prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#SPDX-License-Identifier: MIT """ Creates a WSGI server that serves the Augur REST API """ import glob import sys import inspect import types import json import os import base64 import logging from flask import Flask, request, Response, redirect from flask_cors import CORS import pandas as pd import augur from augur.routes import create_routes AUGUR_API_VERSION = 'api/unstable' logger = logging.getLogger(__name__) class Server(object): """ Defines Augur's server's behavior """ def __init__(self, augur_app=None): """ Initializes the server, creating both the Flask application and Augur application """ # Create Flask application self.app = Flask(__name__) logger.debug("Created Flask app") self.api_version = AUGUR_API_VERSION app = self.app CORS(app) app.url_map.strict_slashes = False self.augur_app = augur_app self.manager = augur_app.manager self.broker = augur_app.broker self.housekeeper = augur_app.housekeeper # Initialize cache expire = int(self.augur_app.config.get_value('Server', 'cache_expire')) self.cache = self.augur_app.cache.get_cache('server', expire=expire) self.cache.clear() app.config['WTF_CSRF_ENABLED'] = False self.show_metadata = False logger.debug("Creating API routes...") create_routes(self) ##################################### ### UTILITY ### ##################################### @app.route('/') @app.route('/ping') @app.route('/status') @app.route('/healthcheck') def index(): """ Redirects to health check route """ return redirect(self.api_version) @app.route('/{}/'.format(self.api_version)) @app.route('/{}/status'.format(self.api_version)) def status(): """ Health check route """ status = { 'status': 'OK', } return Response(response=json.dumps(status), status=200, mimetype="application/json") def transform(self, func, args=None, kwargs=None, repo_url_base=None, orient='records', group_by=None, on=None, aggregate='sum', resample=None, date_col='date'): """ Serializes a dataframe in a JSON object and applies specified transformations """ if orient is None: orient = 'records' result = '' if not self.show_metadata: if repo_url_base: kwargs['repo_url'] = str(base64.b64decode(repo_url_base).decode()) if not args and not kwargs: data = func() elif args and not kwargs: data = func(*args) else: data = func(*args, **kwargs) if hasattr(data, 'to_json'): if group_by is not None: data = data.group_by(group_by).aggregate(aggregate) if resample is not None: data['idx'] =
pd.to_datetime(data[date_col])
pandas.to_datetime
#------------------------------------------------------------------------------ #------------------------------------------------------------------------------ import pandas as pd fra_fon__fra_lines = [] with open('fon/train-parts/JW300-fra_fon.fra', 'r') as f: for line in f: fra_fon__fra_lines.append(line.strip()) fra_fon__fon_lines = [] with open('fon/train-parts/JW300-fra_fon.fon', 'r') as f: for line in f: fra_fon__fon_lines.append(line.strip()) fra_ewe__fra_lines = [] with open('ewe/train-parts/JW300-fra_ewe.fra', 'r') as f: for line in f: fra_ewe__fra_lines.append(line.strip()) fra_ewe__ewe_lines = [] with open('ewe/train-parts/JW300-fra_ewe.ewe', 'r') as f: for line in f: fra_ewe__ewe_lines.append(line.strip()) fra_fon_df = pd.DataFrame() fra_fon_df['French'] = fra_fon__fra_lines fra_fon_df['Target'] = fra_fon__fon_lines print(fra_fon_df.shape) # (31962, 2) fra_fon_df.to_csv('jw300_fra_fon.csv', index=False, encoding='utf-8') fra_ewe_df = pd.DataFrame() fra_ewe_df['French'] = fra_ewe__fra_lines fra_ewe_df['Target'] = fra_ewe__ewe_lines print(fra_ewe_df.shape) # (611204, 2) fra_ewe_df.to_csv('jw300_fra_ewe.csv', index=False, encoding='utf-8') #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ fra_fon_df['Target_Language'] = 'Fon' fra_ewe_df['Target_Language'] = 'Ewe' fra_fon_df['ID'] = 'no_id' fra_ewe_df['ID'] = 'no_id' train_fon_df = pd.read_csv('Train_Fon.csv') train_ewe_df = pd.read_csv('Train_Ewe.csv') all_fon_df = pd.concat([train_fon_df, fra_fon_df]) print(all_fon_df.shape) # (85096, 4) all_ewe_df =
pd.concat([train_ewe_df, fra_ewe_df])
pandas.concat
import pandas as pd import glob import os import numpy as np import time import fastparquet import argparse from multiprocessing import Pool import multiprocessing as mp from os.path import isfile parser = argparse.ArgumentParser(description='Program to run google compounder for a particular file and setting') parser.add_argument('--data', type=str, help='location of the pickle file') # don't use this for now parser.add_argument('--word', action='store_true', help='Extracting context for words only?') parser.add_argument('--output', type=str, help='directory to save dataset in') args = parser.parse_args() with open('/mnt/dhr/CreateChallenge_ICC_0821/no_ner_0_50000.txt','r') as f: contexts=f.read().split("\n") contexts=contexts[:-1] def left_side_parser(df): # N N _ _ _ cur_df=df.copy() try: cur_df[['modifier','head','w1','w2','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def mid1_parser(df): # _ N N _ _ cur_df=df.copy() try: cur_df[['w1','modifier','head','w2','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def mid2_parser(df): # _ _ N N _ cur_df=df.copy() try: cur_df[['w1','w2','modifier','head','w3']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w1','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def right_side_parser(df): # _ _ _ N N cur_df=df.copy() try: cur_df[['w1','w2','w3','modifier','head']]=cur_df.lemma_pos.str.split(' ',expand=True) except ValueError: compound_df=pd.DataFrame() modifier_df=pd.DataFrame() head_df=pd.DataFrame() return compound_df,modifier_df,head_df compound_df=pd.melt(cur_df,id_vars=['modifier','head','year','count'],value_vars=['w1','w2','w3'],value_name='context') compound_df=compound_df.loc[compound_df.context.isin(contexts)] modifier_df=pd.melt(cur_df,id_vars=['modifier','year','count'],value_vars=['head','w1','w2','w3'],value_name='context') modifier_df=modifier_df.loc[modifier_df.context.isin(contexts)] head_df=pd.melt(cur_df,id_vars=['head','year','count'],value_vars=['modifier','w2','w3'],value_name='context') head_df=head_df.loc[head_df.context.isin(contexts)] return compound_df,modifier_df,head_df def syntactic_reducer(df): pattern=df.iloc[0].comp_class if pattern==1: # N N _ _ N N compound_left_df,modifier_left_df,head_left_df=left_side_parser(df) compound_right_df,modifier_right_df,head_right_df=right_side_parser(df) final_compound_df=pd.concat([compound_left_df,compound_right_df],ignore_index=True) final_modifier_df=pd.concat([modifier_left_df,modifier_right_df],ignore_index=True) final_head_df=pd.concat([head_left_df,head_right_df],ignore_index=True) elif pattern==2: # N N _ _ _ final_compound_df,final_modifier_df,final_head_df=left_side_parser(df) elif pattern==3: # _ N N _ _ final_compound_df,final_modifier_df,final_head_df=mid1_parser(df) elif pattern==4: # _ _ N N _ final_compound_df,final_modifier_df,final_head_df=mid2_parser(df) elif pattern==5: # _ _ _ N N final_compound_df,final_modifier_df,final_head_df=right_side_parser(df) return final_compound_df,final_modifier_df,final_head_df def compound_extracter(df): if df.loc[df.comp_class==1].shape[0]!=0: sides_comp_df,sides_mod_df,sides_head_df=syntactic_reducer(df.loc[df.comp_class==1]) else: sides_comp_df=pd.DataFrame() sides_mod_df=pd.DataFrame() sides_head_df=pd.DataFrame() if df.loc[df.comp_class==2].shape[0]!=0: left_comp_df,left_mod_df,left_head_df=syntactic_reducer(df.loc[df.comp_class==2]) else: left_comp_df=pd.DataFrame() left_mod_df=pd.DataFrame() left_head_df=pd.DataFrame() if df.loc[df.comp_class==3].shape[0]!=0: mid1_comp_df,mid1_mod_df,mid1_head_df=syntactic_reducer(df.loc[df.comp_class==3]) else: mid1_comp_df=pd.DataFrame() mid1_mod_df=pd.DataFrame() mid1_head_df=pd.DataFrame() if df.loc[df.comp_class==4].shape[0]!=0: mid2_comp_df,mid2_mod_df,mid2_head_df=syntactic_reducer(df.loc[df.comp_class==4]) else: mid2_comp_df=pd.DataFrame() mid2_mod_df=pd.DataFrame() mid2_head_df=pd.DataFrame() if df.loc[df.comp_class==5].shape[0]!=0: right_comp_df,right_mod_df,right_head_df=syntactic_reducer(df.loc[df.comp_class==5]) else: right_comp_df=pd.DataFrame() right_mod_df=pd.DataFrame() right_head_df=pd.DataFrame() compounds=pd.concat([sides_comp_df,left_comp_df,mid1_comp_df,mid2_comp_df,right_comp_df],ignore_index=True,sort=False) modifiers=pd.concat([sides_mod_df,left_mod_df,mid1_mod_df,mid2_mod_df,right_mod_df],ignore_index=True,sort=False) heads=pd.concat([sides_head_df,left_head_df,mid1_head_df,mid2_head_df,right_head_df],ignore_index=True,sort=False) if len(compounds)==0: return compounds,modifiers,heads compounds.dropna(inplace=True) compounds=compounds.groupby(['modifier','head','context','year'])['count'].sum().to_frame() compounds.reset_index(inplace=True) modifiers.dropna(inplace=True) modifiers=modifiers.groupby(['modifier','context','year'])['count'].sum().to_frame() modifiers.reset_index(inplace=True) heads.dropna(inplace=True) heads=heads.groupby(['head','context','year'])['count'].sum().to_frame() heads.reset_index(inplace=True) return compounds,modifiers,heads def parallelize_dataframe(df): num_partitions=round(0.95*mp.cpu_count()) df_split = np.array_split(df, num_partitions) print("Done splitting the datasets") pool = Pool(num_partitions) cur_time=time.time() print("Starting parallelizing") if not args.word: results=pool.map_async(compound_extracter,df_split) pool.close() pool.join() results=results.get() print("Done parallelizing") print("Total time taken",round(time.time()-cur_time),"secs") compound_list = [ result[0] for result in results] compounds=pd.concat(compound_list,ignore_index=True) compounds=compounds.groupby(['modifier','head','context','year'])['count'].sum().to_frame() compounds.reset_index(inplace=True) if not isfile(f'{args.output}/compounds.csv'): compounds.to_csv(f'{args.output}/compounds.csv',sep="\t",index=False) else: compounds.to_csv(f'{args.output}/compounds.csv', mode='a',sep="\t", header=False,index=False) modifier_list = [ result[1] for result in results] modifiers=pd.concat(modifier_list,ignore_index=True) modifiers=modifiers.groupby(['modifier','context','year'])['count'].sum().to_frame() modifiers.reset_index(inplace=True) if not isfile(f'{args.output}/modifiers.csv'): modifiers.to_csv(f'{args.output}/modifiers.csv',sep="\t",index=False) else: modifiers.to_csv(f'{args.output}/modifiers.csv', mode='a',sep="\t",header=False,index=False) head_list = [ result[2] for result in results] heads=
pd.concat(head_list,ignore_index=True)
pandas.concat
' Packages ' from __future__ import (absolute_import, division, print_function) #from __future__ import division import os import sys import numpy as np import pandas as pd import os import networkx as nx import multiprocessing as mp import matplotlib.pyplot as plt from gurobipy import * import pickle import pandas as pd import numpy as np import datetime import csv #Read dbf files as dataframes with pandas def dbf2DF(dbfile, upper=True): #Reads in DBF files and returns Pandas DF db = ps.open(dbfile) #Pysal to open DBF d = {col: db.by_col(col) for col in db.header} #Convert dbf to dictionary #pandasDF = pd.DataFrame(db[:]) #Convert to Pandas DF pandasDF = pd.DataFrame(d) #Convert to Pandas DF # if upper == True: #Make columns uppercase if wanted # pandasDF.columns = map(str.upper, db.header) db.close() return pandasDF #Filtering by TMC def filter_tmc(df,tmc_list,confidence_score_min,c_value_min): df = df[df.tmc_code.isin(tmc_list)] #df = df[df.confidence_score >= confidence_score_min] df2 = df[df.cvalue >= c_value_min] return df2 #Filtering between specific dates def filter_dates(df,start_date,end_date): df = df[df.index >= start_date] df = df[df.index <= end_date] df_filter_data = df return df_filter_data #Filerting between specific times def filter_time(df,start_time,end_time): df['measurement_tstamp']=pd.to_datetime(df['measurement_tstamp'], format='%Y-%m-%d %H:%M:%S') df= df.set_index('measurement_tstamp') df = df.between_time(start_time, end_time, include_start=True, include_end=True) df_filter_time = df return df_filter_time #Redefining percentile function to use it on a pandas groupby def percentile(n): def percentile_(x): return np.nanpercentile(x, n) percentile_.__name__ = 'percentile_%s' % n return percentile_ #Green Shield model #def greenshield(speed,capacity,free_flow_speed): # x = 4 * capacity * (np.true_divide(speed,free_flow_speed)-(np.true_divide(speed,free_flow_speed)**2)) # return x def greenshield(speed,capacity,free_flow_speed): if speed > free_flow_speed or capacity < 0: return 0 x = 4 * capacity * speed / free_flow_speed - 4 * capacity * (speed ** 2) / (free_flow_speed ** 2) return x #Greenshield, density # v = v_min + (v_max - v_min)(1-den/max_den) # -> den = ((v - v_min)/(v_max - v_min) -1) * - max_den def greenshield_density(speed, capacity, free_flow_speed, length, num_lanes): v_min = 1 v_max = free_flow_speed #max_den = length/0.00298295 *num_lanes #average size of a car max_den = 2*capacity den = [] for v in speed: if v > v_max: v = v_max if v < v_min: v = v_min den.append(((v - v_min)/(v_max - v_min) - 1) * - max_den) return den # Plot shapefiles def plot_shp(shp_obj): import shapefile as shp import matplotlib.pyplot as plt sf = shp_obj plt.figure() for shape in sf.shapeRecords(): x = [i[0] for i in shape.shape.points[:]] y = [i[1] for i in shape.shape.points[:]] plt.plot(x,y) plt.show() # Set differences between lists def diff(first, second): second = set(second) return [item for item in first if item not in second] def random_color(): import random r = lambda: random.randint(0,255) return ('#%02X%02X%02X' % (r(),r(),r())) def tmc_to_links(G): import networkx as nx from random import choice import pandas as pd import numpy as np df =
pd.DataFrame(columns=['link','tmc','roadnumb'])
pandas.DataFrame
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df =
pandas.DataFrame(frame_data)
pandas.DataFrame
#Let's start with importing necessary libraries import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Ridge,Lasso,RidgeCV, LassoCV, ElasticNet, ElasticNetCV, LogisticRegression from sklearn.model_selection import train_test_split #from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_score import matplotlib.pyplot as plt import seaborn as sns import scikitplot as skl import sklearn sns.set() data = pd.read_csv("diabetes.csv") # Reading the Data #Replacing the zero-values for Blood Pressure df1 = data.loc[data['Outcome'] == 1] df2 = data.loc[data['Outcome'] == 0] df1 = df1.replace({'BloodPressure':0}, np.median(df1['BloodPressure'])) df2 = df2.replace({'BloodPressure':0}, np.median(df2['BloodPressure'])) dataframe = [df1, df2] data =
pd.concat(dataframe)
pandas.concat
import os import pandas as pd def loadData(folder_path: str, date: str, start_time: str='9:30', end_time: str='16:00') -> pd.DataFrame: """Function to load complete price data for a given asset, from a given folder. This function loads all '*.csv' files from a given directory corresponding to instruments on a specific asset. Given a date, this returns a formatted DataFrame with 1 minute intervals from a start time to end time of the day, with each of the aligned prices in columns corresponding to the files they were sourced from. This function assumes dates and times are in the first column of the CSV file (headers 'Dates'), and that the prices are in the second column. The corresponding column in the final DataFrame is the name of the file it was read from. This function also forward and backward propagates prices from the last/first viable value if one is not available for a given minute. Arguments: folder_path {str} -- Path from which CSV files are to be ingested. date {str} -- Date the data was collected. This is encoded in the index of the DataFrame (format: yyyy-mm-dd). Keyword Arguments: start_time {str} -- Start time (military time) (default: {'9:30'}). end_time {str} -- End time (military time) (default: {'16:00'}). Returns: pd.DataFrame -- Formatted DataFrame with aligned prices. """ file_list = os.listdir(folder_path) # Getting files # Removing non-CSV files from list (Assume one '.' in file name) file_list = [x for x in file_list if x.split('.')[1] == 'csv'] # Defining full start and end time start = date + ' ' + start_time end = date + ' ' + end_time # Building DataFrame with correct index data_index =
pd.DatetimeIndex(start=start, end=end, freq='1min')
pandas.DatetimeIndex
import os from datetime import date from dask.dataframe import DataFrame as DaskDataFrame from numpy import nan, ndarray from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame, Series, Timedelta, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from pymove import ( DaskMoveDataFrame, MoveDataFrame, PandasDiscreteMoveDataFrame, PandasMoveDataFrame, read_csv, ) from pymove.core.grid import Grid from pymove.utils.constants import ( DATE, DATETIME, DAY, DIST_PREV_TO_NEXT, DIST_TO_PREV, HOUR, HOUR_SIN, LATITUDE, LOCAL_LABEL, LONGITUDE, PERIOD, SITUATION, SPEED_PREV_TO_NEXT, TID, TIME_PREV_TO_NEXT, TRAJ_ID, TYPE_DASK, TYPE_PANDAS, UID, WEEK_END, ) list_data = [ [39.984094, 116.319236, '2008-10-23 05:53:05', 1], [39.984198, 116.319322, '2008-10-23 05:53:06', 1], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], [39.984224, 116.319402, '2008-10-23 05:53:11', 2], ] str_data_default = """ lat,lon,datetime,id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_different = """ latitude,longitude,time,traj_id 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ str_data_missing = """ 39.984093,116.319236,2008-10-23 05:53:05,4 39.9842,116.319322,2008-10-23 05:53:06,1 39.984222,116.319402,2008-10-23 05:53:11,2 39.984222,116.319402,2008-10-23 05:53:11,2 """ def _default_move_df(): return MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) def _default_pandas_df(): return DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) def test_move_data_frame_from_list(): move_df = _default_move_df() assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_file(tmpdir): d = tmpdir.mkdir('core') file_default_columns = d.join('test_read_default.csv') file_default_columns.write(str_data_default) filename_default = os.path.join( file_default_columns.dirname, file_default_columns.basename ) move_df = read_csv(filename_default) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_different_columns = d.join('test_read_different.csv') file_different_columns.write(str_data_different) filename_diferent = os.path.join( file_different_columns.dirname, file_different_columns.basename ) move_df = read_csv( filename_diferent, latitude='latitude', longitude='longitude', datetime='time', traj_id='traj_id', ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) file_missing_columns = d.join('test_read_missing.csv') file_missing_columns.write(str_data_missing) filename_missing = os.path.join( file_missing_columns.dirname, file_missing_columns.basename ) move_df = read_csv( filename_missing, names=[LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_dict(): dict_data = { LATITUDE: [39.984198, 39.984224, 39.984094], LONGITUDE: [116.319402, 116.319322, 116.319402], DATETIME: [ '2008-10-23 05:53:11', '2008-10-23 05:53:06', '2008-10-23 05:53:06', ], } move_df = MoveDataFrame( data=dict_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_move_data_frame_from_data_frame(): df = _default_pandas_df() move_df = MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) assert MoveDataFrame.has_columns(move_df) try: MoveDataFrame.validate_move_data_frame(move_df) except Exception: assert False assert isinstance(move_df, PandasMoveDataFrame) def test_attribute_error_from_data_frame(): df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['laterr', 'lon', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lonerr', 'datetime', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass df = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetimerr', 'id'], index=[0, 1, 2, 3], ) try: MoveDataFrame( data=df, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME ) raise AssertionError( 'AttributeError error not raised by MoveDataFrame' ) except KeyError: pass def test_lat(): move_df = _default_move_df() lat = move_df.lat srs = Series( data=[39.984094, 39.984198, 39.984224, 39.984224], index=[0, 1, 2, 3], dtype='float64', name='lat', ) assert_series_equal(lat, srs) def test_lon(): move_df = _default_move_df() lon = move_df.lon srs = Series( data=[116.319236, 116.319322, 116.319402, 116.319402], index=[0, 1, 2, 3], dtype='float64', name='lon', ) assert_series_equal(lon, srs) def test_datetime(): move_df = _default_move_df() datetime = move_df.datetime srs = Series( data=[ '2008-10-23 05:53:05', '2008-10-23 05:53:06', '2008-10-23 05:53:11', '2008-10-23 05:53:11', ], index=[0, 1, 2, 3], dtype='datetime64[ns]', name='datetime', ) assert_series_equal(datetime, srs) def test_loc(): move_df = _default_move_df() assert move_df.loc[0, TRAJ_ID] == 1 loc_ = move_df.loc[move_df[LONGITUDE] > 116.319321] expected = DataFrame( data=[ [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[1, 2, 3], ) assert_frame_equal(loc_, expected) def test_iloc(): move_df = _default_move_df() expected = Series( data=[39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=0, ) assert_series_equal(move_df.iloc[0], expected) def test_at(): move_df = _default_move_df() assert move_df.at[0, TRAJ_ID] == 1 def test_values(): move_df = _default_move_df() expected = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ] assert_array_equal(move_df.values, expected) def test_columns(): move_df = _default_move_df() assert_array_equal( move_df.columns, [LATITUDE, LONGITUDE, DATETIME, TRAJ_ID] ) def test_index(): move_df = _default_move_df() assert_array_equal(move_df.index, [0, 1, 2, 3]) def test_dtypes(): move_df = _default_move_df() expected = Series( data=['float64', 'float64', '<M8[ns]', 'int64'], index=['lat', 'lon', 'datetime', 'id'], dtype='object', name=None, ) assert_series_equal(move_df.dtypes, expected) def test_shape(): move_df = _default_move_df() assert move_df.shape == (4, 4) def test_len(): move_df = _default_move_df() assert move_df.len() == 4 def test_unique(): move_df = _default_move_df() assert_array_equal(move_df['id'].unique(), [1, 2]) def test_head(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1], ], columns=['lat', 'lon', 'datetime', 'id'], index=[0, 1], ) assert_frame_equal(move_df.head(2), expected) def test_tail(): move_df = _default_move_df() expected = DataFrame( data=[ [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], [39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2], ], columns=['lat', 'lon', 'datetime', 'id'], index=[2, 3], ) assert_frame_equal(move_df.tail(2), expected) def test_number_users(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert move_df.get_users_number() == 1 move_df[UID] = [1, 1, 2, 3] assert move_df.get_users_number() == 3 def test_to_numpy(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_numpy(), ndarray) def test_to_dict(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_dict(), dict) def test_to_grid(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) g = move_df.to_grid(8) assert isinstance(move_df.to_grid(8), Grid) def test_to_data_frame(): move_df = MoveDataFrame( data=list_data, latitude=LATITUDE, longitude=LONGITUDE, datetime=DATETIME, traj_id=TRAJ_ID, ) assert isinstance(move_df.to_data_frame(), DataFrame) def test_to_discrete_move_df(): move_df = PandasDiscreteMoveDataFrame( data={DATETIME: ['2020-01-01 01:08:29', '2020-01-05 01:13:24', '2020-01-06 02:21:53', '2020-01-06 03:34:48', '2020-01-08 05:55:41'], LATITUDE: [3.754245, 3.150849, 3.754249, 3.165933, 3.920178], LONGITUDE: [38.3456743, 38.6913486, 38.3456743, 38.2715962, 38.5161605], TRAJ_ID: ['pwe-5089', 'xjt-1579', 'tre-1890', 'xjt-1579', 'pwe-5089'], LOCAL_LABEL: [1, 4, 2, 16, 32]}, ) assert isinstance( move_df.to_dicrete_move_df(), PandasDiscreteMoveDataFrame ) def test_describe(): move_df = _default_move_df() expected = DataFrame( data=[ [4.0, 4.0, 4.0], [39.984185, 116.31934049999998, 1.5], [6.189237971348586e-05, 7.921910543639078e-05, 0.5773502691896257], [39.984094, 116.319236, 1.0], [39.984172, 116.3193005, 1.0], [39.984211, 116.319362, 1.5], [39.984224, 116.319402, 2.0], [39.984224, 116.319402, 2.0], ], columns=['lat', 'lon', 'id'], index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], ) assert_frame_equal(move_df.describe(), expected) def test_memory_usage(): move_df = _default_move_df() expected = Series( data=[128, 32, 32, 32, 32], index=['Index', 'lat', 'lon', 'datetime', 'id'], dtype='int64', name=None, ) assert_series_equal(move_df.memory_usage(), expected) def test_copy(): move_df = _default_move_df() cp = move_df.copy() assert_frame_equal(move_df, cp) cp.at[0, TRAJ_ID] = 0 assert move_df.loc[0, TRAJ_ID] == 1 assert move_df.loc[0, TRAJ_ID] != cp.loc[0, TRAJ_ID] def test_generate_tid_based_on_id_datetime(): move_df = _default_move_df() new_move_df = move_df.generate_tid_based_on_id_datetime(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, '12008102305', ], [ 39.984198, 116.319322, Timestamp('2008-10-23 05:53:06'), 1, '12008102305', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, '22008102305', ], [ 39.984224, 116.319402, Timestamp('2008-10-23 05:53:11'), 2, '22008102305', ], ], columns=['lat', 'lon', 'datetime', 'id', 'tid'], index=[0, 1, 2, 3], ) assert_frame_equal(new_move_df, expected) assert isinstance(new_move_df, PandasMoveDataFrame) assert TID not in move_df move_df.generate_tid_based_on_id_datetime() assert_frame_equal(move_df, expected) def test_generate_date_features(): move_df = _default_move_df() new_move_df = move_df.generate_date_features(inplace=False) expected = DataFrame( data=[ [ 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, date(2008, 10, 23), ], [ 39.984198, 116.319322,
Timestamp('2008-10-23 05:53:06')
pandas.Timestamp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 3 17:28:04 2020 @author: shlomi """ from PW_paths import work_yuval from matplotlib import rcParams import seaborn as sns from pathlib import Path import matplotlib.pyplot as plt from PW_paths import savefig_path import matplotlib.ticker as ticker import matplotlib.dates as mdates from PW_stations import produce_geo_gnss_solved_stations tela_results_path = work_yuval / 'GNSS_stations/tela/rinex/30hr/results' tela_solutions = work_yuval / 'GNSS_stations/tela/gipsyx_solutions' sound_path = work_yuval / 'sounding' phys_soundings = sound_path / 'bet_dagan_phys_sounding_2007-2019.nc' ims_path = work_yuval / 'IMS_T' gis_path = work_yuval / 'gis' dem_path = work_yuval / 'AW3D30' era5_path = work_yuval / 'ERA5' hydro_path = work_yuval / 'hydro' ceil_path = work_yuval / 'ceilometers' aero_path = work_yuval / 'AERONET' climate_path = work_yuval / 'climate' df_gnss = produce_geo_gnss_solved_stations( plot=False, add_distance_to_coast=True) st_order_climate = [x for x in df_gnss.dropna().sort_values( ['groups_climate', 'lat', 'lon'], ascending=[1, 0, 0]).index] rc = { 'font.family': 'serif', 'xtick.labelsize': 'large', 'ytick.labelsize': 'large'} for key, val in rc.items(): rcParams[key] = val # sns.set(rc=rc, style='white') seasonal_colors = {'DJF': 'tab:blue', 'SON': 'tab:red', 'JJA': 'tab:green', 'MAM': 'tab:orange', 'Annual': 'tab:purple'} def get_twin(ax, axis): assert axis in ("x", "y") siblings = getattr(ax, f"get_shared_{axis}_axes")().get_siblings(ax) for sibling in siblings: if sibling.bbox.bounds == ax.bbox.bounds and sibling is not ax: return sibling return None def sci_notation(num, decimal_digits=1, precision=None, exponent=None): """ Returns a string representation of the scientific notation of the given number formatted for use with LaTeX or Mathtext, with specified number of significant decimal digits and precision (number of decimal digits to show). The exponent to be used can also be specified explicitly. """ from math import floor, log10 if exponent is None: exponent = int(floor(log10(abs(num)))) coeff = round(num / float(10**exponent), decimal_digits) if precision is None: precision = decimal_digits return r"${0:.{2}f}\cdot10^{{{1:d}}}$".format(coeff, exponent, precision) def utm_from_lon(lon): """ utm_from_lon - UTM zone for a longitude Not right for some polar regions (Norway, Svalbard, Antartica) :param float lon: longitude :return: UTM zone number :rtype: int """ from math import floor return floor((lon + 180) / 6) + 1 def scale_bar(ax, proj, length, location=(0.5, 0.05), linewidth=3, units='km', m_per_unit=1000, bounds=None): """ http://stackoverflow.com/a/35705477/1072212 ax is the axes to draw the scalebar on. proj is the projection the axes are in location is center of the scalebar in axis coordinates ie. 0.5 is the middle of the plot length is the length of the scalebar in km. linewidth is the thickness of the scalebar. units is the name of the unit m_per_unit is the number of meters in a unit """ import cartopy.crs as ccrs from matplotlib import patheffects # find lat/lon center to find best UTM zone try: x0, x1, y0, y1 = ax.get_extent(proj.as_geodetic()) except AttributeError: if bounds is not None: x0, x1, y0, y1 = bounds # Projection in metres utm = ccrs.UTM(utm_from_lon((x0+x1)/2)) # Get the extent of the plotted area in coordinates in metres x0, x1, y0, y1 = ax.get_extent(utm) # Turn the specified scalebar location into coordinates in metres sbcx, sbcy = x0 + (x1 - x0) * location[0], y0 + (y1 - y0) * location[1] # Generate the x coordinate for the ends of the scalebar bar_xs = [sbcx - length * m_per_unit/2, sbcx + length * m_per_unit/2] # buffer for scalebar buffer = [patheffects.withStroke(linewidth=5, foreground="w")] # Plot the scalebar with buffer ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k', linewidth=linewidth, path_effects=buffer) # buffer for text buffer = [patheffects.withStroke(linewidth=3, foreground="w")] # Plot the scalebar label t0 = ax.text(sbcx, sbcy, str(length) + ' ' + units, transform=utm, horizontalalignment='center', verticalalignment='bottom', path_effects=buffer, zorder=2) left = x0+(x1-x0)*0.05 # Plot the N arrow t1 = ax.text(left, sbcy, u'\u25B2\nN', transform=utm, horizontalalignment='center', verticalalignment='bottom', path_effects=buffer, zorder=2) # Plot the scalebar without buffer, in case covered by text buffer ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k', linewidth=linewidth, zorder=3) return @ticker.FuncFormatter def lon_formatter(x, pos): if x < 0: return r'{0:.1f}$\degree$W'.format(abs(x)) elif x > 0: return r'{0:.1f}$\degree$E'.format(abs(x)) elif x == 0: return r'0$\degree$' @ticker.FuncFormatter def lat_formatter(x, pos): if x < 0: return r'{0:.1f}$\degree$S'.format(abs(x)) elif x > 0: return r'{0:.1f}$\degree$N'.format(abs(x)) elif x == 0: return r'0$\degree$' def align_yaxis_np(ax1, ax2): """Align zeros of the two axes, zooming them out by same ratio""" import numpy as np axes = np.array([ax1, ax2]) extrema = np.array([ax.get_ylim() for ax in axes]) tops = extrema[:,1] / (extrema[:,1] - extrema[:,0]) # Ensure that plots (intervals) are ordered bottom to top: if tops[0] > tops[1]: axes, extrema, tops = [a[::-1] for a in (axes, extrema, tops)] # How much would the plot overflow if we kept current zoom levels? tot_span = tops[1] + 1 - tops[0] extrema[0,1] = extrema[0,0] + tot_span * (extrema[0,1] - extrema[0,0]) extrema[1,0] = extrema[1,1] + tot_span * (extrema[1,0] - extrema[1,1]) [axes[i].set_ylim(*extrema[i]) for i in range(2)] # def align_yaxis(ax1, v1, ax2, v2): # """adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1""" # _, y1 = ax1.transData.transform((0, v1)) # _, y2 = ax2.transData.transform((0, v2)) # inv = ax2.transData.inverted() # _, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2)) # miny, maxy = ax2.get_ylim() # ax2.set_ylim(miny+dy, maxy+dy) def get_legend_labels_handles_title_seaborn_histplot(ax): old_legend = ax.legend_ handles = old_legend.legendHandles labels = [t.get_text() for t in old_legend.get_texts()] title = old_legend.get_title().get_text() return handles, labels, title def alignYaxes(axes, align_values=None): '''Align the ticks of multiple y axes Args: axes (list): list of axes objects whose yaxis ticks are to be aligned. Keyword Args: align_values (None or list/tuple): if not None, should be a list/tuple of floats with same length as <axes>. Values in <align_values> define where the corresponding axes should be aligned up. E.g. [0, 100, -22.5] means the 0 in axes[0], 100 in axes[1] and -22.5 in axes[2] would be aligned up. If None, align (approximately) the lowest ticks in all axes. Returns: new_ticks (list): a list of new ticks for each axis in <axes>. A new sets of ticks are computed for each axis in <axes> but with equal length. ''' from matplotlib.pyplot import MaxNLocator import numpy as np nax = len(axes) ticks = [aii.get_yticks() for aii in axes] if align_values is None: aligns = [ticks[ii][0] for ii in range(nax)] else: if len(align_values) != nax: raise Exception( "Length of <axes> doesn't equal that of <align_values>.") aligns = align_values bounds = [aii.get_ylim() for aii in axes] # align at some points ticks_align = [ticks[ii]-aligns[ii] for ii in range(nax)] # scale the range to 1-100 ranges = [tii[-1]-tii[0] for tii in ticks] lgs = [-np.log10(rii)+2. for rii in ranges] igs = [np.floor(ii) for ii in lgs] log_ticks = [ticks_align[ii]*(10.**igs[ii]) for ii in range(nax)] # put all axes ticks into a single array, then compute new ticks for all comb_ticks = np.concatenate(log_ticks) comb_ticks.sort() locator = MaxNLocator(nbins='auto', steps=[1, 2, 2.5, 3, 4, 5, 8, 10]) new_ticks = locator.tick_values(comb_ticks[0], comb_ticks[-1]) new_ticks = [new_ticks/10.**igs[ii] for ii in range(nax)] new_ticks = [new_ticks[ii]+aligns[ii] for ii in range(nax)] # find the lower bound idx_l = 0 for i in range(len(new_ticks[0])): if any([new_ticks[jj][i] > bounds[jj][0] for jj in range(nax)]): idx_l = i-1 break # find the upper bound idx_r = 0 for i in range(len(new_ticks[0])): if all([new_ticks[jj][i] > bounds[jj][1] for jj in range(nax)]): idx_r = i break # trim tick lists by bounds new_ticks = [tii[idx_l:idx_r+1] for tii in new_ticks] # set ticks for each axis for axii, tii in zip(axes, new_ticks): axii.set_yticks(tii) return new_ticks def align_yaxis(ax1, v1, ax2, v2): """adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1""" _, y1 = ax1.transData.transform((0, v1)) _, y2 = ax2.transData.transform((0, v2)) adjust_yaxis(ax2, (y1 - y2) / 2, v2) adjust_yaxis(ax1, (y2 - y1) / 2, v1) def adjust_yaxis(ax, ydif, v): """shift axis ax by ydiff, maintaining point v at the same location""" inv = ax.transData.inverted() _, dy = inv.transform((0, 0)) - inv.transform((0, ydif)) miny, maxy = ax.get_ylim() miny, maxy = miny - v, maxy - v if -miny > maxy or (-miny == maxy and dy > 0): nminy = miny nmaxy = miny * (maxy + dy) / (miny + dy) else: nmaxy = maxy nminy = maxy * (miny + dy) / (maxy + dy) ax.set_ylim(nminy + v, nmaxy + v) def qualitative_cmap(n=2): import matplotlib.colors as mcolors if n == 2: colorsList = [mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g']] cmap = mcolors.ListedColormap(colorsList) elif n == 4: colorsList = [ mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g'], mcolors.BASE_COLORS['c'], mcolors.BASE_COLORS['m']] cmap = mcolors.ListedColormap(colorsList) elif n == 5: colorsList = [ mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g'], mcolors.BASE_COLORS['c'], mcolors.BASE_COLORS['m'], mcolors.BASE_COLORS['b']] cmap = mcolors.ListedColormap(colorsList) return cmap def caption(text, color='blue', **kwargs): from termcolor import colored print(colored('Caption:', color, attrs=['bold'], **kwargs)) print(colored(text, color, attrs=['bold'], **kwargs)) return def adjust_lightness(color, amount=0.5): import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], max(0, min(1, amount * c[1])), c[2]) def produce_colors_for_pwv_station(scope='annual', zebra=False, as_dict=False, as_cat_dict=False): import pandas as pd stns = group_sites_to_xarray(scope=scope) cdict = {'coastal': 'tab:blue', 'highland': 'tab:green', 'eastern': 'tab:orange'} if as_cat_dict: return cdict # for grp, color in cdict.copy().items(): # cdict[grp] = to_rgba(get_named_colors_mapping()[ # color], alpha=1) ds = stns.to_dataset('group') colors = [] for group in ds: sts = ds[group].dropna('GNSS').values for i, st in enumerate(sts): color = cdict.get(group) if zebra: if i % 2 != 0: # rgba = np.array(rgba) # rgba[-1] = 0.5 color = adjust_lightness(color, 0.5) colors.append(color) # colors = [item for sublist in colors for item in sublist] stns = stns.T.values.ravel() stns = stns[~pd.isnull(stns)] if as_dict: colors = dict(zip(stns, colors)) return colors def fix_time_axis_ticks(ax, limits=None, margin=15): import pandas as pd import matplotlib.dates as mdates if limits is not None: ax.set_xlim(*pd.to_datetime(limits)) years_fmt = mdates.DateFormatter('%Y') ax.xaxis.set_major_locator(mdates.YearLocator()) ax.xaxis.set_major_formatter(years_fmt) ax.xaxis.set_minor_locator(mdates.MonthLocator()) # locator = mdates.AutoDateLocator(minticks=3, maxticks=7) # formatter = mdates.ConciseDateFormatter(locator) # ax.xaxis.set_major_locator(locator) # ax.xaxis.set_major_formatter(formatter) return ax def plot_qflux_climatotlogy_israel(path=era5_path, save=True, reduce='mean', plot_type='uv'): import xarray as xr import matplotlib.pyplot as plt import numpy as np ds = xr.load_dataset(path / 'ERA5_UVQ_mm_israel_1979-2020.nc') ds = ds.sel(expver=1).reset_coords(drop=True) if plot_type == 'uv': f1 = ds['q'] * ds['u'] f2 = ds['q'] * ds['v'] elif plot_type == 'md': qu = ds['q'] * ds['u'] qv = ds['q'] * ds['v'] f1 = np.sqrt(qu**2 + qv**2) f2 = np.rad2deg(np.arctan2(qv, qu)) if reduce == 'mean': f1_clim = f1.groupby('time.month').mean().mean( 'longitude').mean('latitude') f2_clim = f2.groupby('time.month').mean().mean( 'longitude').mean('latitude') center = 0 cmap = 'bwr' elif reduce == 'std': f1_clim = f1.groupby('time.month').std().mean( 'longitude').mean('latitude') f2_clim = f2.groupby('time.month').std().mean( 'longitude').mean('latitude') center = None cmap = 'viridis' ds_clim = xr.concat([f1_clim, f2_clim], 'direction') ds_clim['direction'] = ['zonal', 'meridional'] if plot_type == 'md': fg, axes = plt.subplots(1, 2, figsize=(14, 7)) f1_clim.sel( level=slice( 300, 1000)).T.plot.contourf(levels=41, yincrease=False, cmap=cmap, center=center, ax=axes[0]) f2_clim.sel( level=slice( 300, 1000)).T.plot.contourf(levels=41, yincrease=False, cmap=cmap, center=center, ax=axes[1]) else: fg = ds_clim.sel( level=slice( 300, 1000)).T.plot.contourf( levels=41, yincrease=False, cmap=cmap, center=center, col='direction', figsize=( 15, 6)) fg.fig.suptitle('Moisture flux climatology over Israel') # fig, axes = plt.subplots(1, 2, figsize=(15, 5)) # qu_clim.sel(level=slice(300,1000)).T.plot.contourf(levels=41, yincrease=False, ax=axes[0], cmap='bwr', center=0) # qv_clim.sel(level=slice(300,1000)).T.plot.contourf(levels=41, yincrease=False, ax=axes[1], cmap='bwr', center=0) fg.fig.subplots_adjust(top=0.923, bottom=0.102, left=0.058, right=0.818, hspace=0.2, wspace=0.045) if save: filename = 'moisture_clim_from_ERA5_over_israel.png' # plt.savefig(savefig_path / filename, bbox_inches='tight') plt.savefig(savefig_path / filename, orientation='landscape') return fg def plot_mean_std_count(da_ts, time_reduce='hour', reduce='mean', count_factor=1): import xarray as xr import seaborn as sns """plot mean, std and count of Xarray dataarray time-series""" cmap = sns.color_palette("colorblind", 2) time_dim = list(set(da_ts.dims))[0] grp = '{}.{}'.format(time_dim, time_reduce) if reduce == 'mean': mean = da_ts.groupby(grp).mean() elif reduce == 'median': mean = da_ts.groupby(grp).median() std = da_ts.groupby(grp).std() mean_plus_std = mean + std mean_minus_std = mean - std count = da_ts.groupby(grp).count() if isinstance(da_ts, xr.Dataset): dvars = [x for x in da_ts.data_vars.keys()] assert len(dvars) == 2 secondary_y = dvars[1] else: secondary_y = None fig, axes = plt.subplots(2, 1, sharex=True, sharey=False, figsize=(15, 15)) mean_df = mean.to_dataframe() if secondary_y is not None: axes[0] = mean_df[dvars[0]].plot( ax=axes[0], linewidth=2.0, marker='o', color=cmap[0]) ax2mean = mean_df[secondary_y].plot( ax=axes[0], linewidth=2.0, marker='s', color=cmap[1], secondary_y=True) h1, l1 = axes[0].get_legend_handles_labels() h2, l2 = axes[0].right_ax.get_legend_handles_labels() handles = h1 + h2 labels = l1 + l2 axes[0].legend(handles, labels) axes[0].fill_between(mean_df.index.values, mean_minus_std[dvars[0]].values, mean_plus_std[dvars[0]].values, color=cmap[0], alpha=0.5) ax2mean.fill_between( mean_df.index.values, mean_minus_std[secondary_y].values, mean_plus_std[secondary_y].values, color=cmap[1], alpha=0.5) ax2mean.tick_params(axis='y', colors=cmap[1]) else: mean_df.plot(ax=axes[0], linewidth=2.0, marker='o', color=cmap[0]) axes[0].fill_between( mean_df.index.values, mean_minus_std.values, mean_plus_std.values, color=cmap[0], alpha=0.5) axes[0].grid() count_df = count.to_dataframe() / count_factor count_df.plot.bar(ax=axes[1], rot=0) axes[0].xaxis.set_tick_params(labelbottom=True) axes[0].tick_params(axis='y', colors=cmap[0]) fig.tight_layout() if secondary_y is not None: return axes, ax2mean else: return axes def plot_seasonal_histogram(da, dim='sound_time', xlim=None, xlabel=None, suptitle=''): fig_hist, axs = plt.subplots(2, 2, sharex=False, sharey=True, figsize=(10, 8)) seasons = ['DJF', 'MAM', 'JJA', 'SON'] cmap = sns.color_palette("colorblind", 4) for i, ax in enumerate(axs.flatten()): da_season = da.sel( {dim: da['{}.season'.format(dim)] == seasons[i]}).dropna(dim) ax = sns.distplot(da_season, ax=ax, norm_hist=False, color=cmap[i], hist_kws={'edgecolor': 'k'}, axlabel=xlabel, label=seasons[i]) ax.set_xlim(xlim) ax.legend() # axes.set_xlabel('MLH [m]') ax.set_ylabel('Frequency') fig_hist.suptitle(suptitle) fig_hist.tight_layout() return axs def plot_two_histograms_comparison(x, y, bins=None, labels=['x', 'y'], ax=None, colors=['b', 'r']): import numpy as np import matplotlib.pyplot as plt x_w = np.empty(x.shape) x_w.fill(1/x.shape[0]) y_w = np.empty(y.shape) y_w.fill(1/y.shape[0]) if ax is None: fig, ax = plt.subplots() ax.hist([x, y], bins=bins, weights=[x_w, y_w], color=colors, label=labels) ax.legend() return ax def plot_diurnal_wind_hodograph(path=ims_path, station='TEL-AVIV-COAST', season=None, cmax=None, ax=None): import xarray as xr from metpy.plots import Hodograph # import matplotlib import numpy as np colorbar = False # from_list = matplotlib.colors.LinearSegmentedColormap.from_list cmap = plt.cm.get_cmap('hsv', 24) # cmap = from_list(None, plt.cm.jet(range(0,24)), 24) U = xr.open_dataset(path / 'IMS_U_israeli_10mins.nc') V = xr.open_dataset(path / 'IMS_V_israeli_10mins.nc') u_sta = U[station] v_sta = V[station] u_sta.load() v_sta.load() if season is not None: print('{} season selected'.format(season)) u_sta = u_sta.sel(time=u_sta['time.season'] == season) v_sta = v_sta.sel(time=v_sta['time.season'] == season) u = u_sta.groupby('time.hour').mean() v = v_sta.groupby('time.hour').mean() if ax is None: colorbar = True fig, ax = plt.subplots() max_uv = max(max(u.values), max(v.values)) + 1 if cmax is None: max_uv = max(max(u.values), max(v.values)) + 1 else: max_uv = cmax h = Hodograph(component_range=max_uv, ax=ax) h.add_grid(increment=0.5) # hours = np.arange(0, 25) lc = h.plot_colormapped(u, v, u.hour, cmap=cmap, linestyle='-', linewidth=2) #ticks = np.arange(np.min(hours), np.max(hours)) # cb = fig.colorbar(lc, ticks=range(0,24), label='Time of Day [UTC]') if colorbar: cb = ax.figure.colorbar(lc, ticks=range( 0, 24), label='Time of Day [UTC]') # cb.ax.tick_params(length=0) if season is None: ax.figure.suptitle('{} diurnal wind Hodograph'.format(station)) else: ax.figure.suptitle( '{} diurnal wind Hodograph {}'.format(station, season)) ax.set_xlabel('North') ax.set_ylabel('East') ax.set_title('South') ax2 = ax.twinx() ax2.tick_params(axis='y', right=False, labelright=False) ax2.set_ylabel('West') # axcb = fig.colorbar(lc) return ax def plot_MLR_GNSS_PW_harmonics_facetgrid(path=work_yuval, season='JJA', n_max=2, ylim=None, scope='diurnal', save=True, era5=False, leg_size=15): """ Parameters ---------- path : TYPE, optional DESCRIPTION. The default is work_yuval. season : TYPE, optional DESCRIPTION. The default is 'JJA'. n_max : TYPE, optional DESCRIPTION. The default is 2. ylim : TYPE, optional the ylimits of each panel use [-6,8] for annual. The default is None. scope : TYPE, optional DESCRIPTION. The default is 'diurnal'. save : TYPE, optional DESCRIPTION. The default is True. era5 : TYPE, optional DESCRIPTION. The default is False. leg_size : TYPE, optional DESCRIPTION. The default is 15. Returns ------- None. """ import xarray as xr from aux_gps import run_MLR_harmonics from matplotlib.ticker import AutoMinorLocator from PW_stations import produce_geo_gnss_solved_stations import numpy as np sns.set_style('whitegrid') sns.set_style('ticks') geo = produce_geo_gnss_solved_stations(add_distance_to_coast=True, plot=False) if scope == 'diurnal': cunits = 'cpd' ticks = np.arange(0, 23, 3) xlabel = 'Hour of day [UTC]' elif scope == 'annual': cunits = 'cpy' ticks = np.arange(1, 13, 1) xlabel = 'month' print('producing {} harmonics plot.'.format(scope)) if era5: harmonics = xr.load_dataset(path / 'GNSS_PW_era5_harmonics_{}.nc'.format(scope)) else: harmonics = xr.load_dataset(path / 'GNSS_PW_harmonics_{}.nc'.format(scope)) # sites = sorted(list(set([x.split('_')[0] for x in harmonics]))) # da = xr.DataArray([x for x in range(len(sites))], dims='GNSS') # da['GNSS'] = sites sites = group_sites_to_xarray(upper=False, scope=scope) sites_flat = [x for x in sites.values.flatten()] da = xr.DataArray([x for x in range(len(sites_flat))], dims='GNSS') da['GNSS'] = [x for x in range(len(da))] fg = xr.plot.FacetGrid( da, col='GNSS', col_wrap=3, sharex=False, sharey=False, figsize=(20, 20)) for i in range(fg.axes.shape[0]): # i is rows for j in range(fg.axes.shape[1]): # j is cols site = sites.values[i, j] ax = fg.axes[i, j] try: harm_site = harmonics[[x for x in harmonics if site in x]] if site in ['nrif']: leg_loc = 'upper center' elif site in ['yrcm', 'ramo']: leg_loc = 'lower center' # elif site in ['katz']: # leg_loc = 'upper right' else: leg_loc = None if scope == 'annual': leg_loc = 'upper left' ax, handles, labels = run_MLR_harmonics(harm_site, season=season, cunits=cunits, n_max=n_max, plot=True, ax=ax, legend_loc=leg_loc, ncol=1, legsize=leg_size, lw=2.5, legend_S_only=True) ax.set_xlabel(xlabel, fontsize=16) if ylim is not None: ax.set_ylim(*ylim) ax.tick_params(axis='x', which='major', labelsize=18) # if scope == 'diurnal': ax.yaxis.set_major_locator(plt.MaxNLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) ax.tick_params(axis='y', which='major', labelsize=18) ax.yaxis.tick_left() ax.xaxis.set_ticks(ticks) ax.grid() ax.set_title('') ax.set_ylabel('') ax.grid(axis='y', which='minor', linestyle='--') # get this for upper legend: # handles, labels = ax.get_legend_handles_labels() if scope == 'annual': site_label = '{} ({:.0f})'.format( site.upper(), geo.loc[site].alt) label_coord = [0.52, 0.87] fs = 18 elif scope == 'diurnal': site_label = site.upper() label_coord = [0.1, 0.85] fs = 20 ax.text(*label_coord, site_label, horizontalalignment='center', fontweight='bold', transform=ax.transAxes, fontsize=fs) if j == 0: ax.set_ylabel('PWV anomalies [mm]', fontsize=16) # if j == 0: # ax.set_ylabel('PW anomalies [mm]', fontsize=12) # elif j == 1: # if i>5: # ax.set_ylabel('PW anomalies [mm]', fontsize=12) except TypeError: print('{}, {} axis off'.format(i, j)) ax.set_axis_off() # for i, (site, ax) in enumerate(zip(da['GNSS'].values, fg.axes.flatten())): # harm_site = harmonics[[x for x in harmonics if sites[i] in x]] # if site in ['elat', 'nrif']: # loc = 'upper center' # text = 0.1 # elif site in ['elro', 'yrcm', 'ramo', 'slom', 'jslm']: # loc = 'upper right' # text = 0.1 # else: # loc = None # text = 0.1 # ax = run_MLR_diurnal_harmonics(harm_site, season=season, n_max=n_max, plot=True, ax=ax, legend_loc=loc) # ax.set_title('') # ax.set_ylabel('PW anomalies [mm]') # if ylim is not None: # ax.set_ylim(ylim[0], ylim[1]) # ax.text(text, .85, site.upper(), # horizontalalignment='center', fontweight='bold', # transform=ax.transAxes) # for i, ax in enumerate(fg.axes.flatten()): # if i > (da.GNSS.telasize-1): # ax.set_axis_off() # pass # add upper legend for all factes: S_labels = labels[:-2] S_labels = [x.split(' ')[0] for x in S_labels] last_label = 'Mean PWV anomalies' sum_label = labels[-2].split("'")[1] S_labels.append(sum_label) S_labels.append(last_label) fg.fig.legend(handles=handles, labels=S_labels, prop={'size': 20}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=20, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.subplots_adjust( top=0.973, bottom=0.032, left=0.054, right=0.995, hspace=0.15, wspace=0.12) if save: if era5: filename = 'pw_era5_{}_harmonics_{}_{}.png'.format(scope, n_max, season) else: filename = 'pw_{}_harmonics_{}_{}.png'.format(scope, n_max, season) # plt.savefig(savefig_path / filename, bbox_inches='tight') plt.savefig(savefig_path / filename, orientation='portrait') return fg def plot_gustiness(path=work_yuval, ims_path=ims_path, site='tela', ims_site='HAIFA-TECHNION', season='JJA', month=None, pts=7, ax=None): import xarray as xr import numpy as np g = xr.open_dataset( ims_path / 'IMS_G{}_israeli_10mins_daily_anoms.nc'.format(pts))[ims_site] g.load() if season is not None: g = g.sel(time=g['time.season'] == season) label = 'Gustiness {} IMS station in {} season'.format( site, season) elif month is not None: g = g.sel(time=g['time.month'] == month) label = 'Gustiness {} IMS station in {} month'.format( site, month) elif season is not None and month is not None: raise('pls pick either season or month...') # date = groupby_date_xr(g) # # g_anoms = g.groupby('time.month') - g.groupby('time.month').mean('time') # g_anoms = g.groupby(date) - g.groupby(date).mean('time') # g_anoms = g_anoms.reset_coords(drop=True) G = g.groupby('time.hour').mean('time') * 100.0 if ax is None: fig, ax = plt.subplots(figsize=(16, 8)) Gline = G.plot(ax=ax, color='b', marker='o', label='Gustiness') ax.set_title(label) ax.axhline(0, color='b', linestyle='--') ax.set_ylabel('Gustiness anomalies [dimensionless]', color='b') ax.set_xlabel('Time of day [UTC]') # ax.set_xticks(np.arange(0, 24, step=1)) ax.yaxis.label.set_color('b') ax.tick_params(axis='y', colors='b') ax.xaxis.set_ticks(np.arange(0, 23, 3)) ax.grid() pw = xr.open_dataset( work_yuval / 'GNSS_PW_hourly_anoms_thresh_50_homogenized.nc')[site] pw.load().dropna('time') if season is not None: pw = pw.sel(time=pw['time.season'] == season) elif month is not None: pw = pw.sel(time=pw['time.month'] == month) # date = groupby_date_xr(pw) # pw = pw.groupby(date) - pw.groupby(date).mean('time') # pw = pw.reset_coords(drop=True) pw = pw.groupby('time.hour').mean() axpw = ax.twinx() PWline = pw.plot.line(ax=axpw, color='tab:green', marker='s', label='PW ({})'.format(season)) axpw.axhline(0, color='k', linestyle='--') lns = Gline + PWline axpw.set_ylabel('PW anomalies [mm]') align_yaxis(ax, 0, axpw, 0) return lns def plot_gustiness_facetgrid(path=work_yuval, ims_path=ims_path, season='JJA', month=None, save=True): import xarray as xr gnss_ims_dict = { 'alon': 'ASHQELON-PORT', 'bshm': 'HAIFA-TECHNION', 'csar': 'HADERA-PORT', 'tela': 'TEL-AVIV-COAST', 'slom': 'BESOR-FARM', 'kabr': 'SHAVE-ZIYYON', 'nzrt': 'DEIR-HANNA', 'katz': 'GAMLA', 'elro': 'MEROM-GOLAN-PICMAN', 'mrav': 'MAALE-GILBOA', 'yosh': 'ARIEL', 'jslm': 'JERUSALEM-GIVAT-RAM', 'drag': 'METZOKE-DRAGOT', 'dsea': 'SEDOM', 'ramo': 'MIZPE-RAMON-20120927', 'nrif': 'NEOT-SMADAR', 'elat': 'ELAT', 'klhv': 'SHANI', 'yrcm': 'ZOMET-HANEGEV', 'spir': 'PARAN-20060124'} da = xr.DataArray([x for x in gnss_ims_dict.values()], dims=['GNSS']) da['GNSS'] = [x for x in gnss_ims_dict.keys()] to_remove = ['kabr', 'nzrt', 'katz', 'elro', 'klhv', 'yrcm', 'slom'] sites = [x for x in da['GNSS'].values if x not in to_remove] da = da.sel(GNSS=sites) gnss_order = ['bshm', 'mrav', 'drag', 'csar', 'yosh', 'dsea', 'tela', 'jslm', 'nrif', 'alon', 'ramo', 'elat'] df = da.to_dataframe('gnss') da = df.reindex(gnss_order).to_xarray()['gnss'] fg = xr.plot.FacetGrid( da, col='GNSS', col_wrap=3, sharex=False, sharey=False, figsize=(20, 20)) for i, (site, ax) in enumerate(zip(da['GNSS'].values, fg.axes.flatten())): lns = plot_gustiness(path=path, ims_path=ims_path, ims_site=gnss_ims_dict[site], site=site, season=season, month=month, ax=ax) labs = [l.get_label() for l in lns] if site in ['tela', 'alon', 'dsea', 'csar', 'elat', 'nrif']: ax.legend(lns, labs, loc='upper center', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) elif site in ['drag']: ax.legend(lns, labs, loc='upper right', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) else: ax.legend(lns, labs, loc='best', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) ax.set_title('') ax.set_ylabel(r'G anomalies $\times$$10^{2}$') # ax.text(.8, .85, site.upper(), # horizontalalignment='center', fontweight='bold', # transform=ax.transAxes) for i, ax in enumerate(fg.axes.flatten()): if i > (da.GNSS.size-1): ax.set_axis_off() pass fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.974, bottom=0.053, left=0.041, right=0.955, hspace=0.15, wspace=0.3) filename = 'gustiness_israeli_gnss_pw_diurnal_{}.png'.format(season) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_fft_diurnal(path=work_yuval, save=True): import xarray as xr import numpy as np import matplotlib.ticker as tck sns.set_style("whitegrid", {'axes.grid': True, 'xtick.bottom': True, 'font.family': 'serif', 'ytick.left': True}) sns.set_context('paper') power = xr.load_dataset(path / 'GNSS_PW_power_spectrum_diurnal.nc') power = power.to_array('site') sites = [x for x in power.site.values] fg = power.plot.line(col='site', col_wrap=4, sharex=False, figsize=(20, 18)) fg.set_xlabels('Frequency [cpd]') fg.set_ylabels('PW PSD [dB]') ticklabels = np.arange(0, 7) for ax, site in zip(fg.axes.flatten(), sites): sns.despine() ax.set_title('') ax.set_xticklabels(ticklabels) # ax.tick_params(axis='y', which='minor') ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) ax.set_xlim(0, 6.5) ax.set_ylim(70, 125) ax.grid(True) ax.grid(which='minor', axis='y') ax.text(.8, .85, site.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) fg.fig.tight_layout() filename = 'power_pw_diurnal.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_rinex_availability_with_map(path=work_yuval, gis_path=gis_path, scope='diurnal', ims=True, dem_path=dem_path, fontsize=18, save=True): # TODO: add box around merged stations and removed stations # TODO: add color map labels to stations removed and merged from aux_gps import gantt_chart import xarray as xr import pandas as pd import geopandas as gpd from PW_stations import produce_geo_gnss_solved_stations from aux_gps import geo_annotate from ims_procedures import produce_geo_ims from matplotlib.colors import ListedColormap from aux_gps import path_glob sns.set_style('whitegrid') sns.set_style('ticks') print('{} scope selected.'.format(scope)) fig = plt.figure(figsize=(20, 15)) # grid = plt.GridSpec(1, 2, width_ratios=[ # 5, 2], wspace=0.1) grid = plt.GridSpec(1, 2, width_ratios=[ 5, 3], wspace=0.05) ax_gantt = fig.add_subplot(grid[0, 0]) # plt.subplot(221) ax_map = fig.add_subplot(grid[0, 1]) # plt.subplot(122) # fig, ax = plt.subplots(1, 2, sharex=False, sharey=False, figsize=(20, 6)) # RINEX gantt chart: if scope == 'diurnal': file = path_glob(path, 'GNSS_PW_thresh_50_for_diurnal_analysis.nc')[-1] elif scope == 'annual': file = path / 'GNSS_PW_monthly_thresh_50.nc' ds = xr.open_dataset(file) just_pw = [x for x in ds if 'error' not in x] ds = ds[just_pw] da = ds.to_array('station').sel(time=slice(None,'2019')) da['station'] = [x.upper() for x in da.station.values] ds = da.to_dataset('station') # reorder for annual, coastal, highland and eastern: stns = group_sites_to_xarray(scope='annual', upper=True).T.values.ravel() stns = stns[~pd.isnull(stns)] ds = ds[stns] # colors: colors = produce_colors_for_pwv_station(scope=scope, zebra=False) title = 'Daily RINEX files availability for the Israeli GNSS stations' ax_gantt = gantt_chart( ds, ax=ax_gantt, fw='bold', grid=True, title='', colors=colors, pe_dict=None, fontsize=fontsize, linewidth=24, antialiased=False) years_fmt = mdates.DateFormatter('%Y') # ax_gantt.xaxis.set_major_locator(mdates.YearLocator()) ax_gantt.xaxis.set_major_locator(mdates.YearLocator(4)) ax_gantt.xaxis.set_minor_locator(mdates.YearLocator(1)) ax_gantt.xaxis.set_major_formatter(years_fmt) # ax_gantt.xaxis.set_minor_formatter(years_fmt) ax_gantt.tick_params(axis='x', labelrotation=0) # Israel gps ims map: ax_map = plot_israel_map( gis_path=gis_path, ax=ax_map, ticklabelsize=fontsize) # overlay with dem data: cmap = plt.get_cmap('terrain', 41) dem = xr.open_dataarray(dem_path / 'israel_dem_250_500.nc') # dem = xr.open_dataarray(dem_path / 'israel_dem_500_1000.nc') fg = dem.plot.imshow(ax=ax_map, alpha=0.5, cmap=cmap, vmin=dem.min(), vmax=dem.max(), add_colorbar=False) # scale_bar(ax_map, 50) cbar_kwargs = {'fraction': 0.1, 'aspect': 50, 'pad': 0.03} cb = plt.colorbar(fg, **cbar_kwargs) cb.set_label(label='meters above sea level', size=fontsize, weight='normal') cb.ax.tick_params(labelsize=fontsize) ax_map.set_xlabel('') ax_map.set_ylabel('') gps = produce_geo_gnss_solved_stations(path=gis_path, plot=False) # removed = ['hrmn', 'nizn', 'spir'] # removed = ['hrmn'] if scope == 'diurnal': removed = ['hrmn', 'gilb', 'lhav'] elif scope == 'annual': removed = ['hrmn', 'gilb', 'lhav'] print('removing {} stations from map.'.format(removed)) # merged = ['klhv', 'lhav', 'mrav', 'gilb'] merged = [] gps_list = [x for x in gps.index if x not in merged and x not in removed] gps.loc[gps_list, :].plot(ax=ax_map, edgecolor='black', marker='s', alpha=1.0, markersize=35, facecolor="None", linewidth=2, zorder=3) # gps.loc[removed, :].plot(ax=ax_map, color='black', edgecolor='black', marker='s', # alpha=1.0, markersize=25, facecolor='white') # gps.loc[merged, :].plot(ax=ax_map, color='black', edgecolor='r', marker='s', # alpha=0.7, markersize=25) gps_stations = gps_list # [x for x in gps.index] # to_plot_offset = ['mrav', 'klhv', 'nzrt', 'katz', 'elro'] to_plot_offset = [] for x, y, label in zip(gps.loc[gps_stations, :].lon, gps.loc[gps_stations, :].lat, gps.loc[gps_stations, :].index.str.upper()): if label.lower() in to_plot_offset: ax_map.annotate(label, xy=(x, y), xytext=(4, -6), textcoords="offset points", color='k', fontweight='bold', fontsize=fontsize - 2) else: ax_map.annotate(label, xy=(x, y), xytext=(3, 3), textcoords="offset points", color='k', fontweight='bold', fontsize=fontsize - 2) # geo_annotate(ax_map, gps_normal_anno.lon, gps_normal_anno.lat, # gps_normal_anno.index.str.upper(), xytext=(3, 3), fmt=None, # c='k', fw='normal', fs=10, colorupdown=False) # geo_annotate(ax_map, gps_offset_anno.lon, gps_offset_anno.lat, # gps_offset_anno.index.str.upper(), xytext=(4, -6), fmt=None, # c='k', fw='normal', fs=10, colorupdown=False) # plot bet-dagan: df = pd.Series([32.00, 34.81]).to_frame().T df.index = ['Bet-Dagan'] df.columns = ['lat', 'lon'] bet_dagan = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.lon, df.lat), crs=gps.crs) bet_dagan.plot(ax=ax_map, color='black', edgecolor='black', marker='x', linewidth=2, zorder=2) geo_annotate(ax_map, bet_dagan.lon, bet_dagan.lat, bet_dagan.index, xytext=(4, -6), fmt=None, c='k', fw='bold', fs=fontsize - 2, colorupdown=False) # plt.legend(['GNSS \nreceiver sites', # 'removed \nGNSS sites', # 'merged \nGNSS sites', # 'radiosonde\nstation'], # loc='upper left', framealpha=0.7, fancybox=True, # handletextpad=0.2, handlelength=1.5) if ims: print('getting IMS temperature stations metadata...') ims = produce_geo_ims(path=gis_path, freq='10mins', plot=False) ims.plot(ax=ax_map, marker='o', edgecolor='tab:orange', alpha=1.0, markersize=35, facecolor="tab:orange", zorder=1) # ims, gps = produce_geo_df(gis_path=gis_path, plot=False) print('getting solved GNSS israeli stations metadata...') plt.legend(['GNSS \nstations', 'radiosonde\nstation', 'IMS stations'], loc='upper left', framealpha=0.7, fancybox=True, handletextpad=0.2, handlelength=1.5, fontsize=fontsize - 2) else: plt.legend(['GNSS \nstations', 'radiosonde\nstation'], loc='upper left', framealpha=0.7, fancybox=True, handletextpad=0.2, handlelength=1.5, fontsize=fontsize - 2) fig.subplots_adjust(top=0.95, bottom=0.11, left=0.05, right=0.95, hspace=0.2, wspace=0.2) # plt.legend(['IMS stations', 'GNSS stations'], loc='upper left') filename = 'rinex_israeli_gnss_map_{}.png'.format(scope) # caption('Daily RINEX files availability for the Israeli GNSS station network at the SOPAC/GARNER website') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_means_box_plots(path=work_yuval, thresh=50, kind='box', x='month', col_wrap=5, ylimits=None, twin=None, twin_attrs=None, xlimits=None, anoms=True, bins=None, season=None, attrs_plot=True, save=True, ds_input=None): import xarray as xr pw = xr.open_dataset( work_yuval / 'GNSS_PW_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] attrs = [x.attrs for x in pw.data_vars.values()] if x == 'month': pw = xr.load_dataset( work_yuval / 'GNSS_PW_monthly_thresh_{:.0f}_homogenized.nc'.format(thresh)) # pw = pw.resample(time='MS').mean('time') elif x == 'hour': # pw = pw.resample(time='1H').mean('time') # pw = pw.groupby('time.hour').mean('time') pw = xr.load_dataset( work_yuval / 'GNSS_PW_hourly_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] # first remove long term monthly means: if anoms: pw = xr.load_dataset( work_yuval / 'GNSS_PW_hourly_anoms_thresh_{:.0f}_homogenized.nc'.format(thresh)) if twin is not None: twin = twin.groupby('time.month') - \ twin.groupby('time.month').mean('time') twin = twin.reset_coords(drop=True) # pw = pw.groupby('time.month') - pw.groupby('time.month').mean('time') elif x == 'day': # pw = pw.resample(time='1H').mean('time') # pw = pw.groupby('time.hour').mean('time') pw = xr.load_dataset( work_yuval / 'GNSS_PW_daily_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] # first remove long term monthly means: if anoms: # pw = pw.groupby('time.month') - pw.groupby('time.month').mean('time') pw = pw.groupby('time.dayofyear') - \ pw.groupby('time.dayodyear').mean('time') if season is not None: if season != 'all': print('{} season is selected'.format(season)) pw = pw.sel(time=pw['time.season'] == season) all_seas = False if twin is not None: twin = twin.sel(time=twin['time.season'] == season) else: print('all seasons selected') all_seas = True else: all_seas = False for i, da in enumerate(pw.data_vars): pw[da].attrs = attrs[i] if not attrs_plot: attrs = None if ds_input is not None: # be carful!: pw = ds_input fg = plot_multi_box_xr(pw, kind=kind, x=x, col_wrap=col_wrap, ylimits=ylimits, xlimits=xlimits, attrs=attrs, bins=bins, all_seasons=all_seas, twin=twin, twin_attrs=twin_attrs) attrs = [x.attrs for x in pw.data_vars.values()] for i, ax in enumerate(fg.axes.flatten()): try: mean_years = float(attrs[i]['mean_years']) # print(i) # print(mean_years) except IndexError: ax.set_axis_off() pass if kind != 'hist': [fg.axes[x, 0].set_ylabel('PW [mm]') for x in range(len(fg.axes[:, 0]))] # [fg.axes[-1, x].set_xlabel('month') for x in range(len(fg.axes[-1, :]))] fg.fig.subplots_adjust(top=0.98, bottom=0.05, left=0.025, right=0.985, hspace=0.27, wspace=0.215) if season is not None: filename = 'pw_{}ly_means_{}_seas_{}.png'.format(x, kind, season) else: filename = 'pw_{}ly_means_{}.png'.format(x, kind) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_interannual_MLR_results(path=climate_path, fontsize=16, save=True): import matplotlib.pyplot as plt from climate_works import run_best_MLR # rds = xr.load_dataset(path / 'best_MLR_interannual_gnss_pwv.nc') model_lci, rdf_lci = run_best_MLR(plot=False, heatmap=False, keep='lci', add_trend=True) rds_lci = model_lci.results_ model_eofi, rdf_eofi = run_best_MLR(plot=False, heatmap=False, keep='eofi', add_trend=False) rds_eofi = model_eofi.results_ fig, axes = plt.subplots(2, 1, sharex=True, sharey=False, figsize=(15, 7)) origln = rds_lci['original'].plot.line('k-.', ax=axes[0], linewidth=1.5) predln_lci = rds_lci['predict'].plot.line('b-', ax=axes[0], linewidth=1.5) predln_eofi = rds_eofi['predict'].plot.line( 'g-', ax=axes[0], linewidth=1.5) r2_lci = rds_lci['r2_adj'].item() r2_eofi = rds_eofi['r2_adj'].item() axes[0].legend(origln+predln_lci+predln_eofi, ['mean PWV (12m-mean)', 'MLR with LCI (Adj R$^2$:{:.2f})'.format( r2_lci), 'MLR with EOFs (Adj R$^2$:{:.2f})'.format(r2_eofi)], fontsize=fontsize-2) axes[0].grid() axes[0].set_xlabel('') axes[0].set_ylabel('PWV anomalies [mm]', fontsize=fontsize) axes[0].tick_params(labelsize=fontsize) axes[0].grid(which='minor', color='k', linestyle='--') residln_lci = rds_lci['resid'].plot.line('b-', ax=axes[1]) residln_eofi = rds_eofi['resid'].plot.line('g-', ax=axes[1]) axes[1].legend(residln_lci+residln_eofi, ['MLR with LCI', 'MLR with EOFs'], fontsize=fontsize-2) axes[1].grid() axes[1].set_ylabel('Residuals [mm]', fontsize=fontsize) axes[1].tick_params(labelsize=fontsize) axes[1].set_xlabel('') years_fmt = mdates.DateFormatter('%Y') # ax.figure.autofmt_xdate() axes[1].xaxis.set_major_locator(mdates.YearLocator(2)) axes[1].xaxis.set_minor_locator(mdates.YearLocator(1)) axes[1].xaxis.set_major_formatter(years_fmt) axes[1].grid(which='minor', color='k', linestyle='--') # ax.xaxis.set_minor_locator(mdates.MonthLocator()) axes[1].figure.autofmt_xdate() fig.tight_layout() fig.subplots_adjust() if save: filename = 'pw_interannual_MLR_comparison.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_annual_pw(path=work_yuval, fontsize=20, labelsize=18, compare='uerra', ylim=[7.5, 40], save=True, kind='violin', bins=None, ds=None, add_temperature=False): """kind can be violin or hist, for violin choose ylim=7.5,40 and for hist choose ylim=0,0.3""" import xarray as xr import pandas as pd import numpy as np from synoptic_procedures import slice_xr_with_synoptic_class gnss_filename = 'GNSS_PW_monthly_thresh_50.nc' # gnss_filename = 'first_climatol_try.nc' pw = xr.load_dataset(path / gnss_filename) df_annual = pw.to_dataframe() hue = None if compare is not None: df_annual = prepare_reanalysis_monthly_pwv_to_dataframe( path, re=compare, ds=ds) hue = 'source' if not add_temperature: fg = plot_pw_geographical_segments( df_annual, scope='annual', kind=kind, fg=None, ylim=ylim, fontsize=fontsize, labelsize=labelsize, hue=hue, save=False, bins=bins) fg.fig.subplots_adjust( top=0.973, bottom=0.029, left=0.054, right=0.995, hspace=0.15, wspace=0.12) filename = 'pw_annual_means_{}.png'.format(kind) else: fg = plot_pw_geographical_segments( df_annual, scope='annual', kind='mean_month', fg=None, ticklabelcolor='tab:blue', ylim=[10, 31], color='tab:blue', fontsize=fontsize, labelsize=labelsize, hue=None, save=False, bins=None) # tmm = xr.load_dataset(path / 'GNSS_TD_monthly_1996_2020.nc') tmm = xr.load_dataset(path / 'IMS_T/GNSS_TD_daily.nc') tmm = tmm.groupby('time.month').mean() dftm = tmm.to_dataframe() # dftm.columns = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] sites = group_sites_to_xarray(scope='annual') sites_flat = sites.values.ravel() # sites = sites[~pd.isnull(sites)] for i, ax in enumerate(fg.axes.flat): if pd.isnull(sites_flat[i]): continue twinax = ax.twinx() twinax.plot(dftm.index.values, dftm[sites_flat[i]].values, color='tab:red', markersize=10, marker='s', lw=1, markerfacecolor="None", label='Temperature') # dftm[sites[i]].plot(ax=twinax, color='r', markersize=10, # marker='s', lw=1, markerfacecolor="None") twinax.set_ylim(5, 37) twinax.set_yticks(np.arange(5, 40, 10)) twinax.tick_params(axis='y', which='major', labelcolor='tab:red', labelsize=labelsize) if sites_flat[i] in sites.sel(group='eastern'): twinax.set_ylabel(r'Temperature [$\degree$ C]', fontsize=labelsize) # fg.fig.canvas.draw() # twinax.xaxis.set_ticks(np.arange(1, 13)) # twinax.tick_params(axis='x', which='major', labelsize=labelsize-2) lines, labels = ax.get_legend_handles_labels() lines2, labels2 = twinax.get_legend_handles_labels() labels = ['PWV', 'Surface Temperature'] fg.fig.legend(handles=lines+lines2, labels=labels, prop={'size': 20}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=20, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.subplots_adjust( top=0.97, bottom=0.029, left=0.049, right=0.96, hspace=0.15, wspace=0.17) filename = 'pw_annual_means_temperature.png' if save: if compare is not None: filename = 'pw_annual_means_{}_with_{}.png'.format(kind, compare) plt.savefig(savefig_path / filename, orientation='portrait') return fg def plot_multi_box_xr(pw, kind='violin', x='month', sharex=False, sharey=False, col_wrap=5, ylimits=None, xlimits=None, attrs=None, bins=None, all_seasons=False, twin=None, twin_attrs=None): import xarray as xr pw = pw.to_array('station') if twin is not None: twin = twin.to_array('station') fg = xr.plot.FacetGrid(pw, col='station', col_wrap=col_wrap, sharex=sharex, sharey=sharey) for i, (sta, ax) in enumerate(zip(pw['station'].values, fg.axes.flatten())): pw_sta = pw.sel(station=sta).reset_coords(drop=True) if all_seasons: pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'DJF') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='o') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'MAM') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='^') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'JJA') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='s') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'SON') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, marker='x') df = pw_sta.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, marker='d') if sta == 'nrif' or sta == 'elat': ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='upper center', framealpha=0.5, fancybox=True) elif sta == 'yrcm' or sta == 'ramo': ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='upper right', framealpha=0.5, fancybox=True) else: ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='best', framealpha=0.5, fancybox=True) else: # if x == 'hour': # # remove seasonal signal: # pw_sta = pw_sta.groupby('time.dayofyear') - pw_sta.groupby('time.dayofyear').mean('time') # elif x == 'month': # # remove daily signal: # pw_sta = pw_sta.groupby('time.hour') - pw_sta.groupby('time.hour').mean('time') df = pw_sta.to_dataframe(sta) if twin is not None: twin_sta = twin.sel(station=sta).reset_coords(drop=True) twin_df = twin_sta.to_dataframe(sta) else: twin_df = None if attrs is not None: plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, twin_df=twin_df, twin_attrs=twin_attrs) else: plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, twin_df=twin_df, twin_attrs=twin_attrs) return fg def plot_box_df(df, x='month', title='TELA', marker='o', ylabel=r'IWV [kg$\cdot$m$^{-2}$]', ax=None, kind='violin', ylimits=(5, 40), xlimits=None, attrs=None, bins=None, twin_df=None, twin_attrs=None): # x=hour is experimental import seaborn as sns from matplotlib.ticker import MultipleLocator import matplotlib.pyplot as plt import numpy as np from scipy.stats import kurtosis from scipy.stats import skew # df = da_ts.to_dataframe() if x == 'month': df[x] = df.index.month pal = sns.color_palette("Paired", 12) elif x == 'hour': df[x] = df.index.hour if twin_df is not None: twin_df[x] = twin_df.index.hour # df[x] = df.index pal = sns.color_palette("Paired", 12) y = df.columns[0] if ax is None: fig, ax = plt.subplots() if kind is None: df = df.groupby(x).mean() df.plot(ax=ax, legend=False, marker=marker) if twin_df is not None: twin_df = twin_df.groupby(x).mean() twinx = ax.twinx() twin_df.plot.line(ax=twinx, color='r', marker='s') ax.axhline(0, color='k', linestyle='--') if twin_attrs is not None: twinx.set_ylabel(twin_attrs['ylabel']) align_yaxis(ax, 0, twinx, 0) ax.set_xlabel('Time of day [UTC]') elif kind == 'violin': sns.violinplot(ax=ax, data=df, x=x, y=y, palette=pal, fliersize=4, gridsize=250, inner='quartile', scale='area') ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xlabel('') elif kind == 'box': kwargs = dict(markerfacecolor='r', marker='o') sns.boxplot(ax=ax, data=df, x=x, y=y, palette=pal, fliersize=4, whis=1.0, flierprops=kwargs, showfliers=False) ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xlabel('') elif kind == 'hist': if bins is None: bins = 15 a = df[y].dropna() sns.distplot(ax=ax, a=a, norm_hist=True, bins=bins, axlabel='PW [mm]') xmean = df[y].mean() xmedian = df[y].median() std = df[y].std() sk = skew(df[y].dropna().values) kurt = kurtosis(df[y].dropna().values) # xmode = df[y].mode().median() data_x, data_y = ax.lines[0].get_data() ymean = np.interp(xmean, data_x, data_y) ymed = np.interp(xmedian, data_x, data_y) # ymode = np.interp(xmode, data_x, data_y) ax.vlines(x=xmean, ymin=0, ymax=ymean, color='r', linestyle='--') ax.vlines(x=xmedian, ymin=0, ymax=ymed, color='g', linestyle='-') # ax.vlines(x=xmode, ymin=0, ymax=ymode, color='k', linestyle='-') # ax.legend(['Mean:{:.1f}'.format(xmean),'Median:{:.1f}'.format(xmedian),'Mode:{:.1f}'.format(xmode)]) ax.legend(['Mean: {:.1f}'.format(xmean), 'Median: {:.1f}'.format(xmedian)]) ax.text(0.55, 0.45, "Std-Dev: {:.1f}\nSkewness: {:.1f}\nKurtosis: {:.1f}".format( std, sk, kurt), transform=ax.transAxes) ax.yaxis.set_minor_locator(MultipleLocator(5)) ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=1, alpha=0.7) ax.yaxis.grid(True, linestyle='--', linewidth=1, alpha=0.7) title = ax.get_title().split('=')[-1].strip(' ') if attrs is not None: mean_years = float(attrs['mean_years']) ax.set_title('') ax.text(.2, .85, y.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) if kind is not None: if kind != 'hist': ax.text(.22, .72, '{:.1f} years'.format(mean_years), horizontalalignment='center', transform=ax.transAxes) ax.yaxis.tick_left() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) if ylimits is not None: ax.set_ylim(*ylimits) if twin_attrs is not None: twinx.set_ylim(*twin_attrs['ylimits']) align_yaxis(ax, 0, twinx, 0) if xlimits is not None: ax.set_xlim(*xlimits) return ax def plot_means_pw(load_path=work_yuval, ims_path=ims_path, thresh=50, col_wrap=5, means='hour', save=True): import xarray as xr import numpy as np pw = xr.load_dataset( work_yuval / 'GNSS_PW_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] if means == 'hour': # remove long term monthly means: pw_clim = pw.groupby('time.month') - \ pw.groupby('time.month').mean('time') pw_clim = pw_clim.groupby('time.{}'.format(means)).mean('time') else: pw_clim = pw.groupby('time.{}'.format(means)).mean('time') # T = xr.load_dataset( # ims_path / # 'GNSS_5mins_TD_ALL_1996_2020.nc') # T_clim = T.groupby('time.month').mean('time') attrs = [x.attrs for x in pw.data_vars.values()] fg = pw_clim.to_array('station').plot(col='station', col_wrap=col_wrap, color='b', marker='o', alpha=0.7, sharex=False, sharey=True) col_arr = np.arange(0, len(pw_clim)) right_side = col_arr[col_wrap-1::col_wrap] for i, ax in enumerate(fg.axes.flatten()): title = ax.get_title().split('=')[-1].strip(' ') try: mean_years = float(attrs[i]['mean_years']) ax.set_title('') ax.text(.2, .85, title.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) ax.text(.2, .73, '{:.1f} years'.format(mean_years), horizontalalignment='center', transform=ax.transAxes) # ax_t = ax.twinx() # T_clim['{}'.format(title)].plot( # color='r', linestyle='dashed', marker='s', alpha=0.7, # ax=ax_t) # ax_t.set_ylim(0, 30) fg.fig.canvas.draw() # labels = [item.get_text() for item in ax_t.get_yticklabels()] # ax_t.yaxis.set_ticklabels([]) # ax_t.tick_params(axis='y', color='r') # ax_t.set_ylabel('') # if i in right_side: # ax_t.set_ylabel(r'Surface temperature [$\degree$C]', fontsize=10) # ax_t.yaxis.set_ticklabels(labels) # ax_t.tick_params(axis='y', labelcolor='r', color='r') # show months ticks and grid lines for pw: ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.yaxis.grid() # ax.legend([ax.lines[0], ax_t.lines[0]], ['PW', 'T'], # loc='upper right', fontsize=10, prop={'size': 8}) # ax.legend([ax.lines[0]], ['PW'], # loc='upper right', fontsize=10, prop={'size': 8}) except IndexError: pass # change bottom xticks to 1-12 and show them: # fg.axes[-1, 0].xaxis.set_ticks(np.arange(1, 13)) [fg.axes[x, 0].set_ylabel('PW [mm]') for x in range(len(fg.axes[:, 0]))] # adjust subplots: fg.fig.subplots_adjust(top=0.977, bottom=0.039, left=0.036, right=0.959, hspace=0.185, wspace=0.125) filename = 'PW_{}_climatology.png'.format(means) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_gnss_radiosonde_monthly_means(sound_path=sound_path, path=work_yuval, times=['2014', '2019'], sample='MS', gps_station='tela', east_height=5000): import xarray as xr from aux_gps import path_glob import pandas as pd file = path_glob(sound_path, 'bet_dagan_phys_PW_Tm_Ts_*.nc') phys = xr.load_dataset(file[0])['PW'] if east_height is not None: file = path_glob(sound_path, 'bet_dagan_edt_sounding*.nc') east = xr.load_dataset(file[0])['east_distance'] east = east.resample(sound_time=sample).mean().sel( Height=east_height, method='nearest') east_df = east.reset_coords(drop=True).to_dataframe() if times is not None: phys = phys.sel(sound_time=slice(*times)) ds = phys.resample(sound_time=sample).mean( ).to_dataset(name='Bet-dagan-radiosonde') ds = ds.rename({'sound_time': 'time'}) gps = xr.load_dataset( path / 'GNSS_PW_thresh_50_homogenized.nc')[gps_station] if times is not None: gps = gps.sel(time=slice(*times)) ds[gps_station] = gps.resample(time=sample).mean() df = ds.to_dataframe() # now plot: fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 8)) # [x.set_xlim([pd.to_datetime(times[0]), pd.to_datetime(times[1])]) # for x in axes] df.columns = ['Bet dagan soundings', '{} GNSS station'.format(gps_station)] sns.lineplot(data=df, markers=['o', 's'], linewidth=2.0, ax=axes[0]) # axes[0].legend(['Bet_Dagan soundings', 'TELA GPS station']) df_r = df.iloc[:, 1] - df.iloc[:, 0] df_r.columns = ['Residual distribution'] sns.lineplot(data=df_r, color='k', marker='o', linewidth=1.5, ax=axes[1]) if east_height is not None: ax_east = axes[1].twinx() sns.lineplot(data=east_df, color='red', marker='x', linewidth=1.5, ax=ax_east) ax_east.set_ylabel( 'East drift at {} km altitude [km]'.format(east_height / 1000.0)) axes[1].axhline(y=0, color='r') axes[0].grid(b=True, which='major') axes[1].grid(b=True, which='major') axes[0].set_ylabel('Precipitable Water [mm]') axes[1].set_ylabel('Residuals [mm]') plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0.01) return ds def plot_wetz_example(path=tela_results_path, plot='WetZ', fontsize=16, save=True): from aux_gps import path_glob import matplotlib.pyplot as plt from gipsyx_post_proc import process_one_day_gipsyx_output filepath = path_glob(path, 'tela*_smoothFinal.tdp')[3] if plot is None: df, meta = process_one_day_gipsyx_output(filepath, True) return df, meta else: df, meta = process_one_day_gipsyx_output(filepath, False) if not isinstance(plot, str): raise ValueError('pls pick only one field to plot., e.g., WetZ') error_plot = '{}_error'.format(plot) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) desc = meta['desc'][plot] unit = meta['units'][plot] df[plot].plot(ax=ax, legend=False, color='k') ax.fill_between(df.index, df[plot] - df[error_plot], df[plot] + df[error_plot], alpha=0.5) ax.grid() # ax.set_title('{} from station TELA in {}'.format( # desc, df.index[100].strftime('%Y-%m-%d'))) ax.set_ylabel('WetZ [{}]'.format(unit), fontsize=fontsize) ax.set_xlabel('Time [UTC]', fontsize=fontsize) ax.tick_params(which='both', labelsize=fontsize) ax.grid('on') fig.tight_layout() filename = 'wetz_tela_daily.png' caption('{} from station TELA in {}. Note the error estimation from the GipsyX software(filled)'.format( desc, df.index[100].strftime('%Y-%m-%d'))) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_figure_3(path=tela_solutions, year=2004, field='WetZ', middle_date='11-25', zooms=[10, 3, 0.5], save=True): from gipsyx_post_proc import analyse_results_ds_one_station import xarray as xr import matplotlib.pyplot as plt import pandas as pd dss = xr.open_dataset(path / 'TELA_ppp_raw_{}.nc'.format(year)) nums = sorted(list(set([int(x.split('-')[1]) for x in dss if x.split('-')[0] == field]))) ds = dss[['{}-{}'.format(field, i) for i in nums]] da = analyse_results_ds_one_station(dss, field=field, plot=False) fig, axes = plt.subplots(ncols=1, nrows=3, sharex=False, figsize=(16, 10)) for j, ax in enumerate(axes): start = pd.to_datetime('{}-{}'.format(year, middle_date) ) - pd.Timedelta(zooms[j], unit='D') end = pd.to_datetime('{}-{}'.format(year, middle_date) ) + pd.Timedelta(zooms[j], unit='D') daa = da.sel(time=slice(start, end)) for i, ppp in enumerate(ds): ds['{}-{}'.format(field, i)].plot(ax=ax, linewidth=3.0) daa.plot.line(marker='.', linewidth=0., ax=ax, color='k') axes[j].set_xlim(start, end) axes[j].set_ylim(daa.min() - 0.5, daa.max() + 0.5) try: axes[j - 1].axvline(x=start, color='r', alpha=0.85, linestyle='--', linewidth=2.0) axes[j - 1].axvline(x=end, color='r', alpha=0.85, linestyle='--', linewidth=2.0) except IndexError: pass units = ds.attrs['{}>units'.format(field)] sta = da.attrs['station'] desc = da.attrs['{}>desc'.format(field)] ax.set_ylabel('{} [{}]'.format(field, units)) ax.set_xlabel('') ax.grid() # fig.suptitle( # '30 hours stitched {} for GNSS station {}'.format( # desc, sta), fontweight='bold') fig.tight_layout() caption('20, 6 and 1 days of zenith wet delay in 2004 from the TELA GNSS station for the top, middle and bottom figures respectively. The colored segments represent daily solutions while the black dots represent smoothed mean solutions.') filename = 'zwd_tela_discon_panel.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') # fig.subplots_adjust(top=0.95) return axes def plot_figure_3_1(path=work_yuval, data='zwd'): import xarray as xr from aux_gps import plot_tmseries_xarray from PW_stations import load_gipsyx_results if data == 'zwd': tela = load_gipsyx_results('tela', sample_rate='1H', plot_fields=None) label = 'ZWD [cm]' title = 'Zenith wet delay derived from GPS station TELA' ax = plot_tmseries_xarray(tela, 'WetZ') elif data == 'pw': ds = xr.open_dataset(path / 'GNSS_hourly_PW.nc') tela = ds['tela'] label = 'PW [mm]' title = 'Precipitable water derived from GPS station TELA' ax = plot_tmseries_xarray(tela) ax.set_ylabel(label) ax.set_xlim('1996-02', '2019-07') ax.set_title(title) ax.set_xlabel('') ax.figure.tight_layout() return ax def plot_ts_tm(path=sound_path, model='TSEN', times=['2007', '2019'], fontsize=14, save=True): """plot ts-tm relashonship""" import xarray as xr import matplotlib.pyplot as plt import seaborn as sns from PW_stations import ML_Switcher from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from sounding_procedures import get_field_from_radiosonde models_dict = {'LR': 'Linear Regression', 'TSEN': 'Theil–Sen Regression'} # sns.set_style('whitegrid') pds = xr.Dataset() Ts = get_field_from_radiosonde(path=sound_path, field='Ts', data_type='phys', reduce=None, times=times, plot=False) Tm = get_field_from_radiosonde(path=sound_path, field='Tm', data_type='phys', reduce='min', times=times, plot=False) pds['Tm'] = Tm pds['Ts'] = Ts pds = pds.dropna('sound_time') fig, ax = plt.subplots(1, 1, figsize=(7, 7)) pds.plot.scatter( x='Ts', y='Tm', marker='.', s=100., linewidth=0, alpha=0.5, ax=ax) ax.grid() ml = ML_Switcher() fit_model = ml.pick_model(model) X = pds.Ts.values.reshape(-1, 1) y = pds.Tm.values fit_model.fit(X, y) predict = fit_model.predict(X) coef = fit_model.coef_[0] inter = fit_model.intercept_ ax.plot(X, predict, c='r') bevis_tm = pds.Ts.values * 0.72 + 70.0 ax.plot(pds.Ts.values, bevis_tm, c='purple') ax.legend(['{} ({:.2f}, {:.2f})'.format(models_dict.get(model), coef, inter), 'Bevis 1992 et al. (0.72, 70.0)'], fontsize=fontsize-4) # ax.set_xlabel('Surface Temperature [K]') # ax.set_ylabel('Water Vapor Mean Atmospheric Temperature [K]') ax.set_xlabel('Ts [K]', fontsize=fontsize) ax.set_ylabel('Tm [K]', fontsize=fontsize) ax.set_ylim(265, 320) ax.tick_params(labelsize=fontsize) axin1 = inset_axes(ax, width="40%", height="40%", loc=2) resid = predict - y sns.distplot(resid, bins=50, color='k', label='residuals', ax=axin1, kde=False, hist_kws={"linewidth": 1, "alpha": 0.5, "color": "k", 'edgecolor': 'k'}) axin1.yaxis.tick_right() rmean = np.mean(resid) rmse = np.sqrt(mean_squared_error(y, predict)) print(rmean, rmse) r2 = r2_score(y, predict) axin1.axvline(rmean, color='r', linestyle='dashed', linewidth=1) # axin1.set_xlabel('Residual distribution[K]') textstr = '\n'.join(['n={}'.format(pds.Ts.size), 'RMSE: ', '{:.2f} K'.format(rmse)]) # , # r'R$^2$: {:.2f}'.format(r2)]) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axin1.text(0.05, 0.95, textstr, transform=axin1.transAxes, fontsize=14, verticalalignment='top', bbox=props) # axin1.text(0.2, 0.9, 'n={}'.format(pds.Ts.size), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.78, 0.9, 'RMSE: {:.2f} K'.format(rmse), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) axin1.set_xlim(-15, 15) fig.tight_layout() filename = 'Bet_dagan_ts_tm_fit_{}-{}.png'.format(times[0], times[1]) caption('Water vapor mean temperature (Tm) vs. surface temperature (Ts) of the Bet-Dagan radiosonde station. Ordinary least squares linear fit(red) yields the residual distribution with RMSE of 4 K. Bevis(1992) model is plotted(purple) for comparison.') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_pw_tela_bet_dagan_scatterplot(path=work_yuval, sound_path=sound_path, ims_path=ims_path, station='tela', cats=None, times=['2007', '2019'], wv_name='pw', r2=False, fontsize=14, save=True): """plot the PW of Bet-Dagan vs. PW of gps station""" from PW_stations import mean_ZWD_over_sound_time_and_fit_tstm from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import matplotlib.pyplot as plt import seaborn as sns import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes # sns.set_style('white') ds, mda = mean_ZWD_over_sound_time_and_fit_tstm(path=path, sound_path=sound_path, ims_path=ims_path, data_type='phys', gps_station=station, times=times, plot=False, cats=cats) ds = ds.drop_dims('time') time_dim = list(set(ds.dims))[0] ds = ds.rename({time_dim: 'time'}) tpw = 'tpw_bet_dagan' ds = ds[[tpw, 'tela_pw']].dropna('time') ds = ds.sel(time=slice(*times)) fig, ax = plt.subplots(1, 1, figsize=(7, 7)) ds.plot.scatter(x=tpw, y='tela_pw', marker='.', s=100., linewidth=0, alpha=0.5, ax=ax) ax.plot(ds[tpw], ds[tpw], c='r') ax.legend(['y = x'], loc='upper right', fontsize=fontsize) if wv_name == 'pw': ax.set_xlabel('PWV from Bet-Dagan [mm]', fontsize=fontsize) ax.set_ylabel('PWV from TELA GPS station [mm]', fontsize=fontsize) elif wv_name == 'iwv': ax.set_xlabel( r'IWV from Bet-Dagan station [kg$\cdot$m$^{-2}$]', fontsize=fontsize) ax.set_ylabel( r'IWV from TELA GPS station [kg$\cdot$m$^{-2}$]', fontsize=fontsize) ax.grid() axin1 = inset_axes(ax, width="40%", height="40%", loc=2) resid = ds.tela_pw.values - ds[tpw].values sns.distplot(resid, bins=50, color='k', label='residuals', ax=axin1, kde=False, hist_kws={"linewidth": 1, "alpha": 0.5, "color": "k", "edgecolor": 'k'}) axin1.yaxis.tick_right() rmean = np.mean(resid) rmse = np.sqrt(mean_squared_error(ds[tpw].values, ds.tela_pw.values)) r2s = r2_score(ds[tpw].values, ds.tela_pw.values) axin1.axvline(rmean, color='r', linestyle='dashed', linewidth=1) # axin1.set_xlabel('Residual distribution[mm]') ax.tick_params(labelsize=fontsize) if wv_name == 'pw': if r2: textstr = '\n'.join(['n={}'.format(ds[tpw].size), 'bias: {:.2f} mm'.format(rmean), 'RMSE: {:.2f} mm'.format(rmse), r'R$^2$: {:.2f}'.format(r2s)]) else: textstr = '\n'.join(['n={}'.format(ds[tpw].size), 'bias: {:.2f} mm'.format(rmean), 'RMSE: {:.2f} mm'.format(rmse)]) elif wv_name == 'iwv': if r2: textstr = '\n'.join(['n={}'.format(ds[tpw].size), r'bias: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmean), r'RMSE: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmse), r'R$^2$: {:.2f}'.format(r2s)]) else: textstr = '\n'.join(['n={}'.format(ds[tpw].size), r'bias: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmean), r'RMSE: {:.2f} kg$\cdot$m$^{{-2}}$'.format(rmse)]) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axin1.text(0.05, 0.95, textstr, transform=axin1.transAxes, fontsize=14, verticalalignment='top', bbox=props) # # axin1.text(0.2, 0.95, 'n={}'.format(ds[tpw].size), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.3, 0.85, 'bias: {:.2f} mm'.format(rmean), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.35, 0.75, 'RMSE: {:.2f} mm'.format(rmse), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # fig.suptitle('Precipitable Water comparison for the years {} to {}'.format(*times)) fig.tight_layout() caption( 'PW from TELA GNSS station vs. PW from Bet-Dagan radiosonde station in {}-{}. A 45 degree line is plotted(red) for comparison. Note the skew in the residual distribution with an RMSE of 4.37 mm.'