prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#Calculate the Linear Regression between Market Caps import pandas as pd import numpy as np import datetime as date today = date.datetime.now().strftime('%Y-%m-%d') from plotly.subplots import make_subplots import plotly.graph_objects as go import plotly.io as pio pio.renderers.default = "browser" from checkonchain.general.coinmetrics_api import * from checkonchain.btconchain.btc_add_metrics import * from checkonchain.dcronchain.dcr_add_metrics import * from checkonchain.general.regression_analysis import * #Pull Coinmetrics Data for Coins BTC = btc_add_metrics().btc_coin() LTC = Coinmetrics_api('ltc',"2011-10-07",today).convert_to_pd() BCH = Coinmetrics_api('bch',"2017-08-01",today).convert_to_pd() DAS = Coinmetrics_api('dash',"2014-01-19",today).convert_to_pd() DCR = dcr_add_metrics().dcr_coin() XMR = Coinmetrics_api('xmr',"2014-04-18",today).convert_to_pd() ZEC = Coinmetrics_api('zec',"2016-10-28",today).convert_to_pd() ETH = Coinmetrics_api('eth',"2015-07-30",today).convert_to_pd() XRP = Coinmetrics_api('xrp',"2013-01-01",today).convert_to_pd() #Reduce dataset down to date and a single metric metric="CapMrktCurUSD" BTC2 =BTC[['date',metric]] LTC2 =LTC[['date',metric]] BCH2 =BCH[['date',metric]] DAS2 =DAS[['date',metric]] DCR2 =DCR[['date',metric]] XMR2 =XMR[['date',metric]] ZEC2 =ZEC[['date',metric]] ETH2 =ETH[['date',metric]] #XRP2 =XRP[['date',metric]] #Rename all columns prefix = 'Cap_' BTC2.columns =['date',prefix+'BTC'] LTC2.columns =['date',prefix+'LTC'] BCH2.columns =['date',prefix+'BCH'] DAS2.columns=['date',prefix+'DAS'] DCR2.columns =['date',prefix+'DCR'] XMR2.columns =['date',prefix+'XMR'] ZEC2.columns =['date',prefix+'ZEC'] ETH2.columns =['date',prefix+'ETH'] XRP2.columns =['date',prefix+'XRP'] #Compile into a single dataframe with all coins BTC_data = BTC2.dropna(axis=0) BTC_data = pd.merge_asof(BTC_data,LTC2,on='date') BTC_data = pd.merge_asof(BTC_data,BCH2,on='date') BTC_data = pd.merge_asof(BTC_data,DAS2,on='date') BTC_data = pd.merge_asof(BTC_data,DCR2,on='date') BTC_data =
pd.merge_asof(BTC_data,XMR2,on='date')
pandas.merge_asof
import os import pytest from shapely.geometry import LineString from network_wrangler import haversine_distance from network_wrangler import create_unique_shape_id from network_wrangler import offset_location_reference slug_test_list = [ {"text": "I am a roadway", "delim": "_", "answer": "i_am_a_roadway"}, {"text": "I'm a roadway", "delim": "_", "answer": "im_a_roadway"}, {"text": "I am a roadway", "delim": "-", "answer": "i-am-a-roadway"}, {"text": "I am a roadway", "delim": "", "answer": "iamaroadway"}, ] @pytest.mark.travis @pytest.mark.parametrize("slug_test", slug_test_list) def test_get_slug(request, slug_test): print("\n--Starting:", request.node.name) from network_wrangler.utils import make_slug slug = make_slug(slug_test["text"], delimiter=slug_test["delim"]) print("From: {} \nTo: {}".format(slug_test["text"], slug)) print("Expected: {}".format(slug_test["answer"])) assert slug == slug_test["answer"] @pytest.mark.travis def test_time_convert(request): print("\n--Starting:", request.node.name) time_tests = [ (("00:00:00", "00:00:10"), (0, 10)), (("0:00", "0:10:00"), (0, 600)), (("01:02:03", "01:02:23"), (3723, 3743)), (("1:02", "1:02:13"), (3720, 3733)), (("25:24:23", "25:24:33"), (91463, 91473)), (("250:24:23", "250:24:25"), (901463, 901465)), ] from pandas import DataFrame df = DataFrame(time_tests, columns=["time", "time_results"]) print("Original Time Series", df) from network_wrangler.utils import parse_time_spans df["time"] = df["time"].apply(parse_time_spans) print("Result Time Series", df) from pandas.testing import assert_series_equal
assert_series_equal(df["time"], df["time_results"], check_names=False)
pandas.testing.assert_series_equal
import json import os import numpy as np import pandas as pd import sqlalchemy import logging # Constants / definitions # Database constants SENSOR_LOG_TABLE = 'firefighter_sensor_log' ANALYTICS_TABLE = 'firefighter_status_analytics' FIREFIGHTER_ID_COL = 'firefighter_id' # mySQL needs to be told the firefighter_id column type explicitly in order to generate correct SQL. FIREFIGHTER_ID_COL_TYPE = sqlalchemy.types.VARCHAR(length=20) TIMESTAMP_COL = 'timestamp_mins' # Normally the 'analytics' LED color will be the same as the 'device' LED color, but in a disconnected scenario, they # may be different. We want to capture both. STATUS_LED_COL = 'analytics_status_LED' TWA_SUFFIX = '_twa' GAUGE_SUFFIX = '_gauge' MIN_SUFFIX = '_%smin' GREEN = 1 YELLOW = 2 RED = 3 RANGE_EXCEEDED = -1 # Cache Constants DATA_START = 'data_start' DATA_END = 'data_end' WINDOW_START = 'window_start' WINDOW_END = 'window_end' OVERLAP_MINS = 'overlap_mins' PROPORTION_OF_WINDOW = 'proportion_of_window' # Status constants - percentages that define green/red status (yellow is the name of a configuration parameter) GREEN_RANGE_START = 0 RED_RANGE_START = 99 RED_RANGE_END = RED_RANGE_START * 1000 # Can be arbitrarily large, as the next range bound is np.inf. # Configuration constants - for reading values from config files. DEFAULT_CONFIG_FILENAME = 'prometeo_config.json' WINDOWS_AND_LIMITS_PROPERTY = 'windows_and_limits' WINDOW_MINS_PROPERTY = 'mins' SUPPORTED_GASES_PROPERTY = 'supported_gases' YELLOW_WARNING_PERCENT_PROPERTY = 'yellow_warning_percent' SAFE_ROUNDING_FACTORS_PROPERTY = 'safe_rounding_factors' GAS_LIMITS_PROPERTY = 'gas_limits' AUTOFILL_MINS_PROPERTY = 'autofill_missing_sensor_logs_up_to_N_mins' # Sensor range limitations. These are intentionally hard-coded and not configured. They're used # to 1. Cross-check that the PPM limits configured for each time-window respects the sensitivity # range of the sensors and 2. Check when sensor values have gone out of range. SENSOR_RANGE_PPM = { 'carbon_monoxide' : {'min' : 1 , 'max' : 1000}, # CJMCU-4541 / MICS-4514 Sensor 'nitrogen_dioxide' : {'min' : 0.05, 'max' : 10 } # CJMCU-4541 / MICS-4514 Sensor } class GasExposureAnalytics(object): # Validate the configuration - log helpful error messages if invalid. def _validate_config(self, config_filename) : valid_config = True # "Trust, but verify" ;-) critical_config_issues = [] # Check that all configured windows cover the same set of gases (i.e. that the first window covers the same set of gases as all other windows) # Note: Set operations are valid for .keys() views [https://docs.python.org/3.8/library/stdtypes.html#dictionary-view-objects] mismatched_configs_idx = [idx for idx, window in enumerate(self.WINDOWS_AND_LIMITS) if (window[GAS_LIMITS_PROPERTY].keys() != self.WINDOWS_AND_LIMITS[0][GAS_LIMITS_PROPERTY].keys())] mismatched_configs = [] if mismatched_configs_idx : mismatched_configs = [self.WINDOWS_AND_LIMITS[0]] mismatched_configs += [self.WINDOWS_AND_LIMITS[idx] for idx in mismatched_configs_idx] valid_config = False message = "%s : The '%s' for every time-window must cover the same set of gases - but these have mis-matches %s" \ % (config_filename, GAS_LIMITS_PROPERTY, mismatched_configs) self.logger.critical(message) critical_config_issues += [message] # Check that the supported gases are covered by the configuration if not set(self.SUPPORTED_GASES).issubset(self.WINDOWS_AND_LIMITS[0][GAS_LIMITS_PROPERTY].keys()) : valid_config = False message = "%s : One or more of the '%s' %s has no limits defined in '%s' %s." \ % (config_filename, SUPPORTED_GASES_PROPERTY, str(self.SUPPORTED_GASES), WINDOWS_AND_LIMITS_PROPERTY, str(list(self.WINDOWS_AND_LIMITS[0][GAS_LIMITS_PROPERTY].keys()))) self.logger.critical(message) critical_config_issues += [message] # For each supported gas, check that limits PPM configuration is within that sensor's range. # The limits must be less than the range of the sensor. For best reporting, the range should be at least # two or more times the upper limit and a warning will be produced if this is not the case. To to illustrate # why: Say a firefighter experiences [30mins at 1ppm. Then 30mins at 25ppm] and the 1hr limit is 10ppm. Then # one hour into the fire, this firefighter has experienced an average of 13ppm per hour, well over the 10ppm # limit - their status should be ‘Red’. However, if the range of the sensor is 0-10ppm, then the command center # would actually see their status as *Range Exceeded* (not Red, Yellow or Green), which is not very helpful. # It's essentially saying "this firefighter's average exposure is unknown - it may be OK or it may not. # Prometeo can't tell, because the sensors aren't sensitive enough for these conditions". For the firefighter # to get an accurate report, this sensor would need to have a range of at least 25ppm (and likely more), # so that exposure could be accurately measured and averaged to 13ppm. # (Note: the sensor returns *Range Exceeded* to prevent incorrect PPM averages from being calculated. # e.g. in the above scenario, we do not want to incorrectly calculate an average of 5.5ppm (Green) from a # sensor showing 30mins at 1ppm and 30mins at 10ppm, the max the sensor can 'see'). for gas in self.SUPPORTED_GASES : limits = [window[GAS_LIMITS_PROPERTY][gas] for window in self.WINDOWS_AND_LIMITS] if ( (min(limits) < SENSOR_RANGE_PPM[gas]['min']) or (max(limits) > SENSOR_RANGE_PPM[gas]['max']) ) : valid_config = False message = ("%s : One or more of the '%s' configurations %s is incompatible with the range of the '%s' sensor (min: %s, max: %s).") \ % (config_filename, GAS_LIMITS_PROPERTY, limits, gas, SENSOR_RANGE_PPM[gas]['min'], SENSOR_RANGE_PPM[gas]['max']) self.logger.critical(message) critical_config_issues += [message] if ((max(limits)*2) > SENSOR_RANGE_PPM[gas]['max']) : # This is valid, but not optimal. Produce a warning. message = ("%s : One or more of the '%s' configurations %s is very close to the range of the '%s' sensor (min: %s, max: %s)." + "\nSensors shoud have a much larger range than the limits - e.g. 2x at a minimum .") \ % (config_filename, GAS_LIMITS_PROPERTY, limits, gas, SENSOR_RANGE_PPM[gas]['min'], SENSOR_RANGE_PPM[gas]['max']) self.logger.warning(message) # Check there's a valid definition of yellow - should be a percentage between 1 and 99 if not ( (self.YELLOW_WARNING_PERCENT > 0) and (self.YELLOW_WARNING_PERCENT < 100) ) : valid_config = False message = "%s : '%s' should be greater than 0 and less than 100 (percent), but is %s" \ % (config_filename, YELLOW_WARNING_PERCENT_PROPERTY, self.YELLOW_WARNING_PERCENT) self.logger.critical(message) critical_config_issues += [message] # For each supported gas, check there's a valid factor defined for safe rounding - should be a positive integer. for gas in self.SUPPORTED_GASES : if ( (not isinstance(self.SAFE_ROUNDING_FACTORS[gas], int)) or (not (self.SAFE_ROUNDING_FACTORS[gas] >= 0) ) ) : valid_config = False message = "%s : '%s' for '%s' should be a positive integer, but is %s" \ % (config_filename, SAFE_ROUNDING_FACTORS_PROPERTY, gas, self.SAFE_ROUNDING_FACTORS[gas]) self.logger.critical(message) critical_config_issues += [message] # Check the max number of auto-filled minutes is a positive integer. if ( (not isinstance(self.AUTOFILL_MINS, int)) or (not (self.AUTOFILL_MINS >= 0) ) ) : valid_config = False message = "%s : '%s' should be a positive integer, but is %s" \ % (config_filename, AUTOFILL_MINS_PROPERTY, self.AUTOFILL_MINS) self.logger.critical(message) critical_config_issues += [message] elif (self.AUTOFILL_MINS > 20) : # Recommended (but not enforced) to be less than 20 mins. warning = "%s : '%s' is not recommended to be more than 20 minutes, but is %s" \ % (config_filename, AUTOFILL_MINS_PROPERTY, self.AUTOFILL_MINS) self.logger.warning(warning) assert valid_config, ''.join([('\nCONFIG ISSUE (%s) : %s' % (idx+1, issue)) for idx, issue in enumerate(critical_config_issues)]) return # Create an instance of the Prometeo Gas Exposure Analytics, initialising it with a data source and an appropriate # configuration file. # list_of_csv_files : Use the supplied CSV files as sensor data instead of the Prometeo DB, so that tests can test # against a known data. This option should not be used at runtime. # config_filename : Allow overriding TWA time-window configurations, so that tests can test against a known # configuration. This option should not be used at runtime, as prometeo uses a relational # database and the analytics table schema is static, not dynamic. def __init__(self, list_of_csv_files=None, config_filename=DEFAULT_CONFIG_FILENAME): # Get a logger and keep its name in sync with this filename self.logger = logging.getLogger(os.path.basename(__file__)) # Get configuration with open(os.path.join(os.path.dirname(__file__), config_filename)) as file: self.CONFIGURATION = json.load(file) file.close() # WINDOWS_AND_LIMITS : A list detailing every supported time-window over which to calcuate the time-weighted # average (label, number of minutes and gas limit gauges for each window) - e.g. from NIOSH, ACGIH, EU-OSHA. self.WINDOWS_AND_LIMITS = self.CONFIGURATION[WINDOWS_AND_LIMITS_PROPERTY] # SUPPORTED_GASES : The list of gases that Prometeo devices currently have sensors for. # To automatically enable analytics for new gases, simply add them to this list. self.SUPPORTED_GASES = self.CONFIGURATION[SUPPORTED_GASES_PROPERTY] # YELLOW_WARNING_PERCENT : yellow is a configurable percentage - the status LED will go yellow when any gas # reaches that percentage (e.g. 80%) of the exposure limit for any time-window. self.YELLOW_WARNING_PERCENT = self.CONFIGURATION[YELLOW_WARNING_PERCENT_PROPERTY] # SAFE_ROUNDING_FACTORS : Why round? Because each gas has a number of decimal places that are meaningful and # beyond which extra digits are trivial. Rounding protects unit tests from brittleness due to these trivial # differences in computations. If a value changes by more than 1/10th of the smallest unit of the # most-sensitive gas, then we want to know (e.g. fail a test), any less than that and the change is negligible. # e.g.: At time of writing, Carbon Monoxide had a range of 0 to 420ppm and Nitrogen Dioxide, had a range # of 0.1 to 10ppm. So the safe rounding factors for these gases would be 1 decimal place for CO and 2 for NO2. self.SAFE_ROUNDING_FACTORS = self.CONFIGURATION[SAFE_ROUNDING_FACTORS_PROPERTY] # AUTOFILL_MINS: A buffer of N mins (e.g. 10 mins) during which the system will assume any missing data just # means a device is disconnected and the data is temporarily delayed. It will 'treat' the # missing data (e.g. by substituting an average). After this number of minutes of missing # sensor data, the system will stop estimating and assume the firefighter has powered off their # device and left the event. self.AUTOFILL_MINS = self.CONFIGURATION[AUTOFILL_MINS_PROPERTY] # Cache of 'earliest and latest observed data points for each firefighter'. Necessary for the AUTOFILL_MINS # functionality. self._FF_TIME_SPANS_CACHE = None # Validate the configuration - log helpful error messages if invalid. self._validate_config(config_filename) # db identifiers SQLALCHEMY_DATABASE_URI = ("mysql+pymysql://"+os.getenv('MARIADB_USERNAME') +":"+os.getenv("MARIADB_PASSWORD") +"@"+os.getenv("MARIADB_HOST") +":"+str(os.getenv("MARIADB_PORT")) +"/prometeo") metadata=sqlalchemy.MetaData(SQLALCHEMY_DATABASE_URI) self._db_engine = metadata.bind # By default, the analytics will run from a database. self._from_db = True # For testing, the analytics can also be run from a set of CSV files. if list_of_csv_files is not None : self._from_db = False self.logger.info("Taking sensor readings *** from CSV ***") # Allow clients to pass either single (non-list) CSV file path, or a list of CSV file paths if not isinstance(list_of_csv_files, list) : list_of_csv_files = [list_of_csv_files] dataframes = [] for csv_file in list_of_csv_files : df = pd.read_csv(csv_file, engine='python', parse_dates=[TIMESTAMP_COL], index_col = TIMESTAMP_COL) assert FIREFIGHTER_ID_COL in df.columns, "CSV files is missing key columns %s" % (required_cols) dataframes.append(df) # Merge the dataframes (also pre-sort, to speed up test runs and enable debug slicing on the index) self._sensor_log_from_csv_df = pd.concat(dataframes).sort_index() # Query the last N hours of sensor logs, where N is the longest configured time-window length. As with all methods # in this class, sensor data is assumed to be keyed on the floor(minute) timestamp when it was captured - i.e. # a sensor value captured at 12:00:05 is stored against a timestamp of 12:00:00. # block_end : The datetime from which to look back when reading the sensor logs (e.g. 'now'). def _get_block_of_sensor_readings(self, block_end) : # Get the start of the time block to read - i.e. the end time, minus the longest window we're interested in. # Add 1 min 'correction' to the start times because both SQL 'between' and Pandas slices are *in*clusive and we # don't want (e.g.) 61 samples in a 60 min block. one_minute = pd.Timedelta(minutes = 1) longest_block = max([window['mins'] for window in self.WINDOWS_AND_LIMITS]) block_start = block_end - pd.Timedelta(minutes = longest_block) + one_minute # e.g. 8hrs ago message = ("Reading sensor log in range [%s to %s]" % (block_start.isoformat(), block_end.isoformat())) if not self._from_db : message += " (local CSV file mode)" self.logger.info(message) sensor_log_df = pd.DataFrame() ff_time_spans_df = None if self._from_db : # Get from database with a non-blocking read (this type of SELECT is non-blocking on # MariaDB/InnoDB - ref: https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html) sql = ("SELECT * FROM " + SENSOR_LOG_TABLE + " where " + TIMESTAMP_COL + " between '" + block_start.isoformat() + "' and '" + block_end.isoformat() + "'") sensor_log_df = (pd.read_sql_query(sql, self._db_engine, parse_dates=[TIMESTAMP_COL], index_col=TIMESTAMP_COL)) else : # Get from local CSV files - useful when testing (e.g. using known sensor test data) sensor_log_df = self._sensor_log_from_csv_df.loc[block_start:block_end,:].copy() if (sensor_log_df.empty) : self.logger.info("No 'live' sensor records found in range [%s to %s]" % (block_start.isoformat(), block_end.isoformat())) # Reset the cache of 'earliest and latest observed data points for each firefighter'. # If we didn't do this, firefighters 'data time span' would stretch over multiple days. We want # it to reset once there's been no data within the longest configured time-window. self._FF_TIME_SPANS_CACHE = None else : # sort is required for several operations, e.g. slicing, re-sampling, etc. Do it once, up-front. sensor_log_df = sensor_log_df.sort_index() # Update the cache of 'earliest and latest observed data points for each firefighter'. As firefighters come # online (and as data comes in after an outage), each new chunk may contain records for firefighters that # are not yet captured in the cache. # [DATA_START]: the earliest observed data point for each firefighter - grows as firefighters # join an event (and different for each Firefighter) # [DATA_END] : the latest observed data point for each firefighter so far - a moving target, but # fixed for *this* chunk of data (and potentially different for each Firefighter) ff_time_spans_in_this_block_df = (pd.DataFrame(sensor_log_df.reset_index() .groupby(FIREFIGHTER_ID_COL) [TIMESTAMP_COL].agg(['min', 'max'])) .rename(columns = {'min':DATA_START, 'max':DATA_END})) if self._FF_TIME_SPANS_CACHE is None : # First-time cache creation self._FF_TIME_SPANS_CACHE = pd.DataFrame(ff_time_spans_in_this_block_df) else : # Update the earliest and latest observed timestamp for each firefighter. # note: use pd.merge() not pd.concat() - concat drops the index names causing later steps to crash self._FF_TIME_SPANS_CACHE = pd.merge(np.fmin(ff_time_spans_in_this_block_df.loc[:, DATA_START], self._FF_TIME_SPANS_CACHE.loc[:, DATA_START]), np.fmax(ff_time_spans_in_this_block_df.loc[:, DATA_END], self._FF_TIME_SPANS_CACHE.loc[:, DATA_END]), how='outer', on=FIREFIGHTER_ID_COL) # Take a working copy of the cache, so we can manupulate it during analytic processing. ff_time_spans_df = self._FF_TIME_SPANS_CACHE.copy() # Add a buffer of N mins (e.g. 10 mins) to the 'data end'. The system will assume up to this # many minutes of missing data just means a device is disconnected and the data is temporarily delayed. # It will 'treat' the missing data (e.g. by substituting an average). After this number of minutes of # missing sensor data, the system will stop estimating and assume the firefighter has powered # off their device and left the event. ff_time_spans_df.loc[:, DATA_END] += pd.Timedelta(minutes = self.AUTOFILL_MINS) return sensor_log_df, ff_time_spans_df # Given up to 8 hours of data, calculates the time-weighted average and limit gauge (%) for all firefighters, for # all supported gases, for all configured time periods. # sensor_log_chunk_df: A time-indexed dataframe covering up to 8 hours of sensor data for all firefighters, # for all supported gases. Requires firefighterID and supported gases as columns. # ff_time_spans_df : A dataset containing the 'earliest and latest observed data points for each # firefighter'. Necessary for the AUTOFILL_MINS functionality. # timestamp_key : The minute-quantized timestamp key for which to calculate time-weighted averages. def _calculate_TWA_and_gauge_for_all_firefighters(self, sensor_log_chunk_df, ff_time_spans_df, timestamp_key) : # We'll be processing the windows in descending order of length (mins) windows_in_desc_mins_order = sorted([w for w in self.WINDOWS_AND_LIMITS], key=lambda w: w['mins'], reverse=True) longest_window_mins = windows_in_desc_mins_order[0]['mins'] # topmost element in the ordered windows # Get sensor records for the longest time-window. Note: we add 1 min to the start-time, because slicing # is *in*clusive and we don't want N+1 samples in an N min block of sensor records. one_minute = pd.Timedelta(minutes = 1) longest_window_start = timestamp_key - pd.Timedelta(minutes=longest_window_mins) + one_minute longest_window_df = sensor_log_chunk_df.loc[longest_window_start:timestamp_key, :] # It's essential to know when a sensor value can't be trusted - i.e. when it has exceeded its range (signalled # by the value '-1'). When this happens, we need to replace that sensor's value with something that # both (A) identifies it as untrustworthy and (B) also causes calculated values like TWAs and Gauges to be # similarly identified. That value is infinity (np.inf). To to illustrate why: Say a firefighter experiences # [30mins at 1ppm. Then 30mins at 25ppm] and the 1 hour limit is 10ppm. Then 1 hour into the fire, this # firefighter has experienced an average of 13ppm per hour, well over the 10ppm limit - their status should be # ‘Red’. However, if the range of the sensor were 0-10ppm, then at best, the sensor could only provide [30mins # at 1ppm. Then 30mins at 10ppm], averaging to 5.5ppm per hour which is *Green* (not Red or even Yellow). To # prevent this kind of under-reporting, the device sends '-1' to indicate that the sensor has exceeded its # range and we substitute that with infinity (np.inf), which then flows correctly through the time-weighted # average calculations. longest_window_df.loc[:, self.SUPPORTED_GASES] = (longest_window_df.loc[:, self.SUPPORTED_GASES].mask( cond=(longest_window_df.loc[:, self.SUPPORTED_GASES] < 0), other=np.inf)) # To calculate time-weighted averages, every time-slice in the window is quantized ('resampled') to equal # 1-minute lengths. (it can be done with 'ragged' / uneven time-slices, but the code is more complex and # hence error-prone, so we use 1-min quantization as standard here). The system is expected to provide data # that meets this requirement, so this step is defensive. We don't backfill missing entries here. # # (note: the double sort_index() here looks odd, but it seems both necessary and fairly low cost: # 1. Resampling requires the original index to be sorted, reasonably enough. 2. The resampled dataframe # can't be sliced by date index unless it's sorted too. However these 'extra' sorts don't seem to carry # a noticeable performance penalty, possibly since the original dataframe is sorted to begin with) resample_timedelta = pd.Timedelta(minutes = 1) longest_window_cleaned_df = (longest_window_df .sort_index() .groupby(FIREFIGHTER_ID_COL, group_keys=False) .resample(resample_timedelta).nearest(limit=1) .sort_index()) # Before doing the main work, save a copy of the data for each device at 'timestamp_key' *if* available # (may not be, depending on dropouts). Note: this is the first of several chunks of data that we will # later merge on the timestamp_key. latest_device_data = [] if (timestamp_key in longest_window_cleaned_df.index) : # If there's data for a device at 'timestamp_key', get a copy of it. While some if it is used for # calculating average exposures (e.g. gases, times, firefighter_id), much of it is not (e.g. temperature, # humidity, battery level) and this data needs to be merged back into the final dataframe. latest_sensor_readings_df = (longest_window_cleaned_df .loc[[timestamp_key],:] # the current minute .reset_index() .set_index([FIREFIGHTER_ID_COL, TIMESTAMP_COL]) # key to merge on at the end ) # Store in a list for merging later on latest_device_data = [latest_sensor_readings_df] else : message = "No 'live' sensor records found at timestamp %s. Calculating Time-Weighted Averages anyway..." self.logger.info(message % (timestamp_key.isoformat())) # Now the main body of work - iterate over the time windows, calculate their time-weighted averages & limit # gauge percentages. Then merge all of these bits of info back together (with the original device data) to # form the overall analytic results dataframe. calculations_for_all_windows = [] # list of results from each window, for merging at the end for time_window in windows_in_desc_mins_order : # Get the relevant slice of the data for this specific time-window, for all supported gas sensor readings # (and excluding all other columns) window_mins = time_window['mins'] window_length = pd.Timedelta(minutes = window_mins) window_start = timestamp_key - window_length + one_minute analytic_cols = self.SUPPORTED_GASES + [FIREFIGHTER_ID_COL] window_df = longest_window_cleaned_df.loc[window_start:timestamp_key, analytic_cols] # If the window is empty, then there's nothing to do, just move on to the next window if (window_df.empty) : continue # Check that there's never more data in the window than there should be (max 1 record per min, per FF) assert(window_df.groupby(FIREFIGHTER_ID_COL).size().max() <= window_mins) # Calculate time-weighted average exposure for this time-window. # A *time-weighted* average, means each sensor reading is multiplied by the length of time the reading # covers, before dividing by the total time covered. This can get very complicated if readings are unevenly # spaced or if they get lost, or sent late due to connectivity dropouts. So Prometeo makes two design # choices that account for these issues, and simplify calculations (reducing opportunities for error). # (1) The system takes exactly one reading per minute, no more & no less, so the multiplication factor for # every reading is always 1. # (2) Any missing/lost sensor readings are approximated by using the average value for that sensor over the # time-window in question. (Care needs to be taken to ensure that calculations don't inadvertently # approximate them as '0ppm'). # Since the goal we're after here is to get the average over a time-window, we don't need to actually # fill-in the missing entries, we can just get the average of the available sensor readings. window_twa_df = window_df.groupby(FIREFIGHTER_ID_COL).mean() # The average alone is not enough, we also have to adjust it to reflect how much of the time-window the # data represents. e.g. Say the 8hr time-weighted average (TWA) exposure limit for CO exposure is 27ppm. # Now imagine we observe 30ppm in the first 15 mins of an event and then have a connectivity dropout for # the next 15 mins. What do we show the command center user? It's over the limit for an 8hr average, but # we're only 30mins into that 8-hour period. So we adjust the TWA to the proportion of the time window # that has actually elapsed. Note: this implicitly assumes that firefighter exposure is zero before the # first recorded sensor value and after the last recorded value. # To work out the window proportion, we (A) calculate the time overlap between the moving window and the # available data timespans for each Firefighter, then (B) Divide the overlap by the total length of the # time-window to get the proportion. Finally (C) Multiply the TWAs for each firefighter by the proportion # for that firefighter. # (A.1) Get the available data timespans for each Firefighter, only selecting firefighters that are in # this window. (take a copy so that data from one window does not contaminate the next) ffs_in_this_window = window_df.loc[:, FIREFIGHTER_ID_COL].unique() overlap_df = ff_time_spans_df.loc[ff_time_spans_df.index.isin(ffs_in_this_window), :].copy() # (A.2) Add on the moving window timespans (note: no start correction here because it's not a slice. overlap_df = overlap_df.assign(**{WINDOW_START : timestamp_key - window_length, WINDOW_END : timestamp_key}) # (A.3) Calculate the overlap between the moving window and the available data timespans for each Firefighter. # overlap = (earliest_end_time - latest_start_time). Negative overlap is meaningless, so when it happens, # treat it as zero overlap. overlap_delta = (overlap_df.loc[:, [DATA_END,WINDOW_END]].min(axis='columns') - overlap_df.loc[:, [DATA_START,WINDOW_START]].max(axis='columns')) overlap_df.loc[:, OVERLAP_MINS] = (overlap_delta.transform( lambda delta: delta.total_seconds()/float(60) if delta.total_seconds() > 0 else 0)) # (B) Divide the overlap by the total length of the time-window to get a proportion. Maximum overlap is 1. overlap_df.loc[:, PROPORTION_OF_WINDOW] = (overlap_df.loc[:, OVERLAP_MINS].transform( lambda overlap_mins : overlap_mins/float(window_mins) if overlap_mins < window_mins else 1)) # (C) Multiply the TWAs for each firefighter by the proportion for that firefighter. # Also apply rounding at this point. window_twa_df = window_twa_df.multiply(overlap_df.loc[:, PROPORTION_OF_WINDOW], axis='rows') for gas in self.SUPPORTED_GASES : window_twa_df.loc[:, gas] = np.round(window_twa_df.loc[:, gas], self.SAFE_ROUNDING_FACTORS[gas]) # Prepare the results for limit gauges and merging window_twa_df = (window_twa_df .assign(**{TIMESTAMP_COL: timestamp_key}) .reset_index() .set_index([FIREFIGHTER_ID_COL, TIMESTAMP_COL])) # Calculate gas limit gauge - percentage over / under the calculated TWA values # (force gases and limits to have the same column order as each other before comparing) gas_limits = [float(time_window[GAS_LIMITS_PROPERTY][gas]) for gas in self.SUPPORTED_GASES] window_gauge_df = ((window_twa_df.loc[:, self.SUPPORTED_GASES] * 100 / gas_limits) .round(0)) # we don't need decimal precision for percentages # Update column titles - add the time period over which we're averaging, so we can merge dataframes later # without column name conflicts. window_twa_df = window_twa_df.add_suffix((TWA_SUFFIX + MIN_SUFFIX) % (str(time_window[WINDOW_MINS_PROPERTY]))) window_gauge_df = window_gauge_df.add_suffix((GAUGE_SUFFIX + MIN_SUFFIX) % (str(time_window[WINDOW_MINS_PROPERTY]))) # Now save the results from this time window as a single merged dataframe (TWAs and Limit Gauges) calculations_for_all_windows.append(
pd.concat([window_twa_df, window_gauge_df], axis='columns')
pandas.concat
''' Created with love by Sigmoid @Author - <NAME> - <EMAIL> ''' import numpy as np import pandas as pd import random import sys from random import randrange from .SMOTE import SMOTE from sklearn.mixture import GaussianMixture from .erorrs import NotBinaryData, NoSuchColumn def warn(*args, **kwargs): pass import warnings warnings.warn = warn class SCUT: def __init__(self,k: "int > 0" = 5, seed: float = 42, binary_columns : list = None) -> None: ''' Setting up the algorithm :param k: int, k>0, default = 5 Number of neighbours which will be considered when looking for simmilar data points :param seed: intt, default = 42 seed for random :param binary_columns: list, default = None The list of columns that should have binary values after balancing. ''' self.__k = k if binary_columns is None: self.__binarize = False self.__binary_columns = None else: self.__binarize = True self.__binary_columns = binary_columns self.__seed = seed np.random.seed(self.__seed) random.seed(self.__seed) def __to_binary(self) -> None: ''' If the :param binary_columns: is set to True then the intermediate values in binary columns will be rounded. ''' for column_name in self.__binary_columns: serie = self.synthetic_df[column_name].values threshold = (self.df[column_name].max() + self.df[column_name].min()) / 2 for i in range(len(serie)): if serie[i] >= threshold: serie[i] = self.df[column_name].max() else: serie[i] = self.df[column_name].min() self.synthetic_df[column_name] = serie def __infinity_check(self, matrix : 'np.array') -> 'np.array': ''' This function replaces the infinity and -infinity values with the minimal and maximal float python values. :param matrix: 'np.array' The numpy array that was generated my the algorithm. :return: 'np.array' The numpy array with the infinity replaced values. ''' matrix[matrix == -np.inf] = sys.float_info.min matrix[matrix == np.inf] = sys.float_info.max return matrix def balance(self, df : pd.DataFrame, target : str): ''' Reducing the dimensionality of the data :param df: pandas DataFrame Data Frame on which the algorithm is applied :param y_column: string The target name of the value that we have to predict ''' #get unique values from target column unique = df[target].unique() if target not in df.columns: raise NoSuchColumn(f"{target} isn't a column of passed data frame") self.target= target self.df = df.copy() #training columns self.X_columns = [column for column in self.df.columns if column != target] class_samples = [] for clas in unique: class_samples.append(self.df[self.df[self.target]==clas][self.X_columns].values) classes_nr_samples = [] for clas in unique: classes_nr_samples.append(len(self.df[self.df[self.target]==clas])) #getting mean number of samples of all classes mean = np.mean(classes_nr_samples) #undersampling by SCUT algorithm for i,class_sample in enumerate(class_samples): #cheching for if classes_nr_samples[i]>mean: clusters = [] selected_samples = [] #getting nr of samples to take difference = classes_nr_samples[i] - mean #clusster every class gmm = GaussianMixture(3) gmm.fit(class_sample) #getting predictions labels = gmm.predict(class_sample) clusters_df = pd.DataFrame(np.array(class_sample), columns=self.X_columns) clusters_df.loc[:, target] = labels unique_clusters = clusters_df[self.target].unique() #Selecting random samples from every cluster, and repeat untill we get the "difference" that we needed for clas in unique_clusters: #clusster sets clusters.append(clusters_df[clusters_df[self.target]==clas].values) while difference != 0: for cluster in clusters: #selecting random sample and add it to list index = randrange(len(cluster)) example = cluster[index] selected_samples.append(example) difference-=1 if difference == 0: break #create the new dataset including selected samples cluster_df = pd.DataFrame(np.array(selected_samples), columns=self.df.columns) cluster_df.loc[:, self.target] = unique[i]## if i==0: self.new_df = cluster_df else: self.new_df = pd.concat([cluster_df,self.new_df],axis=0) else: cluster_df = pd.DataFrame(np.array(class_sample), columns=self.X_columns) cluster_df.loc[:, self.target] = unique[i]## if i==0: self.new_df = cluster_df else: self.new_df =
pd.concat([cluster_df,self.new_df],axis=0)
pandas.concat
""" Copyright 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this work except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import tkinter as tk from tkinter import * from tkinter import filedialog from datetime import datetime from tkinter.messagebox import showinfo from tkinter.messagebox import showwarning from tkinter.font import Font from os import path import sys if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): print('running in a PyInstaller bundle') else: print('running in a normal Python process') # ----------------------------------------------- GLOBAL VARIABLES REF_FILE_NAME = "" TEST_FILE_NAME = "" MAIN_FILE_ONE_NAME = "" MAIN_FILE_TWO_NAME = "" SEQ_ONE_GAPS = [] SEQ_TWO_GAPS = [] SEQ_THREE_GAPS = [] SEQ_FOUR_GAPS = [] FOUR_SEQ_ALIGN = False ALIGNMENT_WARNING = False THRESHOLD = 1 LVL_SEL = "L1&L2" PEP_COLUMNS = ["peptide", "Peptide", "Peptide sequence"] START_COLUMNS = ["start", "Start", "Peptide start"] REF_PEPTIDE_MAX_LENGTH = 50 TEST_PEPTIDE_MAX_LENGTH = 50 MAIN_PEPTIDE_MAX_LENGTH = 50 # ----------------------------------------------- CLASSES class MainApplication: def __init__(self, master): self.master = master self.canvas = tk.Canvas(master, width=550, height=690) # width=550, height=690 # to make a frame self.frame = tk.Frame(master, bg='white') ############################################################################################ # Frame Input # this frame is placed in the original frame title_font = Font(family="Calibri", size=12, weight="bold") self.frame_input = tk.Frame(self.frame, bd='10', padx=3, pady=3) self.label_input_files = tk.Label(self.frame_input, text='Input File Paths', bd='3', fg='blue', font=title_font) self.label_epitope_predictions = tk.Label(self.frame_input, text='Epitope Predictions', bd='3', fg='blue') self.label_ref = tk.Label(self.frame_input, text='Sequence A', bd='3') self.label_test = tk.Label(self.frame_input, text='Sequence B', bd='3') self.label_database_searches = tk.Label(self.frame_input, text='Database Searches', bd='3', fg='blue') self.label_main_one = tk.Label(self.frame_input, text='Sequence A', bd='3') self.label_main_two = tk.Label(self.frame_input, text='Sequence B', bd='3') self.entry_ref = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_test = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_main_one = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_main_two = tk.Entry(self.frame_input, bd='3', justify="center") self.button_ref = tk.Button(self.frame_input, text='Browse', command=self.browse_ref) self.button_test = tk.Button(self.frame_input, text='Browse', command=self.browse_test) self.button_main_one = tk.Button(self.frame_input, text='Browse', command=self.browse_main_one) self.button_main_two = tk.Button(self.frame_input, text='Browse', command=self.browse_main_two) self.label_indels_title = tk.Label(self.frame_input, text='CAVES Indel Search', bd='3', fg='blue') self.label_indels_alignment = tk.Label(self.frame_input, text='Alignment', bd='3') self.entry_indels_alignment = tk.Entry(self.frame_input, bd='3', justify="center") self.button_indels_alignment = tk.Button(self.frame_input, text='Browse', command=self.browse_alignment) self.label_threshold_title = tk.Label(self.frame_input, text='Minimum Peptide Length', bd='3', fg='blue', font=title_font) self.entry_threshold = tk.Entry(self.frame_input, bd='3', justify="center") self.label_threshold_helper = tk.Label(self.frame_input, text='Default minimum is 1 amino acid', bd='3', fg='red') self.label_radio_title = tk.Label(self.frame_input, text='Level Selection', bd='3', fg='blue', font=title_font) self.frame_radio_buttons = tk.Frame(self.frame_input, bd='0', padx=3, pady=3) self.level_selection = IntVar() self.level_selection.set(1) self.radio_both_lvls = Radiobutton(self.frame_radio_buttons, text="Level 1 and 2", command=self.config_L1L2_entries, variable=self.level_selection, value=1).grid(row=0, column=1, padx=50) self.radio_lvl_one_only = Radiobutton(self.frame_radio_buttons, text="Level 1 only", command=self.config_L1_only_entries, variable=self.level_selection, value=2).grid(row=0, column=2) self.radio_lvl_two_only = Radiobutton(self.frame_radio_buttons, text="Level 2 only", command=self.config_L2_only_entries, variable=self.level_selection, value=3).grid(row=0, column=3, padx=50) self.label_result_file_title = tk.Label(self.frame_input, text='Results File', bd='3', fg='blue', font=title_font) self.entry_result_file = tk.Entry(self.frame_input, bd='3', justify="center") self.button_result_path = tk.Button(self.frame_input, text='Browse', command=self.browse_result_path) # place used to place the widgets in the frame self.label_input_files.place(relx=-0.005, rely=-0.01, relheight=0.05) self.label_epitope_predictions.place(relx=0.025, rely=0.06, relheight=0.035) self.label_ref.place(relx=0.05, rely=0.12, relheight=0.035) self.entry_ref.place(relx=0.20, rely=0.12, relwidth=0.55, relheight=0.035) self.button_ref.place(relx=0.80, rely=0.12, relheight=0.030) self.label_test.place(relx=0.05, rely=0.18, relheight=0.035) self.entry_test.place(relx=0.20, rely=0.18, relwidth=0.55, relheight=0.035) self.button_test.place(relx=0.80, rely=0.18, relheight=0.030) self.label_database_searches.place(relx=0.025, rely=0.26, relheight=0.035) self.label_main_one.place(relx=0.05, rely=0.32, relheight=0.035) self.entry_main_one.place(relx=0.20, rely=0.32, relwidth=0.55, relheight=0.035) self.button_main_one.place(relx=0.80, rely=0.32, relheight=0.030) self.label_main_two.place(relx=0.05, rely=0.38, relheight=0.035) self.entry_main_two.place(relx=0.20, rely=0.38, relwidth=0.55, relheight=0.035) self.button_main_two.place(relx=0.80, rely=0.38, relheight=0.030) self.label_indels_title.place(relx=0.025, rely=0.46, relheight=0.035) self.label_indels_alignment.place(relx=0.06, rely=0.52, relheight=0.035) self.entry_indels_alignment.place(relx=0.20, rely=0.52, relwidth=0.55, relheight=0.035) self.button_indels_alignment.place(relx=0.80, rely=0.52, relheight=0.030) self.label_threshold_title.place(relx=-0.005, rely=0.60, relheight=0.05) self.entry_threshold.place(relx=0.10, rely=0.69, relwidth=0.05, relheight=0.030) self.label_threshold_helper.place(relx=0.175, rely=0.69, relheight=0.030) self.label_radio_title.place(relx=-0.005, rely=0.76, relheight=0.05) # Radio buttons are placed in their own frame (self.frame_radio_buttons) self.label_result_file_title.place(relx=-0.005, rely=0.90, relheight=0.035) self.entry_result_file.place(relx=0.20, rely=0.955, relwidth=0.55, relheight=0.035) self.button_result_path.place(relx=0.80, rely=0.955, relheight=0.030) ############################################################################################ # placing the buttons below submit_font = Font(family="Calibri", size=12) self.frame_button = tk.Frame(self.frame, bd='3', padx=3, pady=3) self.button_start = tk.Button(self.frame_button, text='Compare', font=submit_font, command=self.start_clicked) self.button_cancel = tk.Button(self.frame_button, text='Cancel', font=submit_font, command=master.destroy) self.button_cancel.place(relx=0.6, rely=0.22, relheight=0.6, relwidth=0.18) self.button_start.place(relx=0.8, rely=0.22, relheight=0.6, relwidth=0.18) ############################################################################################### # all the frames are placed in their respective positions self.frame_input.place(relx=0.005, rely=0.005, relwidth=0.99, relheight=0.906) self.frame_radio_buttons.place(relx=0.005, rely=0.8275, relwidth=1, relheight=1) self.frame_button.place(relx=0.005, rely=0.915, relwidth=0.99, relheight=0.08) self.frame.place(relx=0.02, rely=0.02, relwidth=0.96, relheight=0.96) self.canvas.pack() ############################################################################################## def start_clicked(self): print("Compare Start") init_objects(self.level_selection.get()) global LVL_SEL print("Reading epitope predictions: Sequence A file") ref_raw = init_ref_raw(self.entry_ref.get().strip()) if ref_raw is None: return if LVL_SEL != "L2Only": print("Reading epitope predictions: Sequence B file") test_raw = init_test_raw(self.entry_test.get().strip()) if test_raw is None: return if LVL_SEL != "L1Only": print("Reading database searches: Sequence A file") main_raw_one = init_main_raw(self.entry_main_one.get().strip()) if main_raw_one is None: print("Unable to read database searches: Sequence A file") return global MAIN_FILE_ONE_NAME MAIN_FILE_ONE_NAME = self.entry_main_one.get().split("/").pop() if LVL_SEL == "L1&L2": print("Reading database searches: Sequence B file") main_raw_two = init_main_raw(self.entry_main_two.get().strip()) if main_raw_two is None: print("Unable to read database searches: Sequence B file") return global MAIN_FILE_TWO_NAME MAIN_FILE_TWO_NAME = self.entry_main_two.get().split("/").pop() if self.entry_indels_alignment.get().strip() != "": print("Reading alignment file") if not init_alignment(self.entry_indels_alignment.get().strip()): print("Unable to create gap character lists") return else: print("Empty alignment file path") return if not init_threshold(self.entry_threshold.get().strip()): print("Minimum peptide length input error: minimum length set to 1") result_file = generate_result_file(self.entry_result_file.get()) ref_dictionary = create_test_comparison_dict(ref_raw.to_dict('split'), REF_FILE_NAME) if LVL_SEL == "L1&L2": test_dictionary = create_test_comparison_dict(test_raw.to_dict('split'), TEST_FILE_NAME) main_dict_one = create_main_comparison_dict(main_raw_one.to_dict('split'), MAIN_FILE_ONE_NAME) main_dict_two = create_main_comparison_dict(main_raw_two.to_dict('split'), MAIN_FILE_TWO_NAME) generate_test_comparison_results(ref_dictionary, test_dictionary) generate_main_comparison_results(L1_matched_dict, "L1m", main_dict_one, main_dict_two) generate_main_comparison_results(L1_partial_dict, "L1p", main_dict_one, main_dict_two) generate_main_comparison_results(L1_novel_dict, "L1n", main_dict_one, main_dict_two) finalize_L1L2_results(result_file) if LVL_SEL == "L1Only": test_dictionary = create_test_comparison_dict(test_raw.to_dict('split'), TEST_FILE_NAME) generate_test_comparison_results(ref_dictionary, test_dictionary) finalize_L1Only_results(result_file) if LVL_SEL == "L2Only": main_dict_one = create_main_comparison_dict(main_raw_one.to_dict('split'), MAIN_FILE_ONE_NAME) generate_main_comparison_results(ref_dictionary, "L2", main_dict_one) finalize_L2Only_results(result_file) print("Compared") showinfo("CAVES", "Comparison Complete!") def browse_ref(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_ref.delete(0, tk.END) self.entry_ref.insert(0, filename) def browse_test(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_test.delete(0, tk.END) self.entry_test.insert(0, filename) def browse_main_one(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_main_one.delete(0, tk.END) self.entry_main_one.insert(0, filename) def browse_main_two(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_main_two.delete(0, tk.END) self.entry_main_two.insert(0, filename) def browse_alignment(self): fasta_exts = [("FASTA files", "*.fasta"), ("FASTA files", "*.fna"), ("FASTA files", "*.ffn"), ("FASTA files", "*.faa"), ("FASTA files", "*.frn"), ("FASTA files", "*.fa"), ("FASTA files", "*.fsa")] filename = filedialog.askopenfilename(title="Select a File", filetypes=fasta_exts) self.entry_indels_alignment.delete(0, tk.END) self.entry_indels_alignment.insert(0, filename) def browse_result_path(self): time = datetime.now().strftime("%Y-%m-%d_%H%M%S") filename = filedialog.asksaveasfilename(initialfile="results_"+time, title="Results File", filetypes=[("Excel files", "*.xlsx")]) self.entry_result_file.delete(0, tk.END) self.entry_result_file.insert(0, filename) def config_L1L2_entries(self): self.entry_ref.config(state='normal') self.entry_test.config(state='normal') self.entry_main_one.config(state='normal') self.entry_main_two.config(state='normal') def config_L1_only_entries(self): self.entry_main_one.delete(0, tk.END) self.entry_main_two.delete(0, tk.END) self.entry_ref.config(state='normal') self.entry_test.config(state='normal') self.entry_main_one.config(state='disabled') self.entry_main_two.config(state='disabled') def config_L2_only_entries(self): self.entry_test.delete(0, tk.END) self.entry_main_two.delete(0, tk.END) self.entry_ref.config(state='normal') self.entry_test.config(state='disabled') self.entry_main_one.config(state='normal') self.entry_main_two.config(state='disabled') class ResultSheetObject: def __init__(self): self.origin_file_one = [] self.peptide_one = [] self.start_one = [] self.end_one = [] self.length_one = [] self.letters_matched = [] self.letters_matched_length = [] self.origin_file_two = [] self.peptide_two = [] self.start_two = [] self.end_two = [] self.length_two = [] self.mutated_pos = [] class PeptideObject: def __init__(self, new_file, new_pep, new_start, new_end, new_length, new_suffix): self.origin_file = new_file self.peptide = new_pep self.start = new_start self.end = new_end self.length = new_length self.suffix = new_suffix # ----------------------------------------------- RESULT OBJECTS L1_novel = ResultSheetObject() L1_partial = ResultSheetObject() L1_matched = ResultSheetObject() L2_novel = ResultSheetObject() L2_partial = ResultSheetObject() L2_matched = ResultSheetObject() L1_novel_L2_novel = ResultSheetObject() L1_novel_L2_partial = ResultSheetObject() L1_novel_L2_matched = ResultSheetObject() L1_partial_L2_novel = ResultSheetObject() L1_partial_L2_partial = ResultSheetObject() L1_partial_L2_matched = ResultSheetObject() L1_matched_L2_novel = ResultSheetObject() L1_matched_L2_partial = ResultSheetObject() L1_matched_L2_matched = ResultSheetObject() # ----------------------------------------------- LEVEL 1 DICTIONARIES L1_novel_dict = {} L1_partial_dict = {} L1_matched_dict = {} # ----------------------------------------------- FUNCTIONS def init_objects(lvl_sel): global REF_FILE_NAME REF_FILE_NAME = "" global TEST_FILE_NAME TEST_FILE_NAME = "" global MAIN_FILE_ONE_NAME MAIN_FILE_ONE_NAME = "" global MAIN_FILE_TWO_NAME MAIN_FILE_TWO_NAME = "" global SEQ_ONE_GAPS SEQ_ONE_GAPS = [] global SEQ_TWO_GAPS SEQ_TWO_GAPS = [] global SEQ_THREE_GAPS SEQ_THREE_GAPS = [] global SEQ_FOUR_GAPS SEQ_FOUR_GAPS = [] global FOUR_SEQ_ALIGN FOUR_SEQ_ALIGN = False global LVL_SEL if lvl_sel == 1: LVL_SEL = "L1&L2" elif lvl_sel == 2: LVL_SEL = "L1Only" else: LVL_SEL = "L2Only" global L1_novel L1_novel = ResultSheetObject() global L1_partial L1_partial = ResultSheetObject() global L1_matched L1_matched = ResultSheetObject() global L2_novel L2_novel = ResultSheetObject() global L2_partial L2_partial = ResultSheetObject() global L2_matched L2_matched = ResultSheetObject() global L1_novel_L2_novel L1_novel_L2_novel = ResultSheetObject() global L1_novel_L2_partial L1_novel_L2_partial = ResultSheetObject() global L1_novel_L2_matched L1_novel_L2_matched = ResultSheetObject() global L1_partial_L2_novel L1_partial_L2_novel = ResultSheetObject() global L1_partial_L2_partial L1_partial_L2_partial = ResultSheetObject() global L1_partial_L2_matched L1_partial_L2_matched = ResultSheetObject() global L1_matched_L2_novel L1_matched_L2_novel = ResultSheetObject() global L1_matched_L2_partial L1_matched_L2_partial = ResultSheetObject() global L1_matched_L2_matched L1_matched_L2_matched = ResultSheetObject() global L1_novel_dict L1_novel_dict = {} global L1_partial_dict L1_partial_dict = {} global L1_matched_dict L1_matched_dict = {} def init_ref_raw(file_path): if not path.exists(file_path): print("Unable to find predictions file: " + file_path) return None global REF_FILE_NAME REF_FILE_NAME = file_path.strip().split("/").pop() # gives last item in list which is file ref_raw = None for pep_col in PEP_COLUMNS: for start_col in START_COLUMNS: try: ref_raw = pd.read_csv(file_path, index_col=False, usecols={start_col, pep_col}) break except ValueError: ref_raw = None else: continue break if ref_raw is None: print("Unable to read epitope predictions: Sequence A file") print("Value Error: Check to make sure the column names are among the following:") print("Start Columns:", START_COLUMNS) print("Peptide Columns:", PEP_COLUMNS) return ref_raw def init_test_raw(file_path): if not path.exists(file_path): print("Unable to find predictions file: " + file_path) return None global TEST_FILE_NAME TEST_FILE_NAME = file_path.strip().split("/").pop() # gives last item in list which is file test_raw = None for pep_col in PEP_COLUMNS: for start_col in START_COLUMNS: try: test_raw = pd.read_csv(file_path, index_col=False, usecols={start_col, pep_col}) break except ValueError: test_raw = None else: continue break if test_raw is None: print("Unable to read epitope predictions: Sequence B file") print("Value Error: Check to make sure the column names are among the following:") print("Start Columns:", START_COLUMNS) print("Peptide Columns:", PEP_COLUMNS) return test_raw def init_main_raw(file_path): if not path.exists(file_path): print("Unable to find database search file: " + file_path) return None try: main_raw = pd.read_csv(file_path, index_col=False, skiprows=1, usecols={"Description", "Starting Position"}) return main_raw except ValueError: print("Value Error: Check to make sure the column names are: 'Description' and 'Starting Position'") return None def init_alignment(file_path): if not path.exists(file_path): print("Unable to find alignment file from path: " + file_path) return False result = init_gap_chars(file_path) return result def init_gap_chars(file_path): try: with open(file_path) as my_file: sequences = build_sequences(my_file) global ALIGNMENT_WARNING ALIGNMENT_WARNING = False global SEQ_ONE_GAPS SEQ_ONE_GAPS = find_gap_chars(sequences[0]) if LVL_SEL != "L2Only": global SEQ_TWO_GAPS SEQ_TWO_GAPS = find_gap_chars(sequences[1]) if LVL_SEL != "L1Only": global SEQ_THREE_GAPS SEQ_THREE_GAPS = find_gap_chars(sequences[2]) if sequences[3] and LVL_SEL == "L1&L2": global SEQ_FOUR_GAPS SEQ_FOUR_GAPS = find_gap_chars(sequences[3]) global FOUR_SEQ_ALIGN FOUR_SEQ_ALIGN = True if ALIGNMENT_WARNING: showwarning("WARNING", "CAVES has detected a large amount of successive gap characters in your alignment " "file. Epitopes predicted from highly dissimilar sequences are unlikely to produce " "biologically relevant matches when compared due to inherent differences in the " "amino acid composition. \n\nCAVES will still run but we caution against using " "these results.") except: print("Alignment file processing error") return False return True def build_sequences(file): sequences = ["", "", "", ""] curr_seq = -1 for line in file: if line[0] == ">": curr_seq += 1 else: line = line.rstrip("\n") sequences[curr_seq] += line return sequences def find_gap_chars(seq): gaps = [] amino_acid_count = 1 row = 0 for char in seq: if char == '-': row += 1 if row >= 10: global ALIGNMENT_WARNING ALIGNMENT_WARNING = True gaps.append(amino_acid_count) else: row = 0 amino_acid_count += 1 return gaps def init_threshold(threshold_entry): global THRESHOLD if not threshold_entry: THRESHOLD = 1 return True try: if not str.isdigit(threshold_entry): raise THRESHOLD = int(threshold_entry) except: THRESHOLD = 1 return False return True def generate_result_file(file_path): try: filename, file_extension = path.splitext(file_path) if file_extension and file_extension == ".xlsx": result_file = pd.ExcelWriter(file_path) else: result_file =
pd.ExcelWriter(filename + ".xlsx")
pandas.ExcelWriter
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/1/26 13:10 Desc: 申万指数-申万一级、二级和三级 http://www.swsindex.com/IdxMain.aspx https://legulegu.com/stockdata/index-composition?industryCode=851921.SI """ import time import json import pandas as pd from akshare.utils import demjson import requests from bs4 import BeautifulSoup from akshare.index.cons import sw_headers, sw_payload, sw_url def sw_index_representation_spot() -> pd.DataFrame: """ 申万-市场表征实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8831 :return: 市场表征实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" params = { "tablename": "swzs", "key": "L1", "p": "1", "where": "L1 in('801001','801002','801003','801005','801300','801901','801903','801905','801250','801260','801270','801280','802613')", "orderby": "", "fieldlist": "L1,L2,L3,L4,L5,L6,L7,L8,L11", "pagecount": "9", "timed": "1632300641756", } r = requests.get(url, params=params) data_json = demjson.decode(r.text) temp_df = pd.DataFrame(data_json["root"]) temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_numeric(temp_df["最低价"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) return temp_df def sw_index_spot() -> pd.DataFrame: """ 申万一级行业-实时行情数据 http://www.swsindex.com/idx0120.aspx?columnid=8832 :return: 申万一级行业实时行情数据 :rtype: pandas.DataFrame """ url = "http://www.swsindex.com/handler.aspx" result = [] for i in range(1, 3): payload = sw_payload.copy() payload.update({"p": i}) payload.update({"timed": int(time.time() * 1000)}) r = requests.post(url, headers=sw_headers, data=payload) data = r.content.decode() data = data.replace("'", '"') data = json.loads(data) result.extend(data["root"]) temp_df = pd.DataFrame(result) temp_df["L2"] = temp_df["L2"].str.strip() temp_df.columns = ["指数代码", "指数名称", "昨收盘", "今开盘", "成交额", "最高价", "最低价", "最新价", "成交量"] temp_df["昨收盘"] = pd.to_numeric(temp_df["昨收盘"]) temp_df["今开盘"] = pd.to_numeric(temp_df["今开盘"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最高价"] = pd.to_numeric(temp_df["最高价"]) temp_df["最低价"] = pd.to_
numeric(temp_df["最低价"])
pandas.to_numeric
"""Auxiliary functions to generate dataframes. """ ########## # Imports ########## import pandas as pd import random ########## # Int df Size ########## def create_int_df_size(cols: int, rows: int) -> "dataframe": """Returns test dataframe with passed number of columns and rows. """ df_dict = { chr(65 + i) : range(0, rows) for i in range(cols) } return pd.DataFrame(data = df_dict) ########## # Str df Size ########## def create_mixed_df_size(cols: int, rows: int) -> 'dataframe': """Returns test df with mixed number of columns and rows """ str_data = ['a', 'b', 'c', 'd'] data = dict() for i in range(cols): if i % 2: val = [ random.choice(str_data) * random.randint(0, 2) for _ in range(rows)] else: val = range(0, rows) data[chr(65 + i)] = val return pd.DataFrame(data) ########## # String dfs ########## def create_str_df1() -> "dataframe": """Returns test dataframe. """ data = [ ['Cat', 'Python', 'The'], ['doG', 'r', 'A'], ['biRd', 'SQL', None] ] columns = ('animals', 'languages', 'determiners') df = pd.DataFrame(data=data, columns=columns) return df def create_str_df2() -> "dataframe": """Creates string dataframe """ states = [ ## Regular word 'california', 'colorado', 'utah', 'indiana', 'texas', 'oklahoma', 'Nevada', ## Random space in word 'cali fornia', 'colo rado', 'ut ah', 'i ndiana', 'te xas', 'okla homa', 'Neva da', ] data = { 'a': range(100), 'b': range(100), 'c': [random.choice(['a', 'b', 'c'])* random.randint(0, 5) for _ in range(100)], 'states': [random.choice(states) + ('s' if random.random() < 0.1 else '') for _ in range(100)] # Change for s } return
pd.DataFrame(data)
pandas.DataFrame
