print(df) ms.insert_market(config.config, df) # 查询市场列表 def select_market(): db_data = ms.select_market(config.config, '山东') for each in db_data: print(each.name) # 插入市场价格信息 def insert_price(): year,month,day = CountDay() MarketNull = [] List = gd.get_id_list() for each in List: url = gp.init(each, year, month, day) # 爬取网页信息返回未清理的参数 Vdate,Vmarket,Vname,Vlow,Vhigh = gp.getHtml(url) # 判断是否为空数据,空数据就直接跳过本次循环 if(len(Vname)<=0): print(f'本市场ID没有数据,:marketID:{each}') MarketNull.append(each) continue else: # 返回清理的参数 date,mark,name,low,high = gp.ClearData(Vdate,Vmarket,Vname,Vlow,Vhigh) #转为dataframe df = { "date": date, "market_name": mark, "vegetable": name, "low": low, "high": high } df = pd.DataFrame(df) # print(df) ms.insert_price(config.config, df) time.sleep(1) # 将没有数据的ID对应名称后存入数据库 #insert_NULL_Market(MarketNull) # 插入空数据的Market def insert_NULL_Market(MarketNull): NullName = [] nameList = gd.get_json() for each in MarketNull: for j in nameList: if(each == j['ID']): NullName.append(j['name']) ef = { 'market_id': MarketNull, 'name': NullName } ef = pd.DataFrame(ef) ms.insert_null_market(config.config, ef) # 查询价格 def select_vege_price(name, date): data = ms.select_price(config.config, name, date) for each in data: print(f'市场名:{each.market_name},最低价:{each.low},最高价:{each.high}') def delete_null_market(): temp_id = [] have_id = [] null = ms.select_null_market(config.config) for each in null: temp_id.append(each.market_id) market_id = gd.get_id_list() # 差集 have_id = list(set(market_id).difference(set(temp_id))) have_name = [] market_name = gd.get_json() for each in market_name: for j in have_id: if(j == each['ID']): have_name.append(each['name']) df = { "ID": have_id, "name": have_name, } df =
pd.DataFrame(df)
pandas.DataFrame
""" TRANSFORM Create relevant statistics about Google trends data for streamlit_app.py """ import pandas as pd import logging import streamlit as st def create_query_date(df): """ Day format of query_timestamp """ df['query_date'] = pd.to_datetime(df.query_timestamp).dt.date return df def drop_duplicates(df): """ Remove duplicates for anlaysis """ df_nodup = df.drop_duplicates(subset=['query', 'value', 'query_date', 'ranking']) logging.info(f"Drop {len(df)-len(df_nodup)} duplicates") return df_nodup def trends_statistics(df): """Generate relevant statistics for a ranking category of Google trends (rising or top)""" # time series indicator: t df['t'] = df.groupby('query_date').ngroup() # most recent period t_max = df.t.max() logging.debug(f"df dtypes after adding time series: {df.dtypes}") # ranking # absolute df['rank_t'] = df.groupby('t').value.rank(method='first', ascending=False) # rank in previous period (t-1) df['rank_t-1'] = df.groupby('query').rank_t.shift() # rank change from previous, t-1, to current period, t df['rank_absolute_change'] = df.rank_t - df['rank_t-1'] # winners and loosers (ranking of absoulte changes) df['rank_absoulte_change_ranking'] = df.groupby( 't').rank_absolute_change.rank(method='first', ascending=False) # percentile df['rank_pct_t'] = df.groupby('t').value.rank( method='first', ascending=False, pct=True) df['rank_pct_t-1'] = df.groupby('query').rank_pct_t.shift() df['rank_pct_change'] = df.rank_pct_t - df['rank_pct_t-1'] # new entries at time t df['new_entry_t'] = (pd.isna(df['rank_t-1']) &
pd.notnull(df.rank_t)
pandas.notnull
import numpy as np import pandas as pd from sklearn.utils.estimator_checks import check_estimator from autofeat import AutoFeatRegressor, AutoFeatClassifier def get_random_data(seed=15): # generate some toy data np.random.seed(seed) x1 = np.random.rand(1000) x2 = np.random.randn(1000) x3 = np.random.rand(1000) target = 2 + 15*x1 + 3/(x2 - 1/x3) + 5*(x2 + np.log(x1))**3 X = np.vstack([x1, x2, x3]).T return X, target def test_do_almost_nothing(): X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=0, featsel_runs=0) df = afreg.fit_transform(pd.DataFrame(X, columns=["x1", "x2", "x3"]), target) assert list(df.columns) == ["x1", "x2", "x3"], "Only original columns" df = afreg.transform(pd.DataFrame(X, columns=["x1", "x2", "x3"])) assert list(df.columns) == ["x1", "x2", "x3"], "Only original columns" def test_regular_X_y(): # autofeat with numpy arrays X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(X, target) assert afreg.score(X, target) >= 0.999, "R^2 should be 1." assert afreg.score(df, target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["x000", "x001", "x002"], "Wrong column names" def test_regular_df_X_y(): # autofeat with df without column names X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(pd.DataFrame(X), pd.DataFrame(target)) # score once with original, once with transformed data assert afreg.score(pd.DataFrame(X), target) >= 0.999, "R^2 should be 1." assert afreg.score(df, target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["0", "1", "2"], "Wrong column names" def test_weird_colnames(): # autofeat with df with weird column names X, target = get_random_data() afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) df = afreg.fit_transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target)) assert afreg.score(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), target) >= 0.999, "R^2 should be 1." assert list(df.columns)[:3] == ["x 1.1", "2", "x/3"], "Wrong column names" # error if the column names aren't the same as before try: afreg.score(pd.DataFrame(X, columns=["x 11", 2, "x/3"]), target) except ValueError: pass else: raise AssertionError("Should throw error on mismatch column names") def test_nans(): # nans are ok in transform but not fit or predict (due to sklearn model) X, target = get_random_data() X[998, 0] = np.nan X[999, 1] = np.nan afreg = AutoFeatRegressor(verbose=1, feateng_steps=3) try: _ = afreg.fit_transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target)) except ValueError: pass else: raise AssertionError("fit with NaNs should throw an error") _ = afreg.fit_transform(pd.DataFrame(X[:900], columns=["x 1.1", 2, "x/3"]), pd.DataFrame(target[:900])) try: _ = afreg.predict(pd.DataFrame(X[900:], columns=["x 1.1", 2, "x/3"])) except ValueError: pass else: raise AssertionError("predict with NaNs should throw an error") df = afreg.transform(pd.DataFrame(X, columns=["x 1.1", 2, "x/3"])) assert all([pd.isna(df.iloc[998, 0]),