.format(times[0], times[1])) # fig.subplots_adjust(top=0.95) filename = 'Bet_dagan_tela_pw_compare_{}-{}.png'.format(times[0], times[1]) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ds def plot_tela_bet_dagan_comparison(path=work_yuval, sound_path=sound_path, ims_path=ims_path, station='tela', times=['2007', '2020'], cats=None, compare='pwv', save=True): from PW_stations import mean_ZWD_over_sound_time_and_fit_tstm import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import matplotlib.dates as mdates # sns.set_style('whitegrid') ds, mda = mean_ZWD_over_sound_time_and_fit_tstm(path=path, sound_path=sound_path, ims_path=ims_path, data_type='phys', gps_station=station, times=times, plot=False, cats=cats) ds = ds.drop_dims('time') time_dim = list(set(ds.dims))[0] ds = ds.rename({time_dim: 'time'}) ds = ds.dropna('time') ds = ds.sel(time=slice(*times)) if compare == 'zwd': df = ds[['zwd_bet_dagan', 'tela']].to_dataframe() elif compare == 'pwv': df = ds[['tpw_bet_dagan', 'tela_pw']].to_dataframe() fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 8)) df.columns = ['Bet-Dagan soundings', 'TELA GNSS station'] sns.scatterplot( data=df, s=20, ax=axes[0], style='x', linewidth=0, alpha=0.8) # axes[0].legend(['Bet_Dagan soundings', 'TELA GPS station']) df_r = df.iloc[:, 0] - df.iloc[:, 1] df_r.columns = ['Residual distribution'] sns.scatterplot( data=df_r, color='k', s=20, ax=axes[1], linewidth=0, alpha=0.5) axes[0].grid(b=True, which='major') axes[1].grid(b=True, which='major') if compare == 'zwd': axes[0].set_ylabel('Zenith Wet Delay [cm]') axes[1].set_ylabel('Residuals [cm]') elif compare == 'pwv': axes[0].set_ylabel('Precipitable Water Vapor [mm]') axes[1].set_ylabel('Residuals [mm]') # axes[0].set_title('Zenith wet delay from Bet-Dagan radiosonde station and TELA GNSS satation') sonde_change_x = pd.to_datetime('2013-08-20') axes[1].axvline(sonde_change_x, color='red') axes[1].annotate( 'changed sonde type from VIZ MK-II to PTU GPS', (mdates.date2num(sonde_change_x), 10), xytext=( 15, 15), textcoords='offset points', arrowprops=dict( arrowstyle='fancy', color='red'), color='red') # axes[1].set_aspect(3) [x.set_xlim(*[pd.to_datetime(times[0]), pd.to_datetime(times[1])]) for x in axes] plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0.01) filename = 'Bet_dagan_tela_{}_compare.png'.format(compare) caption('Top: zenith wet delay from Bet-dagan radiosonde station(blue circles) and from TELA GNSS station(orange x) in 2007-2019. Bottom: residuals. Note the residuals become constrained from 08-2013 probebly due to an equipment change.') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return df def plot_israel_map_from_shape_file(gis_path=gis_path): import geopandas as gpd agr = gpd.read_file(gis_path/'ISR_agriculture_districts.shp') isr = gpd.GeoSeries(agr.geometry.unary_union) isr.crs = agr.crs isr = isr.to_crs(epsg=4326) return isr def plot_israel_map(gis_path=gis_path, rc=rc, ticklabelsize=12, ax=None): """general nice map for israel, need that to plot stations, and temperature field on top of it""" import geopandas as gpd import contextily as ctx import seaborn as sns import cartopy.crs as ccrs sns.set_style("ticks", rc=rc) isr_with_yosh = gpd.read_file(gis_path / 'Israel_and_Yosh.shp') isr_with_yosh.crs = {'init': 'epsg:4326'} # isr_with_yosh = isr_with_yosh.to_crs(epsg=3857) crs_epsg = ccrs.epsg('3857') # crs_epsg = ccrs.epsg('2039') if ax is None: # fig, ax = plt.subplots(subplot_kw={'projection': crs_epsg}, # figsize=(6, 15)) bounds = isr_with_yosh.geometry.total_bounds extent = [bounds[0], bounds[2], bounds[1], bounds[3]] # ax.set_extent([bounds[0], bounds[2], bounds[1], bounds[3]], crs=crs_epsg) # ax.add_geometries(isr_with_yosh.geometry, crs=crs_epsg) ax = isr_with_yosh.plot(alpha=0.0, figsize=(6, 15)) else: isr_with_yosh.plot(alpha=0.0, ax=ax) ctx.add_basemap( ax, source=ctx.providers.Stamen.TerrainBackground, crs='epsg:4326') ax.xaxis.set_major_locator(ticker.MaxNLocator(2)) ax.yaxis.set_major_locator(ticker.MaxNLocator(5)) ax.yaxis.set_major_formatter(lat_formatter) ax.xaxis.set_major_formatter(lon_formatter) ax.tick_params(top=True, bottom=True, left=True, right=True, direction='out', labelsize=ticklabelsize) # scale_bar(ax, ccrs.Mercator(), 50, bounds=bounds) return ax def plot_israel_with_stations(gis_path=gis_path, dem_path=dem_path, ims=True, gps=True, radio=True, terrain=True, alt=False, ims_names=False, gps_final=False, save=True): from PW_stations import produce_geo_gnss_solved_stations from aux_gps import geo_annotate from ims_procedures import produce_geo_ims import matplotlib.pyplot as plt import xarray as xr import pandas as pd import geopandas as gpd ax = plot_israel_map(gis_path) station_names = [] legend = [] if ims: print('getting IMS temperature stations metadata...') ims_t = produce_geo_ims(path=gis_path, freq='10mins', plot=False) ims_t.plot(ax=ax, color='red', edgecolor='black', alpha=0.5) station_names.append('ims') legend.append('IMS stations') if ims_names: geo_annotate(ax, ims_t.lon, ims_t.lat, ims_t['name_english'], xytext=(3, 3), fmt=None, c='k', fw='normal', fs=7, colorupdown=False) # ims, gps = produce_geo_df(gis_path=gis_path, plot=False) if gps: print('getting solved GNSS israeli stations metadata...') gps_df = produce_geo_gnss_solved_stations(path=gis_path, plot=False) if gps_final: to_drop = ['gilb', 'lhav', 'hrmn', 'nizn', 'spir'] gps_final_stations = [x for x in gps_df.index if x not in to_drop] gps = gps_df.loc[gps_final_stations, :] gps.plot(ax=ax, color='k', edgecolor='black', marker='s') gps_stations = [x for x in gps.index] to_plot_offset = ['gilb', 'lhav'] # [gps_stations.remove(x) for x in to_plot_offset] gps_normal_anno = gps.loc[gps_stations, :] # gps_offset_anno = gps.loc[to_plot_offset, :] geo_annotate(ax, gps_normal_anno.lon, gps_normal_anno.lat, gps_normal_anno.index.str.upper(), xytext=(3, 3), fmt=None, c='k', fw='bold', fs=10, colorupdown=False) if alt: geo_annotate(ax, gps_normal_anno.lon, gps_normal_anno.lat, gps_normal_anno.alt, xytext=(4, -6), fmt='{:.0f}', c='k', fw='bold', fs=9, colorupdown=False) # geo_annotate(ax, gps_offset_anno.lon, gps_offset_anno.lat, # gps_offset_anno.index.str.upper(), xytext=(4, -6), fmt=None, # c='k', fw='bold', fs=10, colorupdown=False) station_names.append('gps') legend.append('GNSS stations') if terrain: # overlay with dem data: cmap = plt.get_cmap('terrain', 41) dem = xr.open_dataarray(dem_path / 'israel_dem_250_500.nc') # dem = xr.open_dataarray(dem_path / 'israel_dem_500_1000.nc') fg = dem.plot.imshow(ax=ax, alpha=0.5, cmap=cmap, vmin=dem.min(), vmax=dem.max(), add_colorbar=False) cbar_kwargs = {'fraction': 0.1, 'aspect': 50, 'pad': 0.03} cb = plt.colorbar(fg, **cbar_kwargs) cb.set_label(label='meters above sea level', size=8, weight='normal') cb.ax.tick_params(labelsize=8) ax.set_xlabel('') ax.set_ylabel('') if radio: # plot bet-dagan: df = pd.Series([32.00, 34.81]).to_frame().T df.index = ['Bet-Dagan'] df.columns = ['lat', 'lon'] bet_dagan = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.lon, df.lat), crs=gps.crs) bet_dagan.plot(ax=ax, color='black', edgecolor='black', marker='+') geo_annotate(ax, bet_dagan.lon, bet_dagan.lat, bet_dagan.index, xytext=(4, -6), fmt=None, c='k', fw='bold', fs=10, colorupdown=False) station_names.append('radio') legend.append('radiosonde') if legend: plt.legend(legend, loc='upper left') plt.tight_layout() plt.subplots_adjust(bottom=0.05) if station_names: station_names = '_'.join(station_names) else: station_names = 'no_stations' filename = 'israel_map_{}.png'.format(station_names) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_zwd_lapse_rate(path=work_yuval, fontsize=18, model='TSEN', save=True): from PW_stations import calculate_zwd_altitude_fit df, zwd_lapse_rate = calculate_zwd_altitude_fit(path=path, model=model, plot=True, fontsize=fontsize) if save: filename = 'zwd_lapse_rate.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_ims_T_lapse_rate(ims_path=ims_path, dt='2013-10-19T22:00:00', fontsize=16, save=True): from aux_gps import path_glob import xarray as xr import matplotlib.pyplot as plt import numpy as np import pandas as pd # from matplotlib import rc def choose_dt_and_lapse_rate(tdf, dt, T_alts, lapse_rate): ts = tdf.loc[dt, :] # dt_col = dt.strftime('%Y-%m-%d %H:%M') # ts.name = dt_col # Tloc_df = Tloc_df.join(ts, how='right') # Tloc_df = Tloc_df.dropna(axis=0) ts_vs_alt = pd.Series(ts.values, index=T_alts) ts_vs_alt_for_fit = ts_vs_alt.dropna() [a, b] = np.polyfit(ts_vs_alt_for_fit.index.values, ts_vs_alt_for_fit.values, 1) if lapse_rate == 'auto': lapse_rate = np.abs(a) * 1000 if lapse_rate < 5.0: lapse_rate = 5.0 elif lapse_rate > 10.0: lapse_rate = 10.0 return ts_vs_alt, lapse_rate # rc('text', usetex=False) # rc('text',latex.unicode=False) glob_str = 'IMS_TD_israeli_10mins*.nc' file = path_glob(ims_path, glob_str=glob_str)[0] ds = xr.open_dataset(file) time_dim = list(set(ds.dims))[0] # slice to a starting year(1996?): ds = ds.sel({time_dim: slice('1996', None)}) # years = sorted(list(set(ds[time_dim].dt.year.values))) # get coords and alts of IMS stations: T_alts = np.array([ds[x].attrs['station_alt'] for x in ds]) # T_lats = np.array([ds[x].attrs['station_lat'] for x in ds]) # T_lons = np.array([ds[x].attrs['station_lon'] for x in ds]) print('loading IMS_TD of israeli stations 10mins freq..') # transform to dataframe and add coords data to df: tdf = ds.to_dataframe() # dt_col = dt.strftime('%Y-%m-%d %H:%M') dt = pd.to_datetime(dt) # prepare the ims coords and temp df(Tloc_df) and the lapse rate: ts_vs_alt, lapse_rate = choose_dt_and_lapse_rate(tdf, dt, T_alts, 'auto') fig, ax_lapse = plt.subplots(figsize=(10, 6)) sns.regplot(x=ts_vs_alt.index, y=ts_vs_alt.values, color='r', scatter_kws={'color': 'k'}, ax=ax_lapse) # suptitle = dt.strftime('%Y-%m-%d %H:%M') ax_lapse.set_xlabel('Altitude [m]', fontsize=fontsize) ax_lapse.set_ylabel(r'Temperature [$\degree$C]', fontsize=fontsize) ax_lapse.text(0.5, 0.95, r'Lapse rate: {:.2f} $\degree$C/km'.format(lapse_rate), horizontalalignment='center', verticalalignment='center', fontsize=fontsize, transform=ax_lapse.transAxes, color='k') ax_lapse.grid() ax_lapse.tick_params(labelsize=fontsize) # ax_lapse.set_title(suptitle, fontsize=14, fontweight='bold') fig.tight_layout() filename = 'ims_lapse_rate_example.png' caption('Temperature vs. altitude for 10 PM in 2013-10-19 for all automated 10 mins IMS stations. The lapse rate is calculated using ordinary least squares linear fit.') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax_lapse def plot_figure_9(hydro_path=hydro_path, gis_path=gis_path, pw_anom=False, max_flow_thresh=None, wv_name='pw', save=True): from hydro_procedures import get_hydro_near_GNSS from hydro_procedures import loop_over_gnss_hydro_and_aggregate import matplotlib.pyplot as plt df = get_hydro_near_GNSS( radius=5, hydro_path=hydro_path, gis_path=gis_path, plot=False) ds = loop_over_gnss_hydro_and_aggregate(df, pw_anom=pw_anom, max_flow_thresh=max_flow_thresh, hydro_path=hydro_path, work_yuval=work_yuval, ndays=3, plot=False, plot_all=False) names = [x for x in ds.data_vars] fig, ax = plt.subplots(figsize=(10, 6)) for name in names: ds.mean('station').mean('tide_start')[name].plot.line( marker='.', linewidth=0., ax=ax) ax.set_xlabel('Days before tide event') ax.grid() hstations = [ds[x].attrs['hydro_stations'] for x in ds.data_vars] events = [ds[x].attrs['total_events'] for x in ds.data_vars] fmt = list(zip(names, hstations, events)) ax.legend(['{} with {} stations ({} total events)'.format(x, y, z) for x, y, z in fmt]) fig.canvas.draw() labels = [item.get_text() for item in ax.get_xticklabels()] xlabels = [x.replace('−', '') for x in labels] ax.set_xticklabels(xlabels) fig.canvas.draw() if wv_name == 'pw': if pw_anom: ax.set_ylabel('PW anomalies [mm]') else: ax.set_ylabel('PW [mm]') elif wv_name == 'iwv': if pw_anom: ax.set_ylabel(r'IWV anomalies [kg$\cdot$m$^{-2}$]') else: ax.set_ylabel(r'IWV [kg$\cdot$m$^{-2}$]') fig.tight_layout() # if pw_anom: # title = 'Mean PW anomalies for tide stations near all GNSS stations' # else: # title = 'Mean PW for tide stations near all GNSS stations' # if max_flow_thresh is not None: # title += ' (max_flow > {} m^3/sec)'.format(max_flow_thresh) # ax.set_title(title) if pw_anom: filename = 'hydro_tide_lag_pw_anom.png' if max_flow_thresh: filename = 'hydro_tide_lag_pw_anom_max{}.png'.format( max_flow_thresh) else: filename = 'hydro_tide_lag_pw.png' if max_flow_thresh: filename = 'hydro_tide_lag_pw_anom_max{}.png'.format( max_flow_thresh) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def produce_table_1(removed=['hrmn', 'nizn', 'spir'], merged={'klhv': ['klhv', 'lhav'], 'mrav': ['gilb', 'mrav']}, add_location=False, scope='annual', remove_distance=True): """for scope='diurnal' use removed=['hrmn'], add_location=True and remove_distance=False""" from PW_stations import produce_geo_gnss_solved_stations import pandas as pd sites = group_sites_to_xarray(upper=False, scope=scope) df_gnss = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=True) new = sites.T.values.ravel() if scope == 'annual': new = [x for x in new.astype(str) if x != 'nan'] df_gnss = df_gnss.reindex(new) df_gnss['ID'] = df_gnss.index.str.upper() pd.options.display.float_format = '{:.2f}'.format df = df_gnss[['name', 'ID', 'lat', 'lon', 'alt', 'distance']] df['alt'] = df['alt'].map('{:,.0f}'.format) df['distance'] = df['distance'].astype(int) cols = ['GNSS Station name', 'Station ID', 'Latitude [N]', 'Longitude [E]', 'Altitude [m a.s.l]', 'Distance from shore [km]'] df.columns = cols if scope != 'annual': df.loc['spir', 'GNSS Station name'] = 'Sapir' if remove_distance: df = df.iloc[:, 0:-1] if add_location: groups = group_sites_to_xarray(upper=False, scope=scope) coastal = groups.sel(group='coastal').values coastal = coastal[~pd.isnull(coastal)] highland = groups.sel(group='highland').values highland = highland[~pd.isnull(highland)] eastern = groups.sel(group='eastern').values eastern = eastern[~pd.isnull(eastern)] df.loc[coastal, 'Location'] = 'Coastal' df.loc[highland, 'Location'] = 'Highland' df.loc[eastern, 'Location'] = 'Eastern' if removed is not None: df = df.loc[[x for x in df.index if x not in removed], :] if merged is not None: return df print(df.to_latex(index=False)) return df def produce_table_stats(thresh=50, add_location=True, add_height=True): """add plot sd to height with se_sd errorbars""" from PW_stations import produce_pw_statistics from PW_stations import produce_geo_gnss_solved_stations import pandas as pd import xarray as xr sites = group_sites_to_xarray(upper=False, scope='annual') new = sites.T.values.ravel() sites = group_sites_to_xarray(upper=False, scope='annual') new = [x for x in new.astype(str) if x != 'nan'] pw_mm = xr.load_dataset( work_yuval / 'GNSS_PW_monthly_thresh_{:.0f}.nc'.format(thresh)) pw_mm = pw_mm[new] df = produce_pw_statistics( thresh=thresh, resample_to_mm=False, pw_input=pw_mm) if add_location: cols = [x for x in df.columns] cols.insert(1, 'Location') gr_df = sites.to_dataframe('sites') location = [gr_df[gr_df == x].dropna().index.values.item()[ 1].title() for x in new] df['Location'] = location df = df[cols] if add_height: cols = [x for x in df.columns] if add_location: cols.insert(2, 'Height [m a.s.l]') else: cols.insert(1, 'Height [m a.s.l]') df_gnss = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=False) # pd.options.display.float_format = '{:.2f}'.format df['Height [m a.s.l]'] = df_gnss['alt'].map('{:.0f}'.format) df = df[cols] print(df.to_latex(index=False)) return df def plot_pwv_longterm_trend(path=work_yuval, model_name='LR', save=True, fontsize=16, add_era5=True): import matplotlib.pyplot as plt from aux_gps import linear_fit_using_scipy_da_ts # from PW_stations import ML_Switcher import xarray as xr from aux_gps import anomalize_xr """TSEN and LR for linear fit""" # load GNSS Israel: # pw = xr.load_dataset(path / 'GNSS_PW_monthly_thresh_50_homogenized.nc') pw = xr.load_dataset( path / 'GNSS_PW_monthly_thresh_50.nc').sel(time=slice('1998', None)) pw_anoms = anomalize_xr(pw, 'MS', verbose=False) pw_mean = pw_anoms.to_array('station').mean('station') pw_std = pw_anoms.to_array('station').std('station') pw_weights = 1 / pw_anoms.to_array('station').count('station') # add ERA5: era5 = xr.load_dataset(work_yuval / 'GNSS_era5_monthly_PW.nc') era5_anoms = anomalize_xr(era5, 'MS', verbose=False) era5_anoms = era5_anoms.sel(time=slice( pw_mean.time.min(), pw_mean.time.max())) era5_mean = era5_anoms.to_array('station').mean('station') era5_std = era5_anoms.to_array('station').std('station') # init linear models # ml = ML_Switcher() # model = ml.pick_model(model_name) if add_era5: fig, ax = plt.subplots(2, 1, figsize=(15, 7.5)) trend, trend_hi, trend_lo, slope, slope_hi, slope_lo = linear_fit_using_scipy_da_ts(pw_mean, model=model_name, slope_factor=3650.25, plot=False, ax=None, units=None, method='curve_fit', weights=pw_weights) pwln = pw_mean.plot(ax=ax[0], color='k', marker='o', linewidth=1.5) trendln = trend.plot(ax=ax[0], color='r', linewidth=2) trend_hi.plot.line('r--', ax=ax[0], linewidth=1.5) trend_lo.plot.line('r--', ax=ax[0], linewidth=1.5) trend_label = '{} model, slope={:.2f} ({:.2f}, {:.2f}) mm/decade'.format( model_name, slope, slope_lo, slope_hi) handles = pwln+trendln labels = ['PWV-mean'] labels.append(trend_label) ax[0].legend(handles=handles, labels=labels, loc='upper left', fontsize=fontsize) ax[0].grid() ax[0].set_xlabel('') ax[0].set_ylabel('PWV mean anomalies [mm]', fontsize=fontsize) ax[0].tick_params(labelsize=fontsize) trend1, trend_hi1, trend_lo1, slope1, slope_hi1, slope_lo1 = linear_fit_using_scipy_da_ts(era5_mean, model=model_name, slope_factor=3650.25, plot=False, ax=None, units=None, method='curve_fit', weights=era5_std) era5ln = era5_mean.plot(ax=ax[1], color='k', marker='o', linewidth=1.5) trendln1 = trend1.plot(ax=ax[1], color='r', linewidth=2) trend_hi1.plot.line('r--', ax=ax[1], linewidth=1.5) trend_lo1.plot.line('r--', ax=ax[1], linewidth=1.5) trend_label = '{} model, slope={:.2f} ({:.2f}, {:.2f}) mm/decade'.format( model_name, slope1, slope_lo1, slope_hi1) handles = era5ln+trendln1 labels = ['ERA5-mean'] labels.append(trend_label) ax[1].legend(handles=handles, labels=labels, loc='upper left', fontsize=fontsize) ax[1].grid() ax[1].set_xlabel('') ax[1].set_ylabel('PWV mean anomalies [mm]', fontsize=fontsize) ax[1].tick_params(labelsize=fontsize) else: fig, ax = plt.subplots(1, 1, figsize=(15, 5.5)) trend, trend_hi, trend_lo, slope, slope_hi, slope_lo = linear_fit_using_scipy_da_ts(pw_mean, model=model_name, slope_factor=3650.25, plot=False, ax=None, units=None) pwln = pw_mean.plot(ax=ax, color='k', marker='o', linewidth=1.5) trendln = trend.plot(ax=ax, color='r', linewidth=2) trend_hi.plot.line('r--', ax=ax, linewidth=1.5) trend_lo.plot.line('r--', ax=ax, linewidth=1.5) trend_label = '{} model, slope={:.2f} ({:.2f}, {:.2f}) mm/decade'.format( model_name, slope, slope_lo, slope_hi) handles = pwln+trendln labels = ['PWV-mean'] labels.append(trend_label) ax.legend(handles=handles, labels=labels, loc='upper left', fontsize=fontsize) ax.grid() ax.set_xlabel('') ax.set_ylabel('PWV mean anomalies [mm]', fontsize=fontsize) ax.tick_params(labelsize=fontsize) fig.suptitle('PWV mean anomalies and linear trend', fontweight='bold', fontsize=fontsize) fig.tight_layout() if save: filename = 'pwv_mean_trend_{}.png'.format(model_name) plt.savefig(savefig_path / filename, orientation='portrait') return ax def plot_trend_filled_pwv_and_era5_barh_plot(path=work_yuval): import xarray as xr from aux_gps import path_glob from PW_stations import process_mkt_from_dataset import pandas as pd import seaborn as sns file = sorted( path_glob(path, 'GNSS_PW_monthly_homogenized_filled_*.nc'))[0] gnss = xr.load_dataset(path / file) era5 = xr.load_dataset(path / 'GNSS_era5_monthly_PW.nc') era5 = era5.sel(time=slice(gnss.time.min(), gnss.time.max())) era5 = era5[[x for x in era5 if x in gnss]] df_gnss = process_mkt_from_dataset( gnss, alpha=0.95, season_selection=None, seasonal=False, factor=120, anomalize=True, CI=True) df_gnss = add_location_to_GNSS_stations_dataframe(df_gnss) df_gnss['sig'] = df_gnss['p'].astype(float) <= 0.05 df_era5 = process_mkt_from_dataset( era5, alpha=0.95, season_selection=None, seasonal=False, factor=120, anomalize=True, CI=True) df_era5 = add_location_to_GNSS_stations_dataframe(df_era5) df_era5['sig'] = df_era5['p'].astype(float) <= 0.05 df = pd.concat([df_gnss, df_era5], keys=['GNSS', 'ERA5']) df1 = df.unstack(level=0) df = df1.stack().reset_index() df.columns = ['station', '', 'p', 'Tau', 'slope', 'intercept', 'CI_5_low', 'CI_5_high', 'Location', 'sig'] sns.barplot(x="slope", y='station', hue='', data=df[df['sig']]) # df['slope'].unstack(level=0).plot(kind='barh', subplots=False, xerr=1) return df def produce_filled_pwv_and_era5_mann_kendall_table(path=work_yuval): import xarray as xr from aux_gps import path_glob file = sorted( path_glob(path, 'GNSS_PW_monthly_homogenized_filled_*.nc'))[0] gnss = xr.load_dataset(path / file) era5 = xr.load_dataset(path / 'GNSS_era5_monthly_PW.nc') era5 = era5.sel(time=slice(gnss.time.min(), gnss.time.max())) df = add_comparison_to_mann_kendall_table(gnss, era5, 'GNSS', 'ERA5') print(df.to_latex(header=False, index=False)) return df def add_comparison_to_mann_kendall_table(ds1, ds2, name1='GNSS', name2='ERA5', alpha=0.05): df1 = produce_table_mann_kendall(ds1, alpha=alpha) df2 = produce_table_mann_kendall(ds2, alpha=alpha) df = df1['Site ID'].to_frame() df[name1+'1'] = df1["Kendall's Tau"] df[name2+'1'] = df2["Kendall's Tau"] df[name1+'2'] = df1['P-value'] df[name2+'2'] = df2['P-value'] df[name1+'3'] = df1["Sen's slope"] df[name2+'3'] = df2["Sen's slope"] df[name1+'4'] = df1["Percent change"] df[name2+'4'] = df2["Percent change"] return df def produce_table_mann_kendall(pwv_ds, alpha=0.05, sort_by=['groups_annual', 'lat']): from PW_stations import process_mkt_from_dataset from PW_stations import produce_geo_gnss_solved_stations from aux_gps import reduce_tail_xr import xarray as xr def table_process_df(df, means): df_sites = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=True) sites = df_sites.dropna()[['lat', 'alt', 'distance', 'groups_annual']].sort_values( by=sort_by, ascending=[1, 0]).index # calculate percent changes from last decade means: df['CI95'] = '(' + df['CI_95_low'].map('{:.2f}'.format).astype( str) + ', ' + df['CI_95_high'].map('{:.2f}'.format).astype(str) + ')' df['means'] = means df['Pct_change'] = 100 * df['slope'] / df['means'] Pct_high = 100 * df['CI_95_high'] / df['means'] Pct_low = 100 * df['CI_95_low'] / df['means'] df['Pct_change_CI95'] = '(' + Pct_low.map('{:.2f}'.format).astype( str) + ', ' + Pct_high.map('{:.2f}'.format).astype(str) + ')' # df['Temperature change'] = df['Percent change'] / 7.0 df.drop(['means', 'CI_95_low', 'CI_95_high'], axis=1, inplace=True) # station id is big: df['id'] = df.index.str.upper() # , 'Temperature change']] df = df[['id', 'Tau', 'p', 'slope', 'CI95', 'Pct_change', 'Pct_change_CI95']] # filter for non significant trends: # df['slope'] = df['slope'][df['p'] < 0.05] # df['Pct_change'] = df['Pct_change'][df['p'] < 0.05] # df['CI95'] = df['CI95'][df['p'] < 0.05] # df['Pct_change_CI95'] = df['Pct_change_CI95'][df['p'] < 0.05] # higher and better results: df.loc[:, 'p'][df['p'] < 0.001] = '<0.001' df['p'][df['p'] != '<0.001'] = df['p'][df['p'] != '<0.001'].astype(float).map('{:,.3f}'.format) df['Tau'] = df['Tau'].map('{:,.3f}'.format) df['slope'] = df['slope'].map('{:,.2f}'.format) df['slope'][df['slope'] == 'nan'] = '-' df.columns = [ 'Site ID', "Kendall's Tau", 'P-value', "Sen's slope", "Sen's slope CI 95%", 'Percent change', 'Percent change CI 95%'] # , 'Temperature change'] df['Percent change'] = df['Percent change'].map('{:,.1f}'.format) df['Percent change'] = df[df["Sen's slope"] != '-']['Percent change'] df['Percent change'] = df['Percent change'].fillna('-') df["Sen's slope CI 95%"] = df["Sen's slope CI 95%"].fillna(' ') df['Percent change CI 95%'] = df['Percent change CI 95%'].fillna(' ') df["Sen's slope"] = df["Sen's slope"].astype( str) + ' ' + df["Sen's slope CI 95%"].astype(str) df['Percent change'] = df['Percent change'].astype( str) + ' ' + df['Percent change CI 95%'].astype(str) df.drop(['Percent change CI 95%', "Sen's slope CI 95%"], axis=1, inplace=True) # df['Temperature change'] = df['Temperature change'].map('{:,.1f}'.format) # df['Temperature change'] = df[df["Sen's slope"] != '-']['Temperature change'] # df['Temperature change'] = df['Temperature change'].fillna('-') # last, reindex according to geography: # gr = group_sites_to_xarray(scope='annual') # new = [x for x in gr.T.values.ravel() if isinstance(x, str)] new = [x for x in sites if x in df.index] df = df.reindex(new) return df # if load_data == 'pwv-homo': # print('loading homogenized (RH) pwv dataset.') # data = xr.load_dataset(work_yuval / # 'GNSS_PW_monthly_thresh_{:.0f}_homogenized.nc'.format(thresh)) # elif load_data == 'pwv-orig': # print('loading original pwv dataset.') # data = xr.load_dataset(work_yuval / # 'GNSS_PW_monthly_thresh_{:.0f}.nc'.format(thresh)) # elif load_data == 'pwv-era5': # print('loading era5 pwv dataset.') # data = xr.load_dataset(work_yuval / 'GNSS_era5_monthly_PW.nc') # if pwv_ds is not None: # print('loading user-input pwv dataset.') # data = pwv_ds df = process_mkt_from_dataset( pwv_ds, alpha=alpha, season_selection=None, seasonal=False, factor=120, anomalize=True, CI=True) df_mean = reduce_tail_xr(pwv_ds, reduce='mean', records=120, return_df=True) table = table_process_df(df, df_mean) # print(table.to_latex(index=False)) return table def plot_filled_and_unfilled_pwv_monthly_anomalies(pw_da, anomalize=True, max_gap=6, method='cubic', ax=None): from aux_gps import anomalize_xr import matplotlib.pyplot as plt import numpy as np if anomalize: pw_da = anomalize_xr(pw_da, 'MS') max_gap_td = np.timedelta64(max_gap, 'M') filled = pw_da.interpolate_na('time', method=method, max_gap=max_gap_td) if ax is None: fig, ax = plt.subplots(figsize=(15, 5)) filledln = filled.plot.line('b-', ax=ax) origln = pw_da.plot.line('r-', ax=ax) ax.legend(origln + filledln, ['original time series', 'filled using {} interpolation with max gap of {} months'.format(method, max_gap)]) ax.grid() ax.set_xlabel('') ax.set_ylabel('PWV [mm]') ax.set_title('PWV station {}'.format(pw_da.name.upper())) return ax def plot_pwv_statistic_vs_height(pwv_ds, stat='mean', x='alt', season=None, ax=None, color='b'): from PW_stations import produce_geo_gnss_solved_stations import matplotlib.pyplot as plt from aux_gps import calculate_std_error import pandas as pd if season is not None: print('{} season selected'.format(season)) pwv_ds = pwv_ds.sel(time=pwv_ds['time.season'] == season) df = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=True) if stat == 'mean': pw_stat = pwv_ds.mean() pw_stat_error = pwv_ds.map(calculate_std_error, statistic=stat) elif stat == 'std': pw_stat = pwv_ds.std() pw_stat_error = pwv_ds.map(calculate_std_error, statistic=stat) df[stat] = pd.Series( pw_stat.to_array( dim='gnss'), index=pw_stat.to_array('gnss')['gnss']) df['{}_error'.format(stat)] = pd.Series(pw_stat_error.to_array( dim='gnss'), index=pw_stat_error.to_array('gnss')['gnss']) if ax is None: fig, ax = plt.subplots() if x == 'alt': ax.set_xlabel('Altitude [m a.s.l]') elif x == 'distance': ax.set_xlabel('Distance to sea shore [km]') ax.set_ylabel('{} [mm]'.format(stat)) ax.errorbar(df[x], df[stat], df['{}_error'.format(stat)], marker='o', ls='', capsize=2.5, elinewidth=2.5, markeredgewidth=2.5, color=color) if season is not None: ax.set_title('{} season'.format(season)) ax.grid() return ax def add_location_to_GNSS_stations_dataframe(df, scope='annual'): import pandas as pd # load location data: gr = group_sites_to_xarray(scope=scope) gr_df = gr.to_dataframe('sites') new = gr.T.values.ravel() # remove nans form mixed nans and str numpy: new = new[~pd.isnull(new)] geo = [gr_df[gr_df == x].dropna().index.values.item()[1] for x in new] geo = [x.title() for x in geo] df = df.reindex(new) df['Location'] = geo return df def plot_peak_amplitude_altitude_long_term_pwv(path=work_yuval, era5=False, add_a1a2=True, save=True, fontsize=16): import xarray as xr import pandas as pd import numpy as np import matplotlib.pyplot as plt from fitting_routines import fit_poly_model_xr from aux_gps import remove_suffix_from_ds from PW_stations import produce_geo_gnss_solved_stations # load alt data, distance etc., sns.set_style('whitegrid') sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8}) df_geo = produce_geo_gnss_solved_stations( plot=False, add_distance_to_coast=True) if era5: dss = xr.load_dataset(path / 'GNSS_PW_ERA5_harmonics_annual.nc') else: dss = xr.load_dataset(path / 'GNSS_PW_harmonics_annual.nc') dss = dss[[x for x in dss if '_params' in x]] dss = remove_suffix_from_ds(dss) df = dss.sel(cpy=1, params='ampl').reset_coords(drop=True).to_dataframe().T df.columns = ['A1', 'A1std'] df = df.join(dss.sel(cpy=2, params='ampl').reset_coords(drop=True).to_dataframe().T) # abs bc sometimes the fit get a sine amp negative: df = np.abs(df) df.columns =['A1', 'A1std', 'A2', 'A2std'] df['A2A1'] = df['A2'] / df['A1'] a2a1std = np.sqrt((df['A2std']/df['A1'])**2 + (df['A2']*df['A1std']/df['A1']**2)**2) df['A2A1std'] = a2a1std # load location data: gr = group_sites_to_xarray(scope='annual') gr_df = gr.to_dataframe('sites') new = gr.T.values.ravel() # remove nans form mixed nans and str numpy: new = new[~pd.isnull(new)] geo = [gr_df[gr_df == x].dropna().index.values.item()[1] for x in new] geo = [x.title() for x in geo] df = df.reindex(new) df['Location'] = geo df['alt'] = df_geo['alt'] df = df.set_index('alt') df = df.sort_index() cdict = produce_colors_for_pwv_station(scope='annual', as_cat_dict=True) cdict = dict(zip([x.capitalize() for x in cdict.keys()], cdict.values())) if add_a1a2: fig, axes=plt.subplots(2, 1, sharex=False, figsize=(8, 12)) ax = axes[0] else: ax = None # colors=produce_colors_for_pwv_station(scope='annual') ax = sns.scatterplot(data=df, y='A1', x='alt', hue='Location', palette=cdict, ax=ax, s=100, zorder=20) # ax.legend(prop={'size': fontsize}) x_coords = [] y_coords = [] colors = [] for point_pair in ax.collections: colors.append(point_pair.get_facecolor()) for x, y in point_pair.get_offsets(): x_coords.append(x) y_coords.append(y) ax.errorbar(x_coords, y_coords, yerr=df['A1std'].values, ecolor=colors[0][:,0:-1], ls='', capsize=None, fmt=" ")#, zorder=-1) # linear fit: x = df.index.values y = df['A1'].values p = fit_poly_model_xr(x, y, 1, plot=None, ax=None, return_just_p=True) fit_label = r'Fitted line, slope: {:.2f} mm$\cdot$km$^{{-1}}$'.format(p[0] * -1000) fit_poly_model_xr(x,y,1,plot='manual', ax=ax, fit_label=fit_label) ax.set_ylabel('PWV annual amplitude [mm]', fontsize=fontsize) ax.tick_params(labelsize=fontsize) ax.set_yticks(np.arange(1, 6, 1)) if add_a1a2: ax.set_xlabel('') else: ax.set_xlabel('GNSS station height [m a.s.l]') ax.grid(True) ax.legend(prop={'size': fontsize-3}) if add_a1a2: # convert to percent: df['A2A1'] = df['A2A1'].mul(100) df['A2A1std'] = df['A2A1std'].mul(100) ax = sns.scatterplot(data=df, y='A2A1', x='alt', hue='Location', ax=axes[1], legend=True, palette=cdict, s=100, zorder=20) x_coords = [] y_coords = [] colors = [] # ax.legend(prop={'size':fontsize+4}, fontsize=fontsize) for point_pair in ax.collections: colors.append(point_pair.get_facecolor()) for x, y in point_pair.get_offsets(): x_coords.append(x) y_coords.append(y) ax.errorbar(x_coords, y_coords, yerr=df['A2A1std'].values, ecolor=colors[0][:,0:-1], ls='', capsize=None, fmt=" ")#, zorder=-1) df_upper = df.iloc[9:] y = df_upper['A2A1'].values x = df_upper.index.values p = fit_poly_model_xr(x, y, 1, return_just_p=True) fit_label = r'Fitted line, slope: {:.1f} %$\cdot$km$^{{-1}}$'.format(p[0] * 1000) p = fit_poly_model_xr(x, y, 1, plot='manual', ax=ax, return_just_p=False, color='r', fit_label=fit_label) df_lower = df.iloc[:11] mean = df_lower['A2A1'].mean() std = df_lower['A2A1'].std() stderr = std / np.sqrt(len(df_lower)) ci = 1.96 * stderr ax.hlines(xmin=df_lower.index.min(), xmax=df_lower.index.max(), y=mean, color='k', label='Mean ratio: {:.1f} %'.format(mean)) ax.fill_between(df_lower.index.values, mean + ci, mean - ci, color="#b9cfe7", edgecolor=None, alpha=0.6) # y = df_lower['A2A1'].values # x = df_lower.index.values # p = fit_poly_model_xr(x, y, 1, return_just_p=True) # fit_label = 'Linear Fit intercept: {:.2f} %'.format(p[1]) # p = fit_poly_model_xr(x, y, 1, plot='manual', ax=ax, # return_just_p=False, color='k', # fit_label=fit_label) # arrange the legend a bit: handles, labels = ax.get_legend_handles_labels() h_stns = handles[1:4] l_stns = labels[1:4] h_fits = [handles[0] , handles[-1]] l_fits = [labels[0], labels[-1]] ax.legend(handles=h_fits+h_stns, labels=l_fits+l_stns, loc='upper left', prop={'size':fontsize-3}) ax.set_ylabel('PWV semi-annual to annual amplitude ratio [%]', fontsize=fontsize) ax.set_xlabel('GNSS station height [m a.s.l]', fontsize=fontsize) ax.tick_params(labelsize=fontsize) ax.grid(True) ax.set_yticks(np.arange(0, 100, 20)) fig.tight_layout() if save: filename = 'pwv_peak_amplitude_altitude.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_peak_hour_distance(path=work_yuval, season='JJA', remove_station='dsea', fontsize=22, save=True): from PW_stations import produce_geo_gnss_solved_stations from aux_gps import groupby_half_hour_xr from aux_gps import xr_reindex_with_date_range import xarray as xr import pandas as pd import seaborn as sns import numpy as np from sklearn.metrics import r2_score pw = xr.open_dataset(path / 'GNSS_PW_thresh_50_for_diurnal_analysis.nc') pw = pw[[x for x in pw if '_error' not in x]] pw.load() pw = pw.sel(time=pw['time.season'] == season) pw = pw.map(xr_reindex_with_date_range) df = groupby_half_hour_xr(pw) halfs = [df.isel(half_hour=x)['half_hour'] for x in df.argmax().values()] names = [x for x in df] dfh = pd.DataFrame(halfs, index=names) geo = produce_geo_gnss_solved_stations( add_distance_to_coast=True, plot=False) geo['phase'] = dfh geo = geo.dropna() groups = group_sites_to_xarray(upper=False, scope='diurnal') geo.loc[groups.sel(group='coastal').values, 'group'] = 'coastal' geo.loc[groups.sel(group='highland').values, 'group'] = 'highland' geo.loc[groups.sel(group='eastern').values, 'group'] = 'eastern' fig, ax = plt.subplots(figsize=(14, 10)) ax.grid() if remove_station is not None: removed = geo.loc[remove_station].to_frame().T geo = geo.drop(remove_station, axis=0) # lnall = sns.scatterplot(data=geo.loc[only], x='distance', y='phase', ax=ax, hue='group', s=100) # geo['phase'] = pd.to_timedelta(geo['phase'], unit='H') coast = geo[geo['group'] == 'coastal'] yerr = 1.0 lncoast = ax.errorbar(x=coast.loc[:, 'distance'], y=coast.loc[:, 'phase'], yerr=yerr, marker='o', ls='', capsize=2.5, elinewidth=2.5, markeredgewidth=2.5, color='b') # lncoast = ax.scatter(coast.loc[:, 'distance'], coast.loc[:, 'phase'], color='b', s=50) highland = geo[geo['group'] == 'highland'] # lnhighland = ax.scatter(highland.loc[:, 'distance'], highland.loc[:, 'phase'], color='brown', s=50) lnhighland = ax.errorbar(x=highland.loc[:, 'distance'], y=highland.loc[:, 'phase'], yerr=yerr, marker='o', ls='', capsize=2.5, elinewidth=2.5, markeredgewidth=2.5, color='brown') eastern = geo[geo['group'] == 'eastern'] # lneastern = ax.scatter(eastern.loc[:, 'distance'], eastern.loc[:, 'phase'], color='green', s=50) lneastern = ax.errorbar(x=eastern.loc[:, 'distance'], y=eastern.loc[:, 'phase'], yerr=yerr, marker='o', ls='', capsize=2.5, elinewidth=2.5, markeredgewidth=2.5, color='green') lnremove = ax.scatter( removed.loc[:, 'distance'], removed.loc[:, 'phase'], marker='x', color='k', s=50) ax.legend([lncoast, lnhighland, lneastern, lnremove], ['Coastal stations', 'Highland stations', 'Eastern stations', 'DSEA station'], fontsize=fontsize) params = np.polyfit(geo['distance'].values, geo.phase.values, 1) params2 = np.polyfit(geo['distance'].values, geo.phase.values, 2) x = np.linspace(0, 210, 100) y = np.polyval(params, x) y2 = np.polyval(params2, x) r2 = r2_score(geo.phase.values, np.polyval(params, geo['distance'].values)) ax.plot(x, y, color='k') textstr = '\n'.join([r'R$^2$: {:.2f}'.format(r2)]) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax.text(0.5, 0.95, textstr, transform=ax.transAxes, fontsize=fontsize, verticalalignment='top', bbox=props) # ax.plot(x,y2, color='green') ax.tick_params(axis='both', which='major', labelsize=16) ax.set_xlabel('Distance from shore [km]', fontsize=fontsize) ax.set_ylabel('Peak hour [UTC]', fontsize=fontsize) # add sunrise UTC hour ax.axhline(16.66, color='tab:orange', linewidth=2) # change yticks to hours minuets: fig.canvas.draw() labels = [item.get_text() for item in ax.get_yticklabels()] labels = [pd.to_timedelta(float(x), unit='H') for x in labels] labels = ['{}:{}'.format(x.components[1], x.components[2]) if x.components[2] != 0 else '{}:00'.format(x.components[1]) for x in labels] ax.set_yticklabels(labels) fig.canvas.draw() ax.tick_params(axis='both', which='major', labelsize=fontsize) if save: filename = 'pw_peak_distance_shore.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_monthly_variability_heatmap_from_pwv_anomalies(load_path=work_yuval, thresh=50, save=True, fontsize=16, sort_by=['groups_annual', 'alt']): """sort_by=['group_annual', 'lat'], ascending=[1,0]""" import xarray as xr import seaborn as sns import numpy as np import matplotlib.pyplot as plt from calendar import month_abbr from PW_stations import produce_geo_gnss_solved_stations df = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=True) sites = df.dropna()[['lat', 'alt', 'distance', 'groups_annual']].sort_values( by=sort_by, ascending=[1, 1]).index # anoms = xr.load_dataset( # load_path / # 'GNSS_PW_monthly_anoms_thresh_{:.0f}_homogenized.nc'.format(thresh)) anoms = xr.load_dataset( load_path / 'GNSS_PW_monthly_anoms_thresh_{:.0f}.nc'.format(thresh)) df = anoms.groupby('time.month').std().to_dataframe() # sites = group_sites_to_xarray(upper=True, scope='annual').T # sites_flat = [x.lower() for x in sites.values.flatten() if isinstance(x, str)] # df = df[sites_flat] # cols = [x for x in sites if x in df.columns] df = df[sites] df.columns = [x.upper() for x in df.columns] fig = plt.figure(figsize=(14, 10)) grid = plt.GridSpec( 2, 1, height_ratios=[ 2, 1], hspace=0) ax_heat = fig.add_subplot(grid[0, 0]) # plt.subplot(221) ax_group = fig.add_subplot(grid[1, 0]) # plt.subplot(223) cbar_ax = fig.add_axes([0.91, 0.37, 0.02, 0.62]) # [left, bottom, width, # height] ax_heat = sns.heatmap( df.T, cmap='Reds', vmin=df.min().min(), vmax=df.max().max(), annot=True, yticklabels=True, ax=ax_heat, cbar_ax=cbar_ax, cbar_kws={'label': 'PWV anomalies STD [mm]'}, annot_kws={'fontsize': fontsize}, xticklabels=False) cbar_ax.set_ylabel('PWV anomalies STD [mm]', fontsize=fontsize) cbar_ax.tick_params(labelsize=fontsize) # activate top ticks and tickslabales: ax_heat.xaxis.set_tick_params( bottom='off', labelbottom='off', labelsize=fontsize) # emphasize the yticklabels (stations): ax_heat.yaxis.set_tick_params(left='on') ax_heat.set_yticklabels(ax_heat.get_ymajorticklabels(), fontweight='bold', fontsize=fontsize) df_mean = df.T.mean() df_mean = df_mean.to_frame() df_mean[1] = [month_abbr[x] for x in range(1, 13)] df_mean.columns = ['std', 'month'] g = sns.barplot(data=df_mean, x='month', y='std', ax=ax_group, palette='Reds', hue='std', dodge=False, linewidth=2.5) g.legend_.remove() ax_group.set_ylabel('PWV anomalies STD [mm]', fontsize=fontsize) ax_group.grid(color='k', linestyle='--', linewidth=1.5, alpha=0.5, axis='y') ax_group.xaxis.set_tick_params(labelsize=fontsize) ax_group.yaxis.set_tick_params(labelsize=fontsize) ax_group.set_xlabel('', fontsize=fontsize) # df.T.mean().plot(ax=ax_group, kind='bar', color='k', fontsize=fontsize, rot=0) fig.tight_layout() fig.subplots_adjust(right=0.906) if save: filename = 'pw_anoms_monthly_variability_heatmap.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_monthly_means_anomalies_with_station_mean(load_path=work_yuval, thresh=50, save=True, anoms=None, agg='mean', fontsize=16, units=None, remove_stations=['nizn', 'spir'], sort_by=['groups_annual', 'lat']): import xarray as xr import seaborn as sns from palettable.scientific import diverging as divsci import numpy as np import matplotlib.dates as mdates import pandas as pd from aux_gps import anomalize_xr from PW_stations import produce_geo_gnss_solved_stations sns.set_style('whitegrid') sns.set_style('ticks') div_cmap = divsci.Vik_20.mpl_colormap df = produce_geo_gnss_solved_stations(plot=False, add_distance_to_coast=True) sites = df.dropna()[['lat', 'alt', 'distance', 'groups_annual']].sort_values( by=sort_by, ascending=[1, 0]).index if anoms is None: # anoms = xr.load_dataset( # load_path / # 'GNSS_PW_monthly_anoms_thresh_{:.0f}_homogenized.nc'.format(thresh)) anoms = xr.load_dataset( load_path / 'GNSS_PW_monthly_thresh_{:.0f}.nc'.format(thresh)) anoms = anomalize_xr(anoms, 'MS', units=units) if remove_stations is not None: anoms = anoms[[x for x in anoms if x not in remove_stations]] df = anoms.to_dataframe()[:'2019'] # sites = group_sites_to_xarray(upper=True, scope='annual').T # sites_flat = [x.lower() for x in sites.values.flatten() if isinstance(x, str)] # df = df[sites_flat] cols = [x for x in sites if x in df.columns] df = df[cols] df.columns = [x.upper() for x in df.columns] weights = df.count(axis=1).shift(periods=-1, freq='15D').astype(int) fig = plt.figure(figsize=(20, 10)) grid = plt.GridSpec( 2, 1, height_ratios=[ 2, 1], hspace=0.0225) ax_heat = fig.add_subplot(grid[0, 0]) # plt.subplot(221) ax_group = fig.add_subplot(grid[1, 0]) # plt.subplot(223) cbar_ax = fig.add_axes([0.95, 0.43, 0.0125, 0.45]) # [left, bottom, width, # height] ax_heat = sns.heatmap( df.T, center=0.0, cmap=div_cmap, yticklabels=True, ax=ax_heat, cbar_ax=cbar_ax, cbar_kws={'label': 'PWV anomalies [mm]'}, xticklabels=False) cbar_ax.set_ylabel('PWV anomalies [mm]', fontsize=fontsize-4) cbar_ax.tick_params(labelsize=fontsize) # activate top ticks and tickslabales: ax_heat.xaxis.set_tick_params( bottom='off', labelbottom='off', labelsize=fontsize) # emphasize the yticklabels (stations): ax_heat.yaxis.set_tick_params(left='on') ax_heat.set_yticklabels(ax_heat.get_ymajorticklabels(), fontweight='bold', fontsize=fontsize) ax_heat.set_xlabel('') if agg == 'mean': ts = df.T.mean().shift(periods=-1, freq='15D') elif agg == 'median': ts = df.T.median().shift(periods=-1, freq='15D') ts.index.name = '' # dt_as_int = [x for x in range(len(ts.index))] # xticks_labels = ts.index.strftime('%Y-%m').values[::6] # xticks = dt_as_int[::6] # xticks = ts.index # ts.index = dt_as_int ts.plot(ax=ax_group, color='k', fontsize=fontsize, lw=2) barax = ax_group.twinx() barax.bar(ts.index, weights.values, width=35, color='k', alpha=0.2) barax.yaxis.set_major_locator(ticker.MaxNLocator(6)) barax.set_ylabel('Stations [#]', fontsize=fontsize-4) barax.tick_params(labelsize=fontsize) ax_group.set_xlim(ts.index.min(), ts.index.max() + pd.Timedelta(15, unit='D')) ax_group.set_ylabel('PWV {} anomalies [mm]'.format(agg), fontsize=fontsize-4) # set ticks and align with heatmap axis (move by 0.5): # ax_group.set_xticks(dt_as_int) # offset = 1 # ax_group.xaxis.set(ticks=np.arange(offset / 2., # max(dt_as_int) + 1 - min(dt_as_int), # offset), # ticklabels=dt_as_int) # move the lines also by 0.5 to align with heatmap: # lines = ax_group.lines # get the lines # [x.set_xdata(x.get_xdata() - min(dt_as_int) + 0.5) for x in lines] # ax_group.xaxis.set(ticks=xticks, ticklabels=xticks_labels) # ax_group.xaxis.set(ticks=xticks) years_fmt = mdates.DateFormatter('%Y') ax_group.xaxis.set_major_locator(mdates.YearLocator()) ax_group.xaxis.set_major_formatter(years_fmt) ax_group.xaxis.set_minor_locator(mdates.MonthLocator()) # ax_group.xaxis.tick_top() # ax_group.xaxis.set_ticks_position('both') # ax_group.tick_params(axis='x', labeltop='off', top='on', # bottom='on', labelbottom='on') ax_group.grid() # ax_group.axvline('2015-09-15') # ax_group.axhline(2.5) # plt.setp(ax_group.xaxis.get_majorticklabels(), rotation=45 ) fig.tight_layout() fig.subplots_adjust(right=0.946) if save: filename = 'pw_monthly_means_anomaly_heatmap.png' plt.savefig(savefig_path / filename, bbox_inches='tight', pad_inches=0.1) return ts def plot_grp_anomlay_heatmap(load_path=work_yuval, gis_path=gis_path, thresh=50, grp='hour', remove_grp=None, season=None, n_clusters=4, save=True, title=False): import xarray as xr import seaborn as sns import numpy as np from PW_stations import group_anoms_and_cluster from aux_gps import geo_annotate import matplotlib.pyplot as plt import pandas as pd from matplotlib.colors import ListedColormap from palettable.scientific import diverging as divsci from PW_stations import produce_geo_gnss_solved_stations div_cmap = divsci.Vik_20.mpl_colormap dem_path = load_path / 'AW3D30' def weighted_average(grp_df, weights_col='weights'): return grp_df._get_numeric_data().multiply( grp_df[weights_col], axis=0).sum() / grp_df[weights_col].sum() df, labels_sorted, weights = group_anoms_and_cluster( load_path=load_path, thresh=thresh, grp=grp, season=season, n_clusters=n_clusters, remove_grp=remove_grp) # create figure and subplots axes: fig = plt.figure(figsize=(15, 10)) if title: if season is not None: fig.suptitle( 'Precipitable water {}ly anomalies analysis for {} season'.format(grp, season)) else: fig.suptitle('Precipitable water {}ly anomalies analysis (Weighted KMeans {} clusters)'.format( grp, n_clusters)) grid = plt.GridSpec( 2, 2, width_ratios=[ 3, 2], height_ratios=[ 4, 1], wspace=0.1, hspace=0) ax_heat = fig.add_subplot(grid[0, 0]) # plt.subplot(221) ax_group = fig.add_subplot(grid[1, 0]) # plt.subplot(223) ax_map = fig.add_subplot(grid[0:, 1]) # plt.subplot(122) # get the camp and zip it to groups and produce dictionary: cmap = plt.get_cmap("Accent") cmap = qualitative_cmap(n_clusters) # cmap = plt.get_cmap("Set2_r") # cmap = ListedColormap(cmap.colors[::-1]) groups = list(set(labels_sorted.values())) palette = dict(zip(groups, [cmap(x) for x in range(len(groups))])) label_cmap_dict = dict(zip(labels_sorted.keys(), [palette[x] for x in labels_sorted.values()])) cm = ListedColormap([x for x in palette.values()]) # plot heatmap and colorbar: cbar_ax = fig.add_axes([0.57, 0.24, 0.01, 0.69]) # [left, bottom, width, # height] ax_heat = sns.heatmap( df.T, center=0.0, cmap=div_cmap, yticklabels=True, ax=ax_heat, cbar_ax=cbar_ax, cbar_kws={'label': '[mm]'}) # activate top ticks and tickslabales: ax_heat.xaxis.set_tick_params(top='on', labeltop='on') # emphasize the yticklabels (stations): ax_heat.yaxis.set_tick_params(left='on') ax_heat.set_yticklabels(ax_heat.get_ymajorticklabels(), fontweight='bold', fontsize=10) # paint ytick labels with categorical cmap: boxes = [dict(facecolor=x, boxstyle="square,pad=0.7", alpha=0.6) for x in label_cmap_dict.values()] ylabels = [x for x in ax_heat.yaxis.get_ticklabels()] for label, box in zip(ylabels, boxes): label.set_bbox(box) # rotate xtick_labels: # ax_heat.set_xticklabels(ax_heat.get_xticklabels(), rotation=0, # fontsize=10) # plot summed groups (with weights): df_groups = df.T df_groups['groups'] = pd.Series(labels_sorted) df_groups['weights'] = weights df_groups = df_groups.groupby('groups').apply(weighted_average) df_groups.drop(['groups', 'weights'], axis=1, inplace=True) df_groups.T.plot(ax=ax_group, linewidth=2.0, legend=False, cmap=cm) if grp == 'hour': ax_group.set_xlabel('hour (UTC)') ax_group.grid() group_limit = ax_heat.get_xlim() ax_group.set_xlim(group_limit) ax_group.set_ylabel('[mm]') # set ticks and align with heatmap axis (move by 0.5): ax_group.set_xticks(df.index.values) offset = 1 ax_group.xaxis.set(ticks=np.arange(offset / 2., max(df.index.values) + 1 - min(df.index.values), offset), ticklabels=df.index.values) # move the lines also by 0.5 to align with heatmap: lines = ax_group.lines # get the lines [x.set_xdata(x.get_xdata() - min(df.index.values) + 0.5) for x in lines] # plot israel map: ax_map = plot_israel_map(gis_path=gis_path, ax=ax_map) # overlay with dem data: cmap = plt.get_cmap('terrain', 41) dem = xr.open_dataarray(dem_path / 'israel_dem_250_500.nc') # dem = xr.open_dataarray(dem_path / 'israel_dem_500_1000.nc') im = dem.plot.imshow(ax=ax_map, alpha=0.5, cmap=cmap, vmin=dem.min(), vmax=dem.max(), add_colorbar=False) cbar_kwargs = {'fraction': 0.1, 'aspect': 50, 'pad': 0.03} cb = fig.colorbar(im, ax=ax_map, **cbar_kwargs) # cb = plt.colorbar(fg, **cbar_kwargs) cb.set_label(label='meters above sea level', size=8, weight='normal') cb.ax.tick_params(labelsize=8) ax_map.set_xlabel('') ax_map.set_ylabel('') print('getting solved GNSS israeli stations metadata...') gps = produce_geo_gnss_solved_stations(path=gis_path, plot=False) gps.index = gps.index.str.upper() gps = gps.loc[[x for x in df.columns], :] gps['group'] =
pd.Series(labels_sorted)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # Copyright (C) 2020 <NAME> # Use of this source code is governed by the MIT License ############################################################################### from . import config from .metadata import metadata from . import linesholder from . import linesops from .. import SEED_AVG, SEED_LAST, SEED_SUM, SEED_NONE, SEED_ZERO, SEED_ZFILL import numpy as np import pandas as pd __all__ = ['Line', 'Lines'] def _generate(cls, bases, dct, name='', klass=None, **kwargs): # If "name" is defined (inputs, outputs) it overrides any previous # definition from the base clases. # An extension can be done by using "name_extend" (inputs_extend) in which # case the definition will be appended to that of the base classes # In case of a redefinition, automatic mappings to the existing definitions # (by index) will be done to ensure "instances" do still work in base # classes when going the super route # Manual mappings can also be defined if a definition is a dictionary like # in: # outputs = {'atr': 'tr'} # In this case 'atr' is the new output and the base class had a 'tr' output # and now whenenver 'tr' is referenced it will point to 'atr' # Get actual lines definition and that of the bases clsdefs = dct.get(name, ()) # new defs # support remapping lines in subclasses cdefs = [] # collect final single new definitions defmappings = {} # collect any mappings # one can specify a single input (str) or single remapping (dict) if isinstance(clsdefs, (dict, str,)): clsdefs = [clsdefs] # unpacked below for clsdef in clsdefs: # if a "line" def contains a list or a tuple, it is expected to have 2 # elements defining a remapping. key=>val where key is the new name and # value is the old name, defined in the base class. Make it a dict to # support the general case in which it was already a dict if isinstance(clsdef, (list, tuple,)): clsdef = dict([clsdef]) # and go to dict case if isinstance(clsdef, dict): cdefs.extend(list(clsdef)) defmappings.update(clsdef) # store mapping to genreate properties else: # assume str or else detect and raise exception if not cdefs.append(clsdef) # After having parsed mappings in dict form, create the actual definition clsdefs = tuple(cdefs) # Gather base definitions - needed here to do mappings lbases = (getattr(base, name, ()) for base in bases) lbdefs = tuple(ldef for lbase in lbases for ldef in lbase) if clsdefs: # a new definition was made final_defs = clsdefs for clsdef, lbdef in zip(clsdefs, lbdefs): # create automappings if lbdef in clsdefs: # cannot remap if exists in current defs continue defmappings.setdefault(clsdef, lbdef) else: # no new definition, see if _extend has been put in place clsdefs = dct.get(name + '_extend', ()) # new defs if isinstance(clsdefs, str): clsdefs = (clsdefs,) # unpacked below final_defs = lbdefs + clsdefs # removed remapped lines from definitions remapped = list(defmappings.values()) # retain last inputs defs - super readable and pythonic one-liner lines = tuple(reversed(list(dict.fromkeys(reversed(final_defs))))) lines = tuple(x for x in lines if x not in remapped) setattr(cls, name, lines) # install all lines defs # Create base dictionary for subclassing via typ clsdct = dict(__module__=cls.__module__, __slots__=list(lines)) # Create properties for attribute retrieval of old line propdct = {} for name, alias in defmappings.items(): def get_alias_to_name(self): return getattr(self, name) def set_alias_to_name(self, value): setattr(self, name, value) propdct[alias] = property(get_alias_to_name, set_alias_to_name) clsdct.update(propdct) # add properties for alias remapping clsname = name.capitalize() + cls.__name__ # decide name return type(clsname, (klass,), clsdct) # subclass and return def binary_op(name): def real_binary_op(self, other, *args, **kwargs): # Executes a binary operation where self is guaranteed to have a # _series attribute but other isn't. Example > or + # The minimum period is taken into account to only apply the operation # to the proper range and store in the result in that range. The rest # is a bunch of leading 'NaN' # See if other has a minperiod, else default to 1 minperiod = max(self._minperiod, getattr(other, '_minperiod', 1)) minidx = minperiod - 1 # minperiod is 1-based, easier for location # Prepare a result filled with 'Nan' result = pd.Series(np.nan, index=self._series.index) # Get and prepare the other operand other = getattr(other, '_series', other) # get real other operand other = other[minidx:] if isinstance(other, pd.Series) else other # Get the operation, exec and store binop = getattr(self._series[minidx:], name) # get op from series result[minidx:] = r = binop(other, *args, **kwargs) # exec / store result = result.astype(r.dtype, copy=False) return self._clone(result, period=minperiod) # ret new obj w minperiod linesops.install_cls(name=name, attr=real_binary_op) def standard_op(name, parg=None, sargs=False, skwargs=False): def real_standard_op(self, *args, **kwargs): # Prepare a result filled with 'Nan' result =
pd.Series(np.nan, index=self._series.index)
pandas.Series
from __future__ import division import json import re import time from pandas import DataFrame, isnull, notnull, to_datetime from pandas_datareader._utils import RemoteDataError from pandas_datareader.base import _DailyBaseReader class YahooDailyReader(_DailyBaseReader): """ Returns DataFrame of with historical over date range, start to end. To avoid being penalized by Yahoo! Finance servers, pauses between downloading 'chunks' of symbols can be specified. Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Single stock symbol (ticker), array-like object of symbols or DataFrame with index containing stock symbols. start : string, int, date, datetime, Timestamp Starting date. Parses many different kind of date representations (e.g., 'JAN-01-2010', '1/1/10', 'Jan, 1, 1980'). Defaults to 5 years before current date. end : string, int, date, datetime, Timestamp Ending date retry_count : int, default 3 Number of times to retry query request. pause : int, default 0.1 Time, in seconds, to pause between consecutive queries of chunks. If single value given for symbol, represents the pause between retries. session : Session, default None requests.sessions.Session instance to be used adjust_price : bool, default False If True, adjusts all prices in hist_data ('Open', 'High', 'Low', 'Close') based on 'Adj Close' price. Adds 'Adj_Ratio' column and drops 'Adj Close'. ret_index : bool, default False If True, includes a simple return index 'Ret_Index' in hist_data. chunksize : int, default 25 Number of symbols to download consecutively before intiating pause. interval : string, default 'd' Time interval code, valid values are 'd' for daily, 'w' for weekly, 'm' for monthly. get_actions : bool, default False If True, adds Dividend and Split columns to dataframe. adjust_dividends: bool, default true If True, adjusts dividends for splits. """ def __init__( self, symbols=None, start=None, end=None, retry_count=3, pause=0.1, session=None, adjust_price=False, ret_index=False, chunksize=1, interval="d", get_actions=False, adjust_dividends=True, ): super(YahooDailyReader, self).__init__( symbols=symbols, start=start, end=end, retry_count=retry_count, pause=pause, session=session, chunksize=chunksize, ) # Ladder up the wait time between subsequent requests to improve # probability of a successful retry self.pause_multiplier = 2.5 self.headers = { "Connection": "keep-alive", "Expires": str(-1), "Upgrade-Insecure-Requests": str(1), # Google Chrome: "User-Agent": ( "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36" ), } self.adjust_price = adjust_price self.ret_index = ret_index self.interval = interval self._get_actions = get_actions if self.interval not in ["d", "wk", "mo", "m", "w"]: raise ValueError( "Invalid interval: valid values are 'd', 'wk' and 'mo'. 'm' and 'w' " "have been implemented for backward compatibility. 'v' has been moved " "to the yahoo-actions or yahoo-dividends APIs." ) elif self.interval in ["m", "mo"]: self.pdinterval = "m" self.interval = "mo" elif self.interval in ["w", "wk"]: self.pdinterval = "w" self.interval = "wk" self.interval = "1" + self.interval self.adjust_dividends = adjust_dividends @property def get_actions(self): return self._get_actions @property def url(self): return "https://finance.yahoo.com/quote/{}/history" # Test test_get_data_interval() crashed because of this issue, probably # whole yahoo part of package wasn't # working properly def _get_params(self, symbol): # This needed because yahoo returns data shifted by 4 hours ago. four_hours_in_seconds = 14400 unix_start = int(time.mktime(self.start.timetuple())) unix_start += four_hours_in_seconds day_end = self.end.replace(hour=23, minute=59, second=59) unix_end = int(time.mktime(day_end.timetuple())) unix_end += four_hours_in_seconds params = { "period1": unix_start, "period2": unix_end, "interval": self.interval, "frequency": self.interval, "filter": "history", "symbol": symbol, } return params def _read_one_data(self, url, params): """ read one data from specified symbol """ symbol = params["symbol"] del params["symbol"] url = url.format(symbol) resp = self._get_response(url, params=params) ptrn = r"root\.App\.main = (.*?);\n}\(this\)\);" try: j = json.loads(re.search(ptrn, resp.text, re.DOTALL).group(1)) data = j["context"]["dispatcher"]["stores"]["HistoricalPriceStore"] except KeyError: msg = "No data fetched for symbol {} using {}" raise RemoteDataError(msg.format(symbol, self.__class__.__name__)) # price data prices = DataFrame(data["prices"]) prices.columns = [col.capitalize() for col in prices.columns] prices["Date"] = to_datetime(to_datetime(prices["Date"], unit="s").dt.date) if "Data" in prices.columns: prices = prices[prices["Data"].isnull()] prices = prices[["Date", "High", "Low", "Open", "Close", "Volume", "Adjclose"]] prices = prices.rename(columns={"Adjclose": "Adj Close"}) prices = prices.set_index("Date") prices = prices.sort_index().dropna(how="all") if self.ret_index: prices["Ret_Index"] = _calc_return_index(prices["Adj Close"]) if self.adjust_price: prices = _adjust_prices(prices) # dividends & splits data if self.get_actions and data["eventsData"]: actions = DataFrame(data["eventsData"]) actions.columns = [col.capitalize() for col in actions.columns] actions["Date"] = to_datetime( to_datetime(actions["Date"], unit="s").dt.date ) types = actions["Type"].unique() if "DIVIDEND" in types: divs = actions[actions.Type == "DIVIDEND"].copy() divs = divs[["Date", "Amount"]].reset_index(drop=True) divs = divs.set_index("Date") divs = divs.rename(columns={"Amount": "Dividends"}) prices = prices.join(divs, how="outer") if "SPLIT" in types: def split_ratio(row): if float(row["Numerator"]) > 0: if ":" in row["Splitratio"]: n, m = row["Splitratio"].split(":") return float(m) / float(n) else: return eval(row["Splitratio"]) else: return 1 splits = actions[actions.Type == "SPLIT"].copy() splits["SplitRatio"] = splits.apply(split_ratio, axis=1) splits = splits.reset_index(drop=True) splits = splits.set_index("Date") splits["Splits"] = splits["SplitRatio"] prices = prices.join(splits["Splits"], how="outer") if "DIVIDEND" in types and not self.adjust_dividends: # dividends are adjusted automatically by Yahoo adj = ( prices["Splits"].sort_index(ascending=False).fillna(1).cumprod() ) prices["Dividends"] = prices["Dividends"] / adj return prices def _adjust_prices(hist_data, price_list=None): """ Return modifed DataFrame with adjusted prices based on 'Adj Close' price. Adds 'Adj_Ratio' column. """ if price_list is None: price_list = "Open", "High", "Low", "Close" adj_ratio = hist_data["Adj Close"] / hist_data["Close"] data = hist_data.copy() for item in price_list: data[item] = hist_data[item] * adj_ratio data["Adj_Ratio"] = adj_ratio del data["Adj Close"] return data def _calc_return_index(price_df): """ Return a returns index from a input price df or series. Initial value (typically NaN) is set to 1. """ df = price_df.pct_change().add(1).cumprod() mask = notnull(df.iloc[1]) &
isnull(df.iloc[0])
pandas.isnull
from __future__ import division from laspy.file import File import numpy as np import pandas as pd import time, math def timing(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print('%s function took %0.3f ms' % (f.func_name, (time2-time1)*1000.0)) return ret return wrap @timing def loadLAS2XYZ(filepath): ''' Function to load in console the pointcloud of a LAS file :param filepath: filepath of the LAS file :return: xyz array containing coordinate of the points ''' print('Start loading...') inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() print('Data loaded') return coords @timing def loadLAS2XYZAIR(filepath): ''' Function to load in console the pointcloud of a LAS file with points attributes :param filepath: filepath of the LAS file :return: xyz array containing coordinate of the points ''' print('Start loading...') inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z, inFile.amplitude, inFile.Intensity, inFile.reflectance, inFile.num_returns)).transpose() print('Data loaded') return coords def xyz2binarray(xyz, xstart, xend, ystart, yend, nx=1000, ny=1000, method='min'): ''' Function to extract projected grid on the XY-plane of point cloud statistics :param xyz: a 3 column vector containing the point location in cartesian coordinate system :param xstart: x-minimum of the grid :param xend: x-maximum of the grid :param ystart: y-minimm of the grid :param yend: y-maximum of the grid :param nx: number of grid cell in the x directions :param ny: number of grid cell in the y directions :param method: statistics to extract from each gridcell :return: returns a 2D array, xmin, and ymax TO IMPLEMENT: - being able to choose to input dx dy instead of nx ny ''' binned, bins_x, bins_y, bin_xmin, bin_ymin = binData2D(xyz, xstart, xend, ystart, yend, nx, ny) if method == 'min': ret = binned.Z.min().unstack().T # .iloc[::-1] elif method == 'max': ret = binned.Z.max().unstack().T # .iloc[::-1] elif method == 'mean': ret = binned.Z.mean().unstack().T # .iloc[::-1] elif method == 'median': ret = binned.Z.median().unstack().T # .iloc[::-1] elif method == 'count': ret = binned.Z.count().unstack().T # .iloc[::-1] xmin = bins_x[ret.columns.min().astype(int)] ymax = bins_y[ret.index.get_values().max().astype(int)] newIndy = np.arange(ret.index.get_values().min(), ret.index.get_values().max() + 1) newIndx = np.arange(ret.columns.min(), ret.columns.max() + 1) a = ret.reindex(newIndy, newIndx) mat = np.zeros((ny, nx)) * np.nan mat[bin_ymin:bin_ymin + a.shape[0], bin_xmin:bin_xmin + a.shape[1]] = a return mat[::-1], xmin, ymax def LAS2txt(filepath,newfile): ''' Function to convert a pointcloud save in LAS format into a .txt format :param filepath: filepath of the LAS file :param newfile: name of the new file :return: save data into a text file ''' inFile = File(filepath, mode='r') coords = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() if newfile[-4] != '.txt': newfile = newfile + '.txt' np.savetxt(newfile,coords) print('File saved: ' + newfile) def xyz_subsample(xyz, length_out): ''' Function to subsample a 3 columm matrix. :param xyz: 3 column matrix :param length_out: number of sample to output :return: a 3 column matrix ''' ind = np.random.randint(0,xyz.shape[0],length_out) xyz_new = xyz[ind,:] print('xyz subsampled!') return xyz_new def xyz_stat(xyz): print('Shape of array: ' + str(xyz.shape)) print('Min of xyz: ') print(np.min(xyz, axis=0)) print('Max of xyz: ') print(np.max(xyz, axis=0)) print('Mean of xyz: ') print(np.mean(xyz, axis=0)) print('Extent') print(np.max(xyz, axis=0)-np.min(xyz, axis=0)) def trans(xyz,trans_vec): ''' Function to translate an xyz 3 column matrix :param xyz: a 3 column matrix :param trans_vec: a translation vector of length 3 :return: a 3 column matrix translated ''' xyz[:,0] = xyz[:,0] - trans_vec[0] xyz[:,1] = xyz[:,1] - trans_vec[1] xyz[:,2] = xyz[:,2] - trans_vec[2] return xyz def translate_coords(coords, xyz_trans = None ,ask = True): ''' Function to translate a point cloud :param coords: an xyz array :param xyz_trans: vector of translation in [x,y,z] :param ask: if True (default) brings an interactive console for approving the translation :return: translated xyz array ''' if xyz_trans is None: xyz_trans = [coords[:,0].min(), coords[:,1].min(), coords[:,2].min()] if ask is True: print('Default translation:') print(str(xyz_trans) + '\n') res = input('Do you want to translate? 0/1') if res is 0: print('No Translation applied') return None if res is 1: return trans(coords, xyz_trans) if ask is not True: return trans(coords, xyz_trans) def truncate(xyz, Xextent, Yextent): ''' Function to truncate a point cloud with a rectangular shape :param xyz: a 3 column matrix containing the points coordinate :param Xextent: a vector of Xmin and Xmax (e.g. [Xmin,Xmax]) :param Yextent: a vector of Ymin and Ymax (e.g. [Ymin, Ymax]) :return: a 3 colum matrix containing the points coordiante within the specified rectangle ''' xcut = xyz[xyz[:,0]>=Xextent[0]] xcut1 = xcut[xcut[:,0]<Xextent[1]] ycut = xcut1[xcut1[:,1]>=Yextent[0]] ycut1 = ycut[ycut[:,1]<Yextent[1]] return ycut1 def cart2cyl(xyz, xy_axis=None): ''' function to convert cartesian coordinates to cylindrical :param xyz: a 3-column matrix containing the points coordinates expressed in a cartesian system :param xy_axis: an array of x and y coordinate for the center of the new cylindrical coordinate :return: a 3 colum matrix with the point coordinates are expressed in a cylindrical coordinate system ''' if xy_axis is not None: xyz[:,0] = xyz[:,0] - xy_axis[0] xyz[:,1] = xyz[:,1] - xy_axis[1] rho = np.sqrt(xyz[:,0]**2 + xyz[:,1]**2) phi = np.arctan2(xyz[:,1], xyz[:,0]) rpz = np.vstack((rho,phi,xyz[:,2])) return rpz.transpose() def cyl2cart(rpz): ''' convert cylindrical coordinate to cartesian :param rpz: a 3-column matrix containing the points coordinates expressed in a cylindrical system :return: a 3-column matrix containing the points coordinates expressed in a cartesian system ''' x = rpz[:,0] * np.cos(rpz[:,1]) y = rpz[:,0] * np.sin(rpz[:,1]) xyz = np.vstack((x,y,rpz[:,2])) return xyz.transpose() def rotate_cloud(xyz, angle, center_coord=None): ''' Function to rotate a point cloud :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param angle: angle of rotation in degrees :param center_coord: tuple with xy coordiantes of the center of rotation. Default is None :return: the rotated xyz point cloud ''' if center_coord is None: center_coord = [np.mean(xyz[:,0]),np.mean(xyz[:,1])] rpz = cart2cyl(xyz, xy_axis=center_coord) rpz[:,1] = rpz[:,1] + angle xyz = cyl2cart(rpz) return xyz def get_slice(xyz, thick, dir=0, center_coord=None): ''' Function to extract a slice of the point cloud xyz :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param thick: thickness of the slice :param dir: direction of the slice in degrees (default is 0) :param center_coord: tuple with xy coordinates of the center of rotation. Default is None :return: return slice in xyz format. ''' if center_coord is None: center_coord = [np.mean(xyz[:,0]),np.mean(xyz[:,1])] print(center_coord) if dir % 180 != 0: xyz = rotate_cloud(xyz, (dir*math.pi/180), center_coord= center_coord) myslice = xyz[xyz[:,0]>=-(thick/2)] myslice = myslice[myslice[:,0]<=(thick/2)] return myslice def get_slice_df(df_xyz, thick, dir=0, center_coord=None): ''' Function to extract a slice of points from a dataframe :param xyz: n*3 array containing point cloud coordinates in a cartesian system :param thick: thickness of the slice :param dir: direction of the slice in degrees (default is 0) :param center_coord: tuple with xy coordinates of the center of rotation. Default is None :return: return slice in xyz format. ''' df = df_xyz.copy() df_xyz=None if center_coord is None: center_coord = [df['x'].mean(),df['y'].mean()] print(center_coord) if dir % 180 != 0: xyz = rotate_cloud(np.array(df[['x','y','z']]), (dir*math.pi/180), center_coord = center_coord) df[['x','y']] = xyz[:,[0,1]] myslice = df[df.x >= - (thick / 2)] myslice = myslice[df.x <= (thick/2)] else: myslice = df[df.x >= (center_coord[0] - thick / 2)] myslice = myslice[df.x <= (center_coord[0] + thick / 2)] myslice['x'] = myslice['x'] - center_coord[0] myslice['y'] = myslice['y'] - center_coord[1] print('Data Sliced') return myslice def center_pc_coord_df(df_xyz, center_coord=None): if center_coord is None: center_coord = [(df_xyz['x'].max()-df_xyz['x'].min())/2 + df_xyz['x'].min(), (df_xyz['y'].max()-df_xyz['y'].min())/2 +df_xyz['y'].min()] print(center_coord) df_xyz['x'] = df_xyz['x'] - center_coord[0] df_xyz['y'] = df_xyz['y'] - center_coord[1] return df_xyz @timing def binData2D(myXYZ, xstart, xend, ystart, yend, nx, ny): ''' Fucntion to bin a scatter point cloud (xyz) into a 2d array :param myXYZ: xyz array containings the point cloud coordiantes :param xstart: :param xend: :param ystart: :param yend: :param nx: number of cells along the x-axis :param ny: number of cells along hte y-axis :return: a group object (pandas library) with all points classified into bins ''' # note, the division requires: from _future_ import division x = myXYZ[:,0].ravel() y = myXYZ[:,1].ravel() z = myXYZ[:,2].ravel() df = pd.DataFrame({'X' : x , 'Y' : y , 'Z' : z}) bins_x = np.linspace(xstart, xend, nx+1) x_cuts =
pd.cut(df.X,bins_x, labels=False)
pandas.cut
#!/usr/bin/env python # coding: utf-8 # ## IMT 563 # ### Group 7 | Covid -19 Vaccination Info # ### Authors - <NAME>, <NAME> and <NAME> # In[1]: # Importing useful packages and libraries import pandas as pd import numpy as np import datetime from datetime import datetime import snowflake.connector from snowflake import sqlalchemy from snowflake.sqlalchemy import URL from sqlalchemy import create_engine,inspect import pytz from calendar import monthrange import re from tqdm import tqdm # In[2]: # Establishing Snowflake Connection Parameters engine = create_engine(URL( account = 'tca69088', role = 'SYSADMIN', user = 'Group7', password = '<PASSWORD>!', database = 'IMT_DB', schema = 'PUBLIC', )) # ### Importing Files # #### Comment - HERE I HAVE NOT REMOVED UNASSIGNED VALUES # In[3]: ### Writing a function to do the same ### - So the function should take in file_path,sheet_name,list_non_group def load_wa_chd(file_path,sheet_name,list_columns,list_group,agg_value): df = pd.ExcelFile(file_path) df_s = pd.read_excel(df, sheet_name = sheet_name) df_s = df_s[list_columns] df_s = df_s.groupby(list_group,as_index=False)[agg_value].sum() df_s = df_s[df_s['County'] != 'Unassigned'] df_s = df_s.reset_index(drop=True) return df_s # #### 7th MARCH CASES # In[4]: file_path_wa_c_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_c_7 = 'Cases' list_columns_wa_c_7 = ['County','TotalCases'] list_group_wa_c_7 = ['County'] agg_value_c = 'TotalCases' wa_chd_7_cases = load_wa_chd(file_path_wa_c_7,sheet_name_wa_c_7,list_columns_wa_c_7,list_group_wa_c_7 ,agg_value_c) # #### 7th MARCH HOSPITALIZATIONS # In[5]: file_path_wa_h_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_h_7 = 'Hospitalizations' list_columns_wa_h_7 = ['County','Hospitalizations'] list_group_wa_h_7 = ['County'] agg_value_h = 'Hospitalizations' wa_chd_7_hospitalizations = load_wa_chd(file_path_wa_h_7,sheet_name_wa_h_7,list_columns_wa_h_7,list_group_wa_h_7 ,agg_value_h) # #### 7th MARCH DEATHS # In[6]: file_path_wa_d_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_d_7 = 'Deaths' list_columns_wa_d_7 = ['County','Deaths'] list_group_wa_d_7 = ['County'] agg_value_d = 'Deaths' wa_chd_7_deaths = load_wa_chd(file_path_wa_d_7,sheet_name_wa_d_7,list_columns_wa_d_7,list_group_wa_d_7 ,agg_value_d) # #### 21st FEB CASES # In[7]: file_path_wa_c_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_c_21 = 'Cases' list_columns_wa_c_21 = ['County','TotalCases'] list_group_wa_c_21 = ['County'] agg_value_c = 'TotalCases' wa_chd_21_cases = load_wa_chd(file_path_wa_c_21,sheet_name_wa_c_21,list_columns_wa_c_21,list_group_wa_c_21 ,agg_value_c) # #### 21st FEB HOSPITALIZATIONS # In[8]: file_path_wa_h_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_h_21 = 'Hospitalizations' list_columns_wa_h_21 = ['County','Hospitalizations'] list_group_wa_h_21 = ['County'] agg_value_h = 'Hospitalizations' wa_chd_21_hospitalizations = load_wa_chd(file_path_wa_h_21,sheet_name_wa_h_21,list_columns_wa_h_21,list_group_wa_h_21 ,agg_value_h) # #### 21st FEB DEATHS # In[9]: file_path_wa_d_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_d_21 = 'Deaths' list_columns_wa_d_21 = ['County','Deaths'] list_group_wa_d_21 = ['County'] agg_value_d = 'Deaths' wa_chd_21_deaths = load_wa_chd(file_path_wa_d_21,sheet_name_wa_d_21,list_columns_wa_d_21,list_group_wa_d_21 ,agg_value_d) # ### Zip Level Data # In[10]: def load_wa_zip_chd(file_path,sheet_name,list_columns): df = pd.ExcelFile(file_path) df_s = pd.read_excel(df, sheet_name = sheet_name) df_s = df_s[list_columns] df_s = df_s.drop(0) df_s.reset_index(drop=True,inplace=True) return df_s # #### 7th March # In[11]: file_path_wa_zip_c_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_c_7 = 'ZIP' list_columns_wa_zip_c_7 =['Location_Name','Positives'] wa_chd_zip_7_cases = load_wa_zip_chd(file_path_wa_zip_c_7,sheet_name_wa_zip_c_7,list_columns_wa_zip_c_7) # In[12]: file_path_wa_zip_d_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_d_7 = 'ZIP' list_columns_wa_zip_d_7 =['Location_Name','Deaths'] wa_chd_zip_7_deaths = load_wa_zip_chd(file_path_wa_zip_d_7,sheet_name_wa_zip_d_7,list_columns_wa_zip_d_7) # In[13]: file_path_wa_zip_h_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_h_7 = 'ZIP' list_columns_wa_zip_h_7 =['Location_Name','Hospitalizations'] wa_chd_zip_7_hospitalizations = load_wa_zip_chd(file_path_wa_zip_h_7,sheet_name_wa_zip_h_7,list_columns_wa_zip_h_7) # #### 21st Feb # In[14]: file_path_wa_zip_c_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_c_21 = 'ZIP' list_columns_wa_zip_c_21 =['Location_Name','Positives'] wa_chd_zip_21_cases = load_wa_zip_chd(file_path_wa_zip_c_21,sheet_name_wa_zip_c_21,list_columns_wa_zip_c_21) # In[15]: file_path_wa_zip_d_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_d_21 = 'ZIP' list_columns_wa_zip_d_21 =['Location_Name','Deaths'] wa_chd_zip_21_deaths = load_wa_zip_chd(file_path_wa_zip_d_21,sheet_name_wa_zip_d_21,list_columns_wa_zip_d_21) # In[16]: file_path_wa_zip_h_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_h_21 = 'ZIP' list_columns_wa_zip_h_21 =['Location_Name','Hospitalizations'] wa_chd_zip_21_hospitalizations = load_wa_zip_chd(file_path_wa_zip_h_21,sheet_name_wa_zip_h_21,list_columns_wa_zip_h_21) # ### Covid County Vaccinations # ### 7th March # In[17]: wa_vacc_7 = pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_Vaccination_County_Level_Counts.xlsx') wa_vacc_7 = wa_vacc_7[['County','People Initiating Vaccination']] # In[18]: wa_vacc_7 = wa_vacc_7.drop([39,40]) # In[19]: wa_vacc_7['County'] = wa_vacc_7['County'].apply(lambda x: x+' County') # ### 21st February # In[20]: wa_vacc_21 = pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_Vaccination_County_Level_Counts.xlsx') wa_vacc_21 = wa_vacc_21[['County','People Initiating Vaccination']] # In[21]: wa_vacc_21 = wa_vacc_21.drop([39,40]) # In[22]: wa_vacc_21['County'] = wa_vacc_21['County'].apply(lambda x: x+' County') # # Table Creation # ### State_Name Creation # In[23]: state_data = [['1','Washington State']] # In[24]: df_state_name = pd.DataFrame(state_data, columns = ["State_ID", "State_Name"]) # In[25]: state_name = df_state_name.copy() # ### County_Name Creation # In[26]: county_raw = wa_chd_21_cases.copy() county_raw.drop(columns=['TotalCases'], inplace = True) county_raw_primary_key_list = [item for item in range(100,139)] df_county_name = county_raw.copy() df_county_name['State_ID'] = 1 df_county_name["County_ID"] = county_raw_primary_key_list df_county_name = df_county_name[['County_ID','State_ID','County']] df_county_name.rename(columns = {'County':'County_Name'},inplace = True) county_name = df_county_name.copy() # ### Zip_Table # In[46]: zip_data_raw = pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/Washington_ZipCodes.xlsx') zip_data_raw['County'] = zip_data_raw['County'].apply(lambda x:str(x) +' County') zip_data_raw_merged = zip_data_raw.merge(df_county_name, left_on='County', right_on='County_Name') df_zip_table = zip_data_raw_merged[['County_ID','Zip Code']] zip_raw_primary_key_list = [item for item in range(1000,1732)] df_zip_table.loc[:,'ZIP_ID'] = zip_raw_primary_key_list df_zip_table = df_zip_table[['ZIP_ID','County_ID','Zip Code']] zip_table = df_zip_table.rename({'Zip Code':'ZIP_Code'},axis = 1) # ## Data Consistency # ``` # The various tables we have - # # * wa_chd_7_cases # ['County','TotalCases'] # # * wa_chd_7_hospitalizations # ['County','Hospitalizations'] # # * wa_chd_7_deaths # ['County','Deaths'] # # * wa_chd_21_cases # ['County','TotalCases'] # # * wa_chd_21_hospitalizations # ['County','Hospitalizations'] # # * wa_chd_21_deaths # ['County','Deaths'] # # * wa_chd_zip_7_cases # ['Location_Name','Positives'] # # * wa_chd_zip_7_hospitalizations # ['Location_Name','Hospitalizations'] # # * wa_chd_zip_7_deaths # ['Location_Name','Deaths'] # # * wa_chd_zip_21_cases # ['Location_Name','Positives'] # # * wa_chd_zip_21_hospitalizations # ['Location_Name','Hospitalizations'] # # * wa_chd_zip_21_deaths # ['Location_Name','Deaths'] # # ``` # In[28]: wa_chd_7_cases.loc[16,'TotalCases'], wa_chd_zip_7_cases['Positives'].sum() wa_chd_7_cases.loc[16,'TotalCases'] = 81654 wa_chd_7_cases.loc[16,'TotalCases'], wa_chd_zip_7_cases['Positives'].sum() wa_chd_7_hospitalizations.loc[16,'Hospitalizations'], wa_chd_zip_7_hospitalizations['Hospitalizations'].sum() wa_chd_7_hospitalizations.loc[16,'Hospitalizations'] = 5070 wa_chd_7_hospitalizations.loc[16,'Hospitalizations'], wa_chd_zip_7_hospitalizations['Hospitalizations'].sum() wa_chd_7_deaths.loc[16,'Deaths'],wa_chd_zip_7_deaths['Deaths'].sum() wa_chd_7_deaths.loc[16,'Deaths'] = 1394 wa_chd_7_deaths.loc[16,'Deaths'],wa_chd_zip_7_deaths['Deaths'].sum() wa_chd_21_cases.loc[16,'TotalCases'], wa_chd_zip_21_cases['Positives'].sum() wa_chd_21_cases.loc[16,'TotalCases'] = 79457 wa_chd_21_cases.loc[16,'TotalCases'], wa_chd_zip_21_cases['Positives'].sum() wa_chd_21_hospitalizations.loc[16,'Hospitalizations'], wa_chd_zip_21_hospitalizations['Hospitalizations'].sum() wa_chd_21_hospitalizations.loc[16,'Hospitalizations'] = 4970 wa_chd_21_hospitalizations.loc[16,'Hospitalizations'], wa_chd_zip_21_hospitalizations['Hospitalizations'].sum() wa_chd_21_deaths.loc[16,'Deaths'],wa_chd_zip_21_deaths['Deaths'].sum() wa_chd_21_deaths.loc[16,'Deaths'] = 1308 wa_chd_21_deaths.loc[16,'Deaths'],wa_chd_zip_21_deaths['Deaths'].sum() # ### Table Creation Continued # In[29]: ### Covid County Cases on 7th March covid_countycases_7 = wa_chd_7_cases.copy() covid_countycases_7_primary_key_list = [item for item in range(301,340)] covid_countycases_7['CountyCases_ID'] = covid_countycases_7_primary_key_list covid_countycases_7_merged = covid_countycases_7.merge(df_county_name, left_on='County', right_on='County_Name') covid_countycases_7_merged.rename({'TotalCases':'CountyCases_Sum'},axis = 1,inplace = True) covid_countycases_7_merged = covid_countycases_7_merged[['CountyCases_ID','County_ID','CountyCases_Sum']] covid_countycases_7_merged.loc[:,'LastUpdated'] = '2021-03-07' ### Covid County Cases on 21st February covid_countycases_21 = wa_chd_21_cases.copy() covid_countycases_21_primary_key_list = [item for item in range(262,301)] covid_countycases_21['CountyCases_ID'] = covid_countycases_21_primary_key_list covid_countycases_21_merged = covid_countycases_21.merge(df_county_name, left_on='County', right_on='County_Name') covid_countycases_21_merged.rename({'TotalCases':'CountyCases_Sum'},axis = 1,inplace = True) covid_countycases_21_merged = covid_countycases_21_merged[['CountyCases_ID','County_ID','CountyCases_Sum']] covid_countycases_21_merged.loc[:,'LastUpdated'] = '2021-02-21' covid_countycases = covid_countycases_7_merged.append(covid_countycases_21_merged) covid_countycases = covid_countycases.sort_values(by='CountyCases_ID').reset_index(drop=True) # #### Adding the missing counties to the deaths table # In[30]: new_row = [{'County':'San Juan County','Deaths':0},{'County':'Wahkiakum County','Deaths':0}] # In[31]: wa_chd_21_deaths = wa_chd_21_deaths.append(new_row,ignore_index=True).sort_values(by='County').reset_index(drop=True) # In[32]: wa_chd_7_deaths = wa_chd_7_deaths.append(new_row,ignore_index=True).sort_values(by='County').reset_index(drop=True) # In[33]: ### Covid County Deaths on 7th March covid_countydeaths_7 = wa_chd_7_deaths.copy() covid_countydeaths_7_primary_key_list = [item for item in range(3001,3040)] covid_countydeaths_7['CountyDeaths_ID'] = covid_countydeaths_7_primary_key_list covid_countydeaths_7_merged = covid_countydeaths_7.merge(df_county_name, left_on='County', right_on='County_Name') covid_countydeaths_7_merged.rename({'Deaths':'CountyDeaths_Sum'},axis = 1,inplace = True) covid_countydeaths_7_merged.columns covid_countydeaths_7_merged = covid_countydeaths_7_merged[['CountyDeaths_ID','County_ID','CountyDeaths_Sum']] covid_countydeaths_7_merged.loc[:,'LastUpdated'] = '2021-03-07' ### Covid County Deaths on 21st February covid_countydeaths_21 = wa_chd_21_deaths.copy() covid_countydeaths_21_primary_key_list = [item for item in range(2962,3001)] covid_countydeaths_21['CountyDeaths_ID'] = covid_countydeaths_21_primary_key_list covid_countydeaths_21_merged = covid_countydeaths_21.merge(df_county_name, left_on='County', right_on='County_Name') covid_countydeaths_21_merged.rename({'Deaths':'CountyDeaths_Sum'},axis = 1,inplace = True) covid_countydeaths_21_merged.columns covid_countydeaths_21_merged = covid_countydeaths_21_merged[['CountyDeaths_ID','County_ID','CountyDeaths_Sum']] covid_countydeaths_21_merged.loc[:,'LastUpdated'] = '2021-02-21' covid_countydeaths = covid_countydeaths_7_merged.append(covid_countydeaths_21_merged) covid_countydeaths = covid_countydeaths.sort_values(by='CountyDeaths_ID').reset_index(drop=True) # In[34]: ### Covid County Hospitalizations on 7th March covid_countyhospitalizations_7 = wa_chd_7_hospitalizations.copy() covid_countyhospitalizations_7_primary_key_list = [item for item in range(30001,30040)] covid_countyhospitalizations_7['CountyHospitalizations_ID'] = covid_countyhospitalizations_7_primary_key_list covid_countyhospitalizations_7_merged = covid_countyhospitalizations_7.merge(df_county_name, left_on='County', right_on='County_Name') covid_countyhospitalizations_7_merged.columns covid_countyhospitalizations_7_merged.rename({'Hospitalizations':'CountyHospitalizations_Sum'},axis = 1,inplace = True) covid_countyhospitalizations_7_merged = covid_countyhospitalizations_7_merged[['CountyHospitalizations_ID','County_ID','CountyHospitalizations_Sum']] covid_countyhospitalizations_7_merged.loc[:,'LastUpdated'] = '2021-03-07' ### Covid County Hospitalizations on 21st February covid_countyhospitalizations_21 = wa_chd_21_hospitalizations.copy() covid_countyhospitalizations_21_primary_key_list = [item for item in range(29962,30001)] covid_countyhospitalizations_21['CountyHospitalizations_ID'] = covid_countyhospitalizations_21_primary_key_list covid_countyhospitalizations_21_merged = covid_countyhospitalizations_21.merge(df_county_name, left_on='County', right_on='County_Name') covid_countyhospitalizations_21_merged.columns covid_countyhospitalizations_21_merged.rename({'Hospitalizations':'CountyHospitalizations_Sum'},axis = 1,inplace = True) covid_countyhospitalizations_21_merged = covid_countyhospitalizations_21_merged[['CountyHospitalizations_ID','County_ID','CountyHospitalizations_Sum']] covid_countyhospitalizations_21_merged.loc[:,'LastUpdated'] = '2021-02-21' covid_countyhospitalizations = covid_countyhospitalizations_7_merged.append(covid_countyhospitalizations_21_merged) covid_countyhospitalizations = covid_countyhospitalizations.sort_values(by='CountyHospitalizations_ID').reset_index(drop=True) # ## County Level Zip Data # In[35]: wa_chd_zip_7_cases.head(5) # In[36]: ### Covid Zip Deaths on 7th March covid_countycases_zip_7 = wa_chd_zip_7_cases.copy() covid_countycases_zip_7.dtypes zip_table.dtypes covid_countycases_zip_7['Location_Name'] = covid_countycases_zip_7['Location_Name'].astype('int') covid_countycases_zip_7_primary_key_list = [item for item in range(300,384)] covid_countycases_zip_7['ZIPCases_ID'] = covid_countycases_zip_7_primary_key_list covid_countycases_zip_7_merged = covid_countycases_zip_7.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countycases_zip_7_merged.columns covid_countycases_zip_7_merged.rename({'Positives':'ZIPCases_Sum'},axis = 1,inplace = True) covid_countycases_zip_7_merged = covid_countycases_zip_7_merged[['ZIPCases_ID','ZIP_ID','ZIPCases_Sum']] covid_countycases_zip_7_merged['LastUpdated'] = '2021-03-07' ### Covid Zip Deaths on 21st February covid_countycases_zip_21 = wa_chd_zip_21_cases.copy() covid_countycases_zip_21['Location_Name'] = covid_countycases_zip_21['Location_Name'].astype('int') covid_countycases_zip_21_primary_key_list = [item for item in range(216,300)] covid_countycases_zip_21['ZIPCases_ID'] = covid_countycases_zip_21_primary_key_list covid_countycases_zip_21_merged = covid_countycases_zip_21.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countycases_zip_21_merged.columns covid_countycases_zip_21_merged.rename({'Positives':'ZIPCases_Sum'},axis = 1,inplace = True) covid_countycases_zip_21_merged = covid_countycases_zip_21_merged[['ZIPCases_ID','ZIP_ID','ZIPCases_Sum']] covid_countycases_zip_21_merged['LastUpdated'] = '2021-02-21' covid_zipcases = covid_countycases_zip_7_merged.append(covid_countycases_zip_21_merged) covid_zipcases = covid_zipcases.sort_values(by='ZIPCases_ID').reset_index(drop=True) # In[37]: ### Covid Zip Deaths on 7th March covid_countydeaths_zip_7 = wa_chd_zip_7_deaths.copy() covid_countydeaths_zip_7['Location_Name'] = covid_countydeaths_zip_7['Location_Name'].astype('int') covid_countydeaths_zip_7_primary_key_list = [item for item in range(3000,3084)] covid_countydeaths_zip_7['ZIPDeaths_ID'] = covid_countydeaths_zip_7_primary_key_list covid_countydeaths_zip_7_merged = covid_countydeaths_zip_7.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countydeaths_zip_7_merged.rename({'Deaths':'ZIPDeaths_Sum'},axis = 1,inplace = True) covid_countydeaths_zip_7_merged = covid_countydeaths_zip_7_merged[['ZIPDeaths_ID','ZIP_ID','ZIPDeaths_Sum']] covid_countydeaths_zip_7_merged.loc[:,'LastUpdated'] = '2021-03-07' # ----------------- ### Covid Zip Deaths on 21st February covid_countydeaths_zip_21 = wa_chd_zip_21_deaths.copy() covid_countydeaths_zip_21['Location_Name'] = covid_countydeaths_zip_21['Location_Name'].astype('int') covid_countydeaths_zip_21_primary_key_list = [item for item in range(2916,3000)] covid_countydeaths_zip_21['ZIPDeaths_ID'] = covid_countydeaths_zip_21_primary_key_list covid_countydeaths_zip_21_merged = covid_countydeaths_zip_21.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countydeaths_zip_21_merged.rename({'Deaths':'ZIPDeaths_Sum'},axis = 1,inplace = True) covid_countydeaths_zip_21_merged = covid_countydeaths_zip_21_merged[['ZIPDeaths_ID','ZIP_ID','ZIPDeaths_Sum']] covid_countydeaths_zip_21_merged.loc[:,'LastUpdated'] = '2021-02-21' covid_zipdeaths = covid_countydeaths_zip_7_merged.append(covid_countydeaths_zip_21_merged) covid_zipdeaths = covid_zipdeaths.sort_values(by='ZIPDeaths_ID').reset_index(drop=True) # In[38]: ### Covid Zip Hospitalizations on 7th March covid_countyhospitalizations_zip_7 = wa_chd_zip_7_hospitalizations.copy() covid_countyhospitalizations_zip_7.dtypes covid_countyhospitalizations_zip_7['Location_Name'] = covid_countyhospitalizations_zip_7['Location_Name'].astype('int') covid_countyhospitalizations_zip_7_primary_key_list = [item for item in range(30000,30084)] covid_countyhospitalizations_zip_7['ZIPHospitalizations_ID'] = covid_countyhospitalizations_zip_7_primary_key_list covid_countyhospitalizations_zip_7_merged =covid_countyhospitalizations_zip_7.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countyhospitalizations_zip_7_merged = covid_countyhospitalizations_zip_7_merged.rename({'Hospitalizations':'ZIPHospitalizations_Sum'},axis =1) covid_countyhospitalizations_zip_7_merged = covid_countyhospitalizations_zip_7_merged[['ZIPHospitalizations_ID','ZIP_ID','ZIPHospitalizations_Sum']] covid_countyhospitalizations_zip_7_merged.loc[:,'LastUpdated'] = '2021-03-07' # ---------------- ### Covid Zip Hospitalizations on 21st February covid_countyhospitalizations_zip_21 = wa_chd_zip_21_hospitalizations.copy() covid_countyhospitalizations_zip_21['Location_Name'] = covid_countyhospitalizations_zip_21['Location_Name'].astype('int') covid_countyhospitalizations_zip_21_primary_key_list = [item for item in range(29916,30000)] covid_countyhospitalizations_zip_21['ZIPHospitalizations_ID'] = covid_countyhospitalizations_zip_21_primary_key_list covid_countyhospitalizations_zip_21_merged =covid_countyhospitalizations_zip_21.merge(zip_table, left_on='Location_Name', right_on='ZIP_Code') covid_countyhospitalizations_zip_21_merged = covid_countyhospitalizations_zip_21_merged.rename({'Hospitalizations':'ZIPHospitalizations_Sum'},axis =1) covid_countyhospitalizations_zip_21_merged = covid_countyhospitalizations_zip_21_merged[['ZIPHospitalizations_ID','ZIP_ID','ZIPHospitalizations_Sum']] covid_countyhospitalizations_zip_21_merged.loc[:,'LastUpdated'] = '2021-02-21' covid_ziphospitalizations = covid_countyhospitalizations_zip_7_merged.append(covid_countyhospitalizations_zip_21_merged) covid_ziphospitalizations = covid_ziphospitalizations.sort_values(by='ZIPHospitalizations_ID').reset_index(drop=True) # ## Covid 19 Vaccinations County Wise # In[39]: ### County Vaccinations on 7th March covid_countyvaccinations_7 = wa_vacc_7.copy() covid_countyvaccinations_7_primary_key_list = [item for item in range(800,839)] covid_countyvaccinations_7['CountyVaccinations_ID'] = covid_countyvaccinations_7_primary_key_list covid_countyvaccinations_7_merged = covid_countyvaccinations_7.merge(df_county_name, left_on='County', right_on='County_Name') covid_countyvaccinations_7_merged = covid_countyvaccinations_7_merged.rename({'People Initiating Vaccination':'CountyVaccinations_Sum'},axis =1 ) covid_countyvaccinations_7_merged.columns covid_countyvaccinations_7_merged = covid_countyvaccinations_7_merged[['CountyVaccinations_ID', 'County_ID', 'CountyVaccinations_Sum']] covid_countyvaccinations_7_merged['LastUpdated'] = '2021-03-07' ### County Vaccinations on 21st February covid_countyvaccinations_21 = wa_vacc_21.copy() covid_countyvaccinations_21_primary_key_list = [item for item in range(761,800)] covid_countyvaccinations_21['CountyVaccinations_ID'] = covid_countyvaccinations_21_primary_key_list covid_countyvaccinations_21_merged = covid_countyvaccinations_21.merge(df_county_name, left_on='County', right_on='County_Name') covid_countyvaccinations_21_merged = covid_countyvaccinations_21_merged.rename({'People Initiating Vaccination':'CountyVaccinations_Sum'},axis =1 ) covid_countyvaccinations_21_merged.columns covid_countyvaccinations_21_merged = covid_countyvaccinations_21_merged[['CountyVaccinations_ID', 'County_ID', 'CountyVaccinations_Sum']] covid_countyvaccinations_21_merged['LastUpdated'] = '2021-02-21' covid_countyvaccinations = covid_countyvaccinations_7_merged.append(covid_countyvaccinations_21_merged) covid_countyvaccinations = covid_countyvaccinations.sort_values(by='CountyVaccinations_ID').reset_index(drop=True) # ## Vaccination Sites # In[40]: vaccination_sites_df = pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/WaVaccinationSites__20210121181237.xlsx') vaccination_sites_df.columns 'County','Facility','Address','ZIP','Info Website','Email','Phone','Scheduling Site','Instructions for Public','Walk-In Instructions','Appt Available' vaccination_sites_df = vaccination_sites_df[['County', 'Facility','Address','ZIP','Info Website','Email','Phone','Scheduling Site','Instructions for Public','Walk-In Instructions','Appt Available']] vaccination_sites_df.loc[:,'County'] = vaccination_sites_df.loc[:,'County'].apply(lambda x:x+' County') vaccination_sites_df_primary_key_list = [item for item in range(6000,6246)] vaccination_sites_df['Site_ID'] = vaccination_sites_df_primary_key_list vaccination_sites_df_merged =vaccination_sites_df.merge(zip_table, left_on='ZIP', right_on='ZIP_Code') vaccination_sites_df_merged = vaccination_sites_df_merged[['Site_ID', 'County_ID', 'ZIP_ID', 'Facility', 'Address', 'Info Website', 'Email', 'Phone', 'Instructions for Public', 'Scheduling Site', 'Appt Available']] vaccination_sites_df_merged.loc[:,'LastUpdated'] = '2021-02-21' vaccination_sites_df_merged = vaccination_sites_df_merged.rename({'Facility':'Site_Name', 'Address':'Site_Address', 'Info Website':'Info_URL', 'Email':'Site_Email', 'Phone':'Site_Phone', 'Instructions for Public':'Site_Instructions', 'Scheduling Site':'Scheduling_URL', 'Appt Available':'Appt_Available_Status'},axis = 1) vaccination_sites_df_merged['LastUpdated'] = vaccination_sites_df_merged['LastUpdated'].astype('datetime64[ns]') vaccination_sites_df_merged['Appt_Available_Status'] = vaccination_sites_df_merged['Appt_Available_Status'].astype('bool') vaccination_sites_df_merged.dtypes vaccination_sites = vaccination_sites_df_merged.copy() # ## Datatype Verification # state_name, # county_name, # zip_table, # covid_countycases, # covid_countydeaths, # covid_countyhospitalizations, # covid_countyvaccinations, # covid_zipcases, # covid_zipdeaths, # covid_ziphospitalizations # In[41]: state_name.dtypes state_name['State_ID'] = df_state_name['State_ID'].astype('int64') state_name.dtypes county_name.dtypes zip_table.dtypes covid_countycases['LastUpdated']=covid_countycases['LastUpdated'].astype('datetime64[ns]') covid_countycases.dtypes covid_countydeaths['LastUpdated']=covid_countydeaths['LastUpdated'].astype('datetime64[ns]') covid_countydeaths.dtypes covid_countyhospitalizations['LastUpdated']=covid_countyhospitalizations['LastUpdated'].astype('datetime64[ns]') covid_countyhospitalizations.dtypes covid_countyvaccinations['LastUpdated']=covid_countyvaccinations['LastUpdated'].astype('datetime64[ns]') covid_countyvaccinations.dtypes covid_zipcases['LastUpdated']=covid_zipcases['LastUpdated'].astype('datetime64[ns]') covid_zipcases.dtypes covid_zipdeaths['LastUpdated']=covid_zipdeaths['LastUpdated'].astype('datetime64[ns]') covid_zipdeaths.dtypes covid_ziphospitalizations['LastUpdated']=covid_ziphospitalizations['LastUpdated'].astype('datetime64[ns]') covid_ziphospitalizations.dtypes engine = create_engine(URL( account = 'tca69088', role = 'SYSADMIN', user = 'Group7', password = '<PASSWORD>!', database = 'IMT_DB', schema = 'PUBLIC', )) def data_push(df,table_name): df['Upload_Timestamp'] = pd.Timestamp.now(tz="America/Los_Angeles") df.to_sql(table_name.lower(),con=engine,if_exists='replace',index = False) connection = engine.connect() connection.close() engine.dispose() print(f"Data has been successfully transferred to Snowflake in {table_name}")