import os import pandas as pd import sys from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import random import statistics import itertools JtokWh = 2.7778e-7 weight_factor = [1.50558832,0.35786005,1.0] path_test = os.path.join(sys.path[0]) representative_days_path= os.path.join(path_test,'ScenarioReduction') sizing_path = os.path.join(path_test, 'Design_results') operation_path = os.path.join(path_test, 'Operation_results') editable_data_path =os.path.join(path_test, 'editable_values.csv') editable_data = pd.read_csv(editable_data_path, header=None, index_col=0, squeeze=True).to_dict()[1] editable_data_sizing_path =os.path.join(path_test, 'editable_values_design.csv') editable_data_sizing = pd.read_csv(editable_data_sizing_path, header=None, index_col=0, squeeze=True).to_dict()[1] num_scenarios = int(editable_data['num_scenarios']) num_clusters= int(editable_data['Cluster numbers'])+2 population_size = int(editable_data['population_size']) population_size_sizing = int(editable_data_sizing['population_size']) idf_names = ['ASHRAE901_OfficeMedium_STD2019_Denver','ASHRAE901_Hospital_STD2019_Denver','ASHRAE901_RetailStandalone_STD2019_Denver'] thermal_eff_dict = {idf_names[0]:0.8,idf_names[1]:0.8125,idf_names[2]:0.82} city=editable_data['city'] lat = float(editable_data['Latitude']) lon = float(editable_data['Longitude']) start_year = int(editable_data['starting_year']) end_year = int(editable_data['ending_year']) epw_names = [] for i_temp in range(num_scenarios): for i_solar in range(num_scenarios): epw_names.append('T_'+str(i_temp)+'_S_'+str(i_solar)) demand_directory = os.path.join(path_test, 'IDFBuildingsFiles') # epw main files weather_data = [] weather_data_names =[] weather_data_bar_names =[] for year in range(start_year,end_year+1): weather_data.append(city+'_'+str(lat)+'_'+str(lon)+'_psm3_60_'+str(year)) weather_data_names.append('AMY '+str(year)) weather_data_bar_names.append('AMY \n'+str(year)) dict_EPWs= {} dict_EPWs['AMYs']=weather_data dict_EPWs['TMYs']=['USA_UT_Salt.Lake.City.Intl.AP.725720_TMY','USA_UT_Salt.Lake.City.725720_TMY2','USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3'] #dict_EPWs['TMYs']=['USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3'] dict_EPWs['FMYs']=['USA_Salt Lake City Intl AP_HadCM3-A2-'+str(2050),'USA_Salt Lake City Intl AP_HadCM3-A2-'+str(2080)] dict_EPWs_names= {} dict_EPWs_names['AMYs']=weather_data_names dict_EPWs_names['TMYs']=['TMY','TMY2','TMY3'] #dict_EPWs_names['TMYs']=['TMY3'] dict_EPWs_names['FMYs']=['FMY '+str(2050),'FMY '+str(2080)] dict_EPWs_bar_names= {} dict_EPWs_bar_names['AMYs']=weather_data_bar_names dict_EPWs_bar_names['TMYs']=['TMY \n','TMY2 \n','TMY3 \n'] dict_EPWs_bar_names['FMYs']=['FMY \n'+str(2050),'FMY \n'+str(2080)] main_weather_epw = {} output_directory = os.path.join(path_test, 'IDFBuildingsFiles') results_compare = os.path.join(path_test, 'Results') if not os.path.exists(results_compare): os.makedirs(results_compare) years=list(range(1998,2020)) years= ['AMY \n'+str(i) for i in years] years.append('TMY') years.append('TMY2') years.append('TMY3') years.append('FMY \n'+str(2050)) years.append('FMY \n'+str(2080)) ### Representative Days ### def representative_day_function(): global representative_days,weight_representative_day_main,weight_representative_day_scenario representative_days = defaultdict(list) weight_representative_day_scenario = defaultdict(list) weight_representative_day_main = defaultdict(list) for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' for representative_day in range(num_clusters): rep_day= pd.read_csv(os.path.join(representative_days_path,output_prefix + 'Represent_days_modified_'+str(representative_day)+ '.csv')) representative_days[output_prefix].append(rep_day) weight_representative_day_main[output_prefix].append(rep_day['Percent %']/100*365) for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' for representative_day in range(num_clusters): rep_day= pd.read_csv(os.path.join(representative_days_path,output_prefix + 'Represent_days_modified_'+str(representative_day)+ '.csv')) representative_days[output_prefix].append(rep_day) weight_representative_day_scenario[output_prefix].append(rep_day['Percent %']/100*365) ### Energy Demands ### def energy_demands(): global elect_buildings,gas_buildings,cool_buildings,elect_annual,gas_annual,cool_annual,total_elect_buildings,total_gas_buildings,total_cool_buildings,total_elect_annual,total_gas_annual,total_cool_annual elect_buildings = defaultdict(list) gas_buildings = defaultdict(list) cool_buildings = defaultdict(list) elect_annual= defaultdict(list) gas_annual = defaultdict(list) cool_annual = defaultdict(list) total_elect_buildings= [] total_gas_buildings = [] total_cool_buildings = [] total_elect_annual= [] total_gas_annual = [] total_cool_annual = [] for scenario in range(len(epw_names)): sum_electricity_buildings = [] sum_heating_buildings = [] sum_cooling_buildings = [] sum_electricity_annual = [] sum_heating_annual = [] sum_cooling_annual = [] for building_type in idf_names: output_prefix = building_type+'_'+epw_names[scenario]+'_mtr.csv' demand_data_path = os.path.join(demand_directory, output_prefix) data = pd.read_csv(demand_data_path) elect_data = (data['Electricity:Facility [J](Hourly)']-data['Heating:Electricity [J](Hourly)'] - data['Cooling:Electricity [J](Hourly)'])*JtokWh heat_data = (data['Gas:Facility [J](Hourly)']*thermal_eff_dict[building_type]+data['Heating:Electricity [J](Hourly)'])*JtokWh cool_data = (data['Cooling:Electricity [J](Hourly)'])*JtokWh elect_buildings[building_type].append(elect_data) gas_buildings[building_type].append(heat_data) cool_buildings[building_type].append(cool_data) elect_annual[building_type].append(sum(elect_data)) gas_annual[building_type].append(sum(heat_data)) cool_annual[building_type].append(sum(cool_data)) sum_electricity_buildings.append(elect_data*weight_factor[idf_names.index(building_type)]) sum_heating_buildings.append(heat_data*weight_factor[idf_names.index(building_type)]) sum_cooling_buildings.append(cool_data*weight_factor[idf_names.index(building_type)]) sum_electricity_annual.append(sum(elect_data*weight_factor[idf_names.index(building_type)])) sum_heating_annual.append(sum(heat_data*weight_factor[idf_names.index(building_type)])) sum_cooling_annual.append(sum(cool_data*weight_factor[idf_names.index(building_type)])) total_elect_buildings.append(sum(sum_electricity_buildings)) total_gas_buildings.append(sum(sum_heating_buildings)) total_cool_buildings.append(sum(sum_cooling_buildings)) total_elect_annual.append(sum(sum_electricity_annual)) total_gas_annual.append(sum(sum_heating_annual)) total_cool_annual.append(sum(sum_cooling_annual)) global elect_buildings_main,gas_buildings_main,cool_buildings_main,elect_annual_main,gas_annual_main,cool_annual_main,total_elect_buildings_main,total_gas_buildings_main,total_cool_buildings_main,total_elect_annual_main,total_gas_annual_main,total_cool_annual_main elect_buildings_main = defaultdict(list) gas_buildings_main = defaultdict(list) cool_buildings_main = defaultdict(list) elect_annual_main = defaultdict(list) gas_annual_main = defaultdict(list) cool_annual_main = defaultdict(list) total_elect_annual_main = [] total_gas_annual_main = [] total_cool_annual_main = [] total_elect_buildings_main = [] total_gas_buildings_main = [] total_cool_buildings_main = [] global output_prefix_short output_prefix_short ={} for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' output_prefix_short[output_prefix] = dict_EPWs_names[key][dict_EPWs[key].index(epw_file_name)] sum_electricity_buildings_main = [] sum_heating_buildings_main = [] sum_cooling_buildings_main = [] sum_electricity_annual_main = [] sum_heating_annual_main = [] sum_cooling_annual_main = [] for building_type in idf_names: output_prefix = building_type+'_'+epw_file_name+'_mtr.csv' demand_data_path = os.path.join(demand_directory, output_prefix) data = pd.read_csv(demand_data_path) elect_data = (data['Electricity:Facility [J](Hourly)']-data['Heating:Electricity [J](Hourly)'] - data['Cooling:Electricity [J](Hourly)'])*JtokWh heat_data = (data['Gas:Facility [J](Hourly)']*thermal_eff_dict[building_type]+data['Heating:Electricity [J](Hourly)'])*JtokWh cool_data = (data['Cooling:Electricity [J](Hourly)'])*JtokWh elect_buildings_main[building_type].append(elect_data) gas_buildings_main[building_type].append(heat_data) cool_buildings_main[building_type].append(cool_data) elect_annual_main[building_type].append(sum(elect_data)) gas_annual_main[building_type].append(sum(heat_data)) cool_annual_main[building_type].append(sum(cool_data)) sum_electricity_buildings_main.append(elect_data*weight_factor[idf_names.index(building_type)]) sum_heating_buildings_main.append(heat_data*weight_factor[idf_names.index(building_type)]) sum_cooling_buildings_main.append(cool_data*weight_factor[idf_names.index(building_type)]) sum_electricity_annual_main.append(sum(elect_data*weight_factor[idf_names.index(building_type)])) sum_heating_annual_main.append(sum(heat_data*weight_factor[idf_names.index(building_type)])) sum_cooling_annual_main.append(sum(cool_data*weight_factor[idf_names.index(building_type)])) total_elect_buildings_main.append(sum(sum_electricity_buildings_main)) total_gas_buildings_main.append(sum(sum_heating_buildings_main)) total_cool_buildings_main.append(sum(sum_cooling_buildings_main)) total_elect_annual_main.append(sum(sum_electricity_annual_main)) total_gas_annual_main.append(sum(sum_heating_annual_main)) total_cool_annual_main.append(sum(sum_cooling_annual_main)) j = 0 def generate_combo_plots(mode): SMALL_SIZE = 30 MEDIUM_SIZE = 32 BIGGER_SIZE = 38 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,20) color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(27)] if mode=='seperate': marker = itertools.cycle(('v','+','s','^','o','x','*')) for building_type in idf_names: plt.figure() j=0 for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' label = output_prefix_short[output_prefix] if key=='AMYs': year_selected_number=int(label.replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='TMYs': if label=='TMY3': plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='FMYs': plt.scatter(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(cool_annual_main[building_type][j]/1000,gas_annual_main[building_type][j]/1000),xytext=(cool_annual_main[building_type][j]/1000*1.0005,gas_annual_main[building_type][j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,building_type+'_annual_main_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] for building_type in idf_names: plt.figure() label_dict = {} for scenario in range(len(epw_names)): key_label = round(cool_annual[building_type][scenario]/1000,0) #if key_label not in label_dict.keys(): #label_dict[key_label] = epw_names[scenario] label_short= epw_names[scenario].replace('_','') marker = marker_list[int(label_short[1])] color = color_list[int(label_short[3])] if (int(label_short[1])==0 or int(label_short[1])==5 or int(label_short[1])==9) and (int(label_short[3])==0 or int(label_short[3])==5 or int(label_short[3])==9): if int(label_short[1])==0: label_T='Tmin' elif int(label_short[1])==5: label_T='Tmed' elif int(label_short[1])==9: label_T='Tmax' if int(label_short[3])==0: label_S='Smin' elif int(label_short[3])==5: label_S='Smed' elif int(label_short[3])==9: label_S='Smax' label = label_T + label_S if building_type==idf_names[1]: weight_factor_pareto_front =0.9955 else: weight_factor_pareto_front = 1 plt.scatter(cool_annual[building_type][scenario]/1000,gas_annual[building_type][scenario]/1000,color=color,marker=marker,s=300, cmap=cmap, label=label_short) plt.annotate(label,xy=(cool_annual[building_type][scenario]/1000,gas_annual[building_type][scenario]/1000),xytext=(cool_annual[building_type][scenario]/1000*1.005*weight_factor_pareto_front,gas_annual[building_type][scenario]/1000), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,building_type+'_annual_scenario_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() elif mode =='total': marker = itertools.cycle(('v','+','s','^','o','x','*')) plt.figure() j=0 for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' label = output_prefix_short[output_prefix] if key=='AMYs': year_selected_number=int(label.replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='TMYs': if label=='TMY3': plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 elif key=='FMYs': plt.scatter(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000,s=400, cmap=cmap, label = label,marker=next(marker)) plt.annotate(label,xy=(total_cool_annual_main[j]/1000,total_gas_annual_main[j]/1000),xytext=(total_cool_annual_main[j]/1000*1.0005,total_gas_annual_main[j]/1000*1.0005), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) j = j+1 plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,'total_annual_main_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] label_dict = {} for scenario in range(len(epw_names)): key_label = round(total_cool_annual[scenario]/1000,0) #if key_label not in label_dict.keys(): # label_dict[key_label] = epw_names[scenario] label_short= epw_names[scenario].replace('_','') marker = marker_list[int(label_short[1])] color = color_list[int(label_short[3])] if (int(label_short[1])==0 or int(label_short[1])==5 or int(label_short[1])==9) and (int(label_short[3])==0 or int(label_short[3])==5 or int(label_short[3])==9): if int(label_short[1])==0: label_T='Tmin' elif int(label_short[1])==5: label_T='Tmed' elif int(label_short[1])==9: label_T='Tmax' if int(label_short[3])==0: label_S='Smin' elif int(label_short[3])==5: label_S='Smed' elif int(label_short[3])==9: label_S='Smax' label = label_T + label_S plt.scatter(total_cool_annual[scenario]/1000,total_gas_annual[scenario]/1000,s=300,c=color,marker=marker, cmap=cmap, label=label_short) plt.annotate(label,xy=(total_cool_annual[scenario]/1000,total_gas_annual[scenario]/1000),xytext=(total_cool_annual[scenario]/1000*1.001,total_gas_annual[scenario]/1000*1.001), arrowprops=dict(arrowstyle="-"),fontsize=MEDIUM_SIZE) plt.xlabel('Total Cooling Demand (MWh)') plt.ylabel('Total Hot Water Demand (MWh)') plt.savefig(os.path.join(results_compare,'total_annual_scenario_combo_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() def stats_energy_demands(): cols_revised = ['Office Medium','Hospital','Retail stand-alone', 'Total'] weight_factor_dict = {idf_names[0]:weight_factor[0],idf_names[1]:weight_factor[1],idf_names[2]:weight_factor[2]} stats_table_seperate = defaultdict(list) k=0 for building_type in idf_names: #stats_table_seperate[k].append(round(np.mean(elect_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual_main[building_type])*100/np.mean(elect_annual_main[building_type]),2)) stats_table_seperate[k].append(round(np.mean(gas_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual_main[building_type])*100/np.mean(gas_annual_main[building_type]),2)) stats_table_seperate[k].append(round(np.mean(cool_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual_main[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual_main[building_type])*100/np.mean(cool_annual_main[building_type]),2)) k = k+1 stats_table_total = [] #stats_table_total.append(round(np.mean(total_elect_annual_main)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual_main)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual_main)*100/np.mean(total_elect_annual_main),2)) stats_table_total.append(round(np.mean(total_gas_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual_main)*100/np.mean(total_gas_annual_main),2)) stats_table_total.append(round(np.mean(total_cool_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual_main)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual_main)*100/np.mean(total_cool_annual_main),2)) statistics_table = {#'Elect Mean': [stats_table_seperate[0][0],stats_table_seperate[1][0],stats_table_seperate[2][0],stats_table_total[0]], #'Elect STD': [stats_table_seperate[0][1],stats_table_seperate[1][1],stats_table_seperate[2][1],stats_table_total[1]], #'CV \% Elect': [stats_table_seperate[0][2],stats_table_seperate[1][2],stats_table_seperate[2][2],stats_table_total[2]], 'Heat Mean': [stats_table_seperate[0][3],stats_table_seperate[1][3],stats_table_seperate[2][3],stats_table_total[3]], 'Heat STD': [stats_table_seperate[0][4],stats_table_seperate[1][4],stats_table_seperate[2][4],stats_table_total[4]], 'CV \% Heat': [stats_table_seperate[0][5],stats_table_seperate[1][5],stats_table_seperate[2][5],stats_table_total[5]], 'Cool Mean': [stats_table_seperate[0][6],stats_table_seperate[1][6],stats_table_seperate[2][6],stats_table_total[6]], 'Cool STD': [stats_table_seperate[0][7],stats_table_seperate[1][7],stats_table_seperate[2][7],stats_table_total[7]], 'CV \% Cool': [stats_table_seperate[0][8],stats_table_seperate[1][8],stats_table_seperate[2][8],stats_table_total[8]]} df_statistics_table= pd.DataFrame(statistics_table) df_statistics_table.insert(0, "", cols_revised, True) for i in range(1,len(df_statistics_table.columns)*2): if i%2!=0: df_statistics_table.insert(i, "&", ["&"]*len(df_statistics_table), True) df_statistics_table.insert(i, "\\\\ \hline", ["\\\\ \hline"]*len(df_statistics_table), True) df_statistics_table.to_csv(os.path.join(results_compare,'stats_main_seperate_demand_WC_table.csv')) stats_table_seperate = defaultdict(list) weight_factor_dict = {idf_names[0]:weight_factor[0],idf_names[1]:weight_factor[1],idf_names[2]:weight_factor[2]} k=0 for building_type in idf_names: #print( #building_type,np.std(elect_annual[building_type])*weight_factor_dict[building_type]/1000) #stats_table_seperate[k].append(round(np.mean(elect_annual[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual[building_type])*weight_factor_dict[building_type]/1000,2)) #stats_table_seperate[k].append(round(np.std(elect_annual[building_type])*100/np.mean(elect_annual[building_type]),2)) stats_table_seperate[k].append(round(np.mean(gas_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(gas_annual[building_type])*100/np.mean(gas_annual[building_type]),2)) stats_table_seperate[k].append(round(np.mean(cool_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual[building_type])*weight_factor_dict[building_type]/1000,2)) stats_table_seperate[k].append(round(np.std(cool_annual[building_type])*100/np.mean(cool_annual[building_type]),2)) k = k+1 stats_table_total = [] #stats_table_total.append(round(np.mean(total_elect_annual)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual)/1000,2)) #stats_table_total.append(round(np.std(total_elect_annual)*100/np.mean(total_elect_annual),2)) stats_table_total.append(round(np.mean(total_gas_annual)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual)/1000,2)) stats_table_total.append(round(np.std(total_gas_annual)*100/np.mean(total_gas_annual),2)) stats_table_total.append(round(np.mean(total_cool_annual)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual)/1000,2)) stats_table_total.append(round(np.std(total_cool_annual)*100/np.mean(total_cool_annual),2)) statistics_table = {#'Elect Mean': [stats_table_seperate[0][0],stats_table_seperate[1][0],stats_table_seperate[2][0],stats_table_total[0]], #'Elect STD': [stats_table_seperate[0][1],stats_table_seperate[1][1],stats_table_seperate[2][1],stats_table_total[1]], #'CV \% Elect': [stats_table_seperate[0][2],stats_table_seperate[1][2],stats_table_seperate[2][2],stats_table_total[2]], 'Heat Mean': [stats_table_seperate[0][3],stats_table_seperate[1][3],stats_table_seperate[2][3],stats_table_total[3]], 'Heat STD': [stats_table_seperate[0][4],stats_table_seperate[1][4],stats_table_seperate[2][4],stats_table_total[4]], 'CV \% Heat': [stats_table_seperate[0][5],stats_table_seperate[1][5],stats_table_seperate[2][5],stats_table_total[5]], 'Cool Mean': [stats_table_seperate[0][6],stats_table_seperate[1][6],stats_table_seperate[2][6],stats_table_total[6]], 'Cool STD': [stats_table_seperate[0][7],stats_table_seperate[1][7],stats_table_seperate[2][7],stats_table_total[7]], 'CV \% Cool': [stats_table_seperate[0][8],stats_table_seperate[1][8],stats_table_seperate[2][8],stats_table_total[8]]} df_statistics_table= pd.DataFrame(statistics_table) df_statistics_table.insert(0, "", cols_revised, True) for i in range(1,len(df_statistics_table.columns)*2): if i%2!=0: df_statistics_table.insert(i, "&", ["&"]*len(df_statistics_table), True) df_statistics_table.insert(i, "\\\\ \hline", ["\\\\ \hline"]*len(df_statistics_table), True) df_statistics_table.to_csv(os.path.join(results_compare,'stats_scenario_seperate_WC_demand_table.csv')) def bar_energy_demands(mode): SMALL_SIZE = 30 MEDIUM_SIZE = 32 BIGGER_SIZE = 38 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (45,15) if mode=='seperate': for building_type in idf_names: print(building_type, 'highest elect', years[elect_annual_main[building_type].index(np.max(elect_annual_main[building_type]))], ' heat', years[gas_annual_main[building_type].index(np.max(gas_annual_main[building_type]))], ' cool', years[cool_annual_main[building_type].index(np.max(cool_annual_main[building_type]))], ) print(building_type, 'lowest elect', years[elect_annual_main[building_type].index(np.min(elect_annual_main[building_type]))], ' heat', years[gas_annual_main[building_type].index(np.min(gas_annual_main[building_type]))], ' cool', years[cool_annual_main[building_type].index(np.min(cool_annual_main[building_type]))], ) r = np.arange(n) width = 0.25 plt.figure() #plt.bar(r,[number/1000 for number in elect_annual_main[building_type]],width = width,color='darkorange', edgecolor = 'black',label='Annual Electricity') plt.bar(r,[number/1000 for number in gas_annual_main[building_type]],width = width,color='darkred', edgecolor = 'black',label = 'Annual Hot Water') plt.bar(r+width,[number/1000 for number in cool_annual_main[building_type]],width = width,color='darkblue', edgecolor = 'black',label = 'Annual Cooling') plt.xlabel('Weather Files') plt.ylabel('Energy Demands (MWh)') plt.xticks(r + width/2,years) #plt.yticks plt.legend(loc='center left') plt.ticklabel_format(style='plain', axis='y') #plt.title('annual energy demands of' + building_type) plt.savefig(os.path.join(results_compare,building_type+'_bar_annual_main_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() elif mode =='total': print(#'total', 'highest elect', years[total_elect_annual_main.index(np.max(total_elect_annual_main))], ' heat', years[total_gas_annual_main.index(np.max(total_gas_annual_main))], ' cool', years[total_cool_annual_main.index(np.max(total_cool_annual_main))], ) print(#'total', 'lowest elect', years[total_elect_annual_main.index(np.min(total_elect_annual_main))], ' heat', years[total_gas_annual_main.index(np.min(total_gas_annual_main))], ' cool', years[total_cool_annual_main.index(np.min(total_cool_annual_main))], ) print(#'total range','elect', (np.max(total_elect_annual_main)-np.min(total_elect_annual_main))/1000, 'heat',(np.max(total_gas_annual_main)-np.min(total_gas_annual_main))/1000, 'cool', (np.max(total_cool_annual_main)-np.min(total_cool_annual_main))/1000) n=len(total_elect_annual_main) r = np.arange(n) width = 0.25 plt.figure() #plt.bar(r,[number/1000 for number in total_elect_annual_main],width = width,color='darkorange', edgecolor = 'black',label='Annual Electricity') plt.bar(r,[number/1000 for number in total_gas_annual_main],width = width,color='darkred', edgecolor = 'black',label = 'Annual Hot Water') plt.bar(r+width,[number/1000 for number in total_cool_annual_main],width = width,color='darkblue', edgecolor = 'black',label = 'Annual Cooling') plt.xlabel('Weather Files') plt.ylabel('Energy Demands (MWh)') plt.xticks(r + width/2,years) #plt.yticks(fontsize=BIGGER_SIZE) plt.legend(loc='center left') plt.ticklabel_format(style='plain', axis='y') #plt.title('Total annual energy demands') plt.savefig(os.path.join(results_compare,'total_annual_main_demands_WC'+'.png'),dpi=100,facecolor='w',bbox_inches='tight') plt.close() def hist_scenarios(mode): SMALL_SIZE = 20 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (10,8) if mode=='seperate': for building_type in idf_names: #plt.ylabel('Percentage %') #plt.hist([number/1000 for number in elect_annual[building_type]],color='darkorange',bins=10,weights=np.ones(len([number/1000 for number in elect_annual[building_type]]))*100 / len([number/1000 for number in elect_annual[building_type]])) #plt.xlabel('Total Electricity Demand (MWh)') #plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_electricity_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.ylabel('Percentage %') plt.hist([number/1000 for number in gas_annual[building_type]],color='darkred',bins=10,weights=np.ones(len([number/1000 for number in gas_annual[building_type]]))*100 / len([number/1000 for number in gas_annual[building_type]])) plt.xlabel('Total Heating Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_heating_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.ylabel('Percentage %') plt.hist([number/1000 for number in cool_annual[building_type]],color='darkblue',bins=10,weights=np.ones(len([number/1000 for number in cool_annual[building_type]]))*100 / len([number/1000 for number in cool_annual[building_type]])) plt.xlabel('Total Cooling Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_'+building_type+'_annual_main_cooling_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() elif mode =='total': #plt.ylabel('Percentage %') #plt.hist([number/1000 for number in total_elect_annual],color='darkorange',bins=10,weights=np.ones(len([number/1000 for number in total_elect_annual]))*100 / len([number/1000 for number in total_elect_annual])) #plt.xlabel('Total Electricity Demand (MWh)') #plt.savefig(os.path.join(results_compare,'hist_total_annual_main_electricity_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.hist([number/1000 for number in total_gas_annual],color='darkred',bins=10,weights=np.ones(len([number/1000 for number in total_gas_annual]))*100 / len([number/1000 for number in total_gas_annual])) plt.ylabel('Percentage %') plt.xlabel('Total Heating Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_total_annual_main_heating_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() plt.hist([number/1000 for number in total_gas_annual],color='darkblue',bins=10,weights=np.ones(len([number/1000 for number in total_gas_annual]))*100 / len([number/1000 for number in total_gas_annual])) plt.ylabel('Percentage %') plt.xlabel('Total Cooling Demand (MWh)') plt.savefig(os.path.join(results_compare,'hist_total_annual_main_cooling_WC_demand'+'.png'),dpi=100,facecolor='w') plt.close() energy_demands() generate_combo_plots('seperate') generate_combo_plots('total') #bar_energy_demands('seperate') #bar_energy_demands('total') #hist_scenarios('total') #hist_scenarios('seperate') #stats_energy_demands() ### Sizing of DES ### def sizing(): global annual_df_object_sizing_main,annual_df_operation_sizing_main annual_df_object_sizing_main= {} annual_df_operation_sizing_main = {} for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' file_name = output_prefix+city+'_Discrete_EF_'+str(float(editable_data_sizing['renewable percentage']) )+'_design_'+str(int(editable_data_sizing['num_iterations']))+'_'+str(editable_data_sizing['population_size'])+'_'+str(editable_data_sizing['num_processors'])+'_processors' annual_df_object_sizing_main[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'objectives.csv')) annual_df_operation_sizing_main[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'sizing_all.csv')) global annual_df_object_sizing_scenario, annual_df_operation_sizing_scenario annual_df_object_sizing_scenario= {} annual_df_operation_sizing_scenario = {} for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' file_name = output_prefix+city+'_Discrete_EF_'+str(float(editable_data_sizing['renewable percentage']) )+'_design_'+str(int(editable_data_sizing['num_iterations']))+'_'+str(editable_data_sizing['population_size'])+'_'+str(editable_data_sizing['num_processors'])+'_processors' annual_df_object_sizing_scenario[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name , 'objectives.csv')) annual_df_operation_sizing_scenario[output_prefix]=pd.read_csv(os.path.join(sizing_path,file_name, 'sizing_all.csv')) def main_paretofront_sizing(): global sorted_annual_df_object_sizing_main,output_prefix_short SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,15) plt.figure() j=0 color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)]) for i in range(27)] sorted_cost = [] output_prefix_short ={} marker = itertools.cycle(('v','+','s','^','o','x','*')) for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' output_prefix_short[output_prefix] = dict_EPWs_names[key][dict_EPWs[key].index(epw_file_name)] annual_df_object_sizing_main[output_prefix]=annual_df_object_sizing_main[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_main[output_prefix]=annual_df_object_sizing_main[output_prefix].reset_index() if key is 'AMYs': year_selected_number=int(output_prefix_short[output_prefix].replace('AMY','')) if year_selected_number==2019 or year_selected_number==2018 or year_selected_number==2016 or year_selected_number==2014 or year_selected_number==2012: sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) elif key is 'TMYs': if epw_file_name=='USA_UT_Salt.Lake.City.Intl.AP.725720_TMY3': sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) else: sorted_cost.append(annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6) sorted_cost = sorted(sorted_cost) sorted_annual_df_object_sizing_main = {} for i in sorted_cost: for key in dict_EPWs.keys(): for epw_file_name in dict_EPWs[key]: output_prefix = 'total_'+epw_file_name+'_' if annual_df_object_sizing_main[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_object_sizing_main[output_prefix] =annual_df_object_sizing_main[output_prefix] sorted_cost_scenario = [] for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].reset_index() sorted_cost_scenario.append(annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost_scenario = sorted(sorted_cost_scenario) sorted_annual_df_object_sizing_scenario = {} for i in sorted_cost_scenario: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' if annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_object_sizing_scenario[output_prefix] =annual_df_object_sizing_scenario[output_prefix] j=0 #fig, ax = plt.subplots() for key in sorted_annual_df_object_sizing_main: output_prefix = key cost = [i/10**6 for i in sorted_annual_df_object_sizing_main[output_prefix]['Cost ($)']] emissions = [j/10**6 for j in sorted_annual_df_object_sizing_main[output_prefix]['Emission (kg CO2)']] label = output_prefix_short[output_prefix] #plt.scatter(cost,emissions,c=color[j], s=100, cmap=cmap,marker=next(marker)) #plt.title('Cost and emissions trade-off') if j==0: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:blue' elif j==1: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.9, emissions[0]*1.15), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:orange' elif j==2: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]*0.8), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:green' elif j==3: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:purple' elif j==4: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*1.05, emissions[-1]*0.8), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'black' elif j==5: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:red' elif j==6: plt.annotate(label,xy=(cost[-1], emissions[-1]),xytext=(cost[-1]*0.9, emissions[-1]*1.4), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:cyan' elif j==7: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.85, emissions[0]*1.2), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) color = 'tab:olive' plt.scatter(cost,emissions,c=color, s=100, cmap=cmap,marker=next(marker)) j = j+1 j=0 #plt.legend() plt.xlabel("Cost (million $)") plt.ylabel("Emissions (million kg $CO_2$)") plt.savefig(os.path.join(results_compare ,'ParetoFront_sizing.png'),dpi=100,facecolor='w',bbox_inches='tight') def scenario_paretofront_sizing(): SMALL_SIZE = 22 MEDIUM_SIZE = 24 BIGGER_SIZE = 28 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.grid'] = False plt.rcParams['axes.edgecolor'] = 'black' cmap = plt.cm.RdYlGn plt.rcParams["figure.figsize"] = (30,15) plt.figure() j=0 sorted_cost = [] output_prefix_short ={} sorted_cost_scenario = [] for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_object_sizing_scenario[output_prefix]=annual_df_object_sizing_scenario[output_prefix].reset_index() sorted_cost_scenario.append(annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost_scenario = sorted(sorted_cost_scenario) sorted_annual_df_object_sizing_scenario = {} for i in sorted_cost_scenario: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' label = output_prefix.replace('_','').replace('total','') if annual_df_object_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i and (int(label[1])==0 or int(label[1])==5 or int(label[1])==9) and (int(label[3])==0 or int(label[3])==5 or int(label[3])==9): sorted_annual_df_object_sizing_scenario[output_prefix] =annual_df_object_sizing_scenario[output_prefix] j=0 marker_list = ['v','+','s','^','o','x','*','s','>','<'] color_list= [ 'tab:blue', 'tab:orange','tab:green','black','yellow','tab:red','tab:cyan','tab:olive','peru','tab:purple'] for key in sorted_annual_df_object_sizing_scenario: output_prefix = key cost = [i/10**6 for i in sorted_annual_df_object_sizing_scenario[output_prefix]['Cost ($)']] emissions = [j/10**6 for j in sorted_annual_df_object_sizing_scenario[output_prefix]['Emission (kg CO2)']] label = key.replace('_','').replace('total','') int_marker= int(label[1]) int_color = int(label[3]) #print(int_marker, type(int_marker), marker[int_marker],len( marker)) marker = marker_list[int_marker] color = color_list[int_color] plt.scatter(cost,emissions,c=color, s=300, cmap=cmap, label = label,marker=marker) #plt.title('Cost and emissions trade-off') plt.xlabel("Cost (million $)") plt.ylabel("Emissions (million kg $CO_2$)") if int(label[1])==0: label_T='Tmin' elif int(label[1])==5: label_T='Tmed' elif int(label[1])==9: label_T='Tmax' if int(label[3])==0: label_S='Smin' elif int(label[3])==5: label_S='Smed' elif int(label[3])==9: label_S='Smax' label = label_T + label_S if j == 0: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.90, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) else: plt.annotate(label,xy=(cost[0], emissions[0]),xytext=(cost[0]*0.88, emissions[0]*1.1), arrowprops=dict(arrowstyle="->"),fontsize=MEDIUM_SIZE) j=j+1 #plt.legend() plt.savefig(os.path.join(results_compare ,'scenario_ParetoFront_sizing.png'),dpi=100,facecolor='w',bbox_inches='tight') def stats_scenario_sizing(): global sorted_annual_df_operation_sizing_scenario statistics_table = {} mean_table = defaultdict(list) std_table = defaultdict(list) CV_table = defaultdict(list) cost_points= defaultdict(list) emissions_points=defaultdict(list) label_points=defaultdict(lambda: defaultdict(list)) sorted_cost = [] output_prefix_short ={} for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' annual_df_operation_sizing_scenario[output_prefix]=annual_df_operation_sizing_scenario[output_prefix].sort_values('Cost ($)') annual_df_operation_sizing_scenario[output_prefix]=annual_df_operation_sizing_scenario[output_prefix].reset_index() sorted_cost.append(annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6) sorted_cost = sorted(sorted_cost) sorted_annual_df_operation_sizing_scenario = {} for i in sorted_cost: for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' if annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][0]/10**6 == i: sorted_annual_df_operation_sizing_scenario[output_prefix] =annual_df_operation_sizing_scenario[output_prefix] cols = ['Boilers Capacity (kW)', 'CHP Electricty Capacity (kW)', 'Battery Capacity (kW)','Solar Area (m^2)','Swept Area (m^2)','Emission (kg CO2)','Cost ($)'] cols_revised = ['Boilers (kW)', 'CHP (kW)', 'Battery (kW)','Solar (m^2)','Wind (m^2)','Emissions (million ton)','Cost (million \$)'] for point in range(population_size_sizing): for scenario in range(len(epw_names)): output_prefix = 'total_'+epw_names[scenario]+'_' cost_points[point].append(sorted_annual_df_operation_sizing_scenario[output_prefix]['Cost ($)'][point]) emissions_points[point].append(sorted_annual_df_operation_sizing_scenario[output_prefix]['Emission (kg CO2)'][point]) for component in cols: label_points[point][component].append(sorted_annual_df_operation_sizing_scenario[output_prefix][component][point]) for point in range(population_size_sizing): for component in cols: if len(label_points[point][component])!=0: if component=='Emission (kg CO2)' or component=='Cost ($)': std_table[point].append(round(statistics.stdev(label_points[point][component])/10**6,2)) mean_table[point].append(round(np.mean(label_points[point][component])/10**6,2)) else: std_table[point].append(round(statistics.stdev(label_points[point][component]),2)) mean_table[point].append(round(np.mean(label_points[point][component]),2)) if np.mean(label_points[point][component])!=0: CV_table[point].append(round(statistics.stdev(label_points[point][component])*100/np.mean(label_points[point][component]),2)) else: CV_table[point].append(0) statistics_table = {'Mean PP1': mean_table[0], 'STD PP1': std_table[0], 'CV \% PP1': CV_table[0], 'Mean medium cost': mean_table[24], 'STD medium cost': std_table[24], 'CV \% PP5': CV_table[24], 'Mean max cost': mean_table[49], 'STD max cost': std_table[49], 'CV \% PP9': CV_table[49] } df_statistics_table=
pd.DataFrame(statistics_table)
pandas.DataFrame
from __future__ import division import numpy as np import pandas as pd from sklearn.dummy import DummyClassifier from sklearn.model_selection import StratifiedShuffleSplit, LeavePGroupsOut from sklearn.utils import resample, check_X_y from sklearn.utils.validation import check_is_fitted from prep import SITES from metrics import ( calc_ccc, calc_csmf_accuracy_from_csmf, correct_csmf_accuracy ) class RandomClassifier(DummyClassifier): """Classifier to generate predictions uniformly at random This subclasses sklearn.dummy.DummyClassifier and overrides the predict method. """ def __init__(self, random_state=None, **kwargs): self.strategy = 'uniform' self.constant = 1 self.random_state = random_state for arg, val in kwargs.items(): setattr(self, arg, val) def predict(self, X): """Perform classification on test X. This overrides the default behavior by of Sklearn classifiers by returning both individual and population level predictions. This is necessary because other classifiers estimate population distributions in a manner slightly de-coupled from individual predictions. Args: X (dataframe): samples by features to test Returns: tuple: * predictions (series): individual level prediction * csmf: (series): population level predictions """ # This is a hack to use this classifer to test configuration where # the default setup is used. With the default, None, is passed to # ``clf.fit()`` and `clf.predict()`` doesn't know what classes to # predict. if not check_is_fitted(self, 'classes_'): self.fit(X, X.index) pred = super(RandomClassifier, self).predict(X) indiv = pd.Series(pred, index=X.index) csmf = indiv.value_counts() / len(indiv) return indiv, csmf def prediction_accuracy(clf, X_train, y_train, X_test, y_test, resample_test=True, resample_size=1): """Mesaure prediction accuracy of a classifier. Args: clf: sklearn-like classifier object. It must implement a fit method with the signature ``(X, y) --> self`` and a predict method with a signature ``(X) --> (y, csmf)`` X_train (dataframe): samples by features matrix used for training y_train (series): target values used for training X_test (dataframe): samples by features matrix used for testing y_test (series): target values to compare predictions against resample_test (bool): resample test data to a dirichlet distribution resample_size (float): scalar applied to n of samples to determine output resample size. Returns: tuple: * preds (dataframe): two column dataframe with actual and predicted values for all observations * csmfs (dataframe): two column dataframe with actual and predicted cause-specific mortality fraction for each cause * trained (dataframe): matrix of learned associations between cause/symptom pairs from the training data * ccc (dataframe): chance-correct concordance for each cause in one row * accuracy (dataframe): summary accuracy measures in one row """ y_pred, csmf_pred = clf.fit(X_train, y_train).predict(X_test) # All the outputs should be dataframes which can be concatentated and # saved without the index preds = pd.concat([y_test, y_pred], axis=1) preds.index.name = 'ID' preds.columns = ['actual', 'prediction'] preds.reset_index(inplace=True) # Only calculate CCC for real causes. The classifier may predict causes # which are not in the set of true causes. This primarily occurs when # the classifier is run using default settings and no training or when it # isn't properly learning impossible causes. ccc = pd.DataFrame([{cause: calc_ccc(cause, y_test, y_pred) for cause in y_test.unique()}]) # It's possible for some classes predictions not to occur # These would result in missingness when aligning the csmf series csmf_actual = y_test.value_counts(dropna=False, normalize=True) csmf =
pd.concat([csmf_actual, csmf_pred], axis=1)
pandas.concat
# Author: <NAME> # Homework 1 # CAP 5610: Machine Learning # required libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import random from scipy.stats import chi2_contingency # import data train_df = pd.read_csv('/Users/mdjibanulhaquejiban/PhD_CRCV/Semesters/Spring2021/ML/HW/HW1/Titanic/train.csv') test_df = pd.read_csv('/Users/mdjibanulhaquejiban/PhD_CRCV/Semesters/Spring2021/ML/HW/HW1/Titanic/test.csv') combine = [train_df, test_df] ####################### ## Q1 print(train_df) print(train_df.describe()) print(train_df.info()) ## Q2-Q4 print(train_df.info()) ## Q5 print(train_df.info()) print(test_df.info()) ## Q6 print(train_df.head()) ## Q7 # create a sub-dataframe with only numerical features train_df_num = train_df[['Age', 'SibSp', 'Parch', 'Fare']] print(train_df_num.describe()) ## Q8 # create a sub-dataframe with only categorical features train_df_cat = train_df[['Survived', 'Pclass', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked', 'PassengerId']] train_df_cat = train_df_cat.astype('object') # print(train_df_cat.info()) train_df_cat.describe(include=[object]) ## Q9 contigency_table= pd.crosstab(train_df['Pclass'], train_df['Survived']) print('The contigency table:') print('\n') print(contigency_table) # Chi-Sq test chi2, p_value, deg_freedom, expected = chi2_contingency(contigency_table) print('\n') print('The test statistic is', chi2) print('\n') print('The p-value of the test is', p_value) print('\n') print('Degrees of freedom is', deg_freedom) print('\n') print('The expected frequencies, based on the marginal sums of the table. \n', expected) ## Q10 female = np.where((train_df['Sex']=='female')) female_survived = np.where((train_df['Sex']=='female') & (train_df['Survived'] == 1)) print("The ratio of female survivals in training set is", len(female_survived[0])/len(female[0])) ## Chi-Sq contigency_table= pd.crosstab(train_df['Sex'], train_df['Survived']) print('The contigency table:') print('\n') print(contigency_table) # Chi-Sq test chi2, p_value, deg_freedom, expected = chi2_contingency(contigency_table) print('\n') print('The test statistic is', chi2) print('\n') print('The p-value of the test is', p_value) ## Q11 survived_age = train_df.loc[np.where((train_df['Survived'] == 1))]['Age'] not_survived_age = train_df.loc[np.where((train_df['Survived'] == 0))]['Age'] # survived histogram survived_age.hist(bins=21, color='orange') plt.xlabel('Age') plt.ylabel('Frequency') plt.title('Distribution of Age of People who survived (= 1)') plt.show() plt.close() # not survived histogram not_survived_age.hist(bins=21, color='tomato') plt.xlabel('Age') plt.ylabel('Frequency') plt.title('Distribution of Age of People who did not survive (= 0)') plt.show() plt.close() ## Q12 # Create data not_survived_pclass1_age = train_df.loc[np.where((train_df['Pclass'] == 1) & (train_df['Survived'] == 0))]['Age'] not_survived_pclass2_age = train_df.loc[np.where((train_df['Pclass'] == 2) & (train_df['Survived'] == 0))]['Age'] not_survived_pclass3_age = train_df.loc[np.where((train_df['Pclass'] == 3) & (train_df['Survived'] == 0))]['Age'] survived_pclass1_age = train_df.loc[np.where((train_df['Pclass'] == 1) & (train_df['Survived'] == 1))]['Age'] survived_pclass2_age = train_df.loc[np.where((train_df['Pclass'] == 2) & (train_df['Survived'] == 1))]['Age'] survived_pclass3_age = train_df.loc[np.where((train_df['Pclass'] == 3) & (train_df['Survived'] == 1))]['Age'] # plot figures fig, axs = plt.subplots(3,2,figsize=(12,12)) fig.suptitle('Distributions of Age by Pclass and Survived') axs[0,0].hist(not_survived_pclass1_age, bins=21, color='tomato') axs[0,0].set_title('Pclass = 1 | Survived = 0') axs[1,0].hist(not_survived_pclass2_age, bins=21, color='tomato') axs[1,0].set_title('Pclass = 2 | Survived = 0') axs[2,0].hist(not_survived_pclass3_age, bins=21, color='tomato') axs[2,0].set_title('Pclass = 3 | Survived = 0') axs[0,1].hist(survived_pclass1_age, bins=21, color='orange') axs[0,1].set_title('Pclass = 1 | Survived = 1') axs[1,1].hist(survived_pclass2_age, bins=21, color='orange') axs[1,1].set_title('Pclass = 2 | Survived = 1') axs[2,1].hist(survived_pclass3_age, bins=21, color='orange') axs[2,1].set_title('Pclass = 3 | Survived = 1') plt.show() plt.close() # Count number of passengers by pclass train_df.groupby(['Pclass'])['PassengerId'].count() train_df.groupby(['Pclass', 'Survived'])['PassengerId'].count() ## Q13 train_df_q13 = train_df.groupby(['Embarked', 'Survived', 'Sex'])['Fare'].mean() # plot figures fig, axs = plt.subplots(3,2,figsize=(11,11)) fig.suptitle('Distributions of Average Fare by Embarked, Survived and Sex') axs[0,0].bar(['female', 'male'],train_df_q13[8:10].values, color='tomato') axs[0,0].set_title('Embarked = S | Survived = 0') axs[0,0].set_ylabel('Average Fare') axs[1,0].bar(['female', 'male'],train_df_q13[:2].values, color='tomato') axs[1,0].set_title('Embarked = C | Survived = 0') axs[1,0].set_ylabel('Average Fare') axs[2,0].bar(['female', 'male'],train_df_q13[4:6].values, color='tomato') axs[2,0].set_title('Embarked = Q | Survived = 0') axs[2,0].set_ylabel('Average Fare') axs[0,1].bar(['female', 'male'],train_df_q13[10:12].values, color='orange') axs[0,1].set_title('Embarked = S | Survived = 1') axs[1,1].bar(['female', 'male'],train_df_q13[2:4].values, color='orange') axs[1,1].set_title('Embarked = C | Survived = 1') axs[2,1].bar(['female', 'male'],train_df_q13[6:8].values, color='orange') axs[2,1].set_title('Embarked = Q | Survived = 1') plt.show() plt.close() train_df.groupby(['Embarked', 'Survived', 'Sex'])['Fare'].mean() train_df.groupby(['Embarked', 'Survived', 'Sex'])['PassengerId'].count() ## Q14 train_df.Ticket.duplicated().value_counts() ## Q15 train_df.Cabin.describe() test_df.Cabin.describe() ## Q16 train_df['Gender'] = np.where(train_df['Sex']== 'male', 0, 1) train_df.head(10) ## Q17 # calculate mean and standard deviation mean = train_df['Age'].mean() std = train_df['Age'].std() print('Mean', mean) print('Standard Deviation', std) print('\n') print('Estimated Missing Values in the Age feature.') # we can randomly pick a value between standard deviation and Mean from Uniform distribution # to impute missing values def missing_value_imputation(value): if np.isnan(value) == True: value = random.uniform(std, mean) else: value = value return value # call the above function train_df['Age'] = train_df['Age'].apply(missing_value_imputation) ## Q18 # find the most frequent value most_frequent_value = train_df['Embarked'].value_counts().idxmax() print('The most frequent value in Embarked:', most_frequent_value) print('\n') print('The training set with missing Embarked records') is_na = train_df["Embarked"].isna() print(train_df[is_na]["Embarked"]) # fill the missing records by the most frequent value train_df["Embarked"] = train_df["Embarked"].fillna(most_frequent_value) print('\n') print('The training set without missing Embarked records') print(train_df[is_na]["Embarked"]) ## Q19 # find the most frequent value mode = test_df['Fare'].mode() print('The most frequent value in Fare:', mode) print('\n') print('The test set with missing Fare records') is_na = test_df["Fare"].isna() print(test_df[is_na]["Fare"]) # fill the missing records by the most frequent value test_df["Fare"] = test_df["Fare"].fillna(mode[0]) print('\n') print('The test set without missing Fare records') print(test_df[is_na]["Fare"]) ## Q20 train_df['ordinal_fare'] = np.where(train_df['Fare'] <= 7.91, 0, (np.where(train_df['Fare'] <= 14.454, 1, (np.where(train_df['Fare'] <= 31.0, 2, 3))))) # print first 10 rows # print(train_df.head(10)) train_df[['PassengerId','Fare','ordinal_fare']].head(10) # reproduce the table in the question Avg = pd.DataFrame(train_df.groupby(['ordinal_fare'])['Survived'].mean()) Avg =
pd.DataFrame(Avg)
pandas.DataFrame
from datetime import datetime from flask import render_template, flash, redirect, url_for, request, g, \ jsonify, current_app, make_response from flask_login import current_user, login_required from app import db #from app.main.forms import EditProfileForm, PostForm, SearchForm, MessageForm from app.models import User, Demand from app.main import bp from io import TextIOWrapper, StringIO import csv from ..utils import timestamp from pyords.cluster.implementations import create_dbscan_expanded_clusters from pyords.distance.haversine import create_haversine_matrix import pyords as pyr import pandas as pd import numpy as np ALLOWED_EXTENSIONS = {'csv'} def init_vrp_w_df(dataframe:pd.DataFrame): lats, lons = dataframe.latitude, dataframe.longitude origins = [(41.4191, -87.7748)] matrix = create_haversine_matrix(origins, lats, lons) # unit is load for each node with demand (in this case # only destinations). inserting 0 at the front of the array demand = np.insert(dataframe.pallets.values, 0, 0) return matrix, demand def process_vrp(dataframe:pd.DataFrame): # simplify euclidean distance calculation by projecting to positive vals x = dataframe.latitude.values + 90 y = dataframe.longitude.values + 180 dataframe['cluster'] = create_dbscan_expanded_clusters(x, y) results = pd.DataFrame(columns=dataframe.columns.tolist()) for cluster in dataframe.cluster.unique(): clustered_df = dataframe[dataframe.cluster == cluster].copy().reset_index(drop=True) matrix, demand = init_vrp_w_df(clustered_df) bndl = pyr.VrpBundle(matrix=matrix, demand=demand) clustered_df = bndl.run().cast_solution_to_df(clustered_df) clustered_df.vehicle = str(int(cluster)) + '-' + clustered_df.vehicle.astype(int)\ .astype(str) results = results.append(clustered_df, sort=False) return results def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @bp.before_app_request def before_request(): if current_user.is_authenticated: current_user.last_seen = datetime.utcnow() db.session.commit() @bp.route('/', methods=['GET', 'POST']) @bp.route('/index', methods=['GET', 'POST']) @login_required def index(): return render_template('index.html', title='Home') @bp.route('/upload', methods=['GET', 'POST']) @login_required def upload(): if request.method == 'POST': if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No selected file') return redirect(request.url) if file and allowed_file(file.filename): user_id = current_user.get_id() current_time = timestamp() Demand.query.filter_by(user_id=user_id).delete() # TODO: for demo df = process_vrp(pd.read_csv(TextIOWrapper(file, encoding='utf-8'))) flash('optimization complete!') # get position of uploaded fields for more dynamic storage population for i in range(len(df)): if i > 0: # upload values only (field names are first row) demand = Demand( latitude=df.latitude.iloc[i], longitude=df.longitude.iloc[i], weight=df.weight.iloc[i], pallets=df.pallets.iloc[i], upload_date=timestamp(), user_id=user_id, vehicle_id=df.vehicle.iloc[i], sequence_num=df.sequence.iloc[i], stop_distance=df.stop_distance.iloc[i], stop_load=df.stop_load.iloc[i] ) db.session.add(demand) db.session.commit() return redirect(url_for('main.cvrp')) return render_template('upload.html') @bp.route('/cvrp', methods=['GET', 'POST']) @login_required def cvrp(): if request.method == 'GET': user_id = current_user.get_id() demand = db.engine.execute('select * from demand ' ' where demand.user_id = %s' % user_id).fetchall() data = [dict(row) for row in demand] df =
pd.DataFrame(data)
pandas.DataFrame
"""A dataframe concatenation function for PySpark.""" from collections import abc import functools from typing import ( Iterable, Mapping, Optional, Sequence, Tuple, Union, ) import warnings import pandas as pd from pyspark.sql import ( DataFrame as SparkDF, functions as F, ) from ons_utils.generic import list_convert Key = Sequence[Union[str, Sequence[str]]] # The order of these is important, big ---> small. SPARK_NUMBER_TYPES = ( 'decimal(10,0)', 'double', 'float', 'bigint', 'int', 'smallint', 'tinyint', ) def concat( frames: Union[Iterable[SparkDF], Mapping[Key, SparkDF]], keys: Optional[Key] = None, names: Optional[Union[str, Sequence[str]]] = None, ) -> SparkDF: """ Concatenate pyspark DataFrames with additional key columns. Will attempt to cast column data types where schemas are mismatched and fill empty columns with Nulls: * upcasts to largest number data type present (for that column) * casts to string if there is at least one dtype of 'string' for a given column Parameters ---------- frames : a sequence or mapping of SparkDF If a mapping is passed, then the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected. keys : a sequence of str or str sequences, optional The keys to differentiate child dataframes in the concatenated dataframe. Each key can have multiple parts but each key should have an equal number of parts. The length of `names` should be equal to the number of parts. Keys must be passed if `frames` is a sequence. names : str or list of str, optional The name or names to give each new key column. Must match the size of each key. Returns ------- SparkDF A single DataFrame combining the given frames with a ``unionByName()`` call. The resulting DataFrame has new columns for each given name, that contains the keys which identify the child frames. Notes ----- This code is mostly adapted from :func:`pandas.concat`. """ if isinstance(frames, (SparkDF, str)): raise TypeError( "first argument must be an iterable of pyspark DataFrames," f" you passed an object of type '{type(frames)}'" ) if len(frames) == 0: raise ValueError("No objects to concatenate") if isinstance(frames, abc.Sequence): if keys and (len(frames) != len(keys)): raise ValueError( "keys must be same length as frames" " when frames is a list or tuple" ) if isinstance(frames, abc.Mapping): if names is None: raise ValueError( "when the first argument is a mapping," " the names argument must be given" ) if keys is None: keys = list(frames.keys()) # If keys are passed with a mapping, then the mapping is subset # using the keys. This also ensures the order is correct. frames = [frames[k] for k in keys] else: frames = list(frames) for frame in frames: if not isinstance(frame, SparkDF): raise TypeError( f"cannot concatenate object of type '{type(frame)}'; " "only pyspark.sql.DataFrame objs are valid" ) schemas_df = _get_schemas_df(frames, keys, names) schemas_are_equal = _compare_schemas(schemas_df) # Allows dataframes with inconsistent schemas to be concatenated by # filling empty columns with Nulls and casting some column data # types where appropriate. # # Potentially remove when Spark 3.1.0 available. if not schemas_are_equal: frames = [ _ensure_consistent_schema(frame, schemas_df) for frame in frames ] # Potentially update with commented line when Spark 3.1.0 available. # union = functools.partial(SparkDF.unionByName, allowMissingColumns=True) union = SparkDF.unionByName # If no keys or names are given then simply union the DataFrames. if not names and not keys: return functools.reduce(union, frames) # Convert names and keys elements to a list if not already, so they # can be iterated over in the next step. names = list_convert(names) keys = [list_convert(key) for key in keys] if not all([len(key) == len(names) for key in keys]): raise ValueError( "the length of each key must equal the length of names" ) if not all([len(key) == len(keys[0]) for key in keys]): raise ValueError( "all keys must be of equal length" ) frames_to_concat = [] # Loop through each frame, and add each part in the keys to a new # column defined by name. for parts, frame in zip(keys, frames): for name, part in reversed(tuple(zip(names, parts))): frame = frame.select(F.lit(part).alias(name), '*') frames_to_concat.append(frame) return functools.reduce(union, frames_to_concat) def _ensure_consistent_schema( frame: SparkDF, schemas_df: pd.DataFrame, ) -> SparkDF: """Ensure the dataframe is consistent with the schema. If there are column data type mismatches, (more than one data type for a column name in the column schemas) then will try to convert the data type if possible: * if they are all number data types, then picks the largest number type present * if one of the types is string, then ensures it casts the column to string type Also fills any missing columns with Null values, ensuring correct dtype. Parameters ---------- frame : SparkDF column_schemas : set A set of simple column schemas in the form (name, dtype) for all dataframes set to be concatenated. Returns ------- SparkDF Input dataframe with consistent schema. """ final_schema = _get_final_schema(schemas_df) missing_fields = [f for f in final_schema if f not in frame.dtypes] for column, dtype in missing_fields: # If current frame missing the column in the schema, then # set values to Null. vals = ( F.lit(None) if column not in frame.columns else F.col(column) ) # Cast the values with the correct dtype. frame = frame.withColumn(column, vals.cast(dtype)) return frame def _get_final_schema( schemas_df: pd.DataFrame ) -> Sequence[Tuple[str, str]]: """Get the final schema by coercing the types.""" # For a given column, if one of the types is string coerce all types # to string. schemas_df = schemas_df.mask( schemas_df.eq('string').any(axis=1), 'string', ) # For a given column, if all types are number types coerce all types # to the largest spark number type present. number_types = ( schemas_df .fillna('int') .isin(SPARK_NUMBER_TYPES) .all(axis=1) ) largest_num_types = schemas_df[number_types].apply( lambda row: _get_largest_number_dtype(row.to_list()), axis=1, ) schemas_df = schemas_df.mask(number_types, largest_num_types, axis=0) if not _check_equal_schemas(schemas_df).all(): raise TypeError( "Spark column data type mismatch, can't auto-convert between" f" types. \n\n{str(schemas_df[~_check_equal_schemas(schemas_df)])}" ) # Return the final schema. return [ (name, dtype) # Only need the first two columns. for name, dtype, *_ in schemas_df.reset_index().to_numpy() ] def _get_largest_number_dtype(dtypes: Sequence[str]) -> str: """Return the largest Spark number data type in the input.""" return next(( dtype for dtype in SPARK_NUMBER_TYPES if dtype in dtypes )) def _compare_schemas(schemas_df: pd.DataFrame) -> bool: """Return True if schemas are equal, else throw warning. If unequal, throws a warning that displays the schemas for all the unequal columns. Parameters ---------- schemas_df : pandas DataFrame A dataframe of schemas with columns along the index, dataframe name across the columns and the dtypes as the values. Create with :func:`_get_schemas_df`. Returns ------- bool True if column schemas are equal, else False. """ equal_schemas = _check_equal_schemas(schemas_df) # Fill types across missing columns. We only want to raise a warning # if the types are different. schemas_df_filled = schemas_df.bfill(1).ffill(1) equal_ignoring_missing_cols = _check_equal_schemas(schemas_df_filled) if not equal_ignoring_missing_cols.all(): warnings.warn( "column dtypes in the schemas are not equal, attempting to coerce" f"\n\n{str(schemas_df.loc[~equal_schemas])}", UnequalSchemaWarning, ) return False elif not equal_schemas.all(): return False else: return True def _check_equal_schemas(df: pd.DataFrame) -> pd.DataFrame: """Checks that the first schema matches the rest.""" return df.apply(lambda col: col.eq(df.iloc[:, 0])).all(axis=1) def _get_schemas_df( frames: Sequence[pd.DataFrame], keys: Optional[Key] = None, names: Optional[Union[str, Sequence[str]]] = None, ) -> pd.DataFrame: """Return dataframe of column schemas for given frames.""" schemas_df = pd.DataFrame() for df in frames: col_names, dtypes = zip(*df.dtypes) schema =
pd.Series(dtypes, index=col_names)
pandas.Series
import importlib.util spec = importlib.util.spec_from_file_location("BoundaryLayerToolbox", "/Users/claudiopierard/VC/BoundaryLayerToolbox.py") blt = importlib.util.module_from_spec(spec) spec.loader.exec_module(blt) import matplotlib import numpy as np import h5py import matplotlib.pyplot as plt import scipy as spy import os import sys import pandas as pd import datetime import matplotlib.colors as colors from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA xlat = np.loadtxt("/Users/claudiopierard/VC/datos/xlat_d02_interpolado.txt") xlong = np.loadtxt("/Users/claudiopierard/VC/datos/xlong_d02_interpolado.txt") hgt = np.loadtxt("/Users/claudiopierard/VC/datos/hgt_d02_interpolado.txt") months = {1:'jan', 2:'feb', 3:'mar',4: 'apr', 5:'may', 6:'jun', 7:'jul', 8:'aug', 9:'sep', 10:'oct', 11:'nov', 12:'dic'} path2datosVC = "../datos/dataframes_VC/cca/" path2pollutants = "../datos/contaminantes/2015/CCA/" path2graphs = "../graficas/cca/" months = {'jan': '01', 'feb': '02', 'mar': '03', 'apr': '04', 'may': '05', 'jun': '06', 'jul': '07', 'aug': '08', 'sep': '09', 'oct':'10', 'nov':'11', 'dic': '12'} #Importo ubicación de estaciones a un diccionario path2estaciones = "../datos/loc_estaciones/air_quality_stn.xy" estaciones = pd.read_table(path2estaciones, index_col=0, names=['long','lat', 'height']) estaciones = estaciones.transpose().to_dict() print("*** START ***") #Importo datos de contaminantes de 2015 en el CCA o3_2015 = pd.read_csv(path2pollutants + "CCA_o3_2015.csv", index_col=0) o3_2015.index = pd.to_datetime(o3_2015.index) pm25_2015 = pd.read_csv(path2pollutants + "CCA_pm25_2015.csv", index_col=0) pm25_2015.index = pd.to_datetime(pm25_2015.index) co_2015 = pd.read_csv(path2pollutants + "CCA_co_2015.csv", index_col=0) co_2015.index = pd.to_datetime(co_2015.index) #Importo datos de VC de 2015 en el CCA para un mes sys.argv.pop(0) for mm in sys.argv: print('\U0001F4C8', "Plotting", mm) local_path = path2graphs + mm + '/' + 'vc_contaminantes_series/' os.makedirs(local_path) month_vc = pd.read_csv(path2datosVC + mm + "_dataframe_cca.csv", index_col=0) month_vc.index = pd.to_datetime(month_vc.index) date_beg = "2015-" + months[mm] + '-01' date_end = "2015-" + months[mm] + '-' + blt.E1or30(mm) #date_beg:date_end ############### THE WEEKEND BANDS ################# def dayOfWeek_array(datetime_arr): y = datetime_arr.year m = datetime_arr.month d = datetime_arr.day t = [0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4] new_m = [] for i in m: new_m.append(t[i-1]) new_m = np.array(new_m) y -= m < 3 return np.trunc((y + y/4 - y/100 + y/400 + new_m + d) % 7).astype(np.int) A = o3_2015[date_beg:date_end].index.date B = o3_2015[date_beg:date_end].index.time C = dayOfWeek_array(o3_2015[date_beg:date_end].index) DF = pd.DataFrame({'date': A, 'time': B, 'week_index': C}) DF.index = DF.week_index DF = DF.drop('week_index', 1) sat = DF.loc[6].drop_duplicates(subset = 'date', keep = 'first') sun = DF.loc[0].drop_duplicates(subset = 'date', keep = 'last') new_sun = [] new_sat = [] for i in range(0, len(sun.date.values)): dt = datetime.datetime.combine(sun['date'].values[i], sun['time'].values[i]) new_sun.append(dt) for i in range(0, len(sat.date.values)): dt = datetime.datetime.combine(sat['date'].values[i], sat['time'].values[i]) new_sat.append(dt) sat = new_sat sun = new_sun weekend = [] for j in range(0, len(sun)): if sun[j].day == 1: weekend.append([sun[j] - datetime.timedelta(hours = 23), sun[j]]) for i in range(0, len(sat)): for j in range(0, len(sun)): if sat[i].day == sun[j].day - 1: weekend.append([sat[i], sun[j]]) if sat[i].day == 31: weekend.append([sat[i] , sat[i] + datetime.timedelta(hours = 23)]) #### Contingencias # Marzo cont_mar = [[pd.to_datetime('2015-03-03 16:00:00'), pd.to_datetime('2015-03-04 00:00:00')]] cont_apr = [[