pd.isna(df.iloc[999, 1])
pandas.isna
import pandas as pd from unittest import TestCase from .sar import Reservoirs from .hidro import Stations from .hidro.serie_temporal import SerieTemporal from .hidro import EntityApi class TestApi(TestCase): def test_get_stations_by_city(self): recife = Stations(name_city="RECIFE") piranhas = Stations(name_city="PIRANHAS") print(recife["39098600"]) print(piranhas["49330000"]) def test_get_data_from_ana_hydro_serie_temporal(self): serie = SerieTemporal(code="01036007", type_data='2') print(serie.data) def test_get_data_from_ana_hydro_flow_height_none(self): stations = Stations(code_start="49330000") stations_xingo = stations print(stations_xingo["49330000"]) def test_get_data_from_ana_hydro_flow_height(self): stations = Stations(code_start="49330000") stations_xingo = stations print(stations_xingo["49330000"].series_temporal(type_data='3')) #tz='Etc/GMT-3' print(stations_xingo["49330000"].series_temporal(type_data='1')) #tz='Etc/GMT-3' def test_get_from_ana_hydro_rainfall(self): stations = Stations(name_city="RECIFE") stations_recife = stations print(stations_recife["834003"].type_station) print(stations_recife["834003"].series_temporal(type_data='2')) def test_get_data_from_sar(self): reservoir = Reservoirs()["19086"] aflue = reservoir.series_temporal.affluence deflu = reservoir.series_temporal.flow afluencia = [192.00, -68301.00, 68795.00, 382.00, 489.00, 719.00] defluencia = [78.00, 122.00, 95.00, 105.00, 173.00, 245.00] data_flow = {"A19086": afluencia, "D19086": defluencia} data = ["05/01/2002", "06/01/2002", "07/01/2002", "08/01/2002", "09/01/2002", "10/01/2002"] data =
pd.to_datetime(data, dayfirst=True)
pandas.to_datetime
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- import datetime import glob import networkx import numpy import os import pandas import pickle import networkx_analysis nodes_overlap_species_nm_fns = [ networkx_analysis.nm_name_equal, networkx_analysis.nm_name_clean_equal, networkx_analysis.nm_name_clean_approx, #networkx_analysis.nm_gene_id_intersect, #networkx_analysis.nm_name_clean_approx_OR_gene_id_intersect, networkx_analysis.nm_bqbiol_is_equal, networkx_analysis.nm_bqbiol_is_overlaps, networkx_analysis.nm_name_equal_w_participants, networkx_analysis.nm_name_clean_equal_w_participants, networkx_analysis.nm_name_clean_approx_w_participants, #networkx_analysis.nm_gene_id_intersect_w_participants, networkx_analysis.nm_bqbiol_is_equal_w_participants, networkx_analysis.nm_bqbiol_is_overlaps_w_participants] nodes_overlap_species_nm_fns_paper = [ networkx_analysis.nm_name_clean_equal, networkx_analysis.nm_name_clean_approx, networkx_analysis.nm_bqbiol_is_equal, networkx_analysis.nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_equal_w_participants, networkx_analysis.nm_name_clean_approx_w_participants, networkx_analysis.nm_bqbiol_is_equal_w_participants, networkx_analysis.nm_bqbiol_is_overlaps_w_participants] nodes_overlap_species_nm_fns_paper_names = ["nmeq", "appeq", "enteq", "entov", "nmeq/wc", "appeq/wc", "enteq/wc", "entov/wc"] nodes_overlap_reactions_nm_fns = [ networkx_analysis.nm_bqbiol_is_equal, networkx_analysis.nm_bqbiol_is_overlaps, networkx_analysis.nm_bqbiol_is_overlaps_sbo_is_a] nodes_overlap_reactions_nm_fns_names = ["sboeq", "sboov", "sboisa"] subgraphs_overlap_node_match_fns = [networkx_analysis.nm_name_clean_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_w_participants_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_w_participants_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_equal_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_equal, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_overlaps, networkx_analysis.nm_name_clean_approx_OR_bqbiol_is_overlaps_w_participants_AND_nm_bqbiol_is_overlaps_sbo_is_a] subgraphs_overlap_node_match_fns_names = ["nmeq, sboeq", "nmeq, sboov", "nmeq, sboisa", "appeq, sboeq", "appeq, sboov","appeq, sboisa", "appeq/enteq, sboeq", "appeq/enteq, sboov","appeq/enteq, sboisa", "appeq/entov, sboeq", "appeq/entov, sboov", "appeq/entov, sboisa", "nmeq/wc, sboeq", "nmeq/wc, sboov", "nmeq/wc, sboisa", "appeq/wc, sboeq", "appeq/wc, sboov", "appeq/wc, sboisa", "appeq/enteq/wc, sboeq", "appeq/enteq/wc, sboov", "appeq/enteq/wc, sboisa", "appeq/entov/wc, sboeq", "appeq/entov/wc, sboov", "appeq/entov/wc, sboisa"] subgraphs_overlap_node_match_fns_names_map = { k.__name__: v for k, v in zip( subgraphs_overlap_node_match_fns, subgraphs_overlap_node_match_fns_names)} ######################################################################## ######################################################################## # INITIALIZE def mtor_dir(): directory = os.environ.get("MTOR_DATA_DIR") if directory is None: directory = "" return directory + "/" def mtor_dir_results(): return mtor_dir() + "/results/" def mtor_dir_results_graphs(): return mtor_dir() + "/results-graphs/" def mtor_dir_results_statistics(): return mtor_dir() + "/results-statistics/" def now(): return datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d %H:%M:%S') ######################################################################## ######################################################################## # HELPERS def plot_precision_recall_f_score( data, name, x_ticks = None, columns = ["precision", "recall","f-score"], kind = "line", legend_loc = 4, directory = mtor_dir_results_graphs()): """ data - pandas data frame kind - bar or lines Plots precision, recall, f-score, exports to file """ if x_ticks is None: x_ticks = data["name"] import matplotlib import matplotlib.pyplot matplotlib.style.use('ggplot') matplotlib.pyplot.figure(); data[columns].plot( kind = kind); matplotlib.pyplot.legend(loc = legend_loc) matplotlib.pyplot.xticks( range(len(data)), x_ticks, rotation = 30, ha ="right") matplotlib.pyplot.ylim((0,100)) matplotlib.pyplot.savefig( "%s%s-%s.pdf" % (directory, name, kind)) def plot_comparison( datasets, dataset_names, name, x_ticks, columns = ["precision", "recall", "f-score"], legend_loc = 4, directory = mtor_dir_results_graphs()): """ Plot data side by side""" import matplotlib import matplotlib.pyplot matplotlib.style.use('ggplot') for column in columns: matplotlib.pyplot.figure(); for d in datasets: matplotlib.pyplot.plot( d[column]); matplotlib.pyplot.legend( dataset_names, loc = legend_loc) matplotlib.pyplot.xticks( range(len(datasets[0])), x_ticks, rotation = 30, ha ="right") matplotlib.pyplot.ylim((0,100)) matplotlib.pyplot.title( "%s %s" % (name, column)) matplotlib.pyplot.savefig( "%s%s-%s-%s.pdf" % (directory,name, column, "-".join(dataset_names))) ######################################################################## ######################################################################## # INITIALIZE def initialize_mTORpathway_target(): """ Initialize target.networkx.pickle """ networkx_analysis.load_pathway( "TARGET", input_file = mtor_dir() + "mTORpathway-sbml.xml", output_file = mtor_dir() + "TARGET.networkx.pickle") def initialize_mTORpathway_source( source = "DEFAULT"): """ initialize source NLP, ANN or others, None is default """ # initialize annotation prefix = mtor_dir() + "events-" + source + "/" suffix = ".sbml.xml" files_target = glob.glob( prefix + "*" + suffix) for f in files_target: print( "Processing %s" % f) id = f[len(prefix):-len(suffix)] name = "%s-%s" % (source,id) networkx_analysis.load_pathway( name, input_file = f, output_file = f + ".networkx.pickle", prefix = id + "_") print( "Combining graphs") files = glob.glob( prefix + "*.networkx.pickle") print( "Loading all graphs ...") graphs = [pickle.load( open( f, "rb")) for f in files] print( "Composing a single graph ...") graph = networkx.Graph() for g in graphs: graph = networkx.compose( graph, g, name = source) graph.name = source output_file = "%s/%s.networkx.pickle" % (mtor_dir(), source) print( "Exporting single graph to %s" % output_file) pickle.dump( graph, open( output_file, "wb")) ######################################################################## ######################################################################## # run analysis def run_simple_stats( dataset = "TARGET"): """ Export simple stats nodes, reaction numbers etc. """ f = "%s%s.networkx.pickle" % (mtor_dir(), dataset) print( "%s: Processing %s from %s" % (now(), dataset,f)) graph = networkx.read_gpickle( f) print( "%s:%s:%s: Filter isolated nodes" % (now(),dataset,graph)) graph_no_isolated_nodes = networkx_analysis.filter_graph_remove_isolated_nodes( graph) for graph in [ graph, graph_no_isolated_nodes]: export_file = "%s%s-simple-stats.pickle" % (mtor_dir_results_statistics(), graph.name) networkx_analysis.run_analysis( graph, export_file) def run_simple_stats_overlap( dataset_1 = "TARGET", dataset_2 = "DEFAULT"): print( "%s: Processing %s/%s" % (now(), dataset_1, dataset_2)) f1 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_1) f2 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_2) print( "Loading %s/%s" % (dataset_1, f1)) graph_1 = networkx.read_gpickle( f1) print( "%s: Loading successful %s/%s/%s" % (now(), dataset_1, graph_1.name, f1)) print( "%s: Loading %s/%s" % (now(), dataset_2, f2)) graph_2 = networkx.read_gpickle( f2) print( "%s: Loading successful %s/%s/%s" % (now(), dataset_2, graph_2.name, f2)) print( "%s: Computing %s-NO-ISOLATED-NODES" % (now(), dataset_2)) graph_2_no_isolated_nodes = networkx_analysis.filter_graph_remove_isolated_nodes( graph_2) print( "%s: Finished computing %s-NO-ISOLATED-NODES/%s" % (now(), dataset_2, graph_2_no_isolated_nodes.name)) ##################### SPECIES, REACTIONS, COMPARTMENTS OVERLAP networkx_analysis.run_analysis_signatures( graph_1, graph_2, export_file = "%s%s__%s-simple-stats-overlap.pickle" % (mtor_dir_results_statistics(), graph_1.name, graph_2.name)) networkx_analysis.run_analysis_signatures( graph_1, graph_2_no_isolated_nodes, export_file = "%s%s__%s-simple-stats-overlap.pickle" % (mtor_dir_results_statistics(), graph_1.name, graph_2_no_isolated_nodes.name)) def run_node_overlap( node_match_fn_name, dataset_1 = "TARGET", dataset_2 = "ANN", export_results = True, export_results_prefix = mtor_dir_results() + "results-nodes-overlap-max", compute_overlap_for_no_isolated_nodes = False, ignore_existing = True): print( "Processing %s/%s %s" % ( dataset_1, dataset_2, node_match_fn_name)) f1 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_1) print( "Loading %s at %s" % (dataset_1, f1)) graph_1 = networkx.read_gpickle( f1) f2 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_2) print( "Loading %s at %s" % (dataset_2, f2)) graph_2 = networkx.read_gpickle( f2) node_match_species = filter( lambda n: n.__name__ == node_match_fn_name, nodes_overlap_species_nm_fns) node_match_reaction = filter( lambda n: n.