pd.set_option("display.max_rows", None, "display.max_columns", None)
pandas.set_option
""" /* * Copyright (C) 2019-2021 University of South Florida * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ """ import os # Import dependencies from collections import defaultdict from pathlib import Path import haversine as hs import numpy as np import pandas as pd from haversine import Unit from src.gt_merger import constants from src.gt_merger.args import get_parser from src.gt_merger.preprocess import preprocess_gt_data, preprocess_oba_data, is_valid_oba_dataframe, \ is_valid_gt_dataframe # ------------------------------------------- def main(): # Verify if the OBA input file exists if not os.path.isfile(command_line_args.obaFile): print("OBA data file not found:", command_line_args.obaFile) exit() # Verify if GT input file exists if not os.path.isfile(command_line_args.gtFile): print("Ground truth data file not found:", command_line_args.gtFile) exit() # Verify if there is a list of devices if command_line_args.deviceList: # Verify if the list of devices file exists if os.path.isfile(command_line_args.deviceList): with open(command_line_args.deviceList) as f: list_of_devices = f.readline().split(",") list_of_devices = [s.strip() for s in list_of_devices] else: print("File with white list of devices not found:", command_line_args.deviceList) exit() else: list_of_devices = [] # Verify if the data folder exists if not os.path.isdir(command_line_args.outputDir): print("Data folder not found, trying to create it in the current working directory:", command_line_args.outputDir) try: os.makedirs(command_line_args.outputDir, exist_ok=True) except OSError: print("There was an error while creating the data folder:", command_line_args.outputDir) exit() # Create sub-folders for output an logs path_logs = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS) if not os.path.isdir(path_logs): try: os.mkdir(path_logs) except OSError: print("There was an error while creating the sub folder for logs:", path_logs) exit() path_output = os.path.join(command_line_args.outputDir, constants.FOLDER_MERGED_DATA) if not os.path.isdir(path_output): try: os.mkdir(path_output) except OSError: print("There was an error while creating the sub-folder for output files:", path_logs) exit() # Create path OS independent for excel file excel_path = Path(command_line_args.gtFile) # Load ground truth data to a dataframe gt_data = pd.read_excel(excel_path) # Validate gt dataframe if not is_valid_gt_dataframe(gt_data): print("Ground truth data frame is empty or does not have the required columns.") exit() # Preprocess ground truth data gt_data, data_gt_dropped = preprocess_gt_data(gt_data, command_line_args.removeStillMode) print("Ground truth data preprocessed.") # Save data to be dropped to a csv file dropped_file_path = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS, constants.GT_DROPPED_DATA_FILE_NAME) data_gt_dropped.to_csv(path_or_buf=dropped_file_path, index=False) # Create path OS independent for csv file csv_path = Path(command_line_args.obaFile) # Load OBA data oba_data = pd.read_csv(csv_path) # Validate oba dataframe if not is_valid_oba_dataframe(oba_data): print("OBA data frame is empty or does not have the required columns.") exit() # If a devices white list was provided, list the devices if list_of_devices: oba_data = oba_data[oba_data["User ID"].isin(list_of_devices)] # Preprocess OBA data oba_data, data_csv_dropped = preprocess_oba_data(oba_data, command_line_args.minActivityDuration, command_line_args.minTripLength, command_line_args.removeStillMode) print("OBA data preprocessed.") print(oba_data.info()) print(gt_data.info()) # Data preprocessing IS OVER # Save oba dropped data to a csv file dropped_file_path = os.path.join(command_line_args.outputDir, constants.FOLDER_LOGS, constants.OBA_DROPPED_DATA_FILE_NAME) data_csv_dropped.to_csv(path_or_buf=dropped_file_path, index=False) if command_line_args.iterateOverTol: first_tol = 30000 save_to_path = os.path.join(constants.FOLDER_MERGED_DATA, "batch") else: save_to_path = os.path.join(constants.FOLDER_MERGED_DATA) first_tol = constants.TOLERANCE for tol in range(first_tol, command_line_args.tolerance + 1, constants.CALCULATE_EVERY_N_SECS): print("TOLERANCE:", str(tol)) # merge dataframes one to one or one to many according to the commandline parameter if command_line_args.mergeOneToOne: merged_data_frame, num_matches_df = merge(gt_data, oba_data, tol) else: merged_data_frame, num_matches_df, unmatched_oba_trips_df = merge_to_many(gt_data, oba_data, tol) # Save unmatched oba records to csv unmatched_file_path = os.path.join(command_line_args.outputDir, save_to_path, "oba_records_without_match_on_GT.csv") unmatched_oba_trips_df.to_csv(path_or_buf=unmatched_file_path, index=False) # Calculate difference merged_data_frame['Time_Difference'] = merged_data_frame.apply( lambda x: (x['Activity Start Date and Time* (UTC)'] - x['GT_DateTimeOrigUTC_Backup']) / np.timedelta64(1, 's') if pd.notna(x['Activity Start Date and Time* (UTC)']) else "", 1) # Calculate distance between GT and OBA starting points merged_data_frame['Distance_Difference'] = merged_data_frame.apply( lambda row: hs.haversine((row['GT_LatOrig'], row['GT_LonOrig']), (row['Origin latitude (*best)'], row['Origin longitude (*best)']), unit=Unit.METERS), axis=1) # Add Manual Assignment Column before reorganize merged_data_frame["Manual Assignment"] = '' # Reorder merged dataframe columns new_column_orders = constants.GT_NEW_COLUMNS_ORDER + constants.OBA_NEW_COLUMNS_ORDER merged_data_frame = merged_data_frame[new_column_orders] # Save merged data to csv merged_file_path = os.path.join(command_line_args.outputDir, save_to_path, constants.MERGED_DATA_FILE_NAME + "_" + str(tol) + ".csv") num_matches_file_path = os.path.join(command_line_args.outputDir, save_to_path, "num_matches" + "_" + str(tol) + ".csv") merged_data_frame.to_csv(path_or_buf=merged_file_path, index=False) num_matches_df.to_csv(path_or_buf=num_matches_file_path, index=False) def merge(gt_data, oba_data, tolerance): """ Merge gt_data dataframe and oba_data dataframe using the nearest value between columns 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. Before merging, the data is grouped by 'GT_Collector' on gt_data and each row on gt_data will be paired with one or none of the rows on oba_data grouped by userId. :param tolerance: maximum allowed difference (seconds) between 'gt_data.GT_DateTimeOrigUTC' and 'oba_data.Activity Start Date and Time* (UTC)'. :param gt_data: dataframe with preprocessed data from ground truth XLSX data file :param oba_data: dataframe with preprocessed data from OBA firebase export CSV data file :return: dataframe with the merged data and a dataframe with summary of matches by collector/oba_user(phone). """ list_collectors = gt_data['GT_Collector'].unique() list_oba_users = oba_data['User ID'].unique() merged_df = pd.DataFrame() matches_df = pd.DataFrame(list_collectors, columns=['GT_Collector']) list_total_trips = [] list_matches = [] matches_dict = defaultdict(list) for collector in list_collectors: print("Merging data for collector ", collector) # Create dataframe for a collector on list_collectors gt_data_collector = gt_data[gt_data["GT_Collector"] == collector] # Make sure dataframe is sorted by 'ClosesTime' gt_data_collector.sort_values('GT_DateTimeOrigUTC', inplace=True) # Add total trips per collector list_total_trips.append(len(gt_data_collector)) i = 0 list_matches_by_phone = [] for oba_user in list_oba_users: # Create a dataframe with the oba_user activities only oba_data_user = oba_data[oba_data["User ID"] == oba_user] # Make sure dataframes is sorted by 'Activity Start Date and Time* (UTC)' oba_data_user.sort_values('Activity Start Date and Time* (UTC)', inplace=True) temp_merge = pd.merge_asof(gt_data_collector, oba_data_user, left_on="GT_DateTimeOrigUTC", right_on="Activity Start Date and Time* (UTC)", direction="forward", tolerance=pd.Timedelta(str(tolerance) + "ms"), left_by='GT_Mode', right_by='Google Activity') merged_df =
pd.concat([merged_df, temp_merge], ignore_index=True)
pandas.concat
from CommonServerPython import * from FindEmailCampaign import * import json from datetime import datetime import pandas as pd import tldextract from email.utils import parseaddr import pytest no_fetch_extract = tldextract.TLDExtract(suffix_list_urls=None) def extract_domain(address): global no_fetch_extract if address == '': return '' email_address = parseaddr(address)[1] ext = no_fetch_extract(email_address) return '{}.{}'.format(ext.domain, ext.suffix) EXISTING_INCIDENTS = [] RESULTS = None EXISTING_INCIDENT_ID = DUP_INCIDENT_ID = None IDS_COUNTER = 57878 text = "Imagine there's no countries It isn't hard to do Nothing to kill or die for And no religion too " \ "Imagine all the people Living life in peace" text2 = "Love of my life, you've hurt me You've broken my heart and now you leave me Love of my life, can't you see?\ Bring it back, bring it back Don't take it away from me, because you don't know What it means to me" INCIDENTS_CONTEXT_KEY = 'EmailCampaign.' + INCIDENTS_CONTEXT_TD def create_incident(subject=None, body=None, html=None, emailfrom=None, created=None, id_=None, similarity=0, sender='<EMAIL>', emailto='<EMAIL>', emailcc='', emailbcc='', status=1, severity=1): global IDS_COUNTER dt_format = '%Y-%m-%d %H:%M:%S.%f %z' incident = { "id": id_ if id_ is not None else str(IDS_COUNTER), "name": ' '.join(str(x) for x in [subject, body, html, emailfrom]), 'created': created.strftime(dt_format) if created is not None else datetime.now().strftime(dt_format), 'type': 'Phishing', 'similarity': similarity, 'emailfrom': sender, PREPROCESSED_EMAIL_BODY: body, 'emailbodyhtml': html, PREPROCESSED_EMAIL_SUBJECT: subject, 'fromdomain': extract_domain(sender), 'emailto': emailto, 'emailcc': emailcc, 'emailbcc': emailbcc, 'status': status, 'severity': severity } return incident def set_existing_incidents_list(incidents_list): global EXISTING_INCIDENTS EXISTING_INCIDENTS = incidents_list def executeCommand(command, args=None): global EXISTING_INCIDENTS, EXISTING_INCIDENT_ID, DUP_INCIDENT_ID if command == 'FindDuplicateEmailIncidents': incidents_str = json.dumps(EXISTING_INCIDENTS) return [{'Contents': incidents_str, 'Type': 'not error'}] if command == 'CloseInvestigationAsDuplicate': EXISTING_INCIDENT_ID = args['duplicateId'] def results(arg): global RESULTS RESULTS.append(arg) def mock_summarize_email_body(body, subject, nb_sentences=3, subject_weight=1.5, keywords_weight=1.5): return '{}\n{}'.format(subject, body) def test_return_campaign_details_entry(mocker): global RESULTS RESULTS = [] mocker.patch.object(demisto, 'results', side_effect=results) mocker.patch('FindEmailCampaign.summarize_email_body', mock_summarize_email_body) inciddent1 = create_incident(subject='subject', body='email body') incidents_list = [inciddent1] data = pd.DataFrame(incidents_list) return_campaign_details_entry(data, fields_to_display=[]) res = RESULTS[0] context = res['EntryContext'] assert context['EmailCampaign.isCampaignFound'] assert context['EmailCampaign.involvedIncidentsCount'] == len(data) for original_incident, context_incident in zip(incidents_list, context[INCIDENTS_CONTEXT_KEY]): for k in ['id', 'similarity', 'emailfrom']: assert original_incident[k] == context_incident[k] assert original_incident['emailto'] in context_incident['recipients'] assert original_incident['fromdomain'] == context_incident['emailfromdomain'] assert extract_domain(original_incident['emailto']) in context_incident['recipientsdomain'] def test_return_campaign_details_entry_comma_seperated_recipients(mocker): global RESULTS RESULTS = [] mocker.patch.object(demisto, 'results', side_effect=results) mocker.patch('FindEmailCampaign.summarize_email_body', mock_summarize_email_body) inciddent1 = create_incident(subject='subject', body='email body', emailto='<EMAIL>, <EMAIL>') incidents_list = [inciddent1] data = pd.DataFrame(incidents_list) return_campaign_details_entry(data, fields_to_display=[]) res = RESULTS[0] context = res['EntryContext'] assert context['EmailCampaign.isCampaignFound'] assert context['EmailCampaign.involvedIncidentsCount'] == len(data) for original_incident, context_incident in zip(incidents_list, context[INCIDENTS_CONTEXT_KEY]): for k in ['id', 'similarity', 'emailfrom']: assert original_incident[k] == context_incident[k] for recipient in original_incident['emailto'].split(','): assert recipient.strip() in context_incident['recipients'] assert extract_domain(recipient) in context_incident['recipientsdomain'] assert original_incident['fromdomain'] == context_incident['emailfromdomain'] def test_return_campaign_details_entry_list_dumped_recipients(mocker): global RESULTS RESULTS = [] mocker.patch.object(demisto, 'results', side_effect=results) mocker.patch('FindEmailCampaign.summarize_email_body', mock_summarize_email_body) inciddent1 = create_incident(subject='subject', body='email body', emailto='["<EMAIL>", "<EMAIL>"]') incidents_list = [inciddent1] data = pd.DataFrame(incidents_list) return_campaign_details_entry(data, fields_to_display=[]) res = RESULTS[0] context = res['EntryContext'] assert context['EmailCampaign.isCampaignFound'] assert context['EmailCampaign.involvedIncidentsCount'] == len(data) for original_incident, context_incident in zip(incidents_list, context[INCIDENTS_CONTEXT_KEY]): for k in ['id', 'similarity', 'emailfrom']: assert original_incident[k] == context_incident[k] for recipient in json.loads(original_incident['emailto']): assert recipient.strip() in context_incident['recipients'] assert extract_domain(recipient) in context_incident['recipientsdomain'] assert original_incident['fromdomain'] == context_incident['emailfromdomain'] def test_return_campaign_details_entry_list_dumped_recipients_cc(mocker): global RESULTS RESULTS = [] mocker.patch.object(demisto, 'results', side_effect=results) mocker.patch('FindEmailCampaign.summarize_email_body', mock_summarize_email_body) inciddent1 = create_incident(subject='subject', body='email body', emailcc='["<EMAIL>", "<EMAIL>"]') incidents_list = [inciddent1] data = pd.DataFrame(incidents_list) return_campaign_details_entry(data, fields_to_display=[]) res = RESULTS[0] context = res['EntryContext'] assert context['EmailCampaign.isCampaignFound'] assert context['EmailCampaign.involvedIncidentsCount'] == len(data) for original_incident, context_incident in zip(incidents_list, context[INCIDENTS_CONTEXT_KEY]): for k in ['id', 'similarity', 'emailfrom']: assert original_incident[k] == context_incident[k] for recipient in json.loads(original_incident['emailcc']): assert recipient.strip() in context_incident['recipients'] assert extract_domain(recipient) in context_incident['recipientsdomain'] assert original_incident['fromdomain'] == context_incident['emailfromdomain'] ADDITIONAL_CONTEXT_KEYS_PARAMETRIZE = [ (['name', 'emailfrom', 'emailto', 'severity', 'status', 'created']), (['name', 'emailfrom', 'emailto']) ] def prepare_additional_context_fields_test(mocker): global RESULTS RESULTS = [] # prepare mocker.patch.object(demisto, 'results', side_effect=results) mocker.patch('FindEmailCampaign.summarize_email_body', mock_summarize_email_body) incident = create_incident( subject='subject', body='email body', emailfrom='<EMAIL>', emailto='<EMAIL>, <EMAIL>', emailcc='["<EMAIL>", "<EMAIL>"]') incidents_list = [incident] data =
pd.DataFrame(incidents_list)
pandas.DataFrame
# import pandas and numpy, and load the covid data import pandas as pd import numpy as np pd.set_option('display.width', 200) pd.set_option('display.max_columns', 35)
pd.set_option('display.max_rows', 200)
pandas.set_option
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.5 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_pricing_zcb [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_pricing_zcb&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-pricing-normal-quad-approx). # + import numpy as np import pandas as pd from scipy.linalg import expm import matplotlib.pyplot as plt from datetime import timedelta from arpym.pricing import zcb_value from arpym.statistics import moments_mvou from arpym.tools import histogram_sp, add_logo # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_zcb-parameters) tau_hor = 3 # time to horizon j_ = 1000 # number of scenarios # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_zcb-implementation-step00): Upload data # + path = '../../../databases/temporary-databases' df = pd.read_csv(path + '/db_proj_scenarios_yield.csv', header=0) j_m_, _ = df.shape df2 = pd.read_csv(path + '/db_proj_dates.csv', header=0, parse_dates=True) t_m = np.array(pd.to_datetime(df2.values.reshape(-1)), dtype='datetime64[D]') m_ = t_m.shape[0]-1 deltat_m = np.busday_count(t_m[0], t_m[1]) if tau_hor > m_: print(" Projection doesn't have data until given horizon!!! Horizon lowered to ", m_) tau_hor = m_ # number of monitoring times m_ = tau_hor t_m = t_m[:m_+1] t_now = t_m[0] t_hor = t_m[-1] tau = np.array(list(map(int, df.columns))) # times to maturity d_ = tau.shape[0] x_tnow_thor = np.array(df).reshape(j_, int(j_m_/j_), d_) x_tnow_thor = x_tnow_thor[:j_, :m_+1, :] y_tnow = x_tnow_thor[0, 0, :] y_thor = x_tnow_thor[:, -1, :] df =
pd.read_csv(path + '/db_proj_scenarios_yield_par.csv', header=0)
pandas.read_csv
""" Organisation: ekholabs Author: <EMAIL> """ import pandas as pd ''' Let's now use Pandas' Series and DataFrames to create our own data structures. ''' def create_series(): fruits =
pd.Series(['Banana', 'Kilo', .63])
pandas.Series
""" Coding: UTF-8 Author: Randal Time: 2021/2/20 E-mail: <EMAIL> Description: This is a simple toolkit for data extraction of text. The most important function in the script is about word frequency statistics. Using re, I generalized the process in words counting, regardless of any preset word segmentation. Besides, many interesting functions, like getting top sentences are built here. All rights reserved. """ import xlwings as xw import pandas as pd import numpy as np import os import re from alive_progress import alive_bar from alive_progress import show_bars, show_spinners import jieba import datetime from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import math class jieba_vectorizer(CountVectorizer): def __init__(self, tf, userdict, stopwords, orient=False): """ :param tf: 输入的样本框,{axis: 1, 0: id, 1: 标题, 2: 正文, 3: 来源, 4: freq} :param stopwords: 停用词表的路径 :param user_dict_link: 关键词清单的路径 :param orient: {True: 返回的 DTM 只包括关键词清单中的词,False: 返回 DTM 中包含全部词语} :return: 可以直接使用的词向量样本 """ self.userdict = userdict self.orient = orient self.stopwords = stopwords jieba.load_userdict(self.userdict) # 载入关键词词典 tf = tf.copy() # 防止对函数之外的原样本框造成改动 print('切词中,请稍候……') rule = re.compile(u'[^\u4e00-\u9fa5]') # 清洗所有样本,只保留汉字 for i in range(0, tf.shape[0]): try: tf.iloc[i, 2] = rule.sub('', tf.iloc[i, 2]) except TypeError: print('样本清洗Error: doc_id = ' + str(i)) continue if self.stopwords is not None: stopwords = txt_to_list(self.stopwords) # 载入停用词表 else: stopwords = [] # 开始切词 words = [] items = range(0, len(tf)) with alive_bar(len(items), force_tty=True, bar='circles') as bar: for i, row in tf.iterrows(): item = row['正文'] result = jieba.cut(item) # 同时过滤停用词 word = '' for element in result: if element not in stopwords: if element != '\t': word += element word += " " words.append(word) bar() # CountVectorizer() 可以自动完成词频统计,通过fit_transform生成文本向量和词袋库 # 如果需要换成 tfidfVectorizer, 把下面三行修改一下就可以了 vect = CountVectorizer() X = vect.fit_transform(words) self.vectorizer = vect matrix = X X = X.toarray() # 二维ndarray可以展示在pycharm里,但是和DataFrame性质完全不同 # ndarray 没有 index 和 column features = vect.get_feature_names() XX = pd.DataFrame(X, index=tf['id'], columns=features) self.DTM0 = matrix self.DTM = XX self.features = features # # 下面是之前走的弯路,不足一哂 # words_bag = vect.vocabulary_ # # 字典的转置(注意只适用于vk一一对应的情况,1v多k请参考setdefault) # bag_words = dict((v, k) for k, v in words_bag.items()) # # # 字典元素的排列顺序不等于字典元素值的排列顺序 # lst = [] # for i in range(0, len(XX.columns)): # lst.append(bag_words[i]) # XX.columns = lst if orient: dict_filter = txt_to_list(self.userdict) for word in features: if word not in dict_filter: XX.drop([word], axis=1, inplace=True) self.DTM_key = XX def get_feature_names(self): return self.features def strip_non_keywords(self, df): ff = df.copy() dict_filter = txt_to_list(self.userdict) for word in self.features: if word not in dict_filter: ff.drop([word], axis=1, inplace=True) return ff def make_doc_freq(word, doc): """ :param word: 指的是要对其进行词频统计的关键词 :param doc: 指的是要遍历的文本 :return: lst: 返回字典,记录关键词在文本当中出现的频次以及上下文 """ # 使用正则表达式进行匹配, 拼接成pattern # re.S表示会自动换行 # finditer是findall的迭代器版本,通过遍历可以依次打印出子串所在的位置 it = re.finditer(word, doc, re.S) # match.group()可以返回子串,match.span()可以返回索引 lst = [] for match in it: lst.append(match.span()) freq = dict() freq['Frequency'] = len(lst) # 将上下文结果也整理为一个字典 context = dict() for i in range(0, len(lst)): # 将span的范围前后各扩展不多于10个字符,得到上下文 try: # 为了划出适宜的前后文范围,需要设定索引的最大值和最小值 # 因此要比较span+10和doc极大值,span-10和doc极小值 # 最大值在两者间取小,最小值在两者间取大 MAX = min(lst[i][1] + 10, len(doc)) MIN = max(0, lst[i][0] - 10) # 取得上下文 context[str(i)] = doc[MIN: MAX] except IndexError: print('IndexError: ' + word) freq['Context'] = context return freq def make_info_freq(name, pattern, doc): """ :param name: 指的是对其进行词频统计的形式 :param pattern: 指的是对其进行词频统计的正则表达式 :param doc: 指的是要遍历的文本 :return: lst: 返回字典,记录关键词在文本当中出现的频次以及上下文 注:该函数返回字典中的context元素为元组:(关键词,上下文) """ # 使用正则表达式进行匹配, 拼接成pattern # re.S表示会自动换行 # finditer是findall的迭代器版本,通过遍历可以依次打印出子串所在的位置 it = re.finditer(pattern[0], doc, re.S) # match.group()可以返回子串,match.span()可以返回索引 cls = pattern[1] lst = [] for match in it: lst.append(match.span()) freq = dict() freq['Frequency'] = len(lst) freq['Name'] = name # 将上下文结果也整理为一个字典 context = dict() for i in range(0, len(lst)): # 将span的范围前后各扩展不多于10个字符,得到上下文 try: # 为了划出适宜的前后文范围,需要设定索引的最大值和最小值 # 因此要比较span+10和doc极大值,span-10和doc极小值 # 最大值在两者间取小,最小值在两者间取大 MAX = min(lst[i][1] + 10, len(doc)) MIN = max(0, lst[i][0] - 10) # 取得匹配到的关键词,并做掐头去尾处理 word = match_cut(doc[lst[i][0]: lst[i][1]], cls) # 将关键词和上下文打包,存储到 context 条目中 context[str(i)] = (word, doc[MIN: MAX]) except IndexError: print('IndexError: ' + name) freq['Context'] = context return freq def make_docs_freq(word, docs): """ :param word: 指的是要对其进行词频统计的关键词 :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列 (iloc: 0),正文列 (iloc: 2) 和预留出的频次列 (iloc: 4) :return: 返回字典,其中包括“单关键词-单文本”的词频字典集合,以及计数结果汇总 """ freq = dict() # 因为总频数是通过"+="的方式计算,不是简单赋值,所以要预设为0 freq['Total Frequency'] = 0 docs = docs.copy() # 防止对函数之外的原样本框造成改动 for i in range(0, len(docs)): # 对于每个文档,都形成一个字典,字典包括关键词在该文档出现的频数和上下文 # id需要在第0列,正文需要在第2列 freq['Doc' + str(docs.iloc[i, 0])] = make_doc_freq(word, docs.iloc[i, 2]) # 在给每个文档形成字典的同时,对于总概率进行滚动加总 freq['Total Frequency'] += freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] docs.iloc[i, 4] = freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] # 接下来建立一个DFC(doc-freq-context)统计面板,汇总所有文档对应的词频数和上下文 # 首先构建(id, freq)的字典映射 xs = docs['id'] ys = docs['freq'] # zip(迭代器)是一个很好用的方法,建议多用 id_freq = {x: y for x, y in zip(xs, ys)} # 新建一个空壳DataFrame,接下来把数据一条一条粘贴进去 data = pd.DataFrame(columns=['id', 'freq', 'word', 'num', 'context']) for item in xs: doc = freq['Doc' + str(item)] num = doc['Frequency'] context = doc['Context'] for i in range(0, num): strip = {'id': item, 'freq': id_freq[item], 'word': word, 'num': i, 'context': context[str(i)]} # 默认orient参数等于columns # 如果字典的值是标量,那就必须传递一个index,这是规定 strip = pd.DataFrame(strip, index=[None]) # df的append方法只能通过重新赋值来进行修改 data = data.append(strip) data.set_index(['id', 'freq', 'word'], drop=True, inplace=True) freq['DFC'] = data return freq def make_infos_freq(name, pattern, docs): """ :param name: 指的是对其进行词频统计的形式 :param pattern: 指的是对其进行词频统计的(正则表达式, 裁剪方法) :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列(iloc: 0)和正文列(iloc: 2) :return: 返回字典,其中包括“单关键词-单文本”的词频字典集合,以及计数结果汇总 """ freq = dict() # 因为总频数是通过"+="的方式计算,不是简单赋值,所以要预设为0 freq['Total Frequency'] = 0 docs = docs.copy() # 防止对函数之外的原样本框造成改动 items = range(0, len(docs)) with alive_bar(len(items), force_tty=True, bar='circles') as bar: for i in items: # 对于每个文档,都形成一个字典,字典包括关键词在该文档出现的频数和上下文 # id需要在第0列,正文需要在第2列 # pattern 要全须全尾地传递进去,因为make_info_freq两个参数都要用 freq['Doc' + str(docs.iloc[i, 0])] = make_info_freq(name, pattern, docs.iloc[i, 2]) # 在给每个文档形成字典的同时,对于总概率进行滚动加总 freq['Total Frequency'] += freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] docs.iloc[i, 4] = freq['Doc' + str(docs.iloc[i, 0])]['Frequency'] bar() # 接下来建立一个DFC(doc-freq-context)统计面板,汇总所有文档对应的词频数和上下文 # 首先构建(id, freq)的字典映射 xs = docs['id'] ys = docs['freq'] # zip(迭代器)是一个很好用的方法,建议多用 id_freq = {x: y for x, y in zip(xs, ys)} # 新建一个空壳DataFrame,接下来把数据一条一条粘贴进去 data = pd.DataFrame(columns=['id', 'freq', 'form', 'word', 'num', 'context']) for item in xs: doc = freq['Doc' + str(item)] num = doc['Frequency'] # 从(关键词,上下文)中取出两个元素 context = doc['Context'] for i in range(0, num): # context 中的关键词已经 match_cut 完毕,不需要重复处理 strip = {'id': item, 'form': name, 'freq': id_freq[item], 'word': context[str(i)][0], 'num': i, 'context': context[str(i)][1]} # 默认orient参数等于columns # 如果字典的值是标量,那就必须传递一个index,这是规定 strip = pd.DataFrame(strip, index=[None]) # df的append方法只能通过重新赋值来进行修改 data = data.append(strip) data.set_index(['id', 'freq', 'form', 'word'], drop=True, inplace=True) freq['DFC'] = data print(name + ' Completed') return freq def words_docs_freq(words, docs): """ :param words: 表示要对其做词频统计的关键词清单 :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列、正文列、和频率列 :return: 返回字典,其中包括“单关键词-多文本”的词频字典集合,以及最终的DFC(doc-frequency-context)和DTM(doc-term matrix) """ freqs = dict() # 与此同时新建一个空壳DataFrame,用于汇总DFC data = pd.DataFrame() # 新建一个空壳,用于汇总DTM(Doc-Term-Matrix) dtm = pd.DataFrame(None, columns=words, index=docs['id']) # 来吧,一个循环搞定所有 items = range(len(words)) with alive_bar(len(items), force_tty=True, bar='blocks') as bar: for word in words: freq = make_docs_freq(word, docs) freqs[word] = freq data = data.append(freq['DFC']) for item in docs['id']: dtm.loc[item, word] = freq['Doc' + str(item)]['Frequency'] bar() # 记得要sort一下,不然排序的方式不对(应该按照doc id来排列) data.sort_index(inplace=True) freqs['DFC'] = data freqs['DTM'] = dtm return freqs def infos_docs_freq(infos, docs): """ :param docs: 是要遍历的文本的集合,必须是pandas DataFrame的形式,至少包含id列和正文列 :param infos: 指的是正则表达式的列表,格式为字典,key是示例,如“(1)”,value 是正则表达式,如“([0-9])” :return: 返回字典,其中包括“单关键词-多文本”的词频字典集合,以及最终的DFC(doc-frequency-context)和DTM(doc-term matrix) """ freqs = dict() # 与此同时新建一个空壳DataFrame,用于汇总DFC data = pd.DataFrame() # 新建一个空壳,用于汇总DTM(Doc-Term-Matrix) dtm = pd.DataFrame(None, columns=list(infos.keys()), index=docs['id']) # 来吧,一个循环搞定所有 items = range(len(infos)) with alive_bar(len(items), force_tty=True, bar='blocks') as bar: for k, v in infos.items(): freq = make_infos_freq(k, v, docs) freqs[k] = freq data = data.append(freq['DFC']) for item in docs['id']: dtm.loc[item, k] = freq['Doc' + str(item)]['Frequency'] bar() # 记得要sort一下,不然排序的方式不对(应该按照doc id来排列) data.sort_index(inplace=True) freqs['DFC'] = data freqs['DTM'] = dtm return freqs def massive_pop(infos, doc): """ :param infos: List,表示被删除内容对应的正则表达式 :param doc: 表示正文 :return: 返回一个完成删除的文本 """ for info in infos: doc = re.sub(info, '', doc) return doc def massive_sub(infos, doc): """ :param infos: Dict, 表示被替换内容对应的正则表达式及替换对象 :param doc: 表示正文 :return: 返回一个完成替换的文本 """ for v, k in infos: doc = re.sub(v, k, doc) return doc # 接下来取每个样本的前n句话(或者不多于前n句话的内容),再做一次进行对比 # 取前十句话的原理是,对!?。等表示语义结束的符号进行计数,满十次为止 def top_n_sent(n, doc, percentile=1): """ :param n: n指句子的数量,这个函数会返回一段文本中前n句话,若文本内容不多于n句,则全文输出 :param word: 指正文内容 :param percentile: 按照分位数来取句子时,要输入的分位,比如一共有十句话,取50%分位就是5句 如果有11句话,向下取整也是输出5句 :return: 返回字符串:前n句话 """ info = '[。?!]' # 在这个函数体内,函数主体语句的作用域大于循环体,因此循环内的变量相当于局部变量 # 因此想在循环外直接返回,就会出现没有定义的错误,因此可以做一个全局声明 # 但是不建议这样做,因为如果函数外有一个变量恰巧和局部变量重名,那函数外的变量也会被改变 # 因此还是推荐多使用迭代器,把循环包裹成迭代器,可以解决很多问题 # 而且已经封装好的迭代器,例如re.findall_iter,就不用另外再去写了,调用起来很方便 # 如下,第一行代码的作用是用列表包裹迭代器,形成一个生成器的列表 # 每个生成器都存在自己的 Attribute re_iter = list(re.finditer(info, doc)) # max_iter 是 re 匹配到的最大次数 max_iter = len(re_iter) # 这一句表示,正文过于简短,或者没有标点,此时直接输出全文 if max_iter == 0: return doc # 考虑 percentile 的情况,如果总共有11句,就舍弃掉原来的 n,直接改为总句数的 percentile 对应的句子数 # 注意是向下取整 if percentile != 1: n = math.ceil(percentile * max_iter) # 如果匹配到至少一句,循环自然结束,输出结果 if n > 0: return doc[0: re_iter[n - 1].end()] # 如果正文过于简短,或设定的百分比过低,一句话都凑不齐,此时直接输出第一句 elif n == 0: return doc[0: re_iter[0].end()] # 如果匹配到的句子数大于 n,此时只取前 n 句 if max_iter >= n: return doc[0: re_iter[n - 1].end()] # 如果匹配到的句子不足 n 句,直接输出全部内容 elif 0 < max_iter < n: return doc[0: re_iter[-1].end()] # 为减少重名的可能,尽量在函数体内减少变量的使用 def dtm_sort_filter(dtm, keymap, name=None): """ :param dtm: 前面生成的词频统计矩阵:Doc-Term-Matrix :param keymap: 字典,标明了 类别-关键词列表 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个字典,字典包含两个 pandas.DataFrame: 一个是表示各个种类是否存在的二进制表,另一个是最终的种类数 """ dtm = dtm.applymap(lambda x: 1 if x != 0 else 0) strips = {} for i, row in dtm.iterrows(): strip = {} for k, v in keymap.items(): strip[k] = 0 for item in v: try: strip[k] += row[item] except KeyError: pass strips[i] = strip dtm_class = pd.DataFrame.from_dict(strips, orient='index') dtm_class = dtm_class.applymap(lambda x: 1 if x != 0 else 0) dtm_final = dtm_class.agg(np.sum, axis=1) result = {'DTM_class': dtm_class, 'DTM_final': dtm_final} return result def dtm_point_giver(dtm, keymap, scoremap, name=None): """ :param dtm: 前面生成的词频统计矩阵:Doc-Term-Matrix :param keymap: 字典,{TypeA: [word1, word2, word3, ……], TypeB: ……} :param scoremap: 字典,标明了 类别-分值 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本的分值(所有关键词的分值取最高) """ dtm = dtm.applymap(lambda x: 1 if x != 0 else 0) # 非 keymap 中词会被过滤掉 strips = {} for i, row in dtm.iterrows(): strip = {} for k, v in keymap.items(): strip[k] = 0 for item in v: try: strip[k] += row[item] except KeyError: pass strips[i] = strip dtm_class = pd.DataFrame.from_dict(strips, orient='index') dtm_class = dtm_class.applymap(lambda x: 1 if x != 0 else 0) # 找到 columns 对应的分值 keywords = list(dtm_class.columns) multiplier = [] for keyword in keywords: multiplier.append(scoremap[keyword]) # DataFrame 的乘法运算,不会改变其 index 和 columns dtm_score = dtm_class.mul(multiplier, axis=1) # 取一个最大值来赋分 dtm_score = dtm_score.agg(np.max, axis=1) return dtm_score def dfc_sort_filter(dfc, keymap, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param keymap: 字典,标明了 关键词-所属种类 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本中所包含的业务种类数 """ # 接下来把关键词从 dfc 的 Multi-index 中拿出来(这个index本质上就是一个ndarray) # 拿出来关键词就可以用字典进行映射 # 先新建一列class-id,准备放置映射的结果 dfc.insert(0, 'cls-id', None) # 开始遍历 for i in range(0, len(dfc.index)): dfc.iloc[i, 0] = keymap[dfc.index[i][2]] # 理论上就可以直接通过 excel 的分类计数功能来看业务种类数了 # 失败了,excel不能看种类数,只能给所有值做计数,因此还需要借助python的unique语句 # dfc.to_excel('被监管业务统计.xlsx') # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(pd.Series(did).unique()) # 接下来获得每一类的结果,注:多重索引的取值值得关注 uni = {} for item in did: uni[item] = len(dfc.loc[item, :, :]['cls-id'].unique()) # 把生成的字典转换为以键值行索引的 DataFrame uni = pd.DataFrame.from_dict(uni, orient='index') uni.fillna(0, axis=1, inplace=True) # uni.to_excel(name) return uni def dfc_point_giver(dfc, keymap, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param keymap: 字典,标明了 关键词-分值 两者关系 :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本的分值(所有关键词的分值取最高) """ dfc.insert(0, 'point', None) # 开始遍历 for i in range(0, len(dfc.index)): dfc.iloc[i, 0] = keymap[dfc.index[i][2]] # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(pd.Series(did).unique()) # 接下来获得每一类的结果,注:多重索引的取值值得关注 uni = {} for item in did: uni[item] = max(dfc.loc[item, :, :]['point'].unique()) # 把生成的字典转换为以键值行索引的 DataFrame uni = pd.DataFrame.from_dict(uni, orient='index') uni.fillna(0, axis=1, inplace=True) # uni.to_excel(name) return uni def dfc_sort_counter(dfc, name=None): """ :param dfc: 前面生成的词频统计明细表:Doc-Frequency-Context :param name: 最终生成 Excel 文件的名称(需要包括后缀) :return: 返回一个 pandas.DataFrame,表格有两列,一列是文本id,一列是文本中所包含的业务种类数 """ # 可以对于每一种index做一个计数,使用loc索引到的对象是一个DataFrame dfc.insert(0, 'form', None) for i in range(0, dfc.shape[0]): dfc.iloc[i, 0] = dfc.index[i][2] # 先拿到一个doc id的列表 did = [] for item in dfc.index.unique(): did.append(item[0]) did = list(
pd.Series(did)
pandas.Series
from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.base import clone from sklearn.metrics import recall_score, precision_score, accuracy_score, confusion_matrix import pandas as pd from random import shuffle import matplotlib.pyplot as plt import seaborn as sb import os import joblib sb.set(style="whitegrid") def sub_sample(X_train, y_train, sub_sample_size): # re-join X_train and y_train for more convenient sub-sampling per label joined_train =
pd.DataFrame({"X_train": X_train, "y_train": y_train})
pandas.DataFrame
""" This is the main script to be run from the directory root, it will start the Flask application running which one can then connect to. """ # external packages from astrodbkit2.astrodb import Database, REFERENCE_TABLES # used for pulling out database and querying from astropy.coordinates import SkyCoord from astropy.table import Table # tabulating from bokeh.embed import json_item # bokeh embedding from bokeh.layouts import row, column # bokeh displaying nicely from bokeh.models import ColumnDataSource, Range1d, CustomJS,\ Select, Toggle, TapTool, OpenURL, HoverTool # bokeh models from bokeh.plotting import figure, curdoc # bokeh plotting from flask import Flask, render_template, request, redirect, url_for, jsonify # website functionality from flask_cors import CORS # cross origin fix (aladin mostly) from flask_wtf import FlaskForm # web forms from markdown2 import markdown # using markdown formatting import numpy as np # numerical python import pandas as pd # running dataframes from wtforms import StringField, SubmitField # web forms from wtforms.validators import DataRequired, StopValidation # validating web forms # internal packages import argparse # system arguments import os # operating system from typing import Union, List # type hinting from urllib.parse import quote # handling strings into url friendly form # local packages from simple_callbacks import JSCallbacks # initialise app_simple = Flask(__name__) # start flask app app_simple.config['SECRET_KEY'] = os.urandom(32) # need to generate csrf token as basic security for Flask CORS(app_simple) # makes CORS work (aladin notably) def sysargs(): """ These are the system arguments given after calling this python script Returns ------- _args The different argument parameters, can be grabbed via their long names (e.g. _args.host) """ _args = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) _args.add_argument('-i', '--host', default='127.0.0.1', help='Local IP Address to host server, default 127.0.0.1') _args.add_argument('-p', '--port', default=8000, help='Local port number to host server through, default 8000', type=int) _args.add_argument('-d', '--debug', help='Run Flask in debug mode?', default=False, action='store_true') _args.add_argument('-f', '--file', default='SIMPLE.db', help='Database file path relative to current directory, default SIMPLE.db') _args = _args.parse_args() return _args class SimpleDB(Database): # this keeps pycharm happy about unresolved references """ Wrapper class for astrodbkit2.Database specific to SIMPLE """ Sources = None # initialise class attribute Photometry = None Parallaxes = None class Inventory: """ For use in the solo result page where the inventory of an object is queried, grabs also the RA & Dec """ ra: float = 0 dec: float = 0 def __init__(self, resultdict: dict): """ Constructor method for Inventory Parameters ---------- resultdict: dict The dictionary of all the key: values in a given object inventory """ self.results: dict = resultdict # given inventory for a target for key in self.results: # over every key in inventory if args.debug: print(key) if key in REFERENCE_TABLES: # ignore the reference table ones continue lowkey: str = key.lower() # lower case of the key mkdown_output: str = self.listconcat(key) # get in markdown the dataframe value for given key setattr(self, lowkey, mkdown_output) # set the key attribute with the dataframe for given key try: srcs: pd.DataFrame = self.listconcat('Sources', rtnmk=False) # open the Sources result self.ra, self.dec = srcs.ra[0], srcs.dec[0] except (KeyError, AttributeError): pass return def listconcat(self, key: str, rtnmk: bool = True) -> Union[pd.DataFrame, str]: """ Concatenates the list for a given key Parameters ---------- key: str The key corresponding to the inventory rtnmk: bool Switch for whether to return either a markdown string or a dataframe """ obj: List[dict] = self.results[key] # the value for the given key df: pd.DataFrame = pd.concat([
pd.DataFrame(objrow, index=[i])
pandas.DataFrame
from bs4 import BeautifulSoup import urllib.request import os.path import pandas as pd import re final = pd.DataFrame() plays = ['antony-and-cleopatra', 'asyoulikeit', 'errors', 'coriolanus', 'hamlet', 'henry4pt1', 'henry4pt2','henryv', 'juliuscaesar', 'lear', 'macbeth', 'measure-for-measure', 'merchant', 'msnd', 'muchado', 'othello', 'richardii', 'richardiii', 'romeojuliet', 'shrew', 'tempest', 'twelfthnight', 'twogentlemen', 'winterstale'] #not included in nfs: All's Well That Ends Well, Cymbeline, Henry VI1-3, Henry VIII, # Love's Labours Lost, Merchant of Venice, Merry Wives of Windsor, # Pericles, Timon of Athens, Titus Andronicus, Troilus & Cressida for play in plays: print(play) play_lines = pd.DataFrame() for ii in range(0,500,2): if os.path.isfile(play+str(ii)) : fname = play+str(ii) file = open(fname) soup = BeautifulSoup(file.read(), 'html.parser') lines = pd.DataFrame() lines_m = pd.DataFrame() lines_o = pd.DataFrame() for translation in ['original', 'modern']: if translation == 'original': quotes = soup.find_all('td', attrs={'class':'noFear-left'}) else: quotes = soup.find_all('td', attrs={'class':'noFear-right'}) for q in quotes: if translation == 'original': player = q.find('b').text if q.find('b') else None originals = q.find_all('div', attrs={'class':translation+'-line'}) originals = [orig.text for orig in originals if orig] original = ' '.join(originals) lines_o = lines_o.append(
pd.DataFrame({'player':player, translation: original}, index=[0])
pandas.DataFrame
from __future__ import division import os import sys from pdb import set_trace import pandas as pd from sklearn.ensemble import RandomForestClassifier from Utils.FileUtil import list2dataframe from smote import SMOTE from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV root = os.path.join(os.getcwd().split('src')[0], 'src') if root not in sys.path: sys.path.append(root) def getTunings(fname): raw = pd.read_csv(root + '/old/tunings.csv').transpose().values.tolist() formatd =
pd.DataFrame(raw[1:], columns=raw[0])
pandas.DataFrame
import numpy as np import pandas as pd import sklearn.metrics import ubelt as ub from sklearn.preprocessing import LabelEncoder def classification_report(y_true, y_pred, target_names=None, sample_weight=None, verbose=False): """ Computes a classification report which is a collection of various metrics commonly used to evaulate classification quality. This can handle binary and multiclass settings. Note that this function does not accept probabilities or scores and must instead act on final decisions. See ovr_classification_report for a probability based report function using a one-vs-rest strategy. This emulates the bm(cm) Matlab script written by <NAME> that is used for computing bookmaker, markedness, and various other scores. References: https://csem.flinders.edu.au/research/techreps/SIE07001.pdf https://www.mathworks.com/matlabcentral/fileexchange/5648-bm-cm-?requestedDomain=www.mathworks.com <NAME>, (2012). A Comparison of MCC and CEN Error Measures in MultiClass Prediction Example: >>> # xdoctest: +IGNORE_WANT >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3] >>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3] >>> target_names = None >>> sample_weight = None >>> report = classification_report(y_true, y_pred, verbose=0) >>> print(report['confusion']) pred 1 2 3 Σr real 1 3 1 1 5 2 0 4 1 5 3 1 1 6 8 Σp 4 6 8 18 >>> print(report['metrics']) metric precision recall fpr markedness bookmaker mcc support class 1 0.7500 0.6000 0.0769 0.6071 0.5231 0.5635 5 2 0.6667 0.8000 0.1538 0.5833 0.6462 0.6139 5 3 0.7500 0.7500 0.2000 0.5500 0.5500 0.5500 8 combined 0.7269 0.7222 0.1530 0.5751 0.5761 0.5758 18 Ignore: >>> size = 100 >>> rng = np.random.RandomState(0) >>> p_classes = np.array([.90, .05, .05][0:2]) >>> p_classes = p_classes / p_classes.sum() >>> p_wrong = np.array([.03, .01, .02][0:2]) >>> y_true = testdata_ytrue(p_classes, p_wrong, size, rng) >>> rs = [] >>> for x in range(17): >>> p_wrong += .05 >>> y_pred = testdata_ypred(y_true, p_wrong, rng) >>> report = classification_report(y_true, y_pred, verbose='hack') >>> rs.append(report) >>> import plottool as pt >>> pt.qtensure() >>> df = pd.DataFrame(rs).drop(['raw'], axis=1) >>> delta = df.subtract(df['target'], axis=0) >>> sqrd_error = np.sqrt((delta ** 2).sum(axis=0)) >>> print('Error') >>> print(sqrd_error.sort_values()) >>> ys = df.to_dict(orient='list') >>> pt.multi_plot(ydata_list=ys) """ if target_names is None: unique_labels = np.unique(np.hstack([y_true, y_pred])) if len(unique_labels) == 1 and (unique_labels[0] == 0 or unique_labels[0] == 1): target_names = np.array([False, True]) y_true_ = y_true y_pred_ = y_pred else: lb = LabelEncoder() lb.fit(unique_labels) y_true_ = lb.transform(y_true) y_pred_ = lb.transform(y_pred) target_names = lb.classes_ else: y_true_ = y_true y_pred_ = y_pred # Real data is on the rows, # Pred data is on the cols. cm = sklearn.metrics.confusion_matrix( y_true_, y_pred_, sample_weight=sample_weight) confusion = cm # NOQA k = len(cm) # number of classes N = cm.sum() # number of examples real_total = cm.sum(axis=1) pred_total = cm.sum(axis=0) # the number of "positive" cases **per class** n_pos = real_total # NOQA # the number of times a class was predicted. n_neg = N - n_pos # NOQA # number of true positives per class n_tps = np.diag(cm) # number of true negatives per class n_fps = (cm - np.diagflat(np.diag(cm))).sum(axis=0) tprs = n_tps / real_total # true pos rate (recall) tpas = n_tps / pred_total # true pos accuracy (precision) unused = (real_total + pred_total) == 0 fprs = n_fps / n_neg # false pose rate fprs[unused] = np.nan rprob = real_total / N pprob = pred_total / N if len(cm) == 2: [[A, B], [C, D]] = cm (A * D - B * C) / np.sqrt((A + C) * (B + D) * (A + B) * (C + D)) # bookmaker is analogous to recall, but unbiased by class frequency rprob_mat = np.tile(rprob, [k, 1]).T - (1 - np.eye(k)) bmcm = cm.T / rprob_mat bms = np.sum(bmcm.T, axis=0) / N # markedness is analogous to precision, but unbiased by class frequency pprob_mat = np.tile(pprob, [k, 1]).T - (1 - np.eye(k)) mkcm = cm / pprob_mat mks = np.sum(mkcm.T, axis=0) / N mccs = np.sign(bms) * np.sqrt(np.abs(bms * mks)) perclass_data = ub.odict([ ('precision', tpas), ('recall', tprs), ('fpr', fprs), ('markedness', mks), ('bookmaker', bms), ('mcc', mccs), ('support', real_total), ]) tpa = np.nansum(tpas * rprob) tpr = np.nansum(tprs * rprob) fpr = np.nansum(fprs * rprob) mk = np.nansum(mks * rprob) bm = np.nansum(bms * pprob) # The simple mean seems to do the best mccs_ = mccs[~np.isnan(mccs)] if len(mccs_) == 0: mcc_combo = np.nan else: mcc_combo = np.nanmean(mccs_) combined_data = ub.odict([ ('precision', tpa), ('recall', tpr), ('fpr', fpr), ('markedness', mk), ('bookmaker', bm), # ('mcc', np.sign(bm) * np.sqrt(np.abs(bm * mk))), ('mcc', mcc_combo), # np.sign(bm) * np.sqrt(np.abs(bm * mk))), ('support', real_total.sum()) ]) # Not sure how to compute this. Should it agree with the sklearn impl? if verbose == 'hack': verbose = False mcc_known = sklearn.metrics.matthews_corrcoef( y_true, y_pred, sample_weight=sample_weight) mcc_raw = np.sign(bm) * np.sqrt(np.abs(bm * mk)) import scipy as sp def gmean(x, w=None): if w is None: return sp.stats.gmean(x) return np.exp(np.nansum(w * np.log(x)) / np.nansum(w)) def hmean(x, w=None): if w is None: return sp.stats.hmean(x) return 1 / (np.nansum(w * (1 / x)) / np.nansum(w)) def amean(x, w=None): if w is None: return np.mean(x) return np.nansum(w * x) / np.nansum(w) report = { 'target': mcc_known, 'raw': mcc_raw, } # print('%r <<<' % (mcc_known,)) means = { 'a': amean, # 'h': hmean, 'g': gmean, } weights = { 'p': pprob, 'r': rprob, '': None, } for mean_key, mean in means.items(): for w_key, w in weights.items(): # Hack of very wrong items if mean_key == 'g': if w_key in ['r', 'p', '']: continue if mean_key == 'g': if w_key in ['r']: continue m = mean(mccs, w) r_key = '{} {}'.format(mean_key, w_key) report[r_key] = m # print(r_key) # print(np.abs(m - mcc_known)) # print(ut.repr4(report, precision=8)) return report # print('mcc_known = %r' % (mcc_known,)) # print('mcc_combo1 = %r' % (mcc_combo1,)) # print('mcc_combo2 = %r' % (mcc_combo2,)) # print('mcc_combo3 = %r' % (mcc_combo3,)) index =
pd.Index(target_names, name='class')
pandas.Index
"""Log Imputation Class <NAME> 2021 """ import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn import metrics """Log Imputation Class <NAME> 2021 """ from collections import defaultdict import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn import metrics class LogImputer: def __init__( self, train, test, imputer, iterative=False, log10logs=None, imputer_kwargs=dict(), ): self.train = train self.test = test self.imputer = imputer self.imputer_init = imputer_kwargs self.iterative = iterative self.log10logs = log10logs self.encoders = dict() self.scalar = None self.imputation_train_impts = dict() self.imputation_train_dfs = dict() def encode(self, logs): """Encode logs to int. Args: logs ([type]): [description] """ if isinstance(logs, str): logs = [logs] data = pd.concat([self.train, self.test]) for log in logs: self.encoders[log] = LabelEncoder() self.encoders[log].fit(data[log]) self.train[log] = self.encoders[log].transform(self.train[log]) self.test[log] = self.encoders[log].transform(self.test[log]) def decode(self): """Decode logs based unpon previous encodings.""" for log in self.encoders: self.train[log] = self.encoders[log].inverse_transform(self.train[log]) self.test[log] = self.encoders[log].inverse_transform(self.test[log]) def scale(self): """Standard scaling and log10 transform""" for log in self.log10logs: self.train[log] = np.log10(self.train[log]) self.test[log] = np.log10(self.test[log]) data = pd.concat([self.train, self.test]) self.scalar = StandardScaler() self.scalar.fit(data) self.train.loc[:, :] = self.scalar.transform(self.train) self.test.loc[:, :] = self.scalar.transform(self.test) def _test_data_prep(self, data, test_target, set_to_nan=0.3): """This method sets set_to_nan fraction of the values to nan so we can measure the model accuracy.""" data = data.copy() # just get non-nan values for test target sub = data.dropna(subset=[test_target]) # introduce random missing rand_set_mask = np.random.random(len(sub)) < set_to_nan replace = sub.index[rand_set_mask] # create flags, create and return new data data.loc[replace, test_target] = np.nan data["set_nan"] = False data.loc[replace, "set_nan"] = True data["was_nan"] = data[test_target].isna() # print("Col, InputSize, Number of Nan, % NaN, Original Nan", "Training Size") # print( # f"{j:>3}", # f"{data.shape[0]:>10}", # f"{replace.size:>14}", # f"{100*np.sum(data.set_nan)/sub.shape[0]:>6.2f}", # f"{np.sum(data.was_nan):>13}", # f"{sub.shape[0]-replace.size:>13}", # ) return data def fit(self, logs=None, target_logs=None, test_proportion=0.3, **kwargs): """Fit the imputer/s. Args: logs ([type], optional): [description]. Defaults to None. """ if logs is None: logs = self.train.columns self.fitted_logs = logs if target_logs is None: target_logs = self.train.columns for key in target_logs: self.imputation_train_dfs[key] = self._test_data_prep( self.train, key, set_to_nan=test_proportion ) # mice mode if self.iterative: for key in target_logs: self.imputation_train_impts[key] = IterativeImputer( self.imputer(**self.imputer_init), **kwargs ) self.imputation_train_impts[key].fit( self.imputation_train_dfs[key][logs].copy() ) # direct prediction mode (won't work for reg. that don't handle nans) else: for key in target_logs: self.imputation_train_impts[key] = self.imputer(**self.imputer_init) self.imputation_train_impts[key].fit( self.imputation_train_dfs[key] .dropna(subset=[key]) .loc[:, set(logs).difference((key,))], self.imputation_train_dfs[key][key].dropna(), ) def predict(self, predict_for="train"): """Prediction Mode - Not available for iterative imputer.""" pass def impute(self, impute_for="train"): """Imputation Mode""" df = self.__getattribute__(impute_for) if self.iterative: imputed = { key: self.imputation_train_impts[key].transform(df[self.fitted_logs]) for key in self.imputation_train_impts } output_df = imputed[tuple(imputed.keys())[0]] for key in imputed.keys(): output_df[key] = imputed[key][key] else: predicted = { key: self.imputation_train_impts[key].predict( df.loc[:, set(self.fitted_logs).difference((key,))] ) for key in self.imputation_train_impts } imputed = { key: np.where(df[key].isna().values, ar, df[key].values) for key, ar in predicted.items() } output_df = df.copy() for key in imputed: output_df[key] = imputed[key] return output_df def _impute_training(self): if self.iterative: imputed = {} for key in self.imputation_train_impts: imputed[key] = self.imputation_train_dfs[key].copy() imputed[key].loc[:, self.fitted_logs] = self.imputation_train_impts[ key ].transform(self.imputation_train_dfs[key][self.fitted_logs]) else: imputed = {} for key in self.imputation_train_dfs: fitted_logs = set(self.fitted_logs).difference((key,)) pred = self.imputation_train_impts[key].predict( self.imputation_train_dfs[key][fitted_logs] ) imputed[key] = self.imputation_train_dfs[key].copy() mask = self.imputation_train_dfs[key][key].isna() imputed[key].loc[mask, key] = pred[mask] return imputed def _impute_test(self): if self.iterative: imputed = {} for key in self.imputation_train_impts: imputed[key] = self.test.copy() imputed[key][key] = np.nan imputed[key].loc[:, self.fitted_logs] = self.imputation_train_impts[ key ].transform(imputed[key][self.fitted_logs]) else: imputed = {} for key in self.imputation_train_dfs: fitted_logs = set(self.fitted_logs).difference((key,)) pred = self.imputation_train_impts[key].predict(self.test[fitted_logs]) imputed[key] = self.test.copy() imputed[key].loc[:, key] = pred return imputed def score(self, score="train"): """Evaluate the models against the NANed data from the training set.""" scores = defaultdict(dict) if score == "train": imputed_dfs = self._impute_training() df = self.train elif score == "test": imputed_dfs = self._impute_test() df = self.test else: raise ValueError(f"unknown score type: {score}") for key, d in imputed_dfs.items(): if score == "train": mask = self.imputation_train_dfs[key].set_nan.values elif score == "test": mask = ~df[key].isna() truth = df.loc[mask, key].values test = d.loc[mask, key].values se = np.power((truth - test) / truth, 2) perc_error_score = np.nanmean(np.power(se, 0.5)) * 100.0 er = dict( perc_error=perc_error_score, explained_var=metrics.explained_variance_score(truth, test), max_error=metrics.max_error(truth, test), mae=metrics.mean_absolute_error(truth, test), mse=metrics.mean_squared_error(truth, test), r2=metrics.r2_score(truth, test), ) scores[key] = er return
pd.DataFrame(scores)
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import datetime from io import StringIO import re import numpy as np import pytest from pandas.compat import lrange import pandas as pd from pandas import DataFrame, Index, MultiIndex, option_context from pandas.util import testing as tm import pandas.io.formats.format as fmt lorem_ipsum = ( "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod" " tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim" " veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex" " ea commodo consequat. Duis aute irure dolor in reprehenderit in" " voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur" " sint occaecat cupidatat non proident, sunt in culpa qui officia" " deserunt mollit anim id est laborum.") def expected_html(datapath, name): """ Read HTML file from formats data directory. Parameters ---------- datapath : pytest fixture The datapath fixture injected into a test by pytest. name : str The name of the HTML file without the suffix. Returns ------- str : contents of HTML file. """ filename = '.'.join([name, 'html']) filepath = datapath('io', 'formats', 'data', 'html', filename) with open(filepath, encoding='utf-8') as f: html = f.read() return html.rstrip() @pytest.fixture(params=['mixed', 'empty']) def biggie_df_fixture(request): """Fixture for a big mixed Dataframe and an empty Dataframe""" if request.param == 'mixed': df = DataFrame({'A': np.random.randn(200), 'B': tm.makeStringIndex(200)}, index=lrange(200)) df.loc[:20, 'A'] = np.nan df.loc[:20, 'B'] = np.nan return df elif request.param == 'empty': df = DataFrame(index=np.arange(200)) return df @pytest.fixture(params=fmt._VALID_JUSTIFY_PARAMETERS) def justify(request): return request.param @pytest.mark.parametrize('col_space', [30, 50]) def test_to_html_with_col_space(col_space): df = DataFrame(np.random.random(size=(1, 3))) # check that col_space affects HTML generation # and be very brittle about it. result = df.to_html(col_space=col_space) hdrs = [x for x in result.split(r"\n") if re.search(r"<th[>\s]", x)] assert len(hdrs) > 0 for h in hdrs: assert "min-width" in h assert str(col_space) in h def test_to_html_with_empty_string_label(): # GH 3547, to_html regards empty string labels as repeated labels data = {'c1': ['a', 'b'], 'c2': ['a', ''], 'data': [1, 2]} df = DataFrame(data).set_index(['c1', 'c2']) result = df.to_html() assert "rowspan" not in result @pytest.mark.parametrize('df,expected', [ (DataFrame({'\u03c3': np.arange(10.)}), 'unicode_1'), (DataFrame({'A': ['\u03c3']}), 'unicode_2') ]) def test_to_html_unicode(df, expected, datapath): expected = expected_html(datapath, expected) result = df.to_html() assert result == expected def test_to_html_decimal(datapath): # GH 12031 df = DataFrame({'A': [6.0, 3.1, 2.2]}) result = df.to_html(decimal=',') expected = expected_html(datapath, 'gh12031_expected_output') assert result == expected @pytest.mark.parametrize('kwargs,string,expected', [ (dict(), "<type 'str'>", 'escaped'), (dict(escape=False), "<b>bold</b>", 'escape_disabled') ]) def test_to_html_escaped(kwargs, string, expected, datapath): a = 'str<ing1 &amp;' b = 'stri>ng2 &amp;' test_dict = {'co<l1': {a: string, b: string}, 'co>l2': {a: string, b: string}} result = DataFrame(test_dict).to_html(**kwargs) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize('index_is_named', [True, False]) def test_to_html_multiindex_index_false(index_is_named, datapath): # GH 8452 df = DataFrame({ 'a': range(2), 'b': range(3, 5), 'c': range(5, 7), 'd': range(3, 5) }) df.columns = MultiIndex.from_product([['a', 'b'], ['c', 'd']]) if index_is_named: df.index = Index(df.index.values, name='idx') result = df.to_html(index=False) expected = expected_html(datapath, 'gh8452_expected_output') assert result == expected @pytest.mark.parametrize('multi_sparse,expected', [ (False, 'multiindex_sparsify_false_multi_sparse_1'), (False, 'multiindex_sparsify_false_multi_sparse_2'), (True, 'multiindex_sparsify_1'), (True, 'multiindex_sparsify_2') ]) def test_to_html_multiindex_sparsify(multi_sparse, expected, datapath): index = MultiIndex.from_arrays([[0, 0, 1, 1], [0, 1, 0, 1]], names=['foo', None]) df = DataFrame([[0, 1], [2, 3], [4, 5], [6, 7]], index=index) if expected.endswith('2'): df.columns = index[::2] with option_context('display.multi_sparse', multi_sparse): result = df.to_html() expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize('max_rows,expected', [ (60, 'gh14882_expected_output_1'), # Test that ... appears in a middle level (56, 'gh14882_expected_output_2') ]) def test_to_html_multiindex_odd_even_truncate(max_rows, expected, datapath): # GH 14882 - Issue on truncation with odd length DataFrame index = MultiIndex.from_product([[100, 200, 300], [10, 20, 30], [1, 2, 3, 4, 5, 6, 7]], names=['a', 'b', 'c']) df = DataFrame({'n': range(len(index))}, index=index) result = df.to_html(max_rows=max_rows) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize('df,formatters,expected', [ (DataFrame( [[0, 1], [2, 3], [4, 5], [6, 7]], columns=['foo', None], index=lrange(4)), {'__index__': lambda x: 'abcd' [x]}, 'index_formatter'), (DataFrame( {'months': [datetime(2016, 1, 1), datetime(2016, 2, 2)]}), {'months': lambda x: x.strftime('%Y-%m')}, 'datetime64_monthformatter'), (DataFrame({'hod': pd.to_datetime(['10:10:10.100', '12:12:12.120'], format='%H:%M:%S.%f')}), {'hod': lambda x: x.strftime('%H:%M')}, 'datetime64_hourformatter') ]) def test_to_html_formatters(df, formatters, expected, datapath): expected = expected_html(datapath, expected) result = df.to_html(formatters=formatters) assert result == expected def test_to_html_regression_GH6098(): df = DataFrame({ 'clé1': ['a', 'a', 'b', 'b', 'a'], 'clé2': ['1er', '2ème', '1er', '2ème', '1er'], 'données1': np.random.randn(5), 'données2': np.random.randn(5)}) # it works df.pivot_table(index=['clé1'], columns=['clé2'])._repr_html_() def test_to_html_truncate(datapath): index = pd.date_range(start='20010101', freq='D', periods=20) df = DataFrame(index=index, columns=range(20)) result = df.to_html(max_rows=8, max_cols=4) expected = expected_html(datapath, 'truncate') assert result == expected @pytest.mark.parametrize('sparsify,expected', [ (True, 'truncate_multi_index'), (False, 'truncate_multi_index_sparse_off') ]) def test_to_html_truncate_multi_index(sparsify, expected, datapath): arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] df = DataFrame(index=arrays, columns=arrays) result = df.to_html(max_rows=7, max_cols=7, sparsify=sparsify) expected = expected_html(datapath, expected) assert result == expected @pytest.mark.parametrize('option,result,expected', [ (None, lambda df: df.to_html(), '1'), (None, lambda df: df.to_html(border=0), '0'), (0, lambda df: df.to_html(), '0'), (0, lambda df: df._repr_html_(), '0'), ]) def test_to_html_border(option, result, expected): df = DataFrame({'A': [1, 2]}) if option is None: result = result(df) else: with option_context('display.html.border', option): result = result(df) expected = 'border="{}"'.format(expected) assert expected in result def test_display_option_warning(): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): pd.options.html.border @pytest.mark.parametrize('biggie_df_fixture', ['mixed'], indirect=True) def test_to_html(biggie_df_fixture): # TODO: split this test df = biggie_df_fixture s = df.to_html() buf = StringIO() retval = df.to_html(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) df.to_html(columns=['B', 'A'], col_space=17) df.to_html(columns=['B', 'A'], formatters={'A': lambda x: '{x:.1f}'.format(x=x)}) df.to_html(columns=['B', 'A'], float_format=str) df.to_html(columns=['B', 'A'], col_space=12, float_format=str) @pytest.mark.parametrize('biggie_df_fixture', ['empty'], indirect=True) def test_to_html_empty_dataframe(biggie_df_fixture): df = biggie_df_fixture df.to_html() def test_to_html_filename(biggie_df_fixture, tmpdir): df = biggie_df_fixture expected = df.to_html() path = tmpdir.join('test.html') df.to_html(path) result = path.read() assert result == expected def test_to_html_with_no_bold(): df = DataFrame({'x': np.random.randn(5)}) html = df.to_html(bold_rows=False) result = html[html.find("</thead>")] assert '<strong' not in result def test_to_html_columns_arg(): df = DataFrame(tm.getSeriesData()) result = df.to_html(columns=['A']) assert '<th>B</th>' not in result @pytest.mark.parametrize('columns,justify,expected', [ (MultiIndex.from_tuples( list(zip(np.arange(2).repeat(2), np.mod(lrange(4), 2))), names=['CL0', 'CL1']), 'left', 'multiindex_1'), (MultiIndex.from_tuples( list(zip(range(4), np.mod(lrange(4), 2)))), 'right', 'multiindex_2') ]) def test_to_html_multiindex(columns, justify, expected, datapath): df = DataFrame([list('abcd'), list('efgh')], columns=columns) result = df.to_html(justify=justify) expected = expected_html(datapath, expected) assert result == expected def test_to_html_justify(justify, datapath): df = DataFrame({'A': [6, 30000, 2], 'B': [1, 2, 70000], 'C': [223442, 0, 1]}, columns=['A', 'B', 'C']) result = df.to_html(justify=justify) expected = expected_html(datapath, 'justify').format(justify=justify) assert result == expected @pytest.mark.parametrize("justify", ["super-right", "small-left", "noinherit", "tiny", "pandas"]) def test_to_html_invalid_justify(justify): # GH 17527 df = DataFrame() msg = "Invalid value for justify parameter" with pytest.raises(ValueError, match=msg): df.to_html(justify=justify) def test_to_html_index(datapath): # TODO: split this test index = ['foo', 'bar', 'baz'] df = DataFrame({'A': [1, 2, 3], 'B': [1.2, 3.4, 5.6], 'C': ['one', 'two', np.nan]}, columns=['A', 'B', 'C'], index=index) expected_with_index = expected_html(datapath, 'index_1') assert df.to_html() == expected_with_index expected_without_index = expected_html(datapath, 'index_2') result = df.to_html(index=False) for i in index: assert i not in result assert result == expected_without_index df.index = Index(['foo', 'bar', 'baz'], name='idx') expected_with_index = expected_html(datapath, 'index_3') assert df.to_html() == expected_with_index assert df.to_html(index=False) == expected_without_index tuples = [('foo', 'car'), ('foo', 'bike'), ('bar', 'car')] df.index = MultiIndex.from_tuples(tuples) expected_with_index = expected_html(datapath, 'index_4') assert df.to_html() == expected_with_index result = df.to_html(index=False) for i in ['foo', 'bar', 'car', 'bike']: assert i not in result # must be the same result as normal index assert result == expected_without_index df.index = MultiIndex.from_tuples(tuples, names=['idx1', 'idx2']) expected_with_index = expected_html(datapath, 'index_5') assert df.to_html() == expected_with_index assert df.to_html(index=False) == expected_without_index @pytest.mark.parametrize('classes', [ "sortable draggable", ["sortable", "draggable"] ]) def test_to_html_with_classes(classes, datapath): df = DataFrame() expected = expected_html(datapath, 'with_classes') result = df.to_html(classes=classes) assert result == expected def test_to_html_no_index_max_rows(datapath): # GH 14998 df = DataFrame({"A": [1, 2, 3, 4]}) result = df.to_html(index=False, max_rows=1) expected = expected_html(datapath, 'gh14998_expected_output') assert result == expected def test_to_html_multiindex_max_cols(datapath): # GH 6131 index = MultiIndex(levels=[['ba', 'bb', 'bc'], ['ca', 'cb', 'cc']], codes=[[0, 1, 2], [0, 1, 2]], names=['b', 'c']) columns = MultiIndex(levels=[['d'], ['aa', 'ab', 'ac']], codes=[[0, 0, 0], [0, 1, 2]], names=[None, 'a']) data = np.array( [[1., np.nan, np.nan], [np.nan, 2., np.nan], [np.nan, np.nan, 3.]]) df = DataFrame(data, index, columns) result = df.to_html(max_cols=2) expected = expected_html(datapath, 'gh6131_expected_output') assert result == expected def test_to_html_multi_indexes_index_false(datapath): # GH 22579 df = DataFrame({'a': range(10), 'b': range(10, 20), 'c': range(10, 20), 'd': range(10, 20)}) df.columns = MultiIndex.from_product([['a', 'b'], ['c', 'd']]) df.index = MultiIndex.from_product([['a', 'b'], ['c', 'd', 'e', 'f', 'g']]) result = df.to_html(index=False) expected = expected_html(datapath, 'gh22579_expected_output') assert result == expected @pytest.mark.parametrize('index_names', [True, False]) @pytest.mark.parametrize('header', [True, False]) @pytest.mark.parametrize('index', [True, False]) @pytest.mark.parametrize('column_index, column_type', [ (Index([0, 1]), 'unnamed_standard'), (Index([0, 1], name='columns.name'), 'named_standard'), (MultiIndex.from_product([['a'], ['b', 'c']]), 'unnamed_multi'), (MultiIndex.from_product( [['a'], ['b', 'c']], names=['columns.name.0', 'columns.name.1']), 'named_multi') ]) @pytest.mark.parametrize('row_index, row_type', [ (Index([0, 1]), 'unnamed_standard'), (Index([0, 1], name='index.name'), 'named_standard'), (MultiIndex.from_product([['a'], ['b', 'c']]), 'unnamed_multi'), (MultiIndex.from_product( [['a'], ['b', 'c']], names=['index.name.0', 'index.name.1']), 'named_multi') ]) def test_to_html_basic_alignment( datapath, row_index, row_type, column_index, column_type, index, header, index_names): # GH 22747, GH 22579 df = DataFrame(np.zeros((2, 2), dtype=int), index=row_index, columns=column_index) result = df.to_html( index=index, header=header, index_names=index_names) if not index: row_type = 'none' elif not index_names and row_type.startswith('named'): row_type = 'un' + row_type if not header: column_type = 'none' elif not index_names and column_type.startswith('named'): column_type = 'un' + column_type filename = 'index_' + row_type + '_columns_' + column_type expected = expected_html(datapath, filename) assert result == expected @pytest.mark.parametrize('index_names', [True, False]) @pytest.mark.parametrize('header', [True, False]) @pytest.mark.parametrize('index', [True, False]) @pytest.mark.parametrize('column_index, column_type', [ (Index(np.arange(8)), 'unnamed_standard'), (Index(np.arange(8), name='columns.name'), 'named_standard'), (MultiIndex.from_product( [['a', 'b'], ['c', 'd'], ['e', 'f']]), 'unnamed_multi'), (MultiIndex.from_product( [['a', 'b'], ['c', 'd'], ['e', 'f']], names=['foo', None, 'baz']), 'named_multi') ]) @pytest.mark.parametrize('row_index, row_type', [ (Index(np.arange(8)), 'unnamed_standard'), (Index(np.arange(8), name='index.name'), 'named_standard'), (MultiIndex.from_product( [['a', 'b'], ['c', 'd'], ['e', 'f']]), 'unnamed_multi'), (MultiIndex.from_product( [['a', 'b'], ['c', 'd'], ['e', 'f']], names=['foo', None, 'baz']), 'named_multi') ]) def test_to_html_alignment_with_truncation( datapath, row_index, row_type, column_index, column_type, index, header, index_names): # GH 22747, GH 22579 df = DataFrame(np.arange(64).reshape(8, 8), index=row_index, columns=column_index) result = df.to_html( max_rows=4, max_cols=4, index=index, header=header, index_names=index_names) if not index: row_type = 'none' elif not index_names and row_type.startswith('named'): row_type = 'un' + row_type if not header: column_type = 'none' elif not index_names and column_type.startswith('named'): column_type = 'un' + column_type filename = 'trunc_df_index_' + row_type + '_columns_' + column_type expected = expected_html(datapath, filename) assert result == expected @pytest.mark.parametrize('index', [False, 0]) def test_to_html_truncation_index_false_max_rows(datapath, index): # GH 15019 data = [[1.764052, 0.400157], [0.978738, 2.240893], [1.867558, -0.977278], [0.950088, -0.151357], [-0.103219, 0.410599]] df = DataFrame(data) result = df.to_html(max_rows=4, index=index) expected = expected_html(datapath, 'gh15019_expected_output') assert result == expected @pytest.mark.parametrize('index', [False, 0]) @pytest.mark.parametrize('col_index_named, expected_output', [ (False, 'gh22783_expected_output'), (True, 'gh22783_named_columns_index') ]) def test_to_html_truncation_index_false_max_cols( datapath, index, col_index_named, expected_output): # GH 22783 data = [[1.764052, 0.400157, 0.978738, 2.240893, 1.867558], [-0.977278, 0.950088, -0.151357, -0.103219, 0.410599]] df =
DataFrame(data)
pandas.DataFrame
# coding:utf-8 ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: TXVision ## Email: <EMAIL> ## Copyright (c) 2021 ## ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import argparse import os import numpy as np import pandas as pd from tqdm import tqdm import itertools import time import cv2 import random from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics import auc from sklearn.model_selection import KFold import torch import torch.nn as nn from torch.utils.data import Dataset import torch.nn.functional as F import encoding from encoding.utils import (accuracy, AverageMeter, MixUpWrapper, LR_Scheduler) from decimal import Decimal class Options(): def __init__(self): # data settings parser = argparse.ArgumentParser(description='Inference') parser.add_argument('--dataset', type=str, default='imagenet', help='training dataset (default: imagenet)') parser.add_argument('--num_classes', type=int, metavar='N', help='num_classes') parser.add_argument('--fold', type=int, metavar='N', help='the fold of K-Fold') parser.add_argument('--csv-path', type=str, help='the csv file contained all clinical info of pids') parser.add_argument('--base-size', type=int, default=None, help='base image size') parser.add_argument('--crop-size', type=int, default=224, help='crop image size') # model params parser.add_argument('--model', type=str, default='densenet', help='network model type (default: densenet)') parser.add_argument('--rectify', action='store_true', default=False, help='rectify convolution') parser.add_argument('--rectify-avg', action='store_true', default=False, help='rectify convolution') # training hyper params parser.add_argument('--batch-size', type=int, default=8, metavar='N', help='batch size for training (default: 128)') parser.add_argument('--workers', type=int, default=4, metavar='N', help='dataloader threads') # cuda, seed and logging parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') # checking point parser.add_argument('--resume', type=str, # default=None, help='put the path to resuming file if needed') parser.add_argument('--verify', type=str, default=None, help='put the path to resuming file if needed') parser.add_argument('--export', type=str, default=None, help='put the path to resuming file if needed') self.parser = parser def parse(self): args = self.parser.parse_args() return args def draw_roc(ensemble_gt, ensemble_pred, name='en'): import matplotlib.pyplot as plt # 计算置信区间 def ciauc(auc, pos_n, neg_n): import math q0 = auc * (1 - auc) q1 = auc / (2 - auc) - auc ** 2 q2 = 2 * (auc ** 2) / (1 + auc) - auc ** 2 se = math.sqrt((q0 + (pos_n - 1) * q1 + (neg_n - 1) * q2) / (pos_n * neg_n)) z_crit = 1.959964 lower = auc - z_crit * se upper = auc + z_crit * se lower = max(lower, 0.) upper = min(upper, 1.) # print("[{:.3f}, {:.3f}]".format(lower, upper)) return lower, upper plt.figure() lw = 2 plt.figure(figsize=(10, 10)) num_pos, num_neg = np.sum(ensemble_gt), len(ensemble_gt) - np.sum(ensemble_gt) fpr, tpr, threshold = roc_curve(np.array(ensemble_gt), np.array(ensemble_pred)) ###计算真正率和假正率 roc_auc = auc(fpr, tpr) ###计算auc的值 lower, upper = ciauc(roc_auc, num_pos, num_neg) plt.plot(fpr, tpr, color='darkorange', alpha=.8, lw=lw, label='Ensemble (AUC:{:0.3f} [95%CI, {:0.3f}-{:0.3f}])'.format(roc_auc, lower, upper)) ###假正率为横坐标,真正率为纵坐标做曲线 plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--') plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('1-Specificity', size=18, weight='bold') plt.ylabel('Sensitivity', size=18, weight='bold') plt.title('Testing ROC curves') plt.legend(loc="lower right") plt.savefig(name + '_roc.jpg') plt.show() def get_2D_gaussian_map(im_h, im_w): from numpy import matlib as mb IMAGE_WIDTH = im_w IMAGE_HEIGHT = im_h center_x = IMAGE_WIDTH / 2 center_y = IMAGE_HEIGHT / 2 R = np.sqrt(center_x ** 2 + center_y ** 2) # Gauss_map = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH)) # 直接利用矩阵运算实现 mask_x = mb.repmat(center_x, IMAGE_HEIGHT, IMAGE_WIDTH) mask_y = mb.repmat(center_y, IMAGE_HEIGHT, IMAGE_WIDTH) x1 = np.arange(IMAGE_WIDTH) x_map = mb.repmat(x1, IMAGE_HEIGHT, 1) y1 = np.arange(IMAGE_HEIGHT) y_map = mb.repmat(y1, IMAGE_WIDTH, 1) y_map = np.transpose(y_map) Gauss_map = np.sqrt((x_map - mask_x) ** 2 + (y_map - mask_y) ** 2) Gauss_map = np.exp(-0.5 * Gauss_map / R) return Gauss_map def multiScaleSharpen_v1(img, radius=5): img = np.float32(img) Dest_float_img = np.zeros(img.shape, dtype=np.float32) + 114 w1 = 0.5 w2 = 0.5 w3 = 0.25 GaussBlue1 = np.float32(cv2.GaussianBlur(img, (radius, radius), 1)) GaussBlue2 = np.float32(cv2.GaussianBlur(img, (radius * 2 - 1, radius * 2 - 1), 2)) GaussBlue3 = np.float32(cv2.GaussianBlur(img, (radius * 4 - 1, radius * 4 - 1), 4)) D1 = img - GaussBlue1 D2 = GaussBlue1 - GaussBlue2 D3 = GaussBlue2 - GaussBlue3 D1_mask = (D1 > 0) + (-1) * (D1 <= 0) + 0.0 Dest_float_img = (1 - w1 * D1_mask) * D1 + w2 * D2 + w3 * D3 + img Dest_img = cv2.convertScaleAbs(Dest_float_img) return Dest_img def edge_demo(image): blurred = cv2.GaussianBlur(image, (3, 3), 0) edge_output = cv2.Canny(blurred, 50, 150) return edge_output.copy() class DRimgDataset(Dataset): def __init__(self, index_list, data_shape=256, label_name='label', mode='train', csv_path='', reverse=False, has_aug=False): super(DRimgDataset, self).__init__() self.mode = mode self.data_shape = data_shape self.reverse = reverse self.label_name = label_name self.index_list = index_list self.add_gaussian_mask = True self.add_edge = True self.detail_enhancement = True self.wavelet_trans = True self.padding = True self.resize = True self.mosaic = True self.has_aug = has_aug self.random_rotate = True self.random_lightness = True self.random_transpose = True self.random_mirror = True self.random_brightness = False self.random_gaussian_noise = False self.random_rician_noise = False self.len = len(index_list) self.all_df = pd.read_csv(csv_path) print('=== mode:' + self.mode) print('=== num of samples: ', self.len) print('=== num of l1 samples: ', len([item for item in self.index_list if int(item.split('_')[-1].split('.')[0]) == 1])) print('=== num of l2 samples: ', len([item for item in self.index_list if int(item.split('_')[-1].split('.')[0]) == 2])) def load_mosaic(self, index): # loads images in a mosaic s = self.data_shape xc, yc = [int(random.uniform(s * 0.75, s * 1.25)) for _ in range(2)] # mosaic center x, y ll_ = int(index.split('_')[-1].split('.')[0]) s_list = [item for item in self.index_list if int(item.split('_')[-1].split('.')[0]) == ll_] # s_list = list(self.all_df[(self.all_df['dataset'] == 'develop') & (self.all_df['label'] == ll_)]['pid']) np.random.shuffle(s_list) indices = [index] + s_list[:3] # 3 additional image indices for i, index in enumerate(indices): # Load image img, _, (h, w) = self.load_image(index) # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] return img4 def load_image_0(self, index): sample = cv2.imread(index) h0, w0 = sample.shape[:2] if self.detail_enhancement: sample = multiScaleSharpen_v1(sample, 5) if self.padding: height, width, num_channel = sample.shape max_edge = max(height, width) new_pix = np.zeros((max_edge, max_edge, num_channel), dtype=np.uint8) + 114 if self.add_edge: edge_ = edge_demo(sample) sample[:, :, 2] = edge_.astype(np.uint8) * 255 if self.mode == 'train': if height > width: random_bias_range = max_edge - width else: random_bias_range = max_edge - height random_bias = np.random.randint(random_bias_range) if height > width: new_pix[0:height, random_bias:random_bias + width, :] = sample[0:height, 0:width, :] else: new_pix[random_bias:random_bias + height, 0:width, :] = sample[0:height, 0:width, :] else: new_pix[0:height, 0:width, :] = sample[0:height, 0:width, :] else: new_pix = sample if self.resize: new_pix = cv2.resize(new_pix, (self.data_shape, self.data_shape)) return new_pix, (h0, w0), new_pix.shape[:2] def __getitem__(self, index): file_path = self.index_list[index] new_pix, _, _ = self.load_image_0(file_path) new_pix = new_pix.transpose((2, 0, 1)).copy() target = int(self.index_list[index].split('_')[-1].split('.')[0]) - 1 if self.mode == 'inference': return torch.from_numpy(new_pix).type(torch.FloatTensor), target, self.index_list[index] return torch.from_numpy(new_pix).type(torch.FloatTensor), target # torch.from_numpy(target).long() def __len__(self): """ Total number of samples in the dataset """ return self.len def get_split_deterministic(all_keys, fold=0, num_splits=5, random_state=12345): """ Splits a list of patient identifiers (or numbers) into num_splits folds and returns the split for fold fold. :param all_keys: :param fold: :param num_splits: :param random_state: :return: """ all_keys_sorted = np.sort(list(all_keys)) splits = KFold(n_splits=num_splits, shuffle=True, random_state=random_state) for i, (train_idx, test_idx) in enumerate(splits.split(all_keys_sorted)): if i == fold: train_keys = np.array(all_keys_sorted)[train_idx] test_keys = np.array(all_keys_sorted)[test_idx] break return train_keys, test_keys def main(): # init the args args = Options().parse() args.cuda = not args.no_cuda and torch.cuda.is_available() print(args) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) csvPath = args.csv_path train_fold_idx = args.fold df_tmp = pd.read_csv(csvPath) valid_idx = np.array(df_tmp[df_tmp['dataset'] == 'test']['pid']) valset = DRimgDataset(index_list=valid_idx, data_shape=256, label_name='label', mode='inference', csv_path=csvPath, reverse=False, has_aug=False, ) val_loader = torch.utils.data.DataLoader( valset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True if args.cuda else False) # init the model model_kwargs = {'pretrained': True} model_kwargs['num_classes'] = args.num_classes if args.rectify: model_kwargs['rectified_conv'] = True model_kwargs['rectify_avg'] = args.rectify_avg model = encoding.models.get_model(args.model, **model_kwargs) print(model) if args.cuda: # torch.cuda.set_device(0) model.cuda() # Please use CUDA_VISIBLE_DEVICES to control the number of gpus model = nn.DataParallel(model) # checkpoint if args.verify: if os.path.isfile(args.verify): print("=> loading checkpoint '{}'".format(args.verify)) model.module.load_state_dict(torch.load(args.verify)) else: raise RuntimeError("=> no verify checkpoint found at '{}'". \ format(args.verify)) elif args.resume is not None: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) model.module.load_state_dict(checkpoint['state_dict']) else: raise RuntimeError("=> no resume checkpoint found at '{}'". \ format(args.resume)) model.eval() top1 = AverageMeter() top5 = AverageMeter() res_dict = {} is_best = False tbar = tqdm(val_loader, desc='\r') for batch_idx, (data, target, pid_) in enumerate(tbar): if args.cuda: data, target = data.cuda(), target.cuda() with torch.no_grad(): output = model(data) output = F.softmax(output, dim=1) res_dict[batch_idx] = [target.cpu().numpy(), output.cpu().numpy(), pid_] # for accuracy func, output must be one-hot style acc1, acc5 = accuracy(output, target, topk=(1, 1)) top1.update(acc1[0], data.size(0)) top5.update(acc5[0], data.size(0)) tbar.set_description('Top1: %.3f | Top5: %.3f' % (top1.avg, top5.avg)) print('Top1 Acc: %.3f | Top5 Acc: %.3f ' % (top1.avg, top5.avg)) pid_list_tmp = [] y_true_tmp = [] y_pred_tmp = [] for k, v in res_dict.items(): b_pid_list = v[-1] b_y_true = v[0] b_y_pred = v[1] for i in range(len(b_pid_list)): pid_list_tmp.append(b_pid_list[i]) y_true_tmp.append(b_y_true[i]) y_pred_tmp.append(b_y_pred[i, 1]) res_name = args.resume.split('/')[-1] + '_' + str(args.fold).zfill(2) + '_res.csv'
pd.DataFrame({'pid': pid_list_tmp, 'y_true': y_true_tmp, 'y_pred': y_pred_tmp})