pd.to_datetime('2015-04-08 16:00:00')
pandas.to_datetime
''' Urban-PLUMBER processing code Associated with the manuscript: Harmonized, gap-filled dataset from 20 urban flux tower sites Copyright (c) 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 ''' __title__ = "site-specific processing wrapper" __version__ = "2021-09-20" __author__ = "<NAME>" __email__ = "<EMAIL>" __description__ = 'Wrapper for processing individual sites. Includes setting site-specific information, importing raw site data, calling pipeline functions, creating site plots and webpages etc.' import numpy as np import xarray as xr import pandas as pd import matplotlib.pyplot as plt import os import sys import argparse import importlib import glob # paths oshome=os.getenv('HOME') projpath = f'{oshome}/git/urban-plumber_pipeline' # root of repository datapath = f'{oshome}/git/urban-plumber_pipeline/input_data' # raw data path (site data, global data) sys.path.append(projpath) import pipeline_functions importlib.reload(pipeline_functions) ########################################################################## # MANUAL USER INPUTS ########################################################################## # these are overridden with --existing flag (i.e. python create_dataset_XX.py --existing) create_raw_obs_nc = True # create obs nc from original format create_rain_file = True # find and load nearest GHCND qcplotdetail = True # plot quality control diurnal and timeseries forcingplots = True # plot forcing and analysis period obs and gap-filling create_outofsample_obs = True # for testing bias-correction on half of available obs fullpipeline = True # undertake full pipeline e.g. cleaning, bias correction, data creation ########################################################################## # COMMAND LINE ARGUMENT PARSING ########################################################################## # Initiate the parser parser = argparse.ArgumentParser() parser.add_argument('--log', help='log print statements to file', action='store_true') parser.add_argument('--projpath', help='replaces projpath with new path') parser.add_argument('--datapath', help='replaces datapath with new path') parser.add_argument('--existing', help='use existing outputs (processing already run)', action='store_true') parser.add_argument('--globaldata',help='output site characteristics from global dataset (if available)', action='store_true') args = parser.parse_args() log_stout = False if args.log: log_stout = True if args.projpath: print(f'updating projpath to {projpath}') projpath = args.projpath if args.datapath: print(f'updating datapath to {datapath}') datapath = args.datapath if args.existing: print('using existing files') create_raw_obs_nc = False create_rain_file = False qcplotdetail = False forcingplots = False create_outofsample_obs = False fullpipeline = False ########################################################################## # SITE SPECIFIC INFORMATION ########################################################################## sitename = 'PL-Lipowa' out_suffix = 'v0.9' sitedata_suffix = 'v1' local_utc_offset_hours = 1 long_sitename = 'Lipowa Street, Łódź, Poland' obs_contact = '<NAME> (<EMAIL>) <NAME> (<EMAIL>)' obs_reference = 'Fortuniak, Pawlak and Siedlecki (2013): https://doi.org/10.1007/s10546-012-9762-1; Pawlak, Fortuniak, Siedlecki (2011): https://doi.org/10.1002/joc.2247; <NAME> (2006): https://doi.org/10.1175/JAM2319.1' obs_comment = 'Missing forcing filled with PL-Narutowicza tower site where available. Precipitation from IMGW Łódź Lublinek. Subset of available years included here.' photo_source = 'Włodzimierz Pawlak' history = 'v0.9 (2021-09-08): beta issue' ########################################################################## # MAIN ########################################################################## def main(): sitepath = f'{projpath}/sites/{sitename}' print('preparing site data and attributes') sitedata, siteattrs = pipeline_functions.prep_site( sitename, sitepath, out_suffix, sitedata_suffix, long_sitename, local_utc_offset_hours, obs_contact, obs_reference, obs_comment, history, photo_source, args.globaldata, datapath) print('getting observation netcdf\n') if create_raw_obs_nc: print(f'creating observational NetCDF in ALMA format\n') raw_ds = import_obs(sitedata,siteattrs) raw_ds = pipeline_functions.set_raw_attributes(raw_ds, siteattrs) else: fpath = f'{sitepath}/timeseries/{sitename}_raw_observations_{siteattrs["out_suffix"]}.nc' raw_ds = xr.open_dataset(fpath) if create_rain_file: syear, eyear = raw_ds.time.dt.year.values[0] - 10, raw_ds.time.dt.year.values[-1] nearest = pipeline_functions.find_ghcnd_closest_stations(syear,eyear,sitedata,datapath,nshow=4) print('nearest stations, see: https://www.ncdc.noaa.gov/cdo-web/search:\n',nearest) rain_sites = ['PLM00012375', # OKECIE, PL 52.166 20.967 'PLM00012566', # BALICE, PL 50.078 19.785 'PLM00012160', # <NAME>, PL 54.167 19.433 'LOE00116364'] # <NAME>, LO 49.3667 19.1667 # NO REASONABLY CLOSE GHCND SITES rain_obs = pipeline_functions.get_ghcnd_precip(sitepath,datapath,syear,eyear,rain_sites) pipeline_functions.write_ghcnd_precip(sitepath,sitename,rain_obs) ############################################ ############ pipeline MAIN call ############ raw_ds, clean_ds, watch_ds, era_ds, corr_ds, lin_ds, forcing_ds = pipeline_functions.main( datapath = datapath, sitedata = sitedata, siteattrs = siteattrs, raw_ds = raw_ds, fullpipeline = fullpipeline, qcplotdetail = qcplotdetail) ############################################ print('post processing, plotting and checking') pipeline_functions.post_process_site(sitedata,siteattrs,datapath, raw_ds,forcing_ds,clean_ds,era_ds,watch_ds,corr_ds,lin_ds, forcingplots,create_outofsample_obs) print(f'{sitename} done!') return raw_ds, clean_ds, watch_ds, era_ds, corr_ds, forcing_ds, ########################################################################## # specific functinos ########################################################################## def import_obs(sitedata,siteattrs): sitepath = siteattrs["sitepath"] # read data csv print('reading raw data file') raw1 = pd.read_csv(f'{datapath}/{sitename}/01_PL-LODZ_LIPOWA_STREET_2006-2015_forcing_data.dat', na_values='-999', delim_whitespace=True, comment='#', header=None, names=['datetime','SWdown','LWdown','Tair','Qair','pressure','Wind_N','Wind_E']) raw2 = pd.read_csv(f'{datapath}/{sitename}/02_PL-LODZ_LIPOWA_STREET_2006-2015_evaluation_data.dat', na_values='-999', delim_whitespace=True, comment='#', header=None, names=['datetime','SWup','LWup','Qle','Qh']) raw3 = pd.read_csv(f'{datapath}/{sitename}/01_PL-LODZ_LIPOWA_STREET_2006-2015_forcing_data_RH.dat', na_values='-999', delim_whitespace=True) # get times from data and reindex times = pd.date_range(start='2006-07-11 01:00:00', end='2015-09-25 00:00:00', freq='60Min') raw1.index = times raw2.index = times raw3.index = times # rain from IMGW Łódź Lublinek (hourly) rain =
pd.read_csv(f'{datapath}/{sitename}/Lodz_Lublinek_2006-2015_precipitation.txt',delim_whitespace=True)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Fri Dec 20 02:13:41 2019 @author: islam """ import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, roc_auc_score,f1_score,recall_score import heapq # for retrieval topK from utilities import get_instances_with_random_neg_samples, get_test_instances_with_random_samples from performance_and_fairness_measures import getHitRatio, getNDCG, differentialFairnessMultiClass, computeEDF, computeAbsoluteUnfairness import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import torch.nn.functional as F from collaborative_models import neuralCollabFilter #%%The function below ensures that we seed all random generators with the same value to get reproducible results def set_random_seed(state=1): gens = (np.random.seed, torch.manual_seed, torch.cuda.manual_seed) for set_state in gens: set_state(state) RANDOM_STATE = 1 set_random_seed(RANDOM_STATE) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #%% fine-tuning pre-trained model with user-career pairs def fine_tune_model(model,df_train, epochs, lr,batch_size,num_negatives,num_items, unsqueeze=False): criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=1e-6) model.train() for i in range(epochs): j = 0 for batch_i in range(0,np.int64(np.floor(len(df_train)/batch_size))*batch_size,batch_size): data_batch = (df_train[batch_i:(batch_i+batch_size)]).reset_index(drop=True) train_user_input, train_item_input, train_ratings = get_instances_with_random_neg_samples(data_batch, num_items, num_negatives,device) if unsqueeze: train_ratings = train_ratings.unsqueeze(1) y_hat = model(train_user_input, train_item_input) loss = criterion(y_hat, train_ratings) optimizer.zero_grad() loss.backward() optimizer.step() print('epoch: ', i, 'batch: ', j, 'out of: ',np.int64(np.floor(len(df_train)/batch_size)), 'average loss: ',loss.item()) j = j+1 #%% model evaluation: hit rate and NDCG def evaluate_fine_tune(model,df_val,top_K,random_samples, num_items): model.eval() avg_HR = np.zeros((len(df_val),top_K)) avg_NDCG = np.zeros((len(df_val),top_K)) for i in range(len(df_val)): test_user_input, test_item_input = get_test_instances_with_random_samples(df_val[i], random_samples,num_items,device) y_hat = model(test_user_input, test_item_input) y_hat = y_hat.cpu().detach().numpy().reshape((-1,)) test_item_input = test_item_input.cpu().detach().numpy().reshape((-1,)) map_item_score = {} for j in range(len(y_hat)): map_item_score[test_item_input[j]] = y_hat[j] for k in range(top_K): # Evaluate top rank list ranklist = heapq.nlargest(k, map_item_score, key=map_item_score.get) gtItem = test_item_input[0] avg_HR[i,k] = getHitRatio(ranklist, gtItem) avg_NDCG[i,k] = getNDCG(ranklist, gtItem) avg_HR = np.mean(avg_HR, axis = 0) avg_NDCG = np.mean(avg_NDCG, axis = 0) return avg_HR, avg_NDCG #%% def fairness_measures(model,df_val,num_items,protectedAttributes): model.eval() user_input = torch.LongTensor(df_val['user_id'].values).to(device) item_input = torch.LongTensor(df_val['like_id'].values).to(device) y_hat = model(user_input, item_input) avg_epsilon = computeEDF(protectedAttributes,y_hat,num_items,item_input,device) U_abs = computeAbsoluteUnfairness(protectedAttributes,y_hat,num_items,item_input,device) avg_epsilon = avg_epsilon.cpu().detach().numpy().reshape((-1,)).item() print(f"average differential fairness: {avg_epsilon: .3f}") U_abs = U_abs.cpu().detach().numpy().reshape((-1,)).item() print(f"absolute unfairness: {U_abs: .3f}") #%% load data train_users= pd.read_csv("train-test/train_usersID.csv",names=['user_id']) test_users = pd.read_csv("train-test/test_usersID.csv",names=['user_id']) train_careers=
pd.read_csv("train-test/train_concentrationsID.csv",names=['like_id'])
pandas.read_csv
import numpy as np import pandas as pd from popmon.hist.histogram import ( HistogramContainer, project_on_x, project_split2dhist_on_axis, sum_entries, sum_over_x, ) from popmon.hist.patched_histogrammer import histogrammar as hg def get_test_data(): df = pd.util.testing.makeMixedDataFrame() df["date"] = df["D"].apply(lambda x: pd.to_datetime(x).value) return df def unit(x): return x def get_histograms(): df = get_test_data() hist1 = hg.Categorize(unit("C")) hist2 = hg.Bin(5, 0, 5, unit("A"), value=hist1) hist3 = hg.SparselyBin( origin=pd.Timestamp("2009-01-01").value, binWidth=pd.Timedelta(days=1).value, quantity=unit("date"), value=hist2, ) for hist in [hist1, hist2, hist3]: hist.fill.numpy(df) return hist1, hist2, hist3 def test_histogrammar(): hist1, hist2, hist3 = get_histograms() assert hist1.entries == 5 assert hist1.n_dim == 1 assert hist1.size == 5 assert hist2.entries == 5 assert hist2.n_dim == 2 assert hist2.num == 5 assert hist3.entries == 5 assert hist3.n_dim == 3 assert hist3.num == 7 def test_histogram_attributes(): hist1, hist2, hist3 = get_histograms() hist_obj1 = HistogramContainer(hist1) hist_obj2 = HistogramContainer(hist2) hist_obj3 = HistogramContainer(hist3) assert hist_obj1.is_num is False assert hist_obj1.is_ts is False assert hist_obj2.is_num is True assert hist_obj2.is_ts is False assert hist_obj3.is_num is True assert hist_obj3.is_ts is True def test_sparse_bin_centers_x(): hist1, hist2, hist3 = get_histograms() hist_obj3 = HistogramContainer(hist3) centers3, values3 = hist_obj3.sparse_bin_centers_x() np.testing.assert_array_equal( centers3, [1.2308112e18, 1.2308976e18, 1.2311568e18, 1.2312432e18, 1.2313296e18] ) def test_split_hist_along_first_dimension(): hist1, hist2, hist3 = get_histograms() hist_obj1 = HistogramContainer(hist1) hist_obj2 = HistogramContainer(hist2) hist_obj3 = HistogramContainer(hist3) split3a = hist_obj3.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=True ) split3b = hist_obj3.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=False ) split3c = hist_obj3.split_hist_along_first_dimension( xname="x", yname="y", short_keys=False, convert_time_index=True ) keys3a = list(split3a.keys()) keys3b = list(split3b.keys()) keys3c = list(split3c.keys()) check3a = [ pd.Timestamp("2009-01-01 12:00:00"), pd.Timestamp("2009-01-02 12:00:00"), pd.Timestamp("2009-01-05 12:00:00"), pd.Timestamp("2009-01-06 12:00:00"), pd.Timestamp("2009-01-07 12:00:00"), ] check3b = [1.2308112e18, 1.2308976e18, 1.2311568e18, 1.2312432e18, 1.2313296e18] check3c = [ "y[x=2009-01-01 12:00:00]", "y[x=2009-01-02 12:00:00]", "y[x=2009-01-05 12:00:00]", "y[x=2009-01-06 12:00:00]", "y[x=2009-01-07 12:00:00]", ] np.testing.assert_array_equal(keys3a, check3a) np.testing.assert_array_equal(keys3b, check3b) np.testing.assert_array_equal(keys3c, check3c) split2a = hist_obj2.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=True ) split2b = hist_obj2.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=False ) split2c = hist_obj2.split_hist_along_first_dimension( xname="x", yname="y", short_keys=False, convert_time_index=False ) keys2a = list(split2a.keys()) keys2b = list(split2b.keys()) keys2c = list(split2c.keys()) check2a = [0.5, 1.5, 2.5, 3.5, 4.5] check2b = [0.5, 1.5, 2.5, 3.5, 4.5] check2c = ["y[x=0.5]", "y[x=1.5]", "y[x=2.5]", "y[x=3.5]", "y[x=4.5]"] np.testing.assert_array_equal(keys2a, check2a) np.testing.assert_array_equal(keys2b, check2b) np.testing.assert_array_equal(keys2c, check2c) split1a = hist_obj1.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=True ) split1b = hist_obj1.split_hist_along_first_dimension( xname="x", yname="y", short_keys=True, convert_time_index=False ) split1c = hist_obj1.split_hist_along_first_dimension( xname="x", yname="y", short_keys=False, convert_time_index=False ) keys1a = list(split1a.keys()) keys1b = list(split1b.keys()) keys1c = list(split1c.keys()) check1a = ["foo1", "foo2", "foo3", "foo4", "foo5"] check1b = ["foo1", "foo2", "foo3", "foo4", "foo5"] check1c = ["x=foo1", "x=foo2", "x=foo3", "x=foo4", "x=foo5"] np.testing.assert_array_equal(keys1a, check1a) np.testing.assert_array_equal(keys1b, check1b) np.testing.assert_array_equal(keys1c, check1c) # look at the split hists hs3 = split3a[keys3a[0]] hs2 = split2a[keys2a[0]] hs1 = split1a[keys1a[0]] assert hs3.n_dim == 2 assert hs2.n_dim == 1 assert isinstance(hs3, hg.Bin) assert isinstance(hs2, hg.Categorize) assert isinstance(hs1, hg.Count) assert hs3.contentType == "Categorize" assert hs2.contentType == "Count" def test_sum_entries(): hist1, hist2, hist3 = get_histograms() assert sum_entries(hist1) == 5 assert sum_entries(hist2) == 5 assert sum_entries(hist3) == 5 def test_sum_over_x(): df = get_test_data() hist1 = hg.Categorize(unit("C")) hist2 = hg.Bin(5, 0, 5, unit("A"), value=hist1) hist3 = hg.Bin(5, 0, 5, unit("A")) hist4 = hg.Categorize(unit("C"), value=hist3) for hist in [hist1, hist2, hist3, hist4]: hist.fill.numpy(df) histC = sum_over_x(hist2) histA = sum_over_x(hist4) bin_edgesA = histA.bin_edges() bin_entriesA = histA.bin_entries() bin_edges3 = hist3.bin_edges() bin_entries3 = hist3.bin_entries() bin_labelsC = histC.bin_labels() bin_entriesC = histC.bin_entries() bin_labels1 = hist1.bin_labels() bin_entries1 = hist1.bin_entries(bin_labelsC) # match order of labels np.testing.assert_array_equal(bin_edgesA, bin_edges3) np.testing.assert_array_equal(bin_entriesA, bin_entries3) np.testing.assert_array_equal(sorted(bin_labelsC), sorted(bin_labels1)) np.testing.assert_array_equal(bin_entriesC, bin_entries1) def test_project_on_x(): df = get_test_data() hist1 = hg.Categorize(unit("C")) hist2 = hg.Bin(5, 0, 5, unit("A"), value=hist1) hist3 = hg.Bin(5, 0, 5, unit("A")) hist4 = hg.Categorize(unit("C"), value=hist3) for hist in [hist1, hist2, hist3, hist4]: hist.fill.numpy(df) histA = project_on_x(hist2) histC = project_on_x(hist4) bin_edgesA = histA.bin_edges() bin_entriesA = histA.bin_entries() bin_edges3 = hist3.bin_edges() bin_entries3 = hist3.bin_entries() bin_labelsC = histC.bin_labels() bin_entriesC = histC.bin_entries() bin_labels1 = hist1.bin_labels() bin_entries1 = hist1.bin_entries(bin_labelsC) # match order of labels np.testing.assert_array_equal(bin_edgesA, bin_edges3) np.testing.assert_array_equal(bin_entriesA, bin_entries3) np.testing.assert_array_equal(sorted(bin_labelsC), sorted(bin_labels1)) np.testing.assert_array_equal(bin_entriesC, bin_entries1) def test_project_split2dhist_on_axis(): df = get_test_data() histA = hg.Bin(5, 0, 5, unit("A")) histC = hg.Categorize(unit("C")) hist1 = hg.Categorize(unit("C"), value=histA) hist2 = hg.Bin(5, 0, 5, unit("A"), value=histC) histDCA = hg.SparselyBin( origin=pd.Timestamp("2009-01-01").value, binWidth=pd.Timedelta(days=1).value, quantity=unit("date"), value=hist1, ) histDAC = hg.SparselyBin( origin=pd.Timestamp("2009-01-01").value, binWidth=pd.Timedelta(days=1).value, quantity=unit("date"), value=hist2, ) histDA = hg.SparselyBin( origin=pd.Timestamp("2009-01-01").value, binWidth=
pd.Timedelta(days=1)
pandas.Timedelta
import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.graph_objs as go from dash.dependencies import Input, Output import datetime as dt import pandas_datareader as web app = dash.Dash() server = app.server start = dt.datetime(2000,1,1) end = dt.datetime.now() df = web.DataReader('AAPL','yahoo', start, end) df=df.reset_index() df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d") df.index=df['Date'] data=df.sort_index(ascending=True,axis=0) new_data=pd.DataFrame(index=range(0,len(df)),columns=['Date','Close']) for i in range(0,len(data)): new_data["Date"][i]=data['Date'][i] new_data["Close"][i]=data["Close"][i] new_data=new_data.set_index('Date') dataset=new_data.values tickers = ['TSLA','AAPL','FB','MSFT','SBUX'] df1 = web.DataReader(tickers, data_source='yahoo', start='2017-01-01', end=dt.datetime.now()) df=df1.stack().reset_index().rename(index=str, columns={"level_1": "Symbols"}).sort_values(['Symbols','Date']) df["Date"]=pd.to_datetime(df.Date,format="%Y-%m-%d") df.index=df['Date'] D_validationData= pd.read_csv("LSTM_validation.csv") D_train_data= pd.read_csv("LSTM_train.csv") fig2 = go.Figure() fig2.add_trace(go.Scatter(x=D_validationData["Date"], y=D_validationData["Close"], mode='lines',name='Validation',line=dict(color="blue",width=4))) fig2.add_trace(go.Scatter(x=D_validationData["Date"], y=D_validationData["Predictions"], mode='lines',name='Stock Price Predicted ',line=dict(color="red",width=4))) fig2.add_trace(go.Scatter(x=D_train_data["Date"], y=D_train_data["Close"], mode='lines', name='Train',line=dict(color="darkblue",width=4))) fig2.update_layout(hovermode='x unified', showlegend=True, plot_bgcolor="white", paper_bgcolor = "rgba(0,0,0,0)", xaxis_title="Date", yaxis_title="Closing Rate", legend_title="Data:", margin=dict(t=50,l=200,b=50,r=200), ) fig2.update_xaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') fig2.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') moving_avg= pd.read_csv("test_mov_avg.csv") fig3 = go.Figure() fig3.add_trace(go.Scatter(x=moving_avg["date"], y=moving_avg["close"], mode='lines', name='Test', line=dict(color="darkblue",width=3))) fig3.add_trace(go.Scatter(x=moving_avg["date"], y=moving_avg["est_N2"], mode='lines', name='Stock Price Predicted', line=dict(color="red",width=3))) fig3.update_layout(hovermode='x unified', showlegend=True, plot_bgcolor="white", paper_bgcolor = "rgba(0,0,0,0)", xaxis_title="Date", yaxis_title="Closing Rate", legend_title="Data:", margin=dict(t=50,l=200,b=50,r=200), ) fig3.update_xaxes(showline=True, linewidth=1, linecolor='white', gridcolor='lightgray') fig3.update_yaxes(showline=True, linewidth=1, linecolor='white', gridcolor='lightgray') # Import CSV tree training data Tree_training= pd.read_csv("Tree_training_data.csv") Tree_prediction= pd.read_csv("Tree_model_prediction.csv") figt = go.Figure() figt.add_trace(go.Scatter(x=Tree_training["Date"], y=Tree_training["Close"], mode='lines', name='Training ', line=dict(color="darkblue",width=3))) figt.add_trace(go.Scatter(x=Tree_prediction["Date"], y=Tree_prediction["Close"], mode='lines', name='Validation', line=dict(color="blue",width=4))) figt.add_trace(go.Scatter(x=Tree_prediction["Date"], y=Tree_prediction["Predictions"], mode='lines', name='Stock Price Predicted', line=dict(color="red",width=2))) figt.update_layout(hovermode='x unified', showlegend=True, plot_bgcolor="white", paper_bgcolor = "rgba(0,0,0,0)", xaxis_title="Date", yaxis_title="Closing Rate", legend_title="Data:", margin=dict(t=50,l=200,b=50,r=200), ) figt.update_xaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') figt.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') # Linear Regression Model data LR_train= pd.read_csv("LR_train.csv") LR_prediction= pd.read_csv("LR_prediction.csv") # Create figure lines for Linear Regression Model figLR = go.Figure() figLR.add_trace(go.Scatter(x=LR_train["Date"], y=LR_train["Close"], mode='lines', name='Training ', line=dict(color="darkblue",width=3))) figLR.add_trace(go.Scatter(x=LR_prediction["Date"], y=LR_prediction["Close"], mode='lines', name='Validation', line=dict(color="blue",width=3))) figLR.add_trace(go.Scatter(x=LR_prediction["Date"], y=LR_prediction["Predictionslr"], mode='lines', name='Stock Price Predicted', line=dict(color="red",width=3))) figLR.update_layout(hovermode='x unified', showlegend=True, plot_bgcolor="white", paper_bgcolor = "rgba(0,0,0,0)", xaxis_title="Date", yaxis_title="Closing Rate", legend_title="Data:", margin=dict(t=50,l=200,b=50,r=200), ) figLR.update_xaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') figLR.update_yaxes(showline=True, linewidth=2, linecolor='white', gridcolor='lightgray') # Getting Info for all Models comparison l30=dt.datetime.now()- dt.timedelta(30) m_actual = web.DataReader('AAPL','yahoo', l30, dt.datetime.now()) m_actual=m_actual.reset_index() # COMPLETE code to get models table l30=dt.datetime.now()- dt.timedelta(30) # Actual m_actual_df = web.DataReader('AAPL','yahoo', l30, dt.datetime.now()) m_actual_df=m_actual_df.reset_index() m_actual=m_actual_df[['Date','Close']] m_actual["Model"]="Actual Close Price" m_actual.rename(columns={'Close':'Predictions'}, inplace=True) # LR m_LR=LR_prediction[['Date','Predictionslr']] m_LR["Model"]="Linear Regression Model" m_LR.rename(columns={'Predictionslr':'Predictions'}, inplace=True) # Tree Prediction m_tree=Tree_prediction[['Date','Predictions']] m_tree["Model"]="Tree Model" # Moving Average m_MA=moving_avg[['date','est_N2']] m_MA["Model"]="Moving Average Model" m_MA.rename(columns={'est_N2':'Predictions','date':"Date"}, inplace=True) m_MA["Date"]=pd.to_datetime(m_MA.Date,format="%Y-%m-%d") m_MA1 = m_MA[(m_MA['Date']>(dt.datetime.now()- dt.timedelta(30))) & (m_MA['Date']<dt.datetime.now())] # Long short-term memory D_validationData["Date"]=
pd.to_datetime(D_validationData.Date,format="%Y-%m-%d")
pandas.to_datetime
"""Risk Premiums from Fama-Macbeth Cross-sectional Regression - pandas datareader, Fama French data library <NAME> License: MIT """ import os import numpy as np import pandas as pd from pandas import DataFrame, Series import matplotlib.pyplot as plt import statsmodels.formula.api as smf import pandas_datareader as pdr from pandas_datareader.data import DataReader from pandas_datareader.famafrench import FamaFrenchReader from finds.database import SQL, Redis from finds.structured import CRSP, Signals, Benchmarks from finds.busday import BusDay from finds.backtesting import RiskPremium from finds.solve import winsorized from settings import settings LAST_DATE = settings['crsp_date'] sql = SQL(**settings['sql']) user = SQL(**settings['user']) rdb = Redis(**settings['redis']) bd = BusDay(sql) crsp = CRSP(sql, bd, rdb) bench = Benchmarks(sql, bd) signals = Signals(user) logdir = os.path.join(settings['images'], 'fm') def least_squares(data=None, y=['y'], x=['x'], stdres=False): """Helper to compute least square coefs, supports groupby().apply""" X = data[x].to_numpy() Y = data[y].to_numpy() X = np.hstack([np.ones((X.shape[0], 1)), X]) x = ['Intercept'] + x b = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, Y)).T if stdres: b = np.hstack([b, np.std(Y-(X @ b.T), axis=0).reshape(-1,1)]) x = x + ['stdres'] return (
DataFrame(b, columns=x, index=y)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. from datetime import datetime import numpy as np import pandas as pd import pytest import pytz from freezegun import freeze_time from pandas import Timestamp from pandas._testing import assert_frame_equal from wetterdienst.exceptions import StartDateEndDateError from wetterdienst.metadata.period import Period from wetterdienst.metadata.resolution import Resolution from wetterdienst.metadata.timezone import Timezone from wetterdienst.provider.dwd.observation import ( DwdObservationDataset, DwdObservationPeriod, DwdObservationResolution, ) from wetterdienst.provider.dwd.observation.api import DwdObservationRequest from wetterdienst.provider.dwd.observation.metadata.parameter import ( DwdObservationParameter, ) from wetterdienst.settings import Settings def test_dwd_observation_data_api(): request = DwdObservationRequest( parameter=["precipitation_height"], resolution="daily", period=["recent", "historical"], ) assert request == DwdObservationRequest( parameter=[DwdObservationParameter.DAILY.PRECIPITATION_HEIGHT], resolution=Resolution.DAILY, period=[Period.HISTORICAL, Period.RECENT], start_date=None, end_date=None, ) assert request.parameter == [ ( DwdObservationParameter.DAILY.CLIMATE_SUMMARY.PRECIPITATION_HEIGHT, DwdObservationDataset.CLIMATE_SUMMARY, ) ] @pytest.mark.remote def test_dwd_observation_data_dataset(): """Request a parameter set""" expected = DwdObservationRequest( parameter=["kl"], resolution="daily", period=["recent", "historical"], ).filter_by_station_id(station_id=(1,)) given = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], start_date=None, end_date=None, ).filter_by_station_id( station_id=(1,), ) assert given == expected expected = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], ).filter_by_station_id( station_id=(1,), ) given = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL, DwdObservationPeriod.RECENT], start_date=None, end_date=None, ).filter_by_station_id( station_id=(1,), ) assert expected == given assert expected.parameter == [ ( DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY, ) ] def test_dwd_observation_data_parameter(): """Test parameter given as single value without dataset""" request = DwdObservationRequest( parameter=["precipitation_height"], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [ ( DwdObservationParameter.DAILY.CLIMATE_SUMMARY.PRECIPITATION_HEIGHT, DwdObservationDataset.CLIMATE_SUMMARY, ) ] request = DwdObservationRequest( parameter=["climate_summary"], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [(DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY)] def test_dwd_observation_data_parameter_dataset_pairs(): """Test parameters given as parameter - dataset pair""" request = DwdObservationRequest( parameter=[("climate_summary", "climate_summary")], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [(DwdObservationDataset.CLIMATE_SUMMARY, DwdObservationDataset.CLIMATE_SUMMARY)] request = DwdObservationRequest( parameter=[("precipitation_height", "precipitation_more")], resolution="daily", period=["recent", "historical"], ) assert request.parameter == [ ( DwdObservationParameter.DAILY.PRECIPITATION_MORE.PRECIPITATION_HEIGHT, DwdObservationDataset.PRECIPITATION_MORE, ) ] @pytest.mark.remote def test_dwd_observation_data_fails(): # station id assert ( DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], period=[DwdObservationPeriod.HISTORICAL], resolution=DwdObservationResolution.DAILY, ) .filter_by_station_id( station_id=["test"], ) .df.empty ) with pytest.raises(StartDateEndDateError): DwdObservationRequest( parameter=["abc"], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date="1951-01-01", ) def test_dwd_observation_data_dates(): # time input request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", ).filter_by_station_id( station_id=[1], ) assert request == DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[ DwdObservationPeriod.HISTORICAL, ], start_date=datetime(1971, 1, 1), end_date=datetime(1971, 1, 1), ).filter_by_station_id( station_id=[1], ) request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[DwdObservationPeriod.HISTORICAL], end_date="1971-01-01", ).filter_by_station_id( station_id=[1], ) assert request == DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, period=[ DwdObservationPeriod.HISTORICAL, ], start_date=datetime(1971, 1, 1), end_date=datetime(1971, 1, 1), ).filter_by_station_id( station_id=[1], ) with pytest.raises(StartDateEndDateError): DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date="1951-01-01", ) def test_request_period_historical(): # Historical period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", ) assert request.period == [ Period.HISTORICAL, ] def test_request_period_historical_recent(): # Historical and recent period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(days=400), ) assert request.period == [ Period.HISTORICAL, Period.RECENT, ] def test_request_period_historical_recent_now(): # Historical, recent and now period expected request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1971-01-01", end_date=pd.Timestamp(datetime.utcnow()), ) assert request.period == [ Period.HISTORICAL, Period.RECENT, Period.NOW, ] @freeze_time(datetime(2022, 1, 29, 1, 30, tzinfo=pytz.timezone(Timezone.GERMANY.value))) def test_request_period_recent_now(): request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert request.period == [Period.RECENT, Period.NOW] @freeze_time(datetime(2022, 1, 29, 2, 30, tzinfo=pytz.timezone(Timezone.GERMANY.value))) def test_request_period_now(): # Now period request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert request.period == [Period.NOW] @freeze_time("2021-03-28T18:38:00+02:00") def test_request_period_now_fixeddate(): # Now period request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) - pd.Timedelta(hours=2), ) assert Period.NOW in request.period def test_request_period_empty(): # No period (for example in future) request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date=pd.Timestamp(datetime.utcnow()) + pd.Timedelta(days=720), ) assert request.period == [] @pytest.mark.remote def test_dwd_observation_data_result_missing_data(): """Test for DataFrame having empty values for dates where the station should not have values""" Settings.tidy = True Settings.humanize = True Settings.si_units = True request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-27", # few days before official start end_date="1934-01-04", # few days after official start, ).filter_by_station_id( station_id=[1048], ) # Leave only one column to potentially contain NaN which is VALUE df = request.values.all().df.drop("quality", axis=1) df_1933 = df[df["date"].dt.year == 1933] df_1934 = df[df["date"].dt.year == 1934] assert not df_1933.empty and df_1933.dropna().empty assert not df_1934.empty and not df_1934.dropna().empty request = DwdObservationRequest( parameter=DwdObservationParameter.HOURLY.TEMPERATURE_AIR_MEAN_200, resolution=DwdObservationResolution.HOURLY, start_date="2020-06-09 12:00:00", # no data at this time (reason unknown) end_date="2020-06-09 12:00:00", ).filter_by_station_id( station_id=["03348"], ) df = request.values.all().df assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["03348"]), "dataset": pd.Categorical(["temperature_air"]), "parameter": pd.Categorical(["temperature_air_mean_200"]), "date": [datetime(2020, 6, 9, 12, 0, 0, tzinfo=pytz.UTC)], "value": pd.Series([pd.NA], dtype=pd.Float64Dtype()).astype(float), "quality": pd.Series([pd.NA], dtype=pd.Float64Dtype()).astype(float), } ), check_categorical=False, ) @pytest.mark.remote def test_dwd_observation_data_result_tabular(): """Test for actual values (tabular)""" Settings.tidy = False Settings.humanize = False Settings.si_units = False request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-31", # few days before official start end_date="1934-01-01", # few days after official start, ).filter_by_station_id( station_id=[1048], ) df = request.values.all().df assert list(df.columns.values) == [ "station_id", "dataset", "date", "qn_3", "fx", "fm", "qn_4", "rsk", "rskf", "sdk", "shk_tag", "nm", "vpm", "pm", "tmk", "upm", "txk", "tnk", "tgk", ] assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["01048"] * 2), "dataset": pd.Categorical(["climate_summary"] * 2), "date": [ datetime(1933, 12, 31, tzinfo=pytz.UTC), datetime(1934, 1, 1, tzinfo=pytz.UTC), ], "qn_3": pd.Series([pd.NA, pd.NA], dtype=pd.Int64Dtype()), "fx": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "fm": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "qn_4": pd.Series([pd.NA, 1], dtype=pd.Int64Dtype()), "rsk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "rskf": pd.to_numeric([pd.NA, 8], errors="coerce"), "sdk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "shk_tag": pd.Series([pd.NA, 0], dtype=pd.Int64Dtype()), "nm": pd.to_numeric([pd.NA, 8.0], errors="coerce"), "vpm": pd.to_numeric([pd.NA, 6.4], errors="coerce"), "pm": pd.to_numeric([pd.NA, 1008.60], errors="coerce"), "tmk": pd.to_numeric([pd.NA, 0.5], errors="coerce"), "upm": pd.to_numeric([pd.NA, 97.00], errors="coerce"), "txk": pd.to_numeric([pd.NA, 0.7], errors="coerce"), "tnk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "tgk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), } ), check_categorical=False, ) @pytest.mark.remote def test_dwd_observation_data_result_tabular_metric(): """Test for actual values (tabular) in metric units""" Settings.tidy = False Settings.humanize = False Settings.si_units = True request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-31", # few days before official start end_date="1934-01-01", # few days after official start, ).filter_by_station_id( station_id=[1048], ) df = request.values.all().df assert list(df.columns.values) == [ "station_id", "dataset", "date", "qn_3", "fx", "fm", "qn_4", "rsk", "rskf", "sdk", "shk_tag", "nm", "vpm", "pm", "tmk", "upm", "txk", "tnk", "tgk", ] assert_frame_equal( df, pd.DataFrame( { "station_id": pd.Categorical(["01048"] * 2), "dataset": pd.Categorical(["climate_summary"] * 2), "date": [ datetime(1933, 12, 31, tzinfo=pytz.UTC), datetime(1934, 1, 1, tzinfo=pytz.UTC), ], "qn_3": pd.Series([pd.NA, pd.NA], dtype=pd.Int64Dtype()), "fx": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "fm": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "qn_4": pd.Series([pd.NA, 1], dtype=pd.Int64Dtype()), "rsk": pd.to_numeric([pd.NA, 0.2], errors="coerce"), "rskf": pd.to_numeric([pd.NA, 8], errors="coerce"), "sdk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), "shk_tag": pd.Series([pd.NA, 0], dtype=pd.Int64Dtype()), "nm": pd.to_numeric([pd.NA, 100.0], errors="coerce"), "vpm": pd.to_numeric([pd.NA, 640.0], errors="coerce"), "pm": pd.to_numeric([pd.NA, 100860.0], errors="coerce"), "tmk": pd.to_numeric([pd.NA, 273.65], errors="coerce"), "upm": pd.to_numeric([pd.NA, 97.00], errors="coerce"), "txk": pd.to_numeric([pd.NA, 273.84999999999997], errors="coerce"), "tnk": pd.to_numeric([pd.NA, 273.34999999999997], errors="coerce"), "tgk": pd.to_numeric([pd.NA, pd.NA], errors="coerce"), } ), check_categorical=False, ) @pytest.mark.remote def test_dwd_observation_data_result_tidy_metric(): """Test for actual values (tidy) in metric units""" Settings.tidy = True Settings.humanize = False Settings.si_units = True request = DwdObservationRequest( parameter=[DwdObservationDataset.CLIMATE_SUMMARY], resolution=DwdObservationResolution.DAILY, start_date="1933-12-31", # few days before official start end_date="1934-01-01", # few days after official start, ).filter_by_station_id( station_id=(1048,), ) df = request.values.all().df assert list(df.columns.values) == [ "station_id", "dataset", "parameter", "date", "value", "quality", ] assert_frame_equal( df, pd.DataFrame( { "station_id":
pd.Categorical(["01048"] * 28)
pandas.Categorical
# Utility functions import re import pandas as pd from collections import Counter from nltk.tokenize import wordpunct_tokenize from nltk.corpus import stopwords import requests import simplejson def my_replacements(text): """ Quick function to clean up some of my review text. It clears HTML and some extra characters. Also removes my frequent mentions of full reviews on my blog. :param text: Text to process :return: Processed text """ text = re.sub(r'<(.*?)>', ' ', text) # removing HTML code encapsulated within <> text = re.sub(r'\n', ' ', text) # removing newline characters text = re.sub(r'&nbsp;', ' ', text) # removing some extra HTML code text = re.sub(r'\"','', text) # removing explicit quotation marks text = re.sub(r"\'", '', text) # removing explicit single quotation marks # Text replacement stop_text = ["For my full review", "For a full review", "check out my blog", "Read my full review at my blog", "review can be found in my blog", "A full review is available on my blog", "review is up on my blog", "full review", "my blog"] for elem in stop_text: text = re.sub(elem, '', text) return text def get_sentiment(text, more_stop_words=['']): # Load up the NRC emotion lexicon filename = 'data/NRC-emotion-lexicon-wordlevel-alphabetized-v0.92.txt' # Add to stop_words stop_words = set(stopwords.words('english')) stop_words.update(more_stop_words) emotion_data =
pd.read_csv(filename, delim_whitespace=True, skiprows=45, header=None, names=['word', 'affect', 'flag'])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt import itertools from tqdm import tqdm from lidopt.model import evaluate, calculate_metrics from lidopt import PARAM_GRID, METRICS, EXP, SIM, MODE from lidopt.parsers import parse_experiment def run(event=None, event_name=None, path='./data/output/results.csv'): col_names = list(PARAM_GRID.keys()) all_combinations = list(itertools.product(*[PARAM_GRID[k] for k in PARAM_GRID.keys()])) df = pd.DataFrame.from_records(all_combinations, columns=col_names) for metric in METRICS: df[metric] = 0 for i in tqdm(range(df.shape[0])): if event_name is not None: results = evaluate(reportfile='./data/output/reports/parameters_RE_{0}_{1}.txt'.format(event_name+1,i+1), experiment=event, params=df.loc[i, col_names]) else: results = evaluate(reportfile='./data/output/reports/parameters_{}.txt'.format(str(i+1)), experiment=event, params=df.loc[i, col_names]) for metric in METRICS: df.loc[i, metric] = results[metric] if event_name is not None: df.to_csv(path.format(event_name+1), index_label='simulation_number') else: idx = pd.Series([i+1 for i in range(len(df))]) df.set_index(idx, inplace=True) df.to_csv(path, index_label='simulation_number') return df def run_per_event(): rain_events = pd.read_csv(EXP['rain_events'], parse_dates=True) total_rain_events = rain_events.shape[0] event_path = "./data/output/events/event_CAL_{}_RE_{}.csv" df = run() for i,row in tqdm(df.iterrows(), total = df.shape[0]): for j in range(total_rain_events): # Initialize metrics object col_names = list(PARAM_GRID.keys()) all_combinations = list(itertools.product(*[PARAM_GRID[k] for k in PARAM_GRID.keys()])) metrics_df =
pd.DataFrame.from_records(all_combinations, columns=col_names)
pandas.DataFrame.from_records
import re import datetime as dt import numpy as np import pandas as pd from path import Path from PIL import Image import base64 from io import BytesIO import plotly import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from skimage import io import onion_trees as ot import visualize as bv import json import statsmodels as sm from statsmodels.formula.api import ols from data import STATE2ABBREV, COUNTY_CORRECTIONS import bjorn_support as bs import mutations as bm def load_img(img_filepath): img = io.imread(img_filepath) pil_img = Image.fromarray(img) # PIL image object prefix = "data:image/png;base64," with BytesIO() as stream: pil_img.save(stream, format="png") base64_string = prefix + base64.b64encode(stream.getvalue()).decode("utf-8") fig = go.Figure(go.Image(source=base64_string)) fig.update_layout(margin=dict(l=0, r=0, b=0, t=0), coloraxis_showscale=False, template='plotly_white', autosize=True) fig.update_xaxes(showticklabels=False).update_yaxes(showticklabels=False) return fig def world_time_relative(data, feature, values, res, strain='B117', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs))] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = res[(res['is_vui']==True)].drop_duplicates(subset=['date', 'strain']) b117_world_time = (results.groupby('date') .agg(num_samples=('strain', 'nunique'), country_counts=('country', lambda x: np.unique(x, return_counts=True)), divisions=('division', 'unique'), locations=('location', 'unique')) .reset_index()) b117_world_time.loc[:, 'countries'] = b117_world_time['country_counts'].apply(lambda x: list(x[0])) b117_world_time.loc[:, 'country_counts'] = b117_world_time['country_counts'].apply(lambda x: list(x[1])) b117_world_time = pd.merge(b117_world_time, total_samples, on='date', how='right') b117_world_time.loc[:, ['countries', 'divisions', 'locations']].fillna('', inplace=True) b117_world_time.loc[:, ['num_samples', 'total_samples']] = b117_world_time[['num_samples', 'total_samples']].fillna(0) first_detected = b117_world_time.loc[b117_world_time['num_samples']>0]['date'].min() first_countries = b117_world_time.loc[b117_world_time['date']==first_detected, 'countries'].values[0] b117_world_time = b117_world_time[b117_world_time['date']>=first_detected] b117_world_time['cum_num_samples'] = b117_world_time['num_samples'].cumsum() b117_world_time.loc[:, 'cum_total_samples'] = b117_world_time['total_samples'].cumsum() b117_world_time.loc[:, 'rel_freq'] = b117_world_time['cum_num_samples'] / b117_world_time['cum_total_samples'] fig = go.Figure(data=go.Scatter(y=b117_world_time['rel_freq'], x=b117_world_time['date'], name='B.1.1.7 samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_world_time[['num_samples', 'countries', 'country_counts', 'divisions', 'locations', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>Country(s) Reported: %{text[1]}</b><br>" + "<b>Cases Per Country: %{text[2]}</b><br>" + "<b>State(s) Reported: %{text[3]}</b><br>" + "<b>County(s) Reported: %{text[4]}</b><br>" + "<b>Date: %{text[5]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_world_time.loc[b117_world_time['date']==first_detected, 'rel_freq'].values[0], text=f"On Earth, {strain} 1st detected in <br> {', '.join(first_countries)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-250, ax=100) fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} on Earth', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, fig.update_yaxes(side = 'right') return fig def world_time(data, feature, values, res, strain='B117', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0])] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = (res[(res['is_vui']==True)] .drop_duplicates(subset=['date', 'strain'])) b117_world_time = (results.groupby('date') .agg(num_samples=('strain', 'nunique'), country_counts=('country', lambda x: np.unique(x, return_counts=True)), divisions=('division', 'unique'), locations=('location', 'unique')) .reset_index()) b117_world_time.loc[:, 'countries'] = b117_world_time['country_counts'].apply(lambda x: list(x[0])) b117_world_time.loc[:, 'country_counts'] = b117_world_time['country_counts'].apply(lambda x: list(x[1])) b117_world_time.loc[:, 'date'] = pd.to_datetime(b117_world_time['date'], errors='coerce') b117_world_time['cum_num_samples'] = b117_world_time['num_samples'].cumsum() first_detected = b117_world_time['date'].min() first_countries = b117_world_time.loc[b117_world_time['date']==first_detected, 'countries'] fig = go.Figure(data=go.Scatter(y=b117_world_time['cum_num_samples'], x=b117_world_time['date'], name='B.1.1.7 samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_world_time[['num_samples', 'countries', 'country_counts', 'divisions', 'locations', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>Country(s) Reported: %{text[1]}</b><br>" + "<b>Cases Per Country: %{text[2]}</b><br>" + "<b>State(s) Reported: %{text[3]}</b><br>" + "<b>County(s) Reported: %{text[4]}</b><br>" + "<b>Date: %{text[5]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_world_time.loc[b117_world_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"On Earth, {strain} 1st detected in <br> {', '.join(first_countries.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-250, ax=100) fig.update_layout(yaxis_title='Global cumulative number of cases over time', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, fig.update_yaxes(side = 'right') return fig def us_time_relative(data, feature, values, res, strain='B117', country='USA', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])& (data['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))& (data['country']=='United States of America')] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs)) &(res['country']=='United States of America')] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = (res[(res['is_vui']==True) & (res['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_us_time = (random.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) b117_us_time.loc[:, 'states'] = b117_us_time['state_counts'].apply(lambda x: list(x[0])) b117_us_time.loc[:, 'state_counts'] = b117_us_time['state_counts'].apply(lambda x: list(x[1])) b117_us_time = pd.merge(b117_us_time, total_samples, on='date', how='right') b117_us_time.loc[:, 'states'].fillna('', inplace=True) b117_us_time.loc[:, ['num_samples', 'total_samples']] = b117_us_time[['num_samples', 'total_samples']].fillna(0) sdrop_us_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_us_time.loc[:, 'states'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[0])) sdrop_us_time.loc[:, 'state_counts'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[1])) sdrop_us_time = pd.merge(sdrop_us_time, total_samples, on='date', how='right') sdrop_us_time.loc[:, 'states'].fillna('', inplace=True) sdrop_us_time.loc[:, ['num_samples', 'total_samples']] = sdrop_us_time[['num_samples', 'total_samples']].fillna(0) fig = go.Figure() if b117_us_time[b117_us_time['num_samples']>0].shape[0] > 0: first_detected = b117_us_time.loc[b117_us_time['num_samples']>0]['date'].min() first_states = b117_us_time.loc[b117_us_time['date']==first_detected, 'states'].values[0] b117_us_time = b117_us_time[b117_us_time['date']>=first_detected] b117_us_time.loc[:, 'cum_num_samples'] = b117_us_time['num_samples'].cumsum() b117_us_time.loc[:, 'cum_total_samples'] = b117_us_time['total_samples'].cumsum() b117_us_time.loc[:, 'rel_freq'] = b117_us_time['cum_num_samples'] / b117_us_time['cum_total_samples'] fig.add_trace( go.Scatter(y=b117_us_time['rel_freq'], x=b117_us_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_us_time.loc[b117_us_time['date']==first_detected, 'rel_freq'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) if sdrop_us_time[sdrop_us_time['num_samples']>0].shape[0] > 0: first_detected = sdrop_us_time.loc[sdrop_us_time['num_samples']>0]['date'].min() first_states = sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'states'].values[0] sdrop_us_time = sdrop_us_time[sdrop_us_time['date']>=first_detected] sdrop_us_time.loc[:, 'cum_num_samples'] = sdrop_us_time['num_samples'].cumsum() sdrop_us_time.loc[:, 'cum_total_samples'] = sdrop_us_time['total_samples'].cumsum() sdrop_us_time.loc[:, 'rel_freq'] = sdrop_us_time['cum_num_samples'] / sdrop_us_time['cum_total_samples'] fig.add_trace( go.Scatter(y=sdrop_us_time['rel_freq'], x=sdrop_us_time['date'], name='biased sampling <br> (more info in a later section)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'rel_freq'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states)} <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} in USA', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def us_time(data, feature, values, res, strain='B117', country='USA', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0]) & (data['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', 'purpose_of_sequencing', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = (res[(res['is_vui']==True) & (res['country']=='United States of America')] .drop_duplicates(subset=['date', 'strain'])) if sampling_type!='random': results['purpose_of_sequencing'] = 'S' else: results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_us_time = (random.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) b117_us_time.loc[:, 'states'] = b117_us_time['state_counts'].apply(lambda x: list(x[0])) b117_us_time.loc[:, 'state_counts'] = b117_us_time['state_counts'].apply(lambda x: list(x[1])) b117_us_time.loc[:, 'date'] = pd.to_datetime(b117_us_time['date'], errors='coerce') b117_us_time['cum_num_samples'] = b117_us_time['num_samples'].cumsum() sdrop_us_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), state_counts=('division', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_us_time.loc[:, 'states'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[0])) sdrop_us_time.loc[:, 'state_counts'] = sdrop_us_time['state_counts'].apply(lambda x: list(x[1])) sdrop_us_time.loc[:, 'date'] = pd.to_datetime(sdrop_us_time['date'], errors='coerce') sdrop_us_time['cum_num_samples'] = sdrop_us_time['num_samples'].cumsum() fig = go.Figure() if b117_us_time.shape[0] > 0: fig.add_trace( go.Scatter(y=b117_us_time['cum_num_samples'], x=b117_us_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = b117_us_time['date'].min() first_states = b117_us_time.loc[b117_us_time['date']==first_detected, 'states'] fig.add_annotation(x=first_detected, y=b117_us_time.loc[b117_us_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) if sdrop_us_time.shape[0] > 0: fig.add_trace( go.Scatter(y=sdrop_us_time['cum_num_samples'], x=sdrop_us_time['date'], name='biased sampling <br> (see notes on sampling)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_us_time[['num_samples', 'states', 'state_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = sdrop_us_time['date'].min() first_states = sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'states'] fig.add_annotation(x=first_detected, y=sdrop_us_time.loc[sdrop_us_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In US, {strain} 1st detected in <br> {', '.join(first_states.values[0])} <br> on <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-100) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Cumulative number of cases over time in {country}', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def ca_time_relative(data, feature, values, res, strain='B117', state='California', vocs=['B.1.1.7', 'B.1.1.70']): if len(values)==1: data.loc[:, 'weekday'] = data['date'].dt.weekday data.loc[:, 'date'] = data['date'] - data['weekday'] * dt.timedelta(days=1) results = (data.loc[(data[feature]==values[0])& (data['division']==state)] .drop_duplicates(subset=['date', 'strain'])) total_samples = (data[(~data['pangolin_lineage'].isin(vocs))& (data['division']==state)] .groupby('date') .agg(total_samples=('strain', 'nunique'))) else: res = res.copy() # res.loc[:, 'tmp'] = res['date'].str.split('-') # res = res[res['tmp'].str.len()>=3] # res.loc[:, 'date'] = pd.to_datetime(res['date'], errors='coerce') res.loc[:, 'weekday'] = res['date'].dt.weekday res.loc[:, 'date'] = res['date'] - res['weekday'] * dt.timedelta(days=1) total_samples = (res[(~res['pangolin_lineage'].isin(vocs)) &(res['division']==state)] .groupby('date') .agg(total_samples=('strain', 'nunique')) .reset_index()) results = res[(res['is_vui']==True) & (res['division']==state)].drop_duplicates(subset=['date', 'strain']) results.loc[:, 'purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_ca_time = (random.groupby('date') .agg(num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True))) .reset_index()) b117_ca_time.loc[:, 'counties'] = b117_ca_time['county_counts'].apply(lambda x: list(x[0])) b117_ca_time.loc[:, 'county_counts'] = b117_ca_time['county_counts'].apply(lambda x: list(x[1])) # b117_ca_time.loc[:, 'date'] = pd.to_datetime(b117_ca_time['date'], # errors='coerce') b117_ca_time = pd.merge(b117_ca_time, total_samples, on='date', how='right') b117_ca_time.loc[:, 'counties'].fillna('', inplace=True) b117_ca_time.loc[:, ['num_samples', 'total_samples']] = b117_ca_time[['num_samples', 'total_samples']].fillna(0) sdrop_ca_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_ca_time.loc[:, 'counties'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[0])) sdrop_ca_time.loc[:, 'county_counts'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[1])) # sdrop_ca_time.loc[:, 'date'] = pd.to_datetime(sdrop_ca_time['date'], errors='coerce') sdrop_ca_time = pd.merge(sdrop_ca_time, total_samples, on='date', how='right') sdrop_ca_time.loc[:, 'counties'].fillna('', inplace=True) sdrop_ca_time.loc[:, ['num_samples', 'total_samples']].fillna(0, inplace=True) fig = go.Figure() if b117_ca_time[b117_ca_time['num_samples']>0].shape[0] > 0: first_detected = b117_ca_time.loc[b117_ca_time['num_samples']>0]['date'].min() first_counties = b117_ca_time.loc[b117_ca_time['date']==first_detected, 'counties'].values[0] b117_ca_time = b117_ca_time[b117_ca_time['date']>=first_detected] b117_ca_time.loc[:, 'cum_num_samples'] = b117_ca_time['num_samples'].cumsum() b117_ca_time.loc[:, 'cum_total_samples'] = b117_ca_time['total_samples'].cumsum() b117_ca_time.loc[:, 'rel_freq'] = b117_ca_time['cum_num_samples'] / b117_ca_time['cum_total_samples'] fig.add_trace( go.Scatter(y=b117_ca_time['rel_freq'], x=b117_ca_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>County(s) Reported: %{text[1]}</b><br>" + "<b>Cases per County: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) fig.add_annotation(x=first_detected, y=b117_ca_time.loc[b117_ca_time['date']==first_detected, 'rel_freq'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties)} county(s) <br> on week of <br> {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) if sdrop_ca_time[sdrop_ca_time['num_samples']>0].shape[0] > 0: first_detected = sdrop_ca_time.loc[sdrop_ca_time['num_samples']>0]['date'].min() first_counties = sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'counties'].values[0] sdrop_ca_time = sdrop_ca_time[sdrop_ca_time['date']>=first_detected] sdrop_ca_time.loc[:, 'cum_num_samples'] = sdrop_ca_time['num_samples'].cumsum() sdrop_ca_time.loc[:, 'cum_total_samples'] = sdrop_ca_time['total_samples'].cumsum() sdrop_ca_time.loc[:, 'rel_freq'] = sdrop_ca_time['cum_num_samples'] / sdrop_ca_time['cum_total_samples'] fig.add_trace( go.Scatter(y=sdrop_ca_time['rel_freq'], x=sdrop_ca_time['date'], name='biased sampling (read next section)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>" ) ) fig.add_annotation(x=first_detected, y=sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'rel_freq'].values[0], text=f"""In CA, {strain} 1st detected in <br> {', '.join(first_counties)} county(s) <br> on week of <br> {first_detected.date()}""", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Relative cumulative frequency of {strain} in CA', xaxis_title='Collection Date', template='plotly_white', showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ), autosize=True#, autosize=True )#, height=850, return fig def ca_time(data, feature, values, res, strain='B117', state='California', sampling_type='random'): if len(values)==1: results = (data.loc[(data[feature]==values[0]) & (data['division']==state)] .drop_duplicates(subset=['date', 'strain'])) else: # results = (data.groupby(['date', 'country', 'division', # 'location', 'pangolin_lineage', 'strain']) # .agg(mutations=('mutation', 'unique')).reset_index()) # results['is_vui'] = results['mutations'].apply(is_vui, args=(set(values),)) results = res[(res['is_vui']==True) &(res['division']==state)].drop_duplicates(subset=['date', 'strain']) if sampling_type!='random': results['purpose_of_sequencing'] = 'S' else: results['purpose_of_sequencing'] = '?' random = results[results['purpose_of_sequencing']=='?'] biased = results[results['purpose_of_sequencing']!='?'] b117_ca_time = (random.groupby('date') .agg(num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True))) .reset_index()) b117_ca_time.loc[:, 'counties'] = b117_ca_time['county_counts'].apply(lambda x: list(x[0])) b117_ca_time.loc[:, 'county_counts'] = b117_ca_time['county_counts'].apply(lambda x: list(x[1])) b117_ca_time.loc[:, 'date'] = pd.to_datetime(b117_ca_time['date'], errors='coerce') b117_ca_time.loc[:, 'cum_num_samples'] = b117_ca_time['num_samples'].cumsum() sdrop_ca_time = (biased.groupby('date') .agg( num_samples=('strain', 'nunique'), county_counts=('location', lambda x: np.unique(x, return_counts=True)) ) .reset_index()) sdrop_ca_time.loc[:, 'counties'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[0])) sdrop_ca_time.loc[:, 'county_counts'] = sdrop_ca_time['county_counts'].apply(lambda x: list(x[1])) sdrop_ca_time.loc[:, 'date'] = pd.to_datetime(sdrop_ca_time['date'], errors='coerce') sdrop_ca_time['cum_num_samples'] = sdrop_ca_time['num_samples'].cumsum() fig = go.Figure() if b117_ca_time.shape[0] > 0: fig.add_trace( go.Scatter(y=b117_ca_time['cum_num_samples'], x=b117_ca_time['date'], name=f'{strain} samples', mode='markers+lines', line_color='rgba(220,20,60,.6)', text=b117_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>County(s) Reported: %{text[1]}</b><br>" + "<b>Cases per County: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>")) first_detected = b117_ca_time['date'].min() first_counties = b117_ca_time.loc[b117_ca_time['date']==first_detected, 'counties'] fig.add_annotation(x=first_detected, y=b117_ca_time.loc[b117_ca_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties.values[0])} <br> on {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) if sdrop_ca_time.shape[0] > 0: fig.add_trace( go.Scatter(y=sdrop_ca_time['cum_num_samples'], x=sdrop_ca_time['date'], name='biased sampling <br> (see notes on sampling)', mode='markers+lines', line_color='rgba(30,144,255,.6)', text=sdrop_ca_time[['num_samples', 'counties', 'county_counts', 'date']], hovertemplate="<b>Number of cases: %{text[0]}</b><br>" + "<b>State(s) Reported: %{text[1]}</b><br>" + "<b>Cases per State: %{text[2]}</b><br>" + "<b>Date: %{text[3]}</b><br>" ) ) first_detected = sdrop_ca_time['date'].min() first_counties = sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'counties'] fig.add_annotation(x=first_detected, y=sdrop_ca_time.loc[sdrop_ca_time['date']==first_detected, 'cum_num_samples'].values[0], text=f"In CA, {strain} 1st detected in <br> {', '.join(first_counties.values[0])} <br> on {first_detected.date()}", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-50) fig.update_yaxes(side = 'right') fig.update_layout(yaxis_title=f'Cumulative number of {strain} in CA', xaxis_title='Collection Date', template='plotly_white', autosize=True, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ))#, height=850, return fig def strain_nt_distance(data, feature, values, strain='B117', sample_sz=250, vocs=['B.1.1.7', 'B.1.351', 'B.1.1.70']): clock_rate = 8e-4 if feature=='pangolin_lineage': dists_df = create_lineage_data(data, feature, values, strain=strain, sample_sz=sample_sz, vocs=vocs) elif feature=='mutation': dists_df = create_distance_data(data, mutations=set(values), strain=strain, sample_sz=sample_sz, vocs=vocs) else: raise ValueError(f"Feature of type {feature} is not yet available for analysis. Aborting...") dists_df['num_subs'] = dists_df['mutations'].str.len() / 29904 # ignore seqs with unexpectedly high dists dists_df = dists_df[dists_df['num_subs']<=0.0013] dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'date'] = pd.to_datetime(dists_df['date'], errors='coerce') dists_df['time'] = dists_df['date'].astype(str).apply(bv.decimal_date) b117_model = ols('num_subs ~ time', data=dists_df[dists_df['group']!