__name__ == node_match_fn_name, nodes_overlap_reactions_nm_fns) if compute_overlap_for_no_isolated_nodes: print( "Computing %s-NO-ISOLATED-NODES" % graph_2.name) graph_2_no_isolated_nodes = networkx_analysis.filter_graph_remove_isolated_nodes( graph_2) if node_match_species: node_match_species = node_match_species[0] networkx_analysis.run_analysis_nodes_overlap_max( networkx_analysis.filter_species( graph_1), networkx_analysis.filter_species( graph_2), node_match = node_match_species, export_results = export_results, export_results_prefix = export_results_prefix, ignore_existing = ignore_existing); if compute_overlap_for_no_isolated_nodes: networkx_analysis.run_analysis_nodes_overlap_max( networkx_analysis.filter_species( graph_1), networkx_analysis.filter_species( graph_2_no_isolated_nodes), node_match = node_match_species, export_results = export_results, export_results_prefix = export_results_prefix, ignore_existing = ignore_existing); if node_match_reaction: node_match_reaction = node_match_reaction[0] networkx_analysis.run_analysis_nodes_overlap_max( networkx_analysis.filter_reactions( graph_1), networkx_analysis.filter_reactions( graph_2), node_match = node_match_reaction, export_results = export_results, export_results_prefix = export_results_prefix, ignore_existing = ignore_existing); if compute_overlap_for_no_isolated_nodes: networkx_analysis.run_analysis_nodes_overlap_max( networkx_analysis.filter_reactions( graph_1), networkx_analysis.filter_reactions( graph_2_no_isolated_nodes), node_match = node_match_reaction, export_results = export_results, export_results_prefix = export_results_prefix, ignore_existing = ignore_existing); print( "Finished processing %s/%s %s" % ( dataset_1, dataset_2, node_match_fn_name)) def run_subgraphs_overlap( node_match_fn_name, dataset_1 = "TARGET", dataset_2 = "ANN", export_results = True, compute_overlap_for_with_isolated_nodes = False, ignore_existing = True): print( "Processing %s/%s" % ( dataset_1, dataset_2)) f1 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_1) print( "Loading %s at %s" % (dataset_1, f1)) graph_1 = networkx.read_gpickle( f1) f2 = "%s%s.networkx.pickle" % (mtor_dir(), dataset_2) print( "Loading %s at %s" % (dataset_2, f2)) graph_2 = networkx.read_gpickle( f2) print( "Computing %s-NO-ISOLATED-NODES" % graph_2.name) graph_2_no_isolated_nodes = networkx_analysis.filter_graph_remove_isolated_nodes( graph_2) node_match = filter( lambda n: n.__name__ == node_match_fn_name, subgraphs_overlap_node_match_fns)[0] #### SUBGRAPH OVERLAP if compute_overlap_for_with_isolated_nodes: networkx_analysis.run_analysis_subgraphs_overlap( graph_1, graph_2, node_match = node_match, export_results = export_results, export_results_prefix = mtor_dir_results() + "results-subgraphs-overlap-max", ignore_existing = ignore_existing) networkx_analysis.run_analysis_subgraphs_overlap( graph_1, graph_2_no_isolated_nodes, node_match = node_match, export_results = export_results, export_results_prefix = mtor_dir_results() + "results-subgraphs-overlap-max", ignore_existing = ignore_existing) print( "Finished processing %s/%s %s" % ( dataset_1, dataset_2, node_match_fn_name)) ######################################################################## ######################################################################## # node match plotting and printing def print_AND_export_node_match_results( graph_1_name = "TARGET-SPECIES", graph_2_name = "ANN-SPECIES", node_match_names = ["nm_name_clean_approx", "nm_gene_id_intersect", "nm_bqbiol_is_equal", "nm_bqbiol_is_overlaps"]): import pickle for node_match_name in node_match_names: file_name = "results-nodes-overlap-max__%s__%s__%s.pickle" % (graph_1_name, graph_2_name, node_match_name) [graph_1, graph_2, matches] = pickle.load( open(file_name, "rb")) networkx_analysis.print_node_match_result( graph_1, graph_2, matches, node_match_name = node_match_name, export_matches = file_name + ".txt") # print_AND_export_node_match_results() # print_AND_export_node_match_results( graph_1_name = "TARGET-SPECIES", graph_2_name = "NLP-SPECIES", node_match_names = ["nm_bqbiol_is_equal", "nm_bqbiol_is_overlaps"]) def node_match_results_to_pandas_dataframe( sources = ["ANN", "DEFAULT", "DEFAULT+GE11+MTOR"]): """ Exports species and reactions node match results as pandas dataframe """ print("Loading reaction node match data") for source in sources: node_match_reaction_data = [] for nm in nodes_overlap_reactions_nm_fns: graph_1_name = "TARGET-REACTIONS" graph_2_name = "%s-REACTIONS" % source f = "%s__%s__%s__%s.pickle" % (mtor_dir_results() + "results-nodes-overlap-max", graph_1_name, graph_2_name, nm.__name__) print( "Loading %s" % f) [graph_1, graph_2, matches] = pickle.load( open( f, "rb")) precision, recall, f_score = networkx_analysis.get_nodes_overlap_max_result_precision_recall_f_score( graph_1, graph_2, matches) node_match_reaction_data.append( {"target" : graph_1_name, "source" : graph_2_name, "name" : nm.__name__ , "precision" : precision, "recall" : recall, "f-score" : f_score}) node_match_reaction_data =
pandas.DataFrame(node_match_reaction_data)
pandas.DataFrame
from dataclasses import dataclass import numpy as np import pandas as pd from os import path from typing import Tuple from osa import factory from handlers.result import BaseResult from handlers.file import get_setting, get_selected_file_path from handlers.cache import load_only_array_results @dataclass class SaveData: """ Saves the Data from the Cache to the last file created in the saving_folder perform "get_data" before executing """ command: str result: BaseResult def do_work(self) -> BaseResult: array_results: Tuple[np.array, np.array] = load_only_array_results() if not array_results: self._fail_result_no_data() return self.result try: file_path = get_selected_file_path() except FileNotFoundError: self._fail_result_no_dir() return self.result if not file_path: self._fail_result_no_file() elif self._file_is_empty(file_path): self._save_data(file_path, array_results) self._success_result() else: self._append_and_save_data(file_path, array_results) return self.result def _save_data(self, file_path: str, array_results: tuple) -> None: wavelength, trace = array_results if self._is_points_data(wavelength): self._save_as_points_data(file_path, wavelength, trace) else: self._save_as_trace_data(file_path, wavelength, trace) def _append_and_save_data(self, file_path: str, array_result: tuple) -> None: wavelength, trace = array_result df = pd.read_csv(file_path, index_col=0) if self._is_points_data(trace) and self._selected_file_is_points_data(file_path): self._append_and_save_as_points_data(file_path, wavelength, trace) self._success_result() elif self._length_matches(df, trace) and not self._selected_file_is_points_data(file_path): self._append_and_save_as_trace_data(df, file_path, trace) self._success_result() else: self._fail_result_no_match(len(df), len(trace)) def _save_as_points_data(self, file_path, wavelength, trace): df = self._create_points_df(wavelength, trace) df.to_csv(file_path) def _save_as_trace_data(self, file_path, wavelength, trace): column_name = self._ask_column_name() df = pd.DataFrame(data=trace, index=wavelength, columns=[column_name]) df.index.name = "wavelength [nm]" df.to_csv(file_path) def _append_and_save_as_points_data(self, file_path, wavelength, trace): df = pd.read_csv(file_path, index_col=[0, 1]) new_df = self._create_points_df(wavelength, trace) df = df.append(new_df) df.to_csv(file_path) def _append_and_save_as_trace_data(self, df: pd.DataFrame, file_path: str, trace: np.array): column_name = self._ask_column_name() df[column_name] = trace df.to_csv(file_path) def _create_points_df(self, wavelength, trace, ): column_name = self._ask_column_name() df =
pd.DataFrame(data=trace, columns=["trace [dBm]"])
pandas.DataFrame
# PyLS-PM Library # Author: <NAME> # Creation: November 2016 # Description: Library based on <NAME>'s simplePLS, # <NAME>'s plspm and <NAME>'s matrixpls made in R import pandas as pd import numpy as np import scipy as sp import scipy.stats from .qpLRlib4 import otimiza, plotaIC import scipy.linalg from collections import Counter from .pca import * from pandas.plotting import scatter_matrix from .adequacy import * class PyLSpm(object): def PCA(self): for i in range(self.lenlatent): print(self.latent[i]) block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] PCAdo(block, self.latent[i]) print('KMO') print(KMO(block)) print('BTS') print(BTS(block)) def scatterMatrix(self): for i in range(1, self.lenlatent): block = self.data[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] scatter_matrix(block, diagonal='kde') plt.savefig('imgs/scatter' + self.latent[i], bbox_inches='tight') plt.clf() plt.cla() def sampleSize(self): r = 0.3 alpha = 0.05 # power=0.9 C = 0.5 * np.log((1 + r) / (1 - r)) Za = scipy.stats.norm.ppf(1 - (0.05 / 2)) sizeArray = [] powerArray = [] power = 0.5 for i in range(50, 100, 1): power = i / 100 powerArray.append(power) Zb = scipy.stats.norm.ppf(1 - power) N = abs((Za - Zb) / C)**2 + 3 sizeArray.append(N) return [powerArray, sizeArray] def normaliza(self, X): correction = np.sqrt((len(X) - 1) / len(X)) # std factor corretion mean_ = np.mean(X, 0) scale_ = np.std(X, 0) X = X - mean_ X = X / (scale_ * correction) return X def gof(self): r2mean = np.mean(self.r2.T[self.endoexo()[0]].values) AVEmean = self.AVE().copy() totalblock = 0 for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = len(block.columns.values) totalblock += block AVEmean[self.latent[i]] = AVEmean[self.latent[i]] * block AVEmean = np.sum(AVEmean) / totalblock return np.sqrt(AVEmean * r2mean) def endoexo(self): exoVar = [] endoVar = [] for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) return endoVar, exoVar def residuals(self): exoVar = [] endoVar = [] outer_residuals = self.data.copy() # comun_ = self.data.copy() for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = block.columns.values loadings = self.outer_loadings.ix[ block][self.latent[i]].values outer_ = self.fscores.ix[:, i].values outer_ = outer_.reshape(len(outer_), 1) loadings = loadings.reshape(len(loadings), 1) outer_ = np.dot(outer_, loadings.T) outer_residuals.ix[:, block] = self.data_.ix[ :, block] - outer_ # comun_.ix[:, block] = outer_ inner_residuals = self.fscores[endoVar] inner_ = pd.DataFrame.dot(self.fscores, self.path_matrix.ix[endoVar].T) inner_residuals = self.fscores[endoVar] - inner_ residuals = pd.concat([outer_residuals, inner_residuals], axis=1) mean_ = np.mean(self.data, 0) # comun_ = comun_.apply(lambda row: row + mean_, axis=1) sumOuterResid = pd.DataFrame.sum( pd.DataFrame.sum(outer_residuals**2)) sumInnerResid = pd.DataFrame.sum( pd.DataFrame.sum(inner_residuals**2)) divFun = sumOuterResid + sumInnerResid return residuals, outer_residuals, inner_residuals, divFun def srmr(self): srmr = (self.empirical() - self.implied()) srmr = np.sqrt(((srmr.values) ** 2).mean()) return srmr def implied(self): corLVs = pd.DataFrame.cov(self.fscores) implied_ = pd.DataFrame.dot(self.outer_loadings, corLVs) implied = pd.DataFrame.dot(implied_, self.outer_loadings.T) implied.values[[np.arange(len(self.manifests))] * 2] = 1 return implied def empirical(self): empirical = self.data_ return pd.DataFrame.corr(empirical) def frequency(self, data=None, manifests=None): if data is None: data = self.data if manifests is None: manifests = self.manifests frequencia = pd.DataFrame(0, index=range(1, 6), columns=manifests) for i in range(len(manifests)): frequencia[manifests[i]] = data[ manifests[i]].value_counts() frequencia = frequencia / len(data) * 100 frequencia = frequencia.reindex_axis( sorted(frequencia.columns), axis=1) frequencia = frequencia.fillna(0).T frequencia = frequencia[(frequencia.T != 0).any()] maximo = pd.DataFrame.max(pd.DataFrame.max(data, axis=0)) if int(maximo) & 1: neg = np.sum(frequencia.ix[:, 1: ((maximo - 1) / 2)], axis=1) ind = frequencia.ix[:, ((maximo + 1) / 2)] pos = np.sum( frequencia.ix[:, (((maximo + 1) / 2) + 1):maximo], axis=1) else: neg = np.sum(frequencia.ix[:, 1:((maximo) / 2)], axis=1) ind = 0 pos = np.sum(frequencia.ix[:, (((maximo) / 2) + 