pandas.DataFrame
# flake8: noqa: F841 import tempfile from pathlib import Path from typing import List from pandas._typing import Scalar, ArrayLike import pandas as pd import numpy as np from pandas.core.window import ExponentialMovingWindow def test_types_init() -> None: pd.Series(1) pd.Series((1, 2, 3)) pd.Series(np.array([1, 2, 3])) pd.Series(data=[1, 2, 3, 4], name="series") pd.Series(data=[1, 2, 3, 4], dtype=np.int8) pd.Series(data={'row1': [1, 2], 'row2': [3, 4]}) pd.Series(data=[1, 2, 3, 4], index=[4, 3, 2, 1], copy=True) def test_types_any() -> None: res1: bool = pd.Series([False, False]).any() res2: bool = pd.Series([False, False]).any(bool_only=False) res3: bool = pd.Series([np.nan]).any(skipna=False) def test_types_all() -> None: res1: bool = pd.Series([False, False]).all() res2: bool = pd.Series([False, False]).all(bool_only=False) res3: bool = pd.Series([np.nan]).all(skipna=False) def test_types_csv() -> None: s = pd.Series(data=[1, 2, 3]) csv_df: str = s.to_csv() with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name) s2: pd.DataFrame = pd.read_csv(file.name) with tempfile.NamedTemporaryFile() as file: s.to_csv(Path(file.name)) s3: pd.DataFrame = pd.read_csv(Path(file.name)) # This keyword was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html with tempfile.NamedTemporaryFile() as file: s.to_csv(file.name, errors='replace') s4: pd.DataFrame = pd.read_csv(file.name) def test_types_copy() -> None: s = pd.Series(data=[1, 2, 3, 4]) s2: pd.Series = s.copy() def test_types_select() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s[0] s[1:] def test_types_iloc_iat() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.iat[0] s2.loc[0] s2.iat[0] def test_types_loc_at() -> None: s = pd.Series(data={'row1': 1, 'row2': 2}) s2 = pd.Series(data=[1, 2]) s.loc['row1'] s.at['row1'] s2.loc[1] s2.at[1] def test_types_boolean_indexing() -> None: s = pd.Series([0, 1, 2]) s[s > 1] s[s] def test_types_df_to_df_comparison() -> None: s = pd.Series(data={'col1': [1, 2]}) s2 = pd.Series(data={'col1': [3, 2]}) res_gt: pd.Series = s > s2 res_ge: pd.Series = s >= s2 res_lt: pd.Series = s < s2 res_le: pd.Series = s <= s2 res_e: pd.Series = s == s2 def test_types_head_tail() -> None: s = pd.Series([0, 1, 2]) s.head(1) s.tail(1) def test_types_sample() -> None: s = pd.Series([0, 1, 2]) s.sample(frac=0.5) s.sample(n=1) def test_types_nlargest_nsmallest() -> None: s = pd.Series([0, 1, 2]) s.nlargest(1) s.nlargest(1, 'first') s.nsmallest(1, 'last') s.nsmallest(1, 'all') def test_types_filter() -> None: s = pd.Series(data=[1, 2, 3, 4], index=['cow', 'coal', 'coalesce', '']) s.filter(items=['cow']) s.filter(regex='co.*') s.filter(like='al') def test_types_setting() -> None: s = pd.Series([0, 1, 2]) s[3] = 4 s[s == 1] = 5 s[:] = 3 def test_types_drop() -> None: s = pd.Series([0, 1, 2]) res: pd.Series = s.drop(0) res2: pd.Series = s.drop([0, 1]) res3: pd.Series = s.drop(0, axis=0) res4: None = s.drop([0, 1], inplace=True, errors='raise') res5: None = s.drop([0, 1], inplace=True, errors='ignore') def test_types_drop_multilevel() -> None: index = pd.MultiIndex(levels=[['top', 'bottom'], ['first', 'second', 'third']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) s = pd.Series(data=[1, 2, 3, 4, 5, 6], index=index) res: pd.Series = s.drop(labels='first', level=1) def test_types_dropna() -> None: s = pd.Series([1, np.nan, np.nan]) res: pd.Series = s.dropna() res2: None = s.dropna(axis=0, inplace=True) def test_types_fillna() -> None: s = pd.Series([1, np.nan, np.nan, 3]) res: pd.Series = s.fillna(0) res2: pd.Series = s.fillna(0, axis='index') res3: pd.Series = s.fillna(method='backfill', axis=0) res4: None = s.fillna(method='bfill', inplace=True) res5: pd.Series = s.fillna(method='pad') res6: pd.Series = s.fillna(method='ffill', limit=1) def test_types_sort_index() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_index() res2: None = s.sort_index(ascending=False, inplace=True) res3: pd.Series = s.sort_index(kind="mergesort") # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_index_with_key() -> None: s = pd.Series([1, 2, 3], index=['a', 'B', 'c']) res: pd.Series = s.sort_index(key=lambda k: k.str.lower()) def test_types_sort_values() -> None: s = pd.Series([4, 2, 1, 3]) res: pd.Series = s.sort_values(0) res2: pd.Series = s.sort_values(ascending=False) res3: None = s.sort_values(inplace=True, kind='quicksort') res4: pd.Series = s.sort_values(na_position='last') res5: pd.Series = s.sort_values(ignore_index=True) # This was added in 1.1.0 https://pandas.pydata.org/docs/whatsnew/v1.1.0.html def test_types_sort_values_with_key() -> None: s = pd.Series([1, 2, 3], index=[2, 3, 1]) res: pd.Series = s.sort_values(key=lambda k: -k) def test_types_shift() -> None: s = pd.Series([1, 2, 3]) s.shift() s.shift(axis=0, periods=1) s.shift(-1, fill_value=0) def test_types_rank() -> None: s = pd.Series([1, 1, 2, 5, 6, np.nan, 'milion']) s.rank() s.rank(axis=0, na_option='bottom') s.rank(method="min", pct=True) s.rank(method="dense", ascending=True) s.rank(method="first", numeric_only=True) def test_types_mean() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.mean() s1: pd.Series = s.mean(axis=0, level=0) f2: float = s.mean(skipna=False) f3: float = s.mean(numeric_only=False) def test_types_median() -> None: s = pd.Series([1, 2, 3, np.nan]) f1: float = s.median() s1: pd.Series = s.median(axis=0, level=0) f2: float = s.median(skipna=False) f3: float = s.median(numeric_only=False) def test_types_sum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.sum() s.sum(axis=0, level=0) s.sum(skipna=False) s.sum(numeric_only=False) s.sum(min_count=4) def test_types_cumsum() -> None: s = pd.Series([1, 2, 3, np.nan]) s.cumsum() s.cumsum(axis=0) s.cumsum(skipna=False) def test_types_min() -> None: s = pd.Series([1, 2, 3, np.nan]) s.min() s.min(axis=0) s.min(level=0) s.min(skipna=False) def test_types_max() -> None: s = pd.Series([1, 2, 3, np.nan]) s.max() s.max(axis=0) s.max(level=0) s.max(skipna=False) def test_types_quantile() -> None: s = pd.Series([1, 2, 3, 10]) s.quantile([0.25, 0.5]) s.quantile(0.75) s.quantile() s.quantile(interpolation='nearest') def test_types_clip() -> None: s = pd.Series([-10, 2, 3, 10]) s.clip(lower=0, upper=5) s.clip(lower=0, upper=5, inplace=True) def test_types_abs() -> None: s =
pd.Series([-10, 2, 3, 10])
pandas.Series
## Generate twitter Pre-Trained Word2Vec and trained Word2Vec ## Word2Vec import os os.chdir("C:/Users/dordo/Dropbox/Capstone Project") import pandas as pd import pickle from gensim import corpora from gensim.models import Word2Vec import gensim.downloader as api ##---------------------------------------------------------------------------## ## Define function to get embeddings from memory def get_wv(model, dicts): """ Get word embeddings in memory""" w2v_embed = {} missing = [] for val in dicts.values(): try: it = model.wv[val] except: missing.append(val) it = None w2v_embed[val] = it return w2v_embed, missing ##---------------------------------------------------------------------------## ## Reading in pre processed data with open('Data/Twitter/ProcessedTwitter.pkl', 'rb') as input: txt_end = pickle.load(input) ## Create dictionary dicts = corpora.Dictionary(txt_end) len(dicts) ## Filter by appeareance in documents dicts.filter_extremes(no_below=40, no_above=0.5, keep_n=None, keep_tokens=None) len(dicts) ##--------------------------------------------------------------------------## ## PreTrained Word2vec path = "C:/Users/dordo/Documents/Daniel/LSE/Capstone/Modelo/GoogleNews-vectors-negative300.bin" model = Word2Vec(txt_end, size = 300, min_count = 40) model.intersect_word2vec_format(path, lockf=1.0, binary=True) model.train(txt_end, total_examples=model.corpus_count, epochs=25) embeds_1 = get_wv(model, dicts) ## How many word of our corpus appear in the pre trained? ##---------------------------------------------------------------------------## ## Self Trained Word2Vec model_t = Word2Vec(txt_end, window=5, min_count=40, workers=4, size = 50) model_t.train(txt_end, epochs=50, total_words = model_t.corpus_total_words, total_examples = model_t.corpus_count) embeds_2 = get_wv(model_t, dicts) ##---------------------------------------------------------------------------## ## Pre Trained GLOVE model_g = api.load("glove-twitter-50") embeds_3 = get_wv(model_g, dicts) embeds_3df =
pd.DataFrame(embeds_3[0])
pandas.DataFrame
import tide_constituents as tc from py_noaa import coops import pandas as pd import numpy as np import tappy start = '20180201' end = '20180228' interval = 1 start =
pd.to_datetime(start)
pandas.to_datetime
import numpy as np import xarray as xr import pandas as pd import os from collections import OrderedDict # from astropy.time import Time import logging import copy from typing import List, Dict, Union, Tuple import pysagereader class SAGEIILoaderV700(object): """ Class designed to load the v7.00 SAGE II spec and index files provided by NASA ADSC into python Data files must be accessible by the users machine, and can be downloaded from: https://eosweb.larc.nasa.gov/project/sage2/sage2_v7_table Parameters ---------- data_folder location of sage ii index and spec files. output_format format for the output data. If ``'xarray'`` the output is returned as an ``xarray.Dataset``. If None the output is returned as a dictionary of numpy arrays. **NOTE: the following options only apply to xarray output types** species Species to be returned in the output data. If None all species are returned. Options are ``aerosol``, ``ozone``, ``h2o``, and ``no2``. If more than one species is returned fields will be NaN-padded where data is not available. ``species`` is only used if ``'xarray'`` is set as the ``output_data`` format, otherwise it has no effect. cf_names If True then CF-1.7 naming conventions are used for the output_data when ``xarray`` is selected. filter_aerosol filter the aerosol using the cloud flag filter_ozone filter the ozone using the criteria recommended in the release notes * Exclusion of all data points with an uncertainty estimate of 300% or greater * Exclusion of all profiles with an uncertainty greater than 10% between 30 and 50 km * Exclusion of all data points at altitude and below the occurrence of an aerosol extinction value of greater than 0.006 km^-1 * Exclusion of all data points at altitude and below the occurrence of both the 525nm aerosol extinction value exceeding 0.001 km^-1 and the 525/1020 extinction ratio falling below 1.4 * Exclusion of all data points below 35km an 200% or larger uncertainty estimate enumerate_flags expand the index and species flags to their boolean values. normalize_percent_error give the species error as percent rather than percent * 100 return_separate_flags return the enumerated flags as a separate data array Example ------- >>> sage = SAGEIILoaderV700() >>> sage.data_folder = 'path/to/data' >>> data = sage.load_data('2004-1-1','2004-5-1') In addition to the sage ii fields reported in the files, two additional time fields are provided to allow for easier subsetting of the data. ``data['mjd']`` is a numpy array containing the modified julian dates of each scan ``date['time']`` is an pandas time series object containing the times of each scan """ def __init__(self, data_folder: str=None, output_format: str='xarray', species: List[str]=('aerosol', 'h2o', 'no2', 'ozone', 'background'), cf_names: bool=False, filter_aerosol: bool=False, filter_ozone: bool=False, enumerate_flags: bool=False, normalize_percent_error: bool=False, return_separate_flags: bool=False): if type(species) == str: species = [species] self.data_folder = data_folder # Type: str self.version = '7.00' self.index_file = 'SAGE_II_INDEX_' self.spec_file = 'SAGE_II_SPEC_' self.fill_value = np.nan self.spec_format = self.get_spec_format() self.index_format = self.get_index_format() self.output_format = output_format self.species = [s.lower() for s in species] self.cf_names = cf_names self.filter_aerosol = filter_aerosol self.filter_ozone = filter_ozone self.normalize_percent_error = normalize_percent_error self.enumerate_flags = enumerate_flags self.return_separate_flags = return_separate_flags @staticmethod def get_spec_format() -> Dict[str, Tuple[str, int]]: """ spec format taken from sg2_specinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict Ordered dictionary of variables provided in the spec file. Each dictionary field contains a tuple with the information (data type, number of data points). Ordering is important as the sage ii binary files are read sequentially. """ spec = OrderedDict() spec['Tan_Alt'] = ('float32', 8) # Subtangent Altitudes(km) spec['Tan_Lat'] = ('float32', 8) # Subtangent Latitudes @ Tan_Alt(deg) spec['Tan_Lon'] = ('float32', 8) # Subtangent Longitudes @ Tan_Alt(deg) spec['NMC_Pres'] = ('float32', 140) # Gridded Pressure profile(mb) spec['NMC_Temp'] = ('float32', 140) # Gridded Temperature profile(K) spec['NMC_Dens'] = ('float32', 140) # Gridded Density profile(cm ^ (-3)) spec['NMC_Dens_Err'] = ('int16', 140) # Error in NMC_Dens( % * 1000) spec['Trop_Height'] = ('float32', 1) # NMC Tropopause Height(km) spec['Wavelength'] = ('float32', 7) # Wavelength of each channel(nm) spec['O3'] = ('float32', 140) # O3 Density profile 0 - 70 Km(cm ^ (-3)) spec['NO2'] = ('float32', 100) # NO2 Density profile 0 - 50 Km(cm ^ (-3)) spec['H2O'] = ('float32', 100) # H2O Volume Mixing Ratio 0 - 50 Km(ppp) spec['Ext386'] = ('float32', 80) # 386 nm Extinction 0 - 40 Km(1 / km) spec['Ext452'] = ('float32', 80) # 452 nm Extinction 0 - 40 Km(1 / km) spec['Ext525'] = ('float32', 80) # 525 nm Extinction 0 - 40 Km(1 / km) spec['Ext1020'] = ('float32', 80) # 1020 nm Extinction 0 - 40 Km(1 / km) spec['Density'] = ('float32', 140) # Calculated Density 0 - 70 Km(cm ^ (-3)) spec['SurfDen'] = ('float32', 80) # Aerosol surface area dens 0 - 40 km(um ^ 2 / cm ^ 3) spec['Radius'] = ('float32', 80) # Aerosol effective radius 0 - 40 km(um) spec['Dens_Mid_Atm'] = ('float32', 70) # Middle Atmosphere Density(cm ^ (-3)) spec['O3_Err'] = ('int16', 140) # Error in O3 density profile( % * 100) spec['NO2_Err'] = ('int16', 100) # Error in NO2 density profile( % * 100) spec['H2O_Err'] = ('int16', 100) # Error in H2O mixing ratio( % * 100) spec['Ext386_Err'] = ('int16', 80) # Error in 386 nm Extinction( % * 100) spec['Ext452_Err'] = ('int16', 80) # Error in 452 nm Extinction( % * 100) spec['Ext525_Err'] = ('int16', 80) # Error in 525 nm Extinction( % * 100) spec['Ext1020_Err'] = ('int16', 80) # Error in 1019 nm Extinction( % * 100) spec['Density_Err'] = ('int16', 140) # Error in Density( % * 100) spec['SurfDen_Err'] = ('int16', 80) # Error in surface area dens( % * 100) spec['Radius_Err'] = ('int16', 80) # Error in aerosol radius( % * 100) spec['Dens_Mid_Atm_Err'] = ('int16', 70) # Error in Middle Atm.Density( % * 100) spec['InfVec'] = ('uint16', 140) # Informational Bit flags return spec @staticmethod def get_index_format() -> Dict[str, Tuple[str, int]]: """ index format taken from sg2_indexinfo.pro provided in the v7.00 download used for reading the binary data format Returns ------- Dict an ordered dictionary of variables provided in the index file. Each dictionary field contains a tuple with the information (data type, length). Ordering is important as the sage ii binary files are read sequentially. """ info = OrderedDict() info['num_prof'] = ('uint32', 1) # Number of profiles in these files info['Met_Rev_Date'] = ('uint32', 1) # LaRC Met Model Revision Date(YYYYMMDD) info['Driver_Rev'] = ('S1', 8) # LaRC Driver Version(e.g. 6.20) info['Trans_Rev'] = ('S1', 8) # LaRC Transmission Version info['Inv_Rev'] = ('S1', 8) # LaRC Inversion Version info['Spec_Rev'] = ('S1', 8) # LaRC Inversion Version info['Eph_File_Name'] = ('S1', 32) # Ephemeris data file name info['Met_File_Name'] = ('S1', 32) # Meteorological data file name info['Ref_File_Name'] = ('S1', 32) # Refraction data file name info['Tran_File_Name'] = ('S1', 32) # Transmission data file name info['Spec_File_Name'] = ('S1', 32) # Species profile file name info['FillVal'] = ('float32', 1) # Fill value # Altitude grid and range info info['Grid_Size'] = ('float32', 1) # Altitude grid spacing(0.5 km) info['Alt_Grid'] = ('float32', 200) # Geometric altitudes(0.5, 1.0, ..., 100.0 km) info['Alt_Mid_Atm'] = ('float32', 70) # Middle atmosphere geometric altitudes info['Range_Trans'] = ('float32', 2) # Transmission min & max altitudes[0.5, 100.] info['Range_O3'] = ('float32', 2) # Ozone min & max altitudes[0.5, 70.0] info['Range_NO2'] = ('float32', 2) # NO2 min & max altitudes[0.5, 50.0] info['Range_H2O'] = ('float32', 2) # Water vapor min & max altitudes[0.5, 50.0] info['Range_Ext'] = ('float32', 2) # Aerosol extinction min & max altitudes[0.5, 40.0] info['Range_Dens'] = ('float32', 2) # Density min & max altitudes[0.5, 70.0] info['Spare'] = ('float32', 2) # # Event specific info useful for data subsetting info['YYYYMMDD'] = ('int32', 930) # Event date at 20km subtangent point info['Event_Num'] = ('int32', 930) # Event number info['HHMMSS'] = ('int32', 930) # Event time at 20km info['Day_Frac'] = ('float32', 930) # Time of year(DDD.frac) at 20 km info['Lat'] = ('float32', 930) # Subtangent latitude at 20 km(-90, +90) info['Lon'] = ('float32', 930) # Subtangent longitude at 20 km(-180, +180) info['Beta'] = ('float32', 930) # Spacecraft beta angle(deg) info['Duration'] = ('float32', 930) # Duration of event(sec) info['Type_Sat'] = ('int16', 930) # Event Type Instrument(0 = SR, 1 = SS) info['Type_Tan'] = ('int16', 930) # Event Type Local(0 = SR, 1 = SS) # Process tracking and flag info info['Dropped'] = ('int32', 930) # Dropped event flag info['InfVec'] = ('uint32', 930) # Bit flags relating to processing ( # NOTE: readme_sage2_v6.20.txt says InfVec is 16 bit but appears to actually be 32 (also in IDL software) # Record creation dates and times info['Eph_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Eph_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Met_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Met_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Ref_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Ref_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Tran_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Tran_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) info['Spec_Cre_Date'] = ('int32', 930) # Record creation date(YYYYMMDD format) info['Spec_Cre_Time'] = ('int32', 930) # Record creation time(HHMMSS format) return info def get_spec_filename(self, year: int, month: int) -> str: """ Returns the spec filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the spec file where the data is stored """ file = os.path.join(self.data_folder, self.spec_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def get_index_filename(self, year: int, month: int) -> str: """ Returns the index filename given a year and month Parameters ---------- year year of the data that will be loaded month month of the data that will be loaded Returns ------- filename of the index file where the data is stored """ file = os.path.join(self.data_folder, self.index_file + str(int(year)) + str(int(month)).zfill(2) + '.' + self.version) if not os.path.isfile(file): file = None return file def read_spec_file(self, file: str, num_profiles: int) -> List[Dict]: """ Parameters ---------- file name of the spec file to be read num_profiles number of profiles to read from the spec file (usually determined from the index file) Returns ------- list of dictionaries containing the spec data. Each list is one event """ # load the file into the buffer file_format = self.spec_format with open(file, "rb") as f: buffer = f.read() # initialize the list of dictionaries data = [None] * num_profiles for p in range(num_profiles): data[p] = dict() # load the data from the buffer bidx = 0 for p in range(num_profiles): for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] data[p][key] = copy.copy(np.frombuffer(buffer[bidx:bidx+nbytes], dtype=file_format[key][0])) bidx += nbytes return data def read_index_file(self, file: str) -> Dict: """ Read the binary file into a python data structure Parameters ---------- file filename to be read Returns ------- data from the file """ file_format = self.index_format with open(file, "rb") as f: buffer = f.read() data = dict() # load the data from file into a list bidx = 0 for key in file_format.keys(): nbytes = np.dtype(file_format[key][0]).itemsize * file_format[key][1] if file_format[key][0] == 'S1': data[key] = copy.copy(buffer[bidx:bidx + nbytes].decode('utf-8')) else: data[key] = copy.copy(np.frombuffer(buffer[bidx:bidx + nbytes], dtype=file_format[key][0])) if len(data[key]) == 1: data[key] = data[key][0] bidx += nbytes # make a more useable time field date_str = [] # If the time overflows by less than the scan time just set it to midnight data['HHMMSS'][(data['HHMMSS'] >= 240000) & (data['HHMMSS'] < (240000 + data['Duration']))] = 235959 # otherwise, set it as invalid data['HHMMSS'][data['HHMMSS'] >= 240000] = -999 for idx, (ymd, hms) in enumerate(zip(data['YYYYMMDD'], data['HHMMSS'])): if (ymd < 0) | (hms < 0): date_str.append('1970-1-1 00:00:00') # invalid sage ii date else: hours = int(hms/10000) mins = int((hms % 10000)/100) secs = hms % 100 date_str.append(str(ymd)[0:4] + '-' + str(ymd)[4:6].zfill(2) + '-' + str(ymd)[6::].zfill(2) + ' ' + str(hours).zfill(2) + ':' + str(mins).zfill(2) + ':' + str(secs).zfill(2)) # data['time'] = Time(date_str, format='iso') data['time'] = pd.to_datetime(date_str) data['mjd'] = np.array((data['time'] - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D')) data['mjd'][data['mjd'] < 40588] = -999 # get rid of invalid dates return data def load_data(self, min_date: str, max_date: str, min_lat: float=-90, max_lat: float=90, min_lon: float=-180, max_lon: float=360) -> Union[Dict, xr.Dataset]: """ Load the SAGE II data for the specified dates and locations. Parameters ---------- min_date start date where data will be loaded in iso format, eg: '2004-1-1' max_date end date where data will be loaded in iso format, eg: '2004-1-1' min_lat minimum latitude (optional) max_lat maximum latitude (optional) min_lon minimum longitude (optional) max_lon maximum longitude (optional) Returns ------- Variables are returned as numpy arrays (1 or 2 dimensional depending on the variable) """ min_time = pd.Timestamp(min_date) max_time = pd.Timestamp(max_date) data = dict() init = False # create a list of unique year/month combinations between the start/end dates uniq = OrderedDict() for year in [(t.date().year, t.date().month) for t in pd.date_range(min_time, max_time+pd.Timedelta(27, 'D'), freq='27D')]: uniq[year] = year # load in the data from the desired months for (year, month) in list(uniq.values()): logging.info('loading data for : ' + str(year) + '/' + str(month)) indx_file = self.get_index_filename(year, month) # if the file does not exist move on to the next month if indx_file is None: continue indx_data = self.read_index_file(indx_file) numprof = indx_data['num_prof'] spec_data = self.read_spec_file(self.get_spec_filename(year, month), numprof) # get rid of the duplicate names for InfVec for sp in spec_data: sp['ProfileInfVec'] = copy.copy(sp['InfVec']) del sp['InfVec'] for key in indx_data.keys(): # get rid of extraneous profiles in the index so index and spec are the same lengths if hasattr(indx_data[key], '__len__'): indx_data[key] = np.delete(indx_data[key], np.arange(numprof, 930)) # add the index values to the data set if key in data.keys(): # we dont want to replicate certain fields if (key[0:3] != 'Alt') & (key[0:5] != 'Range') & (key[0:7] != 'FillVal'): data[key] = np.append(data[key], indx_data[key]) else: if key == 'FillVal': data[key] = indx_data[key] else: data[key] = [indx_data[key]] # initialize the data dictionaries as lists if init is False: for key in spec_data[0].keys(): data[key] = [] init = True # add the spec values to the data set for key in spec_data[0].keys(): data[key].append(np.asarray([sp[key] for sp in spec_data])) # join all of our lists into an array - this could be done more elegantly with vstack to avoid # the temporary lists, but this is much faster for key in data.keys(): if key == 'FillVal': data[key] = float(data[key]) # make this a simple float rather than zero dimensional array elif len(data[key][0].shape) > 0: data[key] = np.concatenate(data[key], axis=0) else: data[key] = np.asarray(data[key]) data = self.subset_data(data, min_date, max_date, min_lat, max_lat, min_lon, max_lon) if not data: return None if self.output_format == 'xarray': data = self.convert_to_xarray(data) return data @staticmethod def subset_data(data: Dict, min_date: str, max_date: str, min_lat: float, max_lat: float, min_lon: float, max_lon: float) -> Dict: """ Removes any data from the dictionary that does not meet the specified time, latitude and longitude requirements. Parameters ---------- data dictionary of sage ii data. Must have the fields 'mjd', 'Lat' and 'Lon'. All others are optional min_date start date where data will be loaded in iso format, eg: '2004-1-1' max_date end date where data will be loaded in iso format, eg: '2004-1-1' min_lat minimum latitude (optional) max_lat maximum latitude (optional) min_lon minimum longitude (optional) max_lon maximum longitude (optional) Returns ------- returns the dictionary with only data in the valid latitude, longitude and time range """ min_mjd = (pd.Timestamp(min_date) - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D') max_mjd = (pd.Timestamp(max_date) - pd.Timestamp('1858-11-17')) / pd.Timedelta(1, 'D') good = (data['mjd'] > min_mjd) & (data['mjd'] < max_mjd) & \ (data['Lat'] > min_lat) & (data['Lat'] < max_lat) & \ (data['Lon'] > min_lon) & (data['Lon'] < max_lon) if np.any(good): for key in data.keys(): if hasattr(data[key], '__len__'): if data[key].shape[0] == len(good): data[key] = data[key][good] else: print('no data satisfies the criteria') data = {} return data def convert_to_xarray(self, data: Dict) -> Union[xr.Dataset, Tuple[xr.Dataset, xr.Dataset]]: """ Parameters ---------- data Data from the ``load_data`` function Returns ------- data formatted to an xarray Dataset """ # split up the fields into one of different sizes and optional returns fields = dict() # not currently returned fields['geometry'] = ['Tan_Alt', 'Tan_Lat', 'Tan_Lon'] fields['flags'] = ['InfVec', 'Dropped'] fields['profile_flags'] = ['ProfileInfVec'] # always returned - 1 per profile fields['general'] = ['Event_Num', 'Lat', 'Lon', 'Beta', 'Duration', 'Type_Sat', 'Type_Tan', 'Trop_Height'] # optional return parameters fields['background'] = ['NMC_Pres', 'NMC_Temp', 'NMC_Dens', 'NMC_Dens_Err', 'Density', 'Density_Err'] fields['ozone'] = ['O3', 'O3_Err'] fields['no2'] = ['NO2', 'NO2_Err'] fields['h2o'] = ['H2O', 'H2O_Err'] fields['aerosol'] = ['Ext386', 'Ext452', 'Ext525', 'Ext1020', 'Ext386_Err', 'Ext452_Err', 'Ext525_Err', 'Ext1020_Err'] fields['particle_size'] = ['SurfDen', 'Radius', 'SurfDen_Err', 'Radius_Err'] xr_data = [] index_flags = self.convert_index_bit_flags(data) species_flags = self.convert_species_bit_flags(data) time = pd.to_timedelta(data['mjd'], 'D') + pd.Timestamp('1858-11-17') data['Trop_Height'] = data['Trop_Height'].flatten() for key in fields['general']: xr_data.append(xr.DataArray(data[key], coords=[time], dims=['time'], name=key)) if 'aerosol' in self.species or self.filter_ozone: # we need aerosol to filter ozone altitude = data['Alt_Grid'][0:80] wavel = np.array([386.0, 452.0, 525.0, 1020.0]) ext = np.array([data['Ext386'], data['Ext452'], data['Ext525'], data['Ext1020']]) xr_data.append(xr.DataArray(ext, coords=[wavel, time, altitude], dims=['wavelength', 'time', 'Alt_Grid'], name='Ext')) ext = np.array([data['Ext386_Err'], data['Ext452_Err'], data['Ext525_Err'], data['Ext1020_Err']]) xr_data.append(xr.DataArray(ext, coords=[wavel, time, altitude], dims=['wavelength', 'time', 'Alt_Grid'], name='Ext_Err')) for key in fields['particle_size']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'no2' in self.species: altitude = data['Alt_Grid'][0:100] for key in fields['no2']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'h2o' in self.species: altitude = data['Alt_Grid'][0:100] for key in fields['h2o']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if any(i in ['ozone', 'o3'] for i in self.species): altitude = data['Alt_Grid'][0:140] for key in fields['ozone']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) if 'background' in self.species: altitude = data['Alt_Grid'][0:140] for key in fields['background']: xr_data.append(xr.DataArray(data[key], coords=[time, altitude], dims=['time', 'Alt_Grid'], name=key)) xr_data = xr.merge(xr_data) if self.enumerate_flags: xr_data = xr.merge([xr_data, index_flags, species_flags]) for var in xr_data.variables.keys(): if xr_data[var].dtype == 'float32' or 'Err' in var: xr_data[var] = xr_data[var].where(xr_data[var] != data['FillVal']) # determine cloud filter for aerosol data cloud_filter = xr.full_like(species_flags.Cloud_Bit_1, fill_value=True, dtype=bool) min_alt = (xr_data.Alt_Grid * (species_flags.Cloud_Bit_1 & species_flags.Cloud_Bit_2)).max(dim='Alt_Grid') cloud_filter = cloud_filter.where(cloud_filter.Alt_Grid > min_alt) xr_data['cloud_filter'] = np.isnan(cloud_filter) # determine valid ozone altitudes if any(i in ['ozone', 'o3'] for i in self.species): # add an ozone filter field for convenience ozone_good = xr.full_like(species_flags.Cloud_Bit_1, fill_value=True, dtype=bool) # Exclusion of all data points with an uncertainty estimate of 300% or greater ozone_good = ozone_good.where(xr_data.O3_Err < 30000) # Exclusion of all profiles with an uncertainty greater than 10% between 30 and 50 km no_good = (xr_data.O3_Err > 1000) & (xr_data.Alt_Grid > 30) & (xr_data.Alt_Grid < 50) ozone_good = ozone_good.where(~no_good) # Exclusion of all data points at altitude and below the occurrence of an aerosol extinction value of # greater than 0.006 km^-1 # NOTE: the wavelength to use as the filter is not specified in the documentation, so I have chosen the # wavelength with the smallest extinction and therefore the strictest filtering min_alt = (xr_data.Alt_Grid * (xr_data.Ext.sel(wavelength=1020) > 0.006)).max(dim='Alt_Grid') ozone_good = ozone_good.where(xr_data.Alt_Grid > min_alt) # Exclusion of all data points at altitude and below the occurrence of both the 525nm aerosol extinction # value exceeding 0.001 km^-1 and the 525/1020 extinction ratio falling below 1.4 min_alt = (xr_data.Alt_Grid * ((xr_data.Ext.sel(wavelength=525) > 0.001) & ((xr_data.Ext.sel(wavelength=525) / xr_data.Ext.sel( wavelength=1020)) < 1.4))).max(dim='Alt_Grid') ozone_good = ozone_good.where(xr_data.Alt_Grid > min_alt) # Exclusion of all data points below 35km an 200% or larger uncertainty estimate no_good = (xr_data.O3_Err > 20000) & (xr_data.Alt_Grid < 35) ozone_good = ~np.isnan(ozone_good.where(~no_good)) xr_data['ozone_filter'] = ozone_good if self.filter_aerosol: xr_data['Ext'] = xr_data.Ext.where(~xr_data.cloud_filter) if self.filter_ozone: xr_data['O3'] = xr_data.O3.where(ozone_good) # drop aerosol if not requested if self.filter_ozone and not ('aerosol' in self.species): xr_data.drop(['Ext', 'Ext_Err', 'wavelength']) if self.normalize_percent_error: for var in xr_data.variables.keys(): if 'Err' in var: # put error units back into percent xr_data[var] = (xr_data[var] / 100).astype('float32') xr_data = xr_data.transpose('time', 'Alt_Grid', 'wavelength') xr_data = self.apply_cf_conventions(xr_data) if self.return_separate_flags: return xr_data, xr.merge([index_flags, species_flags]) else: return xr_data def apply_cf_conventions(self, data): attrs = {'time': {'standard_name': 'time'}, 'Lat': {'standard_name': 'latitude', 'units': 'degrees_north'}, 'Lon': {'standard_name': 'longitude', 'units': 'degrees_east'}, 'Alt_Grid': {'units': 'km'}, 'wavelength': {'units': 'nm', 'description': 'wavelength at which aerosol extinction is retrieved'}, 'O3': {'standard_name': 'number_concentration_of_ozone_molecules_in_air', 'units': 'cm-3'}, 'NO2': {'standard_name': 'number_concentration_of_nitrogen_dioxide_molecules_in_air', 'units': 'cm-3'}, 'H2O': {'standard_name': 'number_concentration_of_water_vapor_in_air', 'units': 'cm-3'}, 'Ext': {'standard_name': 'volume_extinction_coefficient_in_air_due_to_ambient_aerosol_particles', 'units': 'km-1'}, 'O3_Err': {'standard_name': 'number_concentration_of_ozone_molecules_in_air_error', 'units': 'percent'}, 'NO2_Err': {'standard_name': 'number_concentration_of_nitrogen_dioxide_molecules_in_air_error', 'units': 'percent'}, 'H2O_Err': {'standard_name': 'number_concentration_of_water_vapor_in_air_error', 'units': 'percent'}, 'Ext_Err': {'standard_name': 'volume_extinction_coefficient_in_air_due_to_ambient_aerosol_' 'particles_error', 'units': 'percent'}, 'Duration': {'units': 'seconds', 'description': 'duration of the sunrise/sunset event'}, 'Beta': {'units': 'degrees', 'description': 'angle between the satellite orbit plane and the sun'}, 'Trop_Height': {'units': 'km'}, 'Radius': {'units': 'microns'}, 'SurfDen': {'units': 'microns2 cm-3'}} for key in attrs.keys(): data[key].attrs = attrs[key] data.attrs = {'description': 'Retrieved vertical profiles of aerosol extinction, ozone, ' 'nitrogen dioxide, water vapor, and meteorological profiles from SAGE II ' 'version 7.00', 'publication reference': '<NAME>., <NAME>., <NAME>., & <NAME>. (2013). ' 'SAGE version 7.0 algorithm: application to SAGE II. Atmospheric ' 'Measurement Techniques, 6(12), 3539-3561.', 'title': 'SAGE II version 7.00', 'date_created':
pd.Timestamp.now()
pandas.Timestamp.now
import argparse import pickle import pandas as pd import numpy as np import torch import torch.nn as nn from copy import deepcopy from torch.utils.data import Dataset, DataLoader from transformers import BertConfig, BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup from sklearn.model_selection import train_test_split import pytorch_lightning as pl from pytorch_lightning.metrics.functional.classification import auroc from pytorch_lightning.callbacks.early_stopping import EarlyStopping from sklearn.metrics import accuracy_score, multilabel_confusion_matrix, f1_score, precision_score, recall_score, precision_recall_fscore_support from itertools import compress from pathlib import Path # For group analysis: # This assumes that there are sub-groups within the gold data that are found in the folder ./groups/ # Each file represents a sub-group and has and id per line that corresponds to the sample_id in the gold/test data group_path = './groups/' group_files = [n.name for n in Path(group_path).glob('*.txt')] mapped_groups = dict() groups = dict() for group in group_files: groups[group] = [int(l) for l in open(group_path+group, 'r').readlines() if l.strip() != ''] for i in groups[group]: if i not in mapped_groups: mapped_groups.update({i: list()}) mapped_groups[i].append(group) #For the different runs, use a random seed RANDOM_SEED = np.random.choice(range(100)) #RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED) errors = list() BERT_MODEL_NAME = 'bert-base-cased' tokeniser = BertTokenizer.from_pretrained(BERT_MODEL_NAME) #sample_row = df.iloc[16] #sample_text = sample_row.text #sample_labels = sample_row[LABEL_COLUMNS] # encoding = tokeniser.encode_plus( # sample, # truncation=True, # add_special_tokens=True, # max_length=128, # return_token_type_ids=False, # padding="max_length", # return_attention_mask=True, # return_tensors="pt" # ) #print(encoding.keys()) #print(encoding['input_ids'].shape) #print(encoding['attention_mask'].shape) #print(encoding['input_ids'].squeeze()) #print(encoding['attention_mask'].squeeze()) #print(tokeniser.convert_ids_to_tokens(encoding['input_ids'].squeeze())[:20]) def classify(sample, model, tokeniser, label_names, thresholds): encoding = tokeniser.encode_plus( sample, truncation=True, add_special_tokens=True, max_length=128, return_token_type_ids=False, padding="max_length", return_attention_mask=True, return_tensors="pt" ) _, prediction = model(encoding['input_ids'], encoding['attention_mask']) prediction = prediction.flatten().numpy() # print(prediction) predicted_labels = [] binarised_labels = [] scores = [] for i, label_name in enumerate(label_names): label_probability = prediction[i] scores.append(label_probability) if label_probability > thresholds[i]: # print('LABEL PROB', label_probability) predicted_labels.append(label_name) binarised_labels.append(1) else: binarised_labels.append(0) return predicted_labels, binarised_labels, scores #train_dataset = TextDataset(train_df, tokeniser) #sample_item = train_dataset[0] #print('SAMPLE ITEM KEYS', sample_item.keys()) #print(sample_item['text']) #print(sample_item['input_ids'].shape, sample_item['attention_mask'].shape, sample_item['labels'].shape) #sample_item['labels'] # bert_model = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True) # prediction = bert_model(sample_item['input_ids'].unsqueeze(dim=0), sample_item['attention_mask'].unsqueeze(dim=0)) parser = argparse.ArgumentParser(description='args for the multilabel text classifier') parser.add_argument('-dropout', type=float, default=0.1) parser.add_argument('-early', action='store_true') parser.add_argument('-folds', type=int, default=10) parser.add_argument('-epochs', type=int, default=20) parser.add_argument('-batch_size', type=int, default=32) parser.add_argument('-csv', type=str, default='test.csv') parser.add_argument('-var_thresh', action='store_true', default=False) parser.add_argument('-threshold', type=float, default=0.5) parser.add_argument('-soft', action='store_true', default=False) parser.add_argument('-ratings', action='store_true', default=False) parser.add_argument('-test', type=str) parser.add_argument('-theme', action='store_true', default=False) parser.add_argument('-gold_val', action='store_true', default=False) parser.add_argument('-output', type=str, default='./output/') parser.add_argument('-cycles', type=int) parser.add_argument('-print_sents', action='store_true') parser.add_argument('-print_output', action='store_true') parser.add_argument('-final_model', action='store_true') parser.add_argument('-errors', action='store_true') args = parser.parse_args() OUTPUT = args.output NUM_EPOCHS = args.epochs # 10 BATCH_SIZE = args.batch_size THRESHOLD = args.threshold FOLDS = args.folds df = pd.read_csv(args.csv) print('### NUM ENTRIES AFTER READING CSV', len(df)) if args.test: df_test =
pd.read_csv(args.test)
pandas.read_csv
import os import pandas as pd from grdb.database.v1_1_0 import ( sample, preparation_step, recipe, properties, raman_set, raman_file, raman_spectrum, sem_file, ) from sqlalchemy import String, Integer, Float sql_validator = { "int": lambda x: isinstance(x.property.columns[0].type, Integer), "float": lambda x: isinstance(x.property.columns[0].type, Float), "str": lambda x: isinstance(x.property.columns[0].type, String), } def convert(value, field): if sql_validator["int"](field): return int(value) elif sql_validator["float"](field): return float(value) else: return str(value) def upload_file(file_path, folder_name=None): box_adaptor = BoxAdaptor(box_config_path) upload_folder = box_adaptor.create_upload_folder(folder_name=folder_name) box_file = box_adaptor.upload_file(upload_folder, file_path, str(uuid.uuid4())) return box_file.get_shared_link_download_url(access="open") def get_filepaths(reference_id, folder_path="./"): contents = os.listdir(os.path.join(folder_path, reference_id)) raman = [] sem = [] for f in contents: if f.split(".")[-1] == "txt": raman.append(f) elif f.split(".")[-1] == "tif": sem.append(f) return raman, sem sample_fields = ["material_name", "experiment_date"] preparation_fields = [ "name", "duration", "furnace_temperature", "furnace_pressure", "sample_location", "helium_flow_rate", "hydrogen_flow_rate", "argon_flow_rate", "carbon_source", "carbon_source_flow_rate", "cooling_rate", ] recipe_fields = [ "catalyst", "tube_diameter", "cross_sectional_area", "tube_length", "base_pressure", "thickness", "diameter", "length", ] properties_fields = [ "average_thickness_of_growth", "standard_deviation_of_growth", "number_of_layers", "growth_coverage", "domain_size", "shape", ] all_fields = sample_fields + preparation_fields + recipe_fields + properties_fields def build_db(session, filepath, sem_raman_path=None): var_map = pd.read_csv(os.path.join(filepath, "varmap2.csv")).to_dict() data = pd.read_csv(os.path.join(filepath, "recipe_2018_11_08.csv")).iloc[:-1, :] col_names = data.columns for i in range(data.shape[0]): s = sample() s.material_name = "Graphene" s.validated = True session.add(s) session.commit() pr = properties() pr.sample_id = s.id r = recipe() r.sample_id = s.id for j in range(30): value = data.iloc[i, j] if pd.isnull(value) == False: dbkey = var_map[col_names[j]][0] if dbkey == "identifier": identifier = str(data.iloc[i, j]) if dbkey in properties_fields: value = convert(data.iloc[i, j], getattr(properties, dbkey)) setattr(pr, dbkey, value) elif dbkey in recipe_fields: value = convert(data.iloc[i, j], getattr(recipe, dbkey)) if "mTorr" in col_names[j]: setattr(prep, dbkey, value / 1000) else: setattr(prep, dbkey, value) session.add(pr) session.add(r) session.commit() total_steps = 0 # Annealing for step, j in enumerate(range(31, 109, 13)): prep = preparation_step() prep.name = "Annealing" prep.recipe_id = r.id for p in range(13): dbkey = var_map[col_names[j + p]][0] value = data.iloc[i, j + p] if pd.isnull(value) == False and dbkey in preparation_fields: value = convert( data.iloc[i, j + p], getattr(preparation_step, dbkey) ) # print(prep.name,col_names[j+p],dbkey,value,type(value)) if "flow_rate" in dbkey: if "sccm" in col_names[j + p]: setattr(prep, dbkey, value) else: setattr(prep, dbkey, value / 0.01270903) elif "furnace_pressure" in dbkey: if "mTorr" in col_names[j + p]: setattr(prep, dbkey, value / 1000) else: setattr(prep, dbkey, value) else: setattr(prep, dbkey, value) if prep.duration != None: prep.step = total_steps total_steps += 1 # print('Added Annealing') # print(vars(prep)) session.add(prep) session.commit() # Growing for step, j in enumerate(range(110, 188, 13)): prep = preparation_step() prep.name = "Growing" prep.recipe_id = r.id for p in range(13): dbkey = var_map[col_names[j + p]][0] value = data.iloc[i, j + p] if pd.isnull(value) == False and dbkey in preparation_fields: value = convert( data.iloc[i, j + p], getattr(preparation_step, dbkey) ) # print(prep.name,col_names[j+p],dbkey,value,type(value)) if "flow_rate" in dbkey: if "sccm" in col_names[j + p]: setattr(prep, dbkey, value) else: setattr(prep, dbkey, value / 0.01270903) elif "furnace_pressure" in dbkey: if "mTorr" in col_names[j + p]: setattr(prep, dbkey, value / 1000) else: setattr(prep, dbkey, value) else: setattr(prep, dbkey, value) if prep.duration != None: prep.step = total_steps total_steps += 1 # print('Added Growing') # print(vars(prep)) session.add(prep) session.commit() # Cooling for step, j in enumerate(range(191, 268, 13)): prep = preparation_step() prep.name = "Cooling" prep.cooling_rate = convert( data.iloc[i, 190], getattr(preparation_step, "cooling_rate") ) prep.recipe_id = r.id for p in range(13): dbkey = var_map[col_names[j + p]][0] value = data.iloc[i, j + p] if
pd.isnull(value)
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Wed Feb 5 19:53:06 2020 @author: abhi0 """ #Categorical encoding features II #Kaggle challenge #Open competition import pandas as pd df=pd.read_csv("C:/Users/abhi0/Downloads/train.csv/train.csv") dfTest=pd.read_csv("C:/Users/abhi0/Downloads/test_Kaggle.csv") #Initial approach: Drop NaN's df=df.dropna() ################ Feature pre-processing: ##################### #dropping the ID column df.drop(['id'],axis=1,inplace=True) #dropping some of the nominal variables: #nom_5,nom_6,nom_7,nom_8,nom_9 df.drop(['nom_5','nom_6','nom_7','nom_8','nom_9'],axis=1,inplace=True) ########## Label encoding the binary variables ############### # For 'bin_3' variable from sklearn.preprocessing import LabelEncoder labelencoder_bin_3 = LabelEncoder() df['bin_3'] = labelencoder_bin_3.fit_transform(df['bin_3']) # For 'bin_4' variable from sklearn.preprocessing import LabelEncoder labelencoder_bin_4 = LabelEncoder() df['bin_4'] = labelencoder_bin_4.fit_transform(df['bin_4']) ########## Label encoding the ordinal variables ############### for i in range(1,6): labelencoder_ord_i = LabelEncoder() df['ord_'+str(i)] = labelencoder_ord_i.fit_transform(df['ord_'+str(i)]) ######### One-hot encoding for nominal variables ########### for i in range(0,5): df_dummies=pd.get_dummies(df['nom_'+str(i)],prefix='nom_'+str(i)+'_category:') df=pd.concat([df,df_dummies],axis=1) df=df.drop(['nom_'+str(i)],axis=1) #For 'day' variable: df_dummies=pd.get_dummies(df['day'],prefix='day_category:') df=pd.concat([df,df_dummies],axis=1) df=df.drop(['day'],axis=1) #For 'month' variable: df_dummies=pd.get_dummies(df['month'],prefix='month_category:') df=
pd.concat([df,df_dummies],axis=1)
pandas.concat
# coding: utf-8 # # Interrogating building age distributions # # This notebook is to explore the distribution of building ages in # communities in Western Australia. from os.path import join as pjoin import pandas as pd import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import re import seaborn as sns sns.set_context("poster") sns.set_style('darkgrid') # Apply GA colour palette palette = sns.blend_palette(["#5E6A71", "#006983", "#72C7E7", "#A33F1F", "#CA7700", "#A5D867", "#6E7645"], 7) # The source file `WA_Residential_Wind_Exposure_2018_TCRM.CSV` can be # found in HPRM D2018-6256. Download a local version (by using the # 'Supercopy' option when right-clicking on the record), and change # the path to the appropriate folder. inputFile = "C:/WorkSpace/data/derived/exposure/WA/WA_TILES_Residential_Wind_Exposure.csv" df = pd.read_csv(inputFile) output_path = "C:/Workspace/data/derived/exposure/WA/" SA2_names = sorted(list(pd.unique(df['SA2_NAME']))) ages = sorted(list(pd.unique(df['YEAR_BUILT']))) print(ages) def plotAgeDist(df, locality): fig = plt.figure() ax = fig.add_subplot(111) locdf = df[df['SA2_NAME'] == locality] sns.countplot(x="YEAR_BUILT", data=locdf, order=ages, ax=ax, palette=palette) ax.set_xlabel("Year built") ax.set_ylabel("Number") plt.setp(ax.get_xticklabels(), rotation=90) ax.set_title("{0} - {1:,} residential buildings".format(locality, len(locdf.index))) fig.tight_layout() fig.savefig(pjoin(output_path, "AgeProfile", "SA2", "{0}.png".format(locality))) plt.clf() plt.close('all') # There's two aspects to the age distribution - communities where # there has been substantial growth since the last significant # cyclone, and communities with a large proportion of older (pre-1980) # era construction. # TODO: # 1. Add a chart that ranks the localities by proportion of a # selected age group. The list of age groups is already compiled # (`ages`), just need to do the calculations to get proportions for # the specified age group. # 2. Add another figure that plots the # predominant age group for each suburb in the locality. If there's a # spatial layer of the boundaries for `SUBURB_2015`, then one could # plot up a categorised map of the suburbs based on predominant age # group. # In[26]: def plotBySuburb(df, locality): fig = plt.figure() ax = fig.add_subplot(111) locdf = df[df['SA2_NAME'] == locality] suburblist = locdf[locdf['SUBURB'].notnull()]['SUBURB'] suburbs = sorted(list(pd.unique(suburblist))) sns.countplot(x='SUBURB', hue='YEAR_BUILT', data=locdf, order=suburbs, hue_order=ages, palette=palette,ax=ax) ax.set_xlabel("Suburb") ax.set_ylabel("Number") locs, labels = plt.xticks() plt.setp(labels, rotation=90) l = ax.legend(title="Year built", ncol=2) ax.set_title("{0} - {1:,} residential buildings". format(locality, len(locdf.index))) fig.tight_layout() plt.savefig(pjoin(output_path, "AgeProfile", "SA2", "BySuburb", "{0}.png".format(locality))) plt.close('all') for SA2 in SA2_names: print(SA2) plotAgeDist(df, SA2) plotBySuburb(df, SA2) # For the Perth region, we perform the analysis at a larger # aggregation, due to the number of suburbs that make up the Greater # Perth area. # In[28]: urbanareas = sorted(list(
pd.unique(df['UCL_NAME'])
pandas.unique
""" This module contains functions for handling UI callbacks on the webpage, one of which is the upload of data. """ # Built-in imports import io import base64 from datetime import datetime from collections import namedtuple from hashlib import md5 import logging # Third-party module imports. import dash import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import pandas as pd import numpy as np # Own module imports. from .exceptions import UploadError, ModelCreationError from . import analysis from . import dbactions from . import layout from . import plotting # Describe time format that we get, e.g. in file names, so we can convert it to datetime. time_fmt = '%Y_%m_%d_%H_%M_%S' # Set pandas plotting backend to ploty. Requires plotly >= 4.8.0. pd.options.plotting.backend = 'plotly' ############################ # Map files to table types # ############################ def get_table_type(filename): """ Accepted filenames: device-<device_id>.csv, user.csv, session-<time_iso>.csv, trials-<time_iso>-Block_<n>.csv :param filename: name of uploaded file. :type filename: str :return: Name of table type. :rtype: str|None """ basename, ext = filename.split('.') parts = basename.split('-') first = parts[0] if ext == 'csv' and first in ['device', 'user', 'session', 'trials']: return first else: return None def get_file_indices(filenames, table_type): """ Get indices of given table type from a list of file names. :param filenames: Received file names. :type filenames: list :param table_type: Which tables to look for. :type table_type: str :return: Indices of found files. :rtype: list """ indices = [i for i, f in enumerate(filenames) if get_table_type(f) == table_type] return indices def get_table_idx(filenames, table_type): """ Supposed to be used against table types 'device', 'user' and 'session' which should yield a single file. :param filenames: :type filenames: list :param table_type: :type table_type: str :return: Index of single table. :rtype: int """ try: file_idx = get_file_indices(filenames, table_type)[0] except IndexError: raise UploadError(f"ERROR: {table_type.title()} file is missing.") return file_idx ######################### # Extract file contents # ######################### def decode_contents(list_of_contents): """ Decode list of base64 encoded uploaded data and convert it to decoded list of data. :param list_of_contents: List of encoded content from dash upload component. :type list_of_contents: list :return: List of decoded contents (str) :rtype: list """ decoded = list() for contents in list_of_contents: content_type, content_string = contents.split(',') decoded.append(base64.b64decode(content_string).decode('utf-8')) return decoded #################### # Integrity Checks # #################### def check_circletask_hash(df, sent_hash): """ Check if hashes match. :param df: Dataframe to check. :type df: pandas.DataFrame :param sent_hash: The received hash to compare df to. :type sent_hash: str :return: Do hashes match? :rtype: bool """ df_hash = md5(df[['df1', 'df2', 'df1_grab', 'df1_release', 'df2_grab', 'df2_release']].round(5).values.copy(order='C')).hexdigest() if df_hash != sent_hash: raise UploadError("ERROR: Data corrupted.") else: return True def check_circletask_touched(df): """ Check if all sliders were used. :param df: Dataframe to check. :type df: pandas.DataFrame :return: Whether all sliders where used. :rtype: bool """ # untouched = df.isna().all().any() if untouched: raise UploadError("ERROR: Task not properly executed.") return True def check_circletask_integrity(df, sent_hash): """ Evaluate if this data was tampered with and the controls actually touched. :param df: Dataframe to check. :type df: pandas.DataFrame :param sent_hash: The received hash to compare df to. :type sent_hash: str :return: Status of integrity. :rtype: bool """ try: check = check_circletask_touched(df) and check_circletask_hash(df, sent_hash) except UploadError: raise UploadError("ERROR: Data corrupted.") return check ################## # Parsing upload # ################## def get_device_properties(csv_file): """ Get device properties as dictionary from a CSV file. :param csv_file: 1 row table with device properties. :type csv_file: str|io.StringIO :return: Properties of the device. :rtype: dict """ try: # For device and user we expect them to contain only 1 entry. Prevent id from being converted to number. props = pd.read_csv(csv_file, dtype={'id': object}).iloc[0].to_dict() # df->Series->dict except Exception: raise UploadError("ERROR: Failed to read file contents for device.") return props def get_user_properties(csv_file): """ Get user data as dictionary from a CSV file. :param csv_file: 1 row table with user data. :type csv_file: str|io.StringIO :return: Properties of the user. :rtype: dict """ try: # We expect the user data to contain only 1 entry. Prevent IDs from being converted to numbers. df = pd.read_csv(csv_file, dtype={'id': object, 'device_id': object}) # We need to convert NaN to None for SQL to work. df = df.where(pd.notnull(df), None) props = df.iloc[0].to_dict() # df->Series->dict except IOError: raise UploadError("ERROR: Failed to read file contents for user.") except IndexError: raise UploadError("ERROR: No data in User table.") return props def get_blocks_df(csv_file, session_uid, user_id): """ Return a DataFrame from CSV file or buffer and add user_id column. :param csv_file: Table with session data for blocks. :type csv_file: str|io.StringIO :param session_uid: Identifier to group blocks as belonging to the same session. :type session_uid: str :param user_id: ID of the user who performed the session. :type user_id: str :return: Properties of the blocks. :rtype: pandas.DataFrame """ try: # Read data and keep empty string in treatment as empty string, not NaN. blocks_df = pd.read_csv(csv_file, keep_default_na=False) except Exception: raise UploadError("ERROR: Failed to read file contents for session.") try: # Convert time_iso string to datetime. blocks_df['time_iso'] = blocks_df['time_iso'].transform(lambda t: datetime.strptime(t, time_fmt)) blocks_df['user_id'] = user_id # Rename 'block' column to CircleTaskBlock model compatible 'nth_block' blocks_df.rename(columns={'block': 'nth_block'}, inplace=True) except KeyError: raise UploadError("ERROR: Missing columns in session data.") # Unique identifier for session so we can associate the blocks with this particular session. blocks_df['session_uid'] = session_uid return blocks_df def get_trials_meta(filename): """ Take a filename and extract time_iso and block information from it. :param filename: file name of trials table of form trials-[time_iso]-Block_[n].csv :type filename: str :return: time_iso and block as namedtuple :rtype: tuple """ basename, ext = filename.split('.') parts = basename.split('-') try: time_iso = datetime.strptime(parts[1], time_fmt) # Convert string to datetime. block = int(parts[2].split('_')[1]) except (IndexError, ValueError): raise UploadError("ERROR: Trial table file name has to be of form: trials-<time_iso>-Block_<n>.csv") meta = namedtuple('trialMeta', ['time_iso', 'block']) return meta(time_iso, block) def get_trials_properties(filenames, contents, times, blocks, hashes, user_id): """ Read all uploaded blocks with trials, check integrity, concatenate. :param filenames: All uploaded filenames. :type filenames: list :param contents: Decoded file contents. :type contents: list :param times: 'time_iso' column of session. :type times: pandas.Series :param blocks: 'block' column of session. :type blocks: pandas.Series :param hashes: 'hash' column of session. :type hashes: pandas.Series :param user_id: ID of user who provided the data of trials. :type user_id: str :return: Properties of all the trials as generator. :rtype: generator """ # Look for files containing trial data. file_indices = get_file_indices(filenames, 'trials') if not file_indices: raise UploadError("ERROR: Trial files are missing.") # Collect data from each file as separate DataFrames. trials_dfs = list() for idx in file_indices: # Get information from filename. try: trials_meta = get_trials_meta(filenames[idx]) except UploadError: raise # Get data from content. try: df = pd.read_csv(io.StringIO(contents[idx])) except Exception: raise UploadError("ERROR: Failed to read file contents for trials.") # Determine to which block in the session this file belongs to. mask = (times == trials_meta.time_iso) & (blocks == trials_meta.block) try: block_idx = mask[mask].index[0] # The accompanying row in session file. except IndexError: raise UploadError("ERROR: Mismatch between data in session file and trials file.") # Check data integrity by comparing hash values of this file and what was sent with the session file. sent_hash = hashes.iloc[block_idx] try: check_passed = check_circletask_integrity(df, sent_hash) except UploadError: raise # Add block index to relate trials to a CircleTaskBlock object when adding them to the database later on. df['block_idx'] = block_idx trials_dfs.append(df) # Concatenate the different trials DataFrames. Rows are augmented by block & time_iso for differentiation later on. df = pd.concat(trials_dfs) df['user_id'] = user_id df['trial'] = df.index # We may get a lot of trials, put them in a generator to not hold a large list of dictionaries in memory. props = (row._asdict() for row in df.itertuples(index=False)) return props def parse_uploaded_files(list_of_filenames, list_of_contents): """ Reads files and returns dictionary with keyword arguments for each table type. These are: 'device': dict 'user': dict 'blocks': list 'trials': generator :param list_of_filenames: list of received file names. :type list_of_filenames: list :param list_of_contents: List of encoded contents. :type list_of_contents: list :return: Dictionary with keyword arguments for database models. :rtype: dict """ # If there was an error in mapping the table types to files, return that error. try: # If files are missing get_table_idx raises UploadError. device_file_idx = get_table_idx(list_of_filenames, 'device') user_file_idx = get_table_idx(list_of_filenames, 'user') blocks_file_idx = get_table_idx(list_of_filenames, 'session') except UploadError: raise # Decode the content. try: decoded_list = decode_contents(list_of_contents) except Exception: raise UploadError("ERROR: Failed to decode file contents.") # Extract data from content for the database models. kw = dict() # Keyword arguments for each table. try: kw['device'] = get_device_properties(io.StringIO(decoded_list[device_file_idx])) kw['user'] = get_user_properties(io.StringIO(decoded_list[user_file_idx])) except UploadError: raise # Use the time of the session to create a uid from it, so we can group the blocks together later on. basename, ext = list_of_filenames[blocks_file_idx].split('.') try: # Unique id based on this user at that time. session_uid = md5((kw['user']['id'] + basename.split('-')[1]).encode()).hexdigest() except KeyError: raise UploadError("ERROR: User ID is missing.") except IndexError: raise UploadError("ERROR: Session file name is missing datetime.") try: blocks_df = get_blocks_df(io.StringIO(decoded_list[blocks_file_idx]), session_uid, kw['user']['id']) kw['blocks'] = [data._asdict() for data in blocks_df.itertuples(index=False)] # Convert namedtuple to dict. kw['trials'] = get_trials_properties(list_of_filenames, decoded_list, blocks_df['time_iso'], blocks_df['nth_block'], blocks_df['hash'], kw['user']['id']) except (UploadError, KeyError): raise UploadError("ERROR: Failed to parse data.") return kw def process_upload(filenames, contents): """ First parse the uploaded data and then add it to the database. :param filenames: list of received file names. :type filenames: list :param contents: List of encoded contents. :type contents: list """ # Get keyword arguments for creation of each model. try: kw = parse_uploaded_files(filenames, contents) except UploadError: raise try: dbactions.add_to_db(kw['device'], kw['user'], kw['blocks'], kw['trials']) except ModelCreationError: raise def records_to_df(store, columns=None): """ Convert records-style data to pandas DataFrame. :param store: Data from a dash_core_components.store component. :type store: list[dict] :param columns: Columns to use for empty DataFrame in case there are no records. :type columns: list[dict] :return: Stored data as a DataFrame. :rtype: pandas.DataFrame """ df = pd.DataFrame(store) # If the DataFrame is practically empty, delete everything except for the columns. if df.isna().all().all(): df = df[0:0] if df.columns.empty and columns: df = pd.DataFrame(None, columns=[c['id'] for c in columns]) return df def df_to_records(df): """ Convert pandas DataFrame to table compatible data aka records. If DataFrame is empty keep the columns. :type df: pandas.DataFrame :rtype: list[dict] """ if df.empty: # Return column names in 'records' style. return [{c: None for c in df.columns}] return df.to_dict('records') ################ # UI Callbacks # ################ def register_callbacks(dashapp): """ Defines all callbacks to UI events in the dashboard. """ # Upload @dashapp.callback(Output('output-data-upload', 'children'), [Input('upload-data', 'contents')], [State('upload-data', 'filename'), State('upload-data', 'last_modified')]) def on_upload(list_of_contents, list_of_names, list_of_dates): """ Upload data to SQL DB. """ if list_of_contents is not None: try: # Insert data into database. process_upload(list_of_names, list_of_contents) except (UploadError, ModelCreationError) as e: # Display the error message. return [html.Div(str(e))] # Display success message. return [html.Div("Upload successful.")] # Data stores @dashapp.callback([Output('datastore', 'data'), Output('user-IDs', 'options'), Output('removal-hint', 'children')], [Input('output-data-upload', 'children'), Input('refresh-btn', 'n_clicks'), Input('date-picker-range', 'start_date'), Input('date-picker-range', 'end_date'), ]) def set_datastore(upload_msg, refresh_clicks, start_date, end_date): """ Get data from SQL DB and store in memory. Update dropdown options. """ ctx = dash.callback_context if not ctx.triggered: comp_id = None else: # Which component triggered the callback? comp_id = ctx.triggered[0]['prop_id'].split('.')[0] if comp_id == 'output-data-upload': # When uploading manually on the website. try: # Query db on initial call when upload_msg is None or on successful upload. if upload_msg is None or "Upload successful." in upload_msg[0].children: users, blocks, trials = dbactions.get_data(start_date, end_date) df, n_errors, n_invalid_sessions, n_trials_removed = analysis.preprocess_data(users, blocks, trials) else: return (dash.no_update,) * 3 except (TypeError, AttributeError, IndexError): return (dash.no_update,) * 3 else: users, blocks, trials = dbactions.get_data(start_date, end_date) df, n_errors, n_invalid_sessions, n_trials_removed = analysis.preprocess_data(users, blocks, trials) removal_msg = f"{n_errors} blocks with erroneous data were found. As a consequence {n_invalid_sessions} " \ f"sessions were excluded. " \ f"{n_trials_removed} trials have been excluded from the selected time period due to incorrect" \ f" execution." + " Sliders were either not used concurrently or not used at all." \ * bool(n_trials_removed) users = [{'label': p, 'value': p} for p in df['user'].unique()] return df_to_records(df), users, removal_msg # Trials @dashapp.callback([Output('trials-table', 'data'), Output('trials-table', 'columns'), Output('contour-store', 'data')], [Input('datastore', 'data'), Input('user-IDs', 'value'), Input('contamination', 'value')]) def set_trials_table(stored_data, users_selected, contamination): """ Prepares stored data for display in the main table. Assesses outliers as well. """ df = records_to_df(stored_data) # Get outlier data. if not contamination: contamination = 0.1 try: outliers, z = analysis.get_outlyingness(df[['df1', 'df2']].values, contamination=contamination) except (KeyError, ValueError): logging.log(logging.ERROR, "Could not compute outliers. Missing columns in DataFrame.") # Create data with no outliers. outliers = np.array(False).repeat(df.shape[0]) z = np.ones((101, 101)).astype(int) df['outlier'] = outliers.astype(int) # Format table columns. columns = layout.get_columns_settings(df, order=[0, 1, 2, 3, 4, 6, 7, 8, 15, 9, 12, 16, 10, 13, 11, 14, 17, 18]) if not users_selected: # Return all the rows on initial load/no user selected. return df_to_records(df), columns, z.tolist() try: df[['user', 'block', 'condition', 'task', 'outlier']] = df[['user', 'block', 'condition', 'task', 'outlier']].astype('category') except KeyError: pass filtered = df.query('`user` in @users_selected') return df_to_records(filtered), columns, z.tolist() @dashapp.callback(Output('filtered-hint', 'children'), [Input('trials-table', 'derived_virtual_data')], [State('trials-table', 'data'), State('trials-table', 'filter_query')]) def on_table_filter(table_data_filtered, table_data, query): """ Update message about removed trials by filtering. """ # Check if there even is data. The empty dataset has 1 row with all None. try: if len(table_data) == 1 and np.isnan(np.array(tuple(table_data[0].values()), dtype=np.float)).all(): n_filtered = 0 else: n_filtered = len(table_data) - len(table_data_filtered) except (TypeError, AttributeError): n_filtered = 0 try: filter = query.replace('{', '').replace('}', '') except AttributeError: filter = "" filtered_msg = bool(n_filtered) * f" {n_filtered} trials were excluded by filters set in the table ({filter})." return filtered_msg @dashapp.callback(Output('scatterplot-trials', 'figure'), [Input('pca-store', 'data'), # Delay update until PCA is through. Input('pca-checkbox', 'value'), Input('ellipses-checkbox', 'value')], [State('trials-table', 'derived_virtual_data'), State('contour-store', 'data')]) def set_trials_plot(pca_data, show_pca, show_ellipses, table_data, contour): """ Update the graph for displaying trial data as scatter plot. """ df = records_to_df(table_data) try: df[['user', 'condition', 'block', 'task']] = df[['user', 'condition', 'block', 'task']].astype('category') except KeyError: pass z = np.array(contour) fig = plotting.generate_trials_figure(df, contour_data=z) # PCA visualisation. pca_df = records_to_df(pca_data) if 'Show' in show_pca: arrows = plotting.get_pca_annotations(pca_df) fig.layout.update(annotations=arrows) if 'Show' in show_ellipses: plotting.add_pca_ellipses(fig, pca_df) return fig @dashapp.callback([Output('histogram-dfs', 'figure'), Output('histogram-sum', 'figure')], [Input('trials-table', 'derived_virtual_data')]) def set_histograms(table_data): """ Update histograms when data in trials table changes. """ df = records_to_df(table_data) try: fig_dfs = plotting.generate_histograms(df[['df1', 'df2']], legend_title="DOF") fig_sum = plotting.generate_histograms(df[['task', 'sum']], by='task', legend_title="Block Type") except KeyError: fig = plotting.generate_histograms(pd.DataFrame()) return fig, fig return fig_dfs, fig_sum @dashapp.callback([Output('qq-plot-dfs', 'figure'), Output('qq-plot-sum', 'figure')], [Input('trials-table', 'derived_virtual_data')]) def set_qqplots(table_data): """ QQ-plots of degrees of freedom and of sum. """ df = records_to_df(table_data) try: fig_df = plotting.generate_qq_plot(df, vars_=['df1', 'df2']) fig_sum = plotting.generate_qq_plot(df, vars_=['sum']) except KeyError: fig = plotting.generate_qq_plot(pd.DataFrame(columns=['task']), vars_=[]) return fig, fig return fig_df, fig_sum @dashapp.callback([Output('corr-table', 'data'), Output('corr-table', 'columns')], [Input('trials-table', 'derived_virtual_data')]) def set_corr_table(table_data): """ Update table showing Pearson correlations between degrees of freedom and their sum. """ df = records_to_df(table_data) correlates = ['df1', 'df2', 'sum'] try: # We suspect the data to not be normally distributed or have outliers. # A Spearman correlation is then more appropriate. corr = df[correlates].corr(menthod='spearman') except KeyError: corr = pd.DataFrame(columns=correlates, index=correlates) if df.empty: corr = pd.DataFrame(columns=correlates, index=correlates) corr.index.name = '' corr.reset_index(inplace=True) columns = layout.get_columns_settings(corr) return df_to_records(corr), columns # Reaction times @dashapp.callback([Output('onset-dfs', 'figure'), Output('duration-dfs', 'figure')], [Input('trials-table', 'derived_virtual_data')], [State('trials-table', 'columns')]) def set_grab_plots(table_data, header): """ Update histograms when data in trials table changes. """ df = records_to_df(table_data) try: onset_df = df[['user', 'condition', 'block', 'task', 'df1_grab', 'df2_grab']] duration_df = df[['user', 'condition', 'block', 'task', 'df1_duration', 'df2_duration']] except KeyError: col_names = [c['id'] for c in header] onset_df = pd.DataFrame(columns=col_names) duration_df = pd.DataFrame(columns=col_names) fig_onset = plotting.generate_violin_figure(onset_df.rename(columns={'df1_grab': 'df1', 'df2_grab': 'df2'}), ['df1', 'df2'], ytitle="Grab Onset (s)", legend_title="DOF") fig_duration = plotting.generate_violin_figure(duration_df.rename(columns={'df1_duration': 'df1', 'df2_duration': 'df2'}), ['df1', 'df2'], ytitle='Grab Duration (s)', legend_title="DOF") return fig_onset, fig_duration @dashapp.callback(Output('barplot-variance', 'figure'), [Input('desc-table', 'derived_virtual_data')]) def set_variance_graph(table_data): """ Update graph showing variances of dependent and in independent variables. """ df = records_to_df(table_data) df.dropna(inplace=True) return plotting.generate_means_figure(df) # PCA @dashapp.callback(Output('pca-store', 'data'), [Input('trials-table', 'derived_virtual_data')], [State('trials-table', 'columns')]) def set_pca_store(table_data, table_columns): """ Save results of PCA into a store. """ df = records_to_df(table_data, columns=table_columns) try: df[['user', 'condition', 'block', 'task']] = df[['user', 'condition', 'block', 'task']].astype('category') pca_df = df.groupby('task').apply(analysis.get_pca_data) except KeyError: pca_df = pd.DataFrame() else: pca_df.reset_index(inplace=True) if pca_df.empty: pca_df = pd.DataFrame(None, columns=['task', 'PC', 'var_expl', 'var_expl_ratio', 'x', 'y', 'meanx', 'meany']) return df_to_records(pca_df) @dashapp.callback(Output('barplot-pca', 'figure'), [Input('pca-store', 'data')]) def set_pca_plot(pca_data): """ Update bar-plot showing explained variance per principal component. """ df = records_to_df(pca_data) try: df[['task', 'PC']] = df[['task', 'PC']].astype('category') except KeyError: pass fig = plotting.generate_pca_figure(df) return fig @dashapp.callback([Output('pca-table', 'data'), Output('pca-table', 'columns')], [Input('pca-store', 'data')]) def set_pca_angle_table(pca_data): """ Update table for showing divergence between principal components and UCM vectors. """ pca_df = records_to_df(pca_data) if pca_df.empty: angle_df =
pd.DataFrame(None, columns=['task', 'PC', 'parallel', 'orthogonal'])
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import mock import pandas as pd import numpy as np import requests import os from bho_scraper import bho_scraper from flask import Flask, request from tests.conftest import WebServer class Store: # ======================== test_change_href ======================================= mock_href = r'/test/href' correct_changed_href = r'/test--href' # ====================================================================================== # ======================== test_standardize_query ======================================= mock_query = r'test QUery here ##::;___' correct_standardized_query = r'testqueryhere' # ====================================================================================== # ======================== test_search_for_series ====================================== mock_series_query = r'test series query' mock_catalogue = {r'testseriesquery' : r'http://mock_base_url.co.uk/abc/example/href?'} correct_search_return = (r'http://mock_base_url.co.uk/abc/example/href?', 'example-href') # ====================================================================================== # ======================== test_scrape_catalogue ======================================= mock_text = ''' <html><body><table><tbody><tr><td><a>First row not taken</a></td><td> First row not taken</td></tr><tr><td><a href="/yes/series/test">Yes Series Test</a></td><td>Single volume</td></tr><tr><td> <a href="/no-series/no_series_test">No Series Test</a> </td> <td>Single volume</td></tr></tbody></table></body></html> ''' correct_scraped_catalogue = { 'yesseriestest' : 'https://www.british-history.ac.uk/search/series/yes--series--test?query={}&page={}' } # ====================================================================================== # ======================== test_scrape_results ======================================= mock_results_html1 = ''' <html><body><div class="region region-content"><div class="view-content"> <div> <h4 class="title"><a>Test Title 1</a></h4> <p class="publication">Test Publication 1</p> <p class="excerpt">Test Excerpt 1</p> </div> <div> <h4 class="title"><a>Test Title 2</a></h4> <p class="publication">Test Publication 2</p> </div> <div> <h4 class="title"><a>Test Title 3</a></h4> <p class="excerpt">Test Excerpt 3</p> </div> <div> <h4 class="title"></h4> <p class="publication">Test Publication 4</p> <p class="excerpt">Test Excerpt 4</p> </div> <a title="Go to last page" href="/query=?&page=1">last</a> </div></div></body></html> ''' correct_dict = { 'title' : ['Test Title 1', 'Test Title 2', 'Test Title 3', np.nan], 'publication' : ['Test Publication 1', 'Test Publication 2', np.nan, 'Test Publication 4'], 'excerpt' : ['Test Excerpt 1', np.nan, 'Test Excerpt 3', 'Test Excerpt 4'] } correct_df = pd.DataFrame(correct_dict) # ======================== test_scrape_series ======================================= mock_results_html2 = ''' <html><body><div class="region region-content"><div class="view-content"> <div> <h4 class="title"><a>Hello World</a></h4> <p class="publication">abc 123</p> <p class="excerpt">e = mc ** 2</p> </div></div></body></html> ''' mock_scraped_catalogue = {'http://example.com' : 'testseriesname'} correct_scraped_df = pd.DataFrame( { 'query' : ['test_query']*5, 'title' : ['Test Title 1', 'Test Title 2', 'Test Title 3', np.nan, 'Hello World'], 'publication' : ['Test Publication 1', 'Test Publication 2', np.nan, 'Test Publication 4', 'abc 123'], 'excerpt' : ['Test Excerpt 1', np.nan, 'Test Excerpt 3', 'Test Excerpt 4', 'e = mc ** 2'] } ) correct_scraped_series = {'test_series_name' : correct_scraped_df} # ============================================================================================ store = Store() def test_change_href(): mock_href = store.mock_href expected_result = store.correct_changed_href actual_result = bho_scraper.change_href(mock_href) assert expected_result == actual_result def test_save_item_to_path(): pass class MockRequest: def __init__(self, text, status_code): self.text = text self.status_code = status_code def mocked_request_get(*args, **kwargs): return MockRequest(text=store.mock_text, status_code=200) @mock.patch('requests.get', side_effect=mocked_request_get) def test_scrape_catalogue(mock_): scraper = bho_scraper.BHOScraper() scraper.scrape_catalogue() actual_result = scraper.catalogue expected_result = store.correct_scraped_catalogue assert expected_result == actual_result def test_reset_catalogue(): scraper = bho_scraper.BHOScraper() scraper.catalogue = {'test' : 'catalogue'} scraper.reset_catalogue() assert not scraper.catalogue def test_standardize_query(): expected_result = store.correct_standardized_query actual_result = bho_scraper.standardize_query(store.mock_query) assert expected_result == actual_result def test_search_for_series(): scraper = bho_scraper.BHOScraper() scraper.catalogue = store.mock_catalogue actual_result = scraper.search_for_series(store.mock_series_query) expected_result = store.correct_search_return assert expected_result == actual_result def mocked_request_results_get(*args, **kwargs): return MockRequest(text=store.mock_results_html1, status_code=200) @mock.patch('requests.get', side_effect=mocked_request_results_get) def test_scrape_results(mock_): scraper = bho_scraper.BHOScraper() actual_result = scraper.scrape_results('https://hello-world.com/') print(actual_result) expected_result = store.correct_df print('=========================================') print(expected_result) assert expected_result.equals(actual_result) @pytest.fixture(scope="module") def scraper_server(): app = Flask("scraper_server") server = WebServer(app) @server.app.route('/', methods=['GET', 'POST']) def display_page(): page = request.args.get('page') query = request.args.get('query') if page == '0': html = store.mock_results_html1.replace('\n', '') elif page == '1': html = store.mock_results_html2.replace('\n', '') return html with server.run(): yield server class MockScraper(bho_scraper.BHOScraper): def __init__(self, scraper_server): super().__init__() self.url = scraper_server.url + r'/?query={}&page={}' self.catalogue = store.mock_scraped_catalogue def search_for_series(self, *args): return self.url, 'test_series_name' def test_scrape_series(scraper_server): def mock_scraper(*args, **kwargs): return MockScraper(scraper_server=scraper_server) @mock.patch('bho_scraper.bho_scraper.BHOScraper', side_effect=mock_scraper) def get_scraper(mock_): scraper = bho_scraper.BHOScraper() scraper.scrape_series(['test_series_name'], ['test_query']) return scraper scraper = get_scraper() for key, correct_key in zip(scraper.scraped_series.keys(), store.correct_scraped_series.keys()): assert key == correct_key actual_df = scraper.scraped_series[key].fillna('NaN substitute') correct_df = store.correct_scraped_series[key].fillna('NaN substitute') assert actual_df.equals(correct_df) def test_scrape_series_download(scraper_server): def mock_scraper(*args, **kwargs): return MockScraper(scraper_server=scraper_server) @mock.patch('bho_scraper.bho_scraper.BHOScraper', side_effect=mock_scraper) def get_scraper(mock_): scraper = bho_scraper.BHOScraper() scraper.scrape_series(['test_series_name'], ['test_query'], path=os.path.join('.','temp')) return scraper scraper = get_scraper() try: temp_path = os.path.join('.','temp') assert os.path.exists(temp_path) downloads = os.listdir(temp_path) assert len(downloads) == 1 csv_path = os.path.join(temp_path, downloads[-1]) actual_df =
pd.read_csv(csv_path)
pandas.read_csv
import logging import pathlib import numpy as np import pandas as pd import coloredlogs from pathlib import Path from typing import Union,Dict,List from .utils import sel_column_label, train_val_test_split, save_csv, flair_tags, flair_tags_as_string from flair.datasets import CSVClassificationCorpus # logger = logging.getLogger("nlp_dataset") # logger.setLevel(logging.DEBUG) # formatter = logging.Formatter('%(asctime)s:%(name)s:%(message)s') # stream_handler = logging.StreamHandler() # stream_handler.setFormatter(formatter) # logger.addHandler(stream_handler) # coloredlogs.install(fmt='%(asctime)s %(name)s %(levelname)s %(message)s',level='DEBUG',logger = logger) logger = logging.getLogger("entiretydotai") class FlairDataset(): """[summary] Raises: FileNotFoundError: [description] Returns: [type]: [description] """ def __init__(self, data_folder: Union[str, Path], column_name_map: Dict[int, str], train_file=None, test_file=None, dev_file=None, file_format=None, delimiter = None, encoding: str = "utf-8", train_data: pd.DataFrame = None, val_data: pd.DataFrame = None, test_data : pd.DataFrame = None): super().__init__() self.data_folder = data_folder self.column_name_map = column_name_map self.train_file = train_file self.test_file = test_file self.dev_file = dev_file self.file_format = file_format self.delimiter = delimiter self.processed_file = None if self.file_format == '.csv': logger.debug(f'Loading data in Flair CSVClassificationCorpus from path :{self.data_folder}') self.corpus = CSVClassificationCorpus( data_folder=self.data_folder, train_file=self.train_file, dev_file=self.dev_file, test_file=self.test_file, column_name_map=self.column_name_map, delimiter=self.delimiter) logger.debug(f'Number of Sentences loaded[Train]:{self.corpus.train.total_sentence_count}') logger.debug(f'Type of tokenizer:{self.corpus.train.tokenizer.__name__}') logger.debug(f'Sample sentence and Label from [Train]:{self.corpus.train.__getitem__(1)}\n') logger.debug(f'Number of Sentences loaded[Valid]:{self.corpus.dev.total_sentence_count}') logger.debug(f'Type of tokenizer:{self.corpus.dev.tokenizer.__name__}') logger.debug(f'Sample sentence and Label from [Train]:{self.corpus.dev.__getitem__(1)}\n') logger.debug(f'Number of Sentences loaded[Test]:{self.corpus.test.total_sentence_count}') logger.debug(f'Type of tokenizer:{self.corpus.test.tokenizer.__name__}') logger.debug(f'Sample sentence and Label from [Train]:{self.corpus.test.__getitem__(1)}\n') self.train_data = train_data self.valid_data = val_data self.test_data = test_data @classmethod def csv_classification(cls, data_folder=Union[str, Path], file_format: str = 'csv', filename: str = 'data', train_val_test_split_flag: str = True, column_mapping: List = None, val_split_size: List = [0.1, 0.1]): p = Path(data_folder).resolve() if p.is_dir(): logger.debug(f'Found directory : {p}') files = list(p.rglob('*.'+file_format)) logger.debug(f'Number of files found {len(files)}') if len(files) < 2: logger.debug(f'Found 1 file : {files[0].name}') train_val_test_split_flag = True logger.debug("Setting train_val_test_split_flag to True") if train_val_test_split_flag: if files[0].stem.lower() == filename: train_file = files[0].name flair_mapping = ['text','label'] df, column_name_map = sel_column_label(files[0], column_mapping, flair_mapping) logger.debug(f'[column_name_map] {column_name_map}') train, valid, test = train_val_test_split(df, val_split_size) path_to_save = Path(p.parent.parent/'interim') save_csv(train, path_to_save, 'train') save_csv(valid, path_to_save, 'valid') save_csv(test, path_to_save, 'test') return FlairDataset(data_folder=path_to_save, column_name_map=column_name_map, train_file='train.csv', test_file='test.csv', dev_file='valid.csv', file_format='.csv', delimiter=",", train_data=train, val_data=valid, test_data=test) else: raise FileNotFoundError else: raise NotImplementedError else: pass class FlairTagging(): def __init__(self, dataset: CSVClassificationCorpus = None): super().__init__() self.dataset = dataset @property def list_ner_tags(): ''' List all ner- pos models available in Flair Package''' raise NotImplementedError def __repr__(self, tokenizer=None): if tokenizer is None: text = self.train_data.text[0] tokens = str(text).split(" ") return f'Text: {text} Tokens: {tokens}' def add_tags(self, model: Union[str, Path] = 'ner-fast', tag_type: str = 'ner', col_name: str = 'text', extract_tags: bool = False, return_score: float = False, replace_missing_tags: bool =True, missing_tags_value: str = "NA", replace_missing_score: bool = True, missing_score_value: np.float = np.NaN): test = self.dataset.train_data.reset_index(drop=True).loc[:10,:].copy() logger.debug(f'Shape of the dataframe:{test.shape}') text = test[col_name].values if extract_tags: if return_score: corpus_text, corpus_cleaned_ner_tag, corpus_score = flair_tags( text, model, tag_type, extract_tags, return_score) df = pd.concat([test.reset_index(drop=True), pd.Series(corpus_text, name='tokenize_text'),
pd.Series(corpus_cleaned_ner_tag, name='tags')
pandas.Series
# -*- coding: utf-8 -*- """ Created on Wed Dec 11 18:19:29 2019 @author: Administrator """ import pdblp import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn') #con = pdblp.BCon(debug=True, port=8194, timeout=5000) con = pdblp.BCon(debug=False, port=8194, timeout=6000) con.start() index_tickers = ['NYA Index', 'SPX Index', 'CCMP Index','NDX Index','CDAX Index' ,'DAX Index', 'ASX Index','UKX Index', 'TPX Index','NKY Index', 'SHCOMP Index' , 'SZCOMP Index','XUTUM Index','XU100 Index', 'MEXBOL Index', 'IBOV Index', 'IMOEX Index' , 'JALSH Index'] from datetime import date start = '20040101' today = date.today().strftime('%Y%m%d') firstday = '19991230' prices_open = con.bdh(index_tickers, 'PX OPEN',firstday, today) prices_open.columns = [i[0] for i in prices_open.columns] prices_open = prices_open[index_tickers] prices_open_int = prices_open.interpolate(method='linear') prices_open_w = prices_open_int.groupby(pd.Grouper(freq='W')).first() prices_high = con.bdh(index_tickers, 'PX HIGH',firstday, today) prices_high.columns = [i[0] for i in prices_high.columns] prices_high = prices_high[index_tickers] prices_high_int = prices_high.interpolate(method='linear') prices_high_w = prices_high_int.groupby(pd.Grouper(freq='W')).max() prices_low = con.bdh(index_tickers, 'PX LOW',firstday, today) prices_low.columns = [i[0] for i in prices_low.columns] prices_low = prices_low[index_tickers] prices_low_int = prices_low.interpolate(method='linear') prices_low_w = prices_low_int.groupby(pd.Grouper(freq='W')).min() prices_close = con.bdh(index_tickers, 'PX LAST',firstday, today) prices_close.columns = [i[0] for i in prices_close.columns] prices_close = prices_close[index_tickers] prices_close_int = prices_close.interpolate(method='linear') prices_close_w = prices_close_int.groupby(pd.Grouper(freq='W')).last() var_no1 = '21-1' returns_open = prices_open_w / prices_close_w.shift(1) - 1 returns_open.columns = [var_no1+'_'+i+'_OPEN' for i in returns_open.columns] returns_high = prices_high_w / prices_close_w.shift(1) - 1 returns_high.columns = [var_no1+'_'+i+'_HIGH' for i in returns_high.columns] returns_low = prices_low_w / prices_close_w.shift(1) - 1 returns_low.columns = [var_no1+'_'+i+'_LOW' for i in returns_low.columns] returns_close = prices_close_w / prices_close_w.shift(1) - 1 returns_close.columns = [var_no1+'_'+i+'_LAST' for i in returns_close.columns] returns_fromClose_ohlc =
pd.concat([returns_open, returns_high, returns_low, returns_close],axis=1)