='outgroup']).fit() b117_model.params['time'] = clock_rate b117_preds = dists_df[dists_df['group']!='outgroup'].copy() b117_model.params['Intercept'] = np.mean(b117_preds['num_subs'] - (clock_rate*b117_preds['time'])) b117_preds.loc[:, 'predictions'] = b117_model.predict(b117_preds['time']) b117_n = int(b117_preds.shape[0] / 2) outgrp_model = ols('num_subs ~ time', data=dists_df[dists_df['group']=='outgroup']).fit() outgrp_model.params['time'] = clock_rate outgrp_preds = dists_df[dists_df['group']=='outgroup'].copy() outgrp_model.params['Intercept'] = np.mean(outgrp_preds['num_subs'] - (clock_rate*outgrp_preds['time'])) outgrp_preds.loc[:, 'predictions'] = outgrp_model.predict(outgrp_preds['time']) outgrp_n = int(outgrp_preds.shape[0] / 3) fig = go.Figure( data=go.Scatter(y=dists_df[dists_df['group']==f'Lineage {strain} in US']['num_subs'], x=dists_df[dists_df['group']==f'Lineage {strain} in US']['date'], name=f'{strain} (US)', mode='markers', hovertemplate = 'Sample: %{text}', marker_color='rgba(220,20,60,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']==f'Lineage {strain}']['num_subs'], x=dists_df[dists_df['group']==f'Lineage {strain}']['date'], mode='markers', marker_color='rgba(30,144,255,.6)', name=f'{strain} (non-US)' )) # fig.add_trace(go.Scatter(y=b117_preds['predictions'], # x=b117_preds['date'], name='OLS (B.1.1.7)', # mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=b117_preds.iloc[b117_n]['date'], y=b117_preds.iloc[b117_n]['predictions'], text=f"{strain} Lineage", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='outgroup']['num_subs'], x=dists_df[dists_df['group']=='outgroup']['date'], mode='markers', marker_color='rgb(211,211,211, .6)', name='outgroup' )) # fig.add_trace(go.Scatter(y=outgrp_preds['predictions'], # x=outgrp_preds['date'], name='OLS (outgroup)', # mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=outgrp_preds.iloc[outgrp_n]['date'], y=outgrp_preds.iloc[outgrp_n]['predictions'], text=f"outgroup", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.update_layout(yaxis_title='Genetic Distance (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True, margin={"l":1}, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) )#, height=850, fig.update_yaxes(side = 'right') return fig def create_lineage_data(data, feature, values, strain, sample_sz=250, vocs=['B.1.1.7', 'B.1.1.70', 'B.1.351']): data = (data.groupby(['date', 'country', 'division', 'location', 'pangolin_lineage', 'strain']) .agg(mutations=('mutation', 'unique')).reset_index()) first_detected = data.loc[data[feature].isin(values), 'date'].min() mutations = set(data.loc[(data[feature].isin(values)) &(data['date']==first_detected), 'mutations'].explode().unique()) data['d_w'] = data['mutations'].apply(compute_similarity, args=(mutations,)) outgroup = (data[(~data[feature].isin(values)) &(~data['pangolin_lineage'].isin(vocs))] .nlargest(sample_sz, 'd_w')['strain'] .unique()) try: ingroup = data.loc[(data[feature].isin(values))].sample(sample_sz)['strain'].unique() except: ingroup = data.loc[(data[feature].isin(values))]['strain'].unique() usgroup = data.loc[(data[feature].isin(values)) & (data['country']=='United States of America'), 'strain'].unique() data = data.loc[(data['strain'].isin(ingroup)) | (data['strain'].isin(outgroup)) | (data['strain'].isin(usgroup))] data.loc[:, 'group'] = 'nan' data.loc[data['strain'].isin(outgroup), 'group'] = 'outgroup' data.loc[(data['strain'].isin(ingroup)), 'group'] = f'Lineage {strain}' data.loc[(data['strain'].isin(usgroup)), 'group'] = f'Lineage {strain} in US' return data def create_distance_data(data: pd.DataFrame, mutations: set, strain: str, sample_sz: int=250, vocs: list=['B.1.1.7', 'B.1.351']): data = (data.groupby(['date', 'country', 'division', 'location', 'pangolin_lineage', 'strain']) .agg(mutations=('mutation', 'unique')).reset_index()) data['is_vui'] = data['mutations'].apply(is_vui, args=(mutations,)) ref_muts = extract_mutations(data) data['d_w'] = data['mutations'].apply(compute_similarity, args=(ref_muts,)) outgroup = (data[(data['is_vui']==False) &(~data['pangolin_lineage'].isin(vocs))] .sample(sample_sz)['strain'] .unique()) try: ingroup = data.loc[(data['is_vui']==True)].sample(sample_sz)['strain'].unique() except: ingroup = data.loc[(data['is_vui']==True)]['strain'].unique() usgroup = data.loc[(data['is_vui']==True) & (data['country']=='United States of America'), 'strain'].unique() data = data.loc[(data['strain'].isin(ingroup)) | (data['strain'].isin(outgroup)) | (data['strain'].isin(usgroup))] data['group'] = 'outgroup' data.loc[(data['strain'].isin(ingroup)), 'group'] = f'Lineage {strain}' data.loc[(data['strain'].isin(usgroup)), 'group'] = f'Lineage {strain} in US' return data def is_vui(x, mutations: set): return mutations.issubset(set(x)) def extract_mutations(data: pd.DataFrame): first_detected = data.loc[data['is_vui']==True, 'date'].min() mutations = data.loc[(data['is_vui']==True) &(data['date']==first_detected), 'mutations'].explode().unique() return set(mutations) def compute_similarity(x, reference_mutations: set): common_mutations = set(x) & reference_mutations return len(common_mutations) def b117_nt_distance(gisaid_data, tree_fp, b117_meta, sample_sz=250, clock_rate=8e-4): # nabla_symbol = u"\u2207" croft_meta = pd.read_csv(b117_meta, sep='\t') croft_meta = croft_meta[croft_meta['Country']!='USA'].copy() # extract B117 samples from Emma Croft's build b117_meta = croft_meta[croft_meta['Pangolin Lineage']=='B.1.1.7'].sample(sample_sz) # extract outgroup samples from Emma Croft's build outgrp_meta = croft_meta[croft_meta['Pangolin Lineage']!='B.1.1.7'].sample(sample_sz) # extract B117 US samples from GISAID us_b117 = gisaid_data[(gisaid_data['country']=='United States of America') & (gisaid_data['pangolin_lineage']=='B.1.1.7')].copy() # consolidate data and analyze b117_data = gisaid_data[(gisaid_data['strain'].isin(b117_meta['Strain'].unique())) |(gisaid_data['strain'].isin(outgrp_meta['Strain'].unique())) |(gisaid_data['strain'].isin(us_b117['strain'].unique()))].copy() b117_data.drop_duplicates(subset=['strain', 'pos', 'alt_codon'], inplace=True) # b117_data = b117_data[b117_data['gene']=='S'] dists_df = (b117_data.groupby(['strain', 'date']) .agg(num_nt_subs=('strain', 'count')) .reset_index()) dists_df['num_nt_subs'] = dists_df['num_nt_subs'] / 29903 dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'group'] = 'outgroup' dists_df.loc[dists_df['strain'].isin(b117_meta['Strain'].unique()), 'group'] = 'B.1.1.7 (non-US)' dists_df.loc[dists_df['strain'].isin(us_b117['strain'].unique()), 'group'] = 'B.1.1.7 (US)' dists_df = dists_df.loc[~((dists_df['group']=='outgroup') & (dists_df['num_nt_subs']>=0.001))] dists_df.loc[:, 'date'] = pd.to_datetime(dists_df['date'], errors='coerce') dists_df['time'] = dists_df['date'].astype(str).apply(bv.decimal_date) b117_model = ols('num_nt_subs ~ time', data=dists_df[dists_df['group']!='outgroup']).fit() b117_model.params['time'] = clock_rate b117_preds = dists_df[dists_df['group']!='outgroup'].copy() b117_model.params['Intercept'] = np.mean(b117_preds['num_nt_subs'] - (clock_rate*b117_preds['time'])) b117_preds.loc[:, 'predictions'] = b117_model.predict(b117_preds['time']) b117_n = int(b117_preds.shape[0] / 2) outgrp_model = ols('num_nt_subs ~ time', data=dists_df[dists_df['group']=='outgroup']).fit() outgrp_model.params['time'] = clock_rate outgrp_preds = dists_df[dists_df['group']=='outgroup'].copy() outgrp_model.params['Intercept'] = np.mean(outgrp_preds['num_nt_subs'] - (clock_rate*outgrp_preds['time'])) outgrp_preds.loc[:, 'predictions'] = outgrp_model.predict(outgrp_preds['time']) outgrp_n = int(outgrp_preds.shape[0] / 3) fig = go.Figure( data=go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (US)']['num_nt_subs'], x=dists_df[dists_df['group']=='B.1.1.7 (US)']['date'], name='B.1.1.7 (US)', mode='markers', text=dists_df[dists_df['group']=='B.1.1.7 (US)']['strain'], hovertemplate = 'Sample: %{text}', marker_color='rgba(220,20,60,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['num_nt_subs'], x=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['date'], mode='markers', marker_color='rgba(30,144,255,.6)', name='B.1.1.7 (non-US)' )) fig.add_trace(go.Scatter(y=b117_preds['predictions'], x=b117_preds['date'], name='OLS (B.1.1.7)', mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=b117_preds.iloc[b117_n]['date'], y=b117_preds.iloc[b117_n]['predictions'], text=f"B117 Lineage", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='outgroup']['num_nt_subs'], x=dists_df[dists_df['group']=='outgroup']['date'], mode='markers', marker_color='rgb(211,211,211, .6)', name='outgroup' )) fig.add_trace(go.Scatter(y=outgrp_preds['predictions'], x=outgrp_preds['date'], name='OLS (outgroup)', mode='lines', line_color='rgba(0,0,0,1.)')) fig.add_annotation(x=outgrp_preds.iloc[outgrp_n]['date'], y=outgrp_preds.iloc[outgrp_n]['predictions'], text=f"outgroup", showarrow=True, arrowhead=1, yshift=10, arrowsize=2, ay=-80) fig.update_layout(yaxis_title='Genetic Distance (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, return fig def b117_aa_distance(gisaid_data, b117_meta, sample_sz=250): croft_meta = pd.read_csv(b117_meta, sep='\t') croft_meta = croft_meta[croft_meta['Country']!='USA'].copy() # extract B117 samples from Emma Croft's build b117_meta = croft_meta[croft_meta['Pangolin Lineage']=='B.1.1.7'].sample(sample_sz) # extract outgroup samples from Emma Croft's build outgrp_meta = croft_meta[croft_meta['Pangolin Lineage']!='B.1.1.7'].sample(sample_sz) # extract B117 US samples from GISAID us_b117 = gisaid_data[(gisaid_data['country']=='United States of America') & (gisaid_data['pangolin_lineage']=='B.1.1.7')].copy() # consolidate data and analyze b117_data = gisaid_data[(gisaid_data['strain'].isin(b117_meta['Strain'].unique())) |(gisaid_data['strain'].isin(outgrp_meta['Strain'].unique())) |(gisaid_data['strain'].isin(us_b117['strain'].unique()))] b117_data.loc[:, 'nonsyn'] = False b117_data.loc[b117_data['ref_aa']!=b117_data['alt_aa'], 'nonsyn'] = True b117_data.loc[:, 'S_nonsyn'] = False b117_data.loc[(b117_data['gene']=='S') & (b117_data['ref_aa']!=b117_data['alt_aa']), 'S_nonsyn'] = True dists_df = (b117_data.groupby(['strain', 'date']) .agg(num_nonsyn_muts=('nonsyn', 'sum'), num_S_nonsyn_muts=('S_nonsyn', 'sum')) .reset_index()) dists_df = dists_df[~dists_df['date'].isna()] dists_df.loc[:, 'group'] = 'outgroup' dists_df.loc[dists_df['strain'].isin(b117_meta['Strain'].unique()), 'group'] = 'B.1.1.7 (non-US)' dists_df.loc[dists_df['strain'].isin(us_b117['strain'].unique()), 'group'] = 'B.1.1.7 (US)' dists_df.loc[:, 'date'] = pd.to_datetime(dists_df['date'], errors='coerce') dists_df.loc[:, 'month'] = dists_df['date'].dt.month dists_df.loc[:, 'doy'] = dists_df['date'].dt.dayofyear dists_df.loc[:, 'time'] = dists_df['date'].astype(int)/1e12 dists_df = dists_df.loc[~dists_df['doy'].isna()].copy() b117_model = ols('num_nonsyn_muts ~ time', data=dists_df[dists_df['group']!='outgroup']).fit() b117_preds = dists_df[dists_df['group']!='outgroup'].copy() b117_preds.loc[:, 'predictions'] = b117_model.predict(b117_preds['time']) outgrp_model = ols('num_nonsyn_muts ~ time', data=dists_df[dists_df['group']=='outgroup']).fit() outgrp_preds = dists_df[dists_df['group']=='outgroup'].copy() outgrp_preds.loc[:, 'predictions'] = outgrp_model.predict(outgrp_preds['time']) fig = go.Figure( data=go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (US)']['num_nonsyn_muts'], x=dists_df[dists_df['group']=='B.1.1.7 (US)']['date'], name='B.1.1.7 (US)', mode='markers', marker_color='rgba(220,20,60,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['num_nonsyn_muts'], x=dists_df[dists_df['group']=='B.1.1.7 (non-US)']['date'], mode='markers', marker_color='rgba(30,144,255,.6)', name='B.1.1.7 (non-US)' )) fig.add_trace(go.Scatter(y=b117_preds['predictions'], x=b117_preds['date'], name='OLS (B.1.1.7)', mode='lines', line_color='rgba(30,144,255,.6)')) fig.add_trace( go.Scatter(y=dists_df[dists_df['group']=='outgroup']['num_nonsyn_muts'], x=dists_df[dists_df['group']=='outgroup']['date'], mode='markers', marker_color='rgba(0,0,0,.6)', name='outgroup' )) fig.add_trace(go.Scatter(y=outgrp_preds['predictions'], x=outgrp_preds['date'], name='OLS (outgroup)', mode='lines', line_color='rgba(0,0,0,1.)')) fig.update_layout(yaxis_title='Amino Acid Changes (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, return fig def aa_distance(subs_fp, meta_fp, alpha=0.05): alab_subs = pd.read_csv(subs_fp) alab_subs.loc[:, 'nonsyn'] = False alab_subs.loc[alab_subs['ref_aa']!=alab_subs['alt_aa'], 'nonsyn'] = True alab_subs.loc[:, 'S_nonsyn'] = False alab_subs.loc[(alab_subs['gene']=='S') & (alab_subs['ref_aa']!=alab_subs['alt_aa']), 'S_nonsyn'] = True dists_df = (alab_subs.groupby('fasta_hdr') .agg(num_nonsyn_muts=('nonsyn', 'sum'), num_S_nonsyn_muts=('S_nonsyn', 'sum')) .reset_index()) meta = pd.read_csv(meta_fp) sd_meta = meta[meta['location'].str.contains('San Diego')] df = pd.merge(dists_df, sd_meta, on='fasta_hdr') df.loc[:, 'date'] = pd.to_datetime(df['collection_date'], errors='coerce') df.loc[:, 'month'] = df['date'].dt.month df.loc[:, 'doy'] = df['date'].dt.dayofyear df = df.loc[~df['doy'].isna()].copy() model = ols('num_nonsyn_muts ~ doy', data=df).fit() df.loc[:, 'predict'] = model.predict(df['doy']) df.loc[:, 'p'] = model.outlier_test(method='fdr_bh')['fdr_bh(p)'] df.loc[:, 'outlier'] = False df.loc[df['p']<alpha, 'outlier'] = True fig = go.Figure( data=go.Scatter(y=df[df['outlier']==False]['num_nonsyn_muts'], x=df[df['outlier']==False]['date'], name='samples', mode='markers', marker_color='rgba(30,144,255,.6)')) fig.add_trace(go.Scatter(y=df[df['outlier']==True]['num_nonsyn_muts'], x=df[df['outlier']==True]['date'], mode='markers', marker_color='rgba(220,20,60,.6)', name='SoIs', text=df[df['outlier']==True][['ID', 'date']], hovertemplate = "<b>%{text[0]}</b><br>" + "<b>%{text[1]}</b><br>")) fig.add_trace(go.Scatter(y=df['predict'], x=df['date'], name='OLS', mode='lines', line_color='rgba(0,0,0,1.)')) fig.update_layout(yaxis_title='Amino Acid Changes (root-to-tip)', xaxis_title='Collection Date', template='plotly_white', autosize=True)#, height=850, width=800) return fig def fetch_s_muts(series): muts = [m for m in series.unique() if m[0]=='S'] return muts def s_aa_distance(subs_fp, meta_fp, alpha=0.05): alab_subs = pd.read_csv(subs_fp) alab_subs.loc[:, 'mutation'] = alab_subs['gene']+':'+alab_subs['codon_num'].astype(str)+alab_subs['alt_aa'] alab_subs.loc[:, 'nonsyn'] = False alab_subs.loc[alab_subs['ref_aa']!=alab_subs['alt_aa'], 'nonsyn'] = True alab_subs.loc[:, 'S_nonsyn'] = False alab_subs.loc[(alab_subs['gene']=='S') & (alab_subs['ref_aa']!=alab_subs['alt_aa']), 'S_nonsyn'] = True alab_subs = alab_subs[alab_subs['S_nonsyn']==True] dists_df = (alab_subs.groupby('fasta_hdr') .agg(num_nonsyn_muts=('nonsyn', 'sum'), num_S_nonsyn_muts=('S_nonsyn', 'sum'), S_nonsyn_muts=('mutation', fetch_s_muts)) .reset_index()) meta = pd.read_csv(meta_fp) sd_meta = meta[meta['location'].str.contains('San Diego')] df =
pd.merge(dists_df, sd_meta, on='fasta_hdr')
pandas.merge
import os from datetime import datetime import pandas as pd from pytest import fixture from socceraction.data.opta import ( OptaCompetitionSchema, OptaGameSchema, OptaPlayerSchema, OptaTeamSchema, ) from socceraction.data.opta.parsers import MA1JSONParser @fixture() def ma1json_parser() -> MA1JSONParser: path = os.path.join( os.path.dirname(__file__), os.pardir, os.pardir, os.pardir, "datasets", "opta", "ma1_408bfjw6uz5k19zk4am50ykmh.json", ) return MA1JSONParser(str(path)) def test_extract_competitions(ma1json_parser: MA1JSONParser) -> None: competitions = ma1json_parser.extract_competitions() assert len(competitions) == 1 assert competitions[("722fdbecxzcq9788l6jqclzlw", "408bfjw6uz5k19zk4am50ykmh")] == { "competition_id": "722fdbecxzcq9788l6jqclzlw", "season_id": "408bfjw6uz5k19zk4am50ykmh", "competition_name": "2. Bundesliga", "season_name": "2015/2016", } OptaCompetitionSchema.validate(pd.DataFrame.from_dict(competitions, orient="index")) def test_extract_games(ma1json_parser: MA1JSONParser) -> None: games = ma1json_parser.extract_games() assert len(games) == 1 assert games["bsu6pjne1eqz2hs8r3685vbhl"] == { "game_id": "bsu6pjne1eqz2hs8r3685vbhl", "season_id": "408bfjw6uz5k19zk4am50ykmh", "competition_id": "722fdbecxzcq9788l6jqclzlw", "game_day": 22, "game_date": datetime(2016, 2, 20, 12, 0), "home_team_id": "aojwbjr39s1w2mcd9l2bf2dhk", "away_team_id": "kxpw3rqn4ukt7nqmtjj62lbn", "venue": "BBBank Wildpark", "away_score": 2, "home_score": 2, "duration": 93, "attendance": 12746, "referee": "<NAME>", } OptaGameSchema.validate(
pd.DataFrame.from_dict(games, orient="index")
pandas.DataFrame.from_dict
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, date_range, offsets import pandas._testing as tm class TestDataFrameShift: def test_shift(self, datetime_frame, int_frame): # naive shift shiftedFrame = datetime_frame.shift(5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) shiftedFrame = datetime_frame.shift(-5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(-5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) # shift by 0 unshifted = datetime_frame.shift(0) tm.assert_frame_equal(unshifted, datetime_frame) # shift by DateOffset shiftedFrame = datetime_frame.shift(5, freq=offsets.BDay()) assert len(shiftedFrame) == len(datetime_frame) shiftedFrame2 = datetime_frame.shift(5, freq="B") tm.assert_frame_equal(shiftedFrame, shiftedFrame2) d = datetime_frame.index[0] shifted_d = d + offsets.BDay(5) tm.assert_series_equal( datetime_frame.xs(d), shiftedFrame.xs(shifted_d), check_names=False ) # shift int frame int_shifted = int_frame.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal( unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values ) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, offsets.BDay()) tm.assert_frame_equal(shifted2, shifted3) tm.assert_frame_equal(ps, shifted2.shift(-1, "B")) msg = "does not match PeriodIndex freq" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # shift other axis # GH#6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis=1) tm.assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis="columns") tm.assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({"high": [True, False], "low": [False, False]}) rs = df.shift(1) xp = DataFrame( np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=["high", "low"], ) tm.assert_frame_equal(rs, xp) def test_shift_categorical(self): # GH#9416 s1 = Series(["a", "b", "c"], dtype="category") s2 = Series(["A", "B", "C"], dtype="category") df = DataFrame({"one": s1, "two": s2}) rs = df.shift(1) xp = DataFrame({"one": s1.shift(1), "two": s2.shift(1)}) tm.assert_frame_equal(rs, xp) def test_shift_fill_value(self): # GH#24128 df = DataFrame( [1, 2, 3, 4, 5], index=date_range("1/1/2000", periods=5, freq="H") ) exp = DataFrame( [0, 1, 2, 3, 4], index=date_range("1/1/2000", periods=5, freq="H") ) result = df.shift(1, fill_value=0) tm.assert_frame_equal(result, exp) exp = DataFrame( [0, 0, 1, 2, 3], index=date_range("1/1/2000", periods=5, freq="H") ) result = df.shift(2, fill_value=0) tm.assert_frame_equal(result, exp) def test_shift_empty(self): # Regression test for GH#8019 df = DataFrame({"foo": []}) rs = df.shift(-1) tm.assert_frame_equal(df, rs) def test_shift_duplicate_columns(self): # GH#9092; verify that position-based shifting works # in the presence of duplicate columns column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]] data = np.random.randn(20, 5) shifted = [] for columns in column_lists: df = pd.DataFrame(data.copy(), columns=columns) for s in range(5): df.iloc[:, s] = df.iloc[:, s].shift(s + 1) df.columns = range(5) shifted.append(df) # sanity check the base case nulls = shifted[0].isna().sum() tm.assert_series_equal(nulls, Series(range(1, 6), dtype="int64")) # check all answers are the same tm.assert_frame_equal(shifted[0], shifted[1]) tm.assert_frame_equal(shifted[0], shifted[2]) def test_shift_axis1_multiple_blocks(self): # GH#35488 df1 = pd.DataFrame(np.random.randint(1000, size=(5, 3))) df2 = pd.DataFrame(np.random.randint(1000, size=(5, 2))) df3 = pd.concat([df1, df2], axis=1) assert len(df3._mgr.blocks) == 2 result = df3.shift(2, axis=1) expected = df3.take([-1, -1, 0, 1, 2], axis=1) expected.iloc[:, :2] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) # Case with periods < 0 # rebuild df3 because `take` call above consolidated df3 = pd.concat([df1, df2], axis=1) assert len(df3._mgr.blocks) == 2 result = df3.shift(-2, axis=1) expected = df3.take([2, 3, 4, -1, -1], axis=1) expected.iloc[:, -2:] = np.nan expected.columns = df3.columns tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning") def test_tshift(self, datetime_frame): # TODO: remove this test when tshift deprecation is enforced # PeriodIndex ps = tm.makePeriodFrame() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) tm.assert_frame_equal(unshifted, ps) shifted2 = ps.tshift(freq="B") tm.assert_frame_equal(shifted, shifted2) shifted3 = ps.tshift(freq=offsets.BDay()) tm.assert_frame_equal(shifted, shifted3) msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.tshift(freq="M") # DatetimeIndex shifted = datetime_frame.tshift(1) unshifted = shifted.tshift(-1) tm.assert_frame_equal(datetime_frame, unshifted) shifted2 = datetime_frame.tshift(freq=datetime_frame.index.freq) tm.assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame( datetime_frame.values, Index(np.asarray(datetime_frame.index)), columns=datetime_frame.columns, ) shifted = inferred_ts.tshift(1) expected = datetime_frame.tshift(1) expected.index = expected.index._with_freq(None) tm.assert_frame_equal(shifted, expected) unshifted = shifted.tshift(-1) tm.assert_frame_equal(unshifted, inferred_ts) no_freq = datetime_frame.iloc[[0, 5, 7], :] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.tshift() def test_tshift_deprecated(self, datetime_frame): # GH#11631 with tm.assert_produces_warning(FutureWarning): datetime_frame.tshift() def test_period_index_frame_shift_with_freq(self): ps = tm.makePeriodFrame() shifted = ps.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer") tm.assert_frame_equal(unshifted, ps) shifted2 = ps.shift(freq="B") tm.assert_frame_equal(shifted, shifted2) shifted3 = ps.shift(freq=offsets.BDay()) tm.assert_frame_equal(shifted, shifted3) def test_datetime_frame_shift_with_freq(self, datetime_frame): shifted = datetime_frame.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer") tm.assert_frame_equal(datetime_frame, unshifted) shifted2 = datetime_frame.shift(freq=datetime_frame.index.freq) tm.assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame( datetime_frame.values, Index(np.asarray(datetime_frame.index)), columns=datetime_frame.columns, ) shifted = inferred_ts.shift(1, freq="infer") expected = datetime_frame.shift(1, freq="infer") expected.index = expected.index._with_freq(None) tm.assert_frame_equal(shifted, expected) unshifted = shifted.shift(-1, freq="infer") tm.assert_frame_equal(unshifted, inferred_ts) def test_period_index_frame_shift_with_freq_error(self): ps = tm.makePeriodFrame() msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.shift(freq="M") def test_datetime_frame_shift_with_freq_error(self, datetime_frame): no_freq = datetime_frame.iloc[[0, 5, 7], :] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.shift(freq="infer") def test_shift_dt64values_int_fill_deprecated(self): # GH#31971 ser = Series([
pd.Timestamp("2020-01-01")
pandas.Timestamp
#!/usr/bin/env python import os, sys import pandas as pd import subprocess as sp from pdb import set_trace sOutput_dir = sys.argv[1] def Parsing_summary(): if not os.path.isdir("{outdir}/Summary_result".format(outdir=sOutput_dir)): os.mkdir("{outdir}/Summary_result".format(outdir=sOutput_dir)) sp.call('cat {outdir}/Summary/*.txt > {outdir}/Summary/Summary_all.txt'.format(outdir=sOutput_dir), shell=True) dfSummary = pd.read_table('{outdir}/Summary/Summary_all.txt'.format(outdir=sOutput_dir), header=None) dfSummary.columns = ['Barcode', 'Total', 'Insertion', 'Deletion', 'Complex'] dfSummary = dfSummary.groupby(['Barcode']).sum() dfSummary['Total_indel'] = dfSummary['Insertion'] + dfSummary['Deletion'] + dfSummary['Complex'] dfSummary['IND/TOT'] = dfSummary['Total_indel'] / dfSummary['Total'] dfSummary['IND/TOT'].fillna(0, inplace=True) dfSummary.to_csv('{outdir}/Summary_result/Summary_result.tsv'.format(outdir=sOutput_dir), sep='\t') def Annotate_final_result(): dfCount_INDEL = pd.read_table('{outdir}/result/freq/freq_result/Indel_summary.txt'.format(outdir=sOutput_dir), header=None) dfSummary = pd.read_table('{outdir}/Summary_result/Summary_result.tsv'.format(outdir=sOutput_dir), index_col='Barcode') dfCount_INDEL[0] = dfCount_INDEL[0].str.replace('.INDEL_freq.txt', '') dfCount_INDEL.set_index(0, inplace=True) dfConcat_result =
pd.concat([dfCount_INDEL, dfSummary.loc[:,['Total_indel', 'Total', 'IND/TOT']]],axis=1)
pandas.concat
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with datetime-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(pd.timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts # ------------------------------------------------------------------ # Operations with timedelta-like others (including DateOffsets) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly leading " "to alignment error", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - NaT tm.assert_equal(res, expected) class TestTimedeltaArraylikeMulDivOps(object): # Tests for timedelta64[ns] # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ # ------------------------------------------------------------------ # __floordiv__, __rfloordiv__ @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly returns " "m8[ns] instead of f8", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()]) def test_td64arr_floordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([0, 0, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = td1 // scalar_td tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Incorrectly casts to f8", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()]) def test_td64arr_rfloordiv_tdscalar(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) result = scalar_td // td1 tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns m8[ns] dtype " "instead of f8", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()]) def test_td64arr_rfloordiv_tdscalar_explicit(self, box, scalar_td): # GH#18831 td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan expected = Series([1, 1, np.nan]) td1 = tm.box_expected(td1, box) expected = tm.box_expected(expected, box) # We can test __rfloordiv__ using this syntax, # see `test_timedelta_rfloordiv` result = td1.__rfloordiv__(scalar_td) tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with timedelta-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="__mul__ op treats " "timedelta other as i8; " "rmul OK", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('scalar_td', [ timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()]) def test_td64arr_mul_tdscalar_invalid(self, box, scalar_td): td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 = tm.box_expected(td1, box) # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined pattern = 'operate|unsupported|cannot|not supported' with tm.assert_raises_regex(TypeError, pattern): td1 * scalar_td with tm.assert_raises_regex(TypeError, pattern): scalar_td * td1 # ------------------------------------------------------------------ # Operations with numeric others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('one', [1, np.array(1), 1.0, np.array(1.0)]) def test_td64arr_mul_numeric_scalar(self, box, one, tdser): # GH#4521 # divide/multiply by integers expected = Series(['-59 Days', '-59 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser * (-one) tm.assert_equal(result, expected) result = (-one) * tdser tm.assert_equal(result, expected) expected = Series(['118 Days', '118 Days', 'NaT'], dtype='timedelta64[ns]') expected = tm.box_expected(expected, box) result = tdser * (2 * one) tm.assert_equal(result, expected) result = (2 * one) * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object-dtype", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('two', [2, 2.0, np.array(2), np.array(2.0)]) def test_td64arr_div_numeric_scalar(self, box, two, tdser): # GH#4521 # divide/multiply by integers expected = Series(['29.5D', '29.5D', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) result = tdser / two tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])]) def test_td64arr_mul_numeric_array(self, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) # TODO: Make this up-casting more systematic? box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = tdser * vector tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])], ids=lambda x: type(x).__name__) def test_td64arr_rmul_numeric_array(self, box, vector, dtype, tdser): # GH#4521 # divide/multiply by integers vector = vector.astype(dtype) expected = Series(['1180 Days', '1770 Days', 'NaT'], dtype='timedelta64[ns]') tdser = tm.box_expected(tdser, box) box = Series if (box is pd.Index and type(vector) is Series) else box expected = tm.box_expected(expected, box) result = vector * tdser tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vector', [np.array([20, 30, 40]),
pd.Index([20, 30, 40])
pandas.Index
# -*- coding: utf-8 -*- """ Created on Fri Aug 2 16:39:25 2019 @author: Shane """ import numpy as np import pandas as pd from pandas import Series, DataFrame import scipy import scipy.stats as stats import glob import statsmodels.stats.api as sms #import matplotlib for plotting import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.ticker import ScalarFormatter, LogFormatter import seaborn as sns import math from scipy.spatial import distance #import os to handle operating system import os #============================================================================= #import files to analyze datadir = "D:\\Goode_Lab\\Projects\\actin_cables\\data\\summary_data\\" #initalize data frame to append all data df = pd.DataFrame() #import data to dataframe df = pd.read_csv(datadir + '201210_cdc28-13ts_t-8_t1_yBG12_yBG9_all_cable_analysis.csv') #============================================================================= #parse the data into the necessary strain types for plotting #setup df with only yBG12 cells df_hap = pd.DataFrame() df_hap = df.loc[(df['strain']=='yBG12')].reset_index() #setup df with only yBG9 cells df_dip = pd.DataFrame() df_dip = df.loc[(df['strain']=='yBG9')].reset_index() #setup df with only uninduced cdc28 cells df_cdcu = pd.DataFrame() df_cdcu = df.loc[(df['strain']=='cdc28-13ts, t0')].reset_index() #setup df with only induced cdc28 cells df_cdci = pd.DataFrame() df_cdci = df.loc[(df['strain']=='cdc28-13ts, t8')].reset_index() #============================================================================== # Bin the data frame by "cell diameter" with 10 bins... d_bins = np.linspace(df.cell_diameter.min(), df.cell_diameter.max(), 11) # Get the mean of parameters, binned by the values in cell diameter d_binned_data = pd.DataFrame() d_binned_data = df.groupby(pd.cut(df.cell_diameter, d_bins)).mean() d_binned_err = pd.DataFrame() d_binned_err = df.groupby(pd.cut(df.cell_diameter, d_bins)).std() # Bin the data frame by "cell volume" with 10 bins... v_bins = np.linspace(df.cell_volume.min(), df.cell_volume.max(), 11) # Get the mean of parameters, binned by the values in cell diameter v_binned_data = pd.DataFrame() v_binned_data = df.groupby(pd.cut(df.cell_volume, v_bins)).mean() v_binned_err = pd.DataFrame() v_binned_err = df.groupby(
pd.cut(df.cell_volume, v_bins)
pandas.cut
import itertools import json import logging import os import traceback import uuid from copy import deepcopy from typing import Union, List, Dict import genet.auxiliary_files as auxiliary_files import genet.exceptions as exceptions import genet.modify.change_log as change_log import genet.modify.graph as modify_graph import genet.modify.schedule as modify_schedule import genet.outputs_handler.geojson as geojson import genet.outputs_handler.matsim_xml_writer as matsim_xml_writer import genet.outputs_handler.sanitiser as sanitiser import genet.schedule_elements as schedule_elements import genet.utils.dict_support as dict_support import genet.utils.graph_operations as graph_operations import genet.utils.pandas_helpers as pd_helpers import genet.utils.parallel as parallel import genet.utils.persistence as persistence import genet.utils.plot as plot import genet.utils.simplification as simplification import genet.utils.spatial as spatial import genet.validate.network_validation as network_validation import geopandas as gpd import networkx as nx import numpy as np import pandas as pd from pyproj import Transformer from s2sphere import CellId logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO) class Network: def __init__(self, epsg): self.epsg = epsg self.transformer = Transformer.from_crs(epsg, 'epsg:4326', always_xy=True) self.graph = nx.MultiDiGraph(name='Network graph', crs=self.epsg, simplified=False) self.schedule = schedule_elements.Schedule(epsg) self.change_log = change_log.ChangeLog() self.auxiliary_files = {'node': {}, 'link': {}} # link_id_mapping maps between (usually string literal) index per edge to the from and to nodes that are # connected by the edge self.link_id_mapping = {} def __repr__(self): return f"<{self.__class__.__name__} instance at {id(self)}: with \ngraph: {nx.info(self.graph)} and " \ f"\nschedule {self.schedule.info()}" def __str__(self): return self.info() def add(self, other): """ This let's you add on `other` genet.Network to the network this method is called on. This is deliberately not a magic function to discourage `new_network = network_1 + network_2` (and memory goes out the window) :param other: :return: """ if self.is_simplified() != other.is_simplified(): raise RuntimeError('You cannot add simplified and non-simplified networks together') # consolidate coordinate systems if other.epsg != self.epsg: logging.info(f'Attempting to merge two networks in different coordinate systems. ' f'Reprojecting from {other.epsg} to {self.epsg}') other.reproject(other.epsg) # consolidate node ids other = graph_operations.consolidate_node_indices(self, other) # consolidate link ids other = graph_operations.consolidate_link_indices(self, other) # finally, once the node and link ids have been sorted, combine the graphs # nx.compose(left, right) overwrites data in left with data in right under matching ids self.graph = nx.compose(other.graph, self.graph) # finally, combine link_id_mappings self.link_id_mapping = {**other.link_id_mapping, **self.link_id_mapping} # combine schedules self.schedule.add(other.schedule) # merge change_log DataFrames self.change_log = self.change_log.merge_logs(other.change_log) def print(self): print(self.info()) def info(self): return f"Graph info: {nx.info(self.graph)} \nSchedule info: {self.schedule.info()}" def plot(self, output_dir='', data=False): """ Plots the network graph and schedule on kepler map. Ensure all prerequisites are installed https://docs.kepler.gl/docs/keplergl-jupyter#install :param output_dir: output directory for the image, if passed, will save plot to html :param data: Defaults to False, only the geometry and ID will be visible. True will visualise all data on the map (not suitable for large networks) A set of keys e.g. {'freespeed', 'capacity'} :return: """ if not self.schedule: logging.warning('This Network does not have a PT schedule. Only the graph will be visualised.') return self.plot_graph(output_dir=output_dir) network_links = self.to_geodataframe()['links'] schedule_routes = self.schedule_network_routes_geodataframe() if data is not True: network_links = sanitiser._subset_plot_gdf(data, network_links, base_keys={'id', 'geometry'}) schedule_routes = sanitiser._subset_plot_gdf(data, schedule_routes, base_keys={'route_id', 'geometry'}) m = plot.plot_geodataframes_on_kepler_map( {'network_links': sanitiser.sanitise_geodataframe(network_links), 'schedule_routes': sanitiser.sanitise_geodataframe(schedule_routes)}, kepler_config='network_with_pt' ) if output_dir: persistence.ensure_dir(output_dir) m.save_to_html(file_name=os.path.join(output_dir, 'network_with_pt_routes.html')) return m def plot_graph(self, output_dir='', data=False): """ Plots the network graph only on kepler map. Ensure all prerequisites are installed https://docs.kepler.gl/docs/keplergl-jupyter#install :param output_dir: output directory for the image, if passed, will save plot to html :param data: Defaults to False, only the geometry and ID will be visible. True will visualise all data on the map (not suitable for large networks) A set of keys e.g. {'freespeed', 'capacity'} :return: """ network_links = self.to_geodataframe()['links'] if data is not True: network_links = sanitiser._subset_plot_gdf(data, network_links, base_keys={'id', 'geometry'}) m = plot.plot_geodataframes_on_kepler_map( {'network_links': sanitiser.sanitise_geodataframe(network_links)}, kepler_config='network_with_pt' ) if output_dir: persistence.ensure_dir(output_dir) m.save_to_html(file_name=os.path.join(output_dir, 'network_graph.html')) return m def plot_schedule(self, output_dir='', data=False): """ Plots original stop connections in the network's schedule over the network graph on kepler map. Ensure all prerequisites are installed https://docs.kepler.gl/docs/keplergl-jupyter#install :param output_dir: output directory for the image, if passed, will save plot to html :param data: Defaults to False, only the geometry and ID will be visible. True will visualise all data on the map (not suitable for large networks) A set of keys e.g. {'freespeed', 'capacity'} :return: """ network_links = self.to_geodataframe()['links'] schedule_gdf = self.schedule.to_geodataframe() if data is not True: network_links = sanitiser._subset_plot_gdf(data, network_links, base_keys={'id', 'geometry'}) schedule_gdf['links'] = sanitiser._subset_plot_gdf(data, schedule_gdf['links'], base_keys={'route_id', 'geometry'}) schedule_gdf['nodes'] = sanitiser._subset_plot_gdf(data, schedule_gdf['nodes'], base_keys={'id', 'geometry'}) m = plot.plot_geodataframes_on_kepler_map( {'network_links': sanitiser.sanitise_geodataframe(network_links), 'schedule_links': sanitiser.sanitise_geodataframe(schedule_gdf['links']), 'schedule_stops': sanitiser.sanitise_geodataframe(schedule_gdf['nodes'])}, kepler_config='network_and_schedule' ) if output_dir: persistence.ensure_dir(output_dir) m.save_to_html(file_name=os.path.join(output_dir, 'network_and_schedule.html')) return m def reproject(self, new_epsg, processes=1): """ Changes projection of the network to new_epsg :param new_epsg: 'epsg:1234' :param processes: max number of process to split computation across :return: """ # reproject nodes nodes_attribs = dict(self.nodes()) new_nodes_attribs = parallel.multiprocess_wrap( data=nodes_attribs, split=parallel.split_dict, apply=modify_graph.reproj, combine=parallel.combine_dict, processes=processes, from_proj=self.epsg, to_proj=new_epsg) self.apply_attributes_to_nodes(new_nodes_attribs) # reproject geometries gdf_geometries = gpd.GeoDataFrame(self.link_attribute_data_under_keys(['geometry']), crs=self.epsg) gdf_geometries = gdf_geometries.to_crs(new_epsg) new_link_attribs = gdf_geometries.T.to_dict() self.apply_attributes_to_links(new_link_attribs) if self.schedule: self.schedule.reproject(new_epsg, processes) self.initiate_crs_transformer(new_epsg) self.graph.graph['crs'] = self.epsg def initiate_crs_transformer(self, epsg): self.epsg = epsg if epsg != 'epsg:4326': self.transformer = Transformer.from_crs(epsg, 'epsg:4326', always_xy=True) else: self.transformer = None def simplify(self, no_processes=1): if self.is_simplified(): raise RuntimeError('This network has already been simplified. You cannot simplify the graph twice.') simplification.simplify_graph(self, no_processes) # mark graph as having been simplified self.graph.graph["simplified"] = True def is_simplified(self): return self.graph.graph["simplified"] def node_attribute_summary(self, data=False): """ Parses through data stored on nodes and gives a summary tree of the data stored on the nodes. If data is True, shows also up to 5 unique values stored under such keys. :param data: bool, False by default :return: """ root = graph_operations.get_attribute_schema(self.nodes(), data=data) graph_operations.render_tree(root, data) def node_attribute_data_under_key(self, key): """ Generates a pandas.Series object indexed by node ids, with data stored on the nodes under `key` :param key: either a string e.g. 'x', or if accessing nested information, a dictionary e.g. {'attributes': {'osm:way:name': 'text'}} :return: pandas.Series """ data = graph_operations.get_attribute_data_under_key(self.nodes(), key) return pd.Series(data, dtype=pd_helpers.get_pandas_dtype(data)) def node_attribute_data_under_keys(self, keys: Union[list, set], index_name=None): """ Generates a pandas.DataFrame object indexed by link ids, with data stored on the nodes under `key` :param keys: list of either a string e.g. 'x', or if accessing nested information, a dictionary e.g. {'attributes': {'osm:way:name': 'text'}} :param index_name: optional, gives the index_name to dataframes index :return: pandas.DataFrame """ return graph_operations.build_attribute_dataframe(self.nodes(), keys=keys, index_name=index_name) def link_attribute_summary(self, data=False): """ Parses through data stored on links and gives a summary tree of the data stored on the links. If data is True, shows also up to 5 unique values stored under such keys. :param data: bool, False by default :return: """ root = graph_operations.get_attribute_schema(self.links(), data=data) graph_operations.render_tree(root, data) def link_attribute_data_under_key(self, key: Union[str, dict]): """ Generates a pandas.Series object indexed by link ids, with data stored on the links under `key` :param key: either a string e.g. 'modes', or if accessing nested information, a dictionary e.g. {'attributes': {'osm:way:name': 'text'}} :return: pandas.Series """ return pd.Series(graph_operations.get_attribute_data_under_key(self.links(), key)) def link_attribute_data_under_keys(self, keys: Union[list, set], index_name=None): """ Generates a pandas.DataFrame object indexed by link ids, with data stored on the links under `key` :param keys: list of either a string e.g. 'modes', or if accessing nested information, a dictionary e.g. {'attributes': {'osm:way:name': 'text'}} :param index_name: optional, gives the index_name to dataframes index :return: pandas.DataFrame """ return graph_operations.build_attribute_dataframe(self.links(), keys=keys, index_name=index_name) def extract_nodes_on_node_attributes(self, conditions: Union[list, dict], how=any, mixed_dtypes=True): """ Extracts graph node IDs based on values of attributes saved on the nodes. Fails silently, assumes not all nodes have all of the attributes. In the case were the attributes stored are a list or set, like in the case of a simplified network (there will be a mix of objects that are sets and not) an intersection of values satisfying condition(s) is considered in case of iterable value, if not empty, it is deemed successful by default. To disable this behaviour set mixed_dtypes to False. :param conditions: {'attribute_key': 'target_value'} or nested {'attribute_key': {'another_key': {'yet_another_key': 'target_value'}}}, where 'target_value' could be - single value, string, int, float, where the edge_data[key] == value (if mixed_dtypes==True and in case of set/list edge_data[key], value is in edge_data[key]) - list or set of single values as above, where edge_data[key] in [value1, value2] (if mixed_dtypes==True and in case of set/list edge_data[key], set(edge_data[key]) & set([value1, value2]) is non-empty) - for int or float values, two-tuple bound (lower_bound, upper_bound) where lower_bound <= edge_data[key] <= upper_bound (if mixed_dtypes==True and in case of set/list edge_data[key], at least one item in edge_data[key] satisfies lower_bound <= item <= upper_bound) - function that returns a boolean given the value e.g. def below_exclusive_upper_bound(value): return value < 100 (if mixed_dtypes==True and in case of set/list edge_data[key], at least one item in edge_data[key] returns True after applying function) :param how : {all, any}, default any The level of rigour used to match conditions * all: means all conditions need to be met * any: means at least one condition needs to be met :param mixed_dtypes: True by default, used if values under dictionary keys queried are single values or lists of values e.g. as in simplified networks. :return: list of node ids in the network satisfying conditions """ return graph_operations.extract_on_attributes( self.nodes(), conditions=conditions, how=how, mixed_dtypes=mixed_dtypes) def extract_links_on_edge_attributes(self, conditions: Union[list, dict], how=any, mixed_dtypes=True): """ Extracts graph link IDs based on values of attributes saved on the edges. Fails silently, assumes not all links have those attributes. In the case were the attributes stored are a list or set, like in the case of a simplified network (there will be a mix of objects that are sets and not) an intersection of values satisfying condition(s) is considered in case of iterable value, if not empty, it is deemed successful by default. To disable this behaviour set mixed_dtypes to False. :param conditions: {'attribute_key': 'target_value'} or nested {'attribute_key': {'another_key': {'yet_another_key': 'target_value'}}}, where 'target_value' could be - single value, string, int, float, where the edge_data[key] == value (if mixed_dtypes==True and in case of set/list edge_data[key], value is in edge_data[key]) - list or set of single values as above, where edge_data[key] in [value1, value2] (if mixed_dtypes==True and in case of set/list edge_data[key], set(edge_data[key]) & set([value1, value2]) is non-empty) - for int or float values, two-tuple bound (lower_bound, upper_bound) where lower_bound <= edge_data[key] <= upper_bound (if mixed_dtypes==True and in case of set/list edge_data[key], at least one item in edge_data[key] satisfies lower_bound <= item <= upper_bound) - function that returns a boolean given the value e.g. def below_exclusive_upper_bound(value): return value < 100 (if mixed_dtypes==True and in case of set/list edge_data[key], at least one item in edge_data[key] returns True after applying function) :param how : {all, any}, default any The level of rigour used to match conditions * all: means all conditions need to be met * any: means at least one condition needs to be met :param mixed_dtypes: True by default, used if values under dictionary keys queried are single values or lists of values e.g. as in simplified networks. :return: list of link ids in the network satisfying conditions """ return graph_operations.extract_on_attributes( self.links(), conditions=conditions, how=how, mixed_dtypes=mixed_dtypes) def links_on_modal_condition(self, modes: Union[str, list]): """ Finds link IDs with modes or singular mode given in `modes` :param modes: string mode e.g. 'car' or a list of such modes e.g. ['car', 'walk'] :return: list of link IDs """ return self.extract_links_on_edge_attributes(conditions={'modes': modes}, mixed_dtypes=True) def nodes_on_modal_condition(self, modes: Union[str, list]): """ Finds node IDs with modes or singular mode given in `modes` :param modes: string mode e.g. 'car' or a list of such modes e.g. ['car', 'walk'] :return: list of link IDs """ links = self.links_on_modal_condition(modes) nodes = {self.link(link)['from'] for link in links} | {self.link(link)['to'] for link in links} return list(nodes) def modal_subgraph(self, modes: Union[str, set, list]): return self.subgraph_on_link_conditions(conditions={'modes': modes}, mixed_dtypes=True) def nodes_on_spatial_condition(self, region_input): """ Returns node IDs which intersect region_input :param region_input: - path to a geojson file, can have multiple features - string with comma separated hex tokens of Google's S2 geometry, a region can be covered with cells and the tokens string copied using http://s2.sidewalklabs.com/regioncoverer/ e.g. '89c25985,89c25987,89c2598c,89c25994,89c25999ffc,89c2599b,89c259ec,89c259f4,89c25a1c,89c25a24' - shapely.geometry object, e.g. Polygon or a shapely.geometry.GeometryCollection of such objects :return: node IDs """ if not isinstance(region_input, str): # assumed to be a shapely.geometry input gdf = self.to_geodataframe()['nodes'].to_crs("epsg:4326") return self._find_ids_on_shapely_geometry(gdf, how='intersect', shapely_input=region_input) elif persistence.is_geojson(region_input): gdf = self.to_geodataframe()['nodes'].to_crs("epsg:4326") return self._find_ids_on_geojson(gdf, how='intersect', geojson_input=region_input) else: # is assumed to be hex return self._find_node_ids_on_s2_geometry(region_input) def links_on_spatial_condition(self, region_input, how='intersect'): """ Returns link IDs which intersect region_input :param region_input: - path to a geojson file, can have multiple features - string with comma separated hex tokens of Google's S2 geometry, a region can be covered with cells and the tokens string copied using http://s2.sidewalklabs.com/regioncoverer/ e.g. '89c25985,89c25987,89c2598c,89c25994,89c25999ffc,89c2599b,89c259ec,89c259f4,89c25a1c,89c25a24' - shapely.geometry object, e.g. Polygon or a shapely.geometry.GeometryCollection of such objects :param how: - 'intersect' default, will return IDs of the Services whose at least one Stop intersects the region_input - 'within' will return IDs of the Services whose all of the Stops are contained within the region_input :return: link IDs """ gdf = self.to_geodataframe()['links'].to_crs("epsg:4326") if not isinstance(region_input, str): # assumed to be a shapely.geometry input return self._find_ids_on_shapely_geometry(gdf, how, region_input) elif persistence.is_geojson(region_input): return self._find_ids_on_geojson(gdf, how, region_input) else: # is assumed to be hex return self._find_link_ids_on_s2_geometry(gdf, how, region_input) def subnetwork(self, links: Union[list, set], services: Union[list, set] = None, strongly_connected_modes: Union[list, set] = None, n_connected_components: int = 1): """ Subset a Network object using a collection of link IDs and (optionally) service IDs :param links: Link IDs to be retained in the new Network :param services: optional, collection of service IDs in the Schedule for subsetting. :param strongly_connected_modes: modes in the network that need to be strongly connected. For MATSim those are modes that agents are allowed to route on. Defaults to {'car', 'walk', 'bike'} :param n_connected_components: number of expected strongly connected components for `the strongly_connected_modes`. Defaults to 1, as that is what MATSim expects. Other number may be used if disconnected islands are expected, and then connected up using the `connect_components` method. :return: A new Network object that is a subset of the original """ logging.info('Subsetting a Network will likely result in a disconnected network graph. A cleaner will be ran ' 'that will remove links to make the resulting Network strongly connected for modes: ' 'car, walk, bike.') subnetwork = Network(epsg=self.epsg) links = set(links) if self.schedule: if services: logging.info( f'Schedule will be subsetted using given services: {services}. Links pertaining to their ' 'network routes will also be retained.') subschedule = self.schedule.subschedule(services) routes = subschedule.route_attribute_data(keys=['route']) links = links | set(np.concatenate(routes['route'].values)) subnetwork.schedule = subschedule subnetwork.graph = self.subgraph_on_link_conditions(conditions={'id': links}) subnetwork.link_id_mapping = {k: v for k, v in self.link_id_mapping.items() if k in links} if strongly_connected_modes is None: logging.info("Param: strongly_connected_modes is defaulting to `{'car', 'walk', 'bike'}` " "You can change this behaviour by passing the parameter.") strongly_connected_modes = {'car', 'walk', 'bike'} for mode in strongly_connected_modes: if not subnetwork.is_strongly_connected(modes=mode): logging.warning(f'The graph for mode {mode} is not strongly connected. ' f'The largest {n_connected_components} connected components will be extracted.') if n_connected_components > 1: logging.info('Number of requested connected components is larger than 1. Consider using ' '`connect_components` method to create modal graphs that are strongly connected.') subnetwork.retain_n_connected_subgraphs(n=n_connected_components, mode=mode) # TODO Inherit and subset Auxiliary files logging.info('Subsetted Network is ready - do not forget to validate and visualise your subset!') return subnetwork def subnetwork_on_spatial_condition(self, region_input, how='intersect', strongly_connected_modes: Union[list, set] = None, n_connected_components: int = 1): """ Subset a Network object using a spatial bound :param region_input: - path to a geojson file, can have multiple features - string with comma separated hex tokens of Google's S2 geometry, a region can be covered with cells and the tokens string copied using http://s2.sidewalklabs.com/regioncoverer/ e.g. '89c25985,89c25987,89c2598c,89c25994,89c25999ffc,89c2599b,89c259ec,89c259f4,89c25a1c,89c25a24' - shapely.geometry object, e.g. Polygon or a shapely.geometry.GeometryCollection of such objects :param how: - 'intersect' default, will return IDs of the Services whose at least one Stop intersects the region_input - 'within' will return IDs of the Services whose all of the Stops are contained within the region_input :param strongly_connected_modes: modes in the network that need to be strongly connected. For MATSim those are modes that agents are allowed to route on. Defaults to {'car', 'walk', 'bike'} :param n_connected_components: number of expected strongly connected components for `the strongly_connected_modes`. Defaults to 1, as that is what MATSim expects. Other number may be used if disconnected islands are expected, and then connected up using the `connect_components` method. :return: A new Network object that is a subset of the original """ if self.schedule: services_to_keep = self.schedule.services_on_spatial_condition(region_input=region_input, how=how) else: services_to_keep = None subset_links = set(self.links_on_spatial_condition(region_input=region_input, how=how)) return self.subnetwork(links=subset_links, services=services_to_keep, strongly_connected_modes=strongly_connected_modes, n_connected_components=n_connected_components) def remove_mode_from_links(self, links: Union[set, list], mode: Union[set, list, str]): """ Method to remove modes from links. Deletes links which have no mode left after the process. :param links: collection of link IDs to remove the mode from :param mode: which mode to remove :return: updates graph """ def empty_modes(mode_attrib): if not mode_attrib: return True return False links = self._setify(links) mode = self._setify(mode) df = self.link_attribute_data_under_keys(['modes']) extra = links - set(df.index) if extra: logging.warning(f'The following links are not present: {extra}') df['modes'] = df['modes'].apply(lambda x: self._setify(x)) df = df.loc[links & set(df.index)][df['modes'].apply(lambda x: bool(mode & x))] df['modes'] = df['modes'].apply(lambda x: x - mode) self.apply_attributes_to_links(df.T.to_dict()) # remove links without modes no_mode_links = graph_operations.extract_on_attributes( self.links(), {'modes': empty_modes}, mixed_dtypes=False ) self.remove_links(no_mode_links) def retain_n_connected_subgraphs(self, n: int, mode: str): """ Method to remove modes from link which do not belong to largest connected n components. Deletes links which have no mode left after the process. :param n: number of components to retain :param mode: which mode to consider :return: updates graph """ modal_subgraph = self.modal_subgraph(mode) # calculate how many connected subgraphs there are connected_components = network_validation.find_connected_subgraphs(modal_subgraph) connected_components_nodes = [] for i in range(0, n): connected_components_nodes += connected_components[i][0] connected_subgraphs_to_extract = modal_subgraph.subgraph(connected_components_nodes).copy().edges.data('id') diff_links = set([e[2] for e in modal_subgraph.edges.data('id')]) - set( [e[2] for e in connected_subgraphs_to_extract]) logging.info(f'Extracting largest connected components resulted in mode: {mode} being deleted from ' f'{len(diff_links)} edges') self.remove_mode_from_links(diff_links, mode) def _find_ids_on_geojson(self, gdf, how, geojson_input): shapely_input = spatial.read_geojson_to_shapely(geojson_input) return self._find_ids_on_shapely_geometry(gdf=gdf, how=how, shapely_input=shapely_input) def _find_ids_on_shapely_geometry(self, gdf, how, shapely_input): if how == 'intersect': return list(gdf[gdf.intersects(shapely_input)]['id']) if how == 'within': return list(gdf[gdf.within(shapely_input)]['id']) else: raise NotImplementedError('Only `intersect` and `contain` options for `how` param.') def _find_node_ids_on_s2_geometry(self, s2_input): cell_union = spatial.s2_hex_to_cell_union(s2_input) return [_id for _id, s2_id in self.graph.nodes(data='s2_id') if cell_union.intersects(CellId(s2_id))] def _find_link_ids_on_s2_geometry(self, gdf, how, s2_input): gdf['geometry'] = gdf['geometry'].apply(lambda x: spatial.swap_x_y_in_linestring(x)) gdf['s2_geometry'] = gdf['geometry'].apply(lambda x: spatial.generate_s2_geometry(x)) gdf = gdf.set_index('id') links = gdf['s2_geometry'].T.to_dict() cell_union = spatial.s2_hex_to_cell_union(s2_input) if how == 'intersect': return [_id for _id, s2_geom in links.items() if any([cell_union.intersects(CellId(s2_id)) for s2_id in s2_geom])] elif how == 'within': return [_id for _id, s2_geom in links.items() if all([cell_union.intersects(CellId(s2_id)) for s2_id in s2_geom])] else: raise NotImplementedError('Only `intersect` and `within` options for `how` param.') def add_node(self, node: Union[str, int], attribs: dict = None, silent: bool = False): """ Adds a node. :param node: :param attribs: should include spatial information x,y in epsg cosistent with the network or lat lon in epsg:4326 :param silent: whether to mute stdout logging messages :return: """ if attribs is not None: self.graph.add_node(node, **attribs) else: self.graph.add_node(node) self.change_log.add(object_type='node', object_id=node, object_attributes=attribs) if not silent: logging.info(f'Added Node with index `{node}` and data={attribs}') return node def add_nodes(self, nodes_and_attribs: dict, silent: bool = False, ignore_change_log: bool = False): """ Adds nodes, reindexes if indices are clashing with nodes already in the network :param nodes_and_attribs: {index_for_node: {attribute dictionary for that node}} :param silent: whether to mute stdout logging messages :param ignore_change_log: whether to ignore logging changes to the network in the changelog. False by default and not recommended. Only used when an alternative changelog event is being produced (e.g. simplification) to reduce changelog bloat. :return: """ # check for clashing nodes clashing_node_ids = set(dict(self.nodes()).keys()) & set(nodes_and_attribs.keys()) df_nodes = pd.DataFrame(nodes_and_attribs).T reindexing_dict = {} if df_nodes.empty: df_nodes = pd.DataFrame({'id': list(nodes_and_attribs.keys())}) elif ('id' not in df_nodes.columns) or (df_nodes['id'].isnull().any()): df_nodes['id'] = df_nodes.index if clashing_node_ids: reindexing_dict = dict( zip(clashing_node_ids, self.generate_indices_for_n_nodes( len(nodes_and_attribs), avoid_keys=set(nodes_and_attribs.keys())))) clashing_mask = df_nodes['id'].isin(reindexing_dict.keys()) df_nodes.loc[clashing_mask, 'id'] = df_nodes.loc[clashing_mask, 'id'].map(reindexing_dict) df_nodes = df_nodes.set_index('id', drop=False) nodes_and_attribs_to_add = df_nodes.T.to_dict() self.graph.add_nodes_from([(node_id, attribs) for node_id, attribs in nodes_and_attribs_to_add.items()]) if not ignore_change_log: self.change_log = self.change_log.add_bunch(object_type='node', id_bunch=list(nodes_and_attribs_to_add.keys()), attributes_bunch=list(nodes_and_attribs_to_add.values())) if not silent: logging.info(f'Added {len(nodes_and_attribs)} nodes') return reindexing_dict, nodes_and_attribs_to_add def add_edge(self, u: Union[str, int], v: Union[str, int], multi_edge_idx: int = None, attribs: dict = None, silent: bool = False): """ Adds an edge between u and v. If an edge between u and v already exists, adds an additional one. Generates link id. If you already have a link id, use the method to add_link. :param u: node in the graph :param v: node in the graph :param multi_edge_idx: you can specify which multi index to use if there are other edges between u and v. Will generate new index if already used. :param attribs: :param silent: whether to mute stdout logging messages :return: """ link_id = self.generate_index_for_edge(silent=silent) self.add_link(link_id, u, v, multi_edge_idx, attribs, silent) if not silent: logging.info(f'Added edge from `{u}` to `{v}` with link_id `{link_id}`') return link_id def add_edges(self, edges_attributes: List[dict], silent: bool = False, ignore_change_log: bool = False): """ Adds multiple edges, generates their unique link ids :param edges_attributes: List of edges, each item in list is a dictionary defining the edge attributes, contains at least 'from': node_id and 'to': node_id entries, :param silent: whether to mute stdout logging messages :param ignore_change_log: whether to ignore logging changes to the network in the changelog. False by default and not recommended. Only used when an alternative changelog event is being produced (e.g. simplification) to reduce changelog bloat. :return: """ # check for compulsory attribs df_edges =