1):maximo], axis=1) frequencia['Neg.'] = pd.Series( neg, index=frequencia.index) frequencia['Ind.'] = pd.Series( ind, index=frequencia.index) frequencia['Pos.'] = pd.Series( pos, index=frequencia.index) return frequencia def frequencyPlot(self, data_, SEM=None): segmento = 'SEM' SEMmax = pd.DataFrame.max(SEM) ok = None for i in range(1, self.lenlatent): block = data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = pd.concat([block, SEM], axis=1) for j in range(SEMmax + 1): dataSEM = (block.loc[data_[segmento] == j] ).drop(segmento, axis=1) block_val = dataSEM.columns.values dataSEM = self.frequency(dataSEM, block_val)['Pos.'] dataSEM = dataSEM.rename(j + 1) ok = dataSEM if ok is None else pd.concat( [ok, dataSEM], axis=1) for i in range(1, self.lenlatent): block = data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block_val = block.columns.values plotando = ok.ix[block_val].dropna(axis=1) plotando.plot.bar() plt.legend(loc='upper center', bbox_to_anchor=(0.5, -.08), ncol=6) plt.savefig('imgs/frequency' + self.latent[i], bbox_inches='tight') plt.clf() plt.cla() # plt.show() # block.plot.bar() # plt.show() '''for i in range(1, self.lenlatent): block = self.data[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block_val = block.columns.values block = self.frequency(block, block_val) block.plot.bar() plt.show()''' def dataInfo(self): sd_ = np.std(self.data, 0) mean_ = np.mean(self.data, 0) skew = scipy.stats.skew(self.data) kurtosis = scipy.stats.kurtosis(self.data) w = [scipy.stats.shapiro(self.data.ix[:, i])[0] for i in range(len(self.data.columns))] return [mean_, sd_, skew, kurtosis, w] def predict(self, method='redundancy'): exoVar = [] endoVar = [] for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) if (method == 'exogenous'): Beta = self.path_matrix.ix[endoVar][endoVar] Gamma = self.path_matrix.ix[endoVar][exoVar] beta = [1 if (self.latent[i] in exoVar) else 0 for i in range(self.lenlatent)] beta = np.diag(beta) beta_ = [1 for i in range(len(Beta))] beta_ = np.diag(beta_) beta = pd.DataFrame(beta, index=self.latent, columns=self.latent) mid = pd.DataFrame.dot(Gamma.T, np.linalg.inv(beta_ - Beta.T)) mid = (mid.T.values).flatten('F') k = 0 for j in range(len(exoVar)): for i in range(len(endoVar)): beta.ix[endoVar[i], exoVar[j]] = mid[k] k += 1 elif (method == 'redundancy'): beta = self.path_matrix.copy() beta_ = pd.DataFrame(1, index=np.arange( len(exoVar)), columns=np.arange(len(exoVar))) beta.ix[exoVar, exoVar] = np.diag(np.diag(beta_.values)) elif (method == 'communality'): beta = np.diag(np.ones(len(self.path_matrix))) beta = pd.DataFrame(beta) partial_ = pd.DataFrame.dot(self.outer_weights, beta.T.values) prediction = pd.DataFrame.dot(partial_, self.outer_loadings.T.values) predicted = pd.DataFrame.dot(self.data, prediction) predicted.columns = self.manifests mean_ = np.mean(self.data, 0) intercept = mean_ - np.dot(mean_, prediction) predictedData = predicted.apply(lambda row: row + intercept, axis=1) return predictedData def cr(self): # Composite Reliability composite = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): cor_mat = np.cov(block.T) evals, evecs = np.linalg.eig(cor_mat) U, S, V = np.linalg.svd(cor_mat, full_matrices=False) indices = np.argsort(evals) indices = indices[::-1] evecs = evecs[:, indices] evals = evals[indices] loadings = V[0, :] * np.sqrt(evals[0]) numerador = np.sum(abs(loadings))**2 denominador = numerador + (p - np.sum(loadings ** 2)) cr = numerador / denominador composite[self.latent[i]] = cr else: composite[self.latent[i]] = 1 composite = composite.T return(composite) def r2adjusted(self): n = len(self.data_) r2 = self.r2.values r2adjusted = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): p = sum(self.LVariables['target'] == self.latent[i]) r2adjusted[self.latent[i]] = r2[i] - \ (p * (1 - r2[i])) / (n - p - 1) return r2adjusted.T def htmt(self): htmt_ = pd.DataFrame(pd.DataFrame.corr(self.data_), index=self.manifests, columns=self.manifests) mean = [] allBlocks = [] for i in range(self.lenlatent): block_ = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] allBlocks.append(list(block_.values)) block = htmt_.ix[block_, block_] mean_ = (block - np.diag(np.diag(block))).values mean_[mean_ == 0] = np.nan mean.append(np.nanmean(mean_)) comb = [[k, j] for k in range(self.lenlatent) for j in range(self.lenlatent)] comb_ = [(np.sqrt(mean[comb[i][1]] * mean[comb[i][0]])) for i in range(self.lenlatent ** 2)] comb__ = [] for i in range(self.lenlatent ** 2): block = (htmt_.ix[allBlocks[comb[i][1]], allBlocks[comb[i][0]]]).values # block[block == 1] = np.nan comb__.append(np.nanmean(block)) htmt__ = np.divide(comb__, comb_) where_are_NaNs = np.isnan(htmt__) htmt__[where_are_NaNs] = 0 htmt = pd.DataFrame(np.tril(htmt__.reshape( (self.lenlatent, self.lenlatent)), k=-1), index=self.latent, columns=self.latent) return htmt def comunalidades(self): # Comunalidades return self.outer_loadings**2 def AVE(self): # AVE return self.comunalidades().apply(lambda column: column.sum() / (column != 0).sum()) def fornell(self): cor_ = pd.DataFrame.corr(self.fscores)**2 AVE = self.comunalidades().apply(lambda column: column.sum() / (column != 0).sum()) for i in range(len(cor_)): cor_.ix[i, i] = AVE[i] return(cor_) def rhoA(self): # rhoA rhoA = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): weights = pd.DataFrame(self.outer_weights[self.latent[i]]) weights = weights[(weights.T != 0).any()] result = pd.DataFrame.dot(weights.T, weights) result_ = pd.DataFrame.dot(weights, weights.T) S = self.data_[self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]]] S = pd.DataFrame.dot(S.T, S) / S.shape[0] numerador = ( np.dot(np.dot(weights.T, (S - np.diag(np.diag(S)))), weights)) denominador = ( (np.dot(np.dot(weights.T, (result_ - np.diag(np.diag(result_)))), weights))) rhoA_ = ((result)**2) * (numerador / denominador) if(np.isnan(rhoA_.values)): rhoA[self.latent[i]] = 1 else: rhoA[self.latent[i]] = rhoA_.values return rhoA.T def xloads(self): # Xloadings A = self.data_.transpose().values B = self.fscores.transpose().values A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] ssA = (A_mA**2).sum(1) ssB = (B_mB**2).sum(1) xloads_ = (np.dot(A_mA, B_mB.T) / np.sqrt(np.dot(ssA[:, None], ssB[None]))) xloads = pd.DataFrame( xloads_, index=self.manifests, columns=self.latent) return xloads def corLVs(self): # Correlations LVs corLVs_ = np.tril(pd.DataFrame.corr(self.fscores)) return pd.DataFrame(corLVs_, index=self.latent, columns=self.latent) def alpha(self): # Cronbach Alpha alpha = pd.DataFrame(0, index=np.arange(1), columns=self.latent) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] p = len(block.columns) if(p != 1): p_ = len(block) correction = np.sqrt((p_ - 1) / p_) soma = np.var(np.sum(block, axis=1)) cor_ = pd.DataFrame.corr(block) denominador = soma * correction**2 numerador = 2 * np.sum(np.tril(cor_) - np.diag(np.diag(cor_))) alpha_ = (numerador / denominador) * (p / (p - 1)) alpha[self.latent[i]] = alpha_ else: alpha[self.latent[i]] = 1 return alpha.T def vif(self): vif = [] totalmanifests = range(len(self.data_.columns)) for i in range(len(totalmanifests)): independent = [x for j, x in enumerate(totalmanifests) if j != i] coef, resid = np.linalg.lstsq( self.data_.ix[:, independent], self.data_.ix[:, i])[:2] r2 = 1 - resid / \ (self.data_.ix[:, i].size * self.data_.ix[:, i].var()) vif.append(1 / (1 - r2)) vif = pd.DataFrame(vif, index=self.manifests) return vif def PLSc(self): ################################################## # PLSc rA = self.rhoA() corFalse = self.corLVs() for i in range(self.lenlatent): for j in range(self.lenlatent): if i == j: corFalse.ix[i][j] = 1 else: corFalse.ix[i][j] = corFalse.ix[i][ j] / np.sqrt(rA.ix[self.latent[i]] * rA.ix[self.latent[j]]) corTrue = np.zeros([self.lenlatent, self.lenlatent]) for i in range(self.lenlatent): for j in range(self.lenlatent): corTrue[j][i] = corFalse.ix[i][j] corTrue[i][j] = corFalse.ix[i][j] corTrue = pd.DataFrame(corTrue, corFalse.columns, corFalse.index) # Loadings attenuedOuter_loadings = pd.DataFrame( 0, index=self.manifests, columns=self.latent) for i in range(self.lenlatent): weights = pd.DataFrame(self.outer_weights[self.latent[i]]) weights = weights[(weights.T != 0).any()] result = pd.DataFrame.dot(weights.T, weights) result_ = pd.DataFrame.dot(weights, weights.T) newLoad = ( weights.values * np.sqrt(rA.ix[self.latent[i]].values)) / (result.values) myindex = self.Variables['measurement'][ self.Variables['latent'] == self.latent[i]] myindex_ = self.latent[i] attenuedOuter_loadings.ix[myindex.values, myindex_] = newLoad # Path dependent = np.unique(self.LVariables.ix[:, 'target']) for i in range(len(dependent)): independent = self.LVariables[self.LVariables.ix[ :, "target"] == dependent[i]]["source"] dependent_ = corTrue.ix[dependent[i], independent] independent_ = corTrue.ix[independent, independent] # path = np.dot(np.linalg.inv(independent_),dependent_) coef, resid = np.linalg.lstsq(independent_, dependent_)[:2] self.path_matrix.ix[dependent[i], independent] = coef return attenuedOuter_loadings # End PLSc ################################################## def __init__(self, dados, LVcsv, Mcsv, scheme='path', regression='ols', h=0, maximo=300, stopCrit=7, HOC='false', disattenuate='false', method='lohmoller'): self.data = dados self.LVcsv = LVcsv self.Mcsv = Mcsv self.maximo = maximo self.stopCriterion = stopCrit self.h = h self.scheme = scheme self.regression = regression self.disattenuate = disattenuate contador = 0 self.convergiu = 0 data = dados if type( dados) is pd.core.frame.DataFrame else pd.read_csv(dados) LVariables = pd.read_csv(LVcsv) Variables = Mcsv if type( Mcsv) is pd.core.frame.DataFrame else
pd.read_csv(Mcsv)
pandas.read_csv
# Encoding: utf-8 """ SpineSession class Spine session is used to load metadata information created using matlab SpineImaging class It has load and save capabilities """ import copy import io import json import os import sys import pickle import logging from builtins import input import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyspark import thunder as td import requests from .IO import loadmat from .Session import Session from .Utils import searchTiffInfo logger = logging.getLogger(__name__) logger.handlers = [] logger.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setFormatter(logging.Formatter("%(name)s @ %(asctime)s - [%(levelname)s] %(module)s::%(funcName)s: %(message)s")) ch.setLevel(logging.INFO) logger.addHandler(ch) class SpineSession(Session): """Session object used to analyze spine imaging data """ def __init__(self, basePath='/groups/svoboda/svobodalab/users/Aaron', animalID=None, date=None, run=None, verbose=True, nPlanes=0): """ Initialize a new SpineSession object. Assumes a format of BASE\YYMMDD_animalID\RUN If no input is given, returns an empty object :param basePath: where the base folder is in :param animalID: such as WR34 :param date: as YYMMDD format :param run: name of run :param verbose: Use logger :param nPlanes number of planes """ super(SpineSession, self).