pandas.concat
import numpy as np import pandas as pd import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.patches import Polygon import warnings def _ensure_axes(ax, enforce): if ax is None: # Get axes without creating new one. fig = plt.gcf() if fig.axes: ax = plt.gca() if isinstance(ax, mpl.axes.Axes) and ax.name == "polar": return ax else: if enforce: ax = plt.gca(polar=True) return ax else: msg = ("Axes must use polar projection. Use one of the following " "statements to ensure polar projection:\n" " plt.gca(polar=True)\n" " ax = plt.subplot(..., polar=True)\n" " fig, ax = plt.subplots(subplot_kw={'polar': True})\n" ) raise ValueError(msg) def _format_input_data(x, y, hue, style, data): fmt = "invalid" if (y is None and data is None): raise ValueError("Arguments y and data cannot both be None.") if data is None: # Array mode: only x (optionally) and y are provided. if y is None: msg = "In array mode (data=None), argument y must be set." raise ValueError(msg) if x is None: if isinstance(y, (pd.Series, pd.DataFrame)): x = y.index.copy() else: x = pd.RangeIndex(len(y)) else: x = pd.Index(x) data =
pd.DataFrame(y)
pandas.DataFrame
from __future__ import division #brings in Python 3.0 mixed type calculations import numpy as np import os import pandas as pd import sys #find parent directory and import model parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) sys.path.append(parentddir) from base.uber_model import UberModel, ModelSharedInputs class BeerexInputs(ModelSharedInputs): """ Input class for Beerex """ def __init__(self): """Class representing the inputs for Beerex""" super(BeerexInputs, self).__init__() #self.incorporation_depth = pd.Series([], dtype="float") self.application_rate = pd.Series([], dtype="float") self.application_method = pd.Series([], dtype="object") self.crop_type = pd.Series([], dtype="object") # self.application_units = pd.Series([], dtype="object") self.empirical_residue = pd.Series([], dtype="object") self.empirical_pollen = pd.Series([], dtype="float") self.empirical_nectar = pd.Series([], dtype="float") self.empirical_jelly = pd.Series([], dtype="float") self.adult_contact_ld50 = pd.Series([], dtype="float") self.adult_oral_ld50 = pd.Series([], dtype="float") self.adult_oral_noael = pd.Series([], dtype="float") self.larval_ld50 = pd.Series([], dtype="float") self.larval_noael = pd.Series([], dtype="float") self.log_kow = pd.Series([], dtype="float") self.koc = pd.Series([], dtype="float") self.mass_tree_vegetation = pd.Series([], dtype="float") self.lw1_jelly = pd.Series([], dtype="float") self.lw2_jelly = pd.Series([], dtype="float") self.lw3_jelly = pd.Series([], dtype="float") self.lw4_nectar = pd.Series([], dtype="float") self.lw4_pollen = pd.Series([], dtype="float") self.lw5_nectar = pd.Series([], dtype="float") self.lw5_pollen = pd.Series([], dtype="float") self.ld6_nectar = pd.Series([], dtype="float") self.ld6_pollen = pd.Series([], dtype="float") self.lq1_jelly = pd.Series([], dtype="float") self.lq2_jelly = pd.Series([], dtype="float") self.lq3_jelly = pd.Series([], dtype="float") self.lq4_jelly = pd.Series([], dtype="float") self.aw_cell_nectar = pd.Series([], dtype="float") self.aw_cell_pollen = pd.Series([], dtype="float") self.aw_brood_nectar = pd.Series([], dtype="float") self.aw_brood_pollen = pd.Series([], dtype="float") self.aw_comb_nectar = pd.Series([], dtype="float") self.aw_comb_pollen = pd.Series([], dtype="float") self.aw_fpollen_nectar = pd.Series([], dtype="float") self.aw_fpollen_pollen = pd.Series([], dtype="float") self.aw_fnectar_nectar = pd.Series([], dtype="float") self.aw_fnectar_pollen = pd.Series([], dtype="float") self.aw_winter_nectar = pd.Series([], dtype="float") self.aw_winter_pollen = pd.Series([], dtype="float") self.ad_nectar = pd.Series([], dtype="float") self.ad_pollen = pd.Series([], dtype="float") self.aq_jelly = pd.Series([], dtype="float") class BeerexOutputs(object): """ Output class for Beerex """ def __init__(self): """Class representing the outputs for Beerex""" super(BeerexOutputs, self).__init__() self.out_eec_spray = pd.Series(name="out_eec_spray", dtype="float") self.out_eec_soil = pd.Series(name="out_eec_soil", dtype="float") self.out_eec_seed = pd.Series(name="out_eec_seed", dtype="float") self.out_eec_tree = pd.Series(name="out_eec_tree", dtype="float") self.out_eec = pd.Series(name="out_eec", dtype="float") self.out_lw1_total_dose = pd.Series(name="out_lw1_total_dose", dtype="float") self.out_lw2_total_dose = pd.Series(name="out_lw2_total_dose", dtype="float") self.out_lw3_total_dose = pd.Series(name="out_lw3_total_dose", dtype="float") self.out_lw4_total_dose = pd.Series(name="out_lw4_total_dose", dtype="float") self.out_lw5_total_dose = pd.Series(name="out_lw5_total_dose", dtype="float") self.out_ld6_total_dose = pd.Series(name="out_ld6_total_dose", dtype="float") self.out_lq1_total_dose = pd.Series(name="out_lq1_total_dose", dtype="float") self.out_lq2_total_dose = pd.Series(name="out_lq2_total_dose", dtype="float") self.out_lq3_total_dose = pd.Series(name="out_lq3_total_dose", dtype="float") self.out_lq4_total_dose = pd.Series(name="out_lq4_total_dose", dtype="float") self.out_aw_cell_total_dose = pd.Series(name="out_aw_cell_total_dose", dtype="float") self.out_aw_brood_total_dose = pd.Series(name="out_aw_brood_total_dose", dtype="float") self.out_aw_comb_total_dose = pd.Series(name="out_aw_comb_total_dose", dtype="float") self.out_aw_pollen_total_dose = pd.Series(name="out_aw_pollen_total_dose", dtype="float") self.out_aw_nectar_total_dose = pd.Series(name="out_aw_nectar_total_dose", dtype="float") self.out_aw_winter_total_dose = pd.Series(name="out_aw_winter_total_dose", dtype="float") self.out_ad_total_dose = pd.Series(name="out_ad_total_dose", dtype="float") self.out_aq_total_dose = pd.Series(name="out_aq_total_dose", dtype="float") self.out_lw1_acute_rq = pd.Series(name="out_lw1_acute_rq", dtype="float") self.out_lw2_acute_rq = pd.Series(name="out_lw2_acute_rq", dtype="float") self.out_lw3_acute_rq =
pd.Series(name="out_lw3_acute_rq", dtype="float")
pandas.Series
#!/usr/bin/env python import argparse import pandas as pd import numpy as np from math import floor import tqdm def main(): parser = argparse.ArgumentParser(description='Pairwise distances between MLST alleles') parser.add_argument('infile', type=str, help="Tab separated file containing alleles") parser.add_argument('outfile', type=str, help="Name for output file") args = parser.parse_args() alleles_in =
pd.read_csv(args.infile, sep="\t", header=0, index_col=0, dtype=str)
pandas.read_csv
from datetime import datetime import numpy as np import pandas as pd from evidently import ColumnMapping from evidently.analyzers.data_quality_analyzer import DataQualityAnalyzer from evidently.analyzers.data_quality_analyzer import FeatureQualityStats from evidently.analyzers.utils import process_columns import pytest @pytest.mark.parametrize( "dataset, expected_metrics", [ ( pd.DataFrame({"numerical_feature": []}), FeatureQualityStats( feature_type="num", count=0, percentile_25=None, percentile_50=None, percentile_75=None, infinite_count=None, infinite_percentage=None, max=None, min=None, mean=None, missing_count=None, missing_percentage=None, most_common_value=None, most_common_value_percentage=None, std=None, unique_count=None, unique_percentage=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"numerical_feature": [np.nan, np.nan, np.nan, np.nan]}), FeatureQualityStats( feature_type="num", count=0, percentile_25=np.nan, percentile_50=np.nan, percentile_75=np.nan, infinite_count=0, infinite_percentage=0, max=np.nan, min=np.nan, mean=np.nan, missing_count=4, missing_percentage=100, most_common_value=np.nan, most_common_value_percentage=100, std=np.nan, unique_count=0, unique_percentage=0, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"numerical_feature": [np.nan, 2, 2, 432]}), FeatureQualityStats( feature_type="num", count=3, infinite_count=0, infinite_percentage=0.0, missing_count=1, missing_percentage=25, unique_count=2, unique_percentage=50, percentile_25=2.0, percentile_50=2.0, percentile_75=217.0, max=432.0, min=2.0, mean=145.33, most_common_value=2, most_common_value_percentage=50, std=248.26, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ], ) def test_data_profile_analyzer_num_features(dataset: pd.DataFrame, expected_metrics: FeatureQualityStats) -> None: data_profile_analyzer = DataQualityAnalyzer() data_mapping = ColumnMapping( numerical_features=["numerical_feature"], ) result = data_profile_analyzer.calculate(dataset, None, data_mapping) assert result.reference_features_stats is not None assert result.reference_features_stats.num_features_stats is not None assert "numerical_feature" in result.reference_features_stats.num_features_stats metrics = result.reference_features_stats.num_features_stats["numerical_feature"] assert metrics == expected_metrics @pytest.mark.parametrize( "dataset, expected_metrics", [ ( pd.DataFrame({"category_feature": []}), FeatureQualityStats( feature_type="cat", count=0, percentile_25=None, percentile_50=None, percentile_75=None, infinite_count=None, infinite_percentage=None, max=None, min=None, mean=None, missing_count=None, missing_percentage=None, most_common_value=None, most_common_value_percentage=None, std=None, unique_count=None, unique_percentage=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": [None, None, None, None]}), FeatureQualityStats( feature_type="cat", count=0, infinite_count=None, infinite_percentage=None, missing_count=4, missing_percentage=100.0, unique_count=0, unique_percentage=0.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value=np.nan, most_common_value_percentage=100.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=None, unused_in_current_values_count=None, ), ), ( pd.DataFrame({"category_feature": [np.nan, 2, 2, 1]}), FeatureQualityStats( feature_type="cat", count=3, infinite_count=None, infinite_percentage=None, missing_count=1, missing_percentage=25, unique_count=2, unique_percentage=50, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value=2, most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": ["y", "n", "n/a", "n"]}), FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0, unique_count=3, unique_percentage=75, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="n", most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": ["n", "d", "p", "n"]}), FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0, unique_count=3, unique_percentage=75, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="n", most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ], ) def test_data_profile_analyzer_cat_features(dataset: pd.DataFrame, expected_metrics: FeatureQualityStats) -> None: data_profile_analyzer = DataQualityAnalyzer() for task_type in (None, "regression", "classification"): result = data_profile_analyzer.calculate( dataset, None, ColumnMapping(categorical_features=["category_feature"], task=task_type) ) assert result.reference_features_stats is not None assert result.reference_features_stats.cat_features_stats is not None assert "category_feature" in result.reference_features_stats.cat_features_stats metrics = result.reference_features_stats.cat_features_stats["category_feature"] assert metrics == expected_metrics def test_data_profile_analyzer_classification_with_target() -> None: reference_data = pd.DataFrame( { "target": ["cat_1", "cat_1", "cat_2", "cat_3", "cat_1"], "prediction": ["cat_2", "cat_1", "cat_1", "cat_3", "cat_1"], } ) current_data = pd.DataFrame( { "target": ["cat_1", "cat_6", "cat_2", None, "cat_1"], "prediction": ["cat_5", "cat_1", "cat_1", "cat_3", np.nan], } ) data_profile_analyzer = DataQualityAnalyzer() data_mapping = ColumnMapping(task="classification") result = data_profile_analyzer.calculate(reference_data, current_data, data_mapping) assert result.reference_features_stats is not None assert result.reference_features_stats.target_stats is not None assert result.reference_features_stats.target_stats["target"] == FeatureQualityStats( feature_type="cat", count=5, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0.0, unique_count=3, unique_percentage=60.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="cat_1", most_common_value_percentage=60.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=None, unused_in_current_values_count=None, ) assert result.current_features_stats is not None assert result.current_features_stats.target_stats is not None assert result.current_features_stats.target_stats["target"] == FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=1, missing_percentage=20.0, unique_count=3, unique_percentage=60.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="cat_1", most_common_value_percentage=40.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=2, unused_in_current_values_count=1, ) @pytest.mark.parametrize( "reference_dataset, current_dataset, expected_new, expected_unused", [ ( pd.DataFrame({"category_feature": ["", "a", "b"]}), pd.DataFrame({"category_feature": ["a", "b"]}), 0, 1, ), ( pd.DataFrame({"category_feature": [np.nan, 2, 2, 43]}), pd.DataFrame({"category_feature": [6, 2, 5, np.nan]}), 2, 1, ), ( pd.DataFrame({"category_feature": [1, 2, 3, 4]}), pd.DataFrame({"category_feature": [6, 2, 5, np.nan]}), 3, 3, ), ( pd.DataFrame({"category_feature": ["a", "b", "c", "d"]}), pd.DataFrame({"category_feature": ["a", "a", "a"]}), 0, 3, ), ( pd.DataFrame({"category_feature": [np.nan, np.nan, np.nan, np.nan]}), pd.DataFrame({"category_feature": ["a", "a", "a"]}), 1, 1, ), ( pd.DataFrame({"category_feature": [1, 2, 3, np.nan]}),
pd.DataFrame({"category_feature": [np.nan, np.nan, np.nan]})
pandas.DataFrame
# python 2/3 compatibility from __future__ import division, print_function import sys import os.path import numpy import pandas import copy import difflib import scipy import collections import json # package imports import rba from .rba import RbaModel, ConstraintMatrix, Solver from .rba_SimulationData import RBA_SimulationData from .rba_SimulationParameters import RBA_SimulationParameters from .rba_ModelStructure import RBA_ModelStructure from .rba_Problem import RBA_Problem from .rba_Matrix import RBA_Matrix from .rba_LP import RBA_LP from .rba_FBA import RBA_FBA from .rba_LogBook import RBA_LogBook class RBA_Session(object): """ Top level of the RBA API. Attributes ---------- xml_dir : str Current Growth rate as numeric value model : rba.RbaModel Current Growth rate as numeric value matrices : rba.ConstraintMatrix Current Growth rate as numeric value solver : rba.Solver Current Growth rate as numeric value Problem : rbatools.RBA_Problem Current Growth rate as numeric value Medium : dict Current Growth rate as numeric value ModelStructure : rbatools.RBA_ModelStructure Current Growth rate as numeric value Results : dict Current Growth rate as numeric value Parameters : dict Current Growth rate as numeric value SimulationData : rbatools.RBA_SimulationData Current Growth rate as numeric value SimulationParameters : rbatools.RBA_SimulationParameters Current Growth rate as numeric value Methods ---------- __init__(xml_dir) Creates RBA_Session object from files Parameters ---------- xml_dir : str Path to the directory where rba-model files are located. rebuild_from_model() Rebuilds computational model-representation (matrix) from own attribute "model" (rba.RbaModel-object). reloadModel() Reloads model from xml-files and then rebuild computational model-representation (matrix). recordResults(runName) Records Simulation output for further use. and strores them in own 'Results'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. recordParameters(runName) Records Simulation parameters (LP-coefficients etc.) for further use. and strores them in own 'Parameters'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. clearResults() Removes all previosly recorded results and deletes own 'Results'-attribute. clearParameters() Removes all previosly recorded parameters and deletes own 'Parameters'-attribute. writeResults(session_name='', digits=10) Creates SimulationData and SimulationParameters objects from recordings ('Results'.'Parameters'). Stores them as rbatools.RBA_SimulationData and rbatools.RBA_SimulationParameters objects as attributes. Access via attributes .SimulationData and SimulationParameters respectively. Parameters ---------- digits : int Number of decimal places in the numeric results Default: 10 session_name : str Name of Simulation session. Default: '' returnExchangeFluxes() Returns a dictonary with the exchang-rates of boundary-metabolites. Returns ------- Dictonary with exchange-keys and respective -rates. ConstraintSaturation(constraints=None) Determines the saturation of model constraints at current solution. Parameters ---------- constraints : str or list of str Specifies constraints(s) for which the saturation is to be determined. Default-value = None: All model-constraints are taken Returns ------- Pandas DataFrame with constraint-names as indices and the columns 'LHS', 'RHS', and 'Saturation'. 'LHS': The sum over the respoctive constraint-row multiplied elementwise with the solution vector. 'RHS': The value of the problem's righthand side, correesponding to the respective constraint. 'Saturation': The saturation of the respective constraint ('LHS'/'RHS'). (Equality constraints are always saturated) setMedium(changes) Sets the concentration of specified growth-substrate(s) in medium. Parameters ---------- changes : dict Keys : ID of metabolite(s) in medium. Values : New concention(s) setMu(Mu) Sets growth-rate to specified value. Parameters ---------- Mu : float Growth rate doSolve(runName='DontSave') Solves problem to find solution. Does the same as rbatools.RBA_Problem.solveLP(). Just has some automatic option for results-recording. Parameters ---------- runName : str Name of observation. Serves as ID for all data, originating from this run. Special values : 'DontSave' : Results are not recorded 'Auto' : Results are automatically recorded and appended to existing ones. Named with number. Any other string: Results are recorded under this name. Default: 'DontSave' findMaxGrowthRate(precision=0.0005, max=4, start_value=None, recording=False) Applies dichotomy-search to find the maximal feasible growth-rate. Parameters ---------- precision : float Numberic precision with which maximum is approximated. Default : 0.00001 max : float Defines the highest growth rate to be screened for. Default=4 start_value : float Defines a starting-value of the search for the maximum growth-rate. A close starting-value reduces the required number of iterations, for the algorithm to converge. If not provided search starts at growth-rate 0. Default = None recording : bool Records intermediate feasible solutions while approaching the maximum growth-rate. Default : False Returns ------- maximum feasible growth rate as float. knockOut(gene) Simulates a gene knock out. Constrains all variables in the LP-problem (enzymes, other machineries), which require this gene(s), to zero. Parameters ---------- gene : str or list of strings ID(s) of model-proteins to be knocked out. Can either be gene-identifier, represented as ID or ProtoID of proteins in rbatools.protein_bloc.ProteinBlock.Elements class (depends on whether protein-isoforms are considered). FeasibleRange(variables=None) Determines the feasible range of model variables. Parameters ---------- variables : str or list of str Specifies variable(s) for which the feasible range is to be determined. Default-value = None: All model-variables are taken Returns ------- Dictionary with variable-names as keys and other dictionaries as values. The 'inner' dictionaries hold keys 'Min' and 'Max' with values representing lower and upper bound of feasible range respectively. E.g. : {'variableA':{'Min':42 , 'Max':9000}, 'variableB':{'Min':-9000 , 'Max':-42}} ParetoFront(variable_X, variable_Y, N=10, sign_VY='max') Determine Pareto front of two model variables. Parameters ---------- variable_X : str ID of variable, representing the X-coordinate of the Pareto-front variable_Y : str ID of variable, representing the Y-coordinate of the Pareto-front N : int Number of intervals within the feasible range of variable_X. Default-value=10. sign_VY : str 'max': variable_Y is maximised 'min': variable_Y is minimised Returns ------- Pandas DataFrame with columns named after the two input variables and 'N' rows. Each row represents an interval on the Pareto front. Entries on each row are the X and Y coordinate on the Pareto front, representing the values of the two variables. """ def __init__(self, xml_dir): """ Creates RBA_Session object from files Parameters ---------- xml_dir : str Path to the directory where rba-model files are located. """ self.xml_dir = xml_dir self.LogBook = RBA_LogBook('Controler') if not hasattr(self, 'ModelStructure'): if os.path.isfile(str(self.xml_dir+'/ModelStructure.json')): self.ModelStructure = RBA_ModelStructure() with open(str(self.xml_dir+'/ModelStructure.json'), 'r') as myfile: data = myfile.read() self.ModelStructure.fromJSON(inputString=data) else: self.build_ModelStructure() self.model = RbaModel.from_xml(input_dir=xml_dir) self.matrices = ConstraintMatrix(model=self.model) self.solver = Solver(matrix=self.matrices) self.LogBook.addEntry('Model loaded from {}.'.format(self.xml_dir)) self.Problem = RBA_Problem(solver=self.solver) medium = pandas.read_csv(xml_dir+'/medium.tsv', sep='\t') self.Medium = dict(zip(list(medium.iloc[:, 0]), [float(i) for i in list(medium.iloc[:, 1])])) self.Mu = self.Problem.Mu self.ExchangeMap = buildExchangeMap(self) def build_ModelStructure(self): self.ModelStructure = RBA_ModelStructure() self.ModelStructure.fromFiles(xml_dir=self.xml_dir) self.ModelStructure.exportJSON(path=self.xml_dir) def addExchangeReactions(self): """ Adds explicit exchange-reactions of boundary-metabolites to RBA-problem, named R_EX_ followed by metabolite name (without M_ prefix). """ Mets_external = [m.id for m in self.model.metabolism.species if m.boundary_condition] Mets_internal = [m.id for m in self.model.metabolism.species if not m.boundary_condition] Reactions = [r.id for r in self.model.metabolism.reactions] full_S = rba.core.metabolism.build_S( Mets_external+Mets_internal, self.model.metabolism.reactions) S_M_ext = full_S[:len(Mets_external), ].toarray() col_indices_toremove = [] for i in range(S_M_ext.shape[1]): s_col_uniques = list(set(list(S_M_ext[:, i]))) if len(s_col_uniques) == 1: if s_col_uniques[0] == 0: col_indices_toremove.append(i) RemainingReactions = [i for i in Reactions if Reactions.index( i) not in col_indices_toremove] S_ext = numpy.delete(S_M_ext, col_indices_toremove, axis=1) A = numpy.concatenate((S_ext, numpy.eye(len(Mets_external))), axis=1, out=None) ColNames = RemainingReactions+[str('R_EX_'+i.split('M_')[-1]) for i in Mets_external] # print(str('R_EX_'+i.split('M_')[-1])) LBs = list([self.Problem.LP.LB[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[-10000]*len(Mets_external)) UBs = list([self.Problem.LP.UB[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[10000]*len(Mets_external)) b = [0]*len(Mets_external) f = list([self.Problem.LP.f[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[0]*len(Mets_external)) ExchangeMatrix = RBA_Matrix() ExchangeMatrix.A = scipy.sparse.coo_matrix(A) ExchangeMatrix.b = numpy.array([0]*len(Mets_external)) ExchangeMatrix.f = numpy.array(f) ExchangeMatrix.LB = numpy.array(LBs) ExchangeMatrix.UB = numpy.array(UBs) ExchangeMatrix.row_signs = ['E']*len(Mets_external) ExchangeMatrix.row_names = Mets_external ExchangeMatrix.col_names = ColNames ExchangeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=ExchangeMatrix) self.ExchangeReactionMap = dict( zip(Mets_external, [str('R_EX_'+i.split('M_')[-1]) for i in Mets_external])) def rebuild_from_model(self): """ Rebuilds computational model-representation (matrix) from own attribute "model" (rba.RbaModel-object). """ self.LogBook.addEntry('Model rebuilt.') self.matrices = ConstraintMatrix(model=self.model) self.solver = Solver(matrix=self.matrices) self.Problem = RBA_Problem(solver=self.solver) self.setMedium(changes=self.Medium) def reloadModel(self): """ Reloads model from xml-files and then rebuild computational model-representation (matrix). """ self.LogBook.addEntry('Model reloaded from {}.'.format(self.xml_dir)) self.model = RbaModel.from_xml(input_dir=self.xml_dir) self.rebuild_from_model() def recordResults(self, runName): """ Records Simulation output for further use. and strores them in own 'Results'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. """ self.LogBook.addEntry('Solution recorded under {}.'.format(runName)) if not hasattr(self, 'Results'): self.Results = {'Reactions': pandas.DataFrame(index=list(self.ModelStructure.ReactionInfo.Elements.keys())), 'Enzymes': pandas.DataFrame(index=list(self.ModelStructure.EnzymeInfo.Elements.keys())), 'Processes': pandas.DataFrame(index=[self.ModelStructure.ProcessInfo.Elements[i]['ID']+'_machinery' for i in self.ModelStructure.ProcessInfo.Elements.keys()]), 'Proteins': pandas.DataFrame(index=list(self.ModelStructure.ProteinMatrix['Proteins'])), 'ProtoProteins': pandas.DataFrame(index=list(self.ModelStructure.ProteinGeneMatrix['ProtoProteins'])), 'Constraints': pandas.DataFrame(index=self.Problem.LP.row_names), 'SolutionType': pandas.DataFrame(index=['SolutionType']), 'Mu': pandas.DataFrame(index=['Mu']), 'ObjectiveFunction': pandas.DataFrame(index=self.Problem.LP.col_names), 'ObjectiveValue': pandas.DataFrame(index=['ObjectiveValue']), 'ExchangeFluxes': pandas.DataFrame(index=list(self.ExchangeMap.keys()))} Exchanges = self.returnExchangeFluxes() for i in Exchanges.keys(): self.Results['ExchangeFluxes'].loc[i, runName] = Exchanges[i] self.Results['Reactions'][runName] = self.Results['Reactions'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Reactions'].index)}) self.Results['Enzymes'][runName] = self.Results['Enzymes'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Enzymes'].index)}) self.Results['Processes'][runName] = self.Results['Processes'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Processes'].index)}) self.Results['Constraints'][runName] = self.Results['Constraints'].index.map( {i: self.Problem.DualValues[i] for i in self.Problem.LP.row_names}) self.Results['Proteins'][runName] = self.Results['Proteins'].index.map( ProteomeRecording(self, runName)) self.Results['ProtoProteins'][runName] = self.Results['ProtoProteins'].index.map( ProtoProteomeRecording(self, runName, self.Results['Proteins'])) self.Results['SolutionType'][runName] = self.Problem.SolutionType self.Results['Mu'][runName] = self.Problem.Mu self.Results['ObjectiveFunction'][runName] = list(self.Problem.getObjective().values()) self.Results['ObjectiveValue'][runName] = self.Problem.ObjectiveValue def recordParameters(self, runName): """ Records Simulation parameters (LP-coefficients etc.) for further use. and strores them in own 'Parameters'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. """ self.LogBook.addEntry('Coefficients recorded under {}.'.format(runName)) EnzymeCapacities = self.get_parameter_values( parameter_type='enzyme_efficiencies', species=None, output_format='dict') ProcessCapacities = self.get_parameter_values( parameter_type='machine_efficiencies', species=None, output_format='dict') CompartmentCapacities = self.get_parameter_values( parameter_type='maximal_densities', species=None, output_format='dict') TargetValues = self.get_parameter_values( parameter_type='target_values', species=None, output_format='dict') if not hasattr(self, 'Parameters'): self.Parameters = {'EnzymeEfficiencies_FW': pandas.DataFrame(index=list(EnzymeCapacities.keys())), 'EnzymeEfficiencies_BW': pandas.DataFrame(index=list(EnzymeCapacities.keys())), 'ProcessEfficiencies': pandas.DataFrame(index=list(ProcessCapacities.keys())), 'CompartmentCapacities': pandas.DataFrame(index=list(CompartmentCapacities.keys())), 'Medium': pandas.DataFrame(index=self.Medium.keys()), 'TargetValues': pandas.DataFrame(index=[TargetValues[i]['Target_id'] for i in list(TargetValues.keys())])} self.Parameters['EnzymeEfficiencies_FW'][runName] = self.Parameters['EnzymeEfficiencies_FW'].index.map({i: list( EnzymeCapacities[i]['Forward'].values())[0] for i in list(EnzymeCapacities.keys()) if len(list(EnzymeCapacities[i]['Forward'].values())) > 0}) self.Parameters['EnzymeEfficiencies_BW'][runName] = self.Parameters['EnzymeEfficiencies_BW'].index.map({i: list( EnzymeCapacities[i]['Backward'].values())[0] for i in list(EnzymeCapacities.keys()) if len(list(EnzymeCapacities[i]['Forward'].values())) > 0}) self.Parameters['ProcessEfficiencies'][runName] = self.Parameters['ProcessEfficiencies'].index.map( {i: list(ProcessCapacities[i].values())[0] for i in list(ProcessCapacities.keys()) if len(list(ProcessCapacities[i].values())) > 0}) self.Parameters['CompartmentCapacities'][runName] = self.Parameters['CompartmentCapacities'].index.map( {i: list(CompartmentCapacities[i].values())[0] for i in list(CompartmentCapacities.keys()) if len(list(CompartmentCapacities[i].values())) > 0}) self.Parameters['Medium'][runName] = self.Parameters['Medium'].index.map(self.Medium) self.Parameters['TargetValues'][runName] = self.Parameters['TargetValues'].index.map( {TargetValues[i]['Target_id']: list(TargetValues[i]['Target_value'].values())[0] for i in list(TargetValues.keys()) if len(list(TargetValues[i]['Target_value'].values())) > 0}) def clearResults(self): """ Removes all previosly recorded results and deletes own 'Results'-attribute. """ self.LogBook.addEntry('Results cleared.') delattr(self, 'Results') def clearParameters(self): """ Removes all previosly recorded parameters and deletes own 'Parameters'-attribute. """ self.LogBook.addEntry('Parameters cleared.') delattr(self, 'Parameters') def writeResults(self, session_name='', digits=5, loggingIntermediateSteps=False): """ Creates SimulationData and SimulationParameters objects from recordings ('Results'.'Parameters'). Stores them as rbatools.RBA_SimulationData and rbatools.RBA_SimulationParameters objects as attributes. Access via attributes .SimulationData and SimulationParameters respectively. Parameters ---------- digits : int Number of decimal places in the numeric results Default: 10 session_name : str Name of Simulation session. Default: '' """ self.LogBook.addEntry('Data written under {}.'.format(session_name)) if hasattr(self, 'Results'): self.Results['uniqueReactions'] = mapIsoReactions(Controller=self) self.Results['SolutionType'] = self.Results['SolutionType'] self.Results['Mu'] = self.Results['Mu'].round(digits) self.Results['ObjectiveFunction'] = self.Results['ObjectiveFunction'].loc[( self.Results['ObjectiveFunction'] != 0).any(axis=1)].round(digits) self.Results['ObjectiveValue'] = self.Results['ObjectiveValue'].round(digits) self.Results['Proteins'] = self.Results['Proteins'].round(digits) self.Results['uniqueReactions'] = self.Results['uniqueReactions'].round(digits) self.Results['Reactions'] = self.Results['Reactions'].round(digits) self.Results['Enzymes'] = self.Results['Enzymes'].round(digits) self.Results['Processes'] = self.Results['Processes'].round(digits) self.Results['Constraints'] = self.Results['Constraints'].round(digits) self.Results['ExchangeFluxes'] = self.Results['ExchangeFluxes'].round(digits) self.SimulationData = RBA_SimulationData(StaticData=self.ModelStructure) self.SimulationData.fromSimulationResults(Controller=self, session_name=session_name) if hasattr(self, 'Parameters'): self.Parameters['EnzymeEfficiencies_FW'] = self.Parameters['EnzymeEfficiencies_FW'].round( digits) self.Parameters['EnzymeEfficiencies_BW'] = self.Parameters['EnzymeEfficiencies_BW'].round( digits) self.Parameters['ProcessEfficiencies'] = self.Parameters['ProcessEfficiencies'].round( digits) self.Parameters['CompartmentCapacities'] = self.Parameters['CompartmentCapacities'].round( digits) self.Parameters['TargetValues'] = self.Parameters['TargetValues'].round(digits) self.Parameters['Medium'] = self.Parameters['Medium'].loc[( self.Parameters['Medium'] != 0).any(axis=1)].round(digits) self.SimulationParameters = RBA_SimulationParameters(StaticData=self.ModelStructure) self.SimulationParameters.fromSimulationResults(Controller=self) def returnExchangeFluxes(self): """ Returns a dictonary with the exchang-rates of boundary-metabolites. Returns ------- Dictonary with exchange-keys and respective -rates. """ out = {} for j in self.ExchangeMap.keys(): netflux = 0 for k in self.ExchangeMap[j].keys(): netflux += self.ExchangeMap[j][k]*self.Problem.SolutionValues[k] if netflux != 0: out[j] = netflux return(out) def ConstraintSaturation(self, constraints=None): """ Determines the saturation of model constraints at current solution. Parameters ---------- constraints : str or list of str Specifies constraints(s) for which the saturation is to be determined. Default-value = None: All model-constraints are taken Returns ------- Pandas DataFrame with constraint-names as indices and the columns 'LHS', 'RHS', and 'Saturation'. 'LHS': The sum over the respoctive constraint-row multiplied elementwise with the solution vector. 'RHS': The value of the problem's righthand side, correesponding to the respective constraint. 'Saturation': The saturation of the respective constraint ('LHS'/'RHS'). (Equality constraints are always saturated) """ if constraints is None: ConstraintsInQuestion = self.Problem.LP.row_names else: if isinstance(constraints, list): ConstraintsInQuestion = constraints elif isinstance(constraints, str): ConstraintsInQuestion = [constraints] if len(list(constraints)) > 0: if isinstance(constraints[0], list): ConstraintsInQuestion = constraints[0] if isinstance(constraints[0], str): ConstraintsInQuestion = [constraints[0]] if len(list(constraints)) == 0: ConstraintsInQuestion = self.Problem.LP.row_names rhs = self.Problem.getRighthandSideValue(ConstraintsInQuestion) lhs = self.Problem.calculateLefthandSideValue(ConstraintsInQuestion) RHS = list(rhs.values()) LHS = list(lhs.values()) Out = pandas.DataFrame(columns=['LHS', 'RHS', 'Saturation'], index=ConstraintsInQuestion) for i in ConstraintsInQuestion: lhval = LHS[self.Problem.LP.rowIndicesMap[i]] rhval = RHS[self.Problem.LP.rowIndicesMap[i]] sat = numpy.nan if rhval != 0: sat = lhval/rhval Out.loc[i, 'LHS'] = lhval Out.loc[i, 'RHS'] = rhval Out.loc[i, 'Saturation'] = sat self.LogBook.addEntry( 'Saturation of constraint {} determined to be {}.'.format(i, sat)) return(Out) def setMedium(self, changes, loggingIntermediateSteps=False): """ Sets the concentration of specified growth-substrate(s) in medium. Parameters ---------- changes : dict Keys : ID of metabolite(s) in medium. Values : New concention(s) """ for species in (changes.keys()): self.Medium[species] = float(changes[species]) self.Problem.ClassicRBAmatrix.set_medium(self.Medium) self.Problem.ClassicRBAmatrix.build_matrices(self.Mu) inputMatrix = RBA_Matrix() inputMatrix.loadMatrix(matrix=self.Problem.ClassicRBAmatrix) self.Problem.LP.updateMatrix(matrix=inputMatrix, Ainds=MediumDependentCoefficients_A( self), Binds=[], CTinds=[], LBinds=None, UBinds=None) def setMu(self, Mu, loggingIntermediateSteps=False): """ Sets growth-rate to specified value. Parameters ---------- Mu : float Growth rate """ self.LogBook.addEntry('Growth-rate changed:{} --> {}'.format(self.Mu, float(Mu))) self.Problem.setMu(Mu=float(Mu), ModelStructure=self.ModelStructure, logging=loggingIntermediateSteps) self.Mu = float(Mu) def doSolve(self, runName='DontSave', loggingIntermediateSteps=False): """ Solves problem to find solution. Does the same as rbatools.RBA_Problem.solveLP(). Just has some automatic option for results-recording. Parameters ---------- runName : str Name of observation. Serves as ID for all data, originating from this run. Special values : 'DontSave' : Results are not recorded 'Auto' : Results are automatically recorded and appended to existing ones. Named with number. Any other string: Results are recorded under this name. Default: 'DontSave' """ self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: if runName is not 'DontSave': if runName is 'Auto': if hasattr(self, 'Results'): name = str(self.Results['Reactions'].shape[1]+1) if not hasattr(self, 'Results'): name = '1' if runName is not 'Auto': name = runName self.recordResults(runName=name) def findMaxGrowthRate(self, precision=0.0005, max=4, start_value=None, recording=False, loggingIntermediateSteps=False): """ Applies dichotomy-search to find the maximal feasible growth-rate. Parameters ---------- precision : float Numberic precision with which maximum is approximated. Default : 0.00001 max : float Defines the highest growth rate to be screened for. Default=4 start_value : float Defines a starting-value of the search for the maximum growth-rate. A close starting-value reduces the required number of iterations, for the algorithm to converge. If not provided search starts at growth-rate 0. Default = None recording : bool Records intermediate feasible solutions while approaching the maximum growth-rate. Default : False Returns ------- maximum feasible growth rate as float. """ minMu = 0 maxMu = max if start_value is None: testMu = minMu else: testMu = start_value iteration = 0 while (maxMu - minMu) > precision: self.setMu(Mu=testMu) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: iteration += 1 if recording: self.recordResults('DichotomyMu_iteration_'+str(iteration)) minMu = testMu else: maxMu = testMu testMu = numpy.mean([maxMu, minMu]) self.LogBook.addEntry('Maximal growth-rate found to be: {}.'.format(minMu)) if minMu == max: print('Warning: Maximum growth rate might exceed specified range. Try rerunning this method with larger max-argument.') self.setMu(Mu=minMu) self.Problem.solveLP(logging=False) self.Problem.SolutionType = 'GrowthRate_maximization' return(minMu) def knockOut(self, gene, loggingIntermediateSteps=False): """ Simulates a gene knock out. Constrains all variables in the LP-problem (enzymes, other machineries), which require this gene(s), to zero. Parameters ---------- gene : str or list of strings ID(s) of model-proteins to be knocked out. Can either be gene-identifier, represented as ID or ProtoID of proteins in rbatools.protein_bloc.ProteinBlock.Elements class (depends on whether protein-isoforms are considered). """ if type(gene) is str: genes = [gene] if type(gene) is list: genes = gene isoform_genes = [g for g in genes if g in list(self.ModelStructure.ProteinInfo.Elements.keys( ))]+[i for g in genes for i in self.ModelStructure.ProteinInfo.Elements.keys() if self.ModelStructure.ProteinInfo.Elements[i]['ProtoID'] == g] for g in isoform_genes: self.LogBook.addEntry('Gene {} knocked out.'.format(g)) ConsumersEnzymes = self.ModelStructure.ProteinInfo.Elements[g]['associatedEnzymes'] for i in ConsumersEnzymes: LikeliestVarName = difflib.get_close_matches(i, self.Problem.LP.col_names, 1)[0] self.Problem.setLB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) ConsumersProcess = self.ModelStructure.ProteinInfo.Elements[g]['SupportsProcess'] for i in ConsumersProcess: LikeliestVarName = difflib.get_close_matches( str(self.ModelStructure.ProcessInfo.Elements[i]['ID']+'_machinery'), self.Problem.LP.col_names, 1)[0] self.Problem.setLB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) def FeasibleRange(self, variables=None, loggingIntermediateSteps=False): """ Determines the feasible range of model variables. Parameters ---------- variables : str or list of str Specifies variable(s) for which the feasible range is to be determined. Default-value = None: All model-variables are taken Returns ------- Dictionary with variable-names as keys and other dictionaries as values. The 'inner' dictionaries hold keys 'Min' and 'Max' with values representing lower and upper bound of feasible range respectively. E.g. : {'variableA':{'Min':42 , 'Max':9000}, 'variableB':{'Min':-9000 , 'Max':-42}} """ if variables is None: VariablesInQuestion = self.Problem.LP.col_names else: if isinstance(variables, list): VariablesInQuestion = variables elif isinstance(variables, str): VariablesInQuestion = [variables] out = {} for i in VariablesInQuestion: min = numpy.nan max = numpy.nan self.Problem.clearObjective(logging=loggingIntermediateSteps) self.Problem.setObjectiveCoefficients( inputDict={i: 1.0}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: min = self.Problem.SolutionValues[i] self.Problem.setObjectiveCoefficients( inputDict={i: -1.0}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: max = self.Problem.SolutionValues[i] out.update({i: {'Min': min, 'Max': max}}) self.LogBook.addEntry( 'Feasible-range of {} determined to be between {} and {}.'.format(i, min, max)) return(out) def ParetoFront(self, variable_X, variable_Y, N=10, sign_VY='max', loggingIntermediateSteps=False): """ Determine Pareto front of two model variables. Parameters ---------- variable_X : str ID of variable, representing the X-coordinate of the Pareto-front variable_Y : str ID of variable, representing the Y-coordinate of the Pareto-front N : int Number of intervals within the feasible range of variable_X. Default-value=10. sign_VY : str 'max': variable_Y is maximised 'min': variable_Y is minimised Returns ------- Pandas DataFrame with columns named after the two input variables and 'N' rows. Each row represents an interval on the Pareto front. Entries on each row are the X and Y coordinate on the Pareto front, representing the values of the two variables. """ if variable_X not in self.Problem.LP.col_names: print('Chosen Element not among problem variables') return if variable_Y not in self.Problem.LP.col_names: print('Chosen Element not among problem variables') return FR = self.FeasibleRange(variable_X) cMin = FR[variable_X]['Min'] cMax = FR[variable_X]['Max'] concentrations = [float(cMin+(cMax-cMin)*i/N) for i in range(N+1)] Out = pandas.DataFrame(columns=[variable_X, variable_Y]) oldLB = self.Problem.getLB(variable_X) oldUB = self.Problem.getUB(variable_X) iteration = -1 for conc in concentrations: iteration += 1 self.Problem.setLB(inputDict={variable_X: conc}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={variable_X: conc}, logging=loggingIntermediateSteps) self.Problem.clearObjective(logging=loggingIntermediateSteps) if sign_VY == 'max': self.Problem.setObjectiveCoefficients( inputDict={variable_Y: -1}, logging=loggingIntermediateSteps) if sign_VY == 'min': self.Problem.setObjectiveCoefficients( inputDict={variable_Y: 1}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: max = abs(self.Problem.ObjectiveValue) else: max = numpy.nan self.Problem.setLB(inputDict=oldLB, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict=oldUB, logging=loggingIntermediateSteps) Out.loc[iteration, variable_X] = conc Out.loc[iteration, variable_Y] = max self.LogBook.addEntry( 'Pareto-front between {} and {} determined.'.format(variable_X, variable_Y)) return(Out) ### !!! Docstring ### def buildFBA(self, type='classic', objective='classic', maintenanceToBM=False): """ Derives and constructs FBA-problem from RBA-problem and stores it under attribute 'FBA'. Parameters ---------- type : str objective : str maintenanceToBM : boolean """ RBAproblem = self.Problem.LP A = RBAproblem.A.toarray() if type == 'classic': Cols2remove = list(set([RBAproblem.col_names.index(i) for i in RBAproblem.col_names if not i.startswith('R_') and not i.startswith('M_') and not i.endswith('_synthesis')] + [RBAproblem.col_names.index(i) for i in RBAproblem.col_names if '_duplicate_' in i] + [RBAproblem.col_names.index(i) for i in RBAproblem.col_names if 'enzyme' in i])) Rows2remove = [RBAproblem.row_names.index( i) for i in RBAproblem.row_names if not i.startswith('M_')] elif type == 'parsi': Cols2remove = list(set([RBAproblem.col_names.index(i) for i in RBAproblem.col_names if not i.startswith( 'R_') and not i.startswith('M_') and not i.endswith('_synthesis')]+[RBAproblem.col_names.index(i) for i in RBAproblem.col_names if '_duplicate_' in i])) Rows2remove = [RBAproblem.row_names.index( i) for i in RBAproblem.row_names if not i.startswith('R_') and not i.startswith('M_')] if objective == 'classic': if 'R_maintenance_atp' in RBAproblem.col_names: Cols2remove.append(RBAproblem.col_names.index('R_maintenance_atp')) Anew = numpy.delete(A, Cols2remove, axis=1) col_namesNew = list(numpy.delete(RBAproblem.col_names, Cols2remove)) LBnew = numpy.delete(RBAproblem.LB, Cols2remove) UBnew = numpy.delete(RBAproblem.UB, Cols2remove) fNew = numpy.delete(RBAproblem.f, Cols2remove) Anew2 = numpy.delete(Anew, Rows2remove, axis=0) row_namesNew = list(numpy.delete(RBAproblem.row_names, Rows2remove)) row_signsNew = list(numpy.delete(RBAproblem.row_signs, Rows2remove)) bNew = numpy.delete(RBAproblem.b, Rows2remove) trnaInds = [i for i in range(len(row_namesNew)) if row_namesNew[i].startswith( 'M_') and 'trna' in row_namesNew[i]] # bNew[trnaInds] = 0 if objective == 'targets': col_namesNew.append('R_BIOMASS_targetsRBA') LBnew = numpy.append(LBnew, 0) UBnew = numpy.append(UBnew, 10000) fNew = numpy.append(fNew, 0) BMrxnCol = numpy.ones((len(row_namesNew), 1)) BMrxnCol[:, 0] = bNew if maintenanceToBM: MaintenanceTarget = LBnew[col_namesNew.index('R_maintenance_atp')] BMrxnCol[row_namesNew.index('M_atp_c')] += MaintenanceTarget BMrxnCol[row_namesNew.index('M_h2o_c')] += MaintenanceTarget BMrxnCol[row_namesNew.index('M_adp_c')] -= MaintenanceTarget BMrxnCol[row_namesNew.index('M_pi_c')] -= MaintenanceTarget BMrxnCol[row_namesNew.index('M_h_c')] -= MaintenanceTarget LBnew[col_namesNew.index('R_maintenance_atp')] = 0 Anew2 = numpy.append(Anew2, -BMrxnCol, axis=1) bNew = numpy.array([0]*Anew2.shape[0]) Matrix1 = RBA_Matrix() Matrix1.A = scipy.sparse.coo_matrix(Anew2) Matrix1.b = bNew Matrix1.LB = LBnew Matrix1.UB = UBnew Matrix1.row_signs = row_signsNew Matrix1.row_names = row_namesNew Matrix1.col_names = col_namesNew Matrix1.f = fNew if type == 'classic': Matrix1.b = numpy.array([0]*len(row_signsNew)) LP1 = RBA_LP() LP1.loadMatrix(Matrix1) elif type == 'parsi': MetaboliteRows = {i: Matrix1.row_names.index( i) for i in Matrix1.row_names if i.startswith('M_')} EnzymeCols = {i: Matrix1.col_names.index( i) for i in Matrix1.col_names if i.startswith('R_') and '_enzyme' in i} Matrix2 = RBA_Matrix() Matrix2.A = scipy.sparse.coo_matrix(numpy.zeros((len(MetaboliteRows), len(EnzymeCols)))) Matrix2.b = numpy.array(Matrix1.b[list(MetaboliteRows.values())]) Matrix2.LB = numpy.array(Matrix1.LB[list(EnzymeCols.values())]) Matrix2.UB = numpy.array(Matrix1.UB[list(EnzymeCols.values())]) Matrix2.f = numpy.array(Matrix1.f[list(EnzymeCols.values())]) Matrix2.row_signs = [Matrix1.row_signs[i] for i in list(MetaboliteRows.values())] Matrix2.row_names = list(MetaboliteRows.keys()) Matrix2.col_names = list(EnzymeCols.keys()) Matrix2.mapIndices() Matrix1.b = numpy.array([0]*len(bNew)) LP1 = RBA_LP() LP1.loadMatrix(Matrix1) LP1.updateMatrix(Matrix2) self.FBA = RBA_FBA(LP1) def findMinMediumConcentration(self, metabolite, precision=0.00001, max=100, recording=False, loggingIntermediateSteps=False): """ Applies dichotomy-search to find the minimal feasible concentration of growth-substrate in medium, at a previously set growth-rate. Parameters ---------- metabolite : str ID of metabolite in medium. precision : float Numberic precision with which minimum is approximated. Default : 0.00001 max : float Defines the highest concentration rate to be screened for. Default=100 recording : bool Records intermediate feasible solutions while approaching the minimum concentration. Default : False Returns ------- minimum feasible growth-substrate concentration as float. """ minConc = 0.0 maxConc = max testConc = minConc iteration = 0 oldConc = self.Medium[metabolite] while (maxConc - minConc) > precision: self.setMedium(changes={metabolite: testConc}) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: iteration += 1 if recording: run_name = 'Dichotomy_'+metabolite+'_' + \ str(testConc)+'_iteration_'+str(iteration) self.recordResults(run_name) maxConc = testConc else: minConc = testConc testConc = numpy.mean([maxConc, minConc]) self.LogBook.addEntry( 'Minimal required {} concentration found to be: {}.'.format(metabolite, maxConc)) self.setMedium(changes={metabolite: oldConc}) return(maxConc) def addProtein(self, input): """ Adds representation of individual proteins to problem. Parameters ---------- input : dict or str If input is str it has to be the ID of a protein in the model. Then this protein is added to the problem an creates: One constraint named Protein_'ID' (equality). One variable named TotalLevel_'ID' representing the total amount. One variable named Free_'ID'_'respectiveCompartment', this represents the fraction of the protein not assuming any function. It however consumes resources for synthesis (precursors and processes), which are the same as defined in the model files. And takes up space i the compartment as specified in the model-files for the protein. If input is dict it has to have two keys; 'ID' and 'UnusedProteinFraction'. By specifying this input one can define that the unused franction of the protein can also reside in other compartments and which processes it requires. The value to 'ID' is the ID of a protein in the model. The value to 'UnusedProteinFraction' is another dictionary. This can have several keys which must be model-compartments. For each of the keys the value is a dict holding IDs of model-processes as Keys and process requirements as Values (numerical). This specifies which processes each of the compartment-species of the protein requires. This generates the same constraint and TotalLevel-variable as with the simple input, however a variable representing each of the compartment-species for the unused fraction is added and incorporates the specific process requirements. E.g: input = {'ID': 'proteinA', 'UnusedProteinFraction':{'Cytoplasm':{'Translation':100}, {'Folding':10}], 'Membrane':{'Translation':100}, {'Folding':20}, {'Secretion':100} } } This adds 'proteinA' to the model, where the unused fraction can reside either in the Cytoplasm or the Membrane. However while the cytosolic-species only requires the processes 'Translation' and 'Folding'; the membrane-bound species also requires 'Secretion' and occupies more folding capacity. Then the constraint 'Protein_proteinA' is added and the 3 variables 'TotalLevel_proteinA', 'Free_proteinA_Cytoplasm' and 'Free_proteinA_Membrane'. """ if type(input) is str: input = {'ID': input} if 'ID' not in list(input.keys()): print('Error, no protein ID provided') return if input['ID'] not in list(self.ModelStructure.ProteinInfo.Elements.keys()): print('Error, protein not in model') return if 'UnusedProteinFraction' not in list(input.keys()): input.update({'UnusedProteinFraction': {self.ModelStructure.ProteinInfo.Elements[input['ID']]['Compartment']: self.ModelStructure.ProteinInfo.Elements[input['ID']]['ProcessRequirements']}}) self.LogBook.addEntry('Protein {} added with specifications {}.'.format( input['ID'], str(json.dumps(input)))) Muindexlist = [] ## Building RBA_Matrix-object for new constraint-row, representing protein ## UsedProtein = RBA_Matrix() UsedProtein.A = scipy.sparse.coo_matrix( buildUsedProteinConstraint(Controler=self, protein=input['ID'])) UsedProtein.b = numpy.array([float(0)]) UsedProtein.f = numpy.array(self.Problem.LP.f) UsedProtein.LB = numpy.array(self.Problem.LP.LB) UsedProtein.UB = numpy.array(self.Problem.LP.UB) UsedProtein.row_signs = ['E'] UsedProtein.row_names = ['Protein_'+input['ID']] UsedProtein.col_names = self.Problem.LP.col_names ## Add used protein row to problem ## self.Problem.LP.addMatrix(matrix=UsedProtein) ## Add used protein row to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=UsedProtein) ## Building RBA_Matrix-object for new variable-col, representing total level of protein ## TotProtein = RBA_Matrix() TotProtein.A = scipy.sparse.coo_matrix(numpy.array(numpy.matrix( numpy.array([float(0)]*self.Problem.LP.A.shape[0]+[float(-1)])).transpose())) TotProtein.f = numpy.array([float(0)]) TotProtein.LB = numpy.array([float(0)]) TotProtein.UB = numpy.array([float(100000.0)]) TotProtein.b = numpy.array(list(self.Problem.LP.b)+list(UsedProtein.b)) TotProtein.row_signs = self.Problem.LP.row_signs+UsedProtein.row_signs TotProtein.row_names = self.Problem.LP.row_names+UsedProtein.row_names TotProtein.col_names = ['TotalLevel_'+input['ID']] ## Add total protein col to problem ## self.Problem.LP.addMatrix(matrix=TotProtein) ## Add total protein col to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=TotProtein) ## Building RBA_Matrix-object for new variable-col,## ## representing each compartment-species of the protein ## for comp_species in list(input['UnusedProteinFraction'].keys()): ## Initiate RBA_Matrix object## UnusedProtein = RBA_Matrix() UnusedProtein.col_names = ['Free_'+input['ID']+'_'+comp_species] ## Extract required processes for protein and the respective demand ## ProcIDs = list(input['UnusedProteinFraction'][comp_species].keys()) Preq = list(input['UnusedProteinFraction'][comp_species].values()) ProcessCost = dict( zip([self.ModelStructure.ProcessInfo.Elements[k]['ID'] for k in ProcIDs], Preq)) ## Get required charged trna buildingblocks and their stoichiometry in protein ## composition = self.ModelStructure.ProteinInfo.Elements[input['ID']]['AAcomposition'] ## Extract the composition of charged trnas in terms of metabolic species ## species = self.ModelStructure.ProcessInfo.Elements['Translation']['Components'] ## Determine required metabolites and their stoichiometry in protein ## MetaboliteCost = buildCompositionofUnusedProtein( species=species, composition=composition) ## Assemble process and metabolite requirements into stoichiometric coloumn vector ## ## And add to RBA_Matrix object ## colToAdd = numpy.array(numpy.matrix(numpy.array(list(MetaboliteCost.values())+list(ProcessCost.values()) + [float(1)]+[self.ModelStructure.ProteinInfo.Elements[input['ID']]['AAnumber']])).transpose()) UnusedProtein.A = scipy.sparse.coo_matrix(colToAdd) ## Add other information to RBA_Matrix object ## UnusedProtein.row_names = list(MetaboliteCost.keys())+[str(pc+'_capacity') for pc in list( ProcessCost.keys())]+['Protein_'+input['ID']]+[str(comp_species + '_density')] UnusedProtein.b = numpy.zeros(len(UnusedProtein.row_names)) UnusedProtein.row_signs = ['E']*len(UnusedProtein.row_names) UnusedProtein.LB = numpy.array([float(0)]) UnusedProtein.UB = numpy.array([float(100000.0)]) UnusedProtein.f = numpy.array([float(0)]) self.ProteinDilutionIndices = list( zip(list(MetaboliteCost.keys()), UnusedProtein.col_names*len(list(MetaboliteCost.keys())))) ## Add free protein col to problem ## self.Problem.LP.addMatrix(matrix=UnusedProtein) ## Add free protein col to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=UnusedProtein) ## Find coefficients of unused protein column, subject to dilution (Metabolite and Process cost) ## ## And add them to MuDepIndices_A ## nonZeroEntries = numpy.where(UnusedProtein.A != 0)[0] self.Problem.MuDepIndices_A += [(UnusedProtein.row_names[i], UnusedProtein.col_names[0]) for i in nonZeroEntries if UnusedProtein.row_names[i] != 'Protein_'+input['ID'] and UnusedProtein.row_names[i] not in self.Problem.CompartmentDensities] self.setMu(self.Problem.Mu) ## !!! ## def eukaryoticDensities(self, totalAA=3.1, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] Signs = ['L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L'] totalAA = 3.1*0.71 m_mIM = 0.66 m_mIMS = 2 m_mOM = 8 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) CompartmentMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(1)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*len(Compartments)+['E'] # CompartmentMatrix.row_signs = ['E']*(len(Compartments)+1) CompartmentMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalCapacity'] CompartmentMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A CompartmentMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] CompartmentMatrix.row_signs += ['E', 'E', 'E'] CompartmentMatrix.b = numpy.array(list(CompartmentMatrix.b)+[float(0)]*3) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_mIM')] = -m_mIM Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_mOM')] = -m_mOM CompartmentMatrix.A = scipy.sparse.coo_matrix(Anew) self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) if CompartmentComponents: AlipidsA = numpy.zeros((7, len(Compartments))) Alipids = RBA_Matrix() Alipids.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs += ['E', 'E', 'E', 'E', 'E', 'E', 'E'] Alipids.b = numpy.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) Alipids.LB = numpy.array([float(0)]*len(Compartments)) Alipids.UB = numpy.array([float(1)]*len(Compartments)) Alipids.f = numpy.array([float(0)]*len(Compartments)) AlipidsA[Alipids.row_names.index('M_pc_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.0000883*totalAA AlipidsA[Alipids.row_names.index('M_pe_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.00005852*totalAA AlipidsA[Alipids.row_names.index('M_ptd1ino_SC_c'), Alipids.col_names.index('F_mIM')] = -0.00003377*totalAA AlipidsA[Alipids.row_names.index('M_ps_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.00000873*totalAA AlipidsA[Alipids.row_names.index('M_clpn_SC_m'), Alipids.col_names.index('F_mIM')] = -0.00002*totalAA AlipidsA[Alipids.row_names.index('M_pa_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.0000039*totalAA AlipidsA[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mIM')] = -0.008547*totalAA self.Problem.MuDepIndices_A += [('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ('M_pa_SC_c', 'F_mIM'), ('M_ergst_c', 'F_mIM')] AlipidsA[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mOM')] = -0.000636*totalAA AlipidsA[Alipids.row_names.index('M_pe_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0004822*totalAA AlipidsA[Alipids.row_names.index('M_ptd1ino_SC_c'), Alipids.col_names.index('F_mOM')] = -0.0001289*totalAA AlipidsA[Alipids.row_names.index('M_ps_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0000167*totalAA AlipidsA[Alipids.row_names.index('M_clpn_SC_m'), Alipids.col_names.index( 'F_mOM')] = -0.00004467*totalAA AlipidsA[Alipids.row_names.index('M_pa_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0000696*totalAA self.Problem.MuDepIndices_A += [('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')] Alipids.A = scipy.sparse.coo_matrix(AlipidsA) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=[('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ('M_pa_SC_c', 'F_mIM'), ( 'M_ergst_c', 'F_mIM'), ('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')]) self.Problem.MuOneMatrix.updateMatrix(Alipids, Ainds=[('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ( 'M_pa_SC_c', 'F_mIM'), ('M_ergst_c', 'F_mIM'), ('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')]) ## !!! ## def eukaryoticDensities2(self, totalAA=3.1, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.69 m_mIM = 1.11 m_mIMS = 0.7 m_mOM = 7.2 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) CompartmentMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(1)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*(len(Compartments)+1) # CompartmentMatrix.row_signs = ['E']*(len(Compartments)+1) CompartmentMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalCapacity'] CompartmentMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A CompartmentMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] CompartmentMatrix.row_signs += ['E', 'E', 'E'] CompartmentMatrix.b = numpy.array(list(CompartmentMatrix.b)+[float(0)]*3) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_mIM')] = -m_mIM Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_mOM')] = -m_mOM CompartmentMatrix.A = scipy.sparse.coo_matrix(Anew) self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) if CompartmentComponents: PC_mIM = 0.0000883 PE_mIM = 0.00005852 PI_mIM = 0.00003377 PS_mIM = 0.00000873 CL_mIM = 0.00002 PA_mIM = 0.0000039 ES_mIM = 0.008547 PC_mOM = 0.000636 PE_mOM = 0.0004822 PI_mOM = 0.0001289 PS_mOM = 0.0000167 CL_mOM = 0.00004467 PA_mOM = 0.0000696 ES_mOM = 0.0 ConstraintMatrix = numpy.zeros((7, 0)) Alipids = RBA_Matrix() Alipids.col_names = [] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs = [ self.Problem.LP.row_signs[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names] Alipids.b = numpy.array( [self.Problem.LP.b[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names]) Alipids.LB = numpy.array([]) Alipids.UB = numpy.array([]) Alipids.f = numpy.array([]) MudepIndices = [] for pc in self.ModelStructure.ProcessInfo.Elements.keys(): if self.ModelStructure.ProcessInfo.Elements[pc]['ID'] not in self.Problem.LP.col_names: continue ConstraintMatrixNew = numpy.zeros( (ConstraintMatrix.shape[0], ConstraintMatrix.shape[1]+1)) ConstraintMatrixNew[:, 0:ConstraintMatrix.shape[1]] = ConstraintMatrix Alipids.col_names.append(self.ModelStructure.ProcessInfo.Elements[pc]['ID']) # Alipids.LB = numpy.array(list(Alipids.LB).append(list(self.Problem.LP.LB)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) # Alipids.UB = numpy.array(list(Alipids.UB).append(list(self.Problem.LP.UB)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) # Alipids.f = numpy.array(list(Alipids.f).append(list(self.Problem.LP.f)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) Alipids.LB = numpy.concatenate([Alipids.LB, numpy.array( list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) Alipids.UB = numpy.concatenate([Alipids.UB, numpy.array( list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) Alipids.f = numpy.concatenate([Alipids.f, numpy.array( list(self.Problem.LP.f)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) for p in self.ModelStructure.ProcessInfo.Elements[pc]['Composition'].keys(): lE = sum(list(self.ModelStructure.ProteinInfo.Elements[p]['AAcomposition'].values( )))*self.ModelStructure.ProcessInfo.Elements[pc]['Composition'][p] if self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mOM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mOM*lE/totalAA MudepIndices += ('M_pc_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pe_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ptd1ino_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ps_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_clpn_SC_m', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pa_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) elif self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mIM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ergst_c'), ConstraintMatrix.shape[1]] -= ES_mIM*lE/totalAA MudepIndices += ('M_pc_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pe_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ptd1ino_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ps_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_clpn_SC_m', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pa_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ergst_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) ConstraintMatrix = ConstraintMatrixNew for e in self.ModelStructure.EnzymeInfo.Elements.keys(): if e not in self.Problem.LP.col_names: continue ConstraintMatrixNew = numpy.zeros( (ConstraintMatrix.shape[0], ConstraintMatrix.shape[1]+1)) ConstraintMatrixNew[:, 0:ConstraintMatrix.shape[1]] = ConstraintMatrix Alipids.col_names.append(e) # xnew = list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(e)] Alipids.LB = numpy.concatenate([Alipids.LB, numpy.array( list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(e)])]) Alipids.UB = numpy.concatenate([Alipids.UB, numpy.array( list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(e)])]) Alipids.f = numpy.concatenate([Alipids.f, numpy.array( list(self.Problem.LP.f)[self.Problem.LP.col_names.index(e)])]) # Alipids.LB = numpy.array(list(Alipids.LB).append(xnew)) # Alipids.UB = numpy.array(list(Alipids.UB).append( # list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(e)])) # Alipids.f = numpy.array(list(Alipids.f).append( # list(self.Problem.LP.f)[self.Problem.LP.col_names.index(e)])) for p in self.ModelStructure.EnzymeInfo.Elements[e]['Subunits'].keys(): lE = sum( list(self.ModelStructure.ProteinInfo.Elements[p]['AAcomposition'].values())) lE *= self.ModelStructure.EnzymeInfo.Elements[e]['Subunits'][p]['StochFac'] if self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mOM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mOM*lE/totalAA MudepIndices += ('M_pc_SC_c', e) MudepIndices += ('M_pe_SC_c', e) MudepIndices += ('M_ptd1ino_SC_c', e) MudepIndices += ('M_ps_SC_c', e) MudepIndices += ('M_clpn_SC_m', e) MudepIndices += ('M_pa_SC_c', e) elif self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mIM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ergst_c'), ConstraintMatrix.shape[1]] -= ES_mIM*lE/totalAA MudepIndices += ('M_pc_SC_c', e) MudepIndices += ('M_pe_SC_c', e) MudepIndices += ('M_ptd1ino_SC_c', e) MudepIndices += ('M_ps_SC_c', e) MudepIndices += ('M_clpn_SC_m', e) MudepIndices += ('M_pa_SC_c', e) MudepIndices += ('M_ergst_c', e) ConstraintMatrix = ConstraintMatrixNew self.Problem.MuDepIndices_A += MudepIndices Alipids.A = scipy.sparse.coo_matrix(ConstraintMatrix) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=MudepIndices) self.Problem.LP.updateMatrix(MuOneMatrix, Ainds=MudepIndices) ## !!! ## def eukaryoticDensities3(self, totalAA=3.1, VolumeFraction=False, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.91 m_mIM = 0.66 m_mIMS = 2 m_mOM = 8 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() # A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA # self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() # A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA # self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) OccupationMatrix = RBA_Matrix() # A = numpy.ones((len(Compartments)+1, len(Compartments))) A = -numpy.eye(len(Compartments)) # Eye = -numpy.eye(len(Compartments)) # A[0:len(Compartments), :] = Eye OccupationMatrix.A = scipy.sparse.coo_matrix(A) # OccupationMatrix.b = numpy.array([-0.209*totalAA]+[float(0)]*(len(Compartments)-1)+[float(totalAA)]) OccupationMatrix.b = numpy.array([-0.209*totalAA]+[float(0)]*(len(Compartments)-1)) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) # OccupationMatrix.row_signs = ['E']*(len(Compartments))+['L'] OccupationMatrix.row_signs = ['E']*(len(Compartments)) # OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', # 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalProtein'] OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) CompartmentMatrix = RBA_Matrix() if VolumeFraction: A = numpy.eye(len(Compartments))*5/float(totalAA) else: A = numpy.eye(len(Compartments))/float(totalAA) CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*(len(Compartments)) # CompartmentMatrix.row_signs = ['E']*(len(Compartments)) CompartmentMatrix.row_names = ['n_volume', 'mIM_volume', 'vM_volume', 'mIMS_volume', 'm_volume', 'erM_volume', 'mOM_volume', 'x_volume', 'cM_volume', 'gM_volume', 'c_volume'] CompartmentMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] CompartmentMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) VolumeMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye # A[len(Compartments), [1, 5, 6, 8, 9]] = 0 # A[len(Compartments), 8] = 0 VolumeMatrix.A = scipy.sparse.coo_matrix(A) VolumeMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) VolumeMatrix.f = numpy.array([float(0)]*len(Compartments)) VolumeMatrix.LB = numpy.array([float(0)]*len(Compartments)) VolumeMatrix.UB = numpy.array([float(1)]*len(Compartments)) VolumeMatrix.row_signs = ['L']*(len(Compartments))+['E'] # VolumeMatrix.row_signs = ['E']*(len(Compartments))+['E'] VolumeMatrix.row_names = ['n_volume', 'mIM_volume', 'vM_volume', 'mIMS_volume', 'm_volume', 'erM_volume', 'mOM_volume', 'x_volume', 'cM_volume', 'gM_volume', 'c_volume', 'TotalVolume'] VolumeMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] if not CompartmentRelationships: VolumeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=VolumeMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=VolumeMatrix) if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A VolumeMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] VolumeMatrix.row_signs += ['E', 'E', 'E'] VolumeMatrix.b = numpy.array(list(VolumeMatrix.b)+[float(0)]*3) Anew[VolumeMatrix.row_names.index( 'm_mIM'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mIMS'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mOM'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mIM'), VolumeMatrix.col_names.index('F_mIM')] = -m_mIM Anew[VolumeMatrix.row_names.index( 'm_mIMS'), VolumeMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[VolumeMatrix.row_names.index( 'm_mOM'), VolumeMatrix.col_names.index('F_mOM')] = -m_mOM VolumeMatrix.A = scipy.sparse.coo_matrix(Anew) VolumeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=VolumeMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=VolumeMatrix) if CompartmentComponents: PC_mIM = 0.0000883 PE_mIM = 0.00005852 PI_mIM = 0.00003377 PS_mIM = 0.00000873 CL_mIM = 0.00002 PA_mIM = 0.0000039 ES_mIM = 0.008547 PC_mOM = 0.000636 PE_mOM = 0.0004822 PI_mOM = 0.0001289 PS_mOM = 0.0000167 CL_mOM = 0.00004467 PA_mOM = 0.0000696 ES_mOM = 0.0 PC_vM = 0.0003635 PE_vM = 0.4156 PI_vM = 0.0001297 PS_vM = 0.00003435 CL_vM = 0.0000068 PA_vM = 0.0000186 ES_vM = 0.0142 PC_n = 0.000055 PE_n = 0.000035 PI_n = 0.000017 PS_n = 0.0000072 CL_n = 0.0 PA_n = 0.0000031 ES_n = 0.0086 PC_gM = 0.00043 PE_gM = 0.00044 PI_gM = 0.00041 PS_gM = 0.0 CL_gM = 0.00022 PA_gM = 0.0 ES_gM = 0.0 PC_n = 0.0 PE_n = 0.0 PI_n = 0.0 PS_n = 0.0 CL_n = 0.0 PA_n = 0.0 ES_n = 0.0 PC_gM = 0.0 PE_gM = 0.0 PI_gM = 0.0 PS_gM = 0.0 CL_gM = 0.0 PA_gM = 0.0 ES_gM = 0.0 PC_vM = 0.0 PE_vM = 0.0 PI_vM = 0.0 PS_vM = 0.0 CL_vM = 0.0 PA_vM = 0.0 ES_vM = 0.0 PC_mIM = 0.0 PE_mIM = 0.0 PI_mIM = 0.0 PS_mIM = 0.0 CL_mIM = 0.0 PA_mIM = 0.0 ES_mIM = 0.0 PC_mOM = 0.0 PE_mOM = 0.0 PI_mOM = 0.0 PS_mOM = 0.0 CL_mOM = 0.0 PA_mOM = 0.0 ES_mOM = 0.0 Alipids = RBA_Matrix() Alipids.col_names = ['F_mIM', 'F_mOM', 'F_vM', 'F_n', 'F_gM'] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs = [ self.Problem.LP.row_signs[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names] Alipids.b = numpy.array( [self.Problem.LP.b[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names]) Alipids.LB = numpy.array([0, 0, 0, 0, 0]) Alipids.UB = numpy.array([1, 1, 1, 1, 1]) Alipids.f = numpy.array([0, 0, 0, 0, 0]) LipidMatrix = numpy.zeros((7, 5)) LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mIM')] = PC_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_mIM')] = PE_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_mIM')] = PI_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_mIM')] = PS_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_mIM')] = CL_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_mIM')] = PA_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mIM')] = ES_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mOM')] = PC_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_mOM')] = PE_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_mOM')] = PI_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_mOM')] = PS_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_mOM')] = CL_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_mOM')] = PA_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mOM')] = ES_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_vM')] = PC_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_vM')] = PE_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_vM')] = PI_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_vM')] = PS_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_vM')] = CL_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_vM')] = PA_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_vM')] = ES_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_n')] = PC_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_n')] = PE_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_n')] = PI_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_n')] = PS_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_n')] = CL_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_n')] = PA_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_n')] = ES_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_gM')] = PC_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_gM')] = PE_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_gM')] = PI_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_gM')] = PS_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_gM')] = CL_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_gM')] = PA_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_gM')] = ES_gM/totalAA MudepIndices = [('M_pc_SC_c', i) for i in Alipids.col_names]+[('M_pe_SC_c', i) for i in Alipids.col_names]+[('M_ptd1ino_SC_c', i) for i in Alipids.col_names]+[('M_ps_SC_c', i) for i in Alipids.col_names]+[('M_clpn_SC_m', i) for i in Alipids.col_names]+[('M_pa_SC_c', i) for i in Alipids.col_names]+[('M_ergst_c', i) for i in Alipids.col_names] self.Problem.MuDepIndices_A += MudepIndices Alipids.A = scipy.sparse.coo_matrix(LipidMatrix) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=MudepIndices) self.Problem.MuOneMatrix.updateMatrix(Alipids, Ainds=MudepIndices) ## !!! ## def eukaryoticDensities4(self, CompartmentRelationships=True): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.91 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A0 = self.Problem.MuOneMatrix.A.toarray() OccupationMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye OccupationMatrix.b = numpy.array(list([float(0)]*len(Compartments))+[totalAA]) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) OccupationMatrix.row_signs = ['E']*(len(Compartments)+1) OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'O_total'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] if CompartmentRelationships: m_mIM = 0.5 m_mIMS = 1 m_mOM = 5 Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A OccupationMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] OccupationMatrix.row_signs += ['E', 'E', 'E'] OccupationMatrix.b = numpy.array(list(OccupationMatrix.b)+[float(0)]*3) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_mIM')] = -m_mIM Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_mIMS')] = -m_mIMS Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_mOM')] = -m_mOM OccupationMatrix.A = scipy.sparse.coo_matrix(Anew) else: OccupationMatrix.A = scipy.sparse.coo_matrix(A) OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) # {'Index':{'Param1':'+','Param2':'+','Param2':'-'}} #Type: 'Sum'# # {'Index':'Param1'} self.Problem.MuDependencies['FromParameters']['b'].update( {'n_density': 'AAres_PG_nucleus_DNA'}) self.Problem.MuDependencies['FromParameters']['b'].update( {'O_total': {'Equation': 'amino_acid_concentration_total - AAres_PG_secreted_Euk', 'Variables': ['amino_acid_concentration_total', 'AAres_PG_secreted_Euk']}}) self.Problem.MuDependencies['FromMatrix']['b'].remove('n_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mIM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('vM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mIMS_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('m_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('erM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mOM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('x_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('cM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('gM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('c_density') ## !!! ## def eukaryoticDensities_calibration(self, CompartmentRelationships=False, mitoProportions={}, amino_acid_concentration_total='amino_acid_concentration_total'): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA_parameter = amino_acid_concentration_total totalAA = 3.1 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A0 = self.Problem.MuOneMatrix.A.toarray() OccupationMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye OccupationMatrix.b = numpy.array(list([float(0)]*len(Compartments))+[totalAA]) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) OccupationMatrix.row_signs = ['E']*(len(Compartments)+1) OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'O_total'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] if CompartmentRelationships: if len(list(mitoProportions.keys())) == 3: m_mIM = mitoProportions['m_mIM'] m_mIMS = mitoProportions['m_mIMS'] m_mOM = mitoProportions['m_mOM'] Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A OccupationMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] OccupationMatrix.row_signs += ['E', 'E', 'E'] OccupationMatrix.b = numpy.array(list(OccupationMatrix.b)+[float(0)]*3) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_mIM')] = -m_mIM Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_mIMS')] = -m_mIMS Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_mOM')] = -m_mOM OccupationMatrix.A = scipy.sparse.coo_matrix(Anew) else: OccupationMatrix.A = scipy.sparse.coo_matrix(A) OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) # {'Index':{'Param1':'+','Param2':'+','Param2':'-'}} #Type: 'Sum'# # {'Index':'Param1'} self.Problem.MuDependencies['FromParameters']['b'].update( {'n_density': {'Equation': '-nonenzymatic_proteins_n/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_n', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mIM_density': { 'Equation': '-nonenzymatic_proteins_mIM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mIM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'vM_density': { 'Equation': '-nonenzymatic_proteins_vM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_vM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mIMS_density': { 'Equation': '-nonenzymatic_proteins_mIMS/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mIMS', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'m_density': {'Equation': '-nonenzymatic_proteins_m/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_m', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'erM_density': { 'Equation': '-nonenzymatic_proteins_erM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_erM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mOM_density': { 'Equation': '-nonenzymatic_proteins_mOM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mOM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'x_density': {'Equation': '-nonenzymatic_proteins_x/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_x', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'cM_density': { 'Equation': '-nonenzymatic_proteins_cM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_cM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'gM_density': { 'Equation': '-nonenzymatic_proteins_gM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_gM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'c_density': {'Equation': '-nonenzymatic_proteins_c/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_c', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'O_total': {'Equation': '{} - nonenzymatic_proteins_Secreted/inverse_average_protein_length'.format(totalAA_parameter), 'Variables': [ totalAA_parameter, 'nonenzymatic_proteins_Secreted', 'inverse_average_protein_length']}}) # !!! deal with hardcoded parameter_names... !!! def estimate_specific_Kapps(self, proteomicsData, flux_bounds, mu, biomass_function=None, target_biomass_function=True, parsimonious_fba=True): """ Parameters ---------- proteomicsData : pandas.DataFrame (in mmol/gDW) flux_bounds : pandas.DataFrame (in mmol/(gDW*h)) mu : float (in 1/h) biomass_function : str target_biomass_function : bool atp_maintenance_to_biomassfunction : bool eukaryotic : bool """ from scipy.stats.mstats import gmean old_model = copy.deepcopy(self.model) for i in self.model.targets.target_groups._elements_by_id['translation_targets'].concentrations._elements: if i.species == 'average_protein_c': new_agg = rba.xml.parameters.Aggregate(id_='total_protein', type_='multiplication') new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='amino_acid_concentration_total')) new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='inverse_average_protein_length')) self.model.parameters.aggregates._elements.append(new_agg) i.value = 'total_protein' else: self.model.targets.target_groups._elements_by_id['translation_targets'].concentrations._elements.remove( i) for i in self.model.targets.target_groups._elements_by_id['transcription_targets'].concentrations._elements: if i.species == 'mrna': new_agg = rba.xml.parameters.Aggregate(id_='total_rna', type_='multiplication') new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='RNA_massfraction_CarbonLimitation')) new_agg.function_references.append( rba.xml.parameters.FunctionReference(function='RNA_inversemillimolarweight')) self.model.parameters.aggregates._elements.append(new_agg) i.value = 'total_rna' else: self.model.targets.target_groups._elements_by_id['transcription_targets'].concentrations._elements.remove( i) self.rebuild_from_model() self.setMedium(self.Medium) self.addExchangeReactions() self.setMu(mu) if target_biomass_function: self.buildFBA(objective='targets', maintenanceToBM=True) BMfunction = 'R_BIOMASS_targetsRBA' else: self.buildFBA(objective='classic', maintenanceToBM=False) BMfunction = biomass_function for j in [i for i in self.Medium.keys() if self.Medium[i] == 0]: Exrxn = 'R_EX_'+j.split('M_')[-1]+'_e' self.FBA.setUB({Exrxn: 0}) rxn_LBs = {} rxn_UBs = {} for rx in flux_bounds['Reaction_ID']: lb = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'LB'].values[0] ub = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'UB'].values[0] if not pandas.isna(lb): rxn_LBs.update({rx: lb}) if not pandas.isna(ub): rxn_UBs.update({rx: ub}) self.FBA.setLB(rxn_LBs) self.FBA.setUB(rxn_UBs) self.FBA.clearObjective() self.FBA.setObjectiveCoefficients({BMfunction: -1}) self.FBA.solveLP() BMfluxOld = self.FBA.SolutionValues[BMfunction] if parsimonious_fba: self.FBA.parsimonise() self.FBA.setLB(rxn_LBs) self.FBA.setUB(rxn_UBs) self.FBA.setLB({BMfunction: BMfluxOld}) self.FBA.setUB({BMfunction: BMfluxOld}) self.FBA.solveLP() FluxDistribution = pandas.DataFrame(index=list( self.FBA.SolutionValues.keys()), columns=['FluxValues']) FluxDistribution['FluxValues'] = list(self.FBA.SolutionValues.values()) BMfluxNew = self.FBA.SolutionValues[BMfunction] ProtoIDmap = {} for i in self.ModelStructure.ProteinInfo.Elements.keys(): ProtoID = self.ModelStructure.ProteinInfo.Elements[i]['ProtoID'] if ProtoID in list(proteomicsData['ID']): if not pandas.isna(proteomicsData.loc[proteomicsData['ID'] == ProtoID, 'copy_number'].values[0]): if proteomicsData.loc[proteomicsData['ID'] == ProtoID, 'copy_number'].values[0] != 0: if ProtoID in ProtoIDmap.keys(): ProtoIDmap[ProtoID]['ModelProteins'].append(i) else: ProtoIDmap.update( {ProtoID: {'ModelProteins': [i], 'CopyNumber': proteomicsData.loc[proteomicsData['ID'] == ProtoID, 'copy_number'].values[0]}}) ReactionMap = {} for i in self.ModelStructure.ReactionInfo.Elements.keys(): if '_duplicate_' in i: continue else: if i in list(FluxDistribution.index): if FluxDistribution.loc[i, 'FluxValues'] != 0: ReactionMap.update({i: {'ModelReactions': list( [i]+self.ModelStructure.ReactionInfo.Elements[i]['Twins']), 'Flux': FluxDistribution.loc[i, 'FluxValues']}}) IsoReaction2ProtoReaction = {} for i in ReactionMap.keys(): for j in ReactionMap[i]['ModelReactions']: IsoReaction2ProtoReaction[j] = i EnzymeMap = {} for i in self.ModelStructure.EnzymeInfo.Elements.keys(): if self.ModelStructure.EnzymeInfo.Elements[i]['Reaction'] in IsoReaction2ProtoReaction: CompositionDict = {self.ModelStructure.ProteinInfo.Elements[j]['ProtoID']: self.ModelStructure.EnzymeInfo.Elements[ i]['Subunits'][j] for j in self.ModelStructure.EnzymeInfo.Elements[i]['Subunits'].keys()} ProtoReaction = IsoReaction2ProtoReaction[self.ModelStructure.EnzymeInfo.Elements[i]['Reaction']] CopyNumbers = [] Stoichiometries = [] EnzymeNumbers = [] for j in CompositionDict.keys(): if j in ProtoIDmap.keys(): CopyNumbers.append(ProtoIDmap[j]['CopyNumber']) Stoichiometries.append(CompositionDict[j]) EnzymeNumbers.append(ProtoIDmap[j]['CopyNumber']/CompositionDict[j]) GM_enzymenumber = 0 if len(EnzymeNumbers) > 0: GM_enzymenumber = gmean(numpy.array(EnzymeNumbers)) EnzymeMap.update( {i: {'ProtoReaction': ProtoReaction, 'EnzymeNumber': GM_enzymenumber}}) EnzymeMap2 = {} for i in ReactionMap.keys(): totalIsoEnzymeNumber = 0 for j in ReactionMap[i]['ModelReactions']: respectiveEnzyme = self.ModelStructure.ReactionInfo.Elements[j]['Enzyme'] if respectiveEnzyme in EnzymeMap.keys(): totalIsoEnzymeNumber += EnzymeMap[respectiveEnzyme]['EnzymeNumber'] for j in ReactionMap[i]['ModelReactions']: respectiveEnzyme = self.ModelStructure.ReactionInfo.Elements[j]['Enzyme'] if respectiveEnzyme in EnzymeMap.keys(): concentration = EnzymeMap[respectiveEnzyme]['EnzymeNumber'] if concentration != 0: if numpy.isfinite(concentration): specificFlux = ReactionMap[i]['Flux'] * \ EnzymeMap[respectiveEnzyme]['EnzymeNumber']/totalIsoEnzymeNumber EnzymeMap2.update({respectiveEnzyme: {'CopyNumber': EnzymeMap[respectiveEnzyme]['EnzymeNumber'], 'Concentration': concentration, 'Flux': specificFlux, 'Kapp': abs(specificFlux/concentration)}}) self.model = old_model self.rebuild_from_model() self.setMedium(self.Medium) out = pandas.DataFrame() for i in EnzymeMap2.keys(): # if EnzymeMap2[i]['CopyNumber'] == 0: # continue out.loc[i, 'Enzyme_ID'] = i out.loc[i, 'CopyNumber'] = EnzymeMap2[i]['CopyNumber'] out.loc[i, 'Concentration'] = EnzymeMap2[i]['Concentration'] out.loc[i, 'Flux'] = EnzymeMap2[i]['Flux'] out.loc[i, 'Kapp'] = EnzymeMap2[i]['Kapp'] return(out) def estimate_default_Kapps(self, target_mu, compartment_densities_and_PGs=None, flux_bounds=None, plateau_limit=4, mu_approximation_precision=0.005, transporter_to_lumen_coefficient=10, default_kapp_LB=0, default_kapp_UB=1000000, start_val=200000, densities_to_fix=None, eukaryotic=False): """ Parameters ---------- target_mu : float compartment_densities_and_PGs : pandas.DataFrame flux_bounds : pandas.DataFrame """ orig_enz = self.model.parameters.functions._elements_by_id[ 'default_efficiency'].parameters._elements_by_id['CONSTANT'].value out = pandas.DataFrame() for comp in list(compartment_densities_and_PGs['Compartment_ID']): self.model.parameters.functions._elements_by_id[str( 'fraction_protein_'+comp)].parameters._elements_by_id['CONSTANT'].value = compartment_densities_and_PGs.loc[compartment_densities_and_PGs['Compartment_ID'] == comp, 'Density'] self.model.parameters.functions._elements_by_id[str( 'fraction_non_enzymatic_protein_'+comp)].parameters._elements_by_id['CONSTANT'].value = compartment_densities_and_PGs.loc[compartment_densities_and_PGs['Compartment_ID'] == comp, 'PG_fraction'] self.rebuild_from_model() self.addExchangeReactions() self.setMedium(self.Medium) if densities_to_fix is None: comp_density_rows = list(self.Problem.CompartmentDensities) self.Problem.setConstraintType( dict(zip(comp_density_rows, ['E']*len(comp_density_rows)))) else: if len(densities_to_fix) != 0: comp_density_rows = densities_to_fix self.Problem.setConstraintType( dict(zip(comp_density_rows, ['E']*len(comp_density_rows)))) rxn_LBs = {} rxn_UBs = {} for rx in flux_bounds['Reaction_ID']: lb = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'LB'].values[0] ub = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'UB'].values[0] if not pandas.isna(lb): rxn_LBs.update({rx: lb}) if not pandas.isna(ub): rxn_UBs.update({rx: ub}) self.Problem.setLB(rxn_LBs) self.Problem.setUB(rxn_UBs) kapp_LB = default_kapp_LB if default_kapp_UB is not None: kapp_UB = default_kapp_UB else: kapp_UB = orig_enz*1000 # new_kapp = (kapp_UB+kapp_LB)/2 if start_val is not None: new_kapp = start_val else: new_kapp = orig_enz Mu_pred = self.findMaxGrowthRate(precision=0.005, max=1) Mus = [] Mus_Error = [] Kapps = [] last_Mu = numpy.nan plateau_count = 0 if abs(target_mu - Mu_pred) > mu_approximation_precision: while abs(target_mu - Mu_pred) > mu_approximation_precision: if plateau_count >= plateau_limit: break self.model.parameters.functions._elements_by_id[ 'default_efficiency'].parameters._elements_by_id['CONSTANT'].value = new_kapp self.model.parameters.functions._elements_by_id['default_transporter_efficiency'].parameters._elements_by_id[ 'CONSTANT'].value = transporter_to_lumen_coefficient*new_kapp self.rebuild_from_model() self.addExchangeReactions() self.setMedium(self.Medium) self.Problem.setLB(rxn_LBs) self.Problem.setUB(rxn_UBs) if densities_to_fix is None: comp_density_rows = list(self.Problem.CompartmentDensities) self.Problem.setConstraintType( dict(zip(comp_density_rows, ['E']*len(comp_density_rows)))) else: if len(densities_to_fix) != 0: comp_density_rows = densities_to_fix self.Problem.setConstraintType( dict(zip(comp_density_rows, ['E']*len(comp_density_rows)))) Mu_pred = self.findMaxGrowthRate(precision=0.005, max=1) Mus_Error.append(abs(target_mu - Mu_pred)) Mus.append(Mu_pred) Kapps.append(new_kapp) if Mu_pred > target_mu: new_kapp_prelim = kapp_LB+(0.5*abs(kapp_LB-new_kapp)) kapp_UB = new_kapp elif Mu_pred < target_mu: new_kapp_prelim = kapp_UB-(0.5*abs(new_kapp-kapp_UB)) kapp_LB = new_kapp new_kapp = new_kapp_prelim if len(Mus) > 2: if Mus[-2] == Mu_pred: plateau_count += 1 else: plateau_count = 0 else: Mus.append(Mu_pred) Mus_Error.append(abs(target_mu - Mu_pred)) Kapps.append( self.model.parameters.functions._elements_by_id['default_efficiency'].parameters._elements_by_id['CONSTANT'].value) self.rebuild_from_model() self.setMedium(self.Medium) out = pandas.DataFrame() out['Mu'] = Mus out['delta_Mu'] = Mus_Error out['default_efficiency'] = Kapps out['default_transporter_efficiency'] = [transporter_to_lumen_coefficient*i for i in Kapps] return(out) def inject_default_kapps(self, default_kapp, default_transporter_kapp): if numpy.isfinite(default_kapp): self.model.parameters.functions._elements_by_id[ 'default_efficiency'].parameters._elements_by_id['CONSTANT'].value = default_kapp if numpy.isfinite(default_transporter_kapp): self.model.parameters.functions._elements_by_id[ 'default_transporter_efficiency'].parameters._elements_by_id['CONSTANT'].value = default_transporter_kapp self.rebuild_from_model() def inject_process_capacities(self, process_efficiencies): """ Parameters ---------- process_efficiencies : pandas.DataFrame(columns=['Process','Parameter','Value']) """ for i in process_efficiencies.index: if numpy.isfinite(process_efficiencies.loc[i, 'Value']): if process_efficiencies.loc[i, 'Process'] in self.model.processes.processes._elements_by_id.keys(): if not pandas.isna(process_efficiencies.loc[i, 'Value']): self.model.processes.processes._elements_by_id[process_efficiencies.loc[i, 'Process']].machinery.capacity.value = process_efficiencies.loc[i, 'Parameter'] const = rba.xml.parameters.Function(process_efficiencies.loc[i, 'Parameter'], 'constant', parameters={ 'CONSTANT': process_efficiencies.loc[i, 'Value']}, variable=None) if process_efficiencies.loc[i, 'Parameter'] not in self.model.parameters.functions._elements_by_id.keys(): self.model.parameters.functions.append(const) else: self.model.parameters.functions._elements_by_id[const.id].parameters._elements_by_id[ 'CONSTANT'].value = process_efficiencies.loc[i, 'Value'] self.rebuild_from_model() def inject_specific_kapps(self, specific_kapps, round_to_digits=0): """ Parameters ---------- specific_kapps : pandas.DataFrame """ parameterized = [] if 'Enzyme_ID' in list(specific_kapps.columns): for enz in list(specific_kapps['Enzyme_ID']): if not pandas.isna(specific_kapps.loc[specific_kapps['Enzyme_ID'] == enz, 'Kapp'].values[0]): if numpy.isfinite(specific_kapps.loc[specific_kapps['Enzyme_ID'] == enz, 'Kapp'].values[0]): if enz not in parameterized: all_enzs = self.ModelStructure.EnzymeInfo.Elements[enz]['Isozymes'] all_enzs.append(enz) parameterized += all_enzs if len(all_enzs) == 1: proto_enz = all_enzs[0] else: proto_enz = [i for i in all_enzs if not '_duplicate_' in i][0] val = round(specific_kapps.loc[specific_kapps['Enzyme_ID'] == enz, 'Kapp'].values[0], round_to_digits) const = rba.xml.parameters.Function( str(proto_enz + '_kapp__constant'), 'constant', parameters={'CONSTANT': val}, variable=None) if str(proto_enz + '_kapp__constant') not in self.model.parameters.functions._elements_by_id.keys(): self.model.parameters.functions.append(const) else: # self.model.parameters.functions._elements_by_id[const.id] = const self.model.parameters.functions._elements_by_id[ const.id].parameters._elements_by_id['CONSTANT'].value = val count = 0 # self.model.parameters.functions._elements_by_id['default_efficiency'].parameters._elements_by_id['CONSTANT'].value = default_kapp for e in self.model.enzymes.enzymes: if e.id in all_enzs: count += 1 e.forward_efficiency = str(proto_enz + '_kapp__constant') e.backward_efficiency = str(proto_enz + '_kapp__constant') if count == len(all_enzs): break self.rebuild_from_model() def get_parameter_definition(self, parameter): if parameter in self.model.parameters.functions._elements_by_id.keys(): function = self.model.parameters.functions._elements_by_id[parameter] expression = parse_function(function) elif parameter in self.model.parameters.aggregates._elements_by_id.keys(): function_id_list = get_function_list_of_aggregate( aggregate=self.model.parameters.aggregates._elements_by_id[parameter]) expression = parse_aggregate(aggregate=self.model.parameters.aggregates._elements_by_id[parameter], function_list=[ self.model.parameters.functions._elements_by_id[f_id] for f_id in function_id_list]) else: return({}) return(expression) def get_parameter_value(self, parameter): if parameter in self.model.parameters.functions._elements_by_id.keys(): function = self.model.parameters.functions._elements_by_id[parameter] expression = parse_function_with_parameter_values(function) elif parameter in self.model.parameters.aggregates._elements_by_id.keys(): function_id_list = get_function_list_of_aggregate( aggregate=self.model.parameters.aggregates._elements_by_id[parameter]) expression = parse_aggregate_with_parameter_values(aggregate=self.model.parameters.aggregates._elements_by_id[parameter], function_list=[ self.model.parameters.functions._elements_by_id[f_id] for f_id in function_id_list]) else: return({parameter: numpy.nan}) variable_values = {} for v in expression[parameter]['Variables']: if v == 'growth_rate': variable_values[v] = self.Mu elif v in self.Medium.keys(): variable_values[v] = self.Medium[v] elif v.endswith('_e'): if v[:-2] in self.Medium.keys(): variable_values[v] = self.Medium[v[:-2]] else: variable_values = {} return({parameter: numpy.nan}) result = evaluate_expression(expression_dictionary=expression, variable_values=variable_values) return(result) def get_parameter_values(self, parameter_type, species=None, output_format='dict'): if parameter_type == 'medium_composition': if species is None: results = self.Medium elif type(species) is str: results = {species: self.Medium[species]} elif type(species) is list: results = {sp: self.Medium[sp] for sp in species} elif parameter_type == 'machine_efficiencies': if species is None: parameter_names = {process_name: self.model.processes.processes._elements_by_id[self.ModelStructure.ProcessInfo.Elements[ process_name]['ID']].machinery.capacity.value for process_name in self.ModelStructure.ProcessInfo.Elements.keys()} elif type(species) is str: parameter_names = { species: self.model.processes.processes._elements_by_id[self.ModelStructure.ProcessInfo.Elements[species]['ID']].machinery.capacity.value} elif type(species) is list: parameter_names = { sp: self.model.processes.processes._elements_by_id[self.ModelStructure.ProcessInfo.Elements[sp]['ID']].machinery.capacity.value for sp in species} results = {pn: self.get_parameter_value( parameter=parameter_names[pn]) for pn in parameter_names} elif parameter_type == 'enzyme_efficiencies' or parameter_type == 'enzyme_efficiencies_forward' or parameter_type == 'enzyme_efficiencies_backward': if species is None: parameter_names = {enzyme_name: {'Forward': self.model.enzymes.enzymes._elements_by_id[enzyme_name].forward_efficiency, 'Backward': self.model.enzymes.enzymes._elements_by_id[ enzyme_name].backward_efficiency} for enzyme_name in self.ModelStructure.EnzymeInfo.Elements.keys()} elif type(species) is str: parameter_names = {species: {'Forward': self.model.enzymes.enzymes._elements_by_id[ species].forward_efficiency, 'Backward': self.model.enzymes.enzymes._elements_by_id[species].backward_efficiency}} elif type(species) is list: parameter_names = {enzyme_name: {'Forward': self.model.enzymes.enzymes._elements_by_id[enzyme_name].forward_efficiency, 'Backward': self.model.enzymes.enzymes._elements_by_id[enzyme_name].backward_efficiency} for enzyme_name in species} if parameter_type == 'enzyme_efficiencies': results = {pn: {'Forward': self.get_parameter_value(parameter=parameter_names[pn]['Forward']), 'Backward': self.get_parameter_value( parameter=parameter_names[pn]['Backward'])} for pn in parameter_names.keys()} elif parameter_type == 'enzyme_efficiencies_forward': results = {pn: self.get_parameter_value( parameter=parameter_names[pn]['Forward']) for pn in parameter_names.keys()} elif parameter_type == 'enzyme_efficiencies_backward': results = {pn: self.get_parameter_value( parameter=parameter_names[pn]['Backward']) for pn in parameter_names.keys()} elif parameter_type == 'maximal_densities': density_dict = {i.compartment: self.get_parameter_value( parameter=i.upper_bound) for i in self.model.density.target_densities} if species is None: results = density_dict elif type(species) is str: results = {species: density_dict[species] for sp in [species] if sp in density_dict.keys()} elif type(species) is list: results = {sp: density_dict[sp] for sp in species if sp in density_dict.keys()} elif parameter_type == 'target_values': target_dict = {self.ModelStructure.TargetInfo.Elements[target_ID]['TargetEntity']: {'Target_id': target_ID, 'Target_value': self.get_parameter_value( parameter=self.ModelStructure.TargetInfo.Elements[target_ID]['TargetValue'])} for target_ID in self.ModelStructure.TargetInfo.Elements.keys()} if species is None: results = target_dict elif type(species) is str: results = {species: target_dict[species] for sp in [species] if sp in target_dict.keys()} elif type(species) is list: results = {sp: target_dict[sp] for sp in species if sp in target_dict.keys()} if output_format == 'dict': return(results) if output_format == 'json': return(json.dumps(results)) def get_parameter_value_from_model(function, parameter_ID): return(function.parameters._elements_by_id[parameter_ID].value) def make_paramter_function_specific(function_ID, parameter, return_normal=False): if return_normal: return(str(parameter)) else: return(str('{}__parameter__{}'.format(function_ID, parameter))) def parse_function(function): independent_variable = function.variable function_ID = function.id if function.type == 'constant': eq = make_paramter_function_specific( function_ID=function_ID, parameter='CONSTANT', return_normal=True) latex_string = str(make_paramter_function_specific( function_ID=function_ID, parameter='CONSTANT', return_normal=True)) function_parameter_values = {'CONSTANT': get_parameter_value_from_model( function=function, parameter_ID='CONSTANT')} elif function.type == 'exponential': eq = 'e**({}*{})'.format(make_paramter_function_specific(function_ID=function_ID, parameter='RATE', return_normal=True), str(independent_variable)) latex_string = str('e^{'+str(make_paramter_function_specific(function_ID=function_ID, parameter='RATE', return_normal=True)) + ' '+str(independent_variable)+'}') function_parameter_values = {'RATE': get_parameter_value_from_model( function=function, parameter_ID='RATE')} elif function.type == 'linear': eq = str('{}+{}*{}'.format(make_paramter_function_specific(function_ID=function_ID, parameter='LINEAR_CONSTANT', return_normal=True), make_paramter_function_specific(function_ID=function_ID, parameter='LINEAR_COEF', return_normal=True), str(independent_variable))) latex_string = str(make_paramter_function_specific(function_ID=function_ID, parameter='LINEAR_CONSTANT', return_normal=True) + make_paramter_function_specific(function_ID=function_ID, parameter='LINEAR_COEF', return_normal=True)+' '+str(independent_variable)) function_parameter_values = {'LINEAR_CONSTANT': get_parameter_value_from_model(function=function, parameter_ID='LINEAR_CONSTANT'), 'LINEAR_COEF': get_parameter_value_from_model(function=function, parameter_ID='LINEAR_COEF'), 'X_MIN': get_parameter_value_from_model(function=function, parameter_ID='X_MIN'), 'X_MAX': get_parameter_value_from_model(function=function, parameter_ID='X_MAX'), 'Y_MIN': get_parameter_value_from_model(function=function, parameter_ID='Y_MIN'), 'Y_MAX': get_parameter_value_from_model(function=function, parameter_ID='Y_MAX'), } elif function.type == 'michaelisMenten': eq = str('{}*{}/({}+{})'.format(make_paramter_function_specific(function_ID=function_ID, parameter='kmax', return_normal=True), str(independent_variable), str(independent_variable), make_paramter_function_specific(function_ID=function_ID, parameter='Km', return_normal=True))) function_parameter_values = {'kmax': get_parameter_value_from_model(function=function, parameter_ID='kmax'), 'Km': get_parameter_value_from_model(function=function, parameter_ID='Km'), 'Y_MIN': get_parameter_value_from_model(function=function, parameter_ID='Y_MIN')} return({function_ID: {'Type': function.type, 'Equation': eq, 'Variables': [str(independent_variable)], 'Function_parameters': function_parameter_values}}) def parse_function_with_parameter_values(function): independent_variable = function.variable function_ID = function.id if function.type == 'constant': return({function_ID: {'Equation': '{}'.format(str(get_parameter_value_from_model(function=function, parameter_ID='CONSTANT'))), 'Variables': []}}) elif function.type == 'exponential': return({function_ID: {'Equation': '{}**({}*{})'.format(str(numpy.e), str(get_parameter_value_from_model(function=function, parameter_ID='RATE')), str(independent_variable)), 'Variables': [str(independent_variable)]}}) elif function.type == 'linear': return({function_ID: {'Equation': str('{}+{}*{}'.format(str(get_parameter_value_from_model(function=function, parameter_ID='LINEAR_CONSTANT')), str(get_parameter_value_from_model(function=function, parameter_ID='LINEAR_COEF')), str(independent_variable))), 'Variables': [str(independent_variable)]}}) elif function.type == 'michaelisMenten': return({function_ID: {'Equation': str('{}*{}/({}+{})'.format(str(get_parameter_value_from_model(function=function, parameter_ID='kmax')), str(independent_variable), str(get_parameter_value_from_model(function=function, parameter_ID='Km')), str(independent_variable))), 'Variables': [str(independent_variable)]}}) def get_parameter_of_function(function, parameter): return(function.parameters._elements_by_id[parameter]) def join_functions_multiplicatively(parsed_function_list): term_list = [] variable_list = [] for function in parsed_function_list: function_ID = list(function.keys())[0] term_list.append(str('('+function[function_ID]['Equation']+')')) variable_list += function[function_ID]['Variables'] return({'Type': 'Aggregate', 'Equation': '*'.join(term_list), 'Variables': list(set(variable_list))}) def get_function_list_of_aggregate(aggregate): return([agg.function for agg in aggregate.function_references._elements]) def parse_aggregate_with_parameter_values(aggregate, function_list): aggregate_ID = aggregate.id if aggregate.type == 'multiplication': parsed_function_list = [parse_function_with_parameter_values( function) for function in function_list] return({aggregate_ID: join_functions_multiplicatively(parsed_function_list=parsed_function_list)}) else: return({aggregate_ID: {'Equation': '', 'Variables': []}}) def parse_aggregate(aggregate, function_list): aggregate_ID = aggregate.id if aggregate.type == 'multiplication': parsed_function_list = [parse_function(function) for function in function_list] result = {aggregate_ID: join_functions_multiplicatively( parsed_function_list=parsed_function_list)} result[aggregate_ID]['Multiplicative Terms'] = [f.id for f in function_list] return(result) else: return({aggregate_ID: {'Type': 'Aggregate', 'Equation': '', 'Variables': [], 'Multiplicative Terms': []}}) # def transform_to_latex(equation): # def MediumDependentCoefficients_A(Controler): out = {} MedDepRxns = [list(i.keys()) for i in list(Controler.ExchangeMap.values())] MedDepRxnsFlatted = list(set([item for sublist in MedDepRxns for item in sublist])) for i in Controler.ModelStructure.EnzymeConstraintsInfo.Elements.keys(): if Controler.ModelStructure.EnzymeConstraintsInfo.Elements[i]['AssociatedReaction'] in MedDepRxnsFlatted: nonConst = False for j in Controler.ModelStructure.EnzymeConstraintsInfo.Elements[i]['CapacityParameter']: if list(j.values())[0]['FunctionType'] != 'constant': nonConst = True if nonConst: if Controler.ModelStructure.EnzymeConstraintsInfo.Elements[i]['AssociatedReaction'] in list(out.keys()): out[Controler.ModelStructure.EnzymeConstraintsInfo.Elements[i] ['AssociatedReaction']].append(i) else: out.update( {Controler.ModelStructure.EnzymeConstraintsInfo.Elements[i]['AssociatedReaction']: [i]}) return([(out[i][0], Controler.ModelStructure.ReactionInfo.Elements[i]['Enzyme'])for i in out.keys()]) def QualitativeMediumChange(Controller, changes, species): QualitativeMediumChange = False if float(Controller.Medium[species]) == float(0): if float(changes[species]) != float(0): boundValue = 1000.0 QualitativeMediumChange = True else: return([QualitativeMediumChange]) if float(Controller.Medium[species]) != float(0): if float(changes[species]) == float(0): boundValue = 0.0 QualitativeMediumChange = True else: return([QualitativeMediumChange]) return([QualitativeMediumChange, float(boundValue)]) def ProtoProteomeRecording(Controller, run, Proteinlevels): out = {} for i in list(Controller.ModelStructure.ProteinGeneMatrix['ProtoProteins']): row_ind = list(Controller.ModelStructure.ProteinGeneMatrix['ProtoProteins']).index(i) nonZero = list(numpy.nonzero( Controller.ModelStructure.ProteinGeneMatrix['Matrix'][row_ind, :])[0]) level = 0 for j in nonZero: id = Controller.ModelStructure.ProteinGeneMatrix['Proteins'][j] level += Proteinlevels.loc[id, run] out.update({i: level}) return(out) def ProteomeRecording(Controller, run): EnzDF = pandas.DataFrame(index=Controller.Problem.Enzymes) PrcDF = pandas.DataFrame(index=Controller.Problem.Processes) EnzDF[run] = [Controller.Problem.SolutionValues[i]for i in Controller.Problem.Enzymes] PrcDF[run] = [Controller.Problem.SolutionValues[i]for i in Controller.Problem.Processes] ProteinProteinMatrix = numpy.array( Controller.ModelStructure.ProteinMatrix['Matrix']).astype(numpy.float64) C = Controller.ModelStructure.ProteinMatrix['Consumers'] Consumers = [] for i in C: if i.startswith('P_'): # Consumers.append(str(i+'_machinery')) Consumers.append(str(i)) if not i.startswith('P_'): Consumers.append(i) Proteins = Controller.ModelStructure.ProteinMatrix['Proteins'] DF = pandas.concat([EnzDF, PrcDF], axis=0) ProteinLevels =
pandas.DataFrame(index=Proteins)
pandas.DataFrame
import numpy as np from datetime import timedelta import pandas as pd import pandas.tslib as tslib import pandas.util.testing as tm import pandas.tseries.period as period from pandas import (DatetimeIndex, PeriodIndex, period_range, Series, Period, _np_version_under1p10, Index, Timedelta, offsets) from pandas.tests.test_base import Ops class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub(self): rng = period_range('2007-01', periods=50) result = rng - 5 exp = rng + (-5) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)), freq='H') exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00', '2011-01-01 16:00', '2011-01-01 15:00', '2011-01-01 14:00', '2011-01-01 13:00', '2011-01-01 12:00', '2011-01-01 11:00', '2011-01-01 10:00', '2011-01-01 09:00'], freq='H') expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range('2011-01-01 09:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], freq='H') exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'], freq='H') expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], freq='H') expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_order_compat(self): def _check_freq(index, expected_index): if isinstance(index, PeriodIndex): self.assertEqual(index.freq, expected_index.freq) pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2012, 2013], name='idx') for idx in [pidx, iidx]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, idx[::-1]) _check_freq(ordered, idx[::-1]) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) _check_freq(ordered, idx[::-1]) pidx = PeriodIndex(['2011', '2013', '2015', '2012', '2011'], name='pidx', freq='A') pexpected = PeriodIndex( ['2011', '2011', '2012', '2013', '2015'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2013, 2015, 2012, 2011], name='idx') iexpected = Index([2011, 2011, 2012, 2013, 2015], name='idx') for idx, expected in [(pidx, pexpected), (iidx, iexpected)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) _check_freq(ordered, idx) pidx = PeriodIndex(['2011', '2013', 'NaT', '2011'], name='pidx', freq='D') result = pidx.sort_values() expected = PeriodIndex(['NaT', '2011', '2011', '2013'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') result = pidx.sort_values(ascending=False) expected = PeriodIndex( ['2013', '2011', '2011', 'NaT'], name='pidx', freq='D') self.assert_index_equal(result, expected) self.assertEqual(result.freq, 'D') def test_order(self): for freq in ['D', '2D', '4D']: idx = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq=freq, name='idx') ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) self.assertEqual(ordered.freq, freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq, freq) idx1 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx1') exp1 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx1') idx2 = PeriodIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], freq='D', name='idx2') exp2 = PeriodIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx2') idx3 = PeriodIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], freq='D', name='idx3') exp3 = PeriodIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], freq='D', name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, 'D') ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertEqual(ordered.freq, 'D') def test_nat_new(self): idx = pd.period_range('2011-01', freq='M', periods=5, name='x') result = idx._nat_new() exp = pd.PeriodIndex([pd.NaT] * 5, freq='M', name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.PeriodIndex([], name='xxx', freq='H') with tm.assertRaises(TypeError): # period shift doesn't accept freq idx.shift(1, freq='H') tm.assert_index_equal(idx.shift(0), idx) tm.assert_index_equal(idx.shift(3), idx) idx = pd.PeriodIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(0), idx) exp = pd.PeriodIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(3), exp) exp = pd.PeriodIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', freq='H') tm.assert_index_equal(idx.shift(-3), exp) def test_repeat(self): index = pd.period_range('2001-01-01', periods=2, freq='D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], freq='D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.period_range('2001-01-01', periods=2, freq='2D') exp = pd.PeriodIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], freq='2D') for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) index = pd.PeriodIndex(['2001-01', 'NaT', '2003-01'], freq='M') exp = pd.PeriodIndex(['2001-01', '2001-01', '2001-01', 'NaT', 'NaT', 'NaT', '2003-01', '2003-01', '2003-01'], freq='M') for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) def test_nat(self): self.assertIs(pd.PeriodIndex._na_value, pd.NaT) self.assertIs(pd.PeriodIndex([], freq='M')._na_value, pd.NaT) idx = pd.PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.PeriodIndex(['2011-01-01', 'NaT'], freq='D') self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for freq in ['D', 'M']: idx = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq=freq) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.PeriodIndex(['2011-01-01', '2011-01-02', 'NaT'], freq='H') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.PeriodIndex._simple_new(idx.asi8, freq='H') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestPeriodIndexSeriesMethods(tm.TestCase): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx') tm.assert_index_equal(result, exp) def test_pi_ops_errors(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') s = pd.Series(idx) msg = r"unsupported operand type\(s\)" for obj in [idx, s]: for ng in ["str", 1.5]: with tm.assertRaisesRegexp(TypeError, msg): obj + ng with tm.assertRaises(TypeError): # error message differs between PY2 and 3 ng + obj with tm.assertRaisesRegexp(TypeError, msg): obj - ng with tm.assertRaises(TypeError): np.add(obj, ng) if _np_version_under1p10: self.assertIs(np.add(ng, obj), NotImplemented) else: with tm.assertRaises(TypeError): np.add(ng, obj) with tm.assertRaises(TypeError): np.subtract(obj, ng) if _np_version_under1p10: self.assertIs(np.subtract(ng, obj), NotImplemented) else: with tm.assertRaises(TypeError): np.subtract(ng, obj) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='2M', name='idx') expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'], freq='2M', name='idx') self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') f = lambda x: x + offsets.Day() exp = PeriodIndex(['2011-01-02', '2011-02-02', '2011-03-02', '2011-04-02'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x + offsets.Day(2) exp = PeriodIndex(['2011-01-03', '2011-02-03', '2011-03-03', '2011-04-03'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x - offsets.Day(2) exp = PeriodIndex(['2010-12-30', '2011-01-30', '2011-02-27', '2011-03-30'], freq='D', name='idx') self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') s = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period msg_idx = r"Input has different freq from PeriodIndex\(freq=D\)" msg_s = r"Input cannot be converted to Period\(freq=D\)" for obj, msg in [(idx, msg_idx), (s, msg_s)]: with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): obj + offsets.Hour(2) with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): offsets.Hour(2) + obj with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): obj - offsets.Hour(2) def test_pi_sub_period(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, -11, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period('2012-01', freq='M')) tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, 11, 10, 9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(pd.Period('2012-01', freq='M'), idx) if _np_version_under1p10: self.assertIs(result, NotImplemented) else: tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx -
pd.Period('NaT', freq='M')
pandas.Period
#!/usr/bin/env python3 import git import pandas as pd from hourly import get_work_commits, is_clocked_in, is_clocked_out, update_log, commit_log, get_labor from hourly import get_hours_worked, get_earnings, get_labor_range from hourly import plot_labor, get_current_user, get_clocks from hourly import invoice from hourly import get_local_timezone import plotly.graph_objs as go import plotly.offline as po from omegaconf import OmegaConf, DictConfig, ListConfig import hydra from os import path import os import sys import logging import copy import numpy as np import datetime def handle_errors(cfg, error_msg = None): if error_msg is not None: print(error_msg) if cfg.handle_errors == 'exit': sys.exit() else: raise def commit_(repo, commit_message, logfile = None): if logfile is not None: repo.index.add([logfile]) commit = repo.index.commit(commit_message) return commit def identify_user(user, cfg): user_id = [] for id_type in cfg.commit.identity: if id_type in ['name', 'email']: user_id.append(getattr(user, id_type)) if len(user_id) > 1: return tuple(user_id) else: return user_id[0] def process_commit(cfg, work, repo): """commits clock-in/out message If only a message is supplied, commits without clocking in/out """ header_depth = '#'*cfg.work_log.header_depth commit_message = cfg.commit.message or '' log_message = '' if len(commit_message) > 0: log_message = '{} {}\n'.format(cfg.work_log.bullet, commit_message) if 'clock' in cfg.commit: if cfg.commit.clock is not None: tminus = cfg.commit.tminus or '' if len(tminus) != 0: commit_message = "T-{} {}".format(tminus.strip('T-'), commit_message) if cfg.commit.clock.lower() == 'in': last_in = is_clocked_in(work) if last_in is not None: time_since_in = pd.datetime.now(last_in.tzinfo) - last_in raise IOError( "You are still clocked in!\n" + \ "\tlast clock in: {} ({:.2f} hours ago)".format( last_in, time_since_in.total_seconds()/3600.)) else: if len(commit_message) == 0: commit_message = "clock-in" else: commit_message = "clock-in: {}".format(commit_message) log_message = "\n{} {}: {}\n\n".format( header_depth, pd.datetime.now(), commit_message) print("clocking in with message: {} ".format(commit_message)) elif cfg.commit.clock.lower() == 'out': # prevent clock in and out at the same time last_out = is_clocked_out(work) if last_out is not None: time_since_out = pd.datetime.now(last_out.tzinfo) - last_out raise IOError( "You already clocked out!\n" + \ "\tlast clock out: {} ({:.2f} hours ago)".format( last_out, time_since_out.total_seconds()/3600.)) else: if len(commit_message) == 0: commit_message = "clock-out" else: commit_message = "clock-out: {}".format(commit_message) log_message = "{} {}: {}\n\n".format( header_depth, pd.datetime.now(), commit_message) print("clocking out with message: {} ".format(commit_message)) else: raise IOError("unrecocgnized clock value: {}".format(cfg.commit.clock)) # logfile = hydra.utils.to_absolute_path(cfg.work_log.filename) logfile = os.path.abspath(cfg.work_log.filename) if len(log_message) > 0: update_log(logfile, log_message) return commit_(repo, commit_message, logfile) def flatten_dict(d, sep = '.'): '''flattens a dictionary into list of courtesy of MYGz https://stackoverflow.com/a/41801708 returns [{k.sub_key:v},...] ''' return pd.io.json.json_normalize(d, sep=sep).to_dict(orient='records')[0] def config_override(cfg): """Overrides with user-supplied configuration hourly will override its configuration using hourly.yaml if it is in the base git directory or users can set an override config: config_override=path/to/myconfig.yaml """ # change to the git directory of the original working dir original_path = hydra.utils.get_original_cwd() change_git_dir(original_path, verbosity = cfg.verbosity) # get the full path of the override file if available override_path = os.path.abspath(cfg.config_override) if path.exists(override_path): if cfg.verbosity > 0: print("overriding config with {}".format(override_path)) override_conf = OmegaConf.load(override_path) # merge overrides first input with second cfg = OmegaConf.merge(cfg, override_conf) else: if cfg.verbosity > 0: print("override path does not exist: {}".format(override_path)) # merge in command line arguments cli_conf = OmegaConf.from_cli() cfg = OmegaConf.merge(cfg, cli_conf) return cfg def get_user_work(work, current_user, identifier): for user_id, user_work in work.groupby(identifier): if user_id == current_user: return user_work def resolve(cfg): """Expands a configuration, interpolating variables""" cfg_dict = cfg.to_container(resolve = True) return OmegaConf.create(cfg_dict) def localize(t): if t is None: return t if t.tzinfo is None: LOCAL_TIMEZONE = get_local_timezone() return t.tz_localize(LOCAL_TIMEZONE) else: return t def get_avg_time(cfg, labor, total_hours): tdelta = labor.set_index('TimeIn').TimeDelta.groupby(pd.Grouper(freq = cfg.vis.frequency)).sum() tmin = tdelta.index.min() tmax = tdelta.index.max() time_range_sec = (tmax - tmin).total_seconds() if cfg.verbosity: print('freq: {}'.format(cfg.vis.frequency)) print('time range [sec]: {}'.format(time_range_sec)) bin_size_val, bin_size_unit = cfg.vis.frequency.split(' ') bin_size = pd.Timedelta(float(bin_size_val), unit = bin_size_unit) bin_size_sec = bin_size.total_seconds() if cfg.verbosity: print('bin size : {} [sec]: {}'.format(bin_size, bin_size_sec)) time_bins = (time_range_sec/bin_size_sec) + 1 avg_time = total_hours/time_bins if cfg.verbosity: print('hours: {} bins: {} average time: {}'.format(total_hours, time_bins, avg_time)) return avg_time, tmin, tmax def divide_labor(cfg, labor): """divides labor among multiple repo names""" rows = [] for _, row in labor.iterrows(): if isinstance(row.repo, tuple): if cfg.verbosity > 1: print("!!!!!!!Found multiple names {} !!!!!!".format(row.repo)) # divide evenly among the tags tag_count = len(row.repo) row_tag = row row_tag.TimeDelta = row.TimeDelta/tag_count row_tag.Hours = row.Hours/tag_count for repo_name in row.repo: row_tag.repo = repo_name rows.append(pd.DataFrame(row_tag).T) if cfg.verbosity > 1: print(' appending {}'.format(repo_name)) else: if cfg.verbosity > 1: print('appending {}'.format(row.repo)) rows.append(pd.DataFrame(row).T) return pd.concat(rows) def run_report(cfg): if cfg.verbosity > 1: print(cfg.pretty()) repos = resolve(cfg.report.repos) if 'start_date' in cfg.repo: start_date = pd.to_datetime(cfg.repo.start_date) start_date = localize(start_date) else: start_date = None if 'end_date' in cfg.repo: end_date = pd.to_datetime(cfg.repo.end_date) end_date = localize(end_date) else: end_date = None if 'pandas' in cfg.report: pd_opts = flatten_dict( OmegaConf.to_container(cfg.report.pandas)) for k,v in pd_opts.items(): pd.set_option(k,v) clocks =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 9 15:26:14 2019 @author: <NAME> """ from PIL import Image from PIL import ExifTags as ExifTags import pandas as pd import numpy as np from os import walk # User-defined variables input_path = '/media/loibldav/TOSHIBA EXT/Drone-Data/KIR19/Cognac/Mavic1' #input_path = '/media/loibldav/TOSHIBA EXT/Drone-Data/KIR19/Cognac/Mavic2' output_path = '/home/loibldav/Processing/exif-experiment' gcp_csv = '/home/loibldav/Processing/exif-experiment/GCPs_Cognac.csv' verbosity = 1 # Reporting level # gcp_coords = [[42.5852, 76.102575]] max_offset = 0.0005 # Functions def get_exif(fn): ret = {} i = Image.open(fn) info = i._getexif() for tag, value in info.items(): decoded = ExifTags.TAGS.get(tag, tag) ret[decoded] = value return ret def calc_decdeg_coords(gps_info_array): ''' Calculates decimal degree coordinates from EXIF gpsinfo data. ''' decdeg_coords = gps_info_array[0][0] + gps_info_array[1][0] / 60 + gps_info_array[2][0] / 36000000 return decdeg_coords # Process ground control point coordinates gcp_data = pd.read_csv(gcp_csv, header=0) gcp_x_y_data = gcp_data[['Y', 'X', 'name']].copy() gcp_coords = gcp_x_y_data.values.tolist() # Read files recursively (_, _, filenames) = next(walk(input_path)) filenames = sorted(filenames) #.sort() print('Found '+ str(len(filenames)) + ' in input directory.') # 103 degree, 41 minute, 1052 centisecond, 103+41/60+1052/(3600*100) exif_coords = [] lat_coords = [] lon_coords = [] file_counter = 1 for filename in filenames: exif = get_exif(input_path + '/' + filename) # print(exif) gpsinfo = {} for key in exif['GPSInfo'].keys(): decode = ExifTags.GPSTAGS.get(key,key) gpsinfo[decode] = exif['GPSInfo'][key] # print(gpsinfo) latitude = calc_decdeg_coords(gpsinfo['GPSLatitude']) # [0][0] + gpsinfo['GPSLatitude'][1][0] / 60 + gpsinfo['GPSLatitude'][2][0] / 360000 longitude = calc_decdeg_coords(gpsinfo['GPSLongitude']) # [0][0] + gpsinfo['GPSLongitude'][1][0] / 60 + gpsinfo['GPSLongitude'][2][0] / 360000 exif_coords.append([filename, latitude, longitude]) lat_coords.append(latitude) lon_coords.append(longitude) # print('Latitude: '+ str(latitude)) # print('Longitude: '+ str(longitude)) # data = pd.read_csv(input_path + '/' + filename, header=0) # , usecols=['LS_DATE','SC_median'] if verbosity >= 1: print('Working on ' + filename + ' ('+ str(file_counter) +' of '+ str(len(filenames)) + ') ...', end='\r', flush=True) ''' # print(str, end='\r') # sys.stdout.flush() if verbosity >= 2: print(data.shape) print(data.size) ''' file_counter += 1 print('\nFinished EXIF input data processing\n') result_df_labels = ['filename', 'lat_gps', 'lon_gps', 'gcp_name', 'lat_gcp', 'lon_gcp', 'file_path'] result_df_full =
pd.DataFrame(columns=result_df_labels)
pandas.DataFrame
#!@PYTHON3@ #%% import struct import pickle import numpy as np from matplotlib import pyplot as plt import pandas as pd plt.rcParams['font.family'] = 'serif' plt.rcParams['mathtext.fontset'] = 'dejavuserif' plt.rcParams.update({'font.size': 13}) # plt.rcParams.update({'font.size': 15}) # expected coverage for transcripts def ReadRawCorrection(filename): ExpectedProb={} fp=open(filename, 'rb') numtrans=struct.unpack('i', fp.read(4))[0] for i in range(numtrans): namelen=struct.unpack('i', fp.read(4))[0] seqlen=struct.unpack('i', fp.read(4))[0] name="" correction=np.zeros(seqlen) for j in range(namelen): name+=struct.unpack('c', fp.read(1))[0].decode('utf-8') for j in range(seqlen): correction[j]=struct.unpack('d', fp.read(8))[0] ExpectedProb[name]=correction fp.close() print("Finish reading theoretical distributions for {} transcripts.".format(len(ExpectedProb))) return ExpectedProb ExpectedProb=ReadRawCorrection("/home/priyamvada/data/ERR030875/correction.dat") #ExpectedProb=ReadRawCorrection("/home/congm1/savanna/savannacong33/SADrealdata/HumanBodyMap/salmon_Full_ERR030873/correction.dat") for key, value in ExpectedProb.items(): print(key, ' : ', value) df=pd.DataFrame(ExpectedProb.items(),columns=['Transcript Name', 'Expected coverage']) print(df) # import struct # import pickle # import numpy as np # from matplotlib import pyplot as plt # import pandas as pd plt.rcParams['font.family'] = 'serif' plt.rcParams['mathtext.fontset'] = 'dejavuserif' plt.rcParams.update({'font.size': 13}) # plt.rcParams.update({'font.size': 15}) # observed data coverage for transcripts def ReadRawStartPos(filename): TrueRaw={} fp=open(filename, 'rb') numtrans=struct.unpack('i', fp.read(4))[0] for i in range(numtrans): namelen=struct.unpack('i', fp.read(4))[0] seqlen=struct.unpack('i', fp.read(4))[0] name="" poses=np.zeros(seqlen, dtype=np.int) counts=np.zeros(seqlen) for j in range(namelen): name+=struct.unpack('c', fp.read(1))[0].decode('utf-8') for j in range(seqlen): poses[j]=struct.unpack('i', fp.read(4))[0] for j in range(seqlen): counts[j]=struct.unpack('d', fp.read(8))[0] tmp=np.zeros(poses[-1]+1) for j in range(len(poses)): tmp[poses[j]] = counts[j] TrueRaw[name]=tmp fp.close() print("Finish reading actual distribution for {} transcripts.".format(len(TrueRaw))) return TrueRaw TrueRaw=ReadRawStartPos("/home/priyamvada/data/ERR030875/startpos.dat") #TrueRaw=ReadRawStartPos("/home/congm1/savanna/savannacong33/SADrealdata/HumanBodyMap/salmon_Full_ERR030873/startpos.dat") for key, value in TrueRaw.items(): print(key, ' : ', value) #len(TrueRaw) #import pickle # key_to_lookup = 'ENST00000387405.1' # if key_to_lookup in TrueRaw: # print ("Key exists") # else: # print ("Key does not exist") df1=pd.DataFrame(TrueRaw.items(),columns=['Transcript Name', 'observed coverage']) print(df1) dfmerge=pd.merge(df,df1,on='Transcript Name') print(dfmerge) # extract and label (1) adjustable anomalous transcripts import pandas as pd dfa = pd.read_csv("/home/priyamvada/data/ERR030875/test_correctapprox9/test_adjusted_quantification.tsv", sep="\t") #dfa = pd.read_csv("/home/congm1/savanna/savannacong33/SADrealdata/HumanBodyMap/salmon_Full_ERR030873/test_correctapprox9/test_adjusted_quantification.tsv", sep="\t") print (dfa) dfa1 = dfa.iloc[:,0:1] print(dfa1) dfa1=dfa1.rename(columns={'# Name': 'Transcript Name'}) print(dfa1) dfa2=dfa1.assign(Label='1') print(dfa2) #%% #extract and label (2) non-adjustable anomalous transcripts dfan = pd.read_csv("/home/priyamvada/data/ERR030875/test_correctapprox9/test_unadjustable_pvalue.tsv", sep="\t") #dfan = pd.read_csv("/home/congm1/savanna/savannacong33/SADrealdata/HumanBodyMap/salmon_Full_ERR030873/test_correctapprox9/test_unadjustable_pvalue.tsv", sep="\t") print (dfan) dfan1 = dfan.iloc[:,0:1] print(dfan1) dfan1=dfan1.rename(columns={'#Name': 'Transcript Name'}) print(dfan1) dfan2=dfan1.assign(Label='1') print(dfan2) anomalous_merge = pd.concat([dfa2, dfan2], axis=0) print(anomalous_merge) len(anomalous_merge) allabnormal_merge=pd.merge(dfmerge,anomalous_merge,on='Transcript Name') print(allabnormal_merge) # make list of anomalous transcripts names anomal_list = list(allabnormal_merge['Transcript Name']) #print(anomal_list) #%% Normal_Transcripts=[] for key,_ in TrueRaw.items(): Normal_Transcripts.append(key) #print(Normal_Transcripts) #print(len(Normal_Transcripts)) #print('normaldone') l3 = [x for x in Normal_Transcripts if x not in anomal_list] print(l3) print(len(l3)) #%% normaldf=
pd.DataFrame(l3,columns=['Transcript Name'])
pandas.DataFrame
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using convolutional networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_cnn_model(features, labels, mode): """Character level convolutional neural network model to predict classes.""" features_onehot = tf.one_hot(features[CHARS_FEATURE], 256) input_layer = tf.reshape( features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( input_layer, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train =
pandas.Series(dbpedia.train.target)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[107]: import pandas as pd import numpy as np from datetime import datetime import matplotlib.pyplot as plt import matplotlib.ticker as ticker import seaborn as sns import statsmodels.api as sm import statsmodels.formula.api as smf from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # to ignore seaborn warnings (nobody likes those) import warnings warnings.filterwarnings('ignore') plt.style.use('classic') get_ipython().run_line_magic('matplotlib', 'inline') pd.set_option('display.max_columns', 144) # In[3]: # Import the King_Country_House_prices_dataset via csv file df =
pd.read_csv('King_County_House_prices_dataset.csv')
pandas.read_csv
""" ********************************************************* hacker_ols.py Created by <NAME> on 8/15/20 Functions to validate Hubble's Law with Hacker Statistics for OLS Simple Linear Regression & Hypothesis Testing ********************************************************* """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.stats import probplot, ttest_ind import seaborn as sns from statsmodels.formula.api import ols from statsmodels.regression.linear_model import RegressionResultsWrapper from statsmodels.stats.power import TTestIndPower # set seaborn style sns.set_style('white') def load_hubble_data() -> pd.DataFrame: """ Load Edwin Hubble dataset retreived from Source: A relation between distance and radial velocity among extra-galactic nebulae by <NAME> PNAS March 15, 1929 15 (3) 168-173; https://doi.org/10.1073/pnas.15.3.168 Communicated January 17, 1929 column names = Object Name, Distance [Mpc], Velocity [Km/second] Notes on units: 1 parsec = 3.26 light years, 1 Mpc = megaparsec = 10 parsees. Purpose: load Edwin Hubble data .csv file for hacker stats regression Returns: pandas DataFrame with Hubble's data """ return
pd.read_csv("hubble_data.csv", header=9)
pandas.read_csv
""" Copyright 2021 Novartis Institutes for BioMedical Research Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # --- import os import random import sys import numpy as np import pandas as pd import plotly.graph_objects as go import rdkit.Chem as Chem import torch import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler # --- JT-VAE from jtnn import * # not cool, but this is how they do it ... from jtnn.datautils import ToxPropDataset # --- disable rdkit warnings from rdkit import RDLogger from torch.utils import data from toxsquad.data import * from toxsquad.losses import * from toxsquad.modelling import * from toxsquad.visualizations import Visualizations # --- toxsquad lg = RDLogger.logger() lg.setLevel(RDLogger.CRITICAL) import os import pickle # ------------ PRE-PROCESSING ROUTINES ------------ from mol_tree import * def save_object(obj, filename): with open(filename, "wb") as output: # Overwrites any existing file. pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) def open_object(filename): with open(filename, "rb") as input: reopened = pickle.load(input) return reopened def get_vocab(assay_dir, assay_id, toxdata): filename = assay_dir + "/jtvae/" + str(assay_id) + "-vocab.pkl" if os.path.isfile(filename): print("Re-opening vocabulary file") vocab = open_object(filename) else: print("Deriving vocabulary") vocab = set() for ( smiles ) in toxdata.smiles: # I guess here we should only use the training data?? mol = MolTree(smiles) for c in mol.nodes: vocab.add(c.smiles) vocab = Vocab(list(vocab)) save_object(vocab, filename) return vocab # ------------ MODEL OPTIMIZATION ROUTINES ------------ def derive_inference_model( toxdata, vocab, infer_dir, model_params, vis, device, model_name, base_lr=0.003, beta=0.005, num_threads = 24, weight_decay = 0.000 ): from jtnn.jtprop_vae import JTPropVAE smiles = toxdata.smiles props = toxdata.val dataset = ToxPropDataset(smiles, props) batch_size = 8 dataloader = data.DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=num_threads, collate_fn=lambda x: x, drop_last=True, ) from jtnn.jtprop_vae import JTPropVAE model = JTPropVAE(vocab, **model_params).to(device) optimizer = optim.Adam(model.parameters(), lr=base_lr, weight_decay=weight_decay) scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9) scheduler.step() # --- pre-train AE total_step_count = 0 total_step_count = pre_train_jtvae( model, optimizer, scheduler, dataloader, device, infer_dir, vis, total_step_count, model_name, MAX_EPOCH=36, PRINT_ITER=5, ) # train (set a smaller initial LR, beta to 0.005) optimizer = optim.Adam(model.parameters(), lr=0.0003,weight_decay=weight_decay) scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9) scheduler.step() print("[DEBUG] TRAINING") total_step_count = train_jtvae( model, optimizer, scheduler, dataloader, device, infer_dir, vis, total_step_count, beta=0.005, model_name=model_name, MAX_EPOCH=36, PRINT_ITER=5, ) # --- fine tune AE # optimizer = optim.Adam(model.parameters(), lr=0.0003) # scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9) # scheduler.step() # total_step_count = train_jtvae(model, optimizer, scheduler, dataloader, device, infer_dir, vis, total_step_count, 0.005, model_name, MAX_EPOCH=36, PRINT_ITER=5) def cross_validate_jtvae( toxdata, partitions, xval_dir, vocab, model_params, device, model_name, base_lr=0.003, vis_host=None, vis_port=8097, assay_name="", num_threads = 24, weight_decay = 0.0000 ): """ :todo ensure same training parameters are used for inference and cross-val models """ MAX_EPOCH = 36 PRINT_ITER = 5 run = 0 scores = [] for partition in partitions: # I/O save_dir = xval_dir + "/run-" + str(run) if not os.path.exists(save_dir): os.mkdir(save_dir) # vis if vis_host is not None: vis = Visualizations( env_name="jtvae-xval-" + str(assay_name) + "-run-" + str(run), server=vis_host, port=vis_port ) else: vis = None # data smiles = toxdata.smiles.loc[partition["train"]] props = toxdata.val.loc[partition["train"]] dataset = ToxPropDataset(smiles, props) batch_size = 8 dataloader = data.DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=num_threads, collate_fn=lambda x: x, drop_last=True, ) # model from jtnn.jtprop_vae import JTPropVAE model = JTPropVAE(vocab, **model_params).to(device) optimizer = optim.Adam(model.parameters(), lr=base_lr, weight_decay=weight_decay) scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9) scheduler.step() # pretrain print("[DEBUG] PRETRAINING") total_step_count = pre_train_jtvae( model, optimizer, scheduler, dataloader, device, save_dir, vis, 0, model_name, MAX_EPOCH=36, PRINT_ITER=5, ) # train (set a smaller initial LR, beta to 0.005) optimizer = optim.Adam(model.parameters(), lr=0.0003,weight_decay=weight_decay) scheduler = lr_scheduler.ExponentialLR(optimizer, 0.9) scheduler.step() print("[DEBUG] TRAINING") total_step_count = train_jtvae( model, optimizer, scheduler, dataloader, device, save_dir, vis, total_step_count, beta=0.005, model_name=model_name, MAX_EPOCH=36, PRINT_ITER=5, ) # evaluate (only property prediction accuracy for now) scores.append( evaluate_predictions_model( model, toxdata.smiles.loc[partition["test"]], toxdata.val.loc[partition["test"]], vis, ) ) # memory management del model del optimizer torch.cuda.empty_cache() run = run + 1 return scores def pre_train_jtvae( model, optimizer, scheduler, dataloader, device, model_dir, vis, total_step_count, model_name, MAX_EPOCH=36, PRINT_ITER=5, ): my_log = open(model_dir + "/loss-pre.txt", "w") for epoch in range(MAX_EPOCH): print("pre epoch: " + str(epoch)) word_acc, topo_acc, assm_acc, steo_acc, prop_acc = 0, 0, 0, 0, 0 for it, batch in enumerate(dataloader): for mol_tree, _ in batch: for node in mol_tree.nodes: if node.label not in node.cands: node.cands.append(node.label) node.cand_mols.append(node.label_mol) model.zero_grad() torch.cuda.empty_cache() loss, kl_div, wacc, tacc, sacc, dacc, pacc = model(batch, beta=0) loss.backward() optimizer.step() word_acc += wacc topo_acc += tacc assm_acc += sacc steo_acc += dacc prop_acc += pacc if (it + 1) % PRINT_ITER == 0: word_acc = word_acc / PRINT_ITER * 100 topo_acc = topo_acc / PRINT_ITER * 100 assm_acc = assm_acc / PRINT_ITER * 100 steo_acc = steo_acc / PRINT_ITER * 100 prop_acc = prop_acc / PRINT_ITER if vis is not None: vis.plot_loss(word_acc, total_step_count, 1, model_name, "word-acc") vis.plot_loss(prop_acc, total_step_count, 1, model_name, "mse") print( "Epoch: %d, Step: %d, KL: %.1f, Word: %.2f, Topo: %.2f, Assm: %.2f, Steo: %.2f, Prop: %.4f" % ( epoch, it + 1, kl_div, word_acc, topo_acc, assm_acc, steo_acc, prop_acc, ), file=my_log, flush=True, ) word_acc, topo_acc, assm_acc, steo_acc, prop_acc = 0, 0, 0, 0, 0 del loss del kl_div total_step_count = total_step_count + 1 torch.cuda.empty_cache() scheduler.step() print("learning rate: %.6f" % scheduler.get_lr()[0]) torch.save( model.cpu().state_dict(), model_dir + "/model-pre.iter-" + str(epoch) ) torch.cuda.empty_cache() model = model.to(device) my_log.close() return total_step_count def train_jtvae( model, optimizer, scheduler, dataloader, device, model_dir, vis, total_step_count, beta, model_name, MAX_EPOCH=36, PRINT_ITER=5, ): my_log = open(model_dir + "/loss-ref.txt", "w") for epoch in range(MAX_EPOCH): print("epoch: " + str(epoch)) word_acc, topo_acc, assm_acc, steo_acc, prop_acc = 0, 0, 0, 0, 0 for it, batch in enumerate(dataloader): for mol_tree, _ in batch: for node in mol_tree.nodes: if node.label not in node.cands: node.cands.append(node.label) node.cand_mols.append(node.label_mol) model.zero_grad() torch.cuda.empty_cache() loss, kl_div, wacc, tacc, sacc, dacc, pacc = model(batch, beta) loss.backward() optimizer.step() word_acc += wacc topo_acc += tacc assm_acc += sacc steo_acc += dacc prop_acc += pacc if (it + 1) % PRINT_ITER == 0: word_acc = word_acc / PRINT_ITER * 100 topo_acc = topo_acc / PRINT_ITER * 100 assm_acc = assm_acc / PRINT_ITER * 100 steo_acc = steo_acc / PRINT_ITER * 100 prop_acc /= PRINT_ITER if vis is not None: vis.plot_loss(word_acc, total_step_count, 1, model_name, "word-acc") vis.plot_loss(prop_acc, total_step_count, 1, model_name, "mse") print( "Epoch: %d, Step: %d, KL: %.1f, Word: %.2f, Topo: %.2f, Assm: %.2f, Steo: %.2f, Prop: %.4f" % ( epoch, it + 1, kl_div, word_acc, topo_acc, assm_acc, steo_acc, prop_acc, ), file=my_log, flush=True, ) word_acc, topo_acc, assm_acc, steo_acc, prop_acc = 0, 0, 0, 0, 0 # if (it + 1) % 1500 == 0: # Fast annealing # # does this make sense? With the smaller datasets # # we don't get to 1500? Why is this happening? # # I don't quite trust it # # But here, since we call model.cpu() # # we need to move the model to the device again # # else we ran onto that weird issue! # scheduler.step() # print("learning rate: %.6f" % scheduler.get_lr()[0]) # #torch.save( # # model.cpu().state_dict(), # # model_dir + "/model-ref.iter-%d-%d" % (epoch, it + 1), # #) # model.to(device) del loss del kl_div total_step_count = total_step_count + 1 scheduler.step() print("learning rate: %.6f" % scheduler.get_lr()[0]) torch.save( model.cpu().state_dict(), model_dir + "/model-ref.iter-" + str(epoch) ) # is this the expensive part? model = model.to(device) my_log.close() return total_step_count # ------------ MODEL EVALUATION ROUTINES ------------ def evaluate_predictions_model(model, smiles, props, vis): """ Return evaluation objects for JT-VAE model. This function will return a list of [mse, r2] for the smiles passed in, and also return a 2-col matrix for plotting predicted vs. actual. vis object allows us to use Visdom to directly update a live performance plot view. :param model: JT-VAE model :param smiles: Pandas series with SMILES as entries We usually pass toxdata.smiles :param props: Pandas series with molecular activity or property to predict :param vis: Visualization object from toxsquad.visualizations :returns: Scores, coords - Scores is a list of mean squared error and correlation coefficient (for entire smiles batch). This is of length 2. - coords are x, y coordinates for the "performance plot" (where x=actual and y=predicted). """ predictions = dict() n_molecules = len(smiles) coords = np.zeros((n_molecules, 2)) # k = 0; model = model.eval() for k, idx in enumerate(smiles.index): print_status(k, n_molecules) sml = smiles.loc[idx] prop = props.loc[idx] # model.predict(sml) returns a torch tensor # on which we need to call .item() # to get the actual floating point value out. predictions[idx] = model.predict(sml).item() coords[k, 0] = prop.item() coords[k, 1] = predictions[idx] # k = k + 1; model = model.train() mse = np.mean((coords[:, 1] - coords[:, 0]) ** 2) corr = np.corrcoef(coords[:, 1], coords[:, 0])[0, 1] print("MSE: " + str(mse)) print("Corr: " + str(corr)) scores = [] scores.append(mse) scores.append(corr) # TODO do reconstruction test if vis is not None: vis.plot_scatter_gt_predictions( coords, f"{mse:.2f}" + "-r: " + f"{corr:.2f}", "" ) return scores, coords # ------------ LATENT SPACE ROUTINES ------------ from numpy.random import choice from rdkit import DataStructs from rdkit.Chem import AllChem def get_neighbor_along_direction_tree(sample_latent, direction, step_size): """ Direction should be normalized Direction is in tree space """ tree_vec, mol_vec = torch.chunk(sample_latent, 2, dim=1) new_tree_vec = tree_vec + (direction * step_size) new_sample = torch.cat([new_tree_vec, mol_vec], dim=1) return new_sample def get_neighbor_along_direction_graph(sample_latent, direction, step_size): """ Direction should be normalized """ tree_vec, mol_vec = torch.chunk(sample_latent, 2, dim=1) # update graph new_mol_vec = mol_vec + ( direction * step_size ) # maybe the step size will have to be different? new_sample = torch.cat([tree_vec, new_mol_vec], dim=1) return new_sample def get_neighbors_along_directions_tree_then_graph( model, smiles, directions, scale_factors, direction_graph, scale_factor_graph, n_neighbors=10, val_to_beat=-2, max_cosine_distance=1.6, direction_graph_plus=None, convert_to_pac50=False, ): sample_latent = model.embed(smiles) n_directions = len(directions) new_samples = [] int_step_sizes = np.arange(-n_neighbors, n_neighbors + 1, 1) idx = int_step_sizes == 0 int_step_sizes = np.delete(int_step_sizes, np.where(idx)[0][0]) actual_n_neighbors = len(int_step_sizes) # dynamic range (this adds a loot of additional samples ... just takes longer) step_sizes_graph = np.arange(-n_neighbors, n_neighbors + 1, 1) step_sizes_graph = step_sizes_graph * scale_factor_graph # fixed range (original implementation) step_sizes_graph_original = np.arange(-1, 2, 1) step_sizes_graph_original = ( step_sizes_graph_original * 0.5 ) # so here the step size is also fixed! step_sizes_graph = np.concatenate( (step_sizes_graph, step_sizes_graph_original), axis=None ) actual_n_neighbors_graph = len(step_sizes_graph) # this is pretty quick, as it's just arimethic operations in latent space # todo: since cosine similarity in latent space correlates to an extent with # chemical similarity, we could further reduce the number of evaluations based on that cos = nn.CosineSimilarity(dim=1) for k in range(n_directions): # iterate over axes step_sizes = int_step_sizes * scale_factors[k] for i in range(actual_n_neighbors): # iterate over steps along axis sample = get_neighbor_along_direction_tree( sample_latent, directions[k], step_sizes[i] ) # tree sample for j in range(actual_n_neighbors_graph): # iterate along graph axis graph_sample = get_neighbor_along_direction_graph( sample, direction_graph, step_sizes_graph[j] ) # check cosine cdistance = 1 - cos(sample_latent, graph_sample) if cdistance.item() < max_cosine_distance: new_samples.append(graph_sample) # additional direction if direction_graph_plus is not None: graph_sample = get_neighbor_along_direction_graph( sample, direction_graph_plus, step_sizes_graph[j] ) # check cosine cdistance = 1 - cos(sample_latent, graph_sample) if cdistance.item() < max_cosine_distance: new_samples.append(graph_sample) # predict activity and decode samples (probably should be another function, also because this happens ALL the time) new_smiles, new_activities, new_samples = predict_and_decode_strict( model, new_samples, val_to_beat, convert_to_pac50 ) return ( new_samples, new_smiles, new_activities, sample_latent.squeeze().cpu().detach().numpy(), ) # I guess the min val should be informed also relative to the MSE of the model # def predict_and_decode_strict(model, new_samples, min_val, convert_to_pac50=False): n_samples = len(new_samples) new_smiles = [] new_activities = [] my_bar = None filtered_samples = [] try: import streamlit as st st.write("Decoding progress") my_bar = st.progress(0) except ImportError: pass for i in range(n_samples): if my_bar is not None: my_bar.progress((i + 1) / n_samples) print_status(i, n_samples) prediction = ( model.propNN(new_samples[i]).squeeze().cpu().detach().numpy() ) # compute the activity predictions if convert_to_pac50: prediction = (prediction - 6) * -1 # HIGHER IS BETTER prediction_condition = prediction > min_val if prediction_condition: new_activities.append(prediction) tree_vec, mol_vec = torch.chunk(new_samples[i], 2, dim=1) more_smiles = model.decode(tree_vec, mol_vec, prob_decode=False) new_smiles.append(more_smiles) new_samples[i] = new_samples[i].squeeze().cpu().detach().numpy() filtered_samples.append(new_samples[i]) return new_smiles, new_activities, filtered_samples def predict_and_decode(model, new_samples, show_st=False): n_samples = len(new_samples) new_smiles = [] new_activities = [] my_bar = None if show_st: try: import streamlit as st st.write("Decoding progress") my_bar = st.progress(0) except ImportError: pass for i in range(n_samples): if my_bar is not None: my_bar.progress((i + 1) / n_samples) print_status(i, n_samples) prediction = ( model.propNN(new_samples[i]).squeeze().cpu().detach().numpy() ) # compute the activity predictions new_activities.append(prediction) tree_vec, mol_vec = torch.chunk(new_samples[i], 2, dim=1) more_smiles = model.decode(tree_vec, mol_vec, prob_decode=False) new_smiles.append(more_smiles) new_samples[i] = new_samples[i].squeeze().cpu().detach().numpy() return new_smiles, new_activities def sample_gaussian(mean, sigma, n_samples): center = mean covariance = sigma m = torch.distributions.MultivariateNormal(center, covariance) samples = [] for i in range(n_samples): samples.append(m.sample()) samples = torch.stack(samples) return samples def sample_gaussian_and_predict(model, n_samples, mean, sigma): dim = int(model.latent_size) center = mean covariance = sigma m = torch.distributions.MultivariateNormal(center, covariance) samples = [] for i in range(n_samples): samples.append(m.sample()) samples = torch.stack(samples) cur_vec = create_var(samples.data, False) predictions = model.propNN(cur_vec).squeeze() vectors = cur_vec.cpu().detach().numpy() predictions = predictions.cpu().detach().numpy() return vectors, predictions def get_embeddings(model, toxdata): k = 0 n_molecules = len(toxdata) vectors = {} for idx in toxdata.smiles.index: print_status(k, n_molecules) sml = toxdata.smiles.loc[idx] vectors[idx] = model.embed(sml).cpu().detach().numpy().ravel() k = k + 1 return vectors from rdkit import DataStructs from rdkit.Chem import AllChem from sklearn.metrics.pairwise import cosine_similarity def sample_latent_space(model, latent, n_samples=2000, decode=False): mu = torch.from_numpy(np.mean(latent).values).float() sigma = torch.from_numpy(np.cov(latent.values.transpose())).float() return sample_latent_space_pass_normal(model, mu, sigma, n_samples, decode) def sample_latent_space_pass_normal(model, mu, sigma, n_samples=2000, decode=False): samples, samples_predictions = model.sample_gaussian_and_predict( n_samples, mu, sigma ) # this is fast samples = samples.astype("float64") samples_predictions = samples_predictions.astype("float64") # dim = int(model_params["latent_size"] / 2) dim = int(model.latent_size / 2) tree_vec = create_var(torch.from_numpy(samples[:, 0:dim]).float()) mol_vec = create_var(torch.from_numpy(samples[:, dim : dim * 2]).float()) samples_decoded = [] if decode: for i in range(n_samples): print_status(i, n_samples) samples_decoded.append( model.decode( tree_vec[i, :].reshape(1, -1), mol_vec[i, :].reshape(1, -1), prob_decode=False, ) ) # this is slow samples_decoded_df = pd.DataFrame(data=samples_decoded) samples_decoded_df.columns = ["smiles"] else: samples_decoded_df = None return samples, samples_predictions, samples_decoded_df # ------------ MISC ROUTINES ------------ def print_status(i, maxSteps): percent = "0.00" percentage = (float(i) / float(maxSteps)) * 100 divisor = 5 if i % divisor == 0: sys.stdout.write("Progress: %d%% \r" % (percentage)) sys.stdout.flush() # ------------ DISTANCES ROUTINES ------------ def normalize_morgans(morgans): morgans_normalized = {} for key in morgans.keys(): fp = morgans[key] fp_array = np.zeros((0,), dtype=np.int8) DataStructs.ConvertToNumpyArray(fp, fp_array) morgans_normalized[key] = normalize_to_unity(fp_array) return morgans_normalized def normalize_to_unity(fp): if np.sum(fp) == 0: print("invalid fp") return fp else: return fp / np.sum(fp) import cadd.sascorer as sascorer import networkx as nx # ------------ CHEMISTRY ROUTINES ------------ from rdkit.Chem import Descriptors, rdmolops from rdkit.Chem.Descriptors import ExactMolWt def get_cycle_score(mol): cycle_list = nx.cycle_basis(nx.Graph(rdmolops.GetAdjacencyMatrix(mol))) if len(cycle_list) == 0: cycle_length = 0 else: cycle_length = max([len(j) for j in cycle_list]) if cycle_length <= 6: cycle_length = 0 else: cycle_length = cycle_length - 6 current_cycle_score = cycle_length return current_cycle_score import cadd.sascorer as sascorer # toxdata should include a mols value from rdkit.Chem import rdMolDescriptors from rdkit.Chem.Descriptors import ExactMolWt NumHDonors = lambda x: rdMolDescriptors.CalcNumHBD(x) NumHAcceptors = lambda x: rdMolDescriptors.CalcNumHBA(x) from rdkit.Chem import Descriptors TPSA = lambda x: Descriptors.TPSA(x) def compute_properties(toxdata): n_molecules = len(toxdata) k = 0 mw = {} na = {} log_p = {} sas = {} cycle_scores = {} # more properties nhdon= {} nhacc = {} tpsa = {} for idx in toxdata.index: print_status(k, n_molecules) mol = toxdata.loc[idx].mols try: mw[idx] = ExactMolWt(mol) log_p[idx] = Descriptors.MolLogP(mol) sas[idx] = sascorer.calculateScore(mol) cycle_scores[idx] = get_cycle_score(mol) na[idx] = mol.GetNumAtoms() nhdon[idx] = NumHDonors(mol) nhacc[idx] = NumHAcceptors(mol) tpsa[idx] = TPSA(mol) except: print("[DEBUG] Error computing properties") mw[idx] = np.nan log_p[idx] = np.nan sas[idx] = np.nan cycle_scores[idx] = np.nan na[idx] = np.nan nhdon[idx] = np.nan nhacc[idx] = np.nan tpsa[idx] = np.nan continue k = k + 1 props = [ pd.DataFrame.from_dict(mw, orient="index"), pd.DataFrame.from_dict(log_p, orient="index"), pd.DataFrame.from_dict(sas, orient="index"), pd.DataFrame.from_dict(cycle_scores, orient="index"), pd.DataFrame.from_dict(na, orient="index"), pd.DataFrame.from_dict(nhdon, orient="index"), pd.DataFrame.from_dict(nhacc, orient="index"), pd.DataFrame.from_dict(tpsa, orient="index"), ] props_df = pd.concat(props, axis=1) props_df.columns = ["mw", "log_p", "sas", "cycle_scores", "n_atoms","HBD", "HBA", "TPSA"] toxdata_props =
pd.merge(toxdata, props_df, left_index=True, right_index=True)
pandas.merge
import logging import numpy as np import pandas as pd from icubam.analytics import dataset SPREAD_CUM_JUMPS_MAX_JUMP = { "n_covid_deaths": 10, "n_covid_transfered": 10, "n_covid_refused": 10, "n_covid_healed": 10, } def format_data(d: pd.DataFrame) -> pd.DataFrame: d["datetime"] = pd.to_datetime(d["create_date"]) d["date"] = d["datetime"].dt.date d["department"] = d["icu_dept"] d["region"] = d["icu_region_name"] d["region_id"] = d["icu_region_id"] d = d[dataset.ALL_COLUMNS] return d def preprocess_bedcounts( d: pd.DataFrame, spread_cum_jump_correction: bool = False, max_date: bool = None, ) -> pd.DataFrame: """This will process the bedcounts data to make analysis easier. There are five steps to the processing; 1) Run a low-pass filter over all timeseries to remove single spikes that generally represent a data entry error. 2) Aggregate the timeseries into their closest T-min intervals (T=15). This helps remove repeate updates, and takes the most recent update for a T-min window, such that if there was a correction to bad data that will be the only value for that time window. 3) Guarantee monotonicity on cumulative counts by replacing any decreasing values in the timeseries with their previous count: x_t = max(x_t, x_{t+1}). 4) Imput missing data with two strategies: For holes > 3 days, impute data by linearly interpolating between the two end-points of the missing set Subsequently, guarantee that each ICU has data for the whole timeseries, either by forward-propagating data at day t for impution, or setting to 0 for days before the ICU started its data collection. 5) (Optional) Spread out sudden jumps in data that reflect onboardings or change in reporting habit. Args: spread_cum_jump_correction : Whether to apply step 4) to the data. max_date : Only return data up to this date. """ # Extract useful columns and recast date properly: d = format_data(d) d = d.fillna(0) if "Mulhouse-Chir" in d.icu_name.unique(): d.loc[d.icu_name == "Mulhouse-Chir", "n_covid_healed"] = np.clip( ( d.loc[d.icu_name == "Mulhouse-Chir", "n_covid_healed"] - d.loc[d.icu_name == "Mulhouse-Chir", "n_covid_transfered"] ).values, a_min=0, a_max=None, ) icu_to_first_input_date = dict( d.groupby("icu_name")[["date"]].min().itertuples(name=None) ) # Apply steps 1) 2) & 3) d = aggregate_multiple_inputs(d, "15Min") # Step 3) d = fill_in_missing_days(d, "3D") d = enforce_daily_values_for_all_icus(d) # Step 4) if spread_cum_jump_correction: d = spread_cum_jumps(d, icu_to_first_input_date) d = d[dataset.ALL_COLUMNS] d = d.sort_values(by=["date", "icu_name"]) if max_date is not None: logging.info("data loaded's max date will be %s (excluded)" % max_date) d = d.loc[d.date < pd.to_datetime(max_date).date()] return d def aggregate_multiple_inputs(d, agg_time_delta="15Min"): """Aggregate the timeseries into time bins. This will aggregate the timeseries into regular time intervals, and use the most recent update prior to time t to populate the bin at time t. """ res_dfs = [] for icu_name, dg in d.groupby("icu_name"): dg = dg.set_index("datetime") dg = dg.sort_index() td_diff = dg.index.to_series().diff(1) mask = td_diff > pd.Timedelta(agg_time_delta) mask = mask.shift(-1).fillna(True).astype(bool) dg = dg.loc[mask] # This will run low-pass filters to remove spurious outliers: # Rolling median average, 5 points (for cumulative qtities): # breakpoint() for col in dataset.CUM_COLUMNS: dg[col] = ( dg[col].rolling(5, center=True, min_periods=1).median().astype(int) ) # Rolling median average, 3 points (for non-cumulative qtities): for col in dataset.NCUM_COLUMNS: dg[col] = dg[col].fillna(0) dg[col] = ( dg[col].rolling(3, center=True, min_periods=1).median().astype(int) ) # Force cumulative columns to be monotonic by bringing any decreases in # the value up to their previous values i.e. x_t = max(x_t, x_{t-1}): dg[dataset.CUM_COLUMNS ] = np.maximum.accumulate(dg[dataset.CUM_COLUMNS].values, axis=0) res_dfs.append(dg.reset_index()) return pd.concat(res_dfs) def fill_in_missing_days(d, time_delta_threshold="3D"): """Group the timeseries into days, and impute data linearly for holes in the data superior to 3 days. """ res_dfs = [] for icu_name, dg in d.groupby("icu_name"): dg = dg.sort_values(by=["datetime"]) time_delta = dg["datetime"].diff(1) for i, td in enumerate(time_delta): if td > pd.Timedelta(time_delta_threshold): n_days = td // pd.Timedelta("1D") val_init = dg.iloc[i - 1] val_final = dg.iloc[i] for added_day in range(n_days): added_datetime = (val_init.datetime + pd.Timedelta("1D") * added_day) added_date = val_init.date + pd.Timedelta("1D") * added_day new_row = { "datetime": added_datetime, "icu_name": val_init.icu_name, "date": added_date, "department": val_init.department, "n_covid_deaths": np.round( val_init.n_covid_deaths + (val_final.n_covid_deaths - val_init.n_covid_deaths) * added_day * 1.0 / n_days, 4, ), "n_covid_healed": np.round( val_init.n_covid_healed + (val_final.n_covid_healed - val_init.n_covid_healed) * added_day * 1.0 / n_days, 4, ), "n_covid_transfered": np.round( val_init.n_covid_transfered + (val_final.n_covid_transfered - val_init.n_covid_transfered) * added_day * 1.0 / n_days, 4, ), "n_covid_refused": np.round( val_init.n_covid_refused + (val_final.n_covid_refused - val_init.n_covid_refused) * added_day * 1.0 / n_days, 4, ), "n_covid_free": np.round( val_init.n_covid_free + (val_final.n_covid_free - val_init.n_covid_free) * added_day * 1.0 / n_days, 4, ), "n_ncovid_free": np.round( val_init.n_ncovid_free + (val_final.n_ncovid_free - val_init.n_ncovid_free) * added_day * 1.0 / n_days, 4, ), "n_covid_occ": np.round( val_init.n_covid_occ + (val_final.n_covid_occ - val_init.n_covid_occ) * added_day * 1.0 / n_days, 4, ), "n_ncovid_occ": np.round( val_init.n_ncovid_occ + (val_final.n_ncovid_occ - val_init.n_ncovid_occ) * added_day * 1.0 / n_days, 4, ), } dg = dg.append(pd.Series(new_row), ignore_index=True) dg = dg.sort_values(by=["datetime"]) res_dfs.append(dg) return pd.concat(res_dfs) def enforce_daily_values_for_all_icus(d): """Guarantee that each ICU has a continuous daily timeseries. Each missing day in the series is imputed by forward-filling from the most recent day with data. """ dates = np.sort(d.date.unique()) def reindex_icu(x): # Process data for an ICU. # For repeated entries per day, only keep the last entry. # This is necessary as we cannot re-index indexes with duplicates. x = x.sort_values('datetime').drop_duplicates(['date'], keep='last') # forward fill all missing values x = x.set_index(['date']).reindex(dates, method='ffill').reset_index() # backward fill categorical variables (that don't change with time) cat_columns = ['icu_name', 'department', 'region', 'region_id'] x[cat_columns] = x[cat_columns].fillna(method='bfill') # Set all other variables to 0 before first observation int_columns = dataset.CUM_COLUMNS + dataset.NCUM_COLUMNS x[int_columns] = x[int_columns].fillna(0) # Leave all unknown variables as NaN return x df = d.groupby('icu_name').apply(reindex_icu) # Reproduce behaviour of earlier versions of this function df['datetime'] = df['date'] df['create_date'] = df['date'] return df.reset_index(drop=True) def spread_cum_jumps(d, icu_to_first_input_date): assert np.all(d.date.values == d.datetime.values) # TODO: do not hardcode this value date_begin_transfered_refused = pd.to_datetime("2020-03-25").date() dfs = [] for icu_name, dg in d.groupby("icu_name"): dg = dg.sort_values(by="date") dg = dg.reset_index() already_fixed_col = set() for switch_point, cols in ( (icu_to_first_input_date[icu_name], dataset.CUM_COLUMNS), ( date_begin_transfered_refused, ["n_covid_transfered", "n_covid_refused"], ), ): beg = max( dg.date.min(), switch_point - pd.Timedelta("2D"), ) end = min( dg.date.max(), switch_point + pd.Timedelta("2D"), ) for col in cols: if col in already_fixed_col: continue beg_val = dg.loc[dg.date == beg, col] if not len(beg_val): continue beg_val = beg_val.values[0] end_val = dg.loc[dg.date == end, col] if not len(end_val): continue end_val = end_val.values[0] diff = end_val - beg_val if diff >= SPREAD_CUM_JUMPS_MAX_JUMP[col]: spread_beg = dg.date.min() spread_end = end spread_range = pd.date_range(spread_beg, spread_end, freq="1D").date spread_value = diff // (spread_end - spread_beg).days remaining = diff % (spread_end - spread_beg).days dg.loc[dg.date.isin(spread_range), col] = np.clip( np.cumsum(np.repeat(spread_value, len(spread_range))), a_min=0, a_max=end_val, ) dg.loc[dg.date == end, col] = np.clip( dg.loc[dg.date == end, col].values[0] + remaining, a_min=0, a_max=end_val, ) already_fixed_col.add(col) dfs.append(dg) return
pd.concat(dfs)
pandas.concat
from scipy.ndimage.filters import gaussian_filter1d import numpy as np import pandas as pd import matplotlib.pyplot as plt from functools import reduce import sys import seaborn as sns import pytz class ModelCompare: """ functions used to compare models ** error computations ** error plots """ def __init__(self,models_predictions,true_values,user_time_index=None,segments_index=None): """ models_predictions is a dictionary model_name: predictiond dataframe true_values is the ground truth dataframe user_time_index: array/list of datetime like objects (default None) the filter on predicted hours segments_index : array/list of str (default None) the filter on predicted sections """ # fontsize on plots self.fontsize= 10 # list of markers used on plots self.markers=dict(zip(models_predictions.keys(),[ '->', ':o', ':v', ':^', ':<', ':s', ':p', ':*', ':h', ':H', ':+', ':x', ':D', ':d', ':1', ':2', ':3', ':4', ':|', ':_' ])) self.models_predictions = models_predictions self.true_values = true_values self.segments_index=segments_index # filtering sections if not segments_index is None : self.true_values=self.true_values.loc[segments_index].copy() for model_name, model_data in self.models_predictions.items() : self.models_predictions[model_name]=self.models_predictions[model_name].loc[segments_index].copy() # match time indexes of all models if not self.compatibility() : print("check data shape",file=sys.stderr) print("shape used is the intersection of all columns") self.time_index = reduce(np.intersect1d, [df.columns for df in self.models_predictions.values()]) self.time_index = np.intersect1d(self.time_index,self.true_values.columns) self.time_index = pd.to_datetime(self.time_index).tz_localize("utc").tz_convert(pytz.timezone("Europe/Paris")) print(self.time_index.shape) # filtering time index if not user_time_index is None : self.time_index = user_time_index def compatibility(self): """ test for time index compatibility between models and true values """ true_shape = self.true_values.shape compatible = True for model_name, model_data in self.models_predictions.items() : if true_shape != model_data.shape : print(model_name +" has different shape from true values, shapes : model "+str(model_data.shape)+" true shape "+str(true_shape),file=sys.stderr) compatible=False return compatible def plotDiscreteSpeedError(self,intercept =0,xlabel=""): """ plots average absolute error per discrete speed intercept : int or dataframe(same shape as ground truth) whether to restore intercept before plotting xlabel : str """ if not type(intercept) is int : intercept = intercept[self.time_index] if not self.segments_index is None : intercept = intercept.loc[self.segments_index].copy() for model_name, model_data in self.models_predictions.items() : error = abs((model_data[self.time_index] -self.true_values[self.time_index]).values.flatten().round()) true_y=(self.true_values[self.time_index] + intercept).values.flatten().round() arsort=true_y.argsort() error = error[arsort] true_y = true_y[arsort] y_idx=np.unique(true_y,return_index=True)[0] split_idx = np.unique(true_y,return_index=True)[1][1:] y_mean_error=np.fromiter([np.mean(x) for x in np.split(error ,split_idx)],dtype=float) plt.plot(y_idx,y_mean_error,self.markers[model_name],label=model_name) plt.xlabel(xlabel,fontsize=self.fontsize) plt.ylabel("mean absolute error",fontsize=self.fontsize) plt.legend(loc=2) plt.twinx(plt.gca()) (self.true_values[self.time_index] + intercept).round().stack().value_counts().sort_index().plot(label="counts",style='k:',grid=False) plt.ylabel("counts",fontsize=self.fontsize); plt.legend(loc=1) def comparisonTable(self): """ compute MSE and MAE error for all models return dataframe of error for each model """ results =[] for model_name, model_data in self.models_predictions.items() : preds = model_data[self.time_index] true = self.true_values[self.time_index] results.append({ 'model_name':model_name, 'mse':self.mse(preds.values.flatten(),true.values.flatten()), 'mae':self.mae(preds.values.flatten(),true.values.flatten()) } ) return pd.DataFrame(results).set_index('model_name') def plotTimeError(self): """ plot error for each time period """ for model_name, model_data in self.models_predictions.items() : preds = model_data[self.time_index] true = self.true_values[self.time_index] error = abs(preds - true).groupby(
pd.to_datetime(self.time_index)
pandas.to_datetime
# Copyright 2021 Prayas Energy Group(https://www.prayaspune.org/peg/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd from rumi.io import filemanager from rumi.io import config from rumi.io import common from rumi.io import constant from rumi.io import loaders from rumi.io import utilities import logging import os import functools import numpy as np import itertools import math logger = logging.getLogger(__name__) def load_param(param_name, subfolder): """Loader function to be used by yaml framework. do not use this directly. """ filepath = filemanager.find_filepath(param_name, subfolder) logger.debug(f"Reading {param_name} from file {filepath}") df = loaders.read_csv(param_name, filepath) return df def get_filtered_parameter(param_name): """Returns supply parameter at balancing time and balancing area. This function will do necessary collapsing and expansion of parameter data. It will do this operation on all float64 columns. other columns will be treated as categorical. :param: param_name :returns: DataFrame """ param_data_ = loaders.get_parameter(param_name) if not isinstance(param_data_, pd.DataFrame) and param_data_ == None: return param_data_ original_order = [c for c in param_data_.columns] param_data = utilities.filter_empty(param_data_) # for test data specs = filemanager.supply_specs() if param_name in specs: param_specs = specs[param_name] folder = param_specs.get("nested") geographic = param_specs.get("geographic") time = param_specs.get("time") if geographic: param_data = filter_on_geography( param_data, geographic, folder) if time: param_data = filter_on_time(param_data, time, folder) param_data = preserve_column_order( param_data, original_order) return param_data.fillna("") def preserve_column_order(dataframe, original_order): class DummyDFColumns: """A class to simulate df.columns from pa.DataFrame """ def __init__(self, cols): self.columns = list(cols) def indexof_geo(oldcols): subset_cols = utilities.get_geographic_columns_from_dataframe( oldcols) return oldcols.columns.index(subset_cols[-1])+1 def indexof_time(oldcols): subset_cols = utilities.get_time_columns_from_dataframe(oldcols) return oldcols.columns.index(subset_cols[-1])+1 def extra_geo(dataframe, oldcols): geo = utilities.get_geographic_columns_from_dataframe(dataframe) return [c for c in geo if c not in oldcols.columns] def extra_time(dataframe, oldcols): time = utilities.get_time_columns_from_dataframe(dataframe) return [c for c in time if c not in oldcols.columns] def new_order(dataframe, oldcols): cols = [c for c in oldcols] oldcols_ = DummyDFColumns(cols) if utilities.get_geographic_columns_from_dataframe(oldcols_): for i, c in enumerate(extra_geo(dataframe, oldcols_), start=indexof_geo(oldcols_)): cols.insert(i, c) oldcols_ = DummyDFColumns(cols) if utilities.get_time_columns_from_dataframe(oldcols_): for i, c in enumerate(extra_time(dataframe, oldcols_), start=indexof_time(oldcols_)): cols.insert(i, c) return cols return dataframe.reindex(columns=new_order(dataframe, original_order)) def filter_empty_columns(data, filtercols): rows = len(data) empty = [c for c in filtercols if data[c].isnull( ).sum() == rows or (data[c] == "").sum() == rows] return data[[c for c in data.columns if c not in empty]] def filter_empty_geography(data): """filter out empty geographic columns""" return filter_empty_columns(data, utilities.get_geographic_columns_from_dataframe(data)) def filter_empty_time(data): """filter out empty time columns""" return filter_empty_columns(data, utilities.get_time_columns_from_dataframe(data)) def finest_geography_from_balancing(entities): g = [common.get_geographic_columns( common.balancing_area(e)) for e in entities] return max(g, key=len) @functools.lru_cache(maxsize=1) def get_all_carriers(): carrriers = ["PhysicalPrimaryCarriers", "PhysicalDerivedCarriers", "NonPhysicalDerivedCarriers"] allcarriers = [] for carrrier in carrriers: allcarriers.extend( list(loaders.get_parameter(carrrier)['EnergyCarrier'])) return allcarriers def finest_time_from_balancing(entities): t = [common.get_time_columns(common.balancing_time(e)) for e in entities] return max(t, key=len) @functools.lru_cache(maxsize=16) def find_EC(entity, value): if entity == 'EnergyCarrier': return value elif entity == 'EnergyConvTech': EnergyConvTechnologies = loaders.get_parameter( 'EnergyConvTechnologies') ect = EnergyConvTechnologies.set_index('EnergyConvTech') return ect.loc[value]['OutputDEC'] else: EnergyStorTechnologies = loaders.get_parameter( 'EnergyStorTechnologies') est = EnergyStorTechnologies.set_index('EnergyStorTech') return est.loc[value]['StoredEC'] def get_entity_type(folder): if folder == "Carriers": return 'EnergyCarrier' elif folder == "Storage": return 'EnergyStorTech' else: return 'EnergyConvTech' def filter_on_time(data, granularity, folder): """granularity is either 'fine' or 'coarse' and folder is one of 'Carriers', 'Technologies', 'Storage' """ entity = get_entity_type(folder) entities = get_all_carriers() timecols = finest_time_from_balancing(entities) dfs = [] if granularity == "fine": for item in data[entity].unique(): q = f"{entity} == '{item}'" d = filter_empty_time(data.query(q)) balancing_time = common.balancing_time(find_EC(entity, item)) d = group_by_time(d, balancing_time, timecols) dfs.append(d) else: for item in data[entity].unique(): q = f"{entity} == '{item}'" d = filter_empty_time(data.query(q)) balancing_time = common.balancing_time(find_EC(entity, item)) d = expand_by_time(d, entity, balancing_time, timecols) dfs.append(d) return pd.concat(dfs).reset_index(drop=True) def get_nontime_columns(d): return [c for c in d.columns if (not pd.api.types.is_float_dtype(d[c])) and c not in constant.TIME_SLICES] def group_by_time(d, balancing_time, superset_cols): timecols_ = common.get_time_columns(balancing_time) othercols = get_nontime_columns(d) d = utilities.groupby_time(d.fillna(""), othercols, balancing_time).copy() rows = len(d) diff = [c for c in superset_cols if c not in timecols_] for c in diff: d[c] =
pd.Series([""]*rows, dtype=str, name=c)
pandas.Series
""" main module used for running the inference on simple network sim """ from __future__ import annotations import datetime as dt import logging.config import sys import time from abc import ABC, abstractmethod from typing import Tuple, List, Dict, Type, ClassVar, Union import numpy as np import pandas as pd import scipy.stats as stats from data_pipeline_api import standard_api from more_itertools import pairwise from . import loaders, common from . import network_of_populations as ss from . import sampleUseOfModel as sm sys.path.append('..') logger = logging.getLogger(__name__) def uniform_pdf( x: Union[float, np.array], a: Union[float, np.array], b: Union[float, np.array] ) -> Union[float, np.array]: """pdf function for uniform distribution :param x: value at which to evaluate the pdf :param a: lower bound of the distribution :param b: upper bound of the distribution """ return ((a <= x) & (x <= b)) / (b - a) def lognormal(mean: float, stddev: float, stddev_min: float = -np.inf) -> stats.rv_continuous: """Constructs Scipy lognormal object to match a given mean and std dev passed as input. The parameters to input in the model are inverted from the formulas: .. math:: if X~LogNormal(mu, scale) then: E[X] = exp{mu + sigma^2 * 0.5} Var[X] = (exp{sigma^2} - 1) * exp{2 * mu + sigma^2} The stddev is taken as a % of the mean, floored at 10. This allows natural scaling with the size of the population inside the nodes, always allowing for a minimal uncertainty. :param mean: Mean to match :param stddev: Std dev to match :param stddev_min: Minimum std dev to match :return: Distribution object representing a lognormal distribution with the given mean and std dev """ stddev = np.maximum(mean * stddev, stddev_min) sigma = np.sqrt(np.log(1 + (stddev**2 / mean**2))) mu = np.log(mean / np.sqrt(1 + (stddev**2 / mean**2))) return stats.lognorm(s=sigma, loc=0., scale=np.exp(mu)) def split_dataframe(multipliers, partitions, col="Contact_Multiplier"): df = multipliers.copy() df.Date =
pd.to_datetime(df.Date)
pandas.to_datetime