pd.DataFrame(edges_attributes)
pandas.DataFrame
import pandas as pd import cv2 import pygame import numpy as np from movement_detector.detectors import AbstractMovementDetector class Interface: """ This class displays the video, overlays metadata, and enables user-control. """ def __init__(self, detector: AbstractMovementDetector): self.detector = detector self._play_video = False self._frame_index = 0 self._playback_frame_rate = self.detector.video.frame_rate self._player = pygame.display.set_mode( self.detector.video.frame_shape[1::-1], pygame.RESIZABLE ) self._clock = pygame.time.Clock() self._space_pressed = False self._key_repeat_buffer = 600 def display(self, stop_keys=('N', 'P', 27)): vid_name = self.detector.video.vid_name self._play_video = False self._frame_index = 0 time_since_last_frame = 0 quit_ = False keys = None command_text = '' command_print_count = 0 command_print_max = max(self._key_repeat_buffer, 10) keys_pressed = [] time_since_key_press = 0 while True: tick = self._clock.tick() if self._frame_index == len(self.detector.video): self._play_video = False else: frame = self._build_frame(action_text=command_text) if command_text != '': command_print_count += 1 if command_print_count == command_print_max: command_text = '' command_print_count = 0 pygame.display.set_caption( f'{vid_name} - Frame {self._frame_index + 1}' ) pygame.surfarray.blit_array(self._player, frame) pygame.display.update() keys_pressed = pygame.key.get_pressed() if any(keys_pressed): if (time_since_key_press == 0 or time_since_key_press >= self._key_repeat_buffer): new_command_text = self._parse_command(keys=keys_pressed) time_since_key_press += tick if new_command_text != '': command_text = new_command_text else: time_since_key_press = 0 if self._space_pressed: self._space_pressed = False for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit_ = True if quit_: break if self._play_video: time_since_last_frame += tick if time_since_last_frame >= 1/self._playback_frame_rate: self._frame_index += 1 time_since_last_frame = 0 else: time_since_last_frame = 0 return keys_pressed def _build_frame(self, action_text=''): frame = self.detector.video[self._frame_index] meta_data = self.detector.meta( start=self._frame_index, stop=self._frame_index + 1 ) self._add_moving_text(frame=frame, meta_data=meta_data) self._add_outlier_text(frame=frame, meta_data=meta_data) self._add_frame_rate_text(frame=frame) self._add_action_text(frame=frame, action_text=action_text) frame = np.flipud(np.rot90(frame)) # frame = pygame.surfarray.make_surface(frame) return frame @staticmethod def _add_moving_text(frame, meta_data): if pd.isna(meta_data['moving'].iloc[0]): colour = (0, 0, 255) status_text = 'Loading info' elif meta_data['moving'].iloc[0]: colour = (0, 0, 255) status_text = 'Moving' else: colour = (0, 255, 0) status_text = 'Freezing' cv2.putText( img=frame, text=status_text, org=(10, 20), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=.5, color=colour, thickness=2, ) @staticmethod def _add_outlier_text(frame, meta_data): outlier_text = '' if pd.isna(meta_data['outlier'].iloc[0]): colour = (0, 0, 255) outlier_text = 'Loading info' elif meta_data['manual_set'].iloc[0]: colour = (0, 255, 0) outlier_text = 'User-verified' elif meta_data['flagged'].iloc[0]: colour = (0, 0, 255) outlier_text = 'Flagged' else: colour = (255, 165, 0) cv2.putText( img=frame, text=outlier_text, org=(10, 40), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=.5, color=colour, thickness=2 ) def _add_frame_rate_text(self, frame): frame_rate = np.round(self._playback_frame_rate, decimals=2) frame_rate_text = f'Frame rate: {frame_rate}' cv2.putText( img=frame, text=frame_rate_text, org=(10, 60), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=.5, color=(255, 165, 0), thickness=2 ) def _add_action_text(self, frame, action_text): cv2.putText( img=frame, text=action_text, org=(10, 80), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=.5, color=(255, 165, 0), thickness=2 ) def _parse_command(self, keys): command_text = '' if not self._play_video: if keys[pygame.K_LEFT]: if self._frame_index != 0: self._frame_index -= 1 command_text = 'Previous frame' elif keys[pygame.K_RIGHT]: if self._frame_index != len(self.detector.video) - 1: self._frame_index += 1 command_text = 'Next frame' elif keys[ord('f')]: self.detector.set_freezing(self._frame_index) if self._frame_index != len(self.detector.video) - 1: self._frame_index += 1 command_text = 'Set freezing' elif keys[ord('m')]: self.detector.set_moving(self._frame_index) if self._frame_index != len(self.detector.video) - 1: self._frame_index += 1 command_text = 'Set moving' elif keys[ord('n')]: search_started = False while True: if self._frame_index == len(self.detector.video) - 1: break meta_data = self.detector.meta(self._frame_index) if
pd.isna(meta_data['flagged'].iloc[0])
pandas.isna
import pytest import numpy as np import pandas as pd from rapidfuzz import fuzz from polyfuzz.models import BaseMatcher from tests.utils import get_test_strings from_list, to_list = get_test_strings() class MyIncorrectModel(BaseMatcher): pass class MyCorrectModel(BaseMatcher): def match(self, from_list, to_list): # Calculate distances matches = [[fuzz.ratio(from_string, to_string) / 100 for to_string in to_list] for from_string in from_list] # Get best matches mappings = [to_list[index] for index in np.argmax(matches, axis=1)] scores = np.max(matches, axis=1) # Prepare dataframe matches =
pd.DataFrame({'From': from_list, 'To': mappings, 'Similarity': scores})
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import uuid from datetime import datetime from unittest.mock import Mock import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, Unique, UniqueCombinations) def dummy_transform_table(table_data): return table_data def dummy_reverse_transform_table(table_data): return table_data def dummy_is_valid_table(table_data): return [True] * len(table_data) def dummy_transform_table_column(table_data, column): return table_data def dummy_reverse_transform_table_column(table_data, column): return table_data def dummy_is_valid_table_column(table_data, column): return [True] * len(table_data[column]) def dummy_transform_column(column_data): return column_data def dummy_reverse_transform_column(column_data): return column_data def dummy_is_valid_column(column_data): return [True] * len(column_data) class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid_table' # Run instance = CustomConstraint( transform=dummy_transform_table, reverse_transform=dummy_reverse_transform_table, is_valid=is_valid_fqn ) # Assert assert instance._transform == dummy_transform_table assert instance._reverse_transform == dummy_reverse_transform_table assert instance._is_valid == dummy_is_valid_table def test__run_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy transform function with ``table_data`` argument. Side Effects: - Run transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table, return_value=table_data) # Run instance = CustomConstraint(transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` argument. Side Effects: - Run reverse transform function once with ``table_data`` as input. Output: - applied identity transformation "table_data = reverse_transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table, return_value=table_data) # Run instance = CustomConstraint(reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" based functions. Setup: - Pass dummy is valid function with ``table_data`` argument. Side Effects: - Run is valid function once with ``table_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table) # Run instance = CustomConstraint(is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args assert called[0][1] == 'a' dummy_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_table_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy reverse transform function with ``table_data`` and ``column`` arguments. Side Effects: - Run reverse transform function once with ``table_data`` and ``column`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_table_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args assert called[0][1] == 'a' dummy_reverse_transform_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_table_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "table" and "column" based functions. Setup: - Pass dummy is valid function with ``table_data`` and ``column`` argument. Side Effects: - Run is valid function once with ``table_data`` and ``column`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_table_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args assert called[0][1] == 'a' dummy_is_valid_mock.assert_called_once() pd.testing.assert_frame_equal(called[0][0], table_data) np.testing.assert_array_equal(is_valid, expected_out) def test__run_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy transform function with ``column_data`` argument. Side Effects: - Run transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_transform_mock = Mock(side_effect=dummy_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', transform=dummy_transform_mock) transformed = instance.transform(table_data) # Asserts called = dummy_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal(transformed, dummy_transform_mock.return_value) def test__run_reverse_transform_column(self): """Test the ``CustomConstraint._run`` method. The ``_run`` method excutes ``transform`` and ``reverse_transform`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy reverse transform function with ``column_data`` argument. Side Effects: - Run reverse transform function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Applied identity transformation "table_data = transformed". """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_reverse_transform_mock = Mock(side_effect=dummy_reverse_transform_column, return_value=table_data) # Run instance = CustomConstraint(columns='a', reverse_transform=dummy_reverse_transform_mock) reverse_transformed = instance.reverse_transform(table_data) # Asserts called = dummy_reverse_transform_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) pd.testing.assert_frame_equal( reverse_transformed, dummy_reverse_transform_mock.return_value) def test__run_is_valid_column(self): """Test the ``CustomConstraint._run_is_valid`` method. The ``_run_is_valid`` method excutes ``is_valid`` based on the signature of the functions. In this test, we evaluate the execution of "column" based functions. Setup: - Pass dummy is valid function with ``column_data`` argument. Side Effects: - Run is valid function twice, once with the attempt of ``table_data`` and ``column`` and second with ``column_data`` as input. Output: - Return a list of [True] of length ``table_data``. """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3]}) dummy_is_valid_mock = Mock(side_effect=dummy_is_valid_column) # Run instance = CustomConstraint(columns='a', is_valid=dummy_is_valid_mock) is_valid = instance.is_valid(table_data) # Asserts expected_out = [True] * len(table_data) called = dummy_is_valid_mock.call_args_list assert len(called) == 2 # call 1 (try) assert called[0][0][1] == 'a' pd.testing.assert_frame_equal(called[0][0][0], table_data) # call 2 (catch TypeError) pd.testing.assert_series_equal(called[1][0][0], table_data['a']) np.testing.assert_array_equal(is_valid, expected_out) class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='transform') # Assert assert instance.rebuild_columns == tuple(columns) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``UniqueCombinations.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init__with_one_column(self): """Test the ``UniqueCombinations.__init__`` method with only one constraint column. Expect a ``ValueError`` because UniqueCombinations requires at least two constraint columns. Side effects: - A ValueError is raised """ # Setup columns = ['c'] # Run and assert with pytest.raises(ValueError): UniqueCombinations(columns=columns) def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test__validate_scalar(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = 'b' Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = 'b' scalar = 'high' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_list(self): """Test the ``_validate_scalar`` method. This method validates the inputs if and transforms them into the correct format. Input: - scalar_column = 0 - column_names = ['b'] Output: - column_names == ['b'] """ # Setup scalar_column = 0 column_names = ['b'] scalar = 'low' # Run out = GreaterThan._validate_scalar(scalar_column, column_names, scalar) # Assert out == ['b'] def test__validate_scalar_error(self): """Test the ``_validate_scalar`` method. This method raises an error when the the scalar column is a list. Input: - scalar_column = 0 - column_names = 'b' Side effect: - Raise error since the scalar is a list """ # Setup scalar_column = [0] column_names = 'b' scalar = 'high' # Run / Assert with pytest.raises(TypeError): GreaterThan._validate_scalar(scalar_column, column_names, scalar) def test__validate_inputs_high_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 - scalar = 'high' Output: - low == ['a'] - high == 3 - constraint_columns = ('a') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar='high', drop=None) # Assert low == ['a'] high == 3 constraint_columns == ('a',) def test__validate_inputs_low_is_scalar(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 3 - high = 'b' - scalar = 'low' - drop = None Output: - low == 3 - high == ['b'] - constraint_columns = ('b') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=3, high='b', scalar='low', drop=None) # Assert low == 3 high == ['b'] constraint_columns == ('b',) def test__validate_inputs_scalar_none(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 3 # where 3 is a column name - scalar = None - drop = None Output: - low == ['a'] - high == [3] - constraint_columns = ('a', 3) """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=3, scalar=None, drop=None) # Assert low == ['a'] high == [3] constraint_columns == ('a', 3) def test__validate_inputs_scalar_none_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a'] - high = ['b', 'c'] - scalar = None - drop = None Output: - low == ['a'] - high == ['b', 'c'] - constraint_columns = ('a', 'b', 'c') """ # Setup / Run low, high, constraint_columns = GreaterThan._validate_inputs( low=['a'], high=['b', 'c'], scalar=None, drop=None) # Assert low == ['a'] high == ['b', 'c'] constraint_columns == ('a', 'b', 'c') def test__validate_inputs_scalar_none_two_lists(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = ['a', 0] - high = ['b', 'c'] - scalar = None - drop = None Side effect: - Raise error because both high and low are more than one column """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=['a', 0], high=['b', 'c'], scalar=None, drop=None) def test__validate_inputs_scalar_unknown(self): """Test the ``_validate_inputs`` method. This method checks ``scalar`` and formats the data based on what is expected to be a list or not. In addition, it returns the ``constraint_columns``. Input: - low = 'a' - high = 'b' - scalar = 'unknown' - drop = None Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high='b', scalar='unknown', drop=None) def test__validate_inputs_drop_error_low(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 2 - high = 'b' - scalar = 'low' - drop = 'low' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low=2, high='b', scalar='low', drop='low') def test__validate_inputs_drop_error_high(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 3 - scalar = 'high' - drop = 'high' Side effect: - Raise error because scalar is unknown """ # Run / Assert with pytest.raises(ValueError): GreaterThan._validate_inputs(low='a', high=3, scalar='high', drop='high') def test__validate_inputs_drop_success(self): """Test the ``_validate_inputs`` method. Make sure the method raises an error if ``drop``==``scalar`` when ``scalar`` is not ``None``. Input: - low = 'a' - high = 'b' - scalar = 'high' - drop = 'low' Output: - low = ['a'] - high = 0 - constraint_columns == ('a') """ # Run / Assert low, high, constraint_columns = GreaterThan._validate_inputs( low='a', high=0, scalar='high', drop='low') assert low == ['a'] assert high == 0 assert constraint_columns == ('a',) def test___init___(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == ['a'] assert instance._high == ['b'] assert instance._strict is False assert instance._scalar is None assert instance._drop is None assert instance.constraint_columns == ('a', 'b') def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='transform') # Assert assert instance.rebuild_columns == ['b'] def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``GreaterThan.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Run instance = GreaterThan(low='a', high='b', handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test___init___high_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 'a' - high = 0 - strict = True - drop = 'low' - scalar = 'high' Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._drop = 'low' - instance._scalar == 'high' """ # Run instance = GreaterThan(low='a', high=0, strict=True, drop='low', scalar='high') # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' assert instance.constraint_columns == ('a',) def test___init___low_is_scalar(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Make sure ``scalar`` is set to ``'high'``. Input: - low = 0 - high = 'a' - strict = True - drop = 'high' - scalar = 'low' Side effects: - instance._low == 0 - instance._high == 'a' - instance._stric == True - instance._drop = 'high' - instance._scalar == 'low' """ # Run instance = GreaterThan(low=0, high='a', strict=True, drop='high', scalar='low') # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' assert instance.constraint_columns == ('a',) def test___init___strict_is_false(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater_equal`` when ``strict`` is set to ``False``. Input: - low = 'a' - high = 'b' - strict = False """ # Run instance = GreaterThan(low='a', high='b', strict=False) # Assert assert instance.operator == np.greater_equal def test___init___strict_is_true(self): """Test the ``GreaterThan.__init__`` method. Ensure that ``operator`` is set to ``np.greater`` when ``strict`` is set to ``True``. Input: - low = 'a' - high = 'b' - strict = True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Assert assert instance.operator == np.greater def test__init__get_columns_to_reconstruct_default(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'high' Side effects: - self._columns_to_reconstruct == ['b'] """ # Setup instance = GreaterThan(low='a', high='b', drop='high') instance._columns_to_reconstruct == ['b'] def test__init__get_columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 'b' - drop = 'low' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high='b', drop='low') instance._columns_to_reconstruct == ['a'] def test__init__get_columns_to_reconstruct_scalar_high(self): """Test the ``GreaterThan._get_columns_to_reconstruct`` method. This method returns: - ``_high`` if drop is "high" - ``_low`` if drop is "low" - ``_low`` if scalar is "high" - ``_high`` otherwise Setup: - low = 'a' - high = 0 - scalar = 'high' Side effects: - self._columns_to_reconstruct == ['a'] """ # Setup instance = GreaterThan(low='a', high=0, scalar='high') instance._columns_to_reconstruct == ['a'] def test__get_value_column_list(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' """ # Setup instance = GreaterThan(low='a', high='b') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = table_data[['a']].values np.testing.assert_array_equal(out, expected) def test__get_value_scalar(self): """Test the ``GreaterThan._get_value`` method. This method returns a scalar or a ndarray of values depending on the type of the ``field``. Input: - Table with given data. - field = 'low' - scalar = 'low' """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance._get_value(table_data, 'low') # Assert expected = 3 assert out == expected def test__get_diff_columns_name_low_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['a', 'b#'], scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b##'] assert out == expected def test__get_diff_columns_name_high_is_scalar(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal to the given columns plus tokenized with '#'. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a#', 'b#'] assert out == expected def test__get_diff_columns_name_scalar_is_none(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b#', scalar=None) table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b#': [4, 5, 6] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b##a'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_low(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=['a#', 'c'], high='b', scalar=None) table_data = pd.DataFrame({ 'a#': [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['a##b', 'c#b'] assert out == expected def test__get_diff_columns_name_scalar_is_none_multi_column_high(self): """Test the ``GreaterThan._get_diff_columns_name`` method. The returned names should be equal one name of the two columns with a token between them. Input: - Table with given data. """ # Setup instance = GreaterThan(low=0, high=['b', 'c'], scalar=None) table_data = pd.DataFrame({ 0: [1, 2, 4], 'b': [4, 5, 6], 'c#': [7, 8, 9] }) out = instance._get_diff_columns_name(table_data) # Assert expected = ['b#0', 'c#0'] assert out == expected def test__check_columns_exist_success(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') instance._check_columns_exist(table_data, 'high') def test__check_columns_exist_error(self): """Test the ``GreaterThan._check_columns_exist`` method. This method raises an error if the specified columns in ``low`` or ``high`` do not exist. Input: - Table with given data. """ # Setup instance = GreaterThan(low='a', high='c') # Run / Assert table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6] }) instance._check_columns_exist(table_data, 'low') with pytest.raises(KeyError): instance._check_columns_exist(table_data, 'high') def test__fit_only_one_datetime_arg(self): """Test the ``Between._fit`` method by passing in only one arg as datetime. If only one of the high / low args is a datetime type, expect a ValueError. Input: - low is an int column - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup instance = GreaterThan(low='a', high=pd.to_datetime('2021-01-01'), scalar='high') # Run and assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(ValueError): instance._fit(table_data) def test__fit__low_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='b') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_and_scalar_is_none(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='a', high=3) # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__low_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``low`` is set to a value not seen in ``table_data``. Input: - Table without ``low`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low='c', high=3, scalar='high') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__high_is_not_found_scalar_is_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should raise an error if the ``high`` is set to a value not seen in ``table_data``. Input: - Table without ``high`` in columns. Side Effect: - KeyError. """ # Setup instance = GreaterThan(low=3, high='c', scalar='low') # Run / Assert table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) with pytest.raises(KeyError): instance._fit(table_data) def test__fit__columns_to_reconstruct_drop_high(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_drop_low(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_default(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__columns_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `low` if ``instance._scalar`` is ``'high'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['a'] def test__fit__columns_to_reconstruct_low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_columns_to_reconstruct`` to `high` if ``instance._scalar`` is ``'low'``. Input: - Table with two columns. Side Effect: - ``_columns_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._columns_to_reconstruct == ['b'] def test__fit__diff_columns_one_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance._fit(table_data) # Asserts assert instance._diff_columns == ['a#'] def test__fit__diff_columns_multiple_columns(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should set ``_diff_columns`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_columns_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance._fit(table_data) # Asserts assert instance._diff_columns == ['b#a'] def test__fit_int(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'i' for dtype in instance._dtype]) def test__fit_float(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_datetime(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'M' for dtype in instance._dtype]) def test__fit_type__high_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_scalar`` is ``'high'``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_type__low_is_scalar(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_scalar`` is ``'low'``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b', scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance._fit(table_data) # Asserts assert all([dtype.kind == 'f' for dtype in instance._dtype]) def test__fit_high_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, scalar='high') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test__fit_low_is_scalar_multi_column(self): """Test the ``GreaterThan._fit`` method. The ``GreaterThan._fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute. Input: - Table that contains two constrained columns with different dtype. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], scalar='low') dtype_int = pd.Series([1]).dtype dtype_float = np.dtype('float') table_data = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4., 5., 6.] }) instance._fit(table_data) # Assert expected_diff_columns = ['a#', 'b#'] expected_dtype = pd.Series([dtype_int, dtype_float], index=table_data.columns) assert instance._diff_columns == expected_diff_columns pd.testing.assert_series_equal(instance._dtype, expected_dtype) def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, scalar='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, False, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, scalar='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is multi column, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low=['a', 'b'], high=2, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_scalar_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is multi column, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=2, high=['a', 'b'], strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_scalar_is_none_multi_column(self): """Test the ``GreaterThan.is_valid`` method. If scalar is none, and high is multi column, then the values in that column should all be higher than in the low column. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low='b', high=['a', 'c'], strict=False) table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) # Run out = instance.is_valid(table_data) # Assert expected_out = [False, True, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_high_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If high is a datetime and low is a column, the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below `high`. Output: - True should be returned for the rows where the low column is below `high`. """ # Setup high_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low='a', high=high_dt, strict=False, scalar='high') table_data = pd.DataFrame({ 'a': [datetime(2020, 5, 17), datetime(2020, 2, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_low_is_datetime(self): """Test the ``GreaterThan.is_valid`` method. If low is a datetime and high is a column, the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below `low`. Output: - True should be returned for the rows where the high column is above `low`. """ # Setup low_dt = pd.to_datetime('8/31/2021') instance = GreaterThan(low=low_dt, high='a', strict=False, scalar='low') table_data = pd.DataFrame({ 'a': [datetime(2021, 9, 17), datetime(2021, 7, 1), datetime(2021, 9, 1)], 'b': [4, 2, 2], }) # Run out = instance.is_valid(table_data) # Assert expected_out = [True, False, True] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_nans(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a NaN row, expect that `is_valid` returns True. Input: - Table with a NaN row Output: - True should be returned for the NaN row. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, None, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test_is_valid_two_cols_with_one_nan(self): """Test the ``GreaterThan.is_valid`` method with nan values. If there is a row in which we compare one NaN value with one non-NaN value, expect that `is_valid` returns True. Input: - Table with a row that contains only one NaN value. Output: - True should be returned for the row with the NaN value. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, None, 3], 'b': [4, 5, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = [True, True, False] np.testing.assert_array_equal(expected_out, out) def test__transform_int_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_high(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_int_drop_low(self): """Test the ``GreaterThan._transform`` method passing a high column of type int. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_float_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type float. The ``GreaterThan._transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_datetime_drop_none(self): """Test the ``GreaterThan._transform`` method passing a high column of type datetime. If the columns are of type datetime, ``_transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_columns = ['a#b'] instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test__transform_high_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'high'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, scalar='high') instance._diff_columns = ['a#b'] instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_low_is_scalar(self): """Test the ``GreaterThan._transform`` method with high as scalar. The ``GreaterThan._transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_scalar`` is ``'low'``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, scalar='low') instance._diff_columns = ['a#b'] instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test__transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(3), np.log(2), np.log(1)], 'b#': [np.log(0), np.log(-1), np.log(-2)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') instance._diff_columns = ['a#', 'b#'] instance.constraint_columns = ['a', 'b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(-1), np.log(0), np.log(1)], 'b#': [np.log(2), np.log(3), np.log(4)], }) pd.testing.assert_frame_equal(out, expected) def test__transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan._transform`` method. The ``GreaterThan._transform`` method is expected to compute the logarithm of given columns + 1. Input: - Table with given data. Output: - Same table with additional columns of the logarithms + 1. """ # Setup instance = GreaterThan(low=['a', 'c'], high='b', strict=True) instance._diff_columns = ['a#', 'c#'] instance.constraint_columns = ['a', 'c'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance._transform(table_data) # Assert expected = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'c#': [np.log(-2)] * 3, }) pd.testing.assert_frame_equal(out, expected) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('float')] instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = [np.dtype('<M8[ns]')] instance._diff_columns = ['a#b'] instance._is_datetime = True instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, scalar='low') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, scalar='high') instance._dtype = [pd.Series([1]).dtype] # exact dtype (32 or 64) depends on OS instance._diff_columns = ['a#b'] instance._columns_to_reconstruct = ['a'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_scalar`` is ``'high'``. - ``_low`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'b'], high=3, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [0, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 0, 0], 'b': [0, -1, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_scalar`` is ``'low'``. - ``_high`` is set to multiple columns. Input: - Table with a diff column that contains the constant np.log(4)/np.log(5). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/+4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(4)] * 3, 'b#': [np.log(5)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [6, 6, 4], 'b': [7, 7, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_scalar_is_none_multi_column(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_low`` = ['a', 'c']. - ``_high`` = ['b']. Input: - Table with a diff column that contains the constant np.log(4)/np.log(-2). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value +3/-4 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=['a', 'c'], high=['b'], strict=True) dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'c#'] instance._columns_to_reconstruct = ['a', 'c'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#': [np.log(1)] * 3, 'c#': [np.log(1)] * 3, }) out = instance.reverse_transform(transformed) print(out) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_positive(self): """Test the ``GreaterThan.reverse_transform`` method for positive constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=0, high=['a', 'b'], strict=True, scalar='low') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(4)], 'b#': [np.log(5), np.log(6), np.log(0)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 0], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_multi_column_negative(self): """Test the ``GreaterThan.reverse_transform`` method for negative constraint. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Input: - Table with given data. Output: - Same table with with replaced rows and dropped columns. """ # Setup instance = GreaterThan(low=['a', 'b'], high=0, strict=True, scalar='high') dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._dtype = [dtype, dtype] instance._diff_columns = ['a#', 'b#'] instance._columns_to_reconstruct = ['a', 'b'] # Run transformed = pd.DataFrame({ 'a': [-1, -2, 1], 'b': [-4, -5, -1], 'c': [7, 8, 9], 'a#': [np.log(2), np.log(3), np.log(0)], 'b#': [np.log(5), np.log(6), np.log(2)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [-1, -2, 0], 'b': [-4, -5, -1], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_scalar`` variable to ``'low'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = None """ # Run instance = Positive(columns='a', strict=True, drop=False) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Positive.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'high' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar == 'low' - instance._drop = 'high' """ # Run instance = Positive(columns='a', strict=True, drop=True) # Asserts assert instance._low == 0 assert instance._high == ['a'] assert instance._strict is True assert instance._scalar == 'low' assert instance._drop == 'high' class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_scalar`` variable to ``'high'``. The rest of the parameters should be passed. Check that ``_drop`` is set to ``None`` when ``drop`` is ``False``. Input: - strict = True - low = 'a' - drop = False Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = None """ # Run instance = Negative(columns='a', strict=True, drop=False) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop is None def test__init__drop_true(self): """ Test the ``Negative.__init__`` method with drop is ``True``. Check that ``_drop`` is set to 'low' when ``drop`` is ``True``. Input: - strict = True - low = 'a' - drop = True Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._scalar = 'high' - instance._drop = 'low' """ # Run instance = Negative(columns='a', strict=True, drop=True) # Asserts assert instance._low == ['a'] assert instance._high == 0 assert instance._strict is True assert instance._scalar == 'high' assert instance._drop == 'low' def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" if data['a'] is None or data['b'] is None: return None return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance, import the formula to use for the computation, and set the specified constraint column. Input: - column = 'col' - formula = new_column """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column assert instance.constraint_columns == ('col', ) def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``ColumnFormula.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = ColumnFormula(column=column, formula=new_column, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_with_nans(self): """Test the ``ColumnFormula.is_valid`` method for with a formula that produces nans. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, None], 'c': [5, 7, None] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test__transform(self): """Test the ``ColumnFormula._transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_without_dropping_column(self): """Test the ``ColumnFormula._transform`` method without dropping the column. If `drop_column` is false, expect to not drop the constraint column. Input: - Table data (pandas.DataFrame) Output: - Table data with the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column, drop_column=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_missing_column(self): """Test the ``ColumnFormula._transform`` method when the constraint column is missing. When ``_transform`` is called with data that does not contain the constraint column, expect to return the data as-is. Input: - Table data (pandas.DataFrame) Output: - Table data, unchanged (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'd': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) class TestRounding(): def test___init__(self): """Test the ``Rounding.__init__`` method. It is expected to create a new Constraint instance and set the rounding args. Input: - columns = ['b', 'c'] - digits = 2 """ # Setup columns = ['b', 'c'] digits = 2 # Run instance = Rounding(columns=columns, digits=digits) # Assert assert instance._columns == columns assert instance._digits == digits def test___init__invalid_digits(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``digits`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 20 """ # Setup columns = ['b', 'c'] digits = 20 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits) def test___init__invalid_tolerance(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``tolerance`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 2 - tolerance = 0.1 """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 0.1 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits, tolerance=tolerance) def test_is_valid_positive_digits(self): """Test the ``Rounding.is_valid`` method for a positive digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 1e-3 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12, 5.51, None, 6.941, 1.129], 'c': [5.315, 7.12, 1.12, 9.131, 12.329], 'd': ['a', 'b', 'd', 'e', None], 'e': [123.31598, -1.12001, 1.12453, 8.12129, 1.32923] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, True, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_negative_digits(self): """Test the ``Rounding.is_valid`` method for a negative digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b'] digits = -2 tolerance = 1 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [401, 500, 6921, 799, None], 'c': [5.3134, 7.1212, 9.1209, 101.1234, None], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_zero_digits(self): """Test the ``Rounding.is_valid`` method for a zero digits argument. Input: - Table data not with the desired decimal places (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 0 tolerance = 1e-4 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, None, 3, 4], 'b': [4, 5.5, 1.2, 6.0001, 5.99999], 'c': [5, 7.12, 1.31, 9.00001, 4.9999], 'd': ['a', 'b', None, 'd', 'e'], 'e': [2.1254, 17.12123, 124.12, 123.0112, -9.129434] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_reverse_transform_positive_digits(self): """Test the ``Rounding.reverse_transform`` method with positive digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.12345, None, 5.100, 6.0001, 1.7999], 'c': [1.1, 1.234, 9.13459, 4.3248, 6.1312], 'd': ['a', 'b', 'd', 'e', None] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.123, None, 5.100, 6.000, 1.800], 'c': [1.100, 1.234, 9.135, 4.325, 6.131], 'd': ['a', 'b', 'd', 'e', None] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_negative_digits(self): """Test the ``Rounding.reverse_transform`` method with negative digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b'] digits = -3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41234.5, None, 5000, 6001, 5928], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41000.0, None, 5000.0, 6000.0, 6000.0], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_zero_digits(self): """Test the ``Rounding.reverse_transform`` method with zero digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 0 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12345, None, 5.0, 6.01, 7.9], 'c': [1.1, 1.0, 9.13459, None, 8.89], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.0, None, 5.0, 6.0, 8.0], 'c': [1.0, 1.0, 9.0, None, 9.0], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def transform(data, low, high): """Transform to be used for the TestBetween class.""" data = (data - low) / (high - low) * 0.95 + 0.025 return np.log(data / (1.0 - data)) class TestBetween(): def test___init__sets_rebuild_columns_if_not_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should only be set if the ``handling_strategy`` is not ``reject_sampling``. Side effects: - instance.rebuild_columns are set """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='transform') # Assert assert instance.rebuild_columns == (column,) def test___init__does_not_set_rebuild_columns_reject_sampling(self): """Test the ``Between.__init__`` method. The rebuild columns should not be set if the ``handling_strategy`` is ``reject_sampling``. Side effects: - instance.rebuild_columns are empty """ # Setup column = 'col' # Run instance = Between(column=column, low=10, high=20, handling_strategy='reject_sampling') # Assert assert instance.rebuild_columns == () def test_fit_only_one_datetime_arg(self): """Test the ``Between.fit`` method by passing in only one arg as datetime. If only one of the bound parameters is a datetime type, expect a ValueError. Input: - low is an int scalar - high is a datetime Output: - n/a Side Effects: - ValueError """ # Setup column = 'a' low = 0.0 high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high) # Run and assert table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) with pytest.raises(ValueError): instance.fit(table_data) def test_transform_scalar_scalar(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as scalars. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_scalar_column(self): """Test the ``Between._transform`` method with ``low`` as scalar and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_scalar(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as scalar. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 6] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_datetime(self): """Test the ``Between._transform`` method by passing ``low`` and ``high`` as datetimes. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) - High and Low as datetimes Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_datetime_column(self): """Test the ``Between._transform`` method with ``low`` as datetime and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_datetime(self): """Test the ``Between._transform`` method with ``low`` as a column and ``high`` as datetime. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test__transform_column_column_datetime(self): """Test the ``Between._transform`` method with ``low`` and ``high`` as datetime columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ] }) instance.fit(table_data) out = instance._transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_scalar(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as scalars. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_column(self): """Test ``Between.reverse_transform`` with ``low`` as scalar and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_scalar(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as scalar. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_column(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_datetime_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) - High and low as datetimes Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-01'), pd.to_datetime('2020-08-03'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#1900-01-01T00:00:00.000000000#2021-01-01T00:00:00.000000000': transform( table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_series_equal(expected_out['b'], out['b']) pd.testing.assert_series_equal(expected_out['a'], out['a'].astype('datetime64[ms]')) def test_reverse_transform_datetime_column(self): """Test ``Between.reverse_transform`` with ``low`` as datetime and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = pd.to_datetime('1900-01-01') high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-02'), pd.to_datetime('2020-08-03'), ] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-10-03'), pd.to_datetime('2020-11-01'), pd.to_datetime('2020-11-03'), ], 'a#1900-01-01T00:00:00.000000000#b': transform( table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_datetime(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as datetime. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = pd.to_datetime('2021-01-01') instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a': [ pd.to_datetime('2020-09-03'), pd.to_datetime('2020-08-03'), pd.to_datetime('2020-08-04'), ], }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'a#b#2021-01-01T00:00:00.000000000': transform( table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_series_equal(expected_out['b'], out['b']) pd.testing.assert_series_equal(expected_out['a'], out['a'].astype('datetime64[ms]')) def test_reverse_transform_column_column_datetime(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as datetime columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [ pd.to_datetime('2020-01-03'), pd.to_datetime('2020-02-01'), pd.to_datetime('2020-02-03'), ], 'c': [
pd.to_datetime('2020-10-03')
pandas.to_datetime
#!/usr/bin/env python ### Up to date as of 10/2019 ### '''Section 0: Import python libraries This code has a number of dependencies, listed below. They can be installed using the virtual environment "slab23" that is setup using script 'library/setup3env.sh'. Additional functions are housed in file 'slab2functions.py' and imported below. There are some additional dependencies used by the function file that do not need to be installed separately. ''' # stdlib imports from datetime import datetime import os.path import argparse import numpy as np from pandas import DataFrame import pandas as pd import warnings import slab2functions as s2f import math import mapio.gmt as gmt from functools import partial from multiprocess import Pool import loops as loops from scipy import ndimage import psutil import cProfile import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def main(args): '''Section 1: Setup In this section: (1) Identify necessary input files (2) Load parameters from '[slab]input.par' (3) Define optional boxes for PDF/print testing (4) Define output file names (5) Gathering optional arguments, setting defaults (6) Define search ellipsoid parameters (7) Define Average active source profiles (8) Define reference model (Slab1.0 and/or slab guides) (9) Define Trench Locations (10) Open and modify input dataset (11) Calculate seismogenic zone thickness (12) Record variable parameters used for this model (13) Define search grid (14) Identify tomography datasets (15) Initialize arrays for Section 2 ''' print('Start Section 1 of 7: Setup') print(' Loading inputs...') ''' ------ (1) Identify necessary input files ------ ''' trenches = 'library/misc/trenches_usgs_2017_depths.csv' agesFile = 'library/misc/interp_age.3.2g.nc' ageerrorsFile = 'library/misc/interp_ageerror.3.2g.nc' polygonFile = 'library/misc/slab_polygons.txt' addFile = 'library/misc/addagain.csv' parFile = args.parFile pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore", message="invalid value encountered in less") warnings.filterwarnings("ignore", message="invalid value encountered in true_divide") warnings.filterwarnings("ignore", message="invalid value encountered in greater") warnings.filterwarnings("ignore", message="invalid value encountered in double_scalars") ''' ------ (2) Load parameters from '[slab]input.par' ------''' for line in open(parFile): plist = line.split() if len(plist)>2: if plist[0] == 'inFile': inFile = plist[2] if plist[0] == 'use_box': use_box = plist[2] if plist[0] == 'latmin': latmin = np.float64(plist[2]) if plist[0] == 'latmax': latmax = np.float64(plist[2]) if plist[0] == 'lonmin': lonmin = np.float64(plist[2]) if plist[0] == 'lonmax': lonmax = np.float64(plist[2]) if plist[0] == 'slab': slab = plist[2] if plist[0] == 'grid': grid = np.float64(plist[2]) if plist[0] == 'radius1': radius1 = np.float64(plist[2]) if plist[0] == 'radius2': radius2 = np.float64(plist[2]) if plist[0] == 'sdr': sdr = np.float64(plist[2]) if plist[0] == 'ddr': ddr = np.float64(plist[2]) if plist[0] == 'taper': taper = np.float64(plist[2]) if plist[0] == 'T': T = np.float64(plist[2]) if plist[0] == 'node': node = np.float64(plist[2]) if plist[0] == 'filt': filt = np.float64(plist[2]) if plist[0] == 'maxdist': maxdist = np.float64(plist[2]) if plist[0] == 'minunc': minunc = np.float64(plist[2]) if plist[0] == 'mindip': mindip = np.float64(plist[2]) if plist[0] == 'minstk': minstk = np.float64(plist[2]) if plist[0] == 'maxthickness': maxthickness = np.float64(plist[2]) if plist[0] == 'seismo_thick': seismo_thick = np.float64(plist[2]) if plist[0] == 'dipthresh': dipthresh = np.float64(plist[2]) if plist[0] == 'fracS': fracS = np.float64(plist[2]) if plist[0] == 'kdeg': kdeg = np.float64(plist[2]) if plist[0] == 'knot_no': knot_no = np.float64(plist[2]) if plist[0] == 'rbfs': rbfs = np.float64(plist[2]) # loop through to find latest slab input file if specified polyname = slab if slab == 'kur' or slab == 'izu': polyname = 'jap' if inFile == 'latest': yearmax = 0 monthmax = 0 for filename in os.listdir('Input'): if filename.endswith('.csv'): try: slabname,datei,instring = filename.split('_') except: continue if slabname == polyname and instring == 'input.csv': try: monthi, yeari = datei.split('-') except: continue yeari = int(yeari) monthi = int(monthi) if yeari >= yearmax: yearmax = yeari inFile = 'Input/%s'%filename if monthi > monthmax: monthmax = monthi inFile = 'Input/%s'%filename print (' using input file: %s'%inFile) if slab == 'mue' or slab == 'phi' or slab == 'cot' or slab == 'sul' or slab == 'ryu': if args.undergrid is None: if slab == 'mue': print ('This slab is truncated by the Caribbean (car) slab, argument -u cardepgrid is required') print ('Exiting .... ') exit() if slab == 'cot': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'sul': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'phi': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'ryu': print ('This slab is truncated by the Kurils-Japan (kur) slab, argument -u kurdepgrid is required') print ('Exiting .... ') exit() else: undergrid = args.undergrid ''' ------ (4) Define output file names ------ ''' date = datetime.today().strftime('%m.%d.%y') now = datetime.now() time = '%s.