__init__(basePath, animalID, date, run, nPlanes=nPlanes, verbose=verbose) if animalID and date and run: logger.info('SpineSession initialized, path = ' + self.path) def __repr__(self): if self.animalID and self.date and self.run: return 'SpineSession: animal: %s, date: %s, run: %s' % (self.animalID, self.date, self.run) else: return 'SpineSession object' def display(self): """ method to print session info """ super(SpineSession, self).display() if hasattr(self, 'ZError'): Last = self.TrueFieldsCenterSamp[-1] Errors = self.ZError[self.TrueFieldsCenterSamp] fig = plt.figure() plt.subplot(2, 1, 1) plt.plot(self.ZError[0:Last + 10]) plt.plot(self.TrueFieldsCenterSamp, Errors, 'o') plt.legend(['Raw error', 'Scan fields']) plt.ylabel('Error (um)') plt.xlabel('Lines') plt.title('Z errors') self.ZErrorFig = fig def initBase(self, sc=None, xScale=1.13, yScale=1.13, nPartitions=None, xScaleAnat=1.0, yScaleAnat=1.0, baseFlyLines=4, pixSizeZ=2500, flyVelocity=266): """ initialize properties of the session :param sc: SparkContext :param xScale: expansion factor for pixel in X :param yScale: expansion factor for pixel in X :param nPartitions: number of partitions to load the data, if None will take sc.defaultParallelism :param flyVelocity: X, Y galvos speed in um/ms :param xScaleAnat: scaling factor for stack in X :param yScaleAnat: scaling factor for stack in Y :param baseFlyLines: number of fly lines to remove in any case :param pixSizeZ: PSF FWHM in Z in nm """ super(SpineSession, self).initBase(sc, nPartitions, flyVelocity) self.xScale = xScale self.yScale = yScale self.xScaleAnat = xScaleAnat self.yScaleAnat = yScaleAnat self.pixSizeZ = pixSizeZ self.baseFlyLines = baseFlyLines self.getSpMat() if hasattr(self, 'xSize'): self.pixSizeXY = 1.0 / (self.xSize / self.xSizeOrig) * xScale * 1000 # in nm!!! self.setFlyLines(self.baseFlyLines) else: self.pixSizeXY = None self.getMeta(from_web=True) def getMeta(self, filename='/Database/Sessions.csv', from_web=False, key='<KEY>', gid='78168970'): """ :param from_web: if true will go to public google sheet, if false will go to session.basePath + filename :param filename: local file to look for :param key: google sheet key :param gid: google sheet gid :return: metadata from the session """ if from_web: response = requests.get('https://docs.google.com/spreadsheet/ccc?key=' + key + '&output=csv&gid=' + gid) assert response.status_code == 200, 'Wrong status code' f = io.StringIO(response.content.decode('utf-8')) sessionsDF =
pd.read_csv(f)
pandas.read_csv
# %% [markdown] # # 📃 Solution for Exercise 02 # # This notebook aims at building baseline classifiers, which we'll use to # compare our predictive model. Besides, we will check the differences with # the baselines that we saw in regression. # # We will use the adult census dataset, using only the numerical features. # %% import pandas as pd adult_census = pd.read_csv("../datasets/adult-census-numeric-all.csv") data, target = adult_census.drop(columns="class"), adult_census["class"] # %% [markdown] # First, define a `ShuffleSplit` cross-validation strategy taking half of the # sample as a testing at each round. # %% from sklearn.model_selection import ShuffleSplit cv = ShuffleSplit(n_splits=10, test_size=0.5, random_state=0) # %% [markdown] # Next, create a machine learning pipeline composed of a transformer to # standardize the data followed by a logistic regression. # %% from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression classifier = make_pipeline(StandardScaler(), LogisticRegression()) # %% [markdown] # Get the test score by using the model, the data, and the cross-validation # strategy that you defined above. # %% from sklearn.model_selection import cross_validate result_classifier = cross_validate(classifier, data, target, cv=cv, n_jobs=-1) test_score_classifier = pd.Series( result_classifier["test_score"], name="Classifier score") # %% [markdown] # Using the `sklearn.model_selection.permutation_test_score` function, # check the chance level of the previous model. # %% from sklearn.model_selection import permutation_test_score score, permutation_score, pvalue = permutation_test_score( classifier, data, target, cv=cv, n_jobs=-1, n_permutations=10) test_score_permutation = pd.Series(permutation_score, name="Permuted score") # %% [markdown] # Finally, compute the test score of a dummy classifier which would predict # the most frequent class from the training set. You can look at the # `sklearn.dummy.DummyClassifier` class. # %% from sklearn.dummy import DummyClassifier dummy = DummyClassifier(strategy="most_frequent") result_dummy = cross_validate(dummy, data, target, cv=cv, n_jobs=-1) test_score_dummy =
pd.Series(result_dummy["test_score"], name="Dummy score")
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # Polifact_Analysis # # ### @Author : <NAME> # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set_style('darkgrid') import plotly.express as px from scipy import signal import warnings warnings.filterwarnings("ignore") #to make shell more intractive from IPython.display import display from IPython.display import Image # setting up the chart size and background plt.rcParams['figure.figsize'] = (16, 8) plt.style.use('fivethirtyeight') # In[2]: pwd # In[3]: path ='E:\\DataScience\\MachineLearning\\Polotifact_Data' # In[4]: import os from glob import glob os.listdir(path) # In[5]: df = pd.read_csv(path+"\\politifact.csv") df.head(5) # In[6]:
pd.set_option('display.max_colwidth', 200)
pandas.set_option
# Parameters XGB_WEIGHT = 0.6200 BASELINE_WEIGHT = 0.0200 OLS_WEIGHT = 0.0700 NN_WEIGHT = 0.0600 XGB1_WEIGHT = 0.8000 # Weight of first in combination of two XGB models BASELINE_PRED = 0.0115 # Baseline based on mean of training data, per Oleg import numpy as np import pandas as pd import xgboost as xgb from sklearn.preprocessing import LabelEncoder import lightgbm as lgb import gc from sklearn.linear_model import LinearRegression import random import datetime as dt from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout, BatchNormalization from keras.layers.advanced_activations import PReLU from keras.optimizers import Adam from keras.wrappers.scikit_learn import KerasRegressor from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import Imputer ##### READ IN RAW DATA print( "\nReading data from disk ...") prop = pd.read_csv('../input/properties_2016.csv') train =
pd.read_csv("../input/train_2016_v2.csv")
pandas.read_csv