import unittest import pandas as pd import numpy as np import datetime import pytz from variable_explorer_helpers import describe_pd_dataframe class TestDataframeDescribe(unittest.TestCase): def test_dataframe(self): df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 2) self.assertEqual(result['column_count'], 2) self.assertEqual(len(result['rows_top']), 2) self.assertEqual(result['rows_bottom'], None) self.assertEqual(result['columns'][0]['name'], 'col1') def test_dataframe_sort(self): df = pd.DataFrame(data={'col1': [3, 1, 2]}) result = describe_pd_dataframe(df.sort_values('col1')) self.assertEqual(result['rows_top'][0]['col1'], 1) self.assertEqual(result['rows_top'][1]['col1'], 2) self.assertEqual(result['rows_top'][2]['col1'], 3) # _deepnote_index_column is hidden on frontend. See variable_explorer_helpers for more info. self.assertEqual(result['rows_top'][0]['_deepnote_index_column'], 1) # TODO: Support non-hashable types like [] def test_categorical_columns(self): df = pd.DataFrame(data={ 'cat1': ['a', 'b', 'c', 'd'], 'cat2': ['a', 'b', None, 'd'], # 'cat3': [1, (2,3), '4', []], 'cat3': [1, (2,3), '4', 5], 'cat4': [True, True, True, False], }) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 4) self.assertEqual(result['column_count'], 4) self.assertEqual(len(result['rows_top']), 4) self.assertEqual(result['rows_bottom'], None) self.assertDictEqual(result['columns'][0], { 'name': 'cat1', 'dtype': 'object', 'stats': { 'unique_count': 4, 'nan_count': 0, 'categories': [ {'name': 'a', 'count': 1}, {'name': 'b', 'count': 1}, {'name': '2 others', 'count': 2}, ] }, }) self.assertEqual(result['columns'][1]['stats']['categories'], [ {'name': 'a', 'count': 1}, {'name': '2 others', 'count': 2}, {'name': 'Missing', 'count': 1}, ]) # TODO: Support for big ints which can't be converted to float64 and complex numbers def test_numerical_columns(self): df = pd.DataFrame(data={ 'col1': [1, 2, 3, 4], 'col2': [1, 2, None, 4], # 'col3': [1, 2.1, complex(-1.0, 0.0), 10**1000] 'col3': [1, 2.1, 3, 4] }) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 4) self.assertEqual(result['column_count'], 3) self.assertEqual(len(result['rows_top']), 4) self.assertEqual(result['rows_bottom'], None) self.assertEqual(result['columns'][0]['name'], 'col1') def test_big_dataframe(self): import numpy as np df = pd.DataFrame(data={ 'col1': np.arange(100000), 'col2': np.arange(100000), 'col3': np.arange(100000), }) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 100000) self.assertEqual(result['column_count'], 3) self.assertEqual(len(result['rows_top']), 166) self.assertEqual(len(result['rows_bottom']), 167) self.assertTrue('stats' in result['columns'][0]) self.assertTrue('stats' not in result['columns'][1]) df = pd.DataFrame(data={ 'col1': np.arange(200000), 'col2': np.arange(200000), 'col3': np.arange(200000), }) result = describe_pd_dataframe(df) self.assertTrue('stats' not in result['columns'][0]) def test_no_rows(self): df = pd.DataFrame(data={ 'col1': [], 'col2': [], }) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 0) self.assertEqual(result['column_count'], 2) def test_no_columns(self): df = pd.DataFrame(data={}) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 0) self.assertEqual(result['column_count'], 0) def test_duplicate_columns(self): df = pd.DataFrame(data={ 'col1': ['a', 'b', 'c', 'd'], 'col2': [1, 2, 3, 4], }) df.columns = ['col1', 'col1'] result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 4) self.assertEqual(result['column_count'], 2) self.assertEqual(result['columns'][0]['name'], 'col1') self.assertEqual(result['columns'][1]['name'], 'col1.1') def test_nans(self): df = pd.DataFrame(data={ 'col1': [None, None, None], }) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 3) self.assertEqual(result['column_count'], 1) self.assertEqual(result['columns'][0]['stats'], { 'unique_count': 0, 'nan_count': 3, 'categories': [ {'name': 'Missing', 'count': 3}, ] }) def test_datetime(self): df1 = pd.DataFrame(data={ 'col1': [1,2], 'col2': [datetime.date(2000,1,1), datetime.time(10,30)], 'col3': [datetime.datetime.now().astimezone(pytz.timezone('UTC')), datetime.datetime.now().astimezone(None)] }) result1 = describe_pd_dataframe(df1) self.assertEqual(result1['row_count'], 2) self.assertEqual(result1['column_count'], 3) df2 = pd.DataFrame(np.random.randn(2, 3), index=
pd.date_range('1/1/2000', periods=2)
pandas.date_range
from datetime import timedelta import operator import numpy as np import pytest import pytz from pandas._libs.tslibs import IncompatibleFrequency from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( Categorical, Index, IntervalIndex, Series, Timedelta, bdate_range, date_range, isna, ) import pandas._testing as tm from pandas.core import nanops, ops def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestSeriesFlexArithmetic: @pytest.mark.parametrize( "ts", [ (lambda x: x, lambda x: x * 2, False), (lambda x: x, lambda x: x[::2], False), (lambda x: x, lambda x: 5, True), (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True), ], ) @pytest.mark.parametrize( "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"] ) def test_flex_method_equivalence(self, opname, ts): # check that Series.{opname} behaves like Series.__{opname}__, tser = tm.makeTimeSeries().rename("ts") series = ts[0](tser) other = ts[1](tser) check_reverse = ts[2] op = getattr(Series, opname) alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators): # GH 13208 class MySeries(Series): _metadata = ["x"] @property def _constructor(self): return MySeries opname = all_arithmetic_operators op = getattr(Series, opname) m = MySeries([1, 2, 3], name="test") m.x = 42 result = op(m, 1) assert result.x == 42 def test_flex_add_scalar_fill_value(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) tm.assert_series_equal(res, exp) pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)] for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, "r" + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) @pytest.mark.parametrize("op, equiv_op, fv", pairings) def test_operators_combine(self, op, equiv_op, fv): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isna(a) bmask = isna(b) exp_values = [] for i in range(len(exp_index)): with np.errstate(all="ignore"): if amask[i]: if bmask[i]: exp_values.append(np.nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(np.nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) tm.assert_series_equal(result, expected) a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5)) b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6)) result = op(a, b) exp = equiv_op(a, b) tm.assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) class TestSeriesArithmetic: # Some of these may end up in tests/arithmetic, but are not yet sorted def test_add_series_with_period_index(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = Series(np.random.randn(len(rng)), index=rng) result = ts + ts[::2] expected = ts + ts expected.iloc[1::2] = np.nan tm.assert_series_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_series_equal(result, expected) msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): ts + ts.asfreq("D", how="end") @pytest.mark.parametrize( "target_add,input_value,expected_value", [ ("!", ["hello", "world"], ["hello!", "world!"]), ("m", ["hello", "world"], ["hellom", "worldm"]), ], ) def test_string_addition(self, target_add, input_value, expected_value): # GH28658 - ensure adding 'm' does not raise an error a = Series(input_value) result = a + target_add expected = Series(expected_value) tm.assert_series_equal(result, expected) def test_divmod(self): # GH#25557 a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"]) b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"]) result = a.divmod(b) expected = divmod(a, b) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) result = a.rdivmod(b) expected = divmod(b, a) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) @pytest.mark.parametrize("index", [None, range(9)]) def test_series_integer_mod(self, index): # GH#24396 s1 = Series(range(1, 10)) s2 = Series("foo", index=index) msg = "not all arguments converted during string formatting" with pytest.raises(TypeError, match=msg): s2 % s1 def test_add_with_duplicate_index(self): # GH14227 s1 = Series([1, 2], index=[1, 1]) s2 = Series([10, 10], index=[1, 2]) result = s1 + s2 expected = Series([11, 12, np.nan], index=[1, 1, 2]) tm.assert_series_equal(result, expected) def test_add_na_handling(self): from datetime import date from decimal import Decimal s = Series( [Decimal("1.3"), Decimal("2.3")], index=[date(2012, 1, 1), date(2012, 1, 2)] ) result = s + s.shift(1) result2 = s.shift(1) + s assert isna(result[0]) assert isna(result2[0]) def test_add_corner_cases(self, datetime_series): empty = Series([], index=Index([]), dtype=np.float64) result = datetime_series + empty assert np.isnan(result).all() result = empty + empty.copy() assert len(result) == 0 # FIXME: dont leave commented-out # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = datetime_series.astype(int)[:-5] added = datetime_series + int_ts expected = Series( datetime_series.values[:-5] + int_ts.values, index=datetime_series.index[:-5], name="ts", ) tm.assert_series_equal(added[:-5], expected) def test_mul_empty_int_corner_case(self): s1 = Series([], [], dtype=np.int32) s2 = Series({"x": 0.0}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=["x"])) def test_sub_datetimelike_align(self): # GH#7500 # datetimelike ops need to align dt = Series(date_range("2012-1-1", periods=3, freq="D")) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt tm.assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] tm.assert_series_equal(result, expected) def test_alignment_doesnt_change_tz(self): # GH#33671 dti = pd.date_range("2016-01-01", periods=10, tz="CET") dti_utc = dti.tz_convert("UTC") ser = Series(10, index=dti) ser_utc = Series(10, index=dti_utc) # we don't care about the result, just that original indexes are unchanged ser * ser_utc assert ser.index is dti assert ser_utc.index is dti_utc def test_arithmetic_with_duplicate_index(self): # GH#8363 # integer ops with a non-unique index index = [2, 2, 3, 3, 4] ser = Series(np.arange(1, 6, dtype="int64"), index=index) other = Series(np.arange(5, dtype="int64"), index=index) result = ser - other expected = Series(1, index=[2, 2, 3, 3, 4]) tm.assert_series_equal(result, expected) # GH#8363 # datetime ops with a non-unique index ser = Series(date_range("20130101 09:00:00", periods=5), index=index) other = Series(date_range("20130101", periods=5), index=index) result = ser - other expected = Series(Timedelta("9 hours"), index=[2, 2, 3, 3, 4]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------ # Comparisons class TestSeriesFlexComparison: @pytest.mark.parametrize("axis", [0, None, "index"]) def test_comparison_flex_basic(self, axis, all_compare_operators): op = all_compare_operators.strip("__") left = Series(np.random.randn(10)) right = Series(np.random.randn(10)) result = getattr(left, op)(right, axis=axis) expected = getattr(operator, op)(left, right) tm.assert_series_equal(result, expected) def test_comparison_bad_axis(self, all_compare_operators): op = all_compare_operators.strip("__") left = Series(np.random.randn(10)) right = Series(np.random.randn(10)) msg = "No axis named 1 for object type" with pytest.raises(ValueError, match=msg): getattr(left, op)(right, axis=1) @pytest.mark.parametrize( "values, op", [ ([False, False, True, False], "eq"), ([True, True, False, True], "ne"), ([False, False, True, False], "le"), ([False, False, False, False], "lt"), ([False, True, True, False], "ge"), ([False, True, False, False], "gt"), ], ) def test_comparison_flex_alignment(self, values, op): left = Series([1, 3, 2], index=list("abc")) right = Series([2, 2, 2], index=list("bcd")) result = getattr(left, op)(right) expected = Series(values, index=list("abcd")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "values, op, fill_value", [ ([False, False, True, True], "eq", 2), ([True, True, False, False], "ne", 2), ([False, False, True, True], "le", 0), ([False, False, False, True], "lt", 0), ([True, True, True, False], "ge", 0), ([True, True, False, False], "gt", 0), ], ) def test_comparison_flex_alignment_fill(self, values, op, fill_value): left = Series([1, 3, 2], index=list("abc")) right = Series([2, 2, 2], index=list("bcd")) result = getattr(left, op)(right, fill_value=fill_value) expected = Series(values, index=list("abcd")) tm.assert_series_equal(result, expected) class TestSeriesComparison: def test_comparison_different_length(self): a = Series(["a", "b", "c"]) b = Series(["b", "a"]) msg = "only compare identically-labeled Series" with pytest.raises(ValueError, match=msg): a < b a = Series([1, 2]) b = Series([2, 3, 4]) with pytest.raises(ValueError, match=msg): a == b @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_ser_flex_cmp_return_dtypes(self, opname): # GH#15115 ser = Series([1, 3, 2], index=range(3)) const = 2 result = getattr(ser, opname)(const).dtypes expected = np.dtype("bool") assert result == expected @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_ser_flex_cmp_return_dtypes_empty(self, opname): # GH#15115 empty Series case ser = Series([1, 3, 2], index=range(3)) empty = ser.iloc[:0] const = 2 result = getattr(empty, opname)(const).dtypes expected = np.dtype("bool") assert result == expected @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.le, operator.lt, operator.ge, operator.gt], ) @pytest.mark.parametrize( "names", [(None, None, None), ("foo", "bar", None), ("baz", "baz", "baz")] ) def test_ser_cmp_result_names(self, names, op): # datetime64 dtype dti = pd.date_range("1949-06-07 03:00:00", freq="H", periods=5, name=names[0]) ser = Series(dti).rename(names[1]) result = op(ser, dti) assert result.name == names[2] # datetime64tz dtype dti = dti.tz_localize("US/Central") dti = pd.DatetimeIndex(dti, freq="infer") # freq not preserved by tz_localize ser = Series(dti).rename(names[1]) result = op(ser, dti) assert result.name == names[2] # timedelta64 dtype tdi = dti - dti.shift(1) ser = Series(tdi).rename(names[1]) result = op(ser, tdi) assert result.name == names[2] # interval dtype if op in [operator.eq, operator.ne]: # interval dtype comparisons not yet implemented ii = pd.interval_range(start=0, periods=5, name=names[0]) ser = Series(ii).rename(names[1]) result = op(ser, ii) assert result.name == names[2] # categorical if op in [operator.eq, operator.ne]: # categorical dtype comparisons raise for inequalities cidx = tdi.astype("category") ser = Series(cidx).rename(names[1]) result = op(ser, cidx) assert result.name == names[2] def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid="ignore"): expected = (left > right).astype("O") expected[:3] = np.nan tm.assert_almost_equal(result, expected) s = Series(["a", "b", "c"]) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) # ----------------------------------------------------------------- # Categorical Dtype Comparisons def test_categorical_comparisons(self): # GH#8938 # allow equality comparisons a = Series(list("abc"), dtype="category") b = Series(list("abc"), dtype="object") c = Series(["a", "b", "cc"], dtype="object") d = Series(list("acb"), dtype="object") e = Categorical(list("abc")) f = Categorical(list("acb")) # vs scalar assert not (a == "a").all() assert ((a != "a") == ~(a == "a")).all() assert not ("a" == a).all() assert (a == "a")[0] assert ("a" == a)[0] assert not ("a" != a)[0] # vs list-like assert (a == a).all() assert not (a != a).all() assert (a == list(a)).all() assert (a == b).all() assert (b == a).all() assert ((~(a == b)) == (a != b)).all() assert ((~(b == a)) == (b != a)).all() assert not (a == c).all() assert not (c == a).all() assert not (a == d).all() assert not (d == a).all() # vs a cat-like assert (a == e).all() assert (e == a).all() assert not (a == f).all() assert not (f == a).all() assert (~(a == e) == (a != e)).all() assert (~(e == a) == (e != a)).all() assert (~(a == f) == (a != f)).all() assert (~(f == a) == (f != a)).all() # non-equality is not comparable msg = "can only compare equality or not" with pytest.raises(TypeError, match=msg): a < b with pytest.raises(TypeError, match=msg): b < a with pytest.raises(TypeError, match=msg): a > b with pytest.raises(TypeError, match=msg): b > a def test_unequal_categorical_comparison_raises_type_error(self): # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) msg = "can only compare equality or not" with pytest.raises(TypeError, match=msg): cat > "b" cat = Series(Categorical(list("abc"), ordered=False)) with pytest.raises(TypeError, match=msg): cat > "b" # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) msg = "Invalid comparison between dtype=category and str" with pytest.raises(TypeError, match=msg): cat < "d" with pytest.raises(TypeError, match=msg): cat > "d" with pytest.raises(TypeError, match=msg): "d" < cat with pytest.raises(TypeError, match=msg): "d" > cat tm.assert_series_equal(cat == "d", Series([False, False, False])) tm.assert_series_equal(cat != "d", Series([True, True, True])) # ----------------------------------------------------------------- def test_comparison_tuples(self): # GH#11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) tm.assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) tm.assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) tm.assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) tm.assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) tm.assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) tm.assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False])
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# # Copyright (c) Sinergise, 2019 -- 2021. # # This file belongs to subproject "field-delineation" of project NIVA (www.niva4cap.eu). # All rights reserved. # # This source code is licensed under the MIT license found in the LICENSE # file in the root directory of this source tree. # import gc import logging import os import sys from glob import glob import fiona import geopandas as gpd import pandas as pd from shapely.geometry import Polygon from fd.utils import multiprocess from fd.vectorisation import merge_intersecting, split_intersecting logging.basicConfig(format='%(asctime)s | %(levelname)s : %(message)s', level=logging.INFO, stream=sys.stdout) def get_bounds(gdf): with fiona.open(gdf) as src: return Polygon.from_bounds(*src.bounds) def _join_overlapping_gdfs(gdf1, gdf2): assert gdf1.crs == gdf2.crs, f'The inputs [{gdf1}, {gdf2}] are not in the same CRS!' bounds1 = Polygon.from_bounds(*list(gdf1.total_bounds)) bounds2 = Polygon.from_bounds(*list(gdf2.total_bounds)) overlap = bounds1.intersection(bounds2) non_overlaps1, overlaps1 = split_intersecting(gdf1, overlap) non_overlaps2, overlaps2 = split_intersecting(gdf2, overlap) intersecting = merge_intersecting(overlaps1, overlaps2) out = gpd.GeoDataFrame(
pd.concat([non_overlaps1, non_overlaps2, intersecting])
pandas.concat
import pandas as pd from xml_reader import read_tweet_text, read_all def get_users(): users = [] with open("data/truth.txt") as file_in: for line in file_in: array = line.split(":::") user = array[0] truth = int(array[1][0]) users.append([user, truth]) return users def create_separated_set(): data = [] users = get_users() for user in users: read_all(data, user[0] + '.xml', user[1]) return data def assemble_pandas(dataset, column): dataset =
pd.DataFrame(dataset)
pandas.DataFrame
from cProfile import label from numpy import append import pyaudio import numpy import warnings from datetime import datetime import tensorflow as tf from pandas import DataFrame def my_publish_callback(envelope, status): if status.is_error(): ... #handle error here print(str(status.error_data.exception)) else: print(envelope) def get_noice_data(): with warnings.catch_warnings(): warnings.simplefilter("ignore") FORMAT = pyaudio.paFloat32 SAMPLEFREQ = 44100 FRAMESIZE = 1376 NOFFRAMES = 32 p = pyaudio.PyAudio() stream = p.open(format=FORMAT,channels=1,rate=SAMPLEFREQ,input=True,frames_per_buffer=FRAMESIZE) data = stream.read(NOFFRAMES*FRAMESIZE) decoded = numpy.fromstring(data, 'float32') return [decoded] def append_to_excel(data): df =
DataFrame([data])
pandas.DataFrame
__author__ = "<NAME>" import pandas as pd import numpy as np from functools import partial import pyproj from shapely.ops import transform from shapely.geometry import Point import geopandas import matplotlib.pyplot as plt proj_wgs84 = pyproj.Proj(init='epsg:4326') def geodesic_point_buffer(lat, lon, km): # Azimuthal equidistant projection aeqd_proj = '+proj=aeqd +lat_0={lat} +lon_0={lon} +x_0=0 +y_0=0' project = partial( pyproj.transform, pyproj.Proj(aeqd_proj.format(lat=lat, lon=lon)), proj_wgs84) buf = Point(0, 0).buffer(km * 1000) # distance in metres return transform(project, buf).exterior.coords[:] # Example #b = geodesic_point_buffer(45.4, -75.7, 100.0) #print(b) path = "../data/localData/" nc = pd.read_csv(path+"newCases.csv") # to gen run convertDataTo... temp = pd.read_csv(path+"temperature.csv") # to gen run joinTempCsv... # ---------- CALCULATING RADIUS FOR NEW CASES ---------- countries = nc["Unnamed: 0"] latlong =
pd.DataFrame()
pandas.DataFrame
""" Prepare training and testing datasets as CSV dictionaries Created on 10/30/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np def tile_ids_in(inp): ids = [] try: for id in os.listdir(inp['path']): if '_{}.png'.format(str(inp['sldnum'])) in id: ids.append([inp['slide'], inp['level'], inp['path']+'/'+id, inp['weight'], inp['percent_tumor_nuclei'], inp['percent_total_cellularity'], inp['percent_necrosis'], inp['age'], inp['label']]) except FileNotFoundError: print('Ignore:', inp['path']) return ids # Get all svs images with its label as one file; level is the tile resolution level def big_image_sum(pmd, path='../tiles/', ref_file='../feature_summary.csv'): ref = pd.read_csv(ref_file, header=0) ref = ref.loc[ref['used_in_proteome'] == True] ref = ref.rename(columns={pmd: 'label'}) ref = ref.dropna(subset=['label']) ref['sldnum'] = ref['slide_id'].str.split("-", n=2, expand=True)[2] ref = ref[['case_id', 'sldnum', 'weight', 'percent_tumor_nuclei', 'percent_total_cellularity', 'percent_necrosis', 'age', 'label']] ref = ref.rename(columns={'case_id': 'slide'}) ref1 = ref.copy() ref2 = ref.copy() ref['level'] = 0 ref['path'] = path + ref['slide'] + "/level" + ref['level'].map(str) ref1['level'] = 1 ref1['path'] = path + ref1['slide'] + "/level" + ref1['level'].map(str) ref2['level'] = 2 ref2['path'] = path + ref2['slide'] + "/level" + ref2['level'].map(str) datapd = pd.concat([ref, ref1, ref2]) datapd = datapd.astype({'weight': 'int64', 'percent_tumor_nuclei': 'int64', 'percent_total_cellularity': 'int64', 'percent_necrosis': 'int64', 'age': 'int64', 'level': 'int64', 'label': 'int64'}) return datapd # seperate into training and testing; each type is the same separation ratio on big images # test and train csv files contain tiles' path. def set_sep(alll, path, cls, level=None, cut=0.3, batchsize=64): trlist = [] telist = [] valist = [] if level: alll = alll[alll['level'] == int(level)] CPTAC = alll for i in range(cls): subset = CPTAC.loc[CPTAC['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut / 2)] valist.append(subset[subset['slide'].isin(validation)]) test = unq[int(len(unq) * cut / 2):int(len(unq) * cut)] telist.append(subset[subset['slide'].isin(test)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) test =
pd.concat(telist)
pandas.concat
"""Tests for time-related quality control functions.""" from datetime import datetime import pytz import pytest import pandas as pd from pandas.util.testing import assert_series_equal from pvanalytics.quality import time @pytest.fixture def times(): """One hour in Mountain Standard Time at 10 minute intervals. Notes ----- Copyright (c) 2019 SolarArbiter. See the file LICENSES/SOLARFORECASTARBITER_LICENSE at the top level directory of this distribution and at `<https://github.com/pvlib/ pvanalytics/blob/master/LICENSES/SOLARFORECASTARBITER_LICENSE>`_ for more information. """ MST = pytz.timezone('MST') return pd.date_range(start=datetime(2018, 6, 15, 12, 0, 0, tzinfo=MST), end=datetime(2018, 6, 15, 13, 0, 0, tzinfo=MST), freq='10T') def test_timestamp_spacing_date_range(times): """An index generated by pd.date_range has the expected spacing.""" assert_series_equal( time.spacing(times, times.freq), pd.Series(True, index=times) ) def test_timestamp_spacing_one_timestamp(times): """An index with only one timestamp has uniform spacing.""" assert_series_equal( time.spacing(times[[0]], times.freq), pd.Series(True, index=[times[0]]) ) def test_timestamp_spacing_one_missing(times): """The timestamp following a missing timestamp will be marked False.""" assert_series_equal( time.spacing(times[[0, 2, 3]], times.freq), pd.Series([True, False, True], index=times[[0, 2, 3]]) ) def test_timestamp_spacing_too_frequent(times): """Timestamps with too high frequency will be marked False.""" assert_series_equal( time.spacing(times, '30min'), pd.Series([True] + [False] * (len(times) - 1), index=times) ) def _get_sunrise(location, tz): # Get sunrise times for 2020 days = pd.date_range( start='1/1/2020', end='1/1/2021', freq='D', tz=tz ) return location.get_sun_rise_set_transit( days, method='spa' ).sunrise @pytest.mark.parametrize("tz, observes_dst", [('MST', False), ('America/Denver', True)]) def test_has_dst(tz, observes_dst, albuquerque): sunrise = _get_sunrise(albuquerque, tz) dst = time.has_dst(sunrise, 'America/Denver') expected = pd.Series(False, index=sunrise.index) expected.loc['2020-03-08'] = observes_dst expected.loc['2020-11-01'] = observes_dst assert_series_equal( expected, dst, check_names=False ) @pytest.mark.parametrize("tz, observes_dst", [('MST', False), ('America/Denver', True)]) def test_has_dst_input_series_not_localized(tz, observes_dst, albuquerque): sunrise = _get_sunrise(albuquerque, tz) sunrise = sunrise.tz_localize(None) expected = pd.Series(False, index=sunrise.index) expected.loc['2020-03-08'] = observes_dst expected.loc['2020-11-01'] = observes_dst dst = time.has_dst(sunrise, 'America/Denver') assert_series_equal( expected, dst ) @pytest.mark.parametrize("tz, observes_dst", [('MST', False), ('America/Denver', True)]) @pytest.mark.parametrize("freq", ['15T', '30T', 'H']) def test_has_dst_rounded(tz, freq, observes_dst, albuquerque): sunrise = _get_sunrise(albuquerque, tz) # With rounding to 1-hour timestamps we need to reduce how many # days we look at. window = 7 if freq != 'H' else 1 expected = pd.Series(False, index=sunrise.index) expected.loc['2020-03-08'] = observes_dst expected.loc['2020-11-01'] = observes_dst dst = time.has_dst( sunrise.dt.round(freq), 'America/Denver', window=window ) assert_series_equal(expected, dst, check_names=False) def test_has_dst_missing_data(albuquerque): sunrise = _get_sunrise(albuquerque, 'America/Denver') sunrise.loc['3/5/2020':'3/10/2020'] = pd.NaT sunrise.loc['7/1/2020':'7/20/2020'] = pd.NaT # Doesn't raise since both sides still have some data expected = pd.Series(False, index=sunrise.index) expected['3/8/2020'] = True expected['11/1/2020'] = True assert_series_equal( time.has_dst(sunrise, 'America/Denver'), expected ) missing_all_before = sunrise.copy() missing_all_after = sunrise.copy() missing_all_before.loc['3/1/2020':'3/5/2020'] = pd.NaT missing_all_after.loc['3/8/2020':'3/14/2020'] = pd.NaT missing_data_message = r'No data at .*\. ' \ r'Consider passing a larger `window`.' # Raises for missing data before transition date with pytest.raises(ValueError, match=missing_data_message): time.has_dst(missing_all_before, 'America/Denver') # Raises for missing data after transition date with pytest.raises(ValueError, match=missing_data_message): time.has_dst(missing_all_after, 'America/Denver') # Raises for missing data before and after the shift date sunrise.loc['3/1/2020':'3/7/2020'] = pd.NaT sunrise.loc['3/9/2020':'3/14/2020'] = pd.NaT with pytest.raises(ValueError, match=missing_data_message): time.has_dst(sunrise, 'America/Denver') with pytest.warns(UserWarning, match=missing_data_message): result = time.has_dst(sunrise, 'America/Denver', missing='warn') expected.loc['3/8/2020'] = False assert_series_equal(expected, result) sunrise.loc['3/1/2020':'3/14/2020'] = pd.NaT with pytest.warns(UserWarning, match=missing_data_message): result = time.has_dst(sunrise, 'America/Denver', missing='warn') assert_series_equal(expected, result) with pytest.raises(ValueError, match=missing_data_message): time.has_dst(sunrise, 'America/Denver') def test_has_dst_gaps(albuquerque): sunrise = _get_sunrise(albuquerque, 'America/Denver') sunrise.loc['3/5/2020':'3/10/2020'] = pd.NaT sunrise.loc['7/1/2020':'7/20/2020'] = pd.NaT sunrise.dropna(inplace=True) expected = pd.Series(False, index=sunrise.index) expected['11/1/2020'] = True assert_series_equal( time.has_dst(sunrise, 'America/Denver'), expected ) def test_has_dst_no_dst_in_date_range(albuquerque): sunrise = _get_sunrise(albuquerque, 'America/Denver') july = sunrise['2020-07-01':'2020-07-31'] february = sunrise['2020-02-01':'2020-03-05'] expected_july = pd.Series(False, index=july.index) expected_march = pd.Series(False, index=february.index) assert_series_equal( expected_july, time.has_dst(july, 'America/Denver') ) assert_series_equal( expected_march, time.has_dst(february, 'MST') ) @pytest.fixture(scope='module', params=['H', '15T', 'T']) def midday(request, albuquerque): solar_position = albuquerque.get_solarposition( pd.date_range( start='1/1/2020', end='3/1/2020', closed='left', tz='MST', freq=request.param ) ) mid_day = (solar_position['zenith'] < 87).groupby( solar_position.index.date ).apply( lambda day: (day[day].index.min() + ((day[day].index.max() - day[day].index.min()) / 2)) ) mid_day = mid_day.dt.hour * 60 + mid_day.dt.minute mid_day.index = pd.DatetimeIndex(mid_day.index, tz='MST') return mid_day def requires_ruptures(test): """Skip `test` if ruptures is not installed.""" try: import ruptures # noqa: F401 has_ruptures = True except ImportError: has_ruptures = False return pytest.mark.skipif( not has_ruptures, reason="requires ruptures")(test) @requires_ruptures def test_shift_ruptures_no_shift(midday): """Daytime mask with no time-shifts yields a series with 0s for shift amounts.""" shift_mask, shift_amounts = time.shifts_ruptures( midday, midday ) assert not shift_mask.any() assert_series_equal( shift_amounts, pd.Series(0, index=midday.index, dtype='int64'), check_names=False ) @requires_ruptures def test_shift_ruptures_positive_shift(midday): """Every day shifted 1 hour later yields a series with shift of 60 for each day.""" shifted = _shift_between( midday, 60, start='2020-01-01', end='2020-02-29' ) expected_shift_mask = pd.Series(False, index=midday.index) expected_shift_mask['2020-01-01':'2020-02-29'] = True shift_mask, shift_amounts = time.shifts_ruptures(shifted, midday) assert_series_equal(shift_mask, expected_shift_mask, check_names=False) assert_series_equal( shift_amounts, pd.Series(60, index=shifted.index, dtype='int64'), check_names=False ) @requires_ruptures def test_shift_ruptures_negative_shift(midday): shifted = _shift_between( midday, -60, start='2020-01-01', end='2020-02-29' ) expected_shift_mask =
pd.Series(False, index=midday.index)
pandas.Series
#%% #==============================================================================# # # # Title: Make PostCodes Dataset # # Purpose: To download and process the data for the App # # Notes: ... # # Author: chrimaho # # Created: 26/Dec/2020 # # References: ... # # Sources: ... # # Edited: ... # # # #==============================================================================# #------------------------------------------------------------------------------# # # # Set Up #### # # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------# # Import packages #### #------------------------------------------------------------------------------# # -*- coding: utf-8 -*- # # import click #<-- Interactivity import logging #<-- For ease of debugging from pathlib import Path #<-- Because we need a path forward from dotenv import find_dotenv, load_dotenv #<-- It's nice to have an environment import pandas as pd #<-- Frame your Data from pprint import pprint import os import sys #------------------------------------------------------------------------------# # Import sources #### #------------------------------------------------------------------------------# # Set root directory ---- project_dir = Path(__file__).resolve().parents[2] # Add directory to Sys path ---- try: # The directory "." is added to the Path environment so modules can easily be called between files. if not os.path.abspath(project_dir) in sys.path: sys.path.append(os.path.abspath(project_dir)) except: raise ModuleNotFoundError("The custom modules were not able to be loaded.") # Import modules ---- from src import utils from src import sources #------------------------------------------------------------------------------# # # # Main Part #### # # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------# # Process Data #### #------------------------------------------------------------------------------# # Extract the data ---- def set_DataFrame(raw): # Assertions assert isinstance(raw, dict) assert list(raw)==['header','dataSets','structure'] # Get data data = raw['dataSets'][0]['observations'] # Coerce to DataFrame data =
pd.DataFrame(data)
pandas.DataFrame
import matplotlib as mpl # mpl.use('Agg') import matplotlib.pyplot as plt from shutil import copyfile import fortranformat as ff from itertools import zip_longest from scipy.signal import argrelextrema, argrelmin import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from ast import literal_eval as make_tuple import pyshtools from scipy.io import loadmat from pathlib import Path from scipy.special import lpmn from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import copy import cartopy.feature as cfeature """ author: <NAME> contact: <EMAIL> description: A scipt containing tools to post-process the orbits, obtained from a forward simulation (and also recovery), from epos-oc. """ def create_element_lines(ffp, splitstring): #get titles with open(ffp) as f: LINES = f.readlines() starts = [] for i,line in enumerate(LINES): if line.startswith(splitstring): starts.append(i) ends=[] for i in range(len(starts)): ends.append(starts[i]+16) blocks = list(zip(starts,ends)) format_float = ff.FortranRecordWriter('(E19.13)') for block in blocks: with open(ffp) as fp: for i, line in enumerate(fp): if i in range(block[0],block[1]): if i==block[0]: outfile = open('%s_ELEMENTSnew.txt' %line.strip(),'w') outfile.write('\n') outfile.write(' --- Begin initial elements GRACE-C\n') if i>block[0]+1: if line.startswith('Sat'): outfile.write(' --- End initial elements GRACE-C\n') outfile.write('\n') outfile.write(' --- Begin initial elements GRACE-D\n') if line.startswith('ELEMENT'): val = line.strip().split() val[5] = str(format_float.write([np.float(val[5])])).replace('E','e') val[6] = str(format_float.write([np.float(val[6])])).replace('E', 'e') if val[7] == '0201201': val[7] = '1804701' if val[7] == '0201202': val[7] = '1804702' str_new2 = ('%7.7s' '%4.3s' '%2.1i' '%2.1i' '%2.1i' '%20.19s' '%20.19s' '%8.7s') \ % (val[0], val[1], int(val[2]), int(val[3]), int(val[4]), val[5], val[6], val[7]) outfile.write('%s\n' %str_new2) if i==block[1]-1: outfile.write(' --- End initial elements GRACE-D') break # # # def create_element_lines(ffp, splitstring): # #input: Unformatted file that contains orbit elements needed to start each of the runs for GRACE-FO simulation # #output: Orbit elements that can be used as input for prepare_EPOSIN_4_orbit_integration.sh (located at # #/GFZ/project/f_grace/NGGM_SIM/SIM_FORWARD ) # with open(ffp) as f: # lines = f.read().splitlines() # splits = [i for i in lines if i.startswith(splitstring)] # print(splits) # n = 2 # group size # m = 1 # overlap size # splits_grouped = [splits[i:i + n] for i in range(0, len(splits), n - m)] # print(splits_grouped) # # # # # print(lines) # # split = [i for i in lines if i.startswith('PP')] # for i in splits_grouped: # if len(i) > 1: # start = i[0] # end = i[1] # out = '%s_ELEMENT_lines.txt' % (start.strip()) # with open(ffp) as infile, open(out, 'w') as outfile: # copy = False # titlewritten0 = False # titlewritten1 = False # firsttime6 = False # linesread = 0 # outfile.write("\n") # # for line in infile: # if line.strip() == start.strip(): # copy = True # continue # elif line.strip() == end.strip(): # copy = False # continue # elif copy: # linesread += 1 # # if not titlewritten0: # outfile.write(' --- Begin initial elements GRACE-C\n') # titlewritten0 = True # if line.startswith( # 'ELEMENT') and titlewritten0: # if line starts with ELEMENT and the first title has been written # val = list(filter(None, line.strip().split(' ')))[0:-3] # format_float = ff.FortranRecordWriter('(E19.13)') # val5 = str(format_float.write([np.float(val[5])])) # val6 = str(format_float.write([np.float(val[6])])) # # val5 = val5.replace('E', 'e') # val6 = val6.replace('E', 'e') # # # if val[7] == '0201201': val[7] = '1804701' # if val[7] == '0201202': val[7] = '1804702' # str_new2 = ('%7.7s' '%4.3s' '%2.1i' '%2.1i' '%2.1i' '%20.19s' '%20.19s' '%8.7s') % (val[0], val[1], int(val[2]), int(val[3]), int(val[4]), val5, val6, val[7]) # # # # outfile.write("\n") # if int(val[2]) < 6: # outfile.write(str_new2) # outfile.write("\n") # # if int(val[ # 2]) == 6 and not titlewritten1: # if element six has been reached and no 'end1' has been written yet: # if not firsttime6: # titlewritten1 = True # # titlewritten2 = True # outfile.write(str_new2) # outfile.write("\n") # outfile.write(' --- End initial elements GRACE-C\n\n') # outfile.write(' --- Begin initial elements GRACE-D\n') # # if int(val[2]) == 6: # print(linesread) # if linesread > 7: # outfile.write(str_new2) # outfile.write("\n") # # outfile.write(' --- End initial elements GRACE-D') # outfile.write("\n") # outfile.write('\n') # outfile.close() # infile.close() def files(path): #input: path to a directory #output: files within the directory (omitting nested directories) for file in os.listdir(path): if os.path.isfile(os.path.join(path, file)): yield file def create_case_directories(fp, fp_out): #function to prepare the case directories for each of the simulations specified for the GRACE-FO project. #It will element_files = [] # current_dir = os.path.dirname(__file__) for file in files(fp): element_files.append(file) IDs = ['PP.1', 'PP.2'] altitudes = [490, 490] extens = [0, 0] angles = [89, 89] seperations = [200, 100] repeats = [30, 30] simdirs = ['FD', 'FD'] df =
pd.DataFrame(columns=['id', 'altitude', 'extens', 'seperation', 'repeatvals', 'sim_direction'])
pandas.DataFrame
"""Principal component analysis module.""" from ase.atoms import Atoms import pandas as pd from sklearn.preprocessing import StandardScaler from ase.io import Trajectory import numpy as np from ase.db import connect from sklearn.decomposition import PCA import matplotlib.pyplot as plt from ase.constraints import constrained_indices from finetuna.ml_potentials.ocp_models.gemnet_t.int_descriptor_gemnet_t import ( IntDescriptorGemNetT, ) from tqdm import tqdm class TrajPCA: """ Perform PCA on a given trajectory object. Then save that analysis for use on later atoms objects parameters. """ def __init__( self, traj, gemnet_descriptor_model_checkpoint_path=None, ): """ Arguments ---------- traj: Trajectory the parent Trajectory for this system to be compared to """ if gemnet_descriptor_model_checkpoint_path is not None: self.des_type = "ocp" self.descriptor_model = IntDescriptorGemNetT( gemnet_descriptor_model_checkpoint_path ) else: from flare_pp._C_flare import Structure, B2 self.flare_structure_class = Structure self.des_type = "flare" self.species_map = init_species_map(traj[0]) self.b2calc = B2( "chebyshev", "quadratic", [0, 5], [], [len(self.species_map), 12, 3], ) energies = [] des_list = [] energies.append([j.get_potential_energy() for j in traj]) for j, atoms in tqdm( enumerate(traj), total=len(traj), position=1, desc="init PCA", disable=False, ): des = self.get_des(atoms) des_reshape = [] for a in des: for b in a: des_reshape.extend(np.ravel(np.array(b))) des_list.append(des_reshape) columns = [] for i in range(np.shape(des_list[0])[-1]): columns.append(i) df =
pd.DataFrame(des_list)
pandas.DataFrame
# Copyright (c) 2015, Ecole Polytechnique Federale de Lausanne, Blue Brain Project # All rights reserved. # # This file is part of NeuroM <https://github.com/BlueBrain/NeuroM> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of # its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import warnings from pathlib import Path import neurom as nm import pandas as pd from neurom.apps import morph_stats as ms from neurom.exceptions import ConfigError from neurom.features import _NEURITE_FEATURES, _MORPHOLOGY_FEATURES, _POPULATION_FEATURES import pytest from numpy.testing import assert_array_equal, assert_almost_equal from pandas.testing import assert_frame_equal DATA_PATH = Path(__file__).parent.parent / 'data' SWC_PATH = DATA_PATH / 'swc' REF_CONFIG = { 'neurite': { 'section_lengths': ['max', 'sum'], 'section_volumes': ['sum'], 'section_branch_orders': ['max', 'raw'], 'segment_midpoints': ['max'], 'max_radial_distance': ['mean'], }, 'neurite_type': ['AXON', 'APICAL_DENDRITE', 'BASAL_DENDRITE', 'ALL'], 'morphology': { 'soma_radius': ['mean'], 'max_radial_distance': ['mean'], } } REF_CONFIG_NEW = { 'neurite': { 'section_lengths': {'modes': ['max', 'sum']}, 'section_volumes': {'modes': ['sum']}, 'section_branch_orders': {'modes': ['max', 'raw']}, 'segment_midpoints': {'modes': ['max']}, 'max_radial_distance': {'modes': ['mean']}, }, 'neurite_type': ['AXON', 'APICAL_DENDRITE', 'BASAL_DENDRITE', 'ALL'], 'morphology': { 'soma_radius': {'modes': ['mean']}, 'max_radial_distance': {'modes': ['mean']}, } } REF_OUT = { 'morphology': { 'mean_soma_radius': 0.13065629648763766, 'mean_max_radial_distance': 99.5894610648815, }, 'axon': { 'sum_section_lengths': 207.87975220908129, 'max_section_lengths': 11.018460736176685, 'max_section_branch_orders': 10, 'raw_section_branch_orders': [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10], 'sum_section_volumes': 276.73857657289523, 'max_segment_midpoints_0': 0.0, 'max_segment_midpoints_1': 0.0, 'max_segment_midpoints_2': 49.520305964149998, 'mean_max_radial_distance': 82.44254511788921, }, 'all': { 'sum_section_lengths': 840.68521442251949, 'max_section_lengths': 11.758281556059444, 'max_section_branch_orders': 10, 'raw_section_branch_orders': [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10], 'sum_section_volumes': 1104.9077419665782, 'max_segment_midpoints_0': 64.401674984050004, 'max_segment_midpoints_1': 48.48197694465, 'max_segment_midpoints_2': 53.750947521650005, 'mean_max_radial_distance': 99.5894610648815, }, 'apical_dendrite': { 'sum_section_lengths': 214.37304577550353, 'max_section_lengths': 11.758281556059444, 'max_section_branch_orders': 10, 'raw_section_branch_orders': [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10], 'sum_section_volumes': 271.9412385728449, 'max_segment_midpoints_0': 64.401674984050004, 'max_segment_midpoints_1': 0.0, 'max_segment_midpoints_2': 53.750947521650005, 'mean_max_radial_distance': 99.5894610648815, }, 'basal_dendrite': { 'sum_section_lengths': 418.43241643793476, 'max_section_lengths': 11.652508126101711, 'max_section_branch_orders': 10, 'raw_section_branch_orders': [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10], 'sum_section_volumes': 556.22792682083821, 'max_segment_midpoints_0': 64.007872333250006, 'max_segment_midpoints_1': 48.48197694465, 'max_segment_midpoints_2': 51.575580778049996, 'mean_max_radial_distance': 94.43342438865741, }, } def test_extract_stats_single_morphology(): m = nm.load_morphology(SWC_PATH / 'Neuron.swc') res = ms.extract_stats(m, REF_CONFIG) assert set(res.keys()) == set(REF_OUT.keys()) for k in ('morphology', 'all', 'axon', 'basal_dendrite', 'apical_dendrite'): assert set(res[k].keys()) == set(REF_OUT[k].keys()) for kk in res[k].keys(): assert_almost_equal(res[k][kk], REF_OUT[k][kk], decimal=4) def test_extract_stats_new_format(): m = nm.load_morphology(SWC_PATH / 'Neuron.swc') res = ms.extract_stats(m, REF_CONFIG_NEW) assert set(res.keys()) == set(REF_OUT.keys()) for k in ('morphology', 'all', 'axon', 'basal_dendrite', 'apical_dendrite'): assert set(res[k].keys()) == set(REF_OUT[k].keys()) for kk in res[k].keys(): assert_almost_equal(res[k][kk], REF_OUT[k][kk], decimal=4) def test_stats_new_format_set_arg(): m = nm.load_morphology(SWC_PATH / 'Neuron.swc') config = { 'neurite': { 'section_lengths': {'kwargs': {'neurite_type': 'AXON'}, 'modes': ['max', 'sum']}, }, 'neurite_type': ['AXON', 'APICAL_DENDRITE', 'BASAL_DENDRITE', 'ALL'], 'morphology': { 'soma_radius': {'modes': ['mean']}, } } res = ms.extract_stats(m, config) assert set(res.keys()) == {'morphology', 'axon'} assert set(res['axon'].keys()) == {'max_section_lengths', 'sum_section_lengths'} assert set(res['morphology'].keys()) == {'mean_soma_radius'} def test_extract_stats_scalar_feature(): m = nm.load_morphology(DATA_PATH / 'neurolucida' / 'bio_neuron-000.asc') config = { 'neurite_type': ['ALL'], 'neurite': { 'number_of_forking_points': ['max'], }, 'morphology': { 'soma_volume': ['sum'], } } res = ms.extract_stats(m, config) assert res == {'all': {'max_number_of_forking_points': 277}, 'morphology': {'sum_soma_volume': 1424.4383771584492}} def test_extract_dataframe(): # Vanilla test morphs = nm.load_morphologies([SWC_PATH / 'Neuron.swc', SWC_PATH / 'simple.swc']) actual = ms.extract_dataframe(morphs, REF_CONFIG_NEW) # drop raw features as they require too much test data to mock actual = actual.drop(columns='raw_section_branch_orders', level=1) expected = pd.read_csv(Path(DATA_PATH, 'extracted-stats.csv'), header=[0, 1], index_col=0) assert_frame_equal(actual, expected, check_dtype=False) # Test with a single morphology in the population morphs = nm.load_morphologies(SWC_PATH / 'Neuron.swc') actual = ms.extract_dataframe(morphs, REF_CONFIG_NEW) # drop raw features as they require too much test data to mock actual = actual.drop(columns='raw_section_branch_orders', level=1) assert_frame_equal(actual, expected.iloc[[0]], check_dtype=False) # Test with a config without the 'morphology' key morphs = nm.load_morphologies([Path(SWC_PATH, name) for name in ['Neuron.swc', 'simple.swc']]) config = {'neurite': {'section_lengths': ['sum']}, 'neurite_type': ['AXON', 'APICAL_DENDRITE', 'BASAL_DENDRITE', 'ALL']} actual = ms.extract_dataframe(morphs, config) idx = pd.IndexSlice expected = expected.loc[:, idx[:, ['name', 'sum_section_lengths']]] assert_frame_equal(actual, expected, check_dtype=False) # Test with a Morphology argument m = nm.load_morphology(Path(SWC_PATH, 'Neuron.swc')) actual = ms.extract_dataframe(m, config) assert_frame_equal(actual, expected.iloc[[0]], check_dtype=False) # Test with a List[Morphology] argument morphs = [nm.load_morphology(Path(SWC_PATH, name)) for name in ['Neuron.swc', 'simple.swc']] actual = ms.extract_dataframe(morphs, config) assert_frame_equal(actual, expected, check_dtype=False) # Test with a List[Path] argument morphs = [Path(SWC_PATH, name) for name in ['Neuron.swc', 'simple.swc']] actual = ms.extract_dataframe(morphs, config) assert_frame_equal(actual, expected, check_dtype=False) # Test without any neurite_type keys, it should pick the defaults config = {'neurite': {'total_length_per_neurite': ['sum']}} actual = ms.extract_dataframe(morphs, config) expected_columns = pd.MultiIndex.from_tuples( [('property', 'name'), ('axon', 'sum_total_length_per_neurite'), ('basal_dendrite', 'sum_total_length_per_neurite'), ('apical_dendrite', 'sum_total_length_per_neurite'), ('all', 'sum_total_length_per_neurite')]) expected = pd.DataFrame( columns=expected_columns, data=[['Neuron.swc', 207.87975221, 418.43241644, 214.37304578, 840.68521442], ['simple.swc', 15., 16., 0., 31., ]])
assert_frame_equal(actual, expected, check_dtype=False)
pandas.testing.assert_frame_equal
## Change backend to tensorflow by editing $HOME/.keras/keras.json ## "backend": "tensorflow" ## Add modules that are necessary import pandas as pd import numpy as np import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split import seaborn as sns import keras from keras.models import Sequential from keras.layers import Dense, Dropout from scipy import interp from sklearn.metrics import roc_curve, auc from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import StandardScaler ##read in the data shared =
pd.read_table("data/baxter.0.03.subsample.shared")
pandas.read_table
#!python3 # -*- coding:utf-8 -*- import numpy as np import pandas as pd ''' This source code is a sample of using pandas. data concat each dataframe. ''' df1 =
pd.read_csv('201704health.csv', encoding='utf-8', index_col='日付', parse_dates=True)
pandas.read_csv
import pandas as pd import sys import os import pysam import json sys.stderr = open(snakemake.log[0], "w") sys.stdout = open(snakemake.log[0], "a") KRAKEN_FILTER_KRITERIA = "D" print(snakemake.params.get("voc")) initial_reads_df = pd.DataFrame() for sample, file in zip(snakemake.params.samples, snakemake.input.reads_unfiltered): with open(file) as read_json: number_reads = json.load(read_json) raw_reads = int(number_reads["summary"]["before_filtering"]["total_reads"]) trimmed_reads = int(number_reads["summary"]["after_filtering"]["total_reads"]) initial_reads_df = initial_reads_df.append( { "# raw reads": raw_reads, "# trimmed reads": trimmed_reads, "sample": sample, }, ignore_index=True, ) initial_reads_df = initial_reads_df.set_index("sample") initial_reads_df = initial_reads_df[["# raw reads", "# trimmed reads"]] filtered_reads_df = pd.DataFrame() for sample, file in zip(snakemake.params.samples, snakemake.input.reads_used_for_assembly): infile = open(file, "r") for line in infile.read().splitlines(): try: num_reads = int(line)/4*2 except: num_reads = 0 filtered_reads_df = filtered_reads_df.append( { "# used reads": int(num_reads), "sample": sample, }, ignore_index=True, ) infile.close() filtered_reads_df = filtered_reads_df.set_index("sample") initial_df = pd.DataFrame() for sample, file in zip(snakemake.params.samples, snakemake.input.initial_contigs): contigs = {} if os.stat(file).st_size == 0: contigs[sample] = "" else: with open(file, "r") as fasta_unordered: for line in fasta_unordered.read().splitlines(): if line.startswith(">"): key = line contigs[key] = "" else: contigs[key] += line length_initial = 0 for key in contigs: if len(contigs[key]) > length_initial: length_initial = len(contigs[key]) initial_df = initial_df.append( { "initial contig (bp)": int(length_initial), "sample": sample, }, ignore_index=True, ) final_df =
pd.DataFrame()
pandas.DataFrame
import zipfile import os import pandas as pd import numpy as np import matplotlib.pyplot as plt #%matplotlib inline import requests import urllib proxy="http://127.0.0.1:1080" # 创建一个ProxyHandler对象 proxy_support=urllib.request.ProxyHandler({'http':proxy}) # 创建一个opener对象 opener = urllib.request.build_opener(proxy_support) # 给request装载opener urllib.request.install_opener(opener) print("download and unzip files") dates = pd.date_range(pd.to_datetime('2001-05-01'),
pd.to_datetime('2018-06-30')
pandas.to_datetime
from unittest import TestCase import numpy as np import pandas as pd import pandas.util.testing as tm import ts_charting.figure as figure from ts_charting.figure import process_series class Testprocess_data(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_already_aligned(self): plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) plot_series = process_series(series, plot_index) tm.assert_almost_equal(series, plot_series) tm.assert_almost_equal(plot_series.index, plot_index) def test_partial_plot(self): """ Test plotting series that is a subset of plot_index. Should align and fill with nans """ plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) series = series[:50] # only first 50 plot_series = process_series(series, plot_index) # have same index tm.assert_almost_equal(plot_series.index, plot_index) assert plot_series.count() == 50 assert np.all(plot_series[50:].isnull()) # method=None so fill with nan assert np.all(plot_series[:50] == series[:50]) def test_unaligned_indexes(self): """ Test when series.index and plot_index have no common datetimes """ plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) # move days to 11 PM the night before shift_series = series.tshift(-1, '1h') plot_series = process_series(shift_series, plot_index) # without method, data doesn't align and we nothing but nans tm.assert_almost_equal(plot_series.index, plot_index) # index aligh properly assert np.all(plot_series.isnull()) # no data # method = 'ffill' plot_series = process_series(shift_series, plot_index, method='ffill') # without method, data doesn't align and we nothing but nans tm.assert_almost_equal(plot_series.index, plot_index) # index align # since we're forward filling a series we tshifted into past # plot_series should just equal the original series tm.assert_almost_equal(plot_series, series) def test_different_freqs(self): """ Tests indexes of differeing frequencies. This is more of repeat test of test_partial_plot but with many holes instead of one half missing value. """ plot_index = pd.date_range(start="2000-01-01", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) grouped_series = series.resample('MS', 'max') plot_series = process_series(grouped_series, plot_index)
tm.assert_almost_equal(plot_series.index, plot_index)
pandas.util.testing.assert_almost_equal
from glob import glob import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns from sklearn.preprocessing import QuantileTransformer from defaults import DATA_PATH, MAX_INTEGER def anova_prep(df): df = df.groupby(['subjectNo', 'condition'])['response'].mean() df = df.unstack() tmp = [] for subject in df.index: for condition in df.loc[subject].keys(): tmp.append( { 'subjectNo': subject, 'condition': condition, 'rating': df.loc[subject, condition], } ) return pd.DataFrame(tmp) def average_condition_rating_within_subject(df): tmp = df.groupby(['subjectNo', 'condition'])['response'].mean() return tmp.unstack() def average_std_of_ratings(df): return df.groupby(['subjectNo', 'condition'])['response'].std().\ groupby('condition').mean() def box_plot(df, study_type, savefig=False, dpi=300): tmp = df.groupby(['subjectNo', 'condition'])['response'].mean() tmp = tmp.unstack() tmp.columns = [s.replace('_', ' ') for s in tmp.columns] plt.figure(figsize=(16, 6)) sns.boxplot(data=tmp) plt.ylabel('rating') plt.xlabel('condition') if savefig: plt.savefig(f"figs/study_type_{study_type}_boxplot.png", dpi=dpi) else: plt.show() def extract_condition(df): if 'condition' not in df: def process(x): return "_".join(x[-1].split('_')[:-1]) df['condition'] = df['stimulus'].str.split('/').apply(process) return df def extract_subject(df): if 'subjectNo' not in df: df['subjectNo'] = df['stimulus'].str.split("/").apply( lambda x: x[1].split("_")[1]) return df def extract_trials(df): df = df[df['trial_type'] == 'audio-slider-response'] df = df[~df['stimulus'].str.contains("train")] return df def filter_by_basic(df, threshold=0.6): """Find subjectNo where the BASIC condition was rated below threshold.""" tmp1 = df[df['condition'] == 'BASIC'].groupby(['subjectNo'])[ 'response'].min() > threshold tmp2 = tmp1[tmp1] print(f"N = {len(tmp2)}") return df[df['subjectNo'].isin(tmp2.keys())] def filter_by_control(df, threshold=0.6): """Find subjectNo where the CONTROL was rated greater than threshold.""" tmp1 = df[df['condition'] == 'CONTROL'].groupby(['subjectNo'])[ 'response'].min() > threshold tmp2 = tmp1[tmp1] print(f"N = {len(tmp2)}") return df[df['subjectNo'].isin(tmp2.keys())] def get_good_participants(num_reject=2): """Filter participants by number of rejections""" pattern = os.path.join(DATA_PATH, 'participant_demographic_data/*.csv') files = glob(pattern) df =
pd.DataFrame()
pandas.DataFrame
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import pandas import tensorflow as tf from tensorflow.contrib import learn ### Training data # Downloads, unpacks and reads DBpedia dataset. dbpedia = learn.datasets.load_dataset('dbpedia') X_train, y_train =
pandas.DataFrame(dbpedia.train.data)
pandas.DataFrame
import chargerGuide import chargingMethod import findCurLoc import findDestination import findTheDistanceBetweenCoordinates as Dis import fastChargerMarker import slowChargerMarker import chargingStationMarker import pandas as pd import folium as g import osmnx as ox import networkx as nx import sys import io from PyQt5 import QtWidgets, QtWebEngineWidgets cur_lat = 0.0 cur_lng = 0.0 dst_lat = 0.0 dst_lng = 0.0 chargingMethod.guide() excel_source = pd.read_excel( 'ProjPrac/전기차-충전소-설치현황_20220316.xlsx', usecols=[1, 2, 3, 4, 5]) print("Please enter the area where you want to find the location of the charging station. ex)청주") str_want_go = input() int_line = excel_source['주소'].str.contains(str_want_go) want_go_excel = excel_source[int_line] want_go_excel.to_excel( 'ProjPrac/result.xlsx', sheet_name='Result') cur_lat, cur_lng = findCurLoc.Find() excel_source = pd.read_excel( 'ProjPrac/result.xlsx', usecols=[1, 2, 3, 4, 5]) print("Please enter the type of car you want.\n" "SM3 Z.E, 레이EV, 소울EV, 닛산리프, 아이오닉EV, BMW i3, 스파크EV, 볼트EV, 테슬라") car = input() line = excel_source['지원차종'].str.contains(car) want_go_excel = excel_source[line] want_go_excel.to_excel( 'ProjPrac/result1.xlsx', sheet_name='Result') excel_source = pd.read_excel( 'ProjPrac/result1.xlsx', usecols=[1, 2, 3, 4, 5]) chargerGuide.guide() print("Pick a charger that you want between a fast charger and a slow charger\n" "Fast, Slow, No Problem") charger = input() if charger == "Fast": int_line1 = excel_source['급속충전기(대)'].astype(str).str.contains("1") int_line2 = excel_source['급속충전기(대)'].astype(str).str.contains("2") int_line3 = excel_source['급속충전기(대)'].astype(str).str.contains("3") int_line4 = excel_source['급속충전기(대)'].astype(str).str.contains("4") int_line5 = excel_source['급속충전기(대)'].astype(str).str.contains("5") int_line6 = excel_source['급속충전기(대)'].astype(str).str.contains("6") int_line7 = excel_source['급속충전기(대)'].astype(str).str.contains("7") int_line8 = excel_source['급속충전기(대)'].astype(str).str.contains("8") int_line9 = excel_source['급속충전기(대)'].astype(str).str.contains("9") want_go_excel = excel_source[int_line1] want_go_excel.to_excel( 'ProjPrac/result_charger_1.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line2] want_go_excel.to_excel( 'ProjPrac/result_charger_2.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line3] want_go_excel.to_excel( 'ProjPrac/result_charger_3.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line4] want_go_excel.to_excel( 'ProjPrac/result_charger_4.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line5] want_go_excel.to_excel( 'ProjPrac/result_charger_5.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line6] want_go_excel.to_excel( 'ProjPrac/result_charger_6.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line7] want_go_excel.to_excel( 'ProjPrac/result_charger_7.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line8] want_go_excel.to_excel( 'ProjPrac/result_charger_8.xlsx', sheet_name='Fast_Charger') want_go_excel = excel_source[int_line9] want_go_excel.to_excel( 'ProjPrac/result_charger_9.xlsx', sheet_name='Fast_Charger') excel_names = ['ProjPrac/result_charger_1.xlsx', 'ProjPrac/result_charger_2.xlsx', 'ProjPrac/result_charger_3.xlsx', 'ProjPrac/result_charger_4.xlsx', 'ProjPrac/result_charger_5.xlsx', 'ProjPrac/result_charger_6.xlsx', 'ProjPrac/result_charger_7.xlsx', 'ProjPrac/result_charger_8.xlsx', 'ProjPrac/result_charger_9.xlsx'] excels = [pd.ExcelFile(name) for name in excel_names] frames = [x.parse(x.sheet_names[0], header=None, index_col=None) for x in excels] frames[1:] = [df[1:] for df in frames[1:]] combined = pd.concat(frames) combined.to_excel( "ProjPrac/result_charger.xlsx", header=False, index=False) elif charger == "Slow": int_line1 = excel_source['완속충전기(대)'].astype(str).str.contains("1") int_line2 = excel_source['완속충전기(대)'].astype(str).str.contains("2") int_line3 = excel_source['완속충전기(대)'].astype(str).str.contains("3") int_line4 = excel_source['완속충전기(대)'].astype(str).str.contains("4") int_line5 = excel_source['완속충전기(대)'].astype(str).str.contains("5") int_line6 = excel_source['완속충전기(대)'].astype(str).str.contains("6") int_line7 = excel_source['완속충전기(대)'].astype(str).str.contains("7") int_line8 = excel_source['완속충전기(대)'].astype(str).str.contains("8") int_line9 = excel_source['완속충전기(대)'].astype(str).str.contains("9") want_go_excel = excel_source[int_line1] want_go_excel.to_excel( 'ProjPrac/result_charger_1.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line2] want_go_excel.to_excel( 'ProjPrac/result_charger_2.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line3] want_go_excel.to_excel( 'ProjPrac/result_charger_3.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line4] want_go_excel.to_excel( 'ProjPrac/result_charger_4.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line5] want_go_excel.to_excel( 'ProjPrac/result_charger_5.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line6] want_go_excel.to_excel( 'ProjPrac/result_charger_6.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line7] want_go_excel.to_excel( 'ProjPrac/result_charger_7.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line8] want_go_excel.to_excel( 'ProjPrac/result_charger_8.xlsx', sheet_name='Normal_Charger') want_go_excel = excel_source[int_line9] want_go_excel.to_excel( 'ProjPrac/result_charger_9.xlsx', sheet_name='Result') excel_names = ['ProjPrac/result_charger_1.xlsx', 'ProjPrac/result_charger_2.xlsx', 'ProjPrac/result_charger_3.xlsx', 'ProjPrac/result_charger_4.xlsx', 'ProjPrac/result_charger_5.xlsx', 'ProjPrac/result_charger_6.xlsx', 'ProjPrac/result_charger_7.xlsx', 'ProjPrac/result_charger_8.xlsx', 'ProjPrac/result_charger_9.xlsx'] excels = [pd.ExcelFile(name) for name in excel_names] frames = [x.parse(x.sheet_names[0], header=None, index_col=None) for x in excels] frames[1:] = [df[1:] for df in frames[1:]] combined =
pd.concat(frames)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 19 22:55:35 2020 @author: jingci """ import numpy as np import pandas as pd import pickle from RLBrain import RLBrain ''' Q-learning models for learning the position of target ''' class QLearningTable1(RLBrain): def __init__(self, actions, state): self.actions = actions # a list if state == "RAW": #The q_table without previous knowledge self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64) elif state == "MAP": #The q_table after map training f = open(RLBrain.FILEPATH + 'q_table1.txt', 'rb') self.q_table = pickle.load(f) f.close() elif state == "PATH": #The q_table after path training f = open(RLBrain.FILEPATH + 'path_qtable1.txt', 'rb') self.q_table = pickle.load(f) f.close() class QLearningTable2(RLBrain): def __init__(self, actions, state): self.actions = actions # a list if state == "RAW": #The q_table without previous knowledge self.q_table =
pd.DataFrame(columns=self.actions, dtype=np.float64)
pandas.DataFrame
# Copyright (c) 2020, 2021, NECSTLab, Politecnico di Milano. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NECSTLab nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # * Neither the name of Politecnico di Milano nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 20 09:43:46 2020 @author: alberto.parravicini """ import pandas as pd import json import os import numpy as np import functools from scipy.stats.mstats import gmean DEFAULT_RES_DIR = "../../../../grcuda-data/results/scheduling" # ASYNC_POLICY_NAME = "async" # If parsing new results; ASYNC_POLICY_NAME = "default" # If parsing older results; def load_data(input_date: str, skip_iter=0, remove_inf=True, remove_time_zero=True, benchmark="", phases=None) -> pd.DataFrame: """ Load the benchmark results located in the input sub-folder :param input_date: name of the folder where results are located, as a subfolder of DEFAULT_RES_DIR :param skip_iter: skip the first iterations for each benchmark, as they are considered warmup :param remove_inf: remove rows with infinite speedup value, as they are not useful :param remove_time_zero: if True, remove rows with 0 computation time; :param benchmark: load data only for the specified benchmark :param phases: list of benchmark phases to add as columns :return: a DataFrame containing the results """ input_path = os.path.join(DEFAULT_RES_DIR, input_date) # Load results as JSON; data_dict = {} for res in os.listdir(input_path): with open(os.path.join(input_path, res)) as f: if not benchmark or res.split("_")[6] == benchmark: data_dict[res] = json.load(f) phases_names = [] # Turn results into a pd.DataFrame; rows = [] for k, v in data_dict.items(): row = [] # Parse filename; benchmark, exec_policy, new_stream_policy, parent_stream_policy, dependency_policy, force_prefetch = k.split("_")[6:12] force_prefetch = force_prefetch == "True" row += [benchmark, exec_policy, new_stream_policy, parent_stream_policy, dependency_policy, force_prefetch, 0, 0, ""] # Retrieve other information; total_iterations = v["num_iterations"] cpu_validation = v["cpu_validation"] random_init = v["random_init"] size_dict = v["benchmarks"][benchmark][ASYNC_POLICY_NAME] row += [int(total_iterations), bool(cpu_validation), bool(random_init)] # Parse data for each input data size, and other settings;; for size, val_size in size_dict.items(): for realloc, val_realloc in val_size.items(): for reinit, val_reinit in val_realloc.items(): for block_size, val_block_size in val_reinit.items(): # Process each iteration; block_size_1d, block_size_2d = block_size.split(",") row[-6] = int(block_size_1d) row[-5] = int(block_size_2d) row[-4] = block_size_1d + ",8" # block_size_1d + "," + block_size_2d] for curr_iteration in val_block_size: num_iter = curr_iteration["iteration"] gpu_result = curr_iteration["gpu_result"] total_time_sec = curr_iteration["total_time_sec"] overhead_sec = curr_iteration["overhead_sec"] computation_sec = curr_iteration["computation_sec"] # Process phases; phases_time = [] if phases: phases_time = [p["time_sec"] for p in curr_iteration["phases"] if p["name"] in phases] if not phases_names: phases_names = [p["name"] for p in curr_iteration["phases"] if p["name"] in phases] # Add a new row; if (num_iter >= skip_iter): rows += [row + [int(size), bool(realloc), bool(reinit), num_iter - skip_iter, gpu_result, total_time_sec, overhead_sec, computation_sec] + phases_time] columns = ["benchmark", "exec_policy", "new_stream_policy", "parent_stream_policy", "dependency_policy", "force_prefetch", "block_size_1d", "block_size_2d", "block_size_str", "total_iterations", "cpu_validation", "random_init", "size", "realloc", "reinit", "num_iter", "gpu_result", "total_time_sec", "overhead_sec", "computation_sec"] + (phases_names if phases else []) data = pd.DataFrame(rows, columns=columns).sort_values(by=columns[:14], ignore_index=True) # Clean columns with 0 computation time; if remove_time_zero: data = data[data["computation_sec"] > 0].reset_index(drop=True) # Compute speedups; compute_speedup(data, ["benchmark", "new_stream_policy", "parent_stream_policy", "dependency_policy", "force_prefetch", "block_size_1d", "block_size_2d", "total_iterations", "cpu_validation", "random_init", "size", "realloc", "reinit"]) # Clean columns with infinite speedup; if remove_inf: data = data[data["computation_speedup"] != np.inf].reset_index(drop=True) return data def load_data_cuda(input_date: str, skip_iter=0, remove_inf=True, remove_time_zero=True, add_prefetch_as_policy=True) -> pd.DataFrame: """ Load the benchmark results located in the input sub-folder :param input_date: name of the folder where results are located, as a subfolder of DEFAULT_RES_DIR :param skip_iter: skip the first iterations for each benchmark, as they are considered warmup :param remove_inf: if True, remove rows with infinite speedup :param remove_time_zero: if True, remove rows with 0 computation time; :param add_prefetch_as_policy: if True, consider prefetching as part of the policy, to compute speedups w.r.t. sync with no prefetching :return: a DataFrame containing the results """ input_path = os.path.join(DEFAULT_RES_DIR, input_date) # Load results as pd.DataFrames; data_tmp = [] for f in os.listdir(input_path): # Parse filename; try: benchmark, exec_policy, size, block_size_1d, block_size_2d, force_prefetch, total_iterations, num_blocks = os.path.splitext(f)[0].split("_")[7:] force_prefetch = force_prefetch == "True" except ValueError: benchmark, exec_policy, size, block_size_1d, block_size_2d, total_iterations, num_blocks, force_prefetch = os.path.splitext(f)[0].split("_")[7:] + [False] tmp_data = pd.read_csv(os.path.join(input_path, f)) # Skip first lines; tmp_data = tmp_data.iloc[skip_iter:, :] # Add other information; tmp_data["benchmark"] = benchmark tmp_data["exec_policy"] = exec_policy tmp_data["force_prefetch"] = bool(force_prefetch) tmp_data["size"] = int(size) tmp_data["block_size_1d"] = int(block_size_1d) tmp_data["block_size_2d"] = int(block_size_2d) tmp_data["block_size_str"] = block_size_1d + ",8" # block_size_1d + "," + block_size_2d tmp_data["total_iterations"] = int(total_iterations) data_tmp += [tmp_data] data =
pd.concat(data_tmp)
pandas.concat
import pandas as pd from scipy import stats import numpy as np import re from mne.utils import warn import nilearn def glm_to_tidy(info, statistic, design_matrix, wide=True, order=None): """ Export GLM regression or contrast results in tidy format. Creates a long pandas data frame from regression results or contrast as computed by run_glm or compute_contrast. Parameters ---------- info : MNE.Info Instance of MNE info. statistic : nilearn data, Either dict of nilearn.stats.regression.RegressionResults as returned by run_glm, or nilearn.stats.contrasts.Contrast as returned by compute_contrast. design_matrix : DataFrame As specified in Nilearn. wide : Bool Should the returned dataframe be in wide format. If False, then the returned data will be in long format. order : list Order that the channels should be returned with. Returns ------- df : Tidy data frame, Data from statistic object in tidy data form. """ if isinstance(statistic, dict) and \ isinstance(statistic[list(statistic.keys())[0]], nilearn.glm.regression.RegressionResults): df = _tidy_RegressionResults(info, statistic, design_matrix) elif isinstance(statistic, nilearn.glm.contrasts.Contrast): df = _tidy_Contrast(info, statistic, design_matrix) else: raise TypeError( 'Unknown statistic type. Expected dict of RegressionResults ' f'or Contrast type. Received {type(statistic)}') if wide: df = _tidy_long_to_wide(df, expand_output=True) if order is not None: df['old_index'] = df.index df = df.set_index('ch_name') df = df.loc[order, :] df['ch_name'] = df.index df.index = df['old_index'] df.drop(columns='old_index', inplace=True) df.rename_axis(None, inplace=True) return df def _tidy_Contrast(data, glm_est, design_matrix): df = pd.DataFrame() for idx, ch in enumerate(data.ch_names): df = pd.concat([ df, pd.DataFrame({'ch_name': ch, 'ContrastType': glm_est.contrast_type, 'variable': "effect", 'value': glm_est.effect[0][idx]}, index=[0]), pd.DataFrame({'ch_name': ch, 'ContrastType': glm_est.contrast_type, 'variable': "p_value", 'value': glm_est.p_value()[idx]}, index=[1]), pd.DataFrame({'ch_name': ch, 'ContrastType': glm_est.contrast_type, 'variable': "stat", 'value': glm_est.stat()[idx]}, index=[2]), pd.DataFrame({'ch_name': ch, 'ContrastType': glm_est.contrast_type, 'variable': "z_score", 'value': glm_est.z_score()[idx]}, index=[3]), ], ignore_index=True) return df def _tidy_RegressionResults(data, glm_est, design_matrix): if not (data.ch_names == list(glm_est.keys())): warn("MNE data structure does not match regression results") theta_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) t_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) df_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) p_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) mse_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) se_estimates = np.zeros((len(glm_est), len(design_matrix.columns))) for idx, name in enumerate(glm_est.keys()): theta_estimates[idx, :] = glm_est[name].theta.T df_estimates[idx, :] = glm_est[name].df_model mse_estimates[idx, :] = glm_est[name].MSE[0] for cond_idx, cond in enumerate(design_matrix.columns): t_estimates[idx, cond_idx] = glm_est[name].t( column=cond_idx) p_estimates[idx, cond_idx] = 2 * stats.t.cdf( -1.0 * np.abs(t_estimates[idx, cond_idx]), df=df_estimates[idx, cond_idx]) se_estimates[idx, cond_idx] = np.sqrt(np.diag( glm_est[name].vcov()))[cond_idx] list_vals = [0] * ((len(data.ch_names) * len(design_matrix.columns) * 6)) idx = 0 for ch_idx, ch in enumerate(data.ch_names): for cond_idx, cond in enumerate(design_matrix.columns): list_vals[0 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "theta", 'value': theta_estimates[ch_idx][cond_idx]} list_vals[1 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "t", 'value': t_estimates[ch_idx][cond_idx]} list_vals[2 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "df", 'value': df_estimates[ch_idx][cond_idx]} list_vals[3 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "p_value", 'value': p_estimates[ch_idx][cond_idx]} list_vals[4 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "mse", 'value': mse_estimates[ch_idx][cond_idx]} list_vals[5 + idx] = {'ch_name': ch, 'Condition': cond, 'variable': "se", 'value': se_estimates[ch_idx][cond_idx]} idx += 6 dict_vals, i = {}, 0 for entry in list_vals: dict_vals[i] = {"ch_name": entry['ch_name'], "Condition": entry['Condition'], "variable": entry['variable'], "value": entry['value']} i = i + 1 df =
pd.DataFrame.from_dict(dict_vals, "index")
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import cv2, glob import numpy as np import pandas as pd from os import path from math import isnan from sklearn.metrics.pairwise import euclidean_distances from JPP_precision import load_JPP_ply from Modules.utils import get_parameter, get_args, figure_disappears, enum_test_files from Modules.features_labels import make_labels from Modules.coordinate_conversion import project_point_cloud def make_ground_truth(test_filename): n_joints = 19 ground_truth = np.ones((n_joints, 2)) label_img = cv2.imread("%s.png" % test_filename)[:, :, :3][:, :, ::-1] label_array = make_labels(label_img).reshape(label_img.shape[:2]) parts2joints_map = np.array((0, 0, 0, 0, 1, 2, 2, 3, 3, 4, 5, 18, 18, 18, 18, 6, 7, 8, 9, 10, 11, 18, 18, 18, 18, 12, 13, 14, 15, 16, 17, 18)) for j in range(n_joints): ground_truth[j, :] = np.mean(np.array(np.where(parts2joints_map[label_array] == j)), axis=1) return ground_truth[:-1, :] def JPP_precision(): args = get_args() discr_setting_type = args.discr_setting_type num_train_images = args.n_train_images data_path = args.data_path jpp_path = data_path + "Main/JointPositionPrediction/" jpp_gt_path = jpp_path + "GroundTruth/" jpp_out_path = jpp_path + "Output/" eval_path = jpp_path + "Evaluation/" test_path = args.test_path n_test_images = args.n_test_images device = "Kinect" if "SyntheticImages" in test_path else "Xtion" target_joint_names = ["Head", "neck", "Chest", "Waist", "rShoulder", "lShoulder", "rElbow", "lElbow", "rWrist", "lWrist", "rHand", "lHand", "rKnee", "lKnee", "rAnkle", "lAnkle", "rFoot", "lFoot"] n_joints = len(target_joint_names) test_filenames = enum_test_files(data_path, args.test_path, n_test_images) setting_str = "_" + str(num_train_images) + ("_%s" % discr_setting_type if discr_setting_type else "") average_error_path = eval_path + "JPP_average_error_px" + setting_str + ".csv" sum_prediction_error = np.zeros((n_joints+1,)) for test_filename in test_filenames: test_filename_id = "/".join(test_filename.split("/")[-2:]) print(test_filename_id) test_JPP_path = jpp_out_path + test_filename_id + setting_str + "_JPP.ply" test_gt_path = jpp_gt_path + test_filename_id + "_px_gt.csv" error_path = eval_path + test_filename_id + setting_str + "_JPP_error_px.csv" if path.exists(test_gt_path): gt_joint_positions = np.array(
pd.read_csv(test_gt_path, header=None)
pandas.read_csv
import argparse import csv import gzip import re import numpy as np import zarr from scipy import sparse from zarr import Blosc import pandas as pd import logging COMPRESSOR = Blosc(cname="lz4", clevel=5, shuffle=Blosc.SHUFFLE, blocksize=0) # the number of rows in a chunk for expression counts CHUNK_ROW_SIZE = 10000 CHUNK_COL_SIZE = 10000 logging.basicConfig(level=logging.INFO) def init_zarr(sample_id, path, file_format, schema_version): """Initializes the zarr output. Args: sample_id (str): sample or cell id path (str): path to the zarr output file_format (str): zarr file format [DirectoryStore, ZipStore] schema_version (str): version string of this output to allow for parsing of future changes Returns: root (zarr.hierarchy.Group): initialized zarr group """ store = None if file_format == "DirectoryStore": store = zarr.DirectoryStore(path) if file_format == "ZipStore": store = zarr.ZipStore(path, mode="w") # create the root group root = zarr.group(store, overwrite=True) # root.attrs['README'] = "The schema adopted in this zarr store may undergo changes in the future" root.attrs["sample_id"] = sample_id root.attrs["optimus_output_schema_version"] = schema_version # Create the expression_matrix group # root.create_group("expression_matrix", overwrite=True); return root def add_gene_metrics(data_group, input_path, gene_ids, verbose=False): """Converts the gene metrics from the Optimus pipeline to zarr file Args: data_group (zarr.hierarchy.Group): datagroup object for the zarr input_path (str): file containing gene metrics name and values gene_ids (list): list of gene ids verbose (bool): whether to output verbose messages for debugging purposes """ # read the gene metrics names and values if input_path.endswith(".gz"): with gzip.open(input_path, "rt") as f: gene_metrics = [row for row in csv.reader(f)] else: with open(input_path, "r") as f: gene_metrics = [row for row in csv.reader(f)] # metric names we use [1:] to remove the empty string if len(gene_metrics[0][1:]): data_group.create_dataset( "gene_metadata_numeric_name", shape=(len(gene_metrics[0][1:]),), compressor=COMPRESSOR, dtype="<U80", chunks=(len(gene_metrics[0][1:]),), data=list(gene_metrics[0][1:]), ) else: logging.info( 'Not adding "gene_metadata_numeric_name" to zarr output: must have at least one metric' ) if verbose: logging.info("# gene numeric metadata", len(gene_metrics[0][1:])) # Gene metric values, the row and column sizes gene_ids_location = { gene_id: index for index, gene_id in enumerate(gene_ids) } # ignore the first line with the metric names in text ncols = 0 gene_id_to_metric_values = {} for row in gene_metrics: # only consider genes that are in the count matrix if not row[0] in gene_ids_location: continue row_values = [] for value_string in row[1:]: # some of the standard deviation values do not exist for one reads matches try: value = np.float32(value_string) except ValueError: value = np.nan row_values.append(value) gene_id_to_metric_values[row[0]] = row_values # note that all of these lengths are assumed to be equal and this check is already done in the pipeline ncols = len(row_values) # now insert the metrics of the cells that are in count matrix, i.e., the global variable "cell_ids" gene_metric_values = [] for gene_id in gene_ids: if gene_id in gene_id_to_metric_values: gene_metric_values.append(gene_id_to_metric_values[gene_id]) else: # if no metrics for a cell present in the count matrix then fill them with np.nans gene_metric_values.append([np.nan] * ncols) nrows = len(gene_ids) if verbose: logging.info("# of genes: {}".format(nrows)) logging.info("# of gene metadate metrics: {}".format(ncols)) # now insert the dataset that has the numeric values for the qc metrics for the genes if nrows and ncols: data_group.create_dataset( "gene_metadata_numeric", shape=(nrows, ncols), compressor=COMPRESSOR, dtype=np.float32, chunks=(nrows, ncols), data=gene_metric_values, ) else: logging.info( 'Not adding "gene_metadata_numeric" to zarr output: either the #genes or # cell ids is 0' ) def add_cell_metrics( data_group, metrics_file, cell_ids, emptydrops_file, verbose=False, ): """Converts cell metrics from the Optimus pipeline to zarr file Args: data_group (zarr.hierarchy.Group): datagroup object for the zarr input_path (str): file containing gene metrics name and values cell_ids (list): list of cell ids verbose (bool): whether to output verbose messages for debugging purposes emptydrops_path (str): emptydrops csv file """ # Read the csv input files metrics_df = pd.read_csv(metrics_file, dtype=str) emptydrops_df =
pd.read_csv(emptydrops_file, dtype=str)
pandas.read_csv
import datetime import pandas as pd import numpy as np import re import os def remove_blanks(df, col_name): ctr = 0 working_df = pd.DataFrame(df) # remove any blanks from the run try: while True: value = working_df.at[ctr, col_name].lower() if re.search("^blank\d*.*$", value) or re.search("^0$", value): working_df.drop(labels=ctr, inplace=True) ctr += 1 except ValueError: pass except KeyError: pass working_df = working_df.reset_index(drop=True) print(" Done!\n") return working_df def remove_pools(df, col_name): working_df = pd.DataFrame(df) col_lst = list(working_df.columns) size = working_df.index new_row = [] for i in range(len(size)): cell_val = str(working_df.iloc[i][col_lst.index(col_name)]).split("/") cell_val = cell_val[0] currentrow = working_df.iloc[i] currentrow = currentrow.values.tolist() if not ("pool" in cell_val.lower().strip() or "panel" in cell_val.lower().strip()): new_row.append(currentrow) working_df = pd.DataFrame(new_row, columns=col_lst) return working_df def merge_dataframes(df1=None, df2=None, df1_drop=None, df_final_drop=None, join_lst=None, join_type=None): # df1 from qc table, may have duplicate hsns. Remove common columns between # the two dataframes. df2 from results table join_dict = {} for col in join_lst: join_dict[col] = 'str' df1 = df1.astype(join_dict) df2 = df2.astype(join_dict) df1.drop(labels=df1_drop, axis=1, inplace=True) #df1.drop_duplicates(subset=['hsn'], inplace=True) df_final = df2.merge(df1, how=join_type, on=join_lst) df_final.drop(labels=df_final_drop, axis=1, inplace=True) return df_final def format_hsn_col(df=None, hsn_colname=None, hsn_only=False): df = remove_pools(df, hsn_colname) df = remove_blanks(df, hsn_colname) if hsn_only: df.columns = [hsn_colname] df[hsn_colname] = df.apply(lambda row: extract_hsn(row), axis=1) df[hsn_colname] = df.apply(lambda row: str(row[hsn_colname]), axis=1) df = df.rename(columns= {hsn_colname:'hsn'}) df.drop_duplicates(subset='hsn', inplace=True, ignore_index=True) return df def add_cols(obj=None, df=None, col_lst=None, col_func_map=None): # iterate through all columns that should be in final df for k in col_lst: # if the column appears in the function mapping, if k in col_func_map.keys(): # get the pointer to the func/value associated with the column v = col_func_map[k] try: # try to get additional value to run apply function with val = v[1] try: val = getattr(obj, v[1]) # try to catch v[1] as an object variable df[k] = df.apply(lambda row: globals()[v[0]](row, val), axis=1) except Exception: # use v[1] as a constant argument to the function df[k] = df.apply(lambda row: globals()[v[0]](row, v[1]), axis=1) # no additional variables to supply to apply function except IndexError: # try using the value as a function try: df[k] = df.apply(lambda row: globals()[v[0]](row), axis=1) # try using the value as a variable except Exception: val = getattr(obj, v[0]) df[k] = val # if column not in mapping, insert empty column with appropriate # name into the dataframe else: # try to insert the column try: df.insert(0, k, None) # ValueError raised if column already exists in dataframe except ValueError: pass return df def format_date(row, colName): if (isinstance(row[colName], pd.Timestamp)) or\ (isinstance(row[colName], datetime.datetime)): if (not pd.isna(row[colName])): return row[colName].strftime("%m/%d/%Y") else: return np.nan else: return np.nan def get_today(row): return datetime.datetime.today().strftime("%Y-%m-%d") def get_pos(id): pos_dict = {"A":1, "B":2, "C":3, "D":4, "E":5, "F":6, "G":7, "H":8} pos = (int(id[-1])*8 - 8) + pos_dict[id[0]] return pos def parse_seq_id(row, arg): try: seq_id = str(row["Sequence name"]).split("/") except: seq_id = str(row['seqName']).split("/") # if split didn't find matches, it is dealing with folder, should # be split by ".", also has different indexes for values if len(seq_id) == 1: # WF 3 seq_id = str(row["seqName"]).split(".") if arg == "hsn": return int(seq_id[0][0:7]) elif arg == "m_num": return int(seq_id[1][-2:]) elif arg == "pos": return int(seq_id[4][-2:]) elif arg == "run_num": return int(seq_id[3]) elif arg == "date": return seq_id[2] else: raise ValueError("Bad argument to parse_seq_id --> folder") else: # WF_4, WF_5 if arg == "hsn": if len(seq_id[0]) > 9: return int(seq_id[0]) else: return int(seq_id[0][0:7]) elif arg == "m_num": return int(seq_id[1][4:6]) elif arg == "pos": return int(seq_id[2][-2:]) elif arg == "run_num": return int(seq_id[1][-2:]) elif arg == "date": return seq_id[1][7:17] else: raise ValueError("Bad argument to parse_seq_id --> file") def extract_hsn(row): hsn = str(row["Sample ID"]) if len(hsn) == 7: return hsn return hsn[:-2] def format_str_cols(df): df.columns = [str(col) for col in list(df.columns)] return df def format_sex(row, ber=False): col = "sex" if ber: col = 'Patient_Gender' if pd.isna(row[col]) or str(row[col]).upper() == "" or str(row[col]).upper() == "UNKNOWN" or str(row[col]).upper() == "U": return "Unknown" elif str(row[col]).upper() == "M": return "Male" elif str(row[col]).upper() == "F": return "Female" else: return str(row[col]).capitalize() def format_facility(row, facility_replace_dict): if pd.isna(row['facility']): return None elif row['facility'] == "": return None else: facility = str(row['facility']).lower() for key in facility_replace_dict.keys(): facility = facility.replace(key, facility_replace_dict[key]) return facility.lower() def parse_category(row, parse_category_dict): facility = str(row['facility']).lower() for key in parse_category_dict.keys(): if re.search(key, facility): return parse_category_dict[key] return None def format_race(row): if pd.isna(row['race']) or row['race'] == "U": return "Unknown" elif row['race'] == "": return "Unknown" elif str(row['race']).upper() == "W": return "White" else: return str(row['race']) def format_source(row): source = str(row['source']).lower() if len(source) > 2: if source == "nasopharyngeal": return "NP" elif source == "sputum/saliva": return "SV" else: return "OT" else: return row['source'] def add_cols_by_name(df, lst): curr_cols = list(df.columns) for col in lst: if not (col in curr_cols): df.insert(0, col, np.nan) return df def format_f_name(row): if pd.isna(row['name']): return None elif row['name'].strip() == "": return None else: full_name = str(row["name"]) names = full_name.split() f_name = names[0].capitalize() f_name = f_name.replace("'","''") return f_name def format_l_name(row, lst): if pd.isna(row['name']): return None elif row['name'].strip() == "": return None else: full_name = str(row["name"]) names = full_name.split() for item in lst: if item == names[-1].lower(): return names[-2].capitalize() + ", " + names[-1].upper() l_name = names[-1].capitalize() l_name = l_name.replace("'", "''") return l_name def drop_cols(df, lst): curr_cols = list(df.columns) for col in curr_cols: if not (col in lst): df = df.drop(columns = col) return df def get_age(row): try: born = datetime.datetime.strptime(row["dob"], "%m/%d/%Y").date() except Exception: born = row["dob"].to_pydatetime().date() try: tested = row['doc'].to_pydatetime().date() except Exception: tested = datetime.datetime.strptime(row['doc'], "%m/%d/%Y").date() if