%s' % (now.hour, now.minute) folder = '%s_slab2_%s' % (slab, date) os.system('mkdir Output/%s'%folder) outFile = 'Output/%s/%s_slab2_res_%s.csv' % (folder, slab, date) dataFile = 'Output/%s/%s_slab2_dat_%s.csv' % (folder, slab, date) nodeFile = 'Output/%s/%s_slab2_nod_%s.csv' % (folder, slab, date) fillFile = 'Output/%s/%s_slab2_fil_%s.csv' % (folder, slab, date) rempFile = 'Output/%s/%s_slab2_rem_%s.csv' % (folder, slab, date) clipFile = 'Output/%s/%s_slab2_clp_%s.csv' % (folder, slab, date) these_params = 'Output/%s/%s_slab2_par_%s.csv' % (folder, slab, date) datainfo = 'Output/%s/%s_slab2_din_%s.csv' % (folder, slab, date) nodeinfo = 'Output/%s/%s_slab2_nin_%s.csv' % (folder, slab, date) suppFile = 'Output/%s/%s_slab2_sup_%s.csv' % (folder, slab, date) nodexFile = 'Output/%s/%s_slab2_nox_%s.csv' % (folder, slab, date) nodeuFile = 'Output/%s/%s_slab2_nou_%s.csv' % (folder, slab, date) depTextFile = 'Output/%s/%s_slab2_dep_%s.txt' % (folder, slab, date) depGridFile = 'Output/%s/%s_slab2_dep_%s.grd' % (folder, slab, date) strTextFile = 'Output/%s/%s_slab2_str_%s.txt' % (folder, slab, date) strGridFile = 'Output/%s/%s_slab2_str_%s.grd' % (folder, slab, date) dipTextFile = 'Output/%s/%s_slab2_dip_%s.txt' % (folder, slab, date) dipGridFile = 'Output/%s/%s_slab2_dip_%s.grd' % (folder, slab, date) uncTextFile = 'Output/%s/%s_slab2_unc_%s.txt' % (folder, slab, date) uncGridFile = 'Output/%s/%s_slab2_unc_%s.grd' % (folder, slab, date) thickTextFile = 'Output/%s/%s_slab2_thk_%s.txt' % (folder, slab, date) thickGridFile = 'Output/%s/%s_slab2_thk_%s.grd' % (folder, slab, date) savedir = 'Output/%s'%folder ''' ------ (3) Define optional boxes for PDF/print testing ------''' if args.test is not None: testlonmin = args.test[0] testlonmax = args.test[1] testlatmin = args.test[2] testlatmax = args.test[3] if testlonmin < 0: testlonmin += 360 if testlonmax < 0: testlonmax += 360 testarea = [testlonmin, testlonmax, testlatmin, testlatmax] printtest = True os.system('mkdir Output/PDF%s' % (slab)) os.system('mkdir Output/multitest_%s' % (slab)) f = open(datainfo, 'w+') f.write('dataID, nodeID, used_or_where_filtered') f.write('\n') f.close() f = open(datainfo, 'w+') f.write('nodeID, len(df), status, details') f.write('\n') f.close() else: # an area not in range of any slab polygon testarea = [220, 230, 15, 20] printtest = False ''' --- (5) Gathering optional arguments, setting defaults ---''' if use_box == 'yes': check = 1 slab = s2f.rectangleIntersectsPolygon(lonmin, lonmax, latmin, latmax, polygonFile) if isinstance(slab, str): slab = slab else: try: slab = slab[0] except: print('System exit because box does not intersect slab polygon') raise SystemExit() elif use_box == 'no': check = 0 lon1, lon2, lat1, lat2 = s2f.determine_polygon_extrema(slab, polygonFile) lonmin = float(lon1) lonmax = float(lon2) latmin = float(lat1) latmax = float(lat2) else: print('use_box in slab2input.par must be "yes" or "no"') raise SystemExit() ''' ------ (6) Define search ellipsoid parameters ------''' alen = radius1 blen = radius2 ec = math.sqrt(1-((math.pow(blen, 2))/(math.pow(alen, 2)))) mdist = alen * ec ''' ------ (7) Define Average active source profiles ------''' # Different because alu is variable E/W if slab == 'alu': AA_data = pd.read_csv('library/avprofiles/alu_av5.csv') global_average = False elif slab == 'him': AA_data = pd.read_csv('library/avprofiles/him_av.csv') global_average = False elif slab == 'kur' or slab == 'izu': AA_source = 'library/avprofiles/%s_av.txt' % 'jap' AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) AA_data = AA_data[AA_data.dist < 125] global_average = False # Use RF data like AA data to constrain flat slab in Mexico elif slab == 'cam': AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) RF_data = pd.read_csv('library/avprofiles/cam_RF_av.csv') AA_data = pd.concat([AA_data,RF_data],sort=True) global_average = False else: global_average = False # See if there is a averace active source profile for this slab try: AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) # If there is no profile for this slab, use the global profile except: AA_global = pd.read_csv('library/avprofiles/global_as_av2.csv') AA_data = AA_global[['dist', 'depth']] global_average = True if slab == 'phi' or slab == 'mue': AA_data = AA_data[AA_data.dist < 10] if slab == 'cot': AA_data = AA_data[AA_data.dist < 10] if slab == 'ita' or slab == 'puy': AA_data = AA_data[AA_data.dist < 1] ''' ------ (8) Define reference model (Slab1.0 and/or slab guides) ------''' polyname = slab if slab == 'kur' or slab == 'izu': polyname = 'jap' # Search for slab guides in library/slabguides slabguide = None slabguide2 = None for SGfile in os.listdir('library/slabguides'): if SGfile[0:3] == polyname: SGfile1 = SGfile slabguide = gmt.GMTGrid.load('library/slabguides/%s'%SGfile1) # Find secondary slab guide for regions where there are two if polyname == 'sum' or polyname == 'man' or polyname == 'phi' or polyname =='sam' or polyname == 'sco' or polyname == 'mak' or polyname == 'jap': for f in os.listdir('library/slabguides'): if f[0:3] == polyname and f != SGfile: print ('f',f) SGfile2 = f slabguide2 = gmt.GMTGrid.load('library/slabguides/%s'%SGfile2) break break # Get Slab1.0 grid where applicable try: depgrid = s2f.get_grid(slab, 'depth') except: print (' Slab1.0 does not exist in this region, using slab guide') depgrid = gmt.GMTGrid.load('library/slabguides/%s'%SGfile1) slabguide = None # Calculate strike and dip grids strgrid, dipgrid = s2f.mkSDgrd(depgrid) slab1data = s2f.mkSlabData(depgrid, strgrid, dipgrid, printtest) slab1data.to_csv('gradtest.csv',header=True,index=False) # Add slab guide data to Slab1.0 grids where necessary if slabguide is not None: print ('slab guide for this model:',slabguide) guidestr, guidedip = s2f.mkSDgrd(slabguide) guidedata = s2f.mkSlabData(slabguide, guidestr, guidedip, printtest) if SGfile1 == 'phi_SG_north': guidedata = guidedata[guidedata.lat>14] elif slab == 'ryu': guidedata = guidedata[guidedata.lon>137] slab1data = slab1data[slab1data.lat<=137] slab1data = pd.concat([slab1data, guidedata],sort=True) slab1data = slab1data.reset_index(drop=True) if slabguide2 is not None: print ('secondary slab guide for this model:',slabguide2) guidestr, guidedip = s2f.mkSDgrd(slabguide2) guidedata = s2f.mkSlabData(slabguide2, guidestr, guidedip, printtest) if SGfile2 == 'phi_SG_north': guidedata = guidedata[guidedata.lat>14] slab1data = pd.concat([slab1data, guidedata],sort=True) slab1data = slab1data.reset_index(drop=True) #slab1data.to_csv('slab1data.csv',header=True,index=False) ''' ------ (9) Define Trench Locations ------''' TR_data = pd.read_csv(trenches) if slab == 'izu' or slab == 'kur': TR_data = TR_data[TR_data.slab == 'jap'] else: TR_data = TR_data[TR_data.slab == slab] TR_data = TR_data.reset_index(drop=True) TR_data.loc[TR_data.lon < 0, 'lon']+=360 ''' ------ (10) Open and modify input dataset ------''' eventlistALL = pd.read_table('%s' % inFile, sep=',', dtype={ 'lon': np.float64, 'lat': np.float64,'depth': np.float64, 'unc': np.float64, 'etype': str, 'ID': np.int, 'mag': np.float64, 'S1': np.float64, 'D1': np.float64, 'R1': np.float64, 'S2': np.float64, 'D2': np.float64, 'R2': np.float64, 'src': str, 'time': str, 'mlon': np.float64, 'mlat': np.float64, 'mdep': np.float64}) ogcolumns = ['lat', 'lon', 'depth', 'unc', 'etype', 'ID', 'mag', 'time', \ 'S1', 'D1', 'R1','S2', 'D2', 'R2', 'src'] kagancols = ['lat', 'lon', 'depth', 'unc', 'etype', 'ID', 'mag', 'time', \ 'S1', 'D1', 'R1','S2', 'D2', 'R2', 'src', 'mlon', 'mlat', 'mdep'] eventlist = eventlistALL[kagancols] if printtest: lat65 = eventlist[eventlist.lat>65] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.lat <= 65]', datainfo,'df') dataGP = eventlist[eventlist.etype == 'GP'] if len(dataGP>0): s2f.addToDataInfo(dataGP, 0, 'eventlist = eventlist[eventlist.etype != GP]', datainfo,'df') eventlist = eventlist[eventlist.lat <= 65] eventlist = eventlist[eventlist.etype != 'GP'] maxID = eventlistALL['ID'].max() # Add/Remove manually identified points that don't follow general rules remdir = 'library/points_to_remove/current_files' for badFile in os.listdir(remdir): if badFile[0:3] == slab or badFile[0:3] == 'ALL' or ((slab == 'izu' or slab == 'kur') and badFile[0:3] == 'jap'): print (' manually removing points listed in:',badFile) donotuse = pd.read_csv('%s/%s'%(remdir,badFile)) eventlist = s2f.removePoints(donotuse, eventlist, lonmin, lonmax, latmin, latmax, printtest, datainfo, True, slab) doubleuse = pd.read_csv(addFile) eventlist, maxID = s2f.doublePoints(doubleuse, eventlist, maxID) if slab == 'kur': eventlist.loc[eventlist.etype == 'TO', 'unc'] = 100 if slab == 'sul' or slab == 'man': eventlist = eventlist[eventlist.etype != 'CP'] if slab == 'him': eventlist = eventlist[eventlist.src != 'schulte'] if slab == 'sumz' or slab == 'kur' or slab == 'jap' or slab == 'izu': if printtest: lat65 = eventlist[eventlist.etype=='TO'] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.etype != TO]', datainfo,'df') eventlist = eventlist[eventlist.etype != 'TO'] if slab == 'kurz': if printtest: lat65 = eventlist[eventlist.etype=='ER'] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.etype != ER]', datainfo,'df') eventlist = eventlist[eventlist.etype != 'ER'] if slab == 'sol': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lon <= 149)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype != BA) | (eventlist.lon > 149)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | (eventlist.lon > 149)] TR_data = TR_data[TR_data.lon>149] if slab == 'man': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lon >= 120)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype == BA) & (eventlist.lon >= 120)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | ((eventlist.lon < 120)|(eventlist.lat > 15))] if slab == 'sum': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lat > 21)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype != BA) | (eventlist.lon > 149)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | (eventlist.lat <= 21)] if slab == 'ryu': ryutodata = eventlist[(eventlist.etype == 'TO')&(eventlist.lon>133)] if slab == 'hel': eventlist.loc[eventlist.etype == 'RF', 'etype'] = 'CP' if slab == 'puyz' or slab == 'mak': eventlist = eventlist[eventlist.src != 'ddgap'] # Set default uncertainties for events without uncertainties eventlist.loc[eventlist.etype == 'EQ', 'unc'] = 15.0 eventlist.loc[eventlist.etype == 'CP', 'unc'] = 5.0 eventlist.loc[eventlist.etype == 'BA', 'unc'] = 1.0 eventlist.loc[eventlist.etype == 'TO', 'unc'] = 40.0 eventlist.loc[(eventlist.etype == 'ER') & (eventlist.unc <5), 'unc'] = 5.0 if slab == 'puy': eventlist.loc[(eventlist.etype == 'ER') & (eventlist.unc <15), 'unc'] = 15.0 eventlist.loc[eventlist.mlon < 0, 'mlon'] += 360 # Ensure all data are within longitudes 0-360 eventlist.loc[eventlist.lon < 0, 'lon']+=360 # Define mean depth of bathymetry (for constraining interp outboard trench) meanBAlist = eventlist[eventlist.etype == 'BA'] meanBA = meanBAlist['depth'].mean() del eventlistALL ''' ----- (11) Calculate seismogenic zone thickness ------ ''' # define seismogenic thickness parameters. change if needed maxdep = 65 maxdepdiff = 20 origorcentl = 'c' origorcentd = 'c' slaborev = 'e' lengthlim = -50 ogcolumns = eventlist.columns eventlist = s2f.getReferenceKagan(slab1data, eventlist, origorcentl, origorcentd) if slab != 'hin': seismo_thick, taper_start = s2f.getSZthickness(eventlist,folder,slab,maxdep,maxdepdiff,origorcentl,origorcentd,slaborev,savedir,lengthlim) else: seismo_thick = 20 taper_start = 20 if slab == 'hel' or slab == 'car' or slab == 'mak': seismo_thick = 40 if slab == 'sol': seismo_thick = 40 if slab == 'alu' or slab == 'cot' or slab == 'sul': seismo_thick = 10 if slab == 'sol': eventlistE = eventlist[eventlist.lon>148] eventlistW = eventlist[eventlist.lon<=148] eventlistE = s2f.cmtfilter(eventlistE,seismo_thick,printtest,datainfo,slab) eventlist = pd.concat([eventlistE,eventlistW],sort=True) if slab == 'sum': eventlistS = eventlist[eventlist.lat<=22] eventlistN = eventlist[eventlist.lat>22] eventlistS = s2f.cmtfilter(eventlistS,seismo_thick,printtest,datainfo,slab) eventlist = pd.concat([eventlistS,eventlistN],sort=True) if slab != 'hal' and slab != 'him' and slab != 'pam' and slab != 'hin' and slab != 'sol' and slab != 'sum' and slab != 'cas': eventlist = s2f.cmtfilter(eventlist,seismo_thick,printtest,datainfo,slab) eventlist = eventlist[ogcolumns] ''' ------ (12) Record variable parameters used for this model ------''' f = open(these_params, 'w+') f.write('Parameters used to create file for slab_Date_time: %s_%s_%s \n' \ %(slab, date, time)) f.write('\n') f.close() f = open(these_params, 'a') f.write('inFile: %s \n' % inFile) f.write('use_box: %s \n' % use_box) f.write('latmin: %s \n' % str(latmin)) f.write('latmax: %s \n' % str(latmax)) f.write('lonmin: %s \n' % str(lonmin)) f.write('lonmax: %s \n' % str(lonmax)) f.write('slab: %s \n' % slab) f.write('grid: %s \n' % str(grid)) f.write('radius1: %s \n' % str(radius1)) f.write('radius2: %s \n' % str(radius2)) f.write('alen: %s \n' % str(alen)) f.write('blen: %s \n' % str(blen)) f.write('sdr: %s \n' % str(sdr)) f.write('ddr: %s \n' % str(ddr)) f.write('taper: %s \n' % str(taper)) f.write('T: %s \n' % str(T)) f.write('node: %s \n' % str(node)) f.write('filt: %s \n' % str(filt)) f.write('maxdist: %s \n' % str(maxdist)) f.write('mindip: %s \n' % str(mindip)) f.write('minstk: %s \n' % str(minstk)) f.write('maxthickness: %s \n' % str(maxthickness)) f.write('seismo_thick: %s \n' % str(seismo_thick)) f.write('dipthresh: %s \n' % str(dipthresh)) f.write('fracS: %s \n' % str(fracS)) f.write('knot_no: %s \n' % str(knot_no)) f.write('kdeg: %s \n' % str(kdeg)) f.write('rbfs: %s \n' % str(rbfs)) if slab == 'mue' or slab == 'phi' or slab == 'cot' or slab == 'sul' or slab == 'ryu': f.write('undergrid: %s \n' % str(undergrid)) f.close() ''' ------ (13) Define search grid ------ ''' print(' Creating search grid...') #Creates a grid over the slab region regular_grid = s2f.create_grid_nodes3(grid, lonmin, lonmax, latmin, latmax) grid_in_polygon = s2f.createGridInPolygon2(regular_grid, slab, polygonFile) lons = grid_in_polygon[:, 0] lats = grid_in_polygon[:, 1] lons = np.round(lons,decimals=1) lats = np.round(lats,decimals=1) lons[lons <0] += 360 slab1guide,slab1query = s2f.makeReference(slab1data,lons,lats,grid,printtest,slab) ''' ------ (14) Identify tomography datasets ------ ''' ## Identify how many tomography datasets are included tomo_data = eventlist[eventlist.etype == 'TO'] if len(tomo_data) > 0 and slab != 'sam': sources = tomo_data.src TOsrc = set() for x in sources: TOsrc.add(x) tomo_sets = TOsrc tomo = True else: tomo_sets = 0 tomo = False premulti = pd.DataFrame() postmulti = pd.DataFrame() OGmulti = pd.DataFrame() elistAA = pd.DataFrame() loncuts,latcuts,elistcuts = s2f.getlatloncutoffs(lons,lats,eventlist,printtest) ''' ------ (15) Initialize arrays for Section 2 ------ ''' # Creates list of events that were used for the model based on ID used_all = np.zeros((1, 2)) used_TO = np.zeros((1, 2)) warnings.filterwarnings('ignore', 'Mean of empty slice.') pd.options.mode.chained_assignment = None '''Section 2: First loop This Accomplishes: 1) Calculate error for each used tomography model. This is accomplished by determining the difference between measured depths for tomography and earthquake data, which will be used outside of the loop. 2) Identify data to constrain depth/coordinate of center of Benioff Zone. 2a) Identify local strike, dip, and depth of Slab1.0. If Slab 1.0 does not exist, acquire strike from closest trench location with a strike oriented perpendicularly to this lon/lat. If extending beyond Slab1.0 depths perpendicularly, find nearest and most perpendicular point on Slab1.0, and define depth to search from based on dip and depth of that point on Slab1.0. The dip is defined as the dip of the local Slab1.0 point. If extending along strike from Slab1.0, define depth to search from based on mean depth of data within defined radius of node. The dip of the node is defined as 0. 2b) Filter by ellipsoid oriented perpendicularly to Slab1.0. If the local dip is less than mindip, orient ellipsoid vertically and along strike found in (2a). If the local dip is greater than mindip, orient ellipsoid perpendicular to strike/dip found in (2a). The long axis of the ellipse is defined as radius1, the short axis is defined as radius2. The shallow extent of the ellipsoid is defined as sdr at depths above seismo_thick, and is tapered to 3*sdr at depths greater than seismo_thick. The deep extent of the ellipsoid is defined as sdr at depths above seismo_thick, and is tapered to ddr at depths greater than seismo_thick. 2c) Nodes outboard of the trench are only constrained by bathymetry. Nodes inboard of the trench are constrained by all but bathymetry. 2d) Conditionally add average active source/average reciever functions. If within the distance of the longest AS profile from the trench identify the average AS profile depth at that distance from trench. If there is no active source point within the search ellipsoid defined in (2b), add an average active source data point to the set of data to constrain the depth at this node. Reciever functions in cam and alu are being utilized similarly with defined distances from trench and distances along strike from key profiles that need to be utilized in the absence of seismicity. 2e) If information other than tomography is available above 300 km depth, all tomography is filtered at that node. 2f) If less than two data points are available to constrain a node, no depth is resolved at that node. 2g) If |strike of Slab1.0 at node - strike of Slab1.0 at farthest data| > minstrk, filter data at ends until < minstrk. If this node is outside of Slab1.0, reduce long axis of search ellipsoid prior to starting filters. The output of this loop is two numpy arrays and list of nodes with data: used_TO: local difference between tomography and earthquake depths and a tomography dataset identifier used_all: indices for the data used and their associated nodes This one is created to prevent the need for re-filtering in later loops ''' print("Start Section 2 of 7: First loop") lons1 = (np.ones(len(lons))*-9999).astype(np.float64) lats1 = (np.ones(len(lons))*-9999).astype(np.float64) deps1 = (np.ones(len(lons))*-9999).astype(np.float64) strs1 = (np.ones(len(lons))*-9999).astype(np.float64) dips1 = (np.ones(len(lons))*-9999).astype(np.float64) nIDs1 = (np.ones(len(lons))*-9999).astype(np.float64) aleng = (np.ones(len(lons))*-9999).astype(np.float64) bleng = (np.ones(len(lons))*-9999).astype(np.float64) cleng = (np.ones(len(lons))*-9999).astype(np.float64) sleng = (np.ones(len(lons))*-9999).astype(np.float64) dleng = (np.ones(len(lons))*-9999).astype(np.float64) elons1 = (np.ones(len(lons))*-9999).astype(np.float64) elats1 = (np.ones(len(lons))*-9999).astype(np.float64) edeps1 = (np.ones(len(lons))*-9999).astype(np.float64) estrs1 = (np.ones(len(lons))*-9999).astype(np.float64) edips1 = (np.ones(len(lons))*-9999).astype(np.float64) enIDs1 = (np.ones(len(lons))*-9999).astype(np.float64) ealeng = (np.ones(len(lons))*-9999).astype(np.float64) ebleng = (np.ones(len(lons))*-9999).astype(np.float64) ecleng = (np.ones(len(lons))*-9999).astype(np.float64) esleng = (np.ones(len(lons))*-9999).astype(np.float64) edleng = (np.ones(len(lons))*-9999).astype(np.float64) if args.nCores is not None: if args.nCores > 1 and args.nCores < 8: pooling = True elif args.nCores == 1: pooling = False else: pooling = False else: pooling = False cutcount = 1 allnewnodes = None for cut in range(len(loncuts)): theselats = latcuts[cut] theselons = loncuts[cut] theseevents = elistcuts[cut] indices = range(len(theselats)) if cut == 0: i2 = 0 cutcount+=1 if pooling: pool1 = Pool(args.nCores) partial_loop1 = partial(loops.loop1, theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, theseevents, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA,slab1guide,grid,slab1data,dipthresh,datainfo,nodeinfo) pts = pool1.map(partial_loop1, indices) #$$# pool1.close() pool1.join() for i in range(len(indices)): thisnode = pts[i] if thisnode[13]: lons1[i2] = thisnode[0] lats1[i2] = thisnode[1] deps1[i2] = thisnode[2] strs1[i2] = thisnode[3] dips1[i2] = thisnode[4] nIDs1[i2] = thisnode[5] aleng[i2] = thisnode[6] bleng[i2] = thisnode[7] cleng[i2] = thisnode[8] sleng[i2] = thisnode[14] dleng[i2] = thisnode[15] nused_TO = thisnode[9] if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = thisnode[10] if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = thisnode[11] if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) newnodes = thisnode[12] if len(newnodes)>0: if allnewnodes is not None: allnewnodes = np.vstack((allnewnodes,newnodes)) else: allnewnodes = newnodes if not thisnode[13] and np.isfinite(thisnode[2]): elons1[i2] = thisnode[0] elats1[i2] = thisnode[1] edeps1[i2] = thisnode[2] estrs1[i2] = thisnode[3] edips1[i2] = thisnode[4] enIDs1[i2] = thisnode[5] ealeng[i2] = thisnode[6] ebleng[i2] = thisnode[7] ecleng[i2] = thisnode[8] esleng[i2] = thisnode[14] edleng[i2] = thisnode[15] i2 += 1 else: for nodeno in range(len(theselons)): alon, alat, alocdep, alocstr, alocdip, anID, aaleng, ableng, acleng, aused_TO, aused_tmp, atrimmedAA, newnodes, anydata, asleng, adleng = loops.loop1(theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, theseevents, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA, slab1guide, grid, slab1data, dipthresh, datainfo, nodeinfo, nodeno) if anydata: lons1[i2] = alon lats1[i2] = alat deps1[i2] = alocdep strs1[i2] = alocstr dips1[i2] = alocdip nIDs1[i2] = anID aleng[i2] = aaleng bleng[i2] = ableng cleng[i2] = acleng sleng[i2] = asleng dleng[i2] = adleng nused_TO = aused_TO if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = aused_tmp if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = atrimmedAA if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) if len(newnodes)>0: if allnewnodes is not None: allnewnodes = np.vstack((allnewnodes,newnodes)) else: allnewnodes = newnodes if not anydata and np.isfinite(alocdep): elons1[i2] = alon elats1[i2] = alat edeps1[i2] = alocdep estrs1[i2] = alocstr edips1[i2] = alocdip enIDs1[i2] = anID ealeng[i2] = aaleng ebleng[i2] = ableng ecleng[i2] = acleng esleng[i2] = asleng edleng[i2] = adleng i2 += 1 lons1 = lons1[lons1>-999] lats1 = lats1[lats1>-999] deps1 = deps1[(deps1>-999)|np.isnan(deps1)] strs1 = strs1[strs1>-999] dips1 = dips1[dips1>-999] nIDs1 = nIDs1[nIDs1>-999] aleng = aleng[aleng>-999] bleng = bleng[bleng>-999] cleng = cleng[cleng>-999] sleng = sleng[sleng>-999] dleng = dleng[dleng>-999] elons1 = elons1[edleng>-999] elats1 = elats1[edleng>-999] edeps1 = edeps1[(edeps1>-999)|np.isnan(edeps1)] estrs1 = estrs1[edleng>-999] edips1 = edips1[edleng>-999] enIDs1 = enIDs1[edleng>-999] ealeng = ealeng[edleng>-999] ebleng = ebleng[edleng>-999] ecleng = ecleng[edleng>-999] esleng = esleng[edleng>-999] edleng = edleng[edleng>-999] testdf = pd.DataFrame({'lon':lons1,'lat':lats1,'depth':deps1,'strike':strs1,'dip':dips1,'id':nIDs1,'alen':aleng,'blen':bleng,'clen':cleng,'slen':sleng,'dlen':dleng}) testdf.to_csv('firstloop.csv',header=True,index=False,na_rep=np.nan) if allnewnodes is not None: theseIDs = [] for i in range(len(allnewnodes)): if allnewnodes[i,1]>0: thisnID = int('%i%i'%(allnewnodes[i,0]*10,allnewnodes[i,1]*10)) else: thisnID = int('%i0%i'%(allnewnodes[i,0]*10,allnewnodes[i,1]*-10)) theseIDs.append(thisnID) newlonsdf1 = pd.DataFrame({'lon':allnewnodes[:,0],'lat':allnewnodes[:,1],'nID':theseIDs}) newlonsdf = newlonsdf1.drop_duplicates(['nID']) theselons = newlonsdf['lon'].values theselats = newlonsdf['lat'].values if grid == 0.2: grid2 = 0.1 elif grid == 0.1: grid2 = 0.05 else: grid2 = grid slab1guide,slab1query = s2f.makeReference(slab1data,theselons,theselats,grid2,printtest,slab) newlats = [] newlons = [] newdeps = [] newstrs = [] newdips = [] newnIDs = [] newalen = [] newblen = [] newclen = [] newslen = [] newdlen = [] enewlats = [] enewlons = [] enewdeps = [] enewstrs = [] enewdips = [] enewnIDs = [] enewalen = [] enewblen = [] enewclen = [] enewslen = [] enewdlen = [] if pooling: indices = range(len(theselons)) pool1 = Pool(args.nCores) partial_loop1 = partial(loops.loop1, theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, eventlist, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA,slab1guide,grid,slab1data,dipthresh,datainfo,nodeinfo) pts = pool1.map(partial_loop1, indices) pool1.close() pool1.join() for i in range(len(indices)): thisnode = pts[i] if thisnode[13]: newlons.append(thisnode[0]) newlats.append(thisnode[1]) newdeps.append(thisnode[2]) newstrs.append(thisnode[3]) newdips.append(thisnode[4]) newnIDs.append(thisnode[5]) newalen.append(thisnode[6]) newblen.append(thisnode[7]) newclen.append(thisnode[8]) newslen.append(thisnode[14]) newdlen.append(thisnode[15]) nused_TO = thisnode[9] if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = thisnode[10] if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = thisnode[11] if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA =
pd.concat([elistAA, AAadd],sort=True)
pandas.concat
import numpy as np import warnings warnings.filterwarnings("ignore") import talib as ta import yfinance as yf import matplotlib.pyplot as plt from datetime import datetime import matplotlib.dates as mdates from yahooquery import Ticker import pandas as pd import streamlit as st from src.tools import functions as f0 plt.style.use('seaborn-talk') sm, med, lg = 10, 15, 20 plt.rc("font", size=sm) # controls default text sizes plt.rc("axes", titlesize=med) # fontsize of the axes title plt.rc("axes", labelsize=med) # fontsize of the x & y labels plt.rc("xtick", labelsize=sm) # fontsize of the tick labels plt.rc("ytick", labelsize=sm) # fontsize of the tick labels plt.rc("legend", fontsize=sm) # legend fontsize plt.rc("figure", titlesize=lg) # fontsize of the figure title plt.rc("axes", linewidth=2) # linewidth of plot lines plt.rcParams["figure.figsize"] = [15, 8] plt.rcParams["figure.dpi"] = 100 class Indicator_Ike(object): def __init__(self, ticker, date1=str(datetime.now())[:10], cc=0.0, ccc=0.0, graphit=True): self.stock = ticker self.date1 = date1 self.cc = cc self.ccc = ccc self.graphit = graphit def get_data(self): data = yf.download(self.stock, period='1y') self.data = data.loc[:self.date1] return self.data def bollinger_bands(self, df): df['upper_band'], df['middle_band'], df['lower_band'] = ta.BBANDS(df['Close'], timeperiod =20) df["Signal"] = 0.0 df["Signal"] = np.where(df['Close'] > df['middle_band'], 1.0, 0.0) df["Position"] = df["Signal"].diff() df_pos = df[(df["Position"] == 1) | (df["Position"] == -1)] df_pos["Position"] = df_pos["Position"].apply(lambda x: "Buy" if x == 1 else "Sell") if self.graphit is True: fig, ax = plt.subplots() plt.tick_params(axis="both", labelsize=15) df['Close'].plot(color="k", lw=2, label='Close') df['upper_band'].plot(color="g", lw=1, label='upper_band', linestyle='dashed') df['middle_band'].plot(color="r", lw=1, label='middle_band') df['lower_band'].plot(color="b", lw=1, label='lower_band', linestyle='dashed') # plot 'buy' signals plt.plot( df[df["Position"] == 1].index, df['Close'][df["Position"] == 1], "^", markersize=15, color="g", alpha=0.7, label="buy", ) # plot 'sell' signals plt.plot( df[df["Position"] == -1].index, df['Close'][df["Position"] == -1], "v", markersize=15, color="r", alpha=0.7, label="sell", ) plt.ylabel("Price", fontsize=20, fontweight="bold") plt.xlabel("Date", fontsize=20, fontweight="bold") plt.grid(True, color="k", linestyle="-", linewidth=1, alpha=0.3) ax.legend(loc="best", prop={"size": 16}) plt.tight_layout() plt.show() st.pyplot(fig) try: if df_pos['Position'][-1] == 'Buy': st.metric(f"No. {self.cc} / {self.ccc} In Portfolio", f"{self.stock}", f"{df_pos['Position'][-1]}"); return elif df_pos['Position'][-1] == 'Sell': st.metric(f"No. {self.cc} / {self.ccc} In Portfolio", f"{self.stock}", f"- {df_pos['Position'][-1]}") except Exception: pass def macd(self, data): data['macd'], data['macdsignal'], data['macdhist'] = ta.MACD(data['Close'], fastperiod=12, slowperiod=26, signalperiod=9) stock_df = pd.DataFrame(data) stock_df["Signal"] = 0.0 stock_df["Signal"] = np.where(stock_df['macd'] > stock_df['macdsignal'], 1.0, 0.0) stock_df["Position"] = stock_df["Signal"].diff() df_pos = stock_df[(stock_df["Position"] == 1) | (stock_df["Position"] == -1)] df_pos["Position"] = df_pos["Position"].apply(lambda x: "Buy" if x == 1 else "Sell") stock_df.dropna(inplace=True) if self.graphit is True: fig, ax = plt.subplots() # plot close price, short-term and long-term moving averages plt.tick_params(axis="both", labelsize=15) stock_df["macdhist"].plot(color="r", lw=1.5, label="macdhist") stock_df['macd'].plot(color="b", lw=2, label='macd') stock_df['macdsignal'].plot(color="g", lw=2, label='macdsignal') # plot 'buy' signals plt.plot( stock_df[stock_df["Position"] == 1].index, stock_df['macd'][stock_df["Position"] == 1], "^", markersize=15, color="g", alpha=0.7, label="buy", ) # plot 'sell' signals plt.plot( stock_df[stock_df["Position"] == -1].index, stock_df['macd'][stock_df["Position"] == -1], "v", markersize=15, color="r", alpha=0.7, label="sell", ) plt.ylabel("MACD", fontsize=20, fontweight="bold") plt.xlabel("Date", fontsize=20, fontweight="bold") plt.grid(True, color="k", linestyle="-", linewidth=1, alpha=0.3) ax.legend(loc="best", prop={"size": 16}) plt.tight_layout() plt.show() st.pyplot(fig) try: if df_pos['Position'][-1] == 'Buy': st.metric(f"No. {self.cc} / {self.ccc} In Portfolio", f"{self.stock}", f"{df_pos['Position'][-1]}"); return elif df_pos['Position'][-1] == 'Sell': st.metric(f"No. {self.cc} / {self.ccc} In Portfolio", f"{self.stock}", f"- {df_pos['Position'][-1]}") except Exception: pass act_lst = [] for i in stock_df['Position']: if i == 1.0: act_lst.append('Buy') elif i == -1.0: act_lst.append('Sell') else: act_lst.append('') stock_df['action'] = act_lst del stock_df['Open'] del stock_df['High'] del stock_df['Low'] del stock_df['Adj Close'] del stock_df['Volume'] stock_df = stock_df[stock_df['action'] != ""] def rsi(self, data): df =
pd.DataFrame(data)
pandas.DataFrame
""" This module aims to standardize the training and evaluation procedure. """ import numpy as np import pandas as pd import xarray as xr from os.path import join, exists from os import listdir from ninolearn.utils import print_header, small_print_header from ninolearn.pathes import modeldir, processeddir # evaluation decades decades = [1963, 1972, 1982, 1992, 2002, 2012, 2018] decades_elninolike = [] n_decades = len(decades) # lead times for the evaluation lead_times = [0, 3, 6, 9, 12, 15, 18, 21] n_lead = len(lead_times) decade_color = ['orange', 'violet', 'limegreen', 'darkgoldenrod', 'red', 'royalblue'] decade_name = ['1963-1971', '1972-1981', '1982-1991', '1992-2001', '2002-2011', '2012-2017'] def cross_training(model, pipeline, n_iter, **kwargs): """ Training the model on different training sets in which each time a period\ corresponing to a decade out of 1962-1971, 1972-1981, ..., 2012-last \ ovserved date is spared. :param model: A model that follows the guidelines how a model object\ should be set up. :param pipeline: a function that takes lead time as argument and returns\ the corresponding feature, label, time and persistance. :param save_dir: The prefix of the save directory. :param **kwargs: Arguments that shell be passed to the .set_parameter() \ method of the provided model. """ for lead_time in lead_times: X, y, timey = pipeline(lead_time, return_persistance=False) print_header(f'Lead time: {lead_time} month') for j in range(n_decades-1): m = model(**kwargs) dir_name = f"{m.hyperparameters['name']}_decade{decades[j]}_lead{lead_time}" path = join(modeldir, dir_name) n_files=0 if exists(path): n_files = len(listdir(path)) if not exists(path) or n_files==0: small_print_header(f'Test period: {decades[j]}-01-01 till {decades[j+1]-1}-12-01') test_indeces = (timey>=f'{decades[j]}-01-01') & (timey<=f'{decades[j+1]-1}-12-01') train_indeces = np.invert(test_indeces) trainX, trainy, traintime = X[train_indeces,:], y[train_indeces], timey[train_indeces] m.fit_RandomizedSearch(trainX, trainy, traintime, n_iter=n_iter) m.save(location=modeldir, dir_name=dir_name) else: print(f'{dir_name} already exists') del m def cross_hindcast(model, pipeline, model_name, **kwargs): """ Generate a hindcast from 1962 till today using the models which were trained by the .cross_training() method. :param model: The considered model. :param pipeline: The data pipeline that already was used before in \ .cross_training(). """ first_lead_loop = True for i in range(n_lead): lead_time = lead_times[i] print_header(f'Lead time: {lead_time} months') X, y, timey, y_persistance = pipeline(lead_time, return_persistance=True) ytrue = np.array([]) timeytrue = pd.DatetimeIndex([]) first_dec_loop = True for j in range(n_decades-1): small_print_header(f'Predict: {decades[j]}-01-01 till {decades[j+1]-1}-12-01') # test indices test_indeces = (timey>=f'{decades[j]}-01-01') & (timey<=f'{decades[j+1]-1}-12-01') testX, testy, testtimey = X[test_indeces,:], y[test_indeces], timey[test_indeces] m = model(**kwargs) m.load(location=modeldir, dir_name=f'{model_name}_decade{decades[j]}_lead{lead_time}') # allocate arrays and variables for which the model must be loaded if first_dec_loop: n_outputs = m.n_outputs output_names = m.output_names pred_full = np.zeros((n_outputs, 0)) first_dec_loop=False # make prediction pred = np.zeros((m.n_outputs, testX.shape[0])) pred[:,:] = m.predict(testX) # make the full time series pred_full = np.append(pred_full, pred, axis=1) ytrue = np.append(ytrue, testy) timeytrue = timeytrue.append(testtimey) del m if timeytrue[0]!=pd.to_datetime('1963-01-01'): expected_first_date = '1963-01-01' got_first_date = timeytrue[0].isoformat()[:10] raise Exception(f"The first predicted date for lead time {lead_time} \ is {got_first_date} but expected {expected_first_date}") # allocate arrays and variables for which the full length of the time # series must be known if first_lead_loop: n_time = len(timeytrue) pred_save = np.zeros((n_outputs, n_time, n_lead)) first_lead_loop=False pred_save[:,:,i] = pred_full # Save data to a netcdf file save_dict = {} for i in range(n_outputs): save_dict[output_names[i]] = (['target_season', 'lead'], pred_save[i,:,:]) ds = xr.Dataset(save_dict, coords={'target_season': timeytrue, 'lead': lead_times} ) ds.to_netcdf(join(processeddir, f'{model_name}_forecasts.nc')) def cross_hindcast_dem(model, pipeline, model_name): """ Generate a hindcast from 1962 till today using the models which were trained by the .cross_training() method. ONLY works for the DEM. This routine returns an std estimate that is only based on the corrlation skill of the DEM predicted mean. :param model: The considered model. :param pipeline: The data pipeline that already was used before in \ .cross_training(). """ #cross_hindcast(model, pipeline, model_name) std_estimate = xr.open_dataarray(join(processeddir, f'{model_name}_std_estimate.nc')) first_lead_loop = True for i in range(n_lead): lead_time = lead_times[i] print_header(f'Lead time: {lead_time} months') X, y, timey, y_persistance = pipeline(lead_time, return_persistance=True) ytrue = np.array([]) timeytrue = pd.DatetimeIndex([]) first_dec_loop = True for j in range(n_decades-1): small_print_header(f'Predict: {decades[j]}-01-01 till {decades[j+1]-1}-12-01') # test indices test_indeces = (timey>=f'{decades[j]}-01-01') & (timey<=f'{decades[j+1]-1}-12-01') testX, testy, testtimey = X[test_indeces,:], y[test_indeces], timey[test_indeces] m = model() m.load(location=modeldir, dir_name=f'{model_name}_decade{decades[j]}_lead{lead_time}') # allocate arrays and variables for which the model must be loaded if first_dec_loop: n_outputs = m.n_outputs output_names = m.output_names pred_full = np.zeros((n_outputs+1, 0)) first_dec_loop=False # make prediction pred = np.zeros((m.n_outputs+1, testX.shape[0])) pred[:2,:] = m.predict(testX) for k in range(len(testtimey)): month = testtimey[k].date().month pred[-1, k] = std_estimate[i, month-1] # make the full time series pred_full = np.append(pred_full, pred, axis=1) ytrue = np.append(ytrue, testy) timeytrue = timeytrue.append(testtimey) del m if timeytrue[0]!=
pd.to_datetime('1963-01-01')
pandas.to_datetime
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import itertools from datetime import datetime import numpy as np import sklearn.mixture as mix from matplotlib.dates import YearLocator, MonthLocator import warnings from pylab import rcParams from matplotlib.pyplot import cm rcParams['figure.figsize'] = [10, 5] sns.set() warnings.filterwarnings("ignore") paths = ["/Users/julienraffaud/Desktop/Data/DEXJPUS.csv", "/Users/julienraffaud/Desktop/Data/DGS10.csv", "/Users/julienraffaud/Desktop/Data/NIKKEI225.csv"] # Importing, collating and formatting our three time series: # USD/JPY, 10Y constant maturity JGB yield & Nikkei index. dataframes = [] for file in paths: df = pd.read_csv(file) df["DATE"] = df["DATE"].astype(datetime) df = df[df[df.columns[1]]!= "."] df[df.columns[1]] = df[df.columns[1]].astype(float) df = df.set_index("DATE") dataframes.append(df) # Formatting the final dataframe of the time series. time_series = pd.concat(dataframes,axis=1,sort='False').dropna() time_series.columns = ["USD/JPY","JGB","NIKKEI"] time_series.index =
pd.to_datetime(time_series.index)
pandas.to_datetime
import json import time import uuid import numpy as np import pandas as pd from great_expectations.dataset import PandasDataset from feast import ( Client, Entity, Feature, FeatureTable, FileSource, KafkaSource, ValueType, ) from feast.contrib.validation.ge import apply_validation, create_validation_udf from feast.data_format import AvroFormat, ParquetFormat from feast.pyspark.abc import SparkJobStatus from feast.wait import wait_retry_backoff from tests.e2e.utils.kafka import check_consumer_exist, ingest_and_retrieve def generate_train_data(): df =
pd.DataFrame(columns=["key", "num", "set", "event_timestamp"])
pandas.DataFrame
#!/usr/bin/env python3 import sys import argparse import seaborn from evalys import * from evalys.jobset import * from evalys.mstates import * from evalys.pstates import * from evalys.visu.legacy import * import pandas as pd import matplotlib.pyplot as plt def main(): # Argument parsing parser = argparse.ArgumentParser(description='Draws the states the machines are in over time') parser.add_argument('--mstatesCSV', '-m', nargs='+', help='The name of the CSV file which contains pstate information') parser.add_argument('--jobsCSV', '-j', nargs='+', help='The name of the CSV file which contains jobs information') parser.add_argument('--pstatesCSV', '-p', nargs='+', help='The name of the CSV file which contains pstate information') parser.add_argument('--energyCSV', '-e', nargs='+', help='The name of the CSV file which contains energy consumption information') parser.add_argument('--llhCSV', '-l', nargs='+', help='The name of the CSV file which contains LLH information') parser.add_argument('--llh-bound', type=float, help='If set, draws a LLH horizontal line on this bound') parser.add_argument('--priority-job-waiting-time-bound', type=float, help='If set, draws an horizon line corresponding to this bound') parser.add_argument('--time-window', nargs='+', type=float, help="If set, limits the time window of study. Example: 0 4200") parser.add_argument('--force-right-adjust', type=float, help='If set, forces the right adjustement of the plot.') parser.add_argument('--off', nargs='+', help='The power states which correspond to OFF machine states') parser.add_argument('--switchon', nargs='+', help='The power states which correspond to a switching ON machine state') parser.add_argument('--switchoff', nargs='+', help='The power states which correspond to switching OFF machine state') parser.add_argument('--names', nargs='+', default=['Unnamed'], help='When multiple instances must be plotted, their names must be given via this parameter.') parser.add_argument('--output', '-o', help='The output file (format depending on the given extension, pdf is RECOMMENDED). For example: figure.pdf') parser.add_argument("--gantt", action='store_true', help="If set, the gantt chart will be outputted. Requires jobs, pstates and probably machine values (--off, --switchon, --switchoff)") parser.add_argument("--ru", action='store_true', help="If set, the resource usage will be outputted. Requires machine states") parser.add_argument("--power", action='store_true', help="If set, the instantaneous power will be outputted. Requires energyCSV") parser.add_argument("--energy", action='store_true', help="If set, the cumulated energy consumption will be outputted. Requires energyCSV") parser.add_argument('--llh', action='store_true', help='If set, the LLH will be outputted. Requires llhCSV. Jobs are optional.') parser.add_argument('--load-in-queue', action='store_true', help='If set, the load in queue will be outputted. Requires llhCSV.') parser.add_argument('--nb-jobs-in-queue', action='store_true', help='If set, the number of jobs in queue will be outputted. Requires llhCSV.') parser.add_argument('--priority-job-size', action='store_true', help='If set, the size of the priority job will be outputted. Requires llhCSV.') parser.add_argument('--priority-job-expected-waiting-time', action='store_true', help='If set, the expected waiting time of the priority job will be outputted. Requires llhCSV.') parser.add_argument('--priority-job-starting-expected-soon', action='store_true', help='If set, whether the priority job is expected to start soon will be outputted. Requires llhCSV') args = parser.parse_args() ################### # Figure creation # ################### nb_instances = None nb_subplots = 0 left_adjust = 0.05 top_adjust = 0.95 bottom_adjust = 0.05 right_adjust = 0.95 if args.gantt: assert(args.jobsCSV), "Jobs must be given to compute the gantt chart!" nb_jobs_csv = len(args.jobsCSV) if args.pstatesCSV: nb_pstates_csv = len(args.pstatesCSV) assert(nb_jobs_csv == nb_pstates_csv), "The number of jobs_csv ({}) should equal the number of pstates_csv ({})".format(nb_jobs_csv, nb_pstates_csv) nb_gantt = nb_jobs_csv nb_subplots += nb_gantt nb_instances = nb_gantt if args.ru: assert(args.mstatesCSV), "Mstates must be given to compute the resource usage!" right_adjust = min(right_adjust, 0.85) nb_ru = len(args.mstatesCSV) nb_subplots += nb_ru if nb_instances is not None: assert(nb_instances == nb_ru), 'Inconsistent number of instances (nb_ru={} but already got nb_instances={})'.format(nb_ru, nb_instances) else: nb_instances = nb_ru if args.power: assert(args.energyCSV), "EnergyCSV must be given to compute power!" nb_subplots += 1 right_adjust = min(right_adjust, 0.85) if args.energy: assert(args.energyCSV), "EnergyCSV must be given to compute energy!" nb_energy = 1 nb_subplots += nb_energy right_adjust = min(right_adjust, 0.85) if args.energyCSV: nb_energy_csv = len(args.energyCSV) if nb_instances is not None: assert(nb_instances == nb_energy_csv), 'Inconsistent number of instances (nb_energy_csv={} but already got nb_instances={})'.format(nb_energy_csv, nb_instances) else: nb_instances = nb_energy_csv if args.llh: assert(args.llhCSV), "LLH_CSV must be given to compute llh!" right_adjust = min(right_adjust, 0.85) nb_subplots += 1 if args.load_in_queue: assert(args.llhCSV), "LLH_CSV must be given to compute llh!" nb_subplots += 1 if args.nb_jobs_in_queue: assert(args.llhCSV), "LLH_CSV must be given to compute the queue!" nb_subplots += 1 if args.priority_job_size: assert(args.llhCSV), "LLH_CSV must be given to compute the priority job size!" nb_subplots += 1 if args.priority_job_expected_waiting_time: assert(args.llhCSV), "LLH_CSV must be given to compute the priority job size!" nb_subplots += 1 if args.priority_job_starting_expected_soon: assert(args.llhCSV), "LLH_CSV must be given to compute the priority job size!" nb_subplots += 1 if args.llhCSV: nb_llh_csv = len(args.llhCSV) if nb_instances is not None: assert(nb_instances == nb_llh_csv), 'Inconsistent number of instances (nb_llh_csv={} but already got nb_instances={})'.format(nb_llh_csv, nb_instances) else: nb_instances = nb_llh_csv if nb_subplots == 0: print('There is nothing to plot!') sys.exit(0) names = args.names assert(nb_instances == len(names)), 'The number of names ({} in {}) should equal the number of instances ({})'.format(len(names), names, nb_instances) if args.force_right_adjust: right_adjust = args.force_right_adjust fig, ax_list = plt.subplots(nb_subplots, sharex=True, sharey=False) fig.subplots_adjust(bottom=bottom_adjust, right=right_adjust, top=top_adjust, left=left_adjust) #fig.tight_layout() if nb_subplots < 2: ax_list = [ax_list] ########################################## # Create data structures from input args # ########################################## time_min = None time_max = None if args.time_window: time_min, time_max = [float(f) for f in args.time_window] jobs = list() if args.jobsCSV and (args.gantt or args.llhCSV): for csv_filename in args.jobsCSV: jobs.append(JobSet.from_csv(csv_filename)) pstates = list() if args.pstatesCSV and args.gantt: for csv_filename in args.pstatesCSV: pstates.append(PowerStatesChanges(csv_filename)) machines = list() if args.mstatesCSV and args.ru: for csv_filename in args.mstatesCSV: machines.append(MachineStatesChanges(csv_filename, time_min, time_max)) llh = list() if args.llhCSV: for csv_filename in args.llhCSV: llh_data = pd.read_csv(csv_filename) # Drop values outside the time window if time_min is not None: llh_data = llh_data.loc[llh_data['date'] >= time_min] if time_max is not None: llh_data = llh_data.loc[llh_data['date'] <= time_max] llh.append(llh_data) energy = list() power = list() if args.energyCSV: for csv_filename in args.energyCSV: energy_data = pd.read_csv(csv_filename) # Drop values outside the time window if time_min is not None: energy_data = energy_data.loc[energy_data['time'] >= time_min] if time_max is not None: energy_data = energy_data.loc[energy_data['time'] <= time_max] energy.append(energy_data) if args.power: df = energy_data.drop_duplicates(subset='time') df = df.drop(['event_type', 'wattmin', 'epower'], axis=1) diff = df.diff(1) diff.rename(columns={'time':'time_diff', 'energy':'energy_diff'}, inplace=True) joined =
pd.concat([df, diff], axis=1)
pandas.concat
import json import os import csv import socket import pandas as pd import numpy as np import glob import logging from datetime import datetime, timedelta from flask import flash, current_app from flask_login import current_user from pathlib import Path from specter_importer import Specter from pricing_engine.engine import (fx_rate, price_ondate, fx_price_ondate, realtime_price, historical_prices) from pricing_engine.cryptocompare import multiple_price_grab from warden_decorators import MWT, timing from utils import load_config from dateutil import parser from parseNumbers import parseNumber # Returns the current application path def current_path(): application_path = os.path.dirname(os.path.abspath(__file__)) return (application_path) # Returns the home path def home_path(): home = str(Path.home()) return (home) # ------------------------------------ # Address and Port checker - to check # which services are running def check_server(address, port, timeout=10): # Create a TCP socket s = socket.socket() s.settimeout(timeout) try: s.connect((address, port)) return True except socket.error: return False finally: s.close() # End Config Variables ------------------------------------------------ # Get all transactions of specific wallet by using alias def get_specter_tx(wallet_alias, sort_by='time', idx=0, load=True, session=None): df = pd.DataFrame() wallet_list = current_app.specter.wallet_alias_list() if wallet_alias not in wallet_list: logging.error(f"Wallet {wallet_alias}: Wallet not in current_app") return (df) t = current_app.specter.refresh_txs(load=True) df = df.append(pd.DataFrame(t)) logging.info(f"Wallet {wallet_alias} --- Finished txs") # Sort df if not df.empty: df = df.sort_values(by=[sort_by], ascending=False) return (df) # This returns data to create the Warden Status Page def warden_metadata(): from utils import pickle_it meta = {} meta['full_df'] = specter_df() meta['wallet_list'] = current_app.specter.wallet_alias_list() # Load pickle with previous checkpoint df df_pkl = 'txs_pf.pkl' data = pickle_it(action='load', filename=df_pkl) if not isinstance(data, pd.DataFrame): if data == 'file not found': meta['df_old'] = None else: meta['df_old'] = data # load difference / changes in addresses from file ack_file = 'txs_diff.pkl' data = pickle_it(action='load', filename=ack_file) if data == 'file not found': meta['ack_file'] = None else: meta['ack_file'] = data meta['old_new_df_old'] = data['deleted'] meta['old_new_df_new'] = data['added'] return (meta) # Transactions Engine -------------------------------------- class Trades(): def __init__(self): self.id = None self.user_id = "specter_user" self.trade_inputon = None self.trade_date = None self.trade_currency = current_app.settings['PORTFOLIO']['base_fx'] self.trade_asset_ticker = None self.trade_account = None self.trade_quantity = None self.trade_operation = None self.trade_price = None self.trade_fees = None self.trade_notes = None self.trade_reference_id = None self.trade_blockchain_id = None self.cash_value = None def to_dict(self): return (vars(self)) def specter_df(delete_files=False, sort_by='trade_date'): from utils import pickle_it df = pd.DataFrame() try: t = current_app.specter.refresh_txs(load=True)['txlist'] df = df.append(t) except Exception as e: print(e) # Check if txs exists return df if df.empty: return df # Clean Date String df['trade_date'] = pd.to_datetime(df['time'], unit='s') # Add additional columns if 'fee' not in df: df['fee'] = 0 df['trade_blockchain_id'] = df['txid'] df['trade_account'] = df['wallet_alias'] df['trade_currency'] = current_app.settings['PORTFOLIO']['base_fx'] df['trade_asset_ticker'] = "BTC" portfolio_divisor = current_app.settings['PORTFOLIO'].getfloat('divisor') if portfolio_divisor is None: portfolio_divisor = 1 df['amount'] = df['amount'].apply(parseNumber) try: df['amount'] = df['amount'] / portfolio_divisor except TypeError: pass df['trade_quantity'] = df['amount'] df['trade_notes'] = 'Imported from Specter Wallet' df['trade_reference_id'] = "" def trade_operation(value): # Get Bitcoin price on each Date try: if value.lower() == 'receive': return ("B") if value.lower() == 'send': return ("S") except Exception: return ("") df['trade_operation'] = df['category'].apply(trade_operation) df['date_str'] = df['trade_date'].dt.strftime('%Y-%m-%d') def btc_price(date_input): get_date = datetime.strptime(date_input, "%Y-%m-%d") # Create price object try: fx = fx_price_ondate('USD', current_app.fx['code'], get_date) price = price_ondate("BTC", get_date)['close'] * fx except Exception as e: logging.error("Not Found. Error: " + str(e)) price = 0 return (price) df['btc_price'] = df['date_str'].apply(btc_price) df['trade_price'] = df['btc_price'] # For some reason Specter is returning fee = 1 for some transactions # So the filter below clears all fees higher than 0.10 BTC which is # probably too high :) df.loc[df.fee > 0.10, 'fee'] = 0 df['fee'] = df['fee'].fillna(0) df['trade_fees'] = df['fee'] * df['btc_price'] df['trade_multiplier'] = 0 df.loc[df.trade_operation == 'B', 'trade_multiplier'] = 1 df.loc[df.trade_operation == 'receive', 'trade_multiplier'] = 1 df.loc[df.trade_operation == 'S', 'trade_multiplier'] = -1 df.loc[df.trade_operation == 'send', 'trade_multiplier'] = -1 df['trade_quantity'] = df['trade_quantity'] * df['trade_multiplier'] df['amount'] = df['trade_quantity'] try: df['cash_value'] = abs(df['trade_price']) * abs(df['trade_quantity']) * df[ 'trade_multiplier'] except Exception: df['cash_value'] = 0 df['loaded'] = False # TEST LINE ------------- Make this a new transaction forced into df tester = { 'trade_date': datetime.now(), 'trade_currency': 'USD', 'trade_fees': 0, 'trade_quantity': 1, 'trade_multiplier': 1, 'trade_price': 10000, 'trade_asset_ticker': 'BTC', 'trade_operation': 'B', 'checksum': (5 * (10**19)), 'txid': 'test', 'address': 'test_address', 'amount': 2, 'status': 'Test_line', 'trade_account': 'trezor', 'loaded': False, 'trade_blockchain_id': 'xxsxmssxkxsjsxkxsx' } # Comment / Uncomment code below for testing of including new transactions # Remove last 2 transactions here # df.drop(df.tail(2).index, inplace=True) # add transaction above # df = df.append(tester, ignore_index=True) # END TEST LINE ---------------------------------------------------- # Files ---------------------------------- df_pkl = 'txs_pf.pkl' old_df_file = 'old_df.pkl' ack_file = 'txs_diff.pkl' # ----------------------------------------- # Activity checkpoint will be created. Delete all old files. if delete_files: pickle_it(action='delete', filename=df_pkl) pickle_it(action='delete', filename=old_df_file) pickle_it(action='delete', filename=ack_file) # save this latest df to a file pickle_it(action='save', filename=df_pkl, data=df) try: # Loads the old df to check for activity df_loaded = pickle_it(action='load', filename=old_df_file) if not isinstance(df_loaded, pd.DataFrame): if df_loaded == "file not found": raise FileNotFoundError df_loaded['loaded'] = True # Find differences in old vs. new df_check = pd.concat([df, df_loaded]).drop_duplicates( subset='trade_blockchain_id', keep=False) if not df_check.empty: # Let's find which checksums are different and compile a list - save this list # so it can be used on main page to highlight changes df_old = df_check[df_check['loaded']] df_new = df_check[~df_check['loaded']] json_save = { 'changes_detected_on': datetime.now().strftime("%I:%M %p on %B %d, %Y"), 'deleted': df_old, 'added': df_new } # If activity is detected, don't delete the old df by saving new df over save_files = False else: json_save = { 'changes_detected_on': None, 'deleted': None, 'added': None } save_files = True # Save the dict above to be accessed later pickle_it(action='save', filename=ack_file, data=json_save) except FileNotFoundError: # Files not found - let's save a new checkpoint save_files = True # Sort df = df.sort_values(by=[sort_by], ascending=False) if save_files: pickle_it(action='save', filename=old_df_file, data=df) return (df) def find_fx(row, fx=None): # row.name is the date being passed # row['trade_currency'] is the base fx (the one where the trade was included) # Create an instance of PriceData: price = fx_price_ondate( current_app.settings['PORTFOLIO']['base_fx'], row['trade_currency'], row.name) return price @ MWT(timeout=20) def transactions_fx(): # Gets the transaction table and fills with fx information # Note that it uses the currency exchange for the date of transaction # Get all transactions from Specter and format # SPECTER ============================================ df = specter_df() if not df.empty: df['trade_date'] = pd.to_datetime(df['trade_date']) df = df.set_index('trade_date') # Ignore times in df to merge - keep only dates df.index = df.index.floor('d') df.index.rename('date', inplace=True) # SQL DATABASE ======================================== # Get all transactions from db and format df_sql = pd.read_sql_table('trades', current_app.db.engine) if not df_sql.empty: df_sql = df_sql[(df_sql.user_id == current_user.username)] # df = df[(df.trade_operation == "B") | (df.trade_operation == "S")] df_sql['trade_date'] = pd.to_datetime(df_sql['trade_date']) df_sql = df_sql.set_index('trade_date') # Ignore times in df to merge - keep only dates df_sql.index = df_sql.index.floor('d') df_sql.index.rename('date', inplace=True) # Merge both df = df.append(df_sql, sort=False) if df.empty: logging.warning("Transactions_FX - No txs found") return df # The current fx needs no conversion, set to 1 df[fx_rate()['fx_rate']] = 1 # Need to get currencies into the df in order to normalize # let's load a list of currencies needed and merge list_of_fx = df.trade_currency.unique().tolist() # loop through currency list for currency in list_of_fx: if currency == fx_rate()['fx_rate']: continue # Make a price request df[currency] = df.apply(find_fx, axis=1) # Now create a cash value in the preferred currency terms df['fx'] = df.apply(lambda x: x[x['trade_currency']], axis=1) df['cash_value_fx'] = df['cash_value'].astype(float) / df['fx'].astype( float) df['trade_fees_fx'] = df['trade_fees'].astype(float) / df['fx'].astype( float) df['trade_price_fx'] = df['trade_price'].astype(float) / df['fx'].astype( float) if 'trade_date' not in df.columns: df['trade_date'] = pd.to_datetime(df.index) return (df) # UTILS ----------------------------------- # Better to use parseNumber most of the times... # Function to clean CSV fields - leave only digits and . def clean_float(text): if isinstance(text, int): return (float(text)) if isinstance(text, float): return (text) if text is None: return (0) acceptable = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "."] str = "" for char in text: if char in acceptable: str = str + char if str == '': return 0 str = float(str) return (str) def cleandate(text): # Function to clean Date fields if text is None: return (None) text = str(text) acceptable = [ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "/", "-", ":", " " ] str_parse = "" for char in text: if char in acceptable: char = '-' if (char == '.' or char == '/') else char str_parse = str_parse + char from dateutil import parser str_parse = parser.parse(str_parse, dayfirst=True) return (str_parse) # PORTFOLIO UTILITIES def positions(): # Method to create a user's position table # Returns a df with the following information # Ticker, name, quantity, small_pos # THIS SHOULD CONTAIN THE STATIC FIELDS ONLY - no web requests # It should be a light method to load quickly on the main page. # Anything with web requests should be done on a separate function # Get all transactions & group by ticker name and operation df = transactions_fx() if df.empty: logging.warning("No Transactions Found") return df summary_table = df.groupby(['trade_asset_ticker', 'trade_operation'])[[ "trade_quantity", "cash_value_fx", "trade_fees_fx" ]].sum() # Now let's create our main dataframe with information for each ticker list_of_tickers = df['trade_asset_ticker'].unique().tolist() main_df = pd.DataFrame({'trade_asset_ticker': list_of_tickers}) # Fill with positions, cash_values and fees df_tmp = df.groupby(['trade_asset_ticker'])[[ "trade_quantity", "cash_value_fx", "trade_fees_fx" ]].sum() main_df =
pd.merge(main_df, df_tmp, on='trade_asset_ticker')
pandas.merge
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.7.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # QA queries on new CDR_deid Row Suppression-ICD10ICD9 Snome # # see [DC-852] AND [DC-732] for more details import urllib import pandas as pd pd.options.display.max_rows = 120 # + tags=["parameters"] project_id = "" deid_cdr="" # - # df will have a summary in the end df = pd.DataFrame(columns = ['query', 'result']) # # 1 PRC_1 Verify all ICD9(764 -779)/ICD10(P) concept_codes used to specify other conditions originating In the perinatal period (including birth trauma),are not generated/displayed as condition_source_value in the CONDITION_OCCURENCE table query = f''' WITH ICD_suppressions AS ( SELECT concept_id FROM `{project_id}.{deid_cdr}.concept` WHERE (vocabulary_id='ICD9CM' AND (concept_code LIKE '764%' OR concept_code LIKE '765%' OR concept_code LIKE '766%' OR concept_code LIKE '767%' OR concept_code LIKE '768%' OR concept_code LIKE '769%' OR concept_code LIKE '770%' OR concept_code LIKE '771%' OR concept_code LIKE '772%' OR concept_code LIKE '773%' OR concept_code LIKE '774%' OR concept_code LIKE '775%' OR concept_code LIKE '776%' OR concept_code LIKE '777%' OR concept_code LIKE '778%' OR concept_code LIKE '779%')) OR (vocabulary_id='ICD10CM' AND concept_code LIKE 'P%') ) SELECT COUNT (*) AS n_row_not_pass FROM `{project_id}.{deid_cdr}.condition_occurrence` p1 JOIN ICD_suppressions p2 ON p1.condition_source_concept_id=p2.concept_id WHERE condition_source_value IS NOT NULL ''' df1=
pd.read_gbq(query, dialect='standard')
pandas.read_gbq
from .baseManager import BaseManager from ..busSim import BusSim from ...result.searchResult import SearchResult import os import pandas as pd import geopandas as gpd from shapely.geometry import Point from zipfile import ZipFile import time from tqdm import tqdm class LocalManager(BaseManager): def __init__(self, gtfs_path, out_path, borders): super().__init__(gtfs_path, borders) self.out_path = out_path def run_batch(self, config, perf_df=None): busSim_params = config.get_busSim_params() start_times = config.get_start_times() start_points = config.get_start_points() result_df =
pd.DataFrame(columns=["geometry", "start_time", "map_identifier"])
pandas.DataFrame
import networkx as nx import numpy as np import pandas as pd from quetzal.analysis import analysis from quetzal.engine import engine, nested_logit, optimal_strategy from quetzal.engine.pathfinder import PublicPathFinder from quetzal.engine.road_pathfinder import RoadPathFinder from quetzal.model import preparationmodel from syspy.assignment import raw as raw_assignment from syspy.skims import skims from tqdm import tqdm class OptimalModel(preparationmodel.PreparationModel): def get_optimal_strategy_edges( self, boarding_time=0, alighting_time=0, alpha=0.5, target=None, inf=1e9, walk_on_road=False, ): links = self.links.copy() links['index'] = links.index if walk_on_road: road_links = self.road_links.copy() road_links['time'] = road_links['walk_time'] footpaths = pd.concat([road_links, self.road_to_transit]) access = self.zone_to_road.copy() else: access = self.zone_to_transit.copy() footpaths = self.footpaths.copy() # transit edges links['j'] = [tuple(l) for l in links[['b', 'trip_id']].values] links['i'] = [tuple(l) for l in links[['a', 'trip_id']].values] links['f'] = inf links['c'] = links['time'] transit_edges = links[['i', 'j', 'f', 'c']].reset_index().values.tolist() # boarding edges links.index = 'boarding_' + links['index'].astype(str) links['f'] = 1 / links['headway'] / alpha if 'boarding_stochastic_utility' in links.columns: links['f'] *= np.exp(links['boarding_stochastic_utility']) links['c'] = boarding_time boarding_edges = links[['a', 'i', 'f', 'c']].reset_index().values.tolist() # alighting edges links.index = 'alighting_' + links['index'].astype(str) links['f'] = inf links['c'] = alighting_time alighting_edges = links[['j', 'b', 'f', 'c']].reset_index().values.tolist() # access edges if target is not None: # we do not want to egress to a destination that is not the target access = access.loc[(access['direction'] == 'access') | (access['b'] == target)] access['f'] = inf access['c'] = access['time'] access_edges = access[['a', 'b', 'f', 'c']].reset_index().values.tolist() # footpaths footpaths['f'] = inf footpaths['c'] = footpaths['time'] footpaths_edges = footpaths[['a', 'b', 'f', 'c']].reset_index().values.tolist() edges = access_edges + boarding_edges + transit_edges + alighting_edges + footpaths_edges edges = [tuple(e) for e in edges] return edges def step_strategy_finder(self, *args, **kwargs): s_dict = {} node_df_list = [] all_edges = self.get_optimal_strategy_edges(*args, **kwargs) for destination in tqdm(self.zones.index): forbidden = set(self.zones.index) - {destination} edges = [e for e in all_edges if e[2] not in forbidden] strategy, u, f = optimal_strategy.find_optimal_strategy(edges, destination) s_dict[destination] = strategy node_df = pd.DataFrame({'f': pd.Series(f), 'u': pd.Series(u)}) node_df['destination'] = destination node_df_list.append(node_df) optimal_strategy_nodes = pd.concat(node_df_list) edges = self.get_optimal_strategy_edges(*args, **kwargs) optimal_strategy_sets = pd.Series(s_dict).apply(list) optimal_strategy_edges = pd.DataFrame( edges, columns=['ix', 'i', 'j', 'f', 'c']).set_index('ix') assert optimal_strategy_edges.index.is_unique self.optimal_strategy_edges = optimal_strategy_edges self.optimal_strategy_sets = optimal_strategy_sets self.optimal_strategy_nodes = optimal_strategy_nodes nodes = optimal_strategy_nodes.copy() nodes.index.name = 'origin' nodes.set_index('destination', append=True, inplace=True) pt_los = nodes.loc[self.zones.index]['u'].reset_index().rename(columns={'u': 'gtime'}) pt_los['pathfinder_session'] = 'optimal_strategy' self.pt_los = pt_los def step_strategy_assignment(self, volume_column, road=False): dvol = self.volumes.groupby('destination')[volume_column].sum() destinations = list(dvol.loc[dvol > 0].index) destination_indexed_volumes = self.volumes.set_index(['destination', 'origin'])[volume_column] destination_indexed_nodes = self.optimal_strategy_nodes.set_index( 'destination', append=True).swaplevel() destination_indexed_strategies = self.optimal_strategy_sets indexed_edges = self.optimal_strategy_edges[['i', 'j', 'f', 'c']] node_volume = {} edge_volume = {} for destination in tqdm(destinations) if len(destinations) > 1 else destinations: try: sources = destination_indexed_volumes.loc[destination] subset = destination_indexed_strategies.loc[destination] edges = indexed_edges.loc[subset].reset_index().values.tolist() f = destination_indexed_nodes.loc[destination]['f'].to_dict() u = destination_indexed_nodes.loc[destination]['u'].to_dict() except KeyError: continue node_v, edge_v = optimal_strategy.assign_optimal_strategy(sources, edges, u, f) for k, v in node_v.items(): node_volume[k] = node_volume.get(k, 0) + v for k, v in edge_v.items(): edge_volume[k] = edge_volume.get(k, 0) + v loaded_edges = self.optimal_strategy_edges loaded_edges.drop(volume_column, axis=1, errors='ignore', inplace=True) loaded_edges[volume_column] = pd.Series(edge_volume) df = loaded_edges[['i', 'j', volume_column]].dropna(subset=[volume_column]) self.links.drop(volume_column, axis=1, errors='ignore', inplace=True) links = self.links.copy() links['index'] = links.index # transit edges links['j'] = [tuple(l) for l in links[['b', 'trip_id']].values] links['i'] = [tuple(l) for l in links[['a', 'trip_id']].values] transit = pd.merge(links, df, on=['i', 'j']) boardings = pd.merge(links, df, left_on=['a', 'i'], right_on=['i', 'j']) alightings = pd.merge(links, df, left_on=['j', 'b'], right_on=['i', 'j']) loaded_links = self.links.copy() loaded_links[volume_column] = transit.set_index('index')[volume_column] loaded_links['boardings'] = boardings.set_index('index')[volume_column] loaded_links['alightings'] = alightings.set_index('index')[volume_column] loaded_nodes = self.nodes.copy() loaded_nodes.drop('boardings', axis=1, errors='ignore', inplace=True) loaded_nodes.drop('alightings', axis=1, errors='ignore', inplace=True) loaded_nodes['boardings'] = boardings.groupby('a')[volume_column].sum() loaded_nodes['alightings'] = alightings.groupby('b')[volume_column].sum() self.loaded_edges = loaded_edges self.nodes = loaded_nodes self.links = loaded_links if road: self.road_links[volume_column] = raw_assignment.assign( volume_array=list(self.links[volume_column]), paths=list(self.links['road_link_list']) ) # todo remove 'load' from analysis module: self.road_links['load'] = self.road_links[volume_column] def analysis_strategy_time(self, boarding_time=0, alighting_time=0, inf=1e9, walk_on_road=True): assert walk_on_road == True # TODO implement for ACF zero = 1 / inf # add a column for each type of time to the os edges edges = self.optimal_strategy_edges edges['rtt_time'] = self.road_to_transit['time'] edges['ztr_time'] = self.zone_to_road['time'] edges['in_vehicle_time'] = self.links['time'] edges.loc[['boarding_' in i for i in edges.index], 'boarding_time'] = boarding_time edges.loc[['alighting_' in i for i in edges.index], 'alighting_time'] = alighting_time if walk_on_road: edges['road_time'] = self.road_links['walk_time'] edges.fillna(0, inplace=True) edges['walk_time'] = edges['road_time'] + edges['rtt_time'] + edges['ztr_time'] self.optimal_strategy_edges = edges # sum over the edges of a strategy the varios types of times od_cost = [] columns = ['in_vehicle_time', 'boarding_time', 'walk_time'] indexed_edges = self.optimal_strategy_edges[['i', 'j', 'f', 'c']] edges = indexed_edges.reset_index().values.tolist() nodes = set.union(*[{i, j} for ix, i, j, f, c in edges]) edge_data = {ix: (i, j, fa, ca) for ix, i, j, fa, ca in edges} cost_dict = { key: self.optimal_strategy_edges[key].to_dict() for key in columns } origins = destinations = list(self.zones.index) for destination in tqdm(destinations): u = { key:{node:0 for node in nodes} for key in columns } f = {node:0 for node in nodes} # here 0 * inf = 0 because inf = 1e9 F = {node: zero for node in nodes} # here zero * inf = 1 U = {node: inf for node in nodes} U[destination] = 0 for ix in self.optimal_strategy_sets[destination]: i, j, fa, _ = edge_data[ix] for key in columns: ca = cost_dict[key][ix] u[key][i] = (f[i] * u[key][i] + fa * (u[key][j] + ca)) / (f[i] + fa) U[i] = (F[i] * U[i] + fa * (U[j])) / (F[i] + fa) F[i] = F[i] + fa f[i] = f[i] + fa u['waiting_time'] = U time_columns = columns + ['waiting_time'] for key in time_columns : for origin in origins: od_cost.append([key, origin, destination, u[key][origin]]) data = pd.DataFrame(od_cost, columns=['key', 'origin', 'destination', 'cost']) right = data.set_index(['key', 'origin', 'destination'])['cost'].unstack('key').reset_index() self.pt_los.drop(time_columns, axis=1, inplace=True, errors='ignore') self.pt_los =
pd.merge(self.pt_los, right, on=['origin', 'destination'])
pandas.merge
import sys import unittest import numpy as np import pandas as pd sys.path.append("../../") from thex_data.data_consts import TARGET_LABEL, UNDEF_CLASS from mainmodel.helper_compute import * from mainmodel.helper_plotting import * from models.binary_model.binary_model import BinaryModel from models.ind_model.ind_model import OvAModel from models.multi_model.multi_model import MultiModel import warnings """ Tests to make sure calculations of experimental performance (purity, completeness, balanced purity, aggregated balanced purity, etc.) is all correct. Test functions in MainModel through BinaryModel, MultiModel, and OvAModel, since MainModel is an abstract class Run tests with: python -m unittest """ class TestModelMetrics(unittest.TestCase): def generate_data(self, original, num_datapoints): data = [] for i in range(num_datapoints): noise = np.random.normal(loc=0, scale=0.1, size=3) data.append(original + noise) return np.array(data) def setUp(self): warnings.filterwarnings('ignore') num_type1 = 20 num_type2 = 10 c1 = self.generate_data([0.2, 0.3, .9], num_type1) c2 = self.generate_data([0.3, 0.1, .8], num_type2) data_X = np.concatenate((c1, c2)) fake_X = pd.DataFrame(data_X, columns=['f1', 'f2', 'f3']) fake_Y = pd.DataFrame(["Ia"] * num_type1 + ["CC"] * num_type2, columns=[TARGET_LABEL]) fake_data = [fake_X, fake_Y] self.class_labels = ["TDE", "II", "Ib/c"] # Rows for max prob range preds = [[0.9, 0.1, 0, "TDE"], [0.95, 0.05, 0, "TDE"], [0.92, 0, 0.08, "TDE"], [0.1, 0.9, 0, "TDE"], [0.1, 0.9, 0, "II"], [0, 0.9, 0.1, "II"], [0.91, 0.09, 0.1, "Ib/c"], [0, 0.9, 0.1, "Ib/c"], [0, 0.05, 0.95, "Ib/c"], [0, 0.01, 0.99, "Ib/c"], # .8 to .9 [0.81, 0.09, 0.01, "TDE"], # Preds for lower prob ranges [0.65, 0.35, 0, "TDE"], [0.6, 0.4, 0, "TDE"], [0.35, 0.65, 0, "TDE"], [0.35, 0, 0.65, "TDE"], [0.35, 0, 0.65, "TDE"], [0.1, 0.6, 0.3, "II"], [0.1, 0.3, 0.6, "II"], [0.1, 0.3, 0.6, "II"], [0.6, 0.4, 0, "Ib/c"], [0.4, 0.6, 0, "Ib/c"], [0, 0.35, 0.65, "Ib/c"], ] self.agg_results = preds self.test_model = BinaryModel(data=fake_data, class_labels=self.class_labels) self.class_counts = self.test_model.get_class_counts(
pd.DataFrame(preds)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Hosmer-Lemeshow test @author: Alex (stackoverflow) """ import pandas as pd import numpy as np from scipy.stats import chi2 def hosmer_lemeshow_test(pihat,real_label): # pihat=model.predict() pihatcat=pd.cut(pihat, np.percentile(pihat,[0,25,50,75,100]),labels=False,include_lowest=True) #here I've chosen only 4 groups meanprobs =[0]*4 expevents =[0]*4 obsevents =[0]*4 meanprobs2=[0]*4 expevents2=[0]*4 obsevents2=[0]*4 for i in range(4): meanprobs[i]=np.mean(pihat[pihatcat==i]) expevents[i]=np.sum(pihatcat==i)*np.array(meanprobs[i]) obsevents[i]=np.sum(real_label[pihatcat==i]) meanprobs2[i]=np.mean(1-pihat[pihatcat==i]) expevents2[i]=np.sum(pihatcat==i)*np.array(meanprobs2[i]) obsevents2[i]=np.sum(1-real_label[pihatcat==i]) data1={'meanprobs':meanprobs,'meanprobs2':meanprobs2} data2={'expevents':expevents,'expevents2':expevents2} data3={'obsevents':obsevents,'obsevents2':obsevents2} m=pd.DataFrame(data1) e=
pd.DataFrame(data2)
pandas.DataFrame
__author__ = 'thor' # import ut import ut.util.ulist import ut.daf.ch import ut.daf.get import pandas as pd def group_and_count(df, count_col=None, frequency=False): if isinstance(df, pd.Series): t =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import division from __future__ import print_function import os import sys import stat import time import pickle import traceback import redis_lock import contextlib import abc from pathlib import Path import numpy as np import pandas as pd from typing import Union, Iterable from collections import OrderedDict from ..config import C from ..utils import ( hash_args, get_redis_connection, read_bin, parse_field, remove_fields_space, normalize_cache_fields, normalize_cache_instruments, ) from ..log import get_module_logger from .base import Feature from .ops import Operators # pylint: disable=W0611 # noqa: F401 class QlibCacheException(RuntimeError): pass class MemCacheUnit(abc.ABC): """Memory Cache Unit.""" def __init__(self, *args, **kwargs): self.size_limit = kwargs.pop("size_limit", 0) self._size = 0 self.od = OrderedDict() def __setitem__(self, key, value): # TODO: thread safe?__setitem__ failure might cause inconsistent size? # precalculate the size after od.__setitem__ self._adjust_size(key, value) self.od.__setitem__(key, value) # move the key to end,make it latest self.od.move_to_end(key) if self.limited: # pop the oldest items beyond size limit while self._size > self.size_limit: self.popitem(last=False) def __getitem__(self, key): v = self.od.__getitem__(key) self.od.move_to_end(key) return v def __contains__(self, key): return key in self.od def __len__(self): return self.od.__len__() def __repr__(self): return f"{self.__class__.__name__}<size_limit:{self.size_limit if self.limited else 'no limit'} total_size:{self._size}>\n{self.od.__repr__()}" def set_limit_size(self, limit): self.size_limit = limit @property def limited(self): """whether memory cache is limited""" return self.size_limit > 0 @property def total_size(self): return self._size def clear(self): self._size = 0 self.od.clear() def popitem(self, last=True): k, v = self.od.popitem(last=last) self._size -= self._get_value_size(v) return k, v def pop(self, key): v = self.od.pop(key) self._size -= self._get_value_size(v) return v def _adjust_size(self, key, value): if key in self.od: self._size -= self._get_value_size(self.od[key]) self._size += self._get_value_size(value) @abc.abstractmethod def _get_value_size(self, value): raise NotImplementedError class MemCacheLengthUnit(MemCacheUnit): def __init__(self, size_limit=0): super().__init__(size_limit=size_limit) def _get_value_size(self, value): return 1 class MemCacheSizeofUnit(MemCacheUnit): def __init__(self, size_limit=0): super().__init__(size_limit=size_limit) def _get_value_size(self, value): return sys.getsizeof(value) class MemCache: """Memory cache.""" def __init__(self, mem_cache_size_limit=None, limit_type="length"): """ Parameters ---------- mem_cache_size_limit: cache max size. limit_type: length or sizeof; length(call fun: len), size(call fun: sys.getsizeof). """ size_limit = C.mem_cache_size_limit if mem_cache_size_limit is None else mem_cache_size_limit limit_type = C.mem_cache_limit_type if limit_type is None else limit_type if limit_type == "length": klass = MemCacheLengthUnit elif limit_type == "sizeof": klass = MemCacheSizeofUnit else: raise ValueError(f"limit_type must be length or sizeof, your limit_type is {limit_type}") self.__calendar_mem_cache = klass(size_limit) self.__instrument_mem_cache = klass(size_limit) self.__feature_mem_cache = klass(size_limit) def __getitem__(self, key): if key == "c": return self.__calendar_mem_cache elif key == "i": return self.__instrument_mem_cache elif key == "f": return self.__feature_mem_cache else: raise KeyError("Unknown memcache unit") def clear(self): self.__calendar_mem_cache.clear() self.__instrument_mem_cache.clear() self.__feature_mem_cache.clear() class MemCacheExpire: CACHE_EXPIRE = C.mem_cache_expire @staticmethod def set_cache(mem_cache, key, value): """set cache :param mem_cache: MemCache attribute('c'/'i'/'f'). :param key: cache key. :param value: cache value. """ mem_cache[key] = value, time.time() @staticmethod def get_cache(mem_cache, key): """get mem cache :param mem_cache: MemCache attribute('c'/'i'/'f'). :param key: cache key. :return: cache value; if cache not exist, return None. """ value = None expire = False if key in mem_cache: value, latest_time = mem_cache[key] expire = (time.time() - latest_time) > MemCacheExpire.CACHE_EXPIRE return value, expire class CacheUtils: LOCK_ID = "QLIB" @staticmethod def organize_meta_file(): pass @staticmethod def reset_lock(): r = get_redis_connection() redis_lock.reset_all(r) @staticmethod def visit(cache_path: Union[str, Path]): # FIXME: Because read_lock was canceled when reading the cache, multiple processes may have read and write exceptions here try: cache_path = Path(cache_path) meta_path = cache_path.with_suffix(".meta") with meta_path.open("rb") as f: d = pickle.load(f) with meta_path.open("wb") as f: try: d["meta"]["last_visit"] = str(time.time()) d["meta"]["visits"] = d["meta"]["visits"] + 1 except KeyError as key_e: raise KeyError("Unknown meta keyword") from key_e pickle.dump(d, f, protocol=C.dump_protocol_version) except Exception as e: get_module_logger("CacheUtils").warning(f"visit {cache_path} cache error: {e}") @staticmethod def acquire(lock, lock_name): try: lock.acquire() except redis_lock.AlreadyAcquired as lock_acquired: raise QlibCacheException( f"""It sees the key(lock:{repr(lock_name)[1:-1]}-wlock) of the redis lock has existed in your redis db now. You can use the following command to clear your redis keys and rerun your commands: $ redis-cli > select {C.redis_task_db} > del "lock:{repr(lock_name)[1:-1]}-wlock" > quit If the issue is not resolved, use "keys *" to find if multiple keys exist. If so, try using "flushall" to clear all the keys. """ ) from lock_acquired @staticmethod @contextlib.contextmanager def reader_lock(redis_t, lock_name: str): current_cache_rlock = redis_lock.Lock(redis_t, f"{lock_name}-rlock") current_cache_wlock = redis_lock.Lock(redis_t, f"{lock_name}-wlock") lock_reader = f"{lock_name}-reader" # make sure only one reader is entering current_cache_rlock.acquire(timeout=60) try: current_cache_readers = redis_t.get(lock_reader) if current_cache_readers is None or int(current_cache_readers) == 0: CacheUtils.acquire(current_cache_wlock, lock_name) redis_t.incr(lock_reader) finally: current_cache_rlock.release() try: yield finally: # make sure only one reader is leaving current_cache_rlock.acquire(timeout=60) try: redis_t.decr(lock_reader) if int(redis_t.get(lock_reader)) == 0: redis_t.delete(lock_reader) current_cache_wlock.reset() finally: current_cache_rlock.release() @staticmethod @contextlib.contextmanager def writer_lock(redis_t, lock_name): current_cache_wlock = redis_lock.Lock(redis_t, f"{lock_name}-wlock", id=CacheUtils.LOCK_ID) CacheUtils.acquire(current_cache_wlock, lock_name) try: yield finally: current_cache_wlock.release() class BaseProviderCache: """Provider cache base class""" def __init__(self, provider): self.provider = provider self.logger = get_module_logger(self.__class__.__name__) def __getattr__(self, attr): return getattr(self.provider, attr) @staticmethod def check_cache_exists(cache_path: Union[str, Path], suffix_list: Iterable = (".index", ".meta")) -> bool: cache_path = Path(cache_path) for p in [cache_path] + [cache_path.with_suffix(_s) for _s in suffix_list]: if not p.exists(): return False return True @staticmethod def clear_cache(cache_path: Union[str, Path]): for p in [ cache_path, cache_path.with_suffix(".meta"), cache_path.with_suffix(".index"), ]: if p.exists(): p.unlink() @staticmethod def get_cache_dir(dir_name: str, freq: str = None) -> Path: cache_dir = Path(C.dpm.get_data_uri(freq)).joinpath(dir_name) cache_dir.mkdir(parents=True, exist_ok=True) return cache_dir class ExpressionCache(BaseProviderCache): """Expression cache mechanism base class. This class is used to wrap expression provider with self-defined expression cache mechanism. .. note:: Override the `_uri` and `_expression` method to create your own expression cache mechanism. """ def expression(self, instrument, field, start_time, end_time, freq): """Get expression data. .. note:: Same interface as `expression` method in expression provider """ try: return self._expression(instrument, field, start_time, end_time, freq) except NotImplementedError: return self.provider.expression(instrument, field, start_time, end_time, freq) def _uri(self, instrument, field, start_time, end_time, freq): """Get expression cache file uri. Override this method to define how to get expression cache file uri corresponding to users' own cache mechanism. """ raise NotImplementedError("Implement this function to match your own cache mechanism") def _expression(self, instrument, field, start_time, end_time, freq): """Get expression data using cache. Override this method to define how to get expression data corresponding to users' own cache mechanism. """ raise NotImplementedError("Implement this method if you want to use expression cache") def update(self, cache_uri: Union[str, Path], freq: str = "day"): """Update expression cache to latest calendar. Override this method to define how to update expression cache corresponding to users' own cache mechanism. Parameters ---------- cache_uri : str or Path the complete uri of expression cache file (include dir path). freq : str Returns ------- int 0(successful update)/ 1(no need to update)/ 2(update failure). """ raise NotImplementedError("Implement this method if you want to make expression cache up to date") class DatasetCache(BaseProviderCache): """Dataset cache mechanism base class. This class is used to wrap dataset provider with self-defined dataset cache mechanism. .. note:: Override the `_uri` and `_dataset` method to create your own dataset cache mechanism. """ HDF_KEY = "df" def dataset( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get feature dataset. .. note:: Same interface as `dataset` method in dataset provider .. note:: The server use redis_lock to make sure read-write conflicts will not be triggered but client readers are not considered. """ if disk_cache == 0: # skip cache return self.provider.dataset( instruments, fields, start_time, end_time, freq, inst_processors=inst_processors ) else: # use and replace cache try: return self._dataset( instruments, fields, start_time, end_time, freq, disk_cache, inst_processors=inst_processors ) except NotImplementedError: return self.provider.dataset( instruments, fields, start_time, end_time, freq, inst_processors=inst_processors ) def _uri(self, instruments, fields, start_time, end_time, freq, **kwargs): """Get dataset cache file uri. Override this method to define how to get dataset cache file uri corresponding to users' own cache mechanism. """ raise NotImplementedError("Implement this function to match your own cache mechanism") def _dataset( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get feature dataset using cache. Override this method to define how to get feature dataset corresponding to users' own cache mechanism. """ raise NotImplementedError("Implement this method if you want to use dataset feature cache") def _dataset_uri( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=1, inst_processors=[] ): """Get a uri of feature dataset using cache. specially: disk_cache=1 means using data set cache and return the uri of cache file. disk_cache=0 means client knows the path of expression cache, server checks if the cache exists(if not, generate it), and client loads data by itself. Override this method to define how to get feature dataset uri corresponding to users' own cache mechanism. """ raise NotImplementedError( "Implement this method if you want to use dataset feature cache as a cache file for client" ) def update(self, cache_uri: Union[str, Path], freq: str = "day"): """Update dataset cache to latest calendar. Override this method to define how to update dataset cache corresponding to users' own cache mechanism. Parameters ---------- cache_uri : str or Path the complete uri of dataset cache file (include dir path). freq : str Returns ------- int 0(successful update)/ 1(no need to update)/ 2(update failure) """ raise NotImplementedError("Implement this method if you want to make expression cache up to date") @staticmethod def cache_to_origin_data(data, fields): """cache data to origin data :param data: pd.DataFrame, cache data. :param fields: feature fields. :return: pd.DataFrame. """ not_space_fields = remove_fields_space(fields) data = data.loc[:, not_space_fields] # set features fields data.columns = list(fields) return data @staticmethod def normalize_uri_args(instruments, fields, freq): """normalize uri args""" instruments = normalize_cache_instruments(instruments) fields = normalize_cache_fields(fields) freq = freq.lower() return instruments, fields, freq class DiskExpressionCache(ExpressionCache): """Prepared cache mechanism for server.""" def __init__(self, provider, **kwargs): super(DiskExpressionCache, self).__init__(provider) self.r = get_redis_connection() # remote==True means client is using this module, writing behaviour will not be allowed. self.remote = kwargs.get("remote", False) def get_cache_dir(self, freq: str = None) -> Path: return super(DiskExpressionCache, self).get_cache_dir(C.features_cache_dir_name, freq) def _uri(self, instrument, field, start_time, end_time, freq): field = remove_fields_space(field) instrument = str(instrument).lower() return hash_args(instrument, field, freq) def _expression(self, instrument, field, start_time=None, end_time=None, freq="day"): _cache_uri = self._uri(instrument=instrument, field=field, start_time=None, end_time=None, freq=freq) _instrument_dir = self.get_cache_dir(freq).joinpath(instrument.lower()) cache_path = _instrument_dir.joinpath(_cache_uri) # get calendar from .data import Cal # pylint: disable=C0415 _calendar = Cal.calendar(freq=freq) _, _, start_index, end_index = Cal.locate_index(start_time, end_time, freq, future=False) if self.check_cache_exists(cache_path, suffix_list=[".meta"]): """ In most cases, we do not need reader_lock. Because updating data is a small probability event compare to reading data. """ # FIXME: Removing the reader lock may result in conflicts. # with CacheUtils.reader_lock(self.r, 'expression-%s' % _cache_uri): # modify expression cache meta file try: # FIXME: Multiple readers may result in error visit number if not self.remote: CacheUtils.visit(cache_path) series = read_bin(cache_path, start_index, end_index) return series except Exception: series = None self.logger.error("reading %s file error : %s" % (cache_path, traceback.format_exc())) return series else: # normalize field field = remove_fields_space(field) # cache unavailable, generate the cache _instrument_dir.mkdir(parents=True, exist_ok=True) if not isinstance(eval(parse_field(field)), Feature): # When the expression is not a raw feature # generate expression cache if the feature is not a Feature # instance series = self.provider.expression(instrument, field, _calendar[0], _calendar[-1], freq) if not series.empty: # This expression is empty, we don't generate any cache for it. with CacheUtils.writer_lock(self.r, f"{str(C.dpm.get_data_uri(freq))}:expression-{_cache_uri}"): self.gen_expression_cache( expression_data=series, cache_path=cache_path, instrument=instrument, field=field, freq=freq, last_update=str(_calendar[-1]), ) return series.loc[start_index:end_index] else: return series else: # If the expression is a raw feature(such as $close, $open) return self.provider.expression(instrument, field, start_time, end_time, freq) def gen_expression_cache(self, expression_data, cache_path, instrument, field, freq, last_update): """use bin file to save like feature-data.""" # Make sure the cache runs right when the directory is deleted # while running meta = { "info": {"instrument": instrument, "field": field, "freq": freq, "last_update": last_update}, "meta": {"last_visit": time.time(), "visits": 1}, } self.logger.debug(f"generating expression cache: {meta}") self.clear_cache(cache_path) meta_path = cache_path.with_suffix(".meta") with meta_path.open("wb") as f: pickle.dump(meta, f, protocol=C.dump_protocol_version) meta_path.chmod(stat.S_IRWXU | stat.S_IRGRP | stat.S_IROTH) df = expression_data.to_frame() r = np.hstack([df.index[0], expression_data]).astype("<f") r.tofile(str(cache_path)) def update(self, sid, cache_uri, freq: str = "day"): cp_cache_uri = self.get_cache_dir(freq).joinpath(sid).joinpath(cache_uri) meta_path = cp_cache_uri.with_suffix(".meta") if not self.check_cache_exists(cp_cache_uri, suffix_list=[".meta"]): self.logger.info(f"The cache {cp_cache_uri} has corrupted. It will be removed") self.clear_cache(cp_cache_uri) return 2 with CacheUtils.writer_lock(self.r, f"{str(C.dpm.get_data_uri())}:expression-{cache_uri}"): with meta_path.open("rb") as f: d = pickle.load(f) instrument = d["info"]["instrument"] field = d["info"]["field"] freq = d["info"]["freq"] last_update_time = d["info"]["last_update"] # get newest calendar from .data import Cal, ExpressionD # pylint: disable=C0415 whole_calendar = Cal.calendar(start_time=None, end_time=None, freq=freq) # calendar since last updated. new_calendar = Cal.calendar(start_time=last_update_time, end_time=None, freq=freq) # get append data if len(new_calendar) <= 1: # Including last updated calendar, we only get 1 item. # No future updating is needed. return 1 else: # get the data needed after the historical data are removed. # The start index of new data current_index = len(whole_calendar) - len(new_calendar) + 1 # The existing data length size_bytes = os.path.getsize(cp_cache_uri) ele_size = np.dtype("<f").itemsize assert size_bytes % ele_size == 0 ele_n = size_bytes // ele_size - 1 expr = ExpressionD.get_expression_instance(field) lft_etd, rght_etd = expr.get_extended_window_size() # The expression used the future data after rght_etd days. # So the last rght_etd data should be removed. # There are most `ele_n` period of data can be remove remove_n = min(rght_etd, ele_n) assert new_calendar[1] == whole_calendar[current_index] data = self.provider.expression( instrument, field, whole_calendar[current_index - remove_n], new_calendar[-1], freq ) with open(cp_cache_uri, "ab") as f: data = np.array(data).astype("<f") # Remove the last bits f.truncate(size_bytes - ele_size * remove_n) f.write(data) # update meta file d["info"]["last_update"] = str(new_calendar[-1]) with meta_path.open("wb") as f: pickle.dump(d, f, protocol=C.dump_protocol_version) return 0 class DiskDatasetCache(DatasetCache): """Prepared cache mechanism for server.""" def __init__(self, provider, **kwargs): super(DiskDatasetCache, self).__init__(provider) self.r = get_redis_connection() self.remote = kwargs.get("remote", False) @staticmethod def _uri(instruments, fields, start_time, end_time, freq, disk_cache=1, inst_processors=[], **kwargs): return hash_args(*DatasetCache.normalize_uri_args(instruments, fields, freq), disk_cache, inst_processors) def get_cache_dir(self, freq: str = None) -> Path: return super(DiskDatasetCache, self).get_cache_dir(C.dataset_cache_dir_name, freq) @classmethod def read_data_from_cache(cls, cache_path: Union[str, Path], start_time, end_time, fields): """read_cache_from This function can read data from the disk cache dataset :param cache_path: :param start_time: :param end_time: :param fields: The fields order of the dataset cache is sorted. So rearrange the columns to make it consistent. :return: """ im = DiskDatasetCache.IndexManager(cache_path) index_data = im.get_index(start_time, end_time) if index_data.shape[0] > 0: start, stop = ( index_data["start"].iloc[0].item(), index_data["end"].iloc[-1].item(), ) else: start = stop = 0 with pd.HDFStore(cache_path, mode="r") as store: if "/{}".format(im.KEY) in store.keys(): df = store.select(key=im.KEY, start=start, stop=stop) df = df.swaplevel("datetime", "instrument").sort_index() # read cache and need to replace not-space fields to field df = cls.cache_to_origin_data(df, fields) else: df = pd.DataFrame(columns=fields) return df def _dataset( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=0, inst_processors=[] ): if disk_cache == 0: # In this case, data_set cache is configured but will not be used. return self.provider.dataset( instruments, fields, start_time, end_time, freq, inst_processors=inst_processors ) # FIXME: The cache after resample, when read again and intercepted with end_time, results in incomplete data date if inst_processors: raise ValueError( f"{self.__class__.__name__} does not support inst_processor. " f"Please use `D.features(disk_cache=0)` or `qlib.init(dataset_cache=None)`" ) _cache_uri = self._uri( instruments=instruments, fields=fields, start_time=None, end_time=None, freq=freq, disk_cache=disk_cache, inst_processors=inst_processors, ) cache_path = self.get_cache_dir(freq).joinpath(_cache_uri) features = pd.DataFrame() gen_flag = False if self.check_cache_exists(cache_path): if disk_cache == 1: # use cache with CacheUtils.reader_lock(self.r, f"{str(C.dpm.get_data_uri(freq))}:dataset-{_cache_uri}"): CacheUtils.visit(cache_path) features = self.read_data_from_cache(cache_path, start_time, end_time, fields) elif disk_cache == 2: gen_flag = True else: gen_flag = True if gen_flag: # cache unavailable, generate the cache with CacheUtils.writer_lock(self.r, f"{str(C.dpm.get_data_uri(freq))}:dataset-{_cache_uri}"): features = self.gen_dataset_cache( cache_path=cache_path, instruments=instruments, fields=fields, freq=freq, inst_processors=inst_processors, ) if not features.empty: features = features.sort_index().loc(axis=0)[:, start_time:end_time] return features def _dataset_uri( self, instruments, fields, start_time=None, end_time=None, freq="day", disk_cache=0, inst_processors=[] ): if disk_cache == 0: # In this case, server only checks the expression cache. # The client will load the cache data by itself. from .data import LocalDatasetProvider # pylint: disable=C0415 LocalDatasetProvider.multi_cache_walker(instruments, fields, start_time, end_time, freq) return "" # FIXME: The cache after resample, when read again and intercepted with end_time, results in incomplete data date if inst_processors: raise ValueError( f"{self.__class__.__name__} does not support inst_processor. " f"Please use `D.features(disk_cache=0)` or `qlib.init(dataset_cache=None)`" ) _cache_uri = self._uri( instruments=instruments, fields=fields, start_time=None, end_time=None, freq=freq, disk_cache=disk_cache, inst_processors=inst_processors, ) cache_path = self.get_cache_dir(freq).joinpath(_cache_uri) if self.check_cache_exists(cache_path): self.logger.debug(f"The cache dataset has already existed {cache_path}. Return the uri directly") with CacheUtils.reader_lock(self.r, f"{str(C.dpm.get_data_uri(freq))}:dataset-{_cache_uri}"): CacheUtils.visit(cache_path) return _cache_uri else: # cache unavailable, generate the cache with CacheUtils.writer_lock(self.r, f"{str(C.dpm.get_data_uri(freq))}:dataset-{_cache_uri}"): self.gen_dataset_cache( cache_path=cache_path, instruments=instruments, fields=fields, freq=freq, inst_processors=inst_processors, ) return _cache_uri class IndexManager: """ The lock is not considered in the class. Please consider the lock outside the code. This class is the proxy of the disk data. """ KEY = "df" def __init__(self, cache_path: Union[str, Path]): self.index_path = cache_path.with_suffix(".index") self._data = None self.logger = get_module_logger(self.__class__.__name__) def get_index(self, start_time=None, end_time=None): # TODO: fast read index from the disk. if self._data is None: self.sync_from_disk() return self._data.loc[start_time:end_time].copy() def sync_to_disk(self): if self._data is None: raise ValueError("No data to sync to disk.") self._data.sort_index(inplace=True) self._data.to_hdf(self.index_path, key=self.KEY, mode="w", format="table") # The index should be readable for all users self.index_path.chmod(stat.S_IRWXU | stat.S_IRGRP | stat.S_IROTH) def sync_from_disk(self): # The file will not be closed directly if we read_hdf from the disk directly with
pd.HDFStore(self.index_path, mode="r")
pandas.HDFStore
import blpapi import logging import datetime import pandas as pd import contextlib from collections import defaultdict from pandas import DataFrame @contextlib.contextmanager def bopen(debug=False): con = BCon(debug=debug) con.start() try: yield con finally: con.stop() class BCon(object): def __init__(self, host='localhost', port=8194, debug=False): """ Create an object which manages connection to the Bloomberg API session Parameters ---------- host: str Host name port: int Port to connect to debug: Boolean {True, False} Boolean corresponding to whether to log Bloomberg Open API request and response messages to stdout """ # Fill SessionOptions sessionOptions = blpapi.SessionOptions() sessionOptions.setServerHost(host) sessionOptions.setServerPort(port) self._sessionOptions = sessionOptions # Create a Session self.session = blpapi.Session(sessionOptions) # initialize logger self.debug = debug @property def debug(self): """ When True, print all Bloomberg Open API request and response messages to stdout """ return self._debug @debug.setter def debug(self, value): """ Set whether logging is True or False """ self._debug = value root = logging.getLogger() if self._debug: # log requests and responses root.setLevel(logging.DEBUG) else: # log only failed connections root.setLevel(logging.INFO) def start(self): """ start connection and init service for refData """ # Start a Session if not self.session.start(): logging.info("Failed to start session.") return self.session.nextEvent() # Open service to get historical data from if not self.session.openService("//blp/refdata"): logging.info("Failed to open //blp/refdata") return self.session.nextEvent() # Obtain previously opened service self.refDataService = self.session.getService("//blp/refdata") self.session.nextEvent() def restart(self): """ Restart the blp session """ # Recreate a Session self.session = blpapi.Session(self._sessionOptions) self.start() def _create_req(self, rtype, tickers, flds, ovrds, setvals): # flush event queue in case previous call errored out while(self.session.tryNextEvent()): pass request = self.refDataService.createRequest(rtype) for t in tickers: request.getElement("securities").appendValue(t) for f in flds: request.getElement("fields").appendValue(f) for name, val in setvals: request.set(name, val) overrides = request.getElement("overrides") for ovrd_fld, ovrd_val in ovrds: ovrd = overrides.appendElement() ovrd.setElement("fieldId", ovrd_fld) ovrd.setElement("value", ovrd_val) return request def bdh(self, tickers, flds, start_date, end_date, elms=[], ovrds=[], longdata=False): """ Get tickers and fields, return pandas dataframe with column MultiIndex of tickers and fields if multiple fields given an Index otherwise. If single field is given DataFrame is ordered same as tickers, otherwise MultiIndex is sorted Parameters ---------- tickers: {list, string} String or list of strings corresponding to tickers flds: {list, string} String or list of strings corresponding to FLDS start_date: string String in format YYYYmmdd end_date: string String in format YYYYmmdd elms: list of tuples List of tuples where each tuple corresponds to the other elements to be set, e.g. [("periodicityAdjustment", "ACTUAL")] Refer to A.2.4 HistoricalDataRequest in the Developers Guide for more info on these values ovrds: list of tuples List of tuples where each tuple corresponds to the override field and value longdata: boolean Whether data should be returned in long data format or pivoted """ elms = list(elms) data = self._bdh_list(tickers, flds, start_date, end_date, elms, ovrds) df = DataFrame(data) df.columns = ["date", "ticker", "field", "value"] df.loc[:, "date"] = pd.to_datetime(df.loc[:, "date"]) if not longdata: cols = ['ticker', 'field'] df = df.set_index(['date'] + cols).unstack(cols) df.columns = df.columns.droplevel(0) return df def _bdh_list(self, tickers, flds, start_date, end_date, elms, ovrds): if type(tickers) is not list: tickers = [tickers] if type(flds) is not list: flds = [flds] setvals = elms setvals.append(("startDate", start_date)) setvals.append(("endDate", end_date)) request = self._create_req("HistoricalDataRequest", tickers, flds, ovrds, setvals) logging.debug("Sending Request:\n %s" % request) # Send the request self.session.sendRequest(request) data = [] # Process received events while(True): # We provide timeout to give the chance for Ctrl+C handling: ev = self.session.nextEvent(500) for msg in ev: logging.debug("Message Received:\n %s" % msg) if msg.getElement('securityData').hasElement('securityError') or (msg.getElement('securityData').getElement("fieldExceptions").numValues() > 0): # NOQA raise Exception(msg) ticker = msg.getElement('securityData').getElement('security').getValue() # NOQA fldDatas = msg.getElement('securityData').getElement('fieldData') # NOQA for fd in fldDatas.values(): dt = fd.getElement('date').getValue() for element in fd.elements(): fname = str(element.name()) if fname == "date": continue val = element.getValue() data.append((dt, ticker, fname, val)) if ev.eventType() == blpapi.Event.RESPONSE: # Response completely received, so we could exit break return data def ref(self, tickers, flds, ovrds=[]): """ Make a reference data request, get tickers and fields, return long pandas Dataframe with columns [ticker, field, value] Parameters ---------- tickers: {list, string} String or list of strings corresponding to tickers flds: {list, string} String or list of strings corresponding to FLDS ovrds: list of tuples List of tuples where each tuple corresponds to the override field and value """ data = self._ref(tickers, flds, ovrds) data = DataFrame(data) data.columns = ["ticker", "field", "value"] return data def _ref(self, tickers, flds, ovrds): if type(tickers) is not list: tickers = [tickers] if type(flds) is not list: flds = [flds] request = self._create_req("ReferenceDataRequest", tickers, flds, ovrds, []) logging.debug("Sending Request:\n %s" % request) # Send the request self.session.sendRequest(request) data = [] # Process received events while(True): # We provide timeout to give the chance for Ctrl+C handling: ev = self.session.nextEvent(500) for msg in ev: logging.debug("Message Received:\n %s" % msg) fldData = msg.getElement('securityData') for i in range(fldData.numValues()): ticker = (fldData.getValue(i).getElement("security").getValue()) # NOQA reqFldsData = (fldData.getValue(i).getElement('fieldData')) for j in range(reqFldsData.numElements()): fld = flds[j] # this is for dealing with requests which return arrays # of values for a single field if reqFldsData.getElement(fld).isArray(): lrng = reqFldsData.getElement(fld).numValues() for k in range(lrng): elms = (reqFldsData.getElement(fld).getValue(k).elements()) # NOQA # if the elements of the array have multiple # subelements this will just append them all # into a list for elm in elms: data.append([ticker, fld, elm.getValue()]) else: val = reqFldsData.getElement(fld).getValue() data.append([ticker, fld, val]) if ev.eventType() == blpapi.Event.RESPONSE: # Response completely received, so we could exit break return data def ref_hist(self, tickers, flds, start_date, end_date=datetime.date.today().strftime('%Y%m%d'), timeout=2000, longdata=False): """ Get tickers and fields, periodically override REFERENCE_DATE to create a time series. Return pandas dataframe with column MultiIndex of tickers and fields if multiple fields given, Index otherwise. If single field is given DataFrame is ordered same as tickers, otherwise MultiIndex is sorted Parameters ---------- tickers: {list, string} String or list of strings corresponding to tickers flds: {list, string} String or list of strings corresponding to FLDS start_date: string String in format YYYYmmdd end_date: string String in format YYYYmmdd timeout: int Passed into nextEvent(timeout), number of milliseconds before timeout occurs """ # correlationIDs should be unique to a session so rather than # managing unique IDs for the duration of the session just restart # a session for each call self.restart() if type(tickers) is not list: tickers = [tickers] if type(flds) is not list: flds = [flds] # Create and fill the request for the historical data request = self.refDataService.createRequest("ReferenceDataRequest") for t in tickers: request.getElement("securities").appendValue(t) for f in flds: request.getElement("fields").appendValue(f) overrides = request.getElement("overrides") dates = pd.date_range(start_date, end_date, freq='b') ovrd = overrides.appendElement() for dt in dates: ovrd.setElement("fieldId", "REFERENCE_DATE") ovrd.setElement("value", dt.strftime('%Y%m%d')) # CorrelationID used to keep track of which response coincides with # which request cid = blpapi.CorrelationId(dt) logging.debug("Sending Request:\n %s" % request) self.session.sendRequest(request, correlationId=cid) data = [] # Process received events while(True): ev = self.session.nextEvent(timeout) for msg in ev: logging.debug("Message Received:\n %s" % msg) corrID = msg.correlationIds()[0].value() fldData = msg.getElement('securityData') for i in range(fldData.numValues()): tckr = (fldData.getValue(i).getElement("security").getValue()) # NOQA reqFldsData = (fldData.getValue(i).getElement('fieldData')) for j in range(reqFldsData.numElements()): fld = flds[j] val = reqFldsData.getElement(fld).getValue() data.append((fld, tckr, val, corrID)) if ev.eventType() == blpapi.Event.TIMEOUT: # All events processed if (len(data) / len(flds) / len(tickers)) == len(dates): break else: raise(RuntimeError("Timeout, increase timeout parameter")) data = pd.DataFrame(data) data.columns = ['field', 'ticker', 'value', 'date'] data = data.sort_values(by='date') data = data.reset_index(drop=True) data = data.loc[:, ['date', 'field', 'ticker', 'value']] if not longdata: cols = ['ticker', 'field'] data = data.set_index(['date'] + cols).unstack(cols) data.columns = data.columns.droplevel(0) return data def bdib(self, ticker, start_datetime, end_datetime, event_type, interval, elms=[]): """ Get Open, High, Low, Close, Volume, and numEvents for a ticker. Return pandas dataframe Parameters ---------- ticker: string String corresponding to ticker start_datetime: string UTC datetime in format YYYY-mm-ddTHH:MM:SS end_datetime: string UTC datetime in format YYYY-mm-ddTHH:MM:SS event_type: string {TRADE, BID, ASK, BID_BEST, ASK_BEST, BEST_BID, BEST_ASK} Requested data event type interval: int {1... 1440} Length of time bars elms: list of tuples List of tuples where each tuple corresponds to the other elements to be set, refer to A.2.8 IntradayBarRequest in the Developers Guide for more info on these values """ # flush event queue in case previous call errored out while(self.session.tryNextEvent()): pass # Create and fill the request for the historical data request = self.refDataService.createRequest("IntradayBarRequest") request.set("security", ticker) request.set("eventType", event_type) request.set("interval", interval) # bar interval in minutes request.set("startDateTime", start_datetime) request.set("endDateTime", end_datetime) for name, val in elms: request.set(name, val) logging.debug("Sending Request:\n %s" % request) # Send the request self.session.sendRequest(request) # defaultdict - later convert to pandas data = defaultdict(dict) # Process received events flds = ['open', 'high', 'low', 'close', 'volume', 'numEvents'] while(True): # We provide timeout to give the chance for Ctrl+C handling: ev = self.session.nextEvent(500) for msg in ev: logging.debug("Message Received:\n %s" % msg) barTick = (msg.getElement('barData') .getElement('barTickData')) for i in range(barTick.numValues()): for fld in flds: dt = barTick.getValue(i).getElement(0).getValue() val = (barTick.getValue(i).getElement(fld).getValue()) data[(fld)][dt] = val if ev.eventType() == blpapi.Event.RESPONSE: # Response completly received, so we could exit break data =
DataFrame(data)
pandas.DataFrame
# PyLS-PM Library # Author: <NAME> # Creation: November 2016 # Description: Library based on <NAME>'s simplePLS, # <NAME>'s plspm and <NAME>'s matrixpls made in R import pandas as pd import numpy as np import scipy as sp import scipy.stats from .qpLRlib4 import otimiza, plotaIC import scipy.linalg from collections import Counter from .pca import * from pandas.plotting import scatter_matrix from .adequacy import * class PyLSpm(object): def PCA(self): for i in range(self.lenlatent): print(self.latent[i]) block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] PCAdo(block, self.latent[i]) print('KMO') print(KMO(block)) print('BTS') print(BTS(block)) def scatterMatrix(self): for i in range(1, self.lenlatent): block = self.data[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] scatter_matrix(block, diagonal='kde') plt.savefig('imgs/scatter' + self.latent[i], bbox_inches='tight') plt.clf() plt.cla() def sampleSize(self): r = 0.3 alpha = 0.05 # power=0.9 C = 0.5 * np.log((1 + r) / (1 - r)) Za = scipy.stats.norm.ppf(1 - (0.05 / 2)) sizeArray = [] powerArray = [] power = 0.5 for i in range(50, 100, 1): power = i / 100 powerArray.append(power) Zb = scipy.stats.norm.ppf(1 - power) N = abs((Za - Zb) / C)**2 + 3 sizeArray.append(N) return [powerArray, sizeArray] def normaliza(self, X): correction = np.sqrt((len(X) - 1) / len(X)) # std factor corretion mean_ = np.mean(X, 0) scale_ = np.std(X, 0) X = X - mean_ X = X / (scale_ * correction) return X def gof(self): r2mean = np.mean(self.r2.T[self.endoexo()[0]].values) AVEmean = self.AVE().copy() totalblock = 0 for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = len(block.columns.values) totalblock += block AVEmean[self.latent[i]] = AVEmean[self.latent[i]] * block AVEmean = np.sum(AVEmean) / totalblock return np.sqrt(AVEmean * r2mean) def endoexo(self): exoVar = [] endoVar = [] for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) return endoVar, exoVar def residuals(self): exoVar = [] endoVar = [] outer_residuals = self.data.copy() # comun_ = self.data.copy() for i in range(self.lenlatent): if(self.latent[i] in self.LVariables['target'].values): endoVar.append(self.latent[i]) else: exoVar.append(self.latent[i]) for i in range(self.lenlatent): block = self.data_[self.Variables['measurement'] [self.Variables['latent'] == self.latent[i]]] block = block.columns.values loadings = self.outer_loadings.ix[ block][self.latent[i]].values outer_ = self.fscores.ix[:, i].values outer_ = outer_.reshape(len(outer_), 1) loadings = loadings.reshape(len(loadings), 1) outer_ = np.dot(outer_, loadings.T) outer_residuals.ix[:, block] = self.data_.ix[ :, block] - outer_ # comun_.ix[:, block] = outer_ inner_residuals = self.fscores[endoVar] inner_ = pd.DataFrame.dot(self.fscores, self.path_matrix.ix[endoVar].T) inner_residuals = self.fscores[endoVar] - inner_ residuals = pd.concat([outer_residuals, inner_residuals], axis=1) mean_ = np.mean(self.data, 0) # comun_ = comun_.apply(lambda row: row + mean_, axis=1) sumOuterResid = pd.DataFrame.sum( pd.DataFrame.sum(outer_residuals**2)) sumInnerResid = pd.DataFrame.sum( pd.DataFrame.sum(inner_residuals**2)) divFun = sumOuterResid + sumInnerResid return residuals, outer_residuals, inner_residuals, divFun def srmr(self): srmr = (self.empirical() - self.implied()) srmr = np.sqrt(((srmr.values) ** 2).mean()) return srmr def implied(self): corLVs = pd.DataFrame.cov(self.fscores) implied_ = pd.DataFrame.dot(self.outer_loadings, corLVs) implied =
pd.DataFrame.dot(implied_, self.outer_loadings.T)
pandas.DataFrame.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Main entry point for data_inspection. This script reads in tabular patient data and analyzes it for outliers. First, it inspects specified columns for data integrity (missing values) and produces histograms if appropriate. Then it analyzes specified 2d relationships, producing scatter plots and identifying outliers. Finally it runs the DBSCAN algorithm to flag any potential outliers. Note that on my machine this uses the venv "tabular_analysis" """ import os import shutil from collections import Counter import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor from sklearn import preprocessing from support import is_empty, numbery_string_to_number data_path = r'/Users/skyjones/Documents/inspection/SCD_pt_data_labels_piped.csv' out_folder = r'/Users/skyjones/Documents/inspection/analysis' # should not exist # column that contains the unique deidentified patient ID study_id_col = 'Study ID' # columns we want to inspect for completeness and produce histograms/barplots for # each key is a column name, and the value is True if there MUST be a value and # False if there does not need to be a value. If there must be a value if and # only if another column(s) is filled, then the value should be a list of those columns single_cols = { 'Age': True, 'Race': True, 'Hemoglobin genotype': True, 'Gender': True, 'BMI': True, 'Specify total HU daily dosage (mg)': True, 'HTN': True, 'Diabetes': True, 'Coronary artery disease': True, 'High cholesterol': True, 'Hgb': True, 'Hct/PCV': True, 'MRI 1 - Pulse ox results': True, # note the extra space 'MRI 2 - Pulse ox results': True, 'MRI 3 - Pulse ox results': True, 'MCV': True, 'Receiving regular blood transfusions': True, r'Initial hemoglobin S% (pretransfusion if applicable)': True, r'Results': True, # this is posttransfusion HbS%, and it's amazing it's the only column with this name r'MRI 1 - SBP': True, r'MRI 1 - DBP': True, r'MRI 2 - SBP': True, r'MRI 2 - DBP': True, r'MRI 3 - SBP': True, r'MRI 3 - DBP': True, } # 2d relationships we want to use to check for outliers. [independent, dependent] # numeric data only pls double_cols = [['Specify total HU daily dosage (mg)', 'MCV'], ['Specify total HU daily dosage (mg)', 'Initial hemoglobin S% (pretransfusion if applicable)'], ['Age', 'MRI 1 - SBP'], ['Age', 'MRI 1 - DBP'], ['Age', 'MRI 2 - SBP'], ['Age', 'MRI 2 - DBP'], ['Age', 'MRI 3 - SBP'], ['Age', 'MRI 3 - DBP']] contam = 0.07 # estimated % of data that are outliers text_size = 7 np.random.seed(1) ####################################### ###### setup mono_folder = os.path.join(out_folder, 'mono') bi_folder = os.path.join(out_folder, 'bi') multi_folder = os.path.join(out_folder, 'multi') custom_folder = os.path.join(out_folder, 'custom') overview_report = os.path.join(out_folder, 'overview.txt') missing_data_report = os.path.join(out_folder, 'missing_data.csv') outliers_report = os.path.join(out_folder, 'outliers.csv') try: os.mkdir(out_folder) except FileExistsError: no_answer = True while no_answer: ans = input('The output directory exists. Overwrite? [y/n]\n') if ans == 'y': no_answer = False shutil.rmtree(out_folder) os.mkdir(out_folder) elif ans == 'n': raise FileExistsError('File exists. Process aborted') else: print('Response must be "y" or "n"') log_file = os.path.join(out_folder, 'log.txt') log = open(log_file, 'w') os.mkdir(mono_folder) os.mkdir(bi_folder) os.mkdir(multi_folder) os.mkdir(custom_folder) sep = '|' df = pd.read_csv(data_path, sep=sep, low_memory=False, dtype={study_id_col:'object'}) problem_pts_cols = [study_id_col] problem_pts_cols.extend(single_cols.keys()) problem_pts = pd.DataFrame(columns=problem_pts_cols) problem_pts = problem_pts.set_index('Study ID') # this data will relate pt IDs to a list of columns for which data # is missing, iff that missing data is marked as essential (by the variable single_cols) outlier_pts = {} # this data will relate pt IDs to a list of columns for which # the data seems to be an outlier ###### plot and inspect the monodimensional data problem_patients_dict = {} for col in single_cols: data = df[col] pts = df[study_id_col] plt.figure(figsize=(8,12)) plt.title(col) print(f'Plotting: {col}. dtype is {data.dtype}') if data.dtype == 'object': counts = Counter(data) if np.nan in counts: counts['nan'] = counts[np.nan] del counts[np.nan] n_v = [(n,v) for n,v in counts.most_common()] names = [n for n,v in n_v] values = [v for n,v in n_v] plt.ylabel('Count') plt.bar(names, values) else: # plt.hist(data) data_drop = data.dropna() result = plt.boxplot(data_drop, notch=True) plt.ylabel('Value') points = result['fliers'][0].get_data() exes = points[0]+.01 whys = points[1] for x,y in zip(exes,whys): matches = pts[data == y] label = '' for m in matches: label += f'{m} + ' label = label[:-3] plt.annotate(label, (x,y), fontsize=8) # plt.xlabel('Value') scrub_col = col.replace('/', '-') # replace slashes with dashes to protect filepath fig_name = os.path.join(mono_folder, f'{scrub_col}.png') plt.savefig(fig_name) plt.close() print('Evaluating completeness') for i, row in df.iterrows(): # explicit comparisons of bools needed because we are exploiting the ability to mix key datatypes if not is_empty(row[col]): has_data = True # print('Is not empty') elif single_cols[col] is False: has_data = True # print('Does not need data') elif single_cols[col] is True: # if data is required has_data = False # print('Does not have data and deffo needs it') else: # if we get here, need to see if the companion columns are filled # if all companion columns are filled, then data is required companions = [row[c] for c in single_cols[col]] has_required_companions = all([not is_empty(row[c]) for c in single_cols[col]]) has_data = not has_required_companions if not has_data: pt_id = row[study_id_col] try: problem_patients_dict[pt_id].append(col) except KeyError: problem_patients_dict[pt_id] = [col] # write the missing data report for pt, cols in problem_patients_dict.items(): insert = pd.Series({col:1 for col in cols}, name=pt) problem_pts = problem_pts.append(insert, ignore_index=False) problem_pts = problem_pts.sort_index() problem_pts.to_csv(missing_data_report) print('\n') ###### do the 2d analyses for ind_col, dep_col in double_cols: print(f'2d: {ind_col} and {dep_col}') fig_name = os.path.join(bi_folder, f'{dep_col}-v-{ind_col}.png') plt.figure() plt.title(f'{dep_col} vs. {ind_col}') x = df[ind_col] y = df[dep_col] pt_id = df[study_id_col] try: x = [numbery_string_to_number(i) for i in x] y = [numbery_string_to_number(i) for i in y] data = np.array( [np.array( [a,b] ) for a,b,c in zip(x,y,pt_id) if all([not np.isnan(a), not(np.isnan(b))]) ] ) pts = [ c for a,b,c in zip(x,y,pt_id) if all([not np.isnan(a), not(np.isnan(b))]) ] clf = IsolationForest(max_samples='auto', random_state=1, contamination=contam) preds = clf.fit_predict(data) x = data[:,0] y = data[:,1] plt.scatter(x, y, c=preds) for pt, x, y, p in zip(pts, x, y, preds): if p == -1: plt.annotate(pt, (x,y)) plt.xlabel(ind_col) plt.ylabel(dep_col) plt.savefig(fig_name) plt.close() except ValueError as e: print(f'Error analyzing -{ind_col}- against -{dep_col}-') log.write(f'Error analyzing -{ind_col}- against -{dep_col}-:\n\t{e}\n') plt.close() continue ###### multivariate outlier detection print('\nRunning multivariate outlier analysis') multifile = os.path.join(multi_folder, 'multivariate_detection.png') multicolsfile = os.path.join(multi_folder, 'multivariate_cols.csv') multisubsetfile = os.path.join(multi_folder, 'multivariate_subset.csv') dump_folder = os.path.join(multi_folder, 'bin') os.mkdir(dump_folder) include_thresh = 0.3 # the minimum percentage of non-nan entries a column must have to be included in the multivariate analysis # figure out which columns are numeric exes = df[study_id_col] numeric_cols = [c for c in df.columns if df[c].dtype != 'object'] numeric_cols = [n for n in numeric_cols if len(df[n].unique()) > 1] # has to not just be NaN numeric_cols = [n for n in numeric_cols if 'Accession' not in n] numeric_cols_nonthreshed = numeric_cols.copy() numeric_cols = [n for n in numeric_cols if sum(~df[n].isna()) / len(df) > include_thresh] # has to have more non-NaN than the threshold multidata = df[numeric_cols] multidata_filled = multidata.fillna(multidata.mean()) # normalize the data x = multidata_filled.values #returns a numpy array min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) multidata_filled =
pd.DataFrame(x_scaled)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2014-2019 OpenEEmeter contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from datetime import datetime import numpy as np import pandas as pd import pytest from eemeter.features import ( compute_occupancy_feature, compute_temperature_features, compute_temperature_bin_features, compute_time_features, compute_usage_per_day_feature, estimate_hour_of_week_occupancy, get_missing_hours_of_week_warning, fit_temperature_bins, merge_features, ) from eemeter.segmentation import segment_time_series def test_compute_temperature_features_no_freq_index( il_electricity_cdd_hdd_billing_monthly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_data.index.freq = None with pytest.raises(ValueError): compute_temperature_features(meter_data.index, temperature_data) def test_compute_temperature_features_no_meter_data_tz( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] meter_data.index = meter_data.index.tz_localize(None) with pytest.raises(ValueError): compute_temperature_features(meter_data.index, temperature_data) def test_compute_temperature_features_no_temp_data_tz( il_electricity_cdd_hdd_billing_monthly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_data = temperature_data.tz_localize(None) with pytest.raises(ValueError): compute_temperature_features(meter_data.index, temperature_data) def test_compute_temperature_features_hourly_temp_mean(il_electricity_cdd_hdd_hourly): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] df = compute_temperature_features(meter_data.index, temperature_data) assert list(sorted(df.columns)) == [ "n_hours_dropped", "n_hours_kept", "temperature_mean", ] assert df.shape == (2952, 3) assert round(df.temperature_mean.mean()) == 62.0 def test_compute_temperature_features_hourly_hourly_degree_days( il_electricity_cdd_hdd_hourly, snapshot ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", ) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] assert df.shape == (2952, 6) snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_hourly_hourly_degree_days_use_mean_false( il_electricity_cdd_hdd_hourly, snapshot ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", use_mean_daily_values=False, ) assert df.shape == (2952, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_hourly_daily_degree_days_fail( il_electricity_cdd_hdd_hourly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="daily", ) def test_compute_temperature_features_hourly_daily_missing_explicit_freq( il_electricity_cdd_hdd_hourly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] meter_data.index.freq = None with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="daily", ) def test_compute_temperature_features_hourly_bad_degree_days( il_electricity_cdd_hdd_hourly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="UNKNOWN", ) def test_compute_temperature_features_hourly_data_quality( il_electricity_cdd_hdd_hourly ): # pick a slice with both hdd and cdd meter_data = il_electricity_cdd_hdd_hourly["meter_data"]["2016-03-01":"2016-07-01"] temperature_data = il_electricity_cdd_hdd_hourly["temperature_data"][ "2016-03-01":"2016-07-01" ] df = compute_temperature_features( meter_data.index, temperature_data, temperature_mean=False, data_quality=True ) assert df.shape == (2952, 4) assert list(sorted(df.columns)) == [ "n_hours_dropped", "n_hours_kept", "temperature_not_null", "temperature_null", ] assert round(df.temperature_not_null.mean(), 2) == 1.0 assert round(df.temperature_null.mean(), 2) == 0.0 def test_compute_temperature_features_daily_temp_mean(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features(meter_data.index, temperature_data) assert df.shape == (810, 3) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_mean", ] assert round(df.temperature_mean.mean()) == 55.0 def test_compute_temperature_features_daily_daily_degree_days( il_electricity_cdd_hdd_daily, snapshot ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="daily", ) assert df.shape == (810, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_days_dropped", "n_days_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_days_kept.mean(), 2), round(df.n_days_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_daily_daily_degree_days_use_mean_false( il_electricity_cdd_hdd_daily, snapshot ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="daily", use_mean_daily_values=False, ) assert df.shape == (810, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_days_dropped", "n_days_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_days_kept.mean(), 2), round(df.n_days_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_daily_hourly_degree_days( il_electricity_cdd_hdd_daily, snapshot ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", ) assert df.shape == (810, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_daily_hourly_degree_days_use_mean_false( il_electricity_cdd_hdd_daily, snapshot ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", use_mean_daily_values=False, ) assert df.shape == (810, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_daily_bad_degree_days( il_electricity_cdd_hdd_daily ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="UNKNOWN", ) def test_compute_temperature_features_daily_data_quality(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, temperature_mean=False, data_quality=True ) assert df.shape == (810, 4) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_not_null", "temperature_null", ] assert round(df.temperature_not_null.mean(), 2) == 23.99 assert round(df.temperature_null.mean(), 2) == 0.00 def test_compute_temperature_features_billing_monthly_temp_mean( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features(meter_data.index, temperature_data) assert df.shape == (27, 3) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_mean", ] assert round(df.temperature_mean.mean()) == 55.0 def test_compute_temperature_features_billing_monthly_daily_degree_days( il_electricity_cdd_hdd_billing_monthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="daily", ) assert df.shape == (27, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_days_dropped", "n_days_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_days_kept.mean(), 2), round(df.n_days_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_monthly_daily_degree_days_use_mean_false( il_electricity_cdd_hdd_billing_monthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="daily", use_mean_daily_values=False, ) assert df.shape == (27, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_days_dropped", "n_days_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_days_kept.mean(), 2), round(df.n_days_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_monthly_hourly_degree_days( il_electricity_cdd_hdd_billing_monthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", ) assert df.shape == (27, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_monthly_hourly_degree_days_use_mean_false( il_electricity_cdd_hdd_billing_monthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", use_mean_daily_values=False, ) assert df.shape == (27, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_monthly_bad_degree_day_method( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="UNKNOWN", ) def test_compute_temperature_features_billing_monthly_data_quality( il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, temperature_mean=False, data_quality=True ) assert df.shape == (27, 4) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_not_null", "temperature_null", ] assert round(df.temperature_not_null.mean(), 2) == 729.23 assert round(df.temperature_null.mean(), 2) == 0.0 def test_compute_temperature_features_billing_bimonthly_temp_mean( il_electricity_cdd_hdd_billing_bimonthly ): meter_data = il_electricity_cdd_hdd_billing_bimonthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_bimonthly["temperature_data"] df = compute_temperature_features(meter_data.index, temperature_data) assert df.shape == (14, 3) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_mean", ] assert round(df.temperature_mean.mean()) == 55.0 def test_compute_temperature_features_billing_bimonthly_daily_degree_days( il_electricity_cdd_hdd_billing_bimonthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_bimonthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_bimonthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="daily", ) assert df.shape == (14, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_days_dropped", "n_days_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_days_kept.mean(), 2), round(df.n_days_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_bimonthly_hourly_degree_days( il_electricity_cdd_hdd_billing_bimonthly, snapshot ): meter_data = il_electricity_cdd_hdd_billing_bimonthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_bimonthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], temperature_mean=False, degree_day_method="hourly", ) assert df.shape == (14, 6) assert list(sorted(df.columns)) == [ "cdd_65", "cdd_66", "hdd_60", "hdd_61", "n_hours_dropped", "n_hours_kept", ] snapshot.assert_match( [ round(df.hdd_60.mean(), 2), round(df.hdd_61.mean(), 2), round(df.cdd_65.mean(), 2), round(df.cdd_66.mean(), 2), round(df.n_hours_kept.mean(), 2), round(df.n_hours_dropped.mean(), 2), ], "values", ) def test_compute_temperature_features_billing_bimonthly_bad_degree_days( il_electricity_cdd_hdd_billing_bimonthly ): meter_data = il_electricity_cdd_hdd_billing_bimonthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_bimonthly["temperature_data"] with pytest.raises(ValueError): compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60, 61], cooling_balance_points=[65, 66], degree_day_method="UNKNOWN", ) def test_compute_temperature_features_billing_bimonthly_data_quality( il_electricity_cdd_hdd_billing_bimonthly ): meter_data = il_electricity_cdd_hdd_billing_bimonthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_bimonthly["temperature_data"] df = compute_temperature_features( meter_data.index, temperature_data, temperature_mean=False, data_quality=True ) assert df.shape == (14, 4) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_not_null", "temperature_null", ] assert round(df.temperature_not_null.mean(), 2) == 1478.77 assert round(df.temperature_null.mean(), 2) == 0.0 def test_compute_temperature_features_shorter_temperature_data( il_electricity_cdd_hdd_daily ): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] # drop some data temperature_data = temperature_data[:-200] df = compute_temperature_features(meter_data.index, temperature_data) assert df.shape == (810, 3) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_mean", ] assert round(df.temperature_mean.sum()) == 43958.0 def test_compute_temperature_features_shorter_meter_data(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] # drop some data meter_data = meter_data[:-10] df = compute_temperature_features(meter_data.index, temperature_data) assert df.shape == (800, 3) assert list(sorted(df.columns)) == [ "n_days_dropped", "n_days_kept", "temperature_mean", ] assert round(df.temperature_mean.sum()) == 43904.0 # ensure last row is NaN'ed assert