pd.isnull(born)
pandas.isnull
# -*- coding: utf-8 -*- import requests import json import pandas as pd from io import StringIO import numpy as np import time # timezones={} #function = 'TIME_SERIES_INTRADAY' apii = 'https://www.alphavantage.co/query?function={function}&symbol={symbol}&interval={interval}&outputsize=full&datatype=csv&apikey=' apid = 'https://www.alphavantage.co/query?function={function}&symbol={symbol}&outputsize=full&datatype=csv&apikey=' #https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=ASML&interval=1min&outputsize=compact&datatype=csv&time_period=0&apikey= sector = 'https://www.alphavantage.co/query?function=SECTOR&datatype=csv&apikey=' s_type = ['close','high','low']#,'open'] ma_types = [0,1,2,3,4,5,6,7,8] #Moving average type By default, matype=0. INT 0 = SMA, 1 = EMA, 2 = Weighted Moving Average (WMA), 3 = Double Exponential Moving Average (DEMA), 4 = Triple Exponential Moving Average (TEMA), 5 = Triangular Moving Average (TRIMA), 6 = T3 Moving Average, 7 = Kaufman Adaptive Moving Average (KAMA), 8 = MESA Adaptive Moving Average (MAMA). indicator_dict = { 'sma':'https://www.alphavantage.co/query?function=SMA&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'ema':'https://www.alphavantage.co/query?function=EMA&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'tema':'https://www.alphavantage.co/query?function=TEMA&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'macd':'https://www.alphavantage.co/query?function=MACD&symbol={symbol}&interval={interval}&series_type=close&fastperiod=12&slowperiod=26&signalperiod=9&datatype=csv&apikey=', 'macdext':'https://www.alphavantage.co/query?function=MACDEXT&symbol={symbol}&interval={interval}&series_type={series_type}&fastperiod={fastperiod}&slowperiod={slowperiod}&signalperiod={signalperiod}&fastmatype={fastmatype}&slowmatype={slowmatype}&signalmatype={signalmatype}&datatype=csv&apikey=', 'stoch':'https://www.alphavantage.co/query?function=STOCH&symbol={symbol}&interval={interval}&fastkperiod={fastkperiod}&slowkperiod={slowkperiod}&slowdperiod={slowdperiod}&slowkmatype={slowkmatype}&slowdmatype={slowdmatype}&datatype=csv&apikey=', 'stochf':'https://www.alphavantage.co/query?function=STOCHF&symbol={symbol}&interval={interval}&fastkperiod={fastkperiod}&fastdperiod={fastdperiod}&fastdmatype={fastdmatype}&datatype=csv&apikey=', 'rsi':'https://www.alphavantage.co/query?function=RSI&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'stochrsi':'https://www.alphavantage.co/query?function=STOCHRSI&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&fastkperiod={fastkperiod}&fastdperiod={fastdperiod}&fastdmatype={fastdmatype}&datatype=csv&apikey=', 'willr':'https://www.alphavantage.co/query?function=WILLR&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'adx':'https://www.alphavantage.co/query?function=ADX&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'adxr':'https://www.alphavantage.co/query?function=ADXR&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'apo':'https://www.alphavantage.co/query?function=APO&symbol={symbol}&interval={interval}&series_type={series_type}&fastperiod={fastperiod}&slowperiod={slowperiod}&matype={matype}&datatype=csv&apikey=', 'ppo':'https://www.alphavantage.co/query?function=PPO&symbol={symbol}&interval={interval}&series_type={series_type}&fastperiod={fastperiod}&slowperiod={slowperiod}&matype={matype}&datatype=csv&apikey=', 'mom':'https://www.alphavantage.co/query?function=MOM&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'bop':'https://www.alphavantage.co/query?function=BOP&symbol={symbol}&interval={interval}&datatype=csv&apikey=', 'cci':'https://www.alphavantage.co/query?function=CCI&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'cmo':'https://www.alphavantage.co/query?function=CMO&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'roc':'https://www.alphavantage.co/query?function=ROC&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'rocr':'https://www.alphavantage.co/query?function=ROCR&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'aroon':'https://www.alphavantage.co/query?function=AROON&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'aroonosc':'https://www.alphavantage.co/query?function=AROONOSC&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'mfi':'https://www.alphavantage.co/query?function=MFI&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'trix':'https://www.alphavantage.co/query?function=TRIX&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'ultosc':'https://www.alphavantage.co/query?function=ULTOSC&symbol={symbol}&interval={interval}&timeperiod1={timeperiod1}&timeperiod2={timeperiod2}&timeperiod3={timeperiod3}&datatype=csv&apikey=', 'dx':'https://www.alphavantage.co/query?function=DX&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'minus_di':'https://www.alphavantage.co/query?function=MINUS_DI&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'plus_di':'https://www.alphavantage.co/query?function=PLUS_DI&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'minus_dm':'https://www.alphavantage.co/query?function=MINUS_DM&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'plus_dm':'https://www.alphavantage.co/query?function=PLUS_DM&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'bbands':'https://www.alphavantage.co/query?function=BBANDS&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&nbdevup={nbdevup}&nbdevdn={nbdevdn}&matype={matype}&datatype=csv&apikey=', 'midpoint':'https://www.alphavantage.co/query?function=MIDPOINT&symbol={symbol}&interval={interval}&time_period={time_period}&series_type={series_type}&datatype=csv&apikey=', 'midprice':'https://www.alphavantage.co/query?function=MIDPRICE&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'sar':'https://www.alphavantage.co/query?function=SAR&symbol={symbol}&interval={interval}&acceleration={acceleration}&maximum={maximum}&datatype=csv&apikey=', 'trange':'https://www.alphavantage.co/query?function=TRANGE&symbol={symbol}&interval={interval}&datatype=csv&apikey=', 'atr':'https://www.alphavantage.co/query?function=ATR&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'natr':'https://www.alphavantage.co/query?function=NATR&symbol={symbol}&interval={interval}&time_period={time_period}&datatype=csv&apikey=', 'ad':'https://www.alphavantage.co/query?function=AD&symbol={symbol}&interval={interval}&datatype=csv&apikey=', 'adosc':'https://www.alphavantage.co/query?function=ADOSC&symbol={symbol}&interval={interval}&fastperiod={fastperiod}&slowperiod={slowperiod}&datatype=csv&apikey=', 'obv':'https://www.alphavantage.co/query?function=OBV&symbol={symbol}&interval={interval}&datatype=csv&apikey=', 'ht_trendline':'https://www.alphavantage.co/query?function=HT_TRENDLINE&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=', 'ht_sine':'https://www.alphavantage.co/query?function=HI_SINE&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=', 'ht_trendmode':'https://www.alphavantage.co/query?function=HT_TRENDMODE&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=', 'ht_dcperiod':'https://www.alphavantage.co/query?function=HT_DCPERIOD&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=', 'ht_dcphase':'https://www.alphavantage.co/query?function=HT_DCPHASE&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=', 'ht_dcphasor':'https://www.alphavantage.co/query?function=HT_DCPHASOR&symbol={symbol}&interval={interval}&series_type={series_type}&datatype=csv&apikey=' } def moving_a(ma,symbol,interval): api = indicator_dict[ma] ma_range = [5,10,15,20,35,50,65,100,125,200,250] #125 out_df = pd.DataFrame() first = True for t in ma_range: for s in s_type: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t,series_type=s)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def macdext_get(macd,symbol, interval):#,types=False,time_period=False): out_df = pd.DataFrame() macd_range = [[5,10,3],[10,20,7],[12,26,9],[15,35,11]] api = indicator_dict[macd] macd_ma = 1 first=True for i in macd_range: for s in s_type: indicator = requests.get(api.format(symbol=symbol,interval=interval,series_type=s,fastperiod=i[0],slowperiod=i[1],signalperiod=i[2],fastmatype=ma_types[1],slowmatype=ma_types[1],signalmatype=ma_types[1])) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def stoch_get(stoch,symbol,interval): slowd = 3 slowk = 3 fastk = 5 fastd = 3 stoch_ma = 1 #EMA api = indicator_dict[stoch] if stoch == 'stoch': indicator = requests.get(api.format(symbol=symbol,interval=interval,fastkperiod=fastk,slowkperiod=slowk,slowdperiod=slowd,slowkmatype=stoch_ma,slowdmatype=stoch_ma)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath indi_df = pd.read_csv(fixed) return indi_df elif stoch == 'stochf': indicator = requests.get(api.format(symbol=symbol,interval=interval,fastkperiod=fastk,fastdperiod=fastd,fastdmatype=stoch_ma)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath indi_df = pd.read_csv(fixed) return indi_df def rsi_get(rsi,symbol,interval): out_df = pd.DataFrame() rsi_period = [7,11,14,21] api = indicator_dict[rsi] first = True for t in rsi_period: for s in s_type: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t,series_type=s)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def stochrsi_get (indicator,symbol,interval): api = indicator_dict[indicator] fastk = 5 fastd = 3 fastma = 1 stype = 'close' rsi_period = [7,11,14,21] first = True for t in rsi_period: for s in s_type: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t,series_type=s,fastkperiod=fastk,fastdperiod=fastd,fastdmatype=fastma)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def adx_get(indicator,symbol,interval): api = indicator_dict[indicator] adx_period = [7,11,14,21] first = True for t in adx_period: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def cci_get(indicator,symbol,interval): api = indicator_dict[indicator] cci_range = [5,10,15,20,35,50,65,85,100,125,200,250] first = True #annual/time period cycle high to high divided by three is the official time period for t in cci_range: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def aroon_get(indicator,symbol,interval): api= indicator_dict[indicator] aroon_range = [5,10,15,20,35,50,65,85,100,125,200,250] #period since last highest high and lowest low first = True for t in aroon_range: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def bbands_get(indicator,symbol,interval): api= indicator_dict[indicator] bb_range = [5,10,15,20,35,50,65,100,125,200,250] ndup = 2 nddn = 2 bband_ma = [0,1,4] first = True for t in bb_range: for m in bband_ma: for s in s_type: indicator = requests.get(api.format(symbol=symbol,interval=interval,time_period = t,series_type=s,nbdevup=ndup,nbdevdn=nddn,matype=m)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath if first: out_df = pd.read_csv(fixed) first = False elif first != True: indi_df = pd.read_csv(fixed) out_df = pd.merge(out_df,indi_df,on='time',how="inner") return out_df def adosc_get(indicator,symbol,interval): api= indicator_dict[indicator] fastperiod = 3 slowperiod = 10 first = True #2,7? indicator = requests.get(api.format(symbol=symbol,interval=interval,fastperiod=fastperiod,slowperiod=slowperiod)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath out_df = pd.read_csv(fixed) return out_df def simple_indicator(indicator,symbol,interval): api = indicator_dict[indicator] indicator = requests.get(api.format(symbol=symbol,interval=interval)) time.sleep(11.8) fixed = StringIO(indicator.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath indi_df = pd.read_csv(fixed) return indi_df indicator_run = { 'sma':moving_a, 'ema':moving_a, 'tema':moving_a, 'macd':simple_indicator, 'macdext':macdext_get, 'stoch':stoch_get, 'stochf':stoch_get, 'rsi':rsi_get, 'stochrsi':stochrsi_get, 'willr':'notassigned', 'adx':adx_get, 'adxr':adx_get, 'apo':'notassigned', 'ppo':'notassigned', 'mom':'notassigned', 'bop':simple_indicator, 'cci':cci_get, 'cmo':'notassigned', 'roc':'notassigned', 'rocr':'notassigned', 'aroon':aroon_get, 'aroonosc':aroon_get, 'mfi':'notassigned', 'trix':'notassigned', 'ultosc':'notassigned', 'dx':'notassigned', 'minus_di':'notassigned', 'plus_di':'notassigned', 'minus_dm':'notassigned', 'plus_dm':'notassigned', 'bbands':bbands_get, 'midpoint':'notassigned', 'midprice':'notassigned', 'sar':'notassigned', 'trange':simple_indicator, 'atr':'notassigned', 'natr':'notassigned', 'ad':simple_indicator, 'adosc':adosc_get, 'obv':simple_indicator, 'ht_trendline':'notassigned', 'ht_sine':'notassigned', 'ht_trendmode':'notassigned', 'ht_dcperiod':'notassigned', 'ht_dcphase':'notassigned', 'ht_dcphasor':'notassigned' } def get_data (symbol,interval): if interval in ['1min','5min','15min','30min','60min']: intra_csv = requests.get(apii.format(function = 'TIME_SERIES_INTRADAY',symbol=symbol,interval=interval)) time.sleep(11.8) #response 200 = got it fixed = StringIO(intra_csv.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath intra_df = pd.read_csv(fixed) indicator_df = get_indicators(symbol,interval) out_df = pd.merge(intra_df,indicator_df,on='time',how='inner') return out_df elif interval == 'daily': daily_csv = requests.get(apid.format(function = 'TIME_SERIES_DAILY',symbol=symbol)) time.sleep(11.8) #response 200 = got it indicator_df = get_indicators(symbol,interval) fixed = StringIO(daily_csv.content.decode('utf-8')) #pandas.read_csv needs a filepath for strings use StringIO from IO to convert Str to filepath d_df = pd.read_csv(fixed) print(d_df) print(indicator_df) out_df =
pd.merge(d_df,indicator_df,left_index=True,right_index=True,how='inner')
pandas.merge
import datetime import datetime as dt import json import re from itertools import count import datazimmer as dz import numpy as np import pandas as pd from aswan import get_soup from tqdm import tqdm class Condition(dz.CompositeTypeBase): lungs = bool heart = bool blood_pressure = bool diabetes = bool obesity = bool class CovidVictim(dz.AbstractEntity): serial = dz. Index & int age = int estimated_date = dt.datetime is_male = bool raw_conditions = str condition = Condition # TODO: this should be inherited from elsewhere positive_rate = float total_vaccinations = int people_vaccinated = int people_fully_vaccinated = int total_boosters = int hun_url = dz.SourceUrl("https://koronavirus.gov.hu/elhunytak") wd_url = dz.SourceUrl("https://www.worldometers.info/coronavirus/country/hungary/") owid_url = dz.SourceUrl("https://covid.ourworldindata.org") OWID_SRC = f"{owid_url}/data/owid-covid-data.csv" def get_hun_victim_df(): dfs = [] for p in tqdm(count()): soup = get_soup(f"{hun_url}?page={p}") elem = soup.find(class_="views-table") try: dfs.append(pd.read_html(str(elem))[0]) except ValueError: break return ( pd.concat(dfs, ignore_index=True) .astype({"Kor": int}) .assign(is_male=lambda df: (df["Nem"].str.lower().str[0] == "f")) .drop("Nem", axis=1) .rename(columns={"Kor": CovidVictim.age, "Sorszám": CovidVictim.serial}) ) def get_count_df(patient_df): soup = get_soup(wd_url) js_str = soup.find("script", text=re.compile("'graph-deaths-daily', .*")).contents[ 0 ] daily_df = ( pd.DataFrame( { k: json.loads(re.compile(rf"{k}: (\[.*\])").findall(js_str)[0]) for k in ["data", "categories"] } ) .assign(date=lambda df: pd.to_datetime(df["categories"])) .fillna(0) .sort_values("date") .loc[lambda df: df["data"].cumsum() < patient_df.shape[0], :] ) mismatch = patient_df.shape[0] - daily_df["data"].sum() pad_dic = {"data": [mismatch], "date": pd.to_datetime(datetime.date.today())} return pd.concat([daily_df,
pd.DataFrame(pad_dic)
pandas.DataFrame
from xgboost import XGBRegressor import pandas as pd import argparse from sklearn import metrics import scipy import pickle from pathlib import Path import numpy as np ''' python3 XGBoostRegressor.py --dataset_type raw_c > raw_c_results.txt python3 XGBoostRegressor.py --dataset_type raw_d > raw_d_results.txt python3 XGBoostRegressor.py --dataset_type raw > raw_results.txt ''' # extract type of feature data from arguments parser = argparse.ArgumentParser() parser.add_argument('--dataset_type', type=str, required=True, help='type of data') args = parser.parse_args() # read base data X_train, y_train, X_test, y_test = None, None, None, None Xc_train, Xc_test = None, None Xd_train, Xd_test = None, None # Get labels (same across all datasets) test_diff_df = pd.read_csv("diff_expr/C12TestDiff.tsv", delimiter='\t', header=None) train_diff_df = pd.read_csv( "diff_expr/C12TrainDiff.tsv", delimiter='\t', header=None) valid_diff_df = pd.read_csv( "diff_expr/C12ValidDiff.tsv", delimiter='\t', header=None) y_test = test_diff_df y_train = pd.concat([train_diff_df, valid_diff_df]) # Get features if args.dataset_type == "raw_c" or args.dataset_type == "raw": c1_test_df = pd.read_csv("embeddings/C1TestEmbeddings.csv", header=None) c1_train_df = pd.read_csv("embeddings/C1TrainEmbeddings.csv", header=None) c1_valid_df = pd.read_csv("embeddings/C1ValidEmbeddings.csv", header=None) c2_test_df = pd.read_csv("embeddings/C2TestEmbeddings.csv", header=None) c2_train_df = pd.read_csv("embeddings/C2TrainEmbeddings.csv", header=None) c2_valid_df = pd.read_csv("embeddings/C2ValidEmbeddings.csv", header=None) c12_train_df = pd.concat([c1_train_df, c2_train_df], axis=1) c12_valid_df = pd.concat([c1_valid_df, c2_valid_df], axis=1) # Reset index prevents errors from combining Xd_train and Xc_train. # Unless you specify drop=True, it creates a new column that stores indices # We don't want this, because it essentially adds another feature that's just id Xc_train = pd.concat([c12_train_df, c12_valid_df]).reset_index(drop=True) Xc_test = pd.concat([c1_test_df, c2_test_df], axis=1) if args.dataset_type == "raw_d" or args.dataset_type == "raw": diff_train = pd.read_csv("embeddings/DiffTrainEmbeddings.csv", header=None) diff_valid = pd.read_csv("embeddings/DiffValidEmbeddings.csv", header=None) # Reset index prevents errors from combining Xd_train and Xc_train. # Unless you specify drop=True, it creates a new column that stores indices # We don't want this, because it essentially adds another feature that's just id Xd_train = pd.concat([diff_train, diff_valid]).reset_index(drop=True) Xd_test =
pd.read_csv("embeddings/DiffTestEmbeddings.csv", header=None)
pandas.read_csv
#!/usr/bin/env python3 import os import sys import random import time from random import seed, randint import argparse import platform from datetime import datetime import imp import subprocess import glob import re from helperFunctions.myFunctions_helper import * import numpy as np import pandas as pd import fileinput from itertools import product from Bio.PDB.PDBParser import PDBParser from Bio.PDB import PDBList from pdbfixer import PDBFixer from simtk.openmm.app import PDBFile # compute cross Q for every pdb pair in one folder # parser = argparse.ArgumentParser(description="Compute cross q") # parser.add_argument("-m", "--mode", # type=int, default=1) # args = parser.parse_args() def getFromTerminal(CMD): return subprocess.Popen(CMD,stdout=subprocess.PIPE,shell=True).communicate()[0].decode() def read_hydrophobicity_scale(seq, isNew=False): seq_dataFrame = pd.DataFrame({"oneLetterCode":list(seq)}) HFscales = pd.read_table("~/opt/small_script/Whole_residue_HFscales.txt") if not isNew: # Octanol Scale # new and old difference is at HIS. code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS+" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} else: code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS0" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} HFscales_with_oneLetterCode = HFscales.assign(oneLetterCode=HFscales.AA.str.upper().map(code)).dropna() data = seq_dataFrame.merge(HFscales_with_oneLetterCode, on="oneLetterCode", how="left") return data def create_zim(seqFile, isNew=False): a = seqFile seq = getFromTerminal("cat " + a).rstrip() data = read_hydrophobicity_scale(seq, isNew=isNew) z = data["DGwoct"].values np.savetxt("zim", z, fmt="%.2f") def expand_grid(dictionary): return pd.DataFrame([row for row in product(*dictionary.values())], columns=dictionary.keys()) def duplicate_pdb(From, To, offset_x=0, offset_y=0, offset_z=0, new_chain="B"): with open(To, "w") as out: with open(From, "r") as f: for line in f: tmp = list(line) atom = line[0:4] atomSerialNumber = line[6:11] atomName = line[12:16] atomResidueName = line[17:20] chain = line[21] residueNumber = line[22:26] # change chain A to B # new_chain = "B" tmp[21] = new_chain if atom == "ATOM": x = float(line[30:38]) y = float(line[38:46]) z = float(line[46:54]) # add 40 to the x new_x = x + offset_x new_y = y + offset_y new_z = z + offset_z tmp[30:38] = "{:8.3f}".format(new_x) tmp[38:46] = "{:8.3f}".format(new_y) tmp[46:54] = "{:8.3f}".format(new_z) a = "".join(tmp) out.write(a) def compute_native_contacts(coords, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) n = len(dis) remove_band = np.eye(n) for i in range(1, MAX_OFFSET): remove_band += np.eye(n, k=i) remove_band += np.eye(n, k=-i) dis[remove_band==1] = np.max(dis) native_contacts = dis < DISTANCE_CUTOFF return native_contacts.astype("int") def compute_contacts(coords, native_contacts, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) constacts = dis < DISTANCE_CUTOFF constacts = constacts*native_contacts # remove non native contacts return np.sum(constacts, axis=1).astype("float") def compute_localQ_init(MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): from pathlib import Path home = str(Path.home()) struct_id = '2xov' filename = os.path.join(home, "opt/pulling/2xov.pdb") p = PDBParser(PERMISSIVE=1) s = p.get_structure(struct_id, filename) chains = s[0].get_list() # import pdb file native_coords = [] for chain in chains: dis = [] all_res = [] for res in chain: is_regular_res = res.has_id('CA') and res.has_id('O') res_id = res.get_id()[0] if (res.get_resname()=='GLY'): native_coords.append(res['CA'].get_coord()) elif (res_id==' ' or res_id=='H_MSE' or res_id=='H_M3L' or res_id=='H_CAS') and is_regular_res: native_coords.append(res['CB'].get_coord()) else: print('ERROR: irregular residue at %s!' % res) exit() native_contacts_table = compute_native_contacts(native_coords, MAX_OFFSET, DISTANCE_CUTOFF) return native_contacts_table def compute_localQ(native_contacts_table, pre=".", ii=-1, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_contacts = np.sum(native_contacts_table, axis=1).astype("float") dump = read_lammps(os.path.join(pre, f"dump.lammpstrj.{ii}"), ca=False) localQ_list = [] for atom in dump: contacts = compute_contacts(np.array(atom), native_contacts_table, DISTANCE_CUTOFF=DISTANCE_CUTOFF) c = np.divide(contacts, native_contacts, out=np.zeros_like(contacts), where=native_contacts!=0) localQ_list.append(c) data = pd.DataFrame(localQ_list) data.columns = ["Res" + str(i+1) for i in data.columns] data.to_csv(os.path.join(pre, f"localQ.{ii}.csv"), index=False) def readPMF_basic(pre): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()) } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(location) name_list = ["f", "df", "e", "s"] names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def make_metadata_3(k=1000.0, temps_list=["450"], i=-1, biasLow=None, biasHigh=None): print("make metadata") cwd = os.getcwd() files = glob.glob(f"../data_{i}/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in sorted(files): tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] if biasLow: if float(bias) < biasLow: continue if biasHigh: if float(bias) > biasHigh: continue # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "../{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def readPMF(pre, is2d=False, force_list=["0.0", "0.1", "0.2"]): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()), "force":force_list } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): force = row["force"] perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/force_{force}/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/force_{force}/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(pmf_list) name_list = ["f", "df", "e", "s"] if is2d: names = ["x", "y"] + name_list else: names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, force=force, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def readPMF_2(pre, is2d=0, force_list=["0.0", "0.1", "0.2"]): if is2d: print("reading 2d pmfs") else: print("reading 1d dis, qw and z") if is2d == 1: mode_list = ["2d_qw_dis", "2d_z_dis", "2d_z_qw"] elif is2d == 2: mode_list = ["quick"] else: mode_list = ["1d_dis", "1d_qw", "1d_z"] all_data_list =[] for mode in mode_list: tmp = readPMF(mode, is2d, force_list).assign(mode=mode) all_data_list.append(tmp) return pd.concat(all_data_list).dropna().reset_index() def shrinkage(n=552, shrink_size=6, max_frame=2000, fileName="dump.lammpstrj"): print("Shrinkage: size: {}, max_frame: {}".format(shrink_size, max_frame)) bashCommand = "wc " + fileName process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() line_number = int(output.decode("utf-8").split()[0]) print(line_number) print(line_number/552) # number of atom = 543 n = 552 count = 0 with open("small.lammpstrj", "w") as out: with open(fileName, "r") as f: for i, line in enumerate(f): if (i // n) % shrink_size == 0: if count >= max_frame*n: break count += 1 out.write(line) def compute_theta_for_each_helix(output="angles.csv", dumpName="../dump.lammpstrj.0"): print("This is for 2xov only") helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] atoms_all_frames = read_lammps(dumpName) # print(atoms[0]) # print(len(atoms), len(atoms[0])) # helices_angles_all_frames = [] with open(output, "w") as out: out.write("Frame, Helix, Angle\n") for ii, frame in enumerate(atoms_all_frames): # helices_angles = [] for count, (i, j) in enumerate(helices_list): # print(i, j) i = i-91 j = j-91 # end - start a = np.array(frame[j]) - np.array(frame[i]) b = np.array([0, 0, 1]) angle = a[2]/length(a) # in form of cos theta # helices_angles.append(angle) # print(angle) out.write("{}, {}, {}\n".format(ii, count+1, angle)) # helices_angles_all_frames.append(helices_angles) def structure_prediction_run(protein): print(protein) protocol_list = ["awsemer", "frag", "er"] do = os.system cd = os.chdir cd(protein) # run = "frag" for protocol in protocol_list: do("rm -r " + protocol) do("mkdir -p " + protocol) do("cp -r {} {}/".format(protein, protocol)) cd(protocol) cd(protein) # do("cp ~/opt/gremlin/protein/{}/gremlin/go_rnativeC* .".format(protein)) do("cp ~/opt/gremlin/protein/{}/raptor/go_rnativeC* .".format(protein)) fileName = protein + "_multi.in" backboneFile = "fix_backbone_coeff_" + protocol with fileinput.FileInput(fileName, inplace=True, backup='.bak') as file: for line in file: tmp = line.replace("fix_backbone_coeff_er", backboneFile) print(tmp, end='') cd("..") do("run.py -m 0 -n 20 {}".format(protein)) cd("..") cd("..") # do("") def check_and_correct_fragment_memory(fragFile="fragsLAMW.mem"): with open("tmp.mem", "w") as out: with open(fragFile, "r") as f: for i in range(4): line = next(f) out.write(line) for line in f: gro, _, i, n, _ = line.split() delete = False # print(gro, i, n) # name = gro.split("/")[-1] with open(gro, "r") as one: next(one) next(one) all_residues = set() for atom in one: residue, *_ = atom.split() # print(residue) all_residues.add(int(residue)) for test in range(int(i), int(i)+int(n)): if test not in all_residues: print("ATTENTION", gro, i, n, "missing:",test) delete = True if not delete: out.write(line) os.system(f"mv {fragFile} fragsLAMW_back") os.system(f"mv tmp.mem {fragFile}") def read_complete_temper_2(n=4, location=".", rerun=-1, qnqc=False, average_z=False, localQ=False, disReal=False, dis_h56=False, goEnergy=False, goEnergy3H=False, goEnergy4H=False): all_data_list = [] for i in range(n): file = "lipid.{}.dat".format(i) lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() remove_columns = ['Steps'] lipid = lipid.drop(remove_columns, axis=1) file = "rgs.{}.dat".format(i) rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() remove_columns = ['Steps'] rgs = rgs.drop(remove_columns, axis=1) file = "energy.{}.dat".format(i) energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() energy = energy[["AMH-Go", "Membrane", "Rg"]] file = "addforce.{}.dat".format(i) dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() remove_columns = ['Steps', 'AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) file = "wham.{}.dat".format(i) wham = pd.read_csv(location+file).assign(Run=i) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) if qnqc: qc = pd.read_table(location+f"qc_{i}", names=["qc"])[1:].reset_index(drop=True) qn = pd.read_table(location+f"qn_{i}", names=["qn"])[1:].reset_index(drop=True) qc2 = pd.read_table(location+f"qc2_{i}", names=["qc2"])[1:].reset_index(drop=True) wham = pd.concat([wham, qn, qc, qc2],axis=1) # if average_z: # z = pd.read_table(location+f"z_{i}.dat", names=["AverageZ"])[1:].reset_index(drop=True) # wham = pd.concat([wham, z],axis=1) if disReal: tmp = pd.read_csv(location+f"distance_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if dis_h56: tmp = pd.read_csv(location+f"distance_h56_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp1 = pd.read_csv(location+f"distance_h12_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp2 = pd.read_csv(location+f"distance_h34_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() tmp1.columns = tmp1.columns.str.strip() tmp2.columns = tmp2.columns.str.strip() wham = pd.concat([wham, tmp, tmp1, tmp2],axis=1) if average_z: z =
pd.read_csv(location+f"z_complete_{i}.dat")
pandas.read_csv
"""Climodat Daily Data Estimator. python daily_estimator.py YYYY MM DD RUN_NOON.sh - processes the current date, this skips any calendar day sites RUN_NOON.sh - processes yesterday, running all sites RUN_2AM.sh - processes yesterday, which should run all sites """ from __future__ import print_function import sys import datetime import pandas as pd from pandas.io.sql import read_sql import numpy as np from pyiem import iemre from pyiem.network import Table as NetworkTable from pyiem.util import get_dbconn, ncopen from pyiem.datatypes import temperature, distance from pyiem.reference import TRACE_VALUE, state_names def load_table(state, date): """Update the station table""" nt = NetworkTable("%sCLIMATE" % (state, )) rows = [] istoday = (date == datetime.date.today()) for sid in nt.sts: # handled by compute_0000 if sid[2:] == '0000' or sid[2] == 'C': continue if istoday and not nt.sts[sid]['temp24_hour'] in range(3, 12): # print('skipping %s as is_today' % (sid, )) continue i, j = iemre.find_ij(nt.sts[sid]['lon'], nt.sts[sid]['lat']) nt.sts[sid]['gridi'] = i nt.sts[sid]['gridj'] = j rows.append( {'station': sid, 'gridi': i, 'gridj': j, 'temp24_hour': nt.sts[sid]['temp24_hour'], 'precip24_hour': nt.sts[sid]['precip24_hour'], 'tracks': nt.sts[sid]['attributes'].get( 'TRACKS_STATION', '|').split("|")[0]} ) if not rows: return df = pd.DataFrame(rows) df.set_index('station', inplace=True) for key in ['high', 'low', 'precip', 'snow', 'snowd']: df[key] = None return df def estimate_precip(df, ts): """Estimate precipitation based on IEMRE""" idx = iemre.daily_offset(ts) nc = ncopen(iemre.get_daily_ncname(ts.year), 'r', timeout=300) grid12 = distance(nc.variables['p01d_12z'][idx, :, :], 'MM').value("IN").filled(0) grid00 = distance(nc.variables['p01d'][idx, :, :], "MM").value("IN").filled(0) nc.close() for sid, row in df.iterrows(): if not pd.isnull(row['precip']): continue if row['precip24_hour'] in [0, 22, 23]: precip = grid00[row['gridj'], row['gridi']] else: precip = grid12[row['gridj'], row['gridi']] # denote trace if precip > 0 and precip < 0.01: df.at[sid, 'precip'] = TRACE_VALUE elif precip < 0: df.at[sid, 'precip'] = 0 elif np.isnan(precip) or np.ma.is_masked(precip): df.at[sid, 'precip'] = 0 else: df.at[sid, 'precip'] = "%.2f" % (precip,) def estimate_snow(df, ts): """Estimate the Snow based on COOP reports""" idx = iemre.daily_offset(ts) nc = ncopen(iemre.get_daily_ncname(ts.year), 'r', timeout=300) snowgrid12 = distance(nc.variables['snow_12z'][idx, :, :], 'MM').value('IN').filled(0) snowdgrid12 = distance(nc.variables['snowd_12z'][idx, :, :], 'MM').value('IN').filled(0) nc.close() for sid, row in df.iterrows(): if
pd.isnull(row['snow'])
pandas.isnull
import numpy as np import pandas as pd from .DensityFunctions import BaseDensityCalc def raw_delta_calc(times): ''' Given an array of times, this function calculates the deltas between them. Arguments --------- - times: array: This is an array of times that will be used to calculate the deltas. Returns --------- - out: array: This is an array of deltas. ''' out = (times[1:] - times[:-1])*1e-9 out = out.astype(float) return out def single_location_delta(input_df, single_location, columns={'time': 'time', 'location': 'location'}, recall_value=5, return_as_list = False): ''' This function takes the ```input_df``` and calculates the raw time delta between the single_location location time and the time of the ```recall_value``` number of locations immediately before the single_location. This does not separate on subject. Please pass data from a single subject into this function. Arguments --------- - input_df: pandas dataframe: This is a dataframe that contains columns relating to the subject, time and location of sensor trigger. - single_location: string: This is the location value that you wish to calculate the delta to. - columns: dictionary: This is the dictionary with the column names in ```input_df``` for each of the values of data that we need in our calculations. This dictionary should be of the form: ``` {'time': column containing the times of sensor triggers, 'location': column containing the locations of the sensor triggers} ``` - recall_value: integer: This is the number of previous locations to the single_location trigger - return_as_list: bool: This option allows the user to return a list of the dates and data if ```True```. This is used internally by other functions. Returns --------- - out: dictionary: This has the Timestamps of the dates as keys (for example: Timestamp('2021-05-05 00:00:00')) and the arrays of deltas as values. The arrays of deltas are of shape ```(Nt, recall_value)``` where Nt is the number of visits to ```single_location``` on a given day. If there are no ```single_location``` visits found in the data, then an empty dictionary will be returned. ''' time_column = columns['time'] location_column = columns['location'] # format the incoming data to ensure assumptions about structure are met input_df[time_column] = pd.to_datetime(input_df[time_column], utc=True) input_df = input_df.sort_values(time_column) # find the indices of the data that match with the location we want to find the delta to single_location_indices = np.where(input_df[location_column] == single_location)[0].reshape(-1, 1) # making sure that the recall value is not more than the number of sensor triggers before the # first single_location sensor trigger if len(single_location_indices) == 0: if return_as_list: return [], [] else: return {} single_location_indices = single_location_indices[np.argmax(recall_value < single_location_indices):] # indices of the sensor triggers that we need in our calculations recall_indices = np.hstack([single_location_indices - i for i in range(recall_value + 1)]) # the times of the sensor triggers recall_times = input_df[time_column].values[recall_indices] # the delta between the times for each of the previous sensors to recall_value recall_delta = (recall_times[:, 0, None] - recall_times[:, 1:]) * 1e-9 # the times of the single_location triggers single_location_times = input_df[time_column].iloc[single_location_indices.reshape(-1, )] # dates of the single_location triggers single_location_dates = single_location_times.dt.date # out dictionary out = {} if return_as_list: date_list = [] data_list = [] for nd, date in enumerate(single_location_dates.unique()): date_list.append(date) data_to_add = recall_delta[single_location_dates.values == date].astype(float) data_list.append(data_to_add) return pd.to_datetime(date_list), data_list else: # creating the output dictionary for date in single_location_dates.unique(): # saving the delta values for this date to the dictionary out[pd.to_datetime(date)] = recall_delta[single_location_dates.values == date].astype(float) return out class TimeDeltaDensity(BaseDensityCalc): ''' This function allows the user to calculate reverse percentiles on some data, given another dataset. ''' def __init__(self, save_baseline_array=True, sample=False, sample_size=10000, seed=None, verbose=True): BaseDensityCalc.__init__(self, save_baseline_array=save_baseline_array, sample=sample, sample_size=sample_size, seed=seed, verbose=verbose) return def rp_single_location_delta(input_df, single_location, baseline_length_days = 7, baseline_offset_days = 0, columns={'time': 'time', 'location': 'location'}, recall_value=5): ''' This function takes the ```input_df``` and calculates the reverse percentage time delta between the ```single_location``` location time and the time of the ```recall_value``` number of locations immediately before the ```single_location```. The baseline for the reverse percentage calculation is defined by ```baseline_length_days``` and ```baseline_offset_days```. For example: With ```baseline_length_days = 7``` and ```baseline_offset_days = 1```, the rp deltas on the day ```pd.Timestamp('2021-06-29')``` are calculated using the deltas from ```pd.Timestamp('2021-06-21 00:00:00')``` to ```pd.Timestamp('2021-06-28 00:00:00')```. This does not separate on subject. Please pass data from a single subject into this function. NOTE: The reverse percentage is calculated based on all of the deltas coming into a location! This means that the delta is agnostic to the "from" location. Arguments --------- - input_df: pandas dataframe: This is a dataframe that contains columns relating to the time and location of sensor trigger. - single_location: string: This is the location value that you wish to calculate the delta to. - baseline_length_days: integer: This is the length of the baseline in days that will be used. This value is used when finding the ```baseline_length_days``` complete days of ```single_location``` data to use as a baseline. - baseline_offset_days: integer: This is the offset to the baseline period. ```0``` corresponds to a time period ending the morning of the current date being calculated on. - columns: dictionary: This is the dictionary with the column names in ```input_df``` for each of the values of data that we need in our calculations. This dictionary should be of the form: ``` {'time': column containing the times of sensor triggers, 'location': column containing the locations of the sensor triggers} ``` - recall_value: integer: This is the number of previous locations to the single_location trigger Returns --------- - out: dictionary: This has the Timestamps of the dates as keys (for example: Timestamp('2021-05-05 00:00:00')) and the arrays of deltas as values. The arrays of deltas are of shape ```(Nt, recall_value)``` where Nt is the number of visits to ```single_location``` on a given day. ''' # column names time_column = columns['time'] location_column = columns['location'] out = {} # format the incoming data to ensure assumptions about structure are met input_df[time_column] = pd.to_datetime(input_df[time_column], utc=True) input_df = input_df.sort_values(time_column) # getting the single location raw delta date_list, data_list = single_location_delta(input_df, single_location, columns, recall_value, return_as_list=True) # for each date for nd, date in enumerate(date_list): date =
pd.to_datetime(date)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Web Map Tile Service time dimension demonstration ------------------------------------------------- This example further demonstrates WMTS support within cartopy. Optional keyword arguments can be supplied to the OGC WMTS 'gettile' method. This allows for the specification of the 'time' dimension for a WMTS layer which supports it. There are 10000+ WMS services out there. Here are some compiled lists: http://www.skylab-mobilesystems.com/en/wms_serverlist.html http://directory.spatineo.com http://directory.spatineo.com/service/42691/ # See using open street map: #http://scitools.org.uk/cartopy/docs/v0.15/examples/tube_stations.html # Planet Labs https://www.planet.com/docs/reference/tile-services/ # Google tiles: https://ocefpaf.github.io/python4oceanographers/blog/2015/06/22/osm/ The example shows satellite imagery retrieved from NASA's Global Imagery Browse Services for 5th Feb 2016. A true color MODIS image is shown on the left, with the MODIS false color 'snow RGB' shown on the right. """ import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects #import matplotlib.ticker as mticker from matplotlib.dates import YearLocator, MonthLocator, DateFormatter import cartopy.crs as ccrs import cartopy.feature as cfeature #from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER from owslib.wmts import WebMapTileService import geopandas as gpd import pandas as pd from pandas.plotting import table import numpy as np import shapely.wkt import urllib import json import os #plt.style.use('seaborn-white') plt.rcParams['font.size'] = 14 def add_wmts_gibs_basemap(ax, date='2016-02-05'): """http://gibs.earthdata.nasa.gov/""" URL = 'http://gibs.earthdata.nasa.gov/wmts/epsg4326/best/wmts.cgi' wmts = WebMapTileService(URL) # Layers for MODIS true color and snow RGB # NOTE: what other tiles available?: TONS! #https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-ReferenceLayers9Layers #layer = 'MODIS_Terra_SurfaceReflectance_Bands143' #layer = 'MODIS_Terra_CorrectedReflectance_Bands367' #layer = 'ASTER_GDEM_Greyscale_Shaded_Relief' #better zoomed in layer = 'SRTM_Color_Index' #layer = 'BlueMarble_ShadedRelief' #static #layer = 'BlueMarble_NextGeneration' #layer = 'BlueMarble_ShadedRelief_Bathymetry' #layer = 'Reference_Labels' #layer = 'Reference_Features' ax.add_wmts(wmts, layer, wmts_kwargs={'time': date}) # alpha=0.5 #NOTE: can access attributes: #wmts[layer].title return wmts def add_xyz_tile(ax, url, zoom=6): """ Grab a map tile from the web """ from cartopy.io.img_tiles import GoogleTiles # Not sure about how projections are handled... #url = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/tile/{z}/{y}/{x}.jpg' #url = 'http://tile.stamen.com/watercolor/{z}/{x}/{y}.png' #url = 'https://s3.amazonaws.com/elevation-tiles-prod/normal/{z}/{x}/{y}.png' tiler = GoogleTiles(url=url) ax.add_image(tiler, zoom) def query_asf(snwe, sat='1A'): ''' takes list of [south, north, west, east] ''' miny, maxy, minx, maxx = snwe roi = shapely.geometry.box(minx, miny, maxx, maxy) #test.__geo_interface__ #geojson? polygonWKT = roi.to_wkt() polygon = urllib.parse.quote_plus(polygonWKT) #for URL base = 'https://api.daac.asf.alaska.edu/services/search/param?' #Note: 'intersects' gets entire global track! ALSO, better to use 'requests' librar? poly = 'intersectsWith={}'.format(polygon) plat = 'platform=Sentinel-{}'.format(sat) #1B proc = 'processingLevel=SLC' beam = 'beamMode=IW' #relativeOrbit=$ORBIT out = 'output=json > query{}.json'.format(sat) #out = 'output=kml > query.kml' querystr = '\\&'.join([base, poly, plat, beam, proc, out]) #escape backslash #poly= polygonWKT #url = '\&'.join([base, poly, plat, beam, proc, out]) # os.system('curl ' + querystr) print(querystr) # query ASF catalog and get json back def load_asf_json(jsonfile): ''' Convert JSON metadata from asf query to dataframe ''' with open(jsonfile) as f: meta = json.load(f)[0] #list of scene dictionaries df = pd.DataFrame(meta) polygons = df.stringFootprint.apply(shapely.wkt.loads) gf = gpd.GeoDataFrame(df, crs={'init': 'epsg:4326'}, geometry=polygons) #gf['date'] = pd.to_datetime(df.sceneDate, format='%Y-%m-%d %H:%M:%S') #gf.to_file(outfile) #saves as shapefile return gf def main(): # Plot setup plot_CRS = ccrs.Mercator() geodetic_CRS = ccrs.Geodetic() x0, y0 = plot_CRS.transform_point(30, -16, geodetic_CRS) x1, y1 = plot_CRS.transform_point(40, -6, geodetic_CRS) fig,ax = plt.subplots(figsize=(8,8), dpi=100, subplot_kw=dict(projection=plot_CRS)) ax.set_xlim((x0, x1)) ax.set_ylim((y0, y1)) #wmts = add_wmts_gibs_basemap(ax) #url = 'http://tile.stamen.com/watercolor/{z}/{x}/{y}.png' #url = 'http://tile.stamen.com/terrain/{z}/{x}/{y}.png' #url = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/tile/{z}/{y}/{x}.jpg' #url = 'https://s3.amazonaws.com/elevation-tiles-prod/normal/{z}/{x}/{y}.png' #add_xyz_tile(ax, url, zoom=7) #higher number higher resultion #can't pass alpha argument... #ax.stock_img() # New 0.15 background method... os.environ["CARTOPY_USER_BACKGROUNDS"] = '/Users/scott/Data/cartopy_data' #ax.background_img("GrayEarth") ax.background_img("ne_shaded", "low") #ax.coastlines(resolution='50m', color='black') # http://scitools.org.uk/cartopy/docs/v0.15/matplotlib/feature_interface.html #https://gis.stackexchange.com/questions/88209/python-mapping-in-matplotlib-cartopy-color-one-country #borders = cfeature.BORDERS #low res borders = cfeature.NaturalEarthFeature(scale='10m', category='cultural', name='admin_0_boundary_lines_land') ax.add_feature(borders, facecolor='none', edgecolor='k') # Label Basemap ''' txt = plt.text(-69, -20.5, 'MODIS' , fontsize=18, color='wheat', transform=geodetic_CRS) txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='black')]) ''' # Add Rungwe ax.plot(-33.668, -9.135, 'k^', transform=geodetic_CRS) # Add deformation footprint # Add ROI gjson # Go directly from SNWE box: -11.75 -8.75 32.5 35.5 snwe = [-11.75, -8.75, 32.5, 35.5] #query_asf(snwe, '1A') #downloads query.json #query_asf(snwe, '1B') #downloads query.json # Some basic coverage analysis gf = load_asf_json('query.json') orbits = gf.relativeOrbit.unique() #gf.to_file('query.geojson', driver='GeoJSON') #automatically rendered on github! #gf.iloc[0] #everything available #gf.plot() gf.groupby('relativeOrbit').fileName.count() gf.groupby('relativeOrbit').sceneDate.describe() gf.groupby('relativeOrbit').sceneDate.min() gf.groupby('relativeOrbit').sceneDate.max() # create a summary dataframe, insert as figure metadata #dfS = pd.DataFrame(index=gf.relativeOrbit.unique(), columns=['Count','Start','Stop']) #dfS['Count'] = gf.groupby('relativeOrbit').fileName.count() #dfS['Start'] = gf.groupby('relativeOrbit').sceneDate.min() #dfS['Stop'] = gf.groupby('relativeOrbit').sceneDate.max() # Above has weird dtypes... # Add to plot! as a custom legend - see below for separate figure #table(ax, dfS, loc='upper right', zorder=10) # Add all scene footprints to the plot! ''' ax.add_geometries(gf.geometry.values, ccrs.PlateCarree(), facecolor='none', edgecolor='k', linewidth=1, linestyle='-') ''' # To unclutter, show cascaded union for each track in different colors #colors = ['c','m','b','y'] colors = plt.cm.jet(np.linspace(0,1,orbits.size)) #colors = plt.get_cmap('jet', orbits.size) #not iterable for orbit,color in zip(orbits, colors): df = gf.query('relativeOrbit == @orbit') poly = df.geometry.cascaded_union if df.flightDirection.iloc[0] == 'ASCENDING': linestyle = '--' #xpos, ypos = poly.bounds[0], poly.bounds[3] #upper left xpos,ypos = poly.centroid.x, poly.bounds[3] else: linestyle = '-' #xpos, ypos = poly.bounds[2], poly.bounds[1] #lower right xpos,ypos = poly.centroid.x, poly.bounds[1] ax.add_geometries([poly], ccrs.PlateCarree(), facecolor='none', edgecolor=color, linewidth=2, linestyle=linestyle) ax.text(xpos, ypos, orbit, color=color, fontsize=16, fontweight='bold', transform=geodetic_CRS) # Add some text labels #fs = 16 #ax.text(-69.6, -20.6, 'A149', color='b', fontsize=fs, fontweight='bold', transform=geodetic_CRS) #ax.text(-67.0, -20.25, 'A76', color='y', fontsize=fs, fontweight='bold', transform=geodetic_CRS) #ax.text(-67.8, -24.9, 'D83', color='m', fontsize=fs, fontweight='bold', transform=geodetic_CRS) #ax.text(-69.6, -24.6, 'D156', color='c', fontsize=fs, fontweight='bold', transform=geodetic_CRS) # Warning, mixing PlateCarree and Mercator here... might not work # for large regions gl = ax.gridlines(ccrs.PlateCarree(), draw_labels=True, linewidth=0.5, color='gray', alpha=0.5, linestyle='-') gl.xlabels_top = False gl.ylabels_left = False #gl.xlines = False #gl.xlocator = mticker.FixedLocator([-180, -45, 0, 45, 180]) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER #plt.show() plt.title('Sentinel-1 Coverage SEGMENT Project') plt.savefig('map_coverage.pdf', bbox_inches='tight') # Second figure for timeline ''' df = pd.DataFrame(gf.relativeOrbit.astype('int')) #df['platform'] = gf.platform df['sceneDate'] = pd.to_datetime(gf.sceneDate) df['dateStr'] = df.sceneDate.apply(lambda x: x.strftime('%Y-%m-%d')) df['code'] = df.relativeOrbit.astype('category').cat.codes dfS = pd.DataFrame(index=df.relativeOrbit.unique()) dfS['Count'] = df.groupby('relativeOrbit').dateStr.count() dfS['Start'] = df.groupby('relativeOrbit').dateStr.min() dfS['Stop'] = df.groupby('relativeOrbit').dateStr.max() dfS.sort_index(inplace=True, ascending=False) dfS.index.name = 'Orbit' plot_timeline_table(df, dfS) ''' #plot_timeline_table_new() def plot_timeline(df): fig,ax = plt.subplots(figsize=(8,4)) plt.scatter(df.sceneDate.values, df.code.values, c=df.code.values, cmap='viridis', s=40) plt.yticks(df.code.unique(), df.relativeOrbit.unique()) plt.axvline('2016-04-22', color='gray', linestyle='dashed', label='Sentinel-1B launch') ax.xaxis.set_minor_locator(MonthLocator()) ax.xaxis.set_major_locator(YearLocator()) plt.legend() plt.ylabel('Orbit Number') fig.autofmt_xdate() plt.title('Sentinel-1 Coverage at Uturuncu') plt.savefig('timeline.pdf', bbox_inches='tight') def plot_timeline_table(df, dfS): plt.rcParams['font.size'] = 14 fig,ax = plt.subplots(figsize=(11,8.5)) plt.scatter(df.sceneDate.values, df.code.values, c=df.code.values, cmap='viridis', s=40) plt.yticks(df.code.unique(), df.relativeOrbit.unique()) plt.axvline('2016-04-22', color='gray', linestyle='dashed', label='Sentinel-1B launch') # Add to plot! as a custom legend table(ax, dfS, loc='top', zorder=10, fontsize=12, #colWidths=[0.2, 0.2, 0.2, 0.2], bbox=[0.1, 0.7, 0.8, 0.275] )#[left, bottom, width, height]) ax.xaxis.set_minor_locator(MonthLocator()) ax.xaxis.set_major_locator(YearLocator()) plt.legend(loc='lower right') plt.ylim(-1,6) plt.ylabel('Orbit Number') fig.autofmt_xdate() plt.title('Sentinel-1 Coverage SEGMENT Project') plt.savefig('timeline_with_table.pdf', bbox_inches='tight') def print_acquisitions(df, orbit=156): ''' Write acquistions to csv file ''' dates = pd.to_datetime(df.query('relativeOrbit == @orbit').dateStr) tmp =
pd.DataFrame(dates)
pandas.DataFrame
from sklearn.inspection import permutation_importance from eli5.permutation_importance import get_score_importances from sklearn.metrics import ( roc_curve, confusion_matrix, accuracy_score, matthews_corrcoef, roc_auc_score, log_loss, mean_squared_error, mean_absolute_error, r2_score, make_scorer ) import pandas as pd import numpy as np import configparser import pickle def roc_cutoff(y_true, y_pred): fpr, tpr, thresholds = roc_curve(y_true, y_pred) cutoff = thresholds[np.argmax(tpr - fpr)] return cutoff def root_mean_squared_error(y_true, y_pred): return np.sqrt(mean_squared_error(y_true, y_pred)) def evaluate_clf(y_true, y_pred, cutoff): pred_label = (y_pred >= cutoff) * 1 tn, fp, fn, tp = confusion_matrix(y_true, pred_label).ravel() accuracy = accuracy_score(y_true, pred_label) balanced_accuracy = (tp / (tp + fn) + tn / (tn + fp)) / 2 mcc = matthews_corrcoef(y_true, pred_label) sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) auc = roc_auc_score(y_true, y_pred) metrics = { 'auc': [auc], 'acc': [accuracy], 'sen': [sensitivity], 'spe': [specificity], 'bac': [balanced_accuracy], 'mcc': [mcc], 'cutoff': [cutoff] } return metrics def evaluate_reg(y_true, y_pred): mae = mean_absolute_error(y_true, y_pred) mse = mean_squared_error(y_true, y_pred) rmse = root_mean_squared_error(y_true, y_pred) r2 = r2_score(y_true, y_pred) metrics = {'r2': [r2], 'mae': [mae], 'rmse': [rmse], 'mse': [mse]} return metrics def get_permutation_importance(task, model, X, y, colmumns, n_repeats): model_type = type(model.get_model()).__name__[:3] if model_type == 'LGB' or model_type == 'XGB': if task == 'classification': scoring = make_scorer(log_loss) elif task == 'regression': scoring = make_scorer(root_mean_squared_error) imps = permutation_importance( model, X, y, scoring=scoring, n_repeats=n_repeats, n_jobs=-1, )['importances_mean'] elif model_type[:2] == 'NN': if task == 'classification': def scoring(X, y_true): return np.sqrt(mean_squared_error(y_true, model.predict(X))) elif task == 'regression': def scoring(X, y_true): return np.log_loss(y_true, model.predict(X)) score_decreases = get_score_importances( scoring, X, y, n_iter=n_repeats, )[1] imps = np.mean(score_decreases, axis=0) df_imps =
pd.DataFrame(imps, columns=['permutation_importance'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.0 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_pricing_calloption [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_pricing_calloption&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-call-option-value). # + import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import interpolate from tqdm import trange from arpym.statistics import meancov_sp from arpym.pricing import call_option_value, ytm_shadowrates from arpym.tools import add_logo, histogram_sp # - # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_calloption-parameters) tau_hor = 100 # time to horizon (in days) j_ = 1000 # number of scenarios k_strk = 1407 # strike of the options on the S&P500 (in dollars) t_end = np.datetime64('2013-08-31') # expiry date of the options y = 0.02 # yield curve (assumed flat and constant) # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_calloption-implementation-step00): Import data # + path = '../../../databases/temporary-databases/' db_proj = pd.read_csv(path+'db_calloption_proj.csv', index_col=0) m_moneyness = np.array([float(col[col.find('m=')+2:col.find(' tau=')]) for col in db_proj.columns[1:]]) m_moneyness = np.unique(m_moneyness) tau_implvol = np.array([float(col[col.find(' tau=')+5:]) for col in db_proj.columns[1:]]) tau_implvol = np.unique(tau_implvol) db_projdates = pd.read_csv(path + 'db_calloption_proj_dates.csv', header=0, parse_dates=True) t_m = np.array(pd.to_datetime(db_projdates.values.reshape(-1)), dtype='datetime64[D]') m_ = t_m.shape[0]-1 deltat_m = np.busday_count(t_m[0], t_m[1]) if tau_hor > m_: print(" Projection doesn't have data until given horizon!!!" + " Horizon lowered to ", m_) tau_hor = m_ # number of monitoring times m_ = tau_hor t_m = t_m[:m_+1] i_ = db_proj.shape[1] x_proj = db_proj.values.reshape(j_, -1, i_) x_proj = x_proj[:, :m_+1, :] x_tnow = x_proj[0, 0, :] # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_calloption-implementation-step01): Pricing at the horizon # + v_call_thor = np.zeros((j_, m_+1)) log_sigma_atm = np.zeros((j_, m_+1)) s_thor = np.zeros((j_, m_+1)) points = list(zip(*[grid.flatten() for grid in np.meshgrid(*[tau_implvol, m_moneyness])])) for m in trange(m_+1,desc='Day'): tau = np.busday_count(t_m[m], t_end)/252 if tau < tau_implvol[0]: tau = tau_implvol[0] for j in range(j_): # compute shadow yield x_y = ytm_shadowrates(np.array([y])) x_y = np.atleast_1d(x_y) # compute call option value v_call_thor[j, m] = \ call_option_value(x_proj[j, m, 0], x_y, tau, x_proj[j, m, 1:], m_moneyness, tau_implvol, k_strk, t_end, t_m[m]) # compute log-implied volatility at the moneyness log_sigma_atm[j, m] = \ interpolate.LinearNDInterpolator(points, x_proj[j, m, 1:])(*np.r_[tau, 0]) # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_calloption-implementation-step02): Scenario-probability expectations and standard deviations # + mu_v = np.zeros(m_+1) sig_v = np.zeros(m_+1) for m in range(len(t_m)): mu_v[m], sig1 = meancov_sp(v_call_thor[:, m].reshape(-1, 1)) sig_v[m] = np.sqrt(sig1) # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_pricing_calloption-implementation-step03): Save databases # + output = {'j_': pd.Series(j_), 'k_strike':
pd.Series(k_strk)
pandas.Series
"""Core function for pyinfraformat.""" import logging import os from datetime import datetime from gc import collect from numbers import Integral import pandas as pd from ..exceptions import FileExtensionMissingError logger = logging.getLogger("pyinfraformat") __all__ = ["Holes"] class Holes: """Container for multiple infraformat hole information.""" def __init__(self, holes=None, lowmemory=False): """Container for multiple infraformat hole information. Parameters ---------- holes : list list of infraformat hole information lowmemory : bool, optional Create Pandas DataFrame one by one minimizing memory use. """ if holes is None: holes = [] self.holes = list(holes) if not isinstance(holes, Hole) else [holes] self._lowmemory = lowmemory self.n = None def __str__(self): msg = "Infraformat Holes -object:\n Total of {n} holes".format(n=len(self.holes)) value_counts = self.value_counts() if self.holes: max_length = max([len(str(values)) for values in value_counts.values()]) + 1 counts = "\n".join( " - {key:.<10}{value:.>6}".format( key="{} ".format(key), value=("{:>" + "{}".format(max_length) + "}").format(value), ) for key, value in value_counts.items() ) msg = "\n".join((msg, counts)) return msg def __repr__(self): return self.__str__() def __getitem__(self, index): if isinstance(index, Integral): return self.holes[index] return Holes(self.holes[index]) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self.holes): result = self.holes[self.n] self.n += 1 return result else: raise StopIteration def __add__(self, other): if isinstance(other, Holes): return Holes(self.holes + other.holes) if isinstance(other, Hole): return Holes(self.holes + [other]) raise ValueError("Only Holes or Hole -objects can be added.") def __len__(self): return len(self.holes) def append(self, hole): """Append Hole object to holes.""" if isinstance(hole, Hole): self.holes += [hole] else: raise ValueError("Only Hole -object can be appended.") def extend(self, holes): """Extend with Holes -object.""" if isinstance(holes, Holes): self.holes += holes else: raise ValueError("Only Holes -object can be extended.") def filter_holes(self, *, bbox=None, hole_type=None, start=None, end=None, fmt=None, **kwargs): """Filter holes. Parameters ---------- bbox : tuple left, right, bottom, top hole_type : str start : str Date string. Recommended format is yyyy-mm-dd. Value is passed to `pandas.to_datetime`. end : str Date string. Recommended format is yyyy-mm-dd. Value is passed to `pandas.to_datetime`. fmt : str Custom date string format for `start` and `end`. Value is passed for `datetime.strptime`. See https://docs.python.org/3.7/library/datetime.html#strftime-and-strptime-behavior Returns ------- list Filtered holes. Examples -------- filtered_holes = holes_object.filter_holes( bbox=(24,25,60,61) ) filtered_holes = holes_object.filter_holes( hole_type=["PO"] ) filtered_holes = holes_object.filter_holes( start="2015-05-15", end="2016-08-06" ) filtered_holes = holes_object.filter_holes( start="05/15/15", end="08/06/16", fmt="%x" ) Return types are from: _filter_coordinates(bbox, **kwargs) _filter_type(hole_type, **kwargs) _filter_date(start=None, end=None, fmt=None, **kwargs) """ filtered_holes = self.holes if bbox is not None: filtered_holes = self._filter_coordinates(filtered_holes, bbox, **kwargs) if hole_type is not None: filtered_holes = self._filter_type(filtered_holes, hole_type, **kwargs) if start is not None or end is not None: filtered_holes = self._filter_date(filtered_holes, start, end, fmt=fmt, **kwargs) return filtered_holes def _filter_coordinates(self, holes, bbox): """Filter object by coordinates.""" xmin, xmax, ymin, ymax = bbox filtered_holes = [] for hole in holes: if not ( hasattr(hole.header, "XY") and "X" in hole.header.XY.keys() and "Y" in hole.header.XY.keys() ): continue if ( hole.header.XY["X"] >= xmin and hole.header.XY["X"] <= xmax and hole.header.XY["Y"] >= ymin and hole.header.XY["Y"] <= ymax ): filtered_holes.append(hole) return Holes(filtered_holes) def _filter_type(self, holes, hole_type): """Filter object by survey abbreviation (type).""" filtered_holes = [] if isinstance(hole_type, str): hole_type = [hole_type] for hole in holes: if ( hasattr(hole.header, "TT") and ("Survey abbreviation" in hole.header.TT) and any(item == hole.header.TT["Survey abbreviation"] for item in hole_type) ): filtered_holes.append(hole) return Holes(filtered_holes) def _filter_date(self, holes, start=None, end=None, fmt=None): """Filter object by datetime.""" if isinstance(start, str) and fmt is None: start = pd.to_datetime(start) elif isinstance(start, str) and fmt is not None: start = datetime.strptime(start, fmt) if isinstance(end, str) and fmt is None: end =
pd.to_datetime(end)
pandas.to_datetime
from covid19_util import * import datetime import time import geonamescache from io import StringIO import ipywidgets from matplotlib import dates as mdates from matplotlib import colors as mcolors import pandas as pd import requests import scipy.optimize import scipy.stats from multi_checkbox_widget import multi_checkbox_widget class Covid19Processing: def __init__(self, show_result=True): self.dataframes = {} gc = geonamescache.GeonamesCache() gc_data = list(gc.get_countries().values()) gc_states = gc.get_us_states() for state in gc_states: state_data = gc_states[state] if not state_data["name"].endswith(", US"): state_data["name"] += ", US" gc_data += [state_data] self.country_metadata = {} populations = pd.read_csv("populations.csv", names=["country", "population"], index_col=0, header=0) for country in populations.index: if country in normalized_names: populations.loc[normalized_names[country]] = populations.loc[country] self.countries_to_plot = ["Brazil", "China", "Japan", "South Korea", "United States", "India", "Italy", "Germany", "Russia", "Netherlands", "Spain", "World"] for country_data in gc_data: name = country_data["name"] if name in normalized_names: name = normalized_names[name] population = populations.loc[name].population if "continentcode" in country_data: continent = continent_codes[country_data["continentcode"]] else: continent = "North America" self.country_metadata[name] = { "population": population, "continent": continent } for metric in data_urls.keys(): url = base_url + data_urls[metric] # Combine URL parts r = requests.get(url) # Retrieve from URL self.dataframes[metric] = pd.read_csv(StringIO(r.text), sep=",") # Convert into Pandas dataframe if show_result: # Display the first lines display(Markdown("### Raw confirmed cases data, per region/state")) with pd.option_context("display.max_rows", 10, "display.max_columns", 14): display(self.dataframes["confirmed"]) def process(self, rows=20, debug=False): # Clean up for metric in data_urls.keys(): if "states" not in metric: is_country = True by = "_by_country" else: is_country = False by = "_by_state" if is_country: by_country = self.dataframes[metric].groupby("Country/Region").sum() # Group by country dates = by_country.columns[2:] # Drop Lat/Long else: by_country = self.dataframes[metric].groupby("Province_State").sum() dates = by_country.columns[11:] # Skip various clutter columns metric = metric.split("_", 1)[0] # Convert to columns to matplotlib dates by_country = by_country.loc[:, dates] dates = pd.to_datetime(dates) by_country.columns = dates if metric == "confirmed": # Early China data points early_china_data = { "1/17/20": 45, "1/18/20": 62, "1/20/20": 218 } if is_country: # Insert data points for d, n in early_china_data.items(): by_country.loc["China", pd.to_datetime(d)] = n # Retain chronological column order by_country = by_country.reindex(list(sorted(by_country.columns)), axis=1) by_country = by_country.fillna(0) # Correct an odd blip in the Japanese data. # From 2/5 to 2/7, the Johns Hopkins data for Japan goes 22, 45, 25. # I assume that the 45 is incorrect. Replace with 23.5, halfway between the values for 2/5 and 2/7 by_country.loc["Japan", pd.to_datetime("2/06/20")] = 23.5 # Correct a typo in US data, see https://github.com/CSSEGISandData/COVID-19/issues/2167 if by_country.loc["US", pd.to_datetime("4/13/20")] == 682619: by_country.loc["US", pd.to_datetime("4/13/20")] -= 102000 # Change some weird country names to more commonly used ones by_country = by_country.rename(index=normalized_names) if not is_country: by_country.index = [x+", US"for x in by_country.index] by_country.sort_index(inplace=True) # Store processed results for metric self.dataframes[metric + by] = by_country.fillna(0).astype(int) all_countries = self.dataframes["confirmed_by_country"].index # Add in recovered and active for by in ["_by_country", "_by_state"]: if is_country: print("Simulating active and recovered cases...") for x in ["recovered", "active"]: self.dataframes[x + by] =
pd.DataFrame(columns=self.dataframes["confirmed"+by].columns)
pandas.DataFrame
import seaborn as sns import matplotlib.pyplot as plt import json import pandas as pd import numpy as np import csv import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning warnings.simplefilter('ignore', ConvergenceWarning) lower = 0 upper = 1 font = {'family': 'monospace', 'weight': 'bold', 'size': 20} PLOT_MARGIN = 0.25 HEIGHT = 1920 WIDTH = 1200 ''' filenname: .json file with correlation data csv_filename: list of .csv files with price data plottable: 2D array with topmost and lowermost dependent parameters ''' def scatter_reg(filename: str, csv_filenames: list[str], plottable: list): with open(filename, "r", encoding="utf-8") as file: data = json.load(file) pl_list = [] for p_item in plottable: p_dict = {} for pl in p_item: p_dict[pl] = [] for pl in p_item: in_v = [i['independent_parameters'] for i in data if i['dependent'] == pl] in_v = [list(i.keys()) for i in in_v] in_v = np.array(in_v).flatten().tolist() in_v = [w.lstrip('parameter').strip() for w in in_v] p_dict[pl] = in_v pl_list.append(p_dict) from_files_data = [pd.read_csv(f, dtype=np.float32) for f in csv_filenames] dataframe = pd.concat(from_files_data, axis=1) plottable_df = [] for pl_v in pl_list: df_l_temp = [] for df in pl_v: unduplicated = list(set(pl_v[df])) dep = dataframe[df] indep = dataframe[unduplicated] fin_df = pd.concat([dep, indep], axis=1) df_l_temp.append(fin_df) plottable_df.append(df_l_temp) _, axes = plt.subplots(2, 3, figsize=(19, 11)) for index_1, _ in enumerate(plottable): s_in = 0 for p_df in plottable_df[index_1]: p_df = p_df.loc[:, ~p_df.columns.duplicated()] y_max, y_min = np.amax(p_df.iloc[:, 0]), np.amin(p_df.iloc[:, 0]) x_max, x_min = np.amax(p_df.values), np.amin(p_df.values) for _, d in enumerate(p_df): if p_df.iloc[:, 0].name != d: if len(set(p_df[d])) > 1: s = sns.regplot(ax=axes[index_1, s_in], y=p_df.iloc[:, 0].name, x=d, data=p_df, ci=None, truncate=False, robust=True, line_kws={'linewidth': 0.6}, scatter_kws={'alpha': 0.5}) y_delta = 0.2 x_delta = 1.4 s.set_ylim((y_min - y_delta, y_max + y_delta)) s.set_xlim((x_min - x_delta, x_max + x_delta)) name = p_df.iloc[:, 0].name name = (name[:40] + '..') if len(name) > 44 else name try: int(name.split(",")[0]) name = "".join(name.split(",")[1:]) except: name = name axes[index_1, s_in].set_title( name, fontdict={'fontsize': 21}) s.set(xlabel=" ") s.set(ylabel=" ") s_in += 1 png_fname = filename.split(".")[0] + ".png" plt.tight_layout() plt.savefig(f"plots/{png_fname}", format="png", bbox_inches='tight', dpi=300) ''' filename: .json file with correlation data csv_filenames: list of .csv files with independent parameters name_list: list of dependent parameters ''' def scatter(filename: str, csv_filenames: list[str], name_list: list[str]): with open(filename, "r", encoding="utf-8") as file: data = json.load(file) from_files_data = [
pd.read_csv(f, dtype=np.float32)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 """ 1. using most recent publication of researchers as input to generate user profiles 2. pretrain word2vec model window_5.model.bin and candidate_paper.csv are available via google drive link, you can download the files and change the path in this script so as to run the script successfully. 3. result saved in rank_result_rm/rank_result_mr_own_corpus.csv """ import sys from gensim.models.keyedvectors import KeyedVectors import numpy as np import pandas as pd # load pre-train model on my own corpus model = '/Users/sherry/Downloads/window_5/window_5.model.bin' w2v_model = KeyedVectors.load_word2vec_format(model, binary=True) # read all candidate papers info, contain two columns: paper ID and paper content candidate_paper_df =
pd.read_csv('/Users/sherry/Downloads/candidate_papers.csv')
pandas.read_csv
import numpy as np import pandas as pd from linear_ce import LinearActionExtractor from mlp_ce import MLPActionExtractor from forest_ce import ForestActionExtractor def exp_sens(N=50, dataset='h', K=4, time_limit=600): np.random.seed(0) print('# Sensitivity') from utils import DatasetHelper D = DatasetHelper(dataset=dataset, feature_prefix_index=False) X_tr, X_ts, y_tr, y_ts = D.train_test_split() print('* Dataset: ', D.dataset_name) print('* Feature: ', X_tr.shape[1]) from sklearn.linear_model import LogisticRegression mdl = LogisticRegression(penalty='l2', C=1.0, solver='liblinear') mdl = mdl.fit(X_tr, y_tr) ce = LinearActionExtractor(mdl, X_tr, Y=y_tr, feature_names=D.feature_names, feature_types=D.feature_types, feature_categories=D.feature_categories, feature_constraints=D.feature_constraints, target_name=D.target_name, target_labels=D.target_labels) print('* Model: LR') print('* Test Score: ', mdl.score(X_ts, y_ts)) print() denied = X_ts[mdl.predict(X_ts)==1] alphas = [0.001, 0.01, 0.1, 1.0, 10.0, 100.0] dict_sens = {'Mahalanobis':{0.001:[], 0.01:[], 0.1:[], 1.0:[], 10.0:[], 100.0:[]}, '10-LOF':{0.001:[], 0.01:[], 0.1:[], 1.0:[], 10.0:[], 100.0:[]}, 'Time':{0.001:[], 0.01:[], 0.1:[], 1.0:[], 10.0:[], 100.0:[]}} for n,x in enumerate(denied[:N]): print('## {}-th Denied Individual '.format(n+1)) print('### Cost: DACE') for alpha in alphas: print('#### alpha = {}'.format(alpha)) a = ce.extract(x, K=K, cost_type='DACE', alpha=alpha, time_limit=time_limit) if(a!=-1): print(a) for key in dict_sens.keys(): dict_sens[key][alpha].append(a.scores_[key]) else: for key in dict_sens.keys(): dict_sens[key][alpha].append(-1) for key in dict_sens.keys(): pd.DataFrame(dict_sens[key]).to_csv('./res/sens/{}_{}.csv'.format(D.dataset_name, key), index=False) def exp_compare(N=1, dataset='h', model='LR', K=4, time_limit=600): np.random.seed(0) print('# Comparison') from utils import DatasetHelper D = DatasetHelper(dataset=dataset, feature_prefix_index=False) X_tr, X_ts, y_tr, y_ts = D.train_test_split() print('* Dataset: ', D.dataset_name) print('* Feature: ', X_tr.shape[1]) print('* Model: ', model) if(model=='LR'): from sklearn.linear_model import LogisticRegression mdl = LogisticRegression(penalty='l2', C=1.0, solver='liblinear') print('* C: ', mdl.C) mdl = mdl.fit(X_tr, y_tr) ce = LinearActionExtractor(mdl, X_tr, Y=y_tr, feature_names=D.feature_names, feature_types=D.feature_types, feature_categories=D.feature_categories, feature_constraints=D.feature_constraints, target_name=D.target_name, target_labels=D.target_labels) elif(model=='MLP'): from sklearn.neural_network import MLPClassifier mdl = MLPClassifier(hidden_layer_sizes=(200,), max_iter=500, activation='relu', alpha=0.0001) print('* T: ', mdl.hidden_layer_sizes) mdl = mdl.fit(X_tr, y_tr) ce = MLPActionExtractor(mdl, X_tr, Y=y_tr, feature_names=D.feature_names, feature_types=D.feature_types, feature_categories=D.feature_categories, feature_constraints=D.feature_constraints, target_name=D.target_name, target_labels=D.target_labels) elif(model=='RF'): from sklearn.ensemble import RandomForestClassifier mdl = RandomForestClassifier(n_estimators=100, max_depth=8 if dataset=='o' else 4) print('* T: ', mdl.n_estimators) print('* depth: ', mdl.max_depth) mdl = mdl.fit(X_tr, y_tr) ce = ForestActionExtractor(mdl, X_tr, Y=y_tr, feature_names=D.feature_names, feature_types=D.feature_types, feature_categories=D.feature_categories, feature_constraints=D.feature_constraints, target_name=D.target_name, target_labels=D.target_labels) print('* Test Score: ', mdl.score(X_ts, y_ts)) print() denied = X_ts[mdl.predict(X_ts)==1] dict_comp = {'TLPS':{'Mahalanobis':[], '10-LOF':[], 'Time':[]}, 'MAD':{'Mahalanobis':[], '10-LOF':[], 'Time':[]}, 'PCC':{'Mahalanobis':[], '10-LOF':[], 'Time':[]}} alphas = [0.01, 0.1, 1.0] dict_dace = {0.01:{'Mahalanobis':[], '10-LOF':[], 'Time':[]}, 0.1:{'Mahalanobis':[], '10-LOF':[], 'Time':[]}, 1.0:{'Mahalanobis':[], '10-LOF':[], 'Time':[]}} for n,x in enumerate(denied[:N]): print('## {}-th Denied Individual '.format(n+1)) for cost in ['TLPS', 'MAD', 'PCC']: print('### Cost: ', cost) a = ce.extract(x, K=K, cost_type=cost, time_limit=time_limit) if(a!=-1): print(a) for key in dict_comp[cost].keys(): dict_comp[cost][key].append(a.scores_[key]) else: for key in dict_comp[cost].keys(): dict_comp[cost][key].append(-1) print('### Cost: DACE') for alpha in alphas: print('#### alpha = {}'.format(alpha)) a = ce.extract(x, K=K, cost_type='DACE', alpha=alpha, time_limit=time_limit) if(a!=-1): print(a) for key in dict_dace[alpha].keys(): dict_dace[alpha][key].append(a.scores_[key]) else: for key in dict_dace[alpha].keys(): dict_dace[alpha][key].append(-1) for key in dict_comp.keys():
pd.DataFrame(dict_comp[key])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Tests dtype specification during parsing for all of the parsers defined in parsers.py """ import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex, Categorical from pandas.compat import StringIO from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.errors import ParserWarning class DtypeTests(object): def test_passing_dtype(self): # see gh-6607 df = DataFrame(np.random.rand(5, 2).round(4), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # see gh-3795: passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) expected = df.astype(str) tm.assert_frame_equal(result, expected) # for parsing, interpret object as str result = self.read_csv(path, dtype=object, index_col=0) tm.assert_frame_equal(result, expected) # we expect all object columns, so need to # convert to test for equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype pytest.raises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # see gh-12048: empty frame actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) assert result['one'].dtype == 'u1' assert result['two'].dtype == 'object' def test_categorical_dtype(self): # GH 10153 data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = pd.DataFrame({'a':
Categorical(['1', '1', '2'])
pandas.Categorical
# -*- coding: utf-8 -*- {{{ # # Your license here # }}} import sys from datetime import datetime, timedelta from dateutil import parser import pandas as pd import matplotlib.pyplot as plt from os.path import dirname, abspath, join sys.path.insert(0, dirname(dirname(dirname(abspath(__file__))))) from fleet_factory import create_fleet from service_factory import create_service def integration_test(service_name, fleet_name, service_type='Traditional', **kwargs): start_time = kwargs['start_time'] sim_step = dynamic_time_step(service_name, fleet_name) kwargs['sim_step'] = sim_step # Create test service service = create_service(service_name, **kwargs) if service is None: raise 'Could not create service with name ' + service_name grid_type = 1 if service_name == 'ArtificialInertia': grid_type = 2 # Create test fleet fleet = create_fleet(fleet_name, grid_type, **kwargs) if fleet is None: raise 'Could not create fleet with name ' + fleet_name # Assign test fleet to test service to use service.fleet = fleet assigned_fleet_name = service.fleet.__class__.__name__ # Run test if service_name == 'Regulation': monthtimes = dict({ # 'January': ["2017-01-01 00:00:00", "2017-01-31 23:59:59"], # 'February': ["2017-02-01 00:00:00", "2017-02-28 23:59:59"], # 'March': ["2017-03-01 00:00:00", "2017-03-31 23:59:59"], # 'April': ["2017-04-01 00:00:00", "2017-04-30 23:59:59"], # 'May': ["2017-05-01 00:00:00", "2017-05-31 23:59:59"], # 'June': ["2017-06-01 00:00:00", "2017-06-30 23:59:59"], # 'July': ["2017-07-01 00:00:00", "2017-07-31 23:59:59"], 'August': ["2017-08-01 16:00:00", "2017-08-01 18:59:59"], # 'September': ["2017-09-01 00:00:00", "2017-09-30 23:59:59"], # 'October': ["2017-10-01 00:00:00", "2017-10-31 23:59:59"], # 'November': ["2017-11-01 00:00:00", "2017-11-30 23:59:59"], # 'December': ["2017-12-01 00:00:00", "2017-12-31 23:59:00"] }) all_results = pd.DataFrame(columns=['performance_score', 'hourly_integrated_MW', 'mileage_ratio', 'Regulation_Market_Clearing_Price(RMCP)', 'Reg_Clearing_Price_Credit']) for month in monthtimes.keys(): print('Starting ' + str(month) + ' ' + service_type + ' at ' + datetime.now().strftime('%H:%M:%S')) fleet_response = service.request_loop(service_type=service_type, start_time=parser.parse(monthtimes[month][0]), end_time=parser.parse(monthtimes[month][1]), sim_step=sim_step, clearing_price_filename='historical-ancillary-service-data-2017.xls', fleet_name=assigned_fleet_name) month_results = pd.DataFrame.from_dict(fleet_response, orient='index') all_results = pd.concat([all_results, month_results]) print(' Finished ' + str(month) + ' ' + service_type) # Fix formatting of all_results dataframe to remove tuples all_results[['Perf_score', 'Delay_score', 'Corr_score', 'Prec_score']] = all_results['performance_score'].apply( pd.Series) all_results[['MCP', 'REG_CCP', 'REG_PCP']] = all_results['Regulation_Market_Clearing_Price(RMCP)'].apply( pd.Series) all_results[['Reg_Clr_Pr_Credit', 'Reg_RMCCP_Credit', 'Reg_RMPCP_Credit']] = all_results[ 'Reg_Clearing_Price_Credit'].apply(pd.Series) all_results.drop( columns=['performance_score', 'Regulation_Market_Clearing_Price(RMCP)', 'Reg_Clearing_Price_Credit'], inplace=True) print('Writing result .csv') file_dir = join(dirname(abspath(__file__)), 'services', 'reg_service', 'results', '') all_results.to_csv(file_dir + datetime.now().strftime( '%Y%m%d') + '_annual_hourlyresults_' + service_type + '_' + fleet_name + '.csv') elif service_name == 'Reserve': monthtimes = dict({ # 'January': ["2017-01-08 00:00:00", "2017-01-08 23:59:59"], # 'February': ["2017-02-01 00:00:00", "2017-02-28 23:59:59"], # 'March': ["2017-03-01 00:00:00", "2017-03-31 23:59:59"], # 'April': ["2017-04-01 00:00:00", "2017-04-30 23:59:59"], # 'May': ["2017-05-01 00:00:00", "2017-05-31 23:59:59"], # 'June': ["2017-06-01 00:00:00", "2017-06-30 23:59:59"], 'June': ["2017-06-07 00:00:00", "2017-06-07 23:59:59"], # 'June': ["2017-06-07 00:00:00", "2017-06-08 23:59:59"], # 'July': ["2017-07-01 00:00:00", "2017-07-31 23:59:59"], # 'August': ["2017-08-01 00:00:00", "2017-08-31 23:59:59"], # 'September': ["2017-09-01 00:00:00", "2017-09-30 23:59:59"], # 'October': ["2017-10-01 00:00:00", "2017-10-31 23:59:59"], # 'November': ["2017-11-01 00:00:00", "2017-11-30 23:59:59"], # 'December': ["2017-12-01 00:00:00", "2017-12-31 23:59:00"] }) all_results = pd.DataFrame(columns=['Event_Start_Time', 'Event_End_Time', 'Response_to_Request_Ratio', 'Response_MeetReqOrMax_Index_number', 'Event_Duration_mins', 'Response_After10minToEndOr30min_To_First10min_Ratio', 'Requested_MW', 'Responded_MW_at_10minOrEnd', 'Responded_MW_After10minToEndOr30min', 'Shortfall_Ratio', 'Response_0min_Min_MW', 'Response_10minOrEnd_Max_MW', 'Response_After10minToEnd_MW', 'Avg_Ramp_Rate', 'Best_Ramp_Rate', 'SRMCP_DollarsperMWh_DuringEvent', 'SRMCP_DollarsperMWh_SinceLastEvent', 'Service_Value_NotInclShortfall_dollars', 'Service_Value_InclShortfall_dollars', 'Period_from_Last_Event_Hours', 'Period_from_Last_Event_Days']) if 'battery' in assigned_fleet_name.lower(): annual_signals = pd.DataFrame(columns=['Date_Time', 'Request', 'Response', 'SoC']) else: annual_signals = pd.DataFrame(columns=['Date_Time', 'Request', 'Response']) previous_event_end = pd.Timestamp('05/01/2017 00:00:00') for month in monthtimes.keys(): print('Starting ' + str(month) + ' at ' + datetime.now().strftime('%H:%M:%S')) start_time = parser.parse(monthtimes[month][0]) fleet_response = service.request_loop(start_time=start_time, end_time=parser.parse(monthtimes[month][1]), sim_step=sim_step, clearing_price_filename=start_time.strftime('%Y%m') + '.csv', previous_event_end=previous_event_end, four_scenario_testing=False, fleet_name=assigned_fleet_name) try: previous_event_end = fleet_response[0].Event_End_Time[-1] except: # If the dataframe in fleet_response[0] has no entries, then attempting # to index the Event_End_Time column will throw an error. This allows # for skipping past that error. pass all_results = pd.concat([all_results, fleet_response[0]], sort=True) annual_signals =
pd.concat([annual_signals, fleet_response[1]], sort=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Thu Jun 25 11:33:55 2020 @author: User """ import sys from pathlib import Path import functools # import collections from collections import Counter import pickle # import types # import post_helper # import plotting import matplotlib.pyplot as plt import matplotlib as mpl from scipy.stats import linregress, zscore import pandas as pd import numpy as np import datetime as dt import pandas as pd mpl.style.use("seaborn") mpl.rcParams["figure.dpi"] = 100 # from sklearn.cluster import KMeans # print ('Name prepare input:', __name__ ) if __name__ == "__main__": # print(f'Package: {__package__}, File: {__file__}') # FH_path = Path(__file__).parent.parent.parent.joinpath('FileHelper') # sys.path.append(str(FH_path)) # sys.path.append(str(Path(__file__).parent.parent.joinpath('indexer'))) sys.path.append(str(Path(__file__).parent.parent.parent)) # sys.path.append("..") # print(sys.path) # import FileHelper from FileHelper.PostChar import Characterization_TypeSetting, SampleCodesChar from FileHelper.PostPlotting import * from FileHelper.FindSampleID import GetSampleID from FileHelper.FindFolders import FindExpFolder # from FileHelper.FileFunctions.FileOperations import PDreadXLorCSV from collect_load import Load_from_Indexes, CollectLoadPars # from FileHelper.FindExpFolder import FindExpFolder from plotting import eisplot from prep_postchar import postChar import EIS_export elif "prepare_input" in __name__: pass # import RunEC_classifier # from FileHelper.FindSampleID import FindSampleID import logging _logger = logging.getLogger(__name__) # from FileHelper.PostChar import SampleSelection, Characterization_TypeSetting def mkfolder(folder): folder.mkdir(exist_ok=True, parents=True) return folder def filter_cols(_df, n): if any(["startswith" in i for i in n]): _lst = [i for i in _df.columns if i.startswith(n[-1])] else: _lst = [i for i in _df.columns if n[-1] in i] return _lst OriginColors = Characterization_TypeSetting.OriginColorList() Pfolder = FindExpFolder().TopDir.joinpath( Path("Preparation-Thesis/SiO2_projects/SiO2_Me_ECdepth+LC") ) plotsfolder = mkfolder(Pfolder.joinpath("correlation_plots")) EC_folder = Pfolder.joinpath("EC_data") EC_index, SampleCodes = Load_from_Indexes.get_EC_index() print("finished") # SampleCodesChar().load def multiIndex_pivot(df, index=None, columns=None, values=None): # https://github.com/pandas-dev/pandas/issues/23955 output_df = df.copy(deep=True) if index is None: names = list(output_df.index.names) output_df = output_df.reset_index() else: names = index output_df = output_df.assign( tuples_index=[tuple(i) for i in output_df[names].values] ) if isinstance(columns, list): output_df = output_df.assign( tuples_columns=[tuple(i) for i in output_df[columns].values] ) # hashable output_df = output_df.pivot( index="tuples_index", columns="tuples_columns", values=values ) output_df.columns = pd.MultiIndex.from_tuples( output_df.columns, names=columns ) # reduced else: output_df = output_df.pivot( index="tuples_index", columns=columns, values=values ) output_df.index = pd.MultiIndex.from_tuples(output_df.index, names=names) return output_df def get_float_cols(df): return [key for key, val in df.dtypes.to_dict().items() if "float64" in str(val)] def cm2inch(value): return value / 2.54 # class PorphSamples(): # def __init__(self): # self.template = PorphSamples.template() def decorator(func): @functools.wraps(func) def wrapper_decorator(*args, **kwargs): # Do something before value = func(*args, **kwargs) # Do something after return value return wrapper_decorator def read_load_pkl(_pklstem): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") if _pklpath.exists(): try: print("pkl reloading:", _pklpath) DF_diff = pd.read_pickle(_pklpath) DF_diff.columns return DF_diff except Exception as e: print("reading error", e) return pd.DataFrame() else: print("read error not existing", _pklpath) return
pd.DataFrame()
pandas.DataFrame
"""Test model for SMP-CAIL2020-Argmine. Author: Tsinghuaboy <EMAIL> Usage: python main.py --model_config 'config/bert_config.json' \ --in_file 'data/SMP-CAIL2020-test1.csv' \ --out_file 'bert-submission-test-1.csv' python main.py --model_config 'config/rnn_config.json' \ --in_file 'data/SMP-CAIL2020-test1.csv' \ --out_file 'rnn-submission-test-1.csv' """ import argparse import json import os import time from types import SimpleNamespace import fire import pandas import pandas as pd import torch from torch.utils.data import DataLoader from sfzyzb.data import Data from sfzyzb.evaluate import evaluate from sfzyzb.model import BertForClassification, RnnForSentencePairClassification, LogisticRegression from sfzyzb.utils import load_torch_model LABELS = ['0', '1'] MODEL_MAP = { 'bert': BertForClassification, 'rnn': RnnForSentencePairClassification, 'lr': LogisticRegression } class Sentence_Abstract(object): def __init__(self,model_config='sfzyzb/config/bert_config-l.json'): # 0. Load config with open(model_config) as fin: config = json.load(fin, object_hook=lambda d: SimpleNamespace(**d)) if torch.cuda.is_available(): self.device = torch.device('cuda:0') # device = torch.device('cpu') else: self.device = torch.device('cpu') # 1. Load data self.data = Data(vocab_file=os.path.join(config.model_path, 'vocab.txt'), max_seq_len=config.max_seq_len, model_type=config.model_type, config=config) # 2. Load model self.model = MODEL_MAP[config.model_type](config) self.model = load_torch_model( self.model, model_path=os.path.join(config.model_path, 'model.bin')) self.model.to(self.device) self.config = config def get_abstract(self, in_file): # 0. preprocess file tag_sents = [] para_id = 0 convert_file ="data/{}-2.csv".format(time.time()) with open(in_file, 'r', encoding='utf-8') as fin: for line in fin: sents = json.loads(line.strip()) text = sents['text'] sentences = [item['sentence'] for item in text] for sent in sentences: tag_sents.append((para_id, sent)) para_id += 1 df = pandas.DataFrame(tag_sents, columns=['para', 'content']) df.to_csv(convert_file, columns=['para', 'content'], index=False) test_set = self.data.load_file(convert_file, train=False) data_loader_test = DataLoader( test_set, batch_size=self.config.batch_size, shuffle=False) # 3. Evaluate answer_list = evaluate(self.model, data_loader_test, self.device) # 4. Write answers to file # df = pd.read_csv("data/para_content_test.csv") idcontent_list = list(df.itertuples(index=False)) filter_list = [k for k, v in zip(idcontent_list, answer_list) if v] df =
pd.DataFrame(filter_list, columns=['para', 'content'])
pandas.DataFrame