pd.isnull(df.iloc[-1].n_days_kept)
pandas.isnull
import urllib.request as url from bs4 import BeautifulSoup import pandas as pd import os import re import csv metadata = [] datasets_to_download = [] page_no = 1 seed_url = 'https://catalog.data.gov' files_written = 0 while len(metadata) <= 1000: try: page = url.urlopen(seed_url + '/dataset?page=' + str(page_no)) page_no += 1 soup = BeautifulSoup(page, 'html.parser') save_location = os.getcwd() + "/data/" for listItem in soup.find_all("li", {"class": "dataset-item"}): table = dict() title = listItem.h3.a.text.strip() # title #print(title) table["sr_no"] = files_written table["title"] = title print(page_no) new_soup = BeautifulSoup(url.urlopen(seed_url + listItem.h3.a.get('href')), 'html.parser') # download link try: download_link = new_soup.find("a", {"data-format": "csv"}) # href=re.compile('.*\.csv$')) print(download_link.get('href')) save_file = save_location + title + ".csv" url.urlretrieve(download_link.get('href'), save_file) data =
pd.read_csv(save_file)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Monday 3 December 2018 @author: <NAME> """ import os import pandas as pd import numpy as np import feather import time from datetime import date import sys from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics import silhouette_score from sklearn.preprocessing import normalize import somoclu from delprocess.loadprofiles import resampleProfiles from .metrics import mean_index_adequacy, davies_bouldin_score from ..support import cluster_dir, results_dir def progress(n, stats): """Report progress information, return a string.""" s = "%s : " % (n) s += "\nsilhouette: %(silhouette).3f " % stats s += "\ndbi: %(dbi).3f " % stats s += "\nmia: %(mia).3f " % stats return print(s) def clusterStats(cluster_stats, n, X, cluster_labels, preprocessing, transform, tic, toc): stats = {'n_sample': 0, 'cluster_size': [], 'silhouette': 0.0, 'dbi': 0.0, 'mia': 0.0, 'all_scores': 0.0, # 'cdi': 0.0, 't0': time.time(), 'batch_fit_time': 0.0, 'total_sample': 0} cluster_stats[n] = stats try: cluster_stats[n]['total_sample'] += X.shape[0] cluster_stats[n]['n_sample'] = X.shape[0] cluster_stats[n]['silhouette'] = silhouette_score(X, cluster_labels, sample_size=10000) cluster_stats[n]['dbi'] = davies_bouldin_score(X, cluster_labels) cluster_stats[n]['mia'] = mean_index_adequacy(X, cluster_labels) #cluster_stats[n_clusters][y]['cdi'] =cluster_dispersion_index(Xbatch, cluster_labels) DON'T RUN LOCALLY!! - need to change to chunked alogrithm once released cluster_stats[n]['cluster_size'] = np.bincount(cluster_labels) cluster_stats[n]['batch_fit_time'] = toc - tic cluster_stats[n]['preprocessing'] = preprocessing cluster_stats[n]['transform'] = transform cluster_stats[n]['all_scores'] = cluster_stats[n]['dbi']*cluster_stats[n]['mia']/cluster_stats[n]['silhouette'] s = "%s : " % (n) s += "\nsilhouette: %(silhouette).3f " % stats s += "\ndbi: %(dbi).3f " % stats s += "\nmia: %(mia).3f " % stats print(s) except: print('Could not compute clustering stats for n = ' + str(n)) pass return cluster_stats def saveResults(experiment_name, cluster_stats, cluster_centroids, som_dim, elec_bin, save=True): """ Saves cluster stats results and centroids for a single clustering iteration. Called inside kmeans() and som() functions. """ for k, v in cluster_stats.items(): n = k evals = pd.DataFrame(cluster_stats).T evals['experiment_name'] = experiment_name evals['som_dim'] = som_dim evals['n_clust'] = n evals['elec_bin'] = elec_bin eval_results = evals.drop(labels='cluster_size', axis=1).reset_index(drop=True) # eval_results.rename({'index':'k'}, axis=1, inplace=True) eval_results[['dbi','mia','silhouette']] = eval_results[['dbi','mia','silhouette']].astype(float) eval_results['date'] = date.today().isoformat() # eval_results['best_clusters'] = None centroid_results = pd.DataFrame(cluster_centroids) centroid_results['experiment_name'] = experiment_name centroid_results['som_dim'] = som_dim centroid_results['n_clust'] = n centroid_results['elec_bin'] = elec_bin try: centroid_results['cluster_size'] = evals['cluster_size'][n] except: centroid_results['cluster_size'] = np.nan centroid_results.reset_index(inplace=True) centroid_results.rename({'index':'k'}, axis=1, inplace=True) centroid_results['date'] = date.today().isoformat() #3 Save Results if save is True: os.makedirs(results_dir, exist_ok=True) erpath = os.path.join(results_dir, 'cluster_results.csv') if os.path.isfile(erpath): eval_results.to_csv(erpath, mode='a', index=False, header=False) else: eval_results.to_csv(erpath, index=False) os.makedirs(cluster_dir, exist_ok=True) crpath = os.path.join(cluster_dir, experiment_name + '_centroids.csv') if os.path.isfile(crpath): centroid_results.to_csv(crpath, mode='a', index=False, header=False) else: centroid_results.to_csv(crpath, index=False) print('Results saved for', experiment_name, str(som_dim), str(n)) return eval_results, centroid_results def xBins(X, bin_type): if bin_type == 'amd': Xdd_A = X.sum(axis=1) Xdd = Xdd_A*230/1000 XmonthlyPower = resampleProfiles(Xdd, interval='M', aggfunc='sum') Xamd = resampleProfiles(XmonthlyPower, interval='A', aggfunc='mean').reset_index().groupby('ProfileID').mean() Xamd.columns=['amd'] amd_bins = [0, 1, 50, 150, 400, 600, 1200, 2500, 4000] bin_labels = ['{0:.0f}-{1:.0f}'.format(x,y) for x, y in zip(amd_bins[:-1], amd_bins[1:])] Xamd['bins'] = pd.cut(Xamd.amd, amd_bins, labels=bin_labels, right=True, include_lowest=True) Xbin_dict = dict() for c in Xamd.bins.cat.categories: Xbin_dict[c] = Xamd[Xamd.bins==c].index.values del Xdd_A, Xdd, XmonthlyPower, Xamd if bin_type == 'integral': Xint = normalize(X).cumsum(axis=1) Xintn = pd.DataFrame(Xint, index=X.index) Xintn['max'] = X.max(axis=1) clusterer = MiniBatchKMeans(n_clusters=8, random_state=10) clusterer.fit(np.array(Xintn)) cluster_labels = clusterer.predict(np.array(Xintn)) labl = pd.DataFrame(cluster_labels, index=X.index) Xbin_dict = dict() for c in labl[0].unique(): Xbin_dict['bin'+str(c)] = labl[labl[0]==c].index.values return Xbin_dict def preprocessX(X, norm=None): if norm == 'unit_norm': #Kwac et al 2013 Xnorm = normalize(X) elif norm == 'zero-one': #Dent et al 2014 Xnorm = np.array(X.divide(X.max(axis=1), axis=0)) elif norm == 'demin': #Jin et al 2016 Xnorm = normalize(X.subtract(X.min(axis=1), axis=0)) elif norm == 'sa_norm': #Dekenah 2014 Xnorm = np.array(X.divide(X.mean(axis=1), axis=0)) else: Xnorm = np.array(X) #Xnorm.fillna(0, inplace=True) Xnorm[np.isnan(Xnorm)] = 0 return Xnorm def kmeans(X, range_n_clusters, top_lbls=10, preprocessing = None, bin_X=False, experiment_name=None): """ This function applies the MiniBatchKmeans algorithm from sklearn on inputs X for range_n_clusters. If preprossing = True, X is normalised with sklearn.preprocessing.normalize() Returns cluster stats, cluster centroids and cluster labels. """ if experiment_name is None: save = False else: if preprocessing is None: pass else: experiment_name = experiment_name+'_'+ preprocessing save = True #apply pre-binning if bin_X != False: Xbin = xBins(X, bin_X) else: Xbin = {'all':X} for b, ids in Xbin.items(): try: A = X.loc[ids,:] except: A = ids #apply preprocessing A = preprocessX(A, norm=preprocessing) centroids = pd.DataFrame() stats = pd.DataFrame() cluster_lbls = pd.DataFrame() dim = 0 #set dim to 0 to match SOM formating cluster_lbls_dim = {} stats_dim = pd.DataFrame() for n_clust in range_n_clusters: clusterer = MiniBatchKMeans(n_clusters=n_clust, random_state=10) #train clustering algorithm tic = time.time() clusterer.fit(A) cluster_labels = clusterer.predict(A) toc = time.time() ## Calculate scores cluster_stats = clusterStats({}, n_clust, A, cluster_labels, preprocessing = preprocessing, transform = None, tic = tic, toc = toc) cluster_centroids = clusterer.cluster_centers_ eval_results, centroid_results = saveResults(experiment_name, cluster_stats, cluster_centroids, dim, b, save) stats_dim = stats_dim.append(eval_results) centroids = centroids.append(centroid_results) cluster_lbls_dim[n_clust] = cluster_labels #outside n_clust loop best_clusters, best_stats = bestClusters(cluster_lbls_dim, stats_dim, top_lbls) cluster_lbls = pd.concat([cluster_lbls, best_clusters], axis=1) stats = pd.concat([stats, best_stats], axis=0) stats.reset_index(drop=True, inplace=True) if save is True: saveLabels(cluster_lbls, stats) return stats, centroids, cluster_lbls def som(X, range_n_dim, top_lbls=10, preprocessing = None, bin_X=False, transform=None, experiment_name=None, **kwargs): """ This function applies the self organising maps algorithm from somoclu on inputs X over square maps of range_n_dim. If preprossing = True, X is normalised with sklearn.preprocessing.normalize() If kmeans = True, the KMeans algorithm from sklearn is applied to the SOM and returns clusters kwargs can be n_clusters = range(start, end, interval) OR list() Returns cluster stats, cluster centroids and cluster labels. """ for dim in range_n_dim: limit = int(np.sqrt(len(X)/20)) if dim > limit: #verify that number of nodes are sensible for size of input data return print('Input size too small for map. Largest n should be ' + str(limit)) else: pass if experiment_name is None: save = False else: if preprocessing is None: pass else: experiment_name = experiment_name+'_'+ preprocessing save = True #apply pre-binning if bin_X != False: Xbin = xBins(X, bin_X) else: Xbin = {'0-4000':X} for b, ids in Xbin.items(): try: A = X.loc[ids,:] except: A = ids #apply preprocessing A = preprocessX(A, norm=preprocessing) centroids = pd.DataFrame() stats = pd.DataFrame() cluster_lbls = pd.DataFrame() for dim in range_n_dim: cluster_lbls_dim = {} stats_dim = pd.DataFrame() nrow = ncol = dim tic = time.time() #train clustering algorithm som = somoclu.Somoclu(nrow, ncol, compactsupport=False, maptype='planar') som.train(A) toc = time.time() if transform == None: n_clust = [0] elif transform == 'kmeans': if kwargs is None: n_clust = [10] else: for key, value in kwargs.items(): #create list with number of clusters for kmeans if key == 'n_clusters': n_clust = value else: return('Cannot process this transform algorithm') for n in n_clust: if n == 0: #create empty matrix the size of the SOM m = np.arange(0, nrow*ncol, 1).reshape(nrow, ncol) else: clusterer = KMeans(n_clusters=n, random_state=10) som.cluster(algorithm=clusterer) m = som.clusters #get cluster of SOM node and assign to input vecors based on bmus k = [m[som.bmus[i][1],som.bmus[i][0]] for i in range(0, len(som.bmus))] c =
pd.DataFrame(A)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt import os class Sink: def write(self, key, obj): raise Exception('Virtual function is not overriden') def flush(self): raise Exception('Virtual function is not overriden') class CompositeSink(Sink): def __init__(self, sinks): self._sinks = sinks def write(self, key, obj): for sink in self._sinks: sink.write(key, obj) def flush(self): for sink in self._sinks: sink.flush() class HDFSink(Sink): def __init__(self, ctx, file_path): self._file_path = file_path self._data = {} self._logger = ctx.logger def write(self, name, df, reset_index=True): self._data[name] = df.reset_index() if reset_index else df def flush(self): store =
pd.HDFStore(self._file_path, complib='blosc', complevel=9)
pandas.HDFStore
import numpy as np import pandas as pd from pandas import DataFrame import matplotlib.pyplot as plt import seaborn as sns from os.path import exists from pathlib import Path def load_consistency_result(filename): data = pd.read_csv(filename, header=None) data = data.iloc[:, 0:2].copy() #print(data) data.columns = ["Ontology", "IsConsitency"] return data def load_evaluation_csv(file_name): data = pd.read_csv(file_name, header=None) isNumeric = data.iloc[:, 1:11].copy() isNumeric = isNumeric.apply(lambda s: pd.to_numeric(s, errors='coerce').notnull().all(), axis=1) #print(isNumeric) isNumeric = isNumeric.index[isNumeric].tolist() timeout = data.applymap(lambda x: 'timeout' in str(x).lower() ).any(axis=1) timeout = data[timeout].copy() time_count = timeout.shape[0] new_data = data.iloc[isNumeric].copy() #print(isNumeric) return new_data if __name__ == '__main__': ore2015_statistics_file:str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\ORE2015_Statistics.csv" input_folder: str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\ORE2015\\" output_folder = "./output/" #ore2015_statistics_file: str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\BioOntology_Statistics.csv" #input_folder: str = "C:\\Users\\anl\\SINTEF\\Skytrack@SINTEF - Documents\\General\\Task T1.3\\EvaluationResult\\Bio\\" #output_folder = "./output/Bio/" Path(output_folder).mkdir(parents=True, exist_ok=True) columns = ["Ontology", "Run1", "Run2", "Run3", "Run4", "Run5", "Run6" ,"Run7" ,"Run8" ,"Run9" ,"Run10", "Mean", "Median"] reasoner = "KoncludeCLI" task_name = ["Consistency", "Classification", "Realization"] #task_name = ["Classification", "Realization"] filelist = {"Classification": "KoncludeCLI_classification.list", "Realization":"KoncludeCLI_realization.list"} constency_dict = {} for task in task_name: file_name = input_folder + reasoner + "_" + task + "_old.csv" full_data = pd.read_csv(file_name, header=None) full_data.columns = columns #print(full_data) success_data = load_evaluation_csv(file_name) success_data.columns = columns #print(success_data) unsuccess_data = full_data.merge(success_data, on="Ontology", how="left", indicator=True).query('_merge == "left_only"').drop('_merge', 1).iloc[:, 0:13].copy() unsuccess_data.columns = columns #print(unsuccess_data) if task=="Consistency": consistency_result_file = input_folder + reasoner + "_ConsistencyResult.csv" consitency_result = load_consistency_result(consistency_result_file) #print(consitency_result) constency_dict = pd.Series(consitency_result.IsConsitency.values, index=consitency_result.Ontology).to_dict() #print(constency_dict) new_success_data = success_data.merge(consitency_result, on="Ontology", how="inner").iloc[:, 0:13].copy() new_success_data.columns = columns malicious_data = success_data.merge(new_success_data, on = "Ontology", how="left", indicator=True).query('_merge == "left_only"').drop('_merge', 1).iloc[:, 0:13].copy() malicious_data.columns = columns firstCol=[] secondCol=[] for index, row in malicious_data.iterrows(): firstCol.append(row['Ontology']) secondCol.append("Unexpected Error") new_mal_data = {"Ontology": firstCol, "Run1": secondCol} malicious_data =
pd.DataFrame(new_mal_data)
pandas.DataFrame
#!/usr/bin/env python3 import random, os, sys, logging, re import pandas as pd from Bio import SeqIO try: from Bio.Alphabet import generic_dna, IUPAC Bio_Alphabet = True except ImportError: Bio_Alphabet = None # usages of generic_dna, IUPAC are not supported in Biopython 1.78 (September 2020). print(f"The installed BioPython is a new version that has removed the Alphabet module.",file=sys.stderr) import numpy as np from itertools import combinations, product from scipy.spatial.distance import squareform from scipy.cluster.hierarchy import fcluster, linkage from scipy.stats import sem def writeOutputSeq(col_ID, col_seq, output_file, db): """ Generate output fasta file using db dataframe """ output_handle = open(output_file, 'w') for key, row in db.iterrows(): output_handle.write('>%s\n%s\n' % (row[col_ID], row[col_seq])) protein_handle.close() def collapse_fasta(prefix): print(prefix) # parse joined reads seq_dict_joined = getInputSeq(prefix + '_join.raw.fa') seq_id_dict = {} for id in seq_dict_joined: seq = seq_dict_joined[id] if seq not in seq_id_dict: seq_id_dict[seq] = [id] else: seq_id_dict[seq].append(id) fjoined = open((prefix + '_join.fa'), 'w') for seq in seq_id_dict: fjoined.write('>%s\n%s\n' % ('_'.join(seq_id_dict[seq]), seq)) fjoined.close() # parse unjoined seq_dict_R1 = getInputSeq(prefix + '_unjoinR1.raw.fa') seq_dict_R2 = getInputSeq(prefix + '_unjoinR2.raw.fa') seq_id_dict_R1R2 = {} # concated seq: [seq IDs] for id in seq_dict_R1: concat_seq = seq_dict_R1[id] + seq_dict_R2[id] if concat_seq not in seq_id_dict_R1R2: seq_id_dict_R1R2[concat_seq] = [id] else: seq_id_dict_R1R2[concat_seq].append(id) fR1 = open(prefix + '_unjoinR1.fa', 'w') fR2 = open(prefix + '_unjoinR2.fa', 'w') for seq in seq_id_dict_R1R2: fR1.write('>%s\n%s\n' % ('_'.join(seq_id_dict_R1R2[seq]), seq_dict_R1[seq_id_dict_R1R2[seq][0]])) fR2.write('>%s\n%s\n' % ('_'.join(seq_id_dict_R1R2[seq]), seq_dict_R2[seq_id_dict_R1R2[seq][0]])) fR1.close() fR2.close() def getInputSeq(seq_file): """ Arguments: seq_file = a fasta file of sequences input Returns: a dictionary of {ID:Seq} """ ### add print message to warn for empty dict if not os.path.exists(seq_file): print("[getInputSeq] %s FAILED TO LOAD. EMPTY DICT IS RETURNED. THIS MAY INFLUENCE YOUR RESULTS" % seq_file, file=sys.stderr, flush=True) return {} if seq_file.endswith('.gz'): os.system('gunzip %s' % seq_file) seq_file_unzip = seq_file.rstrip('.gz') else: seq_file_unzip = seq_file if Bio_Alphabet: seq_dict = SeqIO.index(seq_file_unzip, "fasta", IUPAC.ambiguous_dna) else: seq_dict = SeqIO.index(seq_file_unzip, "fasta") # Create a seq_dict ID translation using IDs truncate up to space or 50 chars seqs = {} for seq in seq_dict.values(): seqs.update({seq.description: str(seq.seq).upper()}) ### .fa files may have a header preceeding each gene. This chunk is added to make sure the header is removed ### can't change the brackets, otherwise keyerror keys = list(seqs.keys()) # obtain a list of keys stripped of the header for i in range(len(keys)): keys[i] = keys[i].replace("lcl|", "", 1) seqs = dict(zip(keys, list(seqs.values()))) if seq_file.endswith('.gz'): os.system('gzip %s' % seq_file_unzip) return seqs def getCDR(cdrfile): V_CDR = {} if not os.path.exists(cdrfile): logging.warnings('Cannot find CDR boundary file %s' % os.path.basename(cdrfile)) return None else: for line in open(cdrfile): l = line.strip().split() V_CDR[l[0]] = [int(b) for b in l[1:]] return V_CDR def getCSV(csvfile): # Load CSV file by reading by chunks tmplist = [] for chunk in pd.read_csv(csvfile, sep='\t', chunksize=20000): tmplist.append(chunk) m = pd.concat(tmplist, axis=0) del tmplist return m def load_Valign(fname): # Load V gene genome alignment position V_align = {} for line in open(fname): l = line.strip().split() start_end = '%s_%s' % (l[2], l[3]) if l[0] not in V_align: V_align[l[0]] = {l[1]: [start_end]} else: if l[1] in V_align[l[0]]: V_align[l[0]][l[1]].append(start_end) else: V_align[l[0]][l[1]] = [start_end] return V_align def CheckAlignOverlap(topinfo, reads_align, Valign, genomealign, hitcheck): flag = 'noneed' if genomealign == 'T': flag = 'unmatch' if topinfo[0] not in reads_align: flag = 'nohit' else: for loc in reads_align[topinfo[0]]: chrom = loc[0] pos = int(loc[1]) if topinfo[1] not in Valign: flag = 'noVhit' continue if chrom in Valign[topinfo[1]]: for start_end in Valign[topinfo[1]][chrom]: start = int(start_end.split('_')[0]) end = int(start_end.split('_')[1]) # extend 10bp at 5' because V-D or V-J junctions might have matches if (start - 10) <= pos <= end: flag = 'match' if flag == 'nohit': return 'No_hit_from_genome_alignment' elif flag == 'noVhit': return 'topVgene_has_no_alignment' elif flag == 'unmatch': return 'genome_alignment_unmatch_Vgene' else: return hitcheck def loggingRun(cmdline): logging.info(cmdline) os.system(cmdline) def line_count(fname): i = -1 with open(fname) as f: for i, l in enumerate(f): pass return i + 1 def fasta_count(fname): i = 0 fin = open(fname) for line in fin: if line.startswith('>'): i += 1 fin.close() return i def reads_stat(args): for sample in sample_info: eachdir = '%s/%s' % (args.outdir, sample) fstat = open('%s/%s.stat.txt' % (eachdir, sample), 'w') # reads count total_num = line_count("%s/%s_R1.fq" % (eachdir, sample)) / 4 join_num = line_count("%s/%s_join.fq" % (eachdir, sample)) / 4 unjoin_num = total_num - join_num fstat.write('Total reads\t%d\nJoined reads\t%d\nUnjoined reads\t%d\n' % (total_num, join_num, unjoin_num)) # alignment stat join_uniq = line_count('%s/%s_join.uniq.xls' % (eachdir, sample)) R1_uniq = line_count('%s/%s_unjoinR1.uniq.xls' % (eachdir, sample)) join_NOuniq = line_count('%s/%s_join.NOuniq.xls' % (eachdir, sample)) R1_NOuniq = line_count('%s/%s_unjoinR1.NOuniq.xls' % (eachdir, sample)) mergeNum = line_count('%s/%s.IgBlast_merge.xls' % (eachdir, sample)) fstat.write('# of uniquely/NON-uniquely joined hits\t%d\t%d\n' % (join_uniq, join_NOuniq)) fstat.write('# of uniquely/NON-uniquely unjoined-R1 hits\t%d\t%d\n' % (R1_uniq, R1_NOuniq)) fstat.write('# of merged hits\t%d\n' % mergeNum) fstat.close() def random_seq(length): ''' Generate random sequnce with input length ''' seq = '' if length == 0: return seq else: seq = ''.join([random.choice('ATCG') for i in range(0, length)]) return seq def mutate_seq(orig_string, mutation_rate=0.005): ''' Mutate input sequence with point mutations ''' bases = "ACGT" result = [] mutations = [] n = 0 for base in orig_string: n += 1 if random.random() < mutation_rate and base in bases: new_base = bases[bases.index(base) - random.randint(1, 3)] # negatives are OK result.append(new_base) mutations.append('%s%d%s' % (base, n, new_base)) else: result.append(base) return "".join(result), '|'.join(mutations) def reverse_complement(seq): complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} seq_rc = "".join(complement.get(base, base) for base in reversed(seq)) return seq_rc def fastq_stats(fastqfile): # execute fastq-stats os.system('fastq-stats %s > %s.fastqstat' % (fastqfile, fastqfile)) # parse results fqstat = {} for line in open('%s.fastqstat' % fastqfile): l = line.strip().split('\t') fqstat[l[0]] = l[1] os.system('rm -rf %s.fastqstat' % fastqfile) return fqstat def parsefa_long(file, length): id_seq = {} id = '' for line in open(file): if line.startswith('>'): id = line.strip() id_seq[id] = '' else: id_seq[id] += seq fout = open(file.replace('.fa', '.long.fa'), 'w') for id in id_seq: if len(id_seq[id]) >= length: fout.write('%s\n%s\n' % (id, id_seq[id])) fout.close() def smooth(self, nucMutnum, nucCovnum, genetotalseq, statfilelist): # print(nucMutnum['A'], nucMutnum['G'], nucMutnum['C'], nucMutnum['T']) # print(nucCovnum['A'], nucCovnum['G'], nucCovnum['C'], nucCovnum['T']) nucMucratio = {} smoothpower = self.args.additivesmooth for nuc in 'AGCT': nucMucratio[nuc] = float(nucMutnum[nuc]) / nucCovnum[nuc] avecover = sum([nucCovnum[a] for a in 'AGCT']) / len(genetotalseq) for gene in statfilelist: statfile = statfilelist[gene] statnew = statfile.replace('.txt', '.sm%s.txt' % str(smoothpower)) fnew = open(statnew, 'w') for line in open(statfile): if line.startswith('Pos'): fnew.write(line) else: l = line.strip().split('\t') total_smooth = int(l[2]) + avecover * smoothpower mut_smooth = int(l[1]) + nucMucratio[nuc] * avecover * smoothpower if total_smooth == 0: l[4] = 0 else: l[4] = mut_smooth / total_smooth l[4] = str(l[4]) fnew.write('%s\n' % '\t'.join(l)) fnew.close() pdffile = statnew.replace('nucfile', 'profiles').replace('txt', 'pdf') ### 09152020: changed showsequence from false to ture loggingRun( 'Rscript scripts/SHMPlot2.R %s %s plotrows=1 figureheight=2 showsequence=TRUE ymax=0.2 cdr1_start=%d cdr1_end=%d cdr2_start=%d cdr2_end=%d cdr3_start=%d cdr3_end=%d' % \ (statnew, pdffile, self.V_CDR[gene]['CDR1_start'], self.V_CDR[gene]['CDR1_end'], \ self.V_CDR[gene]['CDR2_start'], self.V_CDR[gene]['CDR2_end'], \ self.V_CDR[gene]['CDR3_start'], self.V_CDR[gene]['CDR3_end'])) ######### this section is for tree construction & file parsing def mergeSampleCount(shortlist): samplelist = [s.split(':')[0] for s in shortlist[0].split('|')] sample_count = {} for s in samplelist: sample_count[s] = 0 for shortcount in shortlist: for oneshort in shortcount.split('|'): (a, b) = oneshort.split(':') sample_count[a] = sample_count[a] + int(b) o = '|'.join(["%s:%d" % (a, sample_count[a]) for a in samplelist]) return o def treeCollapseParse(fin, fout): db = pd.read_csv(fin, sep="\t", low_memory=False) if len(db) < 2: sys.exit('Find no passed read in tmp_db-pass.tab') grouped = db.groupby('CLONE') idlist = [] sclist = [] readlist = [] fullseqlist = [] for key, group in grouped: seqlist = [] group = pd.DataFrame(group) germseq = list(group['GERMLINE_IMGT_D_MASK'])[0] for si in group['SEQUENCE_IMGT']: s = [] for n in range(0, len(si)): if si[n] in ['N', '.'] and germseq[n] != 'N': s.append(germseq[n]) else: s.append(si[n]) seqlist.append(''.join(s)) group["FULLSEQ"] = seqlist grouped2 = group.groupby("FULLSEQ") for subkey, subgroup in grouped2: subgroup = pd.DataFrame(subgroup) subgroup["trimlen"] = [len(s.replace('.', '').replace('N', '')) for s in subgroup['SEQUENCE_IMGT']] subgroup = subgroup.sort_values("trimlen", ascending=False) idlist.append(list(subgroup['SEQUENCE_ID'])[0]) fullseqlist.append(list(subgroup['FULLSEQ'])[0]) readlist.append('|'.join(list(subgroup['SEQUENCE_ID']))) sclist.append(mergeSampleCount(list(subgroup['SHORTCOUNT']))) treeCollapse = pd.DataFrame(db.loc[db['SEQUENCE_ID'].isin(idlist),]) treeCollapse["SHORTCOUNT"] = sclist # treeCollapse["SEQUENCE_IMGT"] = fullseqlist # treeCollapse["READGROUP"] = readlist treeCollapse.to_csv(fout, sep="\t", index=False) def files_process(args, worktype): # IgBlast clean up if worktype == 'igblast_clean': for sample in args.metadict: eachdir = '%s/%s' % (args.outdir, sample) dirlist = ['reads_fasta', 'reads_fastq', 'igblast_raw', 'igblast_db'] # , 'bowtie_sam'] for d in dirlist: if not os.path.exists('%s/%s' % (eachdir, d)): os.system('mkdir %s/%s' % (eachdir, d)) os.system('mv {0}/*fa {0}/reads_fasta'.format(eachdir)) os.system('mv {0}/*.fq {0}/*list {0}/reads_fastq'.format(eachdir)) os.system('mv {0}/*IgBlast {0}/igblast_raw'.format(eachdir)) os.system('mv {0}/*IgBlast.db {0}/igblast_db'.format(eachdir)) # if args.genomealign == 'T': # os.system('mv %s/*.sam %s/bowtie_sam' % (eachdir, eachdir)) # JH 05042021 # os.system('gzip %s/reads_fast*/*' % (eachdir)) os.system('gzip -f %s/reads_fasta/*.fa' % (eachdir)) os.system('gzip -f %s/reads_fastq/*.fq' % (eachdir)) os.system('gzip -f %s/reads_fastq/*.list' % (eachdir)) # os.system('gzip %s/igblast/*' % eachdir) os.system('gzip -f %s/igblast_db/*.IgBlast.db' % eachdir) os.system('gzip -f %s/igblast_raw/*.IgBlast' % eachdir) if os.path.exists('%s/unmatched/' % args.outdir): os.system('gzip -q %s/unmatched/*' % args.outdir) def getNmers(sequences, n): """ Breaks input sequences down into n-mers Arguments: sequences : List of sequences to be broken into n-mers n : Length of n-mers to return n == 1 Returns: dict : Dictionary mapping sequence to a list of n-mers """ # Add Ns so first nucleotide is center of first n-mer sequences_n = ['N' * ((n - 1) // 2) + seq + 'N' * ((n - 1) // 2) for seq in sequences] nmers = {} for seq, seqn in zip(sequences, sequences_n): nmers[seq] = [seqn[i:i + n] for i in range(len(seqn) - n + 1)] # nmers = {(seq, [seqn[i:i+n] for i in range(len(seqn)-n+1)]) for seq,seqn in izip(sequences,sequences_n)} return nmers def scoreDNA(a, b, mask_score=None, gap_score=None): """ Returns the score for a pair of IUPAC Ambiguous Nucleotide characters Arguments: a : First characters b : Second character n_score : Tuple of length two defining scores for all matches against an N character for (a, b), with the score for character (a) taking precedence; if None score symmetrically according to IUPAC character identity gap_score : Tuple of length two defining score for all matches against a gap (-, .) character for (a, b), with the score for character (a) taking precedence; if None score symmetrically according to IUPAC character identity Returns: int : Score for the character pair """ # Define ambiguous character translations IUPAC_trans = {'AGWSKMBDHV': 'R', 'CTSWKMBDHV': 'Y', 'CGKMBDHV': 'S', 'ATKMBDHV': 'W', 'GTBDHV': 'K', 'ACBDHV': 'M', 'CGTDHV': 'B', 'AGTHV': 'D', 'ACTV': 'H', 'ACG': 'V', 'ABCDGHKMRSTVWY': 'N', '-.': '.'} # Create list of tuples of synonymous character pairs IUPAC_matches = [p for k, v in IUPAC_trans.items() for p in list(product(k, v))] # Check gap and N-value conditions, prioritizing score for first character if gap_score is not None and a in '-.': return gap_score[0] elif mask_score is not None and a in 'nN': return mask_score[0] elif gap_score is not None and b in '-.': return gap_score[1] elif mask_score is not None and b in 'nN': return mask_score[1] # Return symmetric and reflexive score for IUPAC match conditions if a == b: return 1 elif (a, b) in IUPAC_matches: return 1 elif (b, a) in IUPAC_matches: return 1 else: return 0 def getDNADistMatrix(mat=None, mask_dist=0, gap_dist=0): """ Generates a DNA distance matrix Specifies a matrix of distance scores eg A==A=> similarity score=1 / distance =0 Arguments: mat : Input distance matrix to extend to full alphabet; if unspecified, creates Hamming distance matrix that incorporates IUPAC equivalencies mask_dist : Distance for all matches against an N character gap_dist : Distance for all matches against a gap (-, .) character Returns: DataFrame : pandas.DataFrame of distances """ IUPAC_chars = list('-.ACGTRYSWKMBDHVN') mask_char = 'N' # Default matrix to inf dist_mat = pd.DataFrame(float('inf'), index=IUPAC_chars, columns=IUPAC_chars, dtype=float) # Set gap distance for c in '-.': dist_mat.loc[c] = dist_mat.loc[:, c] = gap_dist # Set mask distance dist_mat.loc[mask_char] = dist_mat.loc[:, mask_char] = mask_dist # Fill in provided distances from input matrix if mat is not None: for i, j in product(mat.index, mat.columns): dist_mat.at[i, j] = mat.at[i, j] # If no input matrix, create IUPAC-defined Hamming distance else: for i, j in product(dist_mat.index, dist_mat.columns): dist_mat.at[i, j] = 1 - scoreDNA(i, j, mask_score=(1 - mask_dist, 1 - mask_dist), gap_score=(1 - gap_dist, 1 - gap_dist)) return dist_mat pass def calcDistances(sequences, n, dist_mat, norm, sym): """ Calculate pairwise distances between input sequences Arguments: sequences : List of sequences for which to calculate pairwise distances n : Length of n-mers to be used in calculating distance dist_mat : pandas.DataFrame of mutation distances norm : Normalization method sym : Symmetry method Returns: ndarray : numpy matrix of pairwise distances between input sequences """ # Initialize output distance matrix dists = np.zeros((len(sequences), len(sequences))) # Generate dictionary of n-mers from input sequences nmers = getNmers(sequences, n) # Iterate over combinations of input sequences for j, k in combinations(list(range(len(sequences))), 2): # Only consider characters and n-mers with mutations # nmer==seq == [list of bases in seqs_uniq] # mutated==where seq1 != seq2 # in our case no need for dist_mat;add the number of diff aa and norm by aa len=>distance mutated = [i for i, (c1, c2) in enumerate(zip(sequences[j], sequences[k])) if c1 != c2] seq1 = [sequences[j][i] for i in mutated] seq2 = [sequences[k][i] for i in mutated] nmer1 = [nmers[sequences[j]][i] for i in mutated] nmer2 = [nmers[sequences[k]][i] for i in mutated] # Determine normalizing factor if norm == 'len': norm_by = len(sequences[0]) elif norm == 'mut': norm_by = len(mutated) else: norm_by = 1 # Determine symmetry function if sym == 'avg': sym_fun = np.mean elif sym == 'min': sym_fun = min else: sym_fun = sum # Calculate distances try: dists[j, k] = dists[k, j] = \ sum([sym_fun([dist_mat.at[c1, n2], dist_mat.at[c2, n1]]) \ for c1, c2, n1, n2 in zip(seq1, seq2, nmer1, nmer2)]) / \ (norm_by) except (KeyError): raise KeyError('Unrecognized character in sequence.') return dists def formClusters(dists, link, distance): """ Form clusters based on hierarchical clustering of input distance matrix with linkage type and cutoff distance Arguments: dists : numpy matrix of distances link : Linkage type for hierarchical clustering distance : Distance at which to cut into clusters Returns: list : List of cluster assignments """ # Make distance matrix square # squareform turns square matrix to vector, or vector to square matrix dists = squareform(dists) # Compute linkage links = linkage(dists, link) # Break into clusters based on cutoff clusters = fcluster(links, distance, criterion='distance') return clusters def hier_clust(group, distance): """ distance = 0.1 in Yuxiang/Huan Form clusters based on hierarchical clustering of input distance matrix with linkage type and cutoff distance """ # This line was never used --> commented out JH 06032021 # dict_seqID = group.set_index('CDR3_MASK').to_dict()['SEQUENCE_ID'] seqs = group['CDR3_MASK'].tolist() IDs = group['SEQUENCE_ID'].tolist() seqs_uniq = list(set(seqs)) seq_map = {} for key, row in group.iterrows(): seq = row['CDR3_MASK'] ID = row['SEQUENCE_ID'] seq_map.setdefault(seq, []).append(ID) if len(seqs_uniq) == 1: clone_tmp = [IDs[0] for i in range(len(IDs))] else: # dist_mat is a scoring matrix that specifies the distance bewteen pairs of chars dist_mat = getDNADistMatrix(mask_dist=0, gap_dist=0) dists = calcDistances(seqs_uniq, 1, dist_mat, 'len', 'avg') # Perform hierarchical clustering lineage = 'single' # the shorted distance clusters = formClusters(dists, lineage, distance) # Turn clusters into clone dictionary clone_dict = {} for i, c in enumerate(clusters): cdr3seq = seqs_uniq[i] for seq_id in seq_map[cdr3seq]: clone_dict[seq_id] = c # clone_dict.setdefault(c, []).extend(seq_map[seqs_uniq[i]]) clone_tmp = ['%s_%d' % (IDs[0], clone_dict[seq_id]) for seq_id in IDs] return clone_tmp def hier_clust_CDR3_PEPTIDE(group, distance): """ distance = 0.1 in Yuxiang/Huan Form clusters based on hierarchical clustering of input distance matrix with linkage type and cutoff distance, based on CDR3 aa sequence """ def calcDistances_AA(sequences, norm): """ Calculate pairwise distances between input peptide sequences Arguments: sequences : List of sequences for which to calculate pairwise distances n : Length of n-mers to be used in calculating distance dist_mat : pandas.DataFrame of mutation distances norm : Normalization method sym : Symmetry method Returns: ndarray : numpy matrix of pairwise distances between input sequences """ # Initialize output distance matrix dists = np.zeros((len(sequences), len(sequences))) # Iterate over combinations of input sequences for j, k in combinations(list(range(len(sequences))), 2): # Find locations with mutations mutated = [i for i, (c1, c2) in enumerate(zip(sequences[j], sequences[k])) if c1 != c2] seq1 = [sequences[j][i] for i in mutated] seq2 = [sequences[k][i] for i in mutated] # Determine normalizing factor if norm == 'len': norm_by = len(sequences[0]) else: norm_by = 1 # Calculate distances try: dists[j, k] = dists[k, j] = \ sum([1 if c1 != c2 else 0 for c1, c2 in zip(seq1, seq2)]) / \ (norm_by) except (KeyError): raise KeyError('Unrecognized character in sequence.') return dists seqs = group['CDR3_PEPTIDE'].tolist() IDs = group['SEQUENCE_ID'].tolist() seqs_uniq = list(set(seqs)) seq_map = {} for key, row in group.iterrows(): seq = row['CDR3_PEPTIDE'] ID = row['SEQUENCE_ID'] seq_map.setdefault(seq, []).append(ID) if len(seqs_uniq) == 1: clone_tmp = [IDs[0] for i in range(len(IDs))] else: dists = calcDistances_AA(seqs_uniq, 'len') # Perform hierarchical clustering lineage = 'single' # the shorted distance clusters = formClusters(dists, lineage, distance) # Turn clusters into clone dictionary clone_dict = {} for i, c in enumerate(clusters): cdr3seq = seqs_uniq[i] for seq_id in seq_map[cdr3seq]: clone_dict[seq_id] = c clone_tmp = ['%s_%d' % (IDs[0], clone_dict[seq_id]) for seq_id in IDs] return clone_tmp def getGermdict(args): ''' Read VDJ IgBlast database and obtain un-gapped germline sequences 2020/09 JH: Add in a check condition to ensure databases are read properly ''' germ_dict = {} try: Vdb = getInputSeq(args.params_dict['Vdb']) except AttributeError: Vdb = getInputSeq(args.Vdb) try: Ddb = getInputSeq(args.params_dict['Ddb']) except AttributeError: Ddb = getInputSeq(args.Ddb) try: Jdb = getInputSeq(args.params_dict['Jdb']) except AttributeError: Jdb = getInputSeq(args.Jdb) if not bool(Vdb): print('[getGermdict] Vdb is empty... FAILED TO LOAD %s' % args.params_dict['Vdb'], file = sys.stderr, flush=True) else: germ_dict.update(Vdb) if not bool(Ddb): print('[getGermdict] Vdb is empty... FAILED TO LOAD %s' % args.params_dict['Ddb'], file = sys.stderr, flush=True) else: germ_dict.update(Ddb) if not bool(Jdb): print('[getGermdict] Vdb is empty... FAILED TO LOAD %s' % args.params_dict['Jdb'], file = sys.stderr, flush=True) else: germ_dict.update(Jdb) return germ_dict def collapse_db(records, collapse_type, N_Diff): ''' Collapse reads Db file Input: Records: read dataframe collaspe_type: 'identical' -- collpase input sequences are identical 'partial' -- collapse shorter sequences to longer ones 'V1' -- collapse sequences by multiple columns N_Diff: 'T' consider N as difference 'F' consider N as not difference Output: ''' def _writeOutputSeq(filter_check, col_ID, col_seq, output_file, db): """ Generate output fasta file using db dataframe """ output_handle = open(output_file, 'w') for key, row in db.iterrows(): output_handle.write('>%s\n%s\n' % (row[col_ID], row[col_seq])) output_handle.close() def _collapse_identical_NasDiff(records): def __parse_group(group): index_dupreads = ','.join(group['SEQUENCE_ID']) # print("index_dupreads",index_dupreads, file = sys.stderr) # print("nested function can print to console?", file=sys.stderr) ### 20200916 Lawrence: updated .ix to .loc top_series = group.loc[group.index[0]] top_series['DUPREAD'] = index_dupreads return top_series #return index_dupreads #print("keys in records during collapse:", records.keys(), file=sys.stderr) # YES #print("records.shape during collapse:", records.shape, file=sys.stderr) #print("SEQUENCE_INPUT.size in records:", records['SEQUENCE_INPUT'].size, file=sys.stderr) grouped = records.groupby('SEQUENCE_INPUT') #print("grouped.ngroups:", grouped.ngroups, file=sys.stderr) #print("grouped.ndim", grouped.ndim, file=sys.stderr) colnames = list(records) + ['DUPREAD'] records_collapse = pd.DataFrame(columns=colnames, index=range(0, len(grouped))) ### __parse_group does it work outside of grouped.apply records_collapse = grouped.apply(__parse_group) # records_collapse.size = 0 # print("records_collapse after apply:", records_collapse, file=sys.stderr) # EMPTY DATAFREAM #print("records_collapse.size:?", records_collapse.size, file=sys.stderr) #print("records_collapse.keys():", records_collapse.keys(), file=sys.stderr) return records_collapse # grouped = records.groupby('SEQUENCE_INPUT') # index_dupreads = {} # indexList = [] # for key, group in grouped: # idx = group.index[0] # indexList.append(idx) # index_dupreads[idx] = ','.join(group['SEQUENCE_ID']) # records_collapse = records.loc[indexList] # for idx in index_dupreads: # records_collapse.ix[idx, 'DUPREAD'] = index_dupreads[idx] # return records_collapse # def _parse_read(row, records_collect): # # Keep read with 'N' # if 'N' in row['SEQUENCE_INPUT']: # records_collect = records_collect.append(row) # return records_collect # else: # records_cdr3 = records_collect[records_collect['CDR3_SEQ']==row['CDR3_SEQ']] # for key,collect in records_cdr3.iterrows(): # if row['SEQUENCE_INPUT'] in collect['SEQUENCE_INPUT']: # records_collect.ix[key, 'DUPREAD'] += ',%s' % row['DUPREAD'] # return records_collect # records_collect = records_collect.append(row) # return records_collect # # def _collapse_partial_NasDiff(records): # colnames = list(records) #+ ['N'] # records_collect = pd.DataFrame(columns=colnames) # for key,row in records.iterrows(): # records_collect = _parse_read(row, records_collect) # return records_collect def _collapse_partial_NasDiff(records): ''' Collapse shorter reads to longer ones Process: check read one by one to see if its input seq is a substring of stored reads Need a new method to speed up this ''' records_collect = pd.DataFrame(columns=list(records)) ### 20200916 Lawrence: updated .ix to .loc records_collect.loc[0,] = records.loc[records.index[0]] for key, row in records.iterrows(): if key != records.index[0]: inputseq = row['SEQUENCE_INPUT'] j = pd.Series(records_collect['SEQUENCE_INPUT']).str.contains(inputseq) if len(j[j == True]) >= 1: i = j[j == True].index[0] records_collect.loc[i, 'DUPREAD'] += ',%s' % row['DUPREAD'] elif len(j[j == True]) == 0: records_collect.loc[len(records_collect) + 1,] = row return records_collect def _parse_SAM(read_readlen, sam_file, collapse_type): inputR_refR = {} for line in open(sam_file): l = line.strip().split() if l[5] == '%dM' % read_readlen[l[0]]: if collapse_type == 'identical': if l[5] == '%dM' % read_readlen[l[2]]: inputR_refR[l[0]] = l[2] else: inputR_refR[l[0]] = l[2] return inputR_refR def _collapse_V1(records): ''' Collapse reads based on various result columns ''' records_new = pd.DataFrame(columns=list(records)) grouplist = ['V_ALLELE', 'D_ALLELE', 'J_ALLELE', 'STOP', 'IN_FRAME', \ 'V_END', 'V_D_JUNCTION', 'D_REGION', 'D_J_JUNCTION', \ 'J_START', 'V_J_JUNCTION'] for key, group in records.groupby(grouplist): dup = ','.join(group['DUPREAD'].values.tolist()) groupcontent = group.iloc[0] groupcontent['DUPREAD'] = dup records_new.loc[len(records_new) + 1,] = groupcontent return records_new def _collapse_NasNoDiff(records, collapse_type): ''' Required Bowtie2 software ''' randname = str(random.randint(1, 1000000)) # Write with/wo 'N' two fa files as input/ref files in bowtie2 searching records_woN = records[~records['SEQUENCE_INPUT'].str.contains("N")] records_wN = records[records['SEQUENCE_INPUT'].str.contains("N")] if len(records_woN) == 0 or len(records_wN) == 0: return records ref_file = '%s.ref' % randname input_file = '%s.input' % randname _writeOutputSeq('woN', 'SEQUENCE_ID', 'SEQUENCE_INPUT', ref_file, records_woN) _writeOutputSeq('wN', 'SEQUENCE_ID', 'SEQUENCE_INPUT', input_file, records_wN) sam_file = '%s.sam' % randname os.system('bowtie2-build %s %s -q' % (ref_file, ref_file)) os.system('bowtie2 -x ./%s -f -U %s --local -S %s --no-head --np 0 --mp 1000 --rdg 1000,1000 --rfg 1000,1000' % \ (ref_file, input_file, sam_file)) read_readlen = records.set_index('SEQUENCE_ID').to_dict()['INPUT_LEN'] inputR_refR = _parse_SAM(read_readlen, sam_file, collapse_type) records_collapsed = records[~records.SEQUENCE_ID.isin(inputR_refR.keys())].copy() records_waitToCollapse = records[records.SEQUENCE_ID.isin(inputR_refR.keys())] for inputR in inputR_refR: refR = inputR_refR[inputR] dup = records_waitToCollapse.loc[records_waitToCollapse['SEQUENCE_ID'] == inputR, 'DUPREAD'].values[0] records_collapsed.loc[records_collapsed['SEQUENCE_ID'] == refR, 'DUPREAD'] += ',%s' % dup os.system('rm -rf %s %s %s %s*bt2' % (ref_file, input_file, sam_file, ref_file)) return records_collapsed # Main part in this func # Collapse identical reads anyway #print("records.size before collapse?", records.size, file=sys.stderr) records = _collapse_identical_NasDiff(records) #print("have all columns after collapse?", records, file=sys.stderr) #print("shape of records after collapse:", records.shape, file=sys.stderr) #print("columns of records after collapse:", records.columns, file=sys.stderr) # [0,0] records['INPUT_LEN'] = records["SEQUENCE_INPUT"].map(len) records.sort_values('INPUT_LEN', ascending=False, inplace=True) # Collapse identical reads with N as no difference if collapse_type == 'identical' and N_Diff == 'F': records = _collapse_NasNoDiff(records, 'identical') elif collapse_type == 'partial': # Collapse shorter reads to longer ones with N as difference records = _collapse_partial_NasDiff(records) if N_Diff == 'F': # Collapse shorter reads to longer ones with N as no difference records = _collapse_NasNoDiff(records, 'partial') records = records.drop('INPUT_LEN', axis=1) elif collapse_type == 'V1': # V1 means same way as Version One pipeline records = _collapse_NasNoDiff(records, 'identical') records = _collapse_V1(records) return records def profile_DNAmut(group, nuc_stat, nuc_PDF, nuc_profile, args): ''' Prep DNA mutation profile, text and PDF file 2021/06 JH: Add in debugging lines to ensure databases are read properly ''' def _parse_V_ALLELE_NUC(row): return pd.Series([row["SEQUENCE_ID"]] + [s for s in row['V_ALLELE_NUC']]) allele = group["V_ALLELE"].unique()[0] # print(f"allele = {allele}") germ_dict = getGermdict(args) if allele == "VH5-4(VH7183.a4.6": allele_seq = germ_dict["VH5-4(VH7183.a4.6)"] else: try: allele_seq = germ_dict[allele] except KeyError: print(f'[profile_DNAmut]: cannot find allele {allele} in Germdict when running nuc_profile for {nuc_profile}') try: print(f'[profile_DNAmut]: current Vdb is {args.params_dict["Vdb"]}', file = sys.stderr, flush=True) except AttributeError: print(f'[profile_DNAmut]: current Vdb is {args.Vdb}', file=sys.stderr, flush=True) raise allele_len = len(allele_seq) colnames = ['ID'] + [l for l in allele_seq] allele_mut = pd.DataFrame(columns=colnames, index=range(0, len(group))) allele_mut = group.apply(_parse_V_ALLELE_NUC, axis=1) statnames = ['Pos', 'Mut', 'Total', 'Base', 'Y', 'A', 'T', 'C', 'G'] allele_stat = pd.DataFrame(columns=statnames, index=range(1, allele_len + 1)) allele_stat['Pos'] = range(1, allele_len + 1) allele_stat['Base'] = [l for l in allele_seq] allele_stat[['Mut', 'Total', 'Y', 'A', 'T', 'C', 'G']] = 0 for i in range(1, allele_len + 1): if len(allele_mut) == 1: counts = {} counts[allele_mut[[i]].squeeze()] = 1 else: counts = allele_mut[[i]].squeeze().value_counts() countA = counts.get('A', 0) countT = counts.get('T', 0) countC = counts.get('C', 0) countG = counts.get('G', 0) countMut = countA + countT + countC + countG countTotal = countMut + counts.get('.', 0) allele_stat.loc[i, 'Mut'] = countMut allele_stat.loc[i, 'Total'] = countTotal allele_stat.loc[i, 'Y'] = float(countMut / countTotal) if countTotal > 0 else 0 allele_stat.loc[i, 'A'] = countA allele_stat.loc[i, 'T'] = countT allele_stat.loc[i, 'C'] = countC allele_stat.loc[i, 'G'] = countG allele_mut.to_csv(nuc_profile, sep="\t", index=False) allele_stat.to_csv(nuc_stat, sep="\t", index=False) # run R scripts if allele in args.__dict__['V_CDR']: cdr = args.__dict__['V_CDR'][allele] cdrstring = 'cdr1_start=%s cdr1_end=%s cdr2_start=%s cdr2_end=%s ' \ 'cdr3_start=%s cdr3_end=%s' % (cdr[0], cdr[1], cdr[2], cdr[3], cdr[4], cdr[5]) else: cdrstring = '' # Filter group with read number if len(group) >= args.min_profileread: sample = group["SAMPLE"].unique()[0] anno = '_'.join([sample, allele]) ### 20200915 Lawrence: changed showsequence from false to true ### 20200916 Lawrence: changed frpm 'Rscript %s/HTGTSrep/R/SHMPlot2.R %s %s plotrows=1 figureheight=2 showsequence=TRUE ymax=%f %s annotation=%s ' ### to 'Rscript %s/HTGTSrep/R/SHMPlot2.R \"%s\" \"%s\" plotrows=1 figureheight=2 showsequence=TRUE ymax=%f %s annotation=\"%s\" ' ### this allows special characters to be in V_allel names os.system('Rscript %s/HTGTSrep/R/SHMPlot2.R \"%s\" \"%s\" plotrows=1 figureheight=2 ' 'showsequence=TRUE ymax=%f %s annotation=\"%s\" ' % (args.scriptdir, nuc_stat, nuc_PDF, args.ymax_DNA, cdrstring, anno)) def getInferSeq(treefile, group): ''' Read tree file and get inferred 1 sequence, Using germline sequence of V and J to ensure no surprise ''' n = 0 print("in getInferSeq, treefile:", treefile, file = sys.stderr) with open(treefile) as f: for line in f: n += 1 l = line.strip().split() if n == 2: inferseq = l[-1] # get germline parts cdr3 = group.iloc[0]['CDR3_MASK'] sequence_imgt = group.iloc[0]['SEQUENCE_IMGT'] Vpos = sequence_imgt.find(cdr3) germline_imgt_seq = group.iloc[0]['GERMLINE_IMGT_D_MASK'] seq_V = germline_imgt_seq[:Vpos] seq_Junc = inferseq[Vpos:Vpos + len(cdr3)] if len(germline_imgt_seq) >= len(inferseq): seq_J = germline_imgt_seq[Vpos + len(cdr3): len(inferseq)] else: seq_J = inferseq[Vpos + len(cdr3): len(inferseq)] # Use V and J parts from germline as reference to avoid mismatch at these regions in mut profiling newinfer = (seq_V + seq_Junc + seq_J).replace('.', 'N') # print(group['CLONE'].tolist()[0], inferseq, newinfer) return newinfer def profile_DNAmut_clonal(inferseq, group, nuc_stat, nuc_PDF, nuc_profile, args): ''' Prep DNA mutation profile, text and PDF file ''' allele = group["V_CALL"].unique()[0] # Get position list of inferred seq which are not 'N' poslist = [i for i in range(0, len(inferseq)) if inferseq[i] != 'N'] allele_seq = ''.join([inferseq[i] for i in poslist]) allele_len = len(poslist) colnames = ['ID'] + [inferseq[i] for i in poslist] allele_mut =
pd.DataFrame(columns=colnames)
pandas.DataFrame
# encoding: utf-8 import logging import re from io import BytesIO from zipfile import ZipFile from collections import OrderedDict import pandas as pd from urllib.request import urlopen import os.path from .helpers import pitch_count, progress, game_state from .version import __version__ from .event import event class parse_row(object): """ Parse one single row - A row can return only one type of data (id, version, start, play, sub, com, data) """ def __init__(self): self.log = logging.getLogger(__name__) #initialize logging self.row_str ='' self.row_values = [] self.row_results = {} self.row_data = [] self.row_id = [] def _clean_row(self): self.row_str = self.row_str.decode("utf-8") self.row_values = self.row_str.rstrip('\n').split(',') self.row_values = [x.replace('\r','').replace('"','') for x in self.row_values] def read_row(self): self._clean_row() self.row_id = self.row_values[0] #string self.row_data = self.row_values[1:] #list class parse_game(parse_row): """"Object for each baseball game, subclass. - Data is expected to be sequentially passed (Retrosheet format) - When this class is initialized, it restarts all stats for the game """ def __init__(self, id=''): self.log = logging.getLogger(__name__) #initialize logging parse_row.__init__(self) self.location = 0 self.has_started = False self.has_finished = False self.current_inning = '1' #starting of game self.current_team = '0' #starting of game self.score = {'1':0,'0':0} self.current_pitcher = {'1':'','0':''} #1 for home, 0 for away self.pitch_count = {'1':0,'0':0} #1 for home, 0 for away self.game = { 'meta': {'filename': '', '__version__': __version__, 'events':''}, 'id': id, 'version': '', 'starting_lineup':{'1': {}, '0': {}}, #static for each game 'playing_lineup':{'1': {}, '0': {}}, #dynamic, based on subs 'info': [], #'start': [], 'play_data': [], 'play_player': [], #pitching_id | batter_id | player_id | event | value | #'sub': [], 'com': [], 'data': [], 'stats': {'pitching':[], 'batting':[], 'fielding': [], 'running':[]} } self.event = event() self.event.base = {'B': None,'1': None,'2': None,'3': None,'H': []} self.event.advances = {'B': 1,'1': 0,'2': 0,'3': 0,'H': 0, 'out': 3, 'run': 0} def parse_start(self, start_sub = 'start'): """ This will happen before the game starts""" fielding_position = self.row_values[5] player_id = self.row_values[1] home_away = self.row_values[-3][-1] #some entires are '01' try: self.current_pitcher[home_away] = player_id if fielding_position == '1' else self.current_pitcher[home_away] self.pitch_count[home_away] = 0 if fielding_position == '1' else self.pitch_count[home_away] except: self.log.debug('Something wrong with {0} home_away pitcher in {1}, {2}'.format(self.game['id'], start_sub, self.row_values)) self.game['playing_lineup'][home_away][fielding_position] = player_id if start_sub == 'start': self.game['starting_lineup'][home_away][fielding_position] = player_id def parse_play(self): """ ----------------------------------------------------------------------------------------- field format: "play | inning | home_away | player_id | count on batter | pitches | play "| index counts: 0 1 2 3 4 5 6 | ------------------------------------------------------------------------------------------ """ self.event.str = self.row_values[6] #pass string to parse values if self.current_team != self.row_values[2]: self.score[self.current_team] += self.event.advances['run'] self.event.base = {'B': None,'1': None,'2': None,'3': None, 'H': []} #players on base if self.event.advances['out'] != 3: #catching errors self.log.warning('INNING NO 3RD OUT:\tGame: {0}\tteam: {1}\tinning{2}\tout: {3}'.format(self.game['id'], self.current_team, self.current_inning, self.event.advances['out'])) self.event.advances={'B': 1,'1': 0,'2': 0,'3': 0,'H': 0, 'out': 0,'run': 0} if self.event.advances['out'] >= 3 else self.event.advances self.event.base['B'] = self.row_values[3] #current at bat base_before_play = self.event.base.copy() pre_event = self.event.advances.copy() self.event.decipher() post_event = self.event.advances.copy() this_play_runs = post_event['run'] - pre_event['run'] this_play_outs = post_event['out'] - pre_event['out'] pre_state, post_state = game_state(pre_event, post_event) if post_state == 25: states = [25,26,27,28] post_state = states[this_play_runs] pitcher_home_away = '1' if self.row_values[2] == '0' else '0' #remember picher is defense pitch_string = self.row_values[3] self.pitch_count[pitcher_home_away] = pitch_count(self.row_values[5], self.pitch_count[pitcher_home_away]) self.current_inning = self.row_values[1] self.current_team = self.row_values[2] if self.row_values[2] in ['0','1'] else self.current_team if self.event.str != 'NP': #only append if plays happened (skip subs(NP) on play file) self.game['play_data'].append({ 'game_id': self.game['id'], 'order': self.location, 'pitcher': self.current_pitcher[pitcher_home_away], 'pitch_count': self.pitch_count[pitcher_home_away], 'inning': self.current_inning, 'team': self.current_team, 'player_id': self.row_values[3], 'count_on_batter': self.row_values[4], 'pitch_str': self.row_values[5], 'play_str': self.row_values[6], 'B': self.event.advances['B'], '1': self.event.advances['1'], '2': self.event.advances['2'], '3': self.event.advances['3'], 'H': self.event.advances['H'], 'run': self.event.advances['run'], 'out': self.event.advances['out'], 'on-B': self.event.base['B'], 'on-1': self.event.base['1'], 'on-2': self.event.base['2'], 'on-3': self.event.base['3'], 'on-H': self.event.base['H'], 'hometeam_score': self.score['1'], 'awayteam_score': self.score['0'], 'trajectory': self.event.modifiers['trajectory'], 'passes': self.event.modifiers['passes'], 'location': self.event.modifiers['location'], 'pre_state': pre_state, 'post_state': post_state, 'play_runs': this_play_runs, 'play_outs': this_play_outs }) #import stats for the play #batting for bat_stat in self.event.stats['batting']: bat_stat[1] = self.row_values[3] self.game['stats']['batting'].append([self.game['id'], self.location] + bat_stat) #pitching for pit_stat in self.event.stats['pitching']: pit_stat[1] = self.current_pitcher[pitcher_home_away] self.game['stats']['pitching'].append([self.game['id'], self.location] + pit_stat) #running -- > need to track player together with base for run_stat in self.event.stats['running']: run_stat.append(base_before_play[run_stat[1]])#bfrom self.game['stats']['running'].append([self.game['id'], self.location] + run_stat) #fielding --> use current positions fld_home_away = '1' if self.current_team == '0' else '0' #defense is the opposite team for fld_stat in self.event.stats['fielding']: try: fld_stat[1] = self.game['playing_lineup'][fld_home_away][fld_stat[1]] except: self.log.debug(fld_stat) self.game['stats']['fielding'].append([self.game['id'], self.location] + fld_stat) self.location += 1 def parse_com(self): self.game['com'].append([self.game['id'], self.location] + self.row_data) def parse_event(self, row_str): self.row_str = row_str self.read_row() if self.row_id == 'id' or self.row_id == 'version': self.game[self.row_id] = self.row_data[0] self.has_started = True elif self.row_id == 'info': self.game[self.row_id].append([self.game['id'],self.row_values[1], self.row_values[2]]) elif self.row_id == 'data': self.has_finished=True self.game['meta']['events'] = self.location + 1 #0 index if not self.game['data']: self.game['info'].append([self.game['id'], 'hometeam_score', self.score['1']]) self.game['info'].append([self.game['id'], 'awayteam_score', self.score['0']]) self.game[self.row_id].append([self.game['id'], self.game['meta']['events']]+self.row_data) else: self.parse_start(self.row_id) if self.row_id in ['start','sub'] else None self.parse_play() if self.row_id == 'play' else None self.parse_com() if self.row_id == 'com' else None class parse_games(object): """ """ def __init__(self): self.log = logging.getLogger(__name__) #initialize logging self.file = None self.game_list = [] self.zipfile = None def get_games(self): game = parse_game() #files in 1991 start with something other than id for loop, row in enumerate(self.zipfile.open(self.file).readlines()): if row.decode("utf-8").rstrip('\n').split(',')[0] == 'id': game_id = row.decode("utf-8").rstrip('\n').split(',')[1].rstrip('\r') #start new game self.game_list.append(game.game) if loop > 0 else None game = parse_game(game_id) else: game.parse_event(row) def debug_game(self, game_id): diamond = '''Play: {2}, Inning: {0}, Team: {1} \n|---------[ {5} ]-----------|\n|-------------------------|\n|----[ {6} ]------[ {4} ]-----|\n|-------------------------|\n|------[ {7} ]--[ {3} ]-------|\n|-------------------------|\nRuns: {8}\tOuts: {9}\n''' for game in self.game_list: if game['id'] == game_id: for play in game['play_data']: print (diamond.format( play['inning'], play['team'], play['play_str'], play['B'], play['1'], play['2'], play['3'], play['H'], play['run'], play['out'] )) class parse_files(parse_games): endpoint = 'https://www.retrosheet.org/events/' extension = '.zip' def __init__(self): parse_games.__init__(self) self.log = logging.getLogger(__name__) self.teams_list = [] self.rosters_list = [] def read_files(self): try: #the files locally: zipfile = ZipFile(self.filename) #self.log.debug("Found locally") except: #take from the web resp = urlopen(self.endpoint + self.filename) zipfile = ZipFile(BytesIO(resp.read())) #self.log.debug("Donwloading from the web") self.zipfile = zipfile teams = [] rosters = [] for file in self.zipfile.namelist(): if file[-3:] in ['EVA','EVN']: self.file = file self.get_games() elif file[:4] == 'TEAM': year = file[4:8] for row in zipfile.open(file).readlines(): row = row.decode("utf-8") team_piece = [] for i in range(4): team_piece.append(row.rstrip('\n').split(',')[i].replace('\r','')) self.teams_list.append([year]+team_piece) elif file[-3:] == 'ROS': #roster file year = file[3:7] for row in zipfile.open(file, 'r').readlines(): row = row.decode("utf-8") roster_piece = [] for i in range(7): roster_piece.append(row.rstrip('\n').split(',')[i].replace('\r','')) self.rosters_list.append([year]+roster_piece) def get_data(self, yearFrom = None, yearTo = None): """ """ yearTo = yearTo if yearTo else '2017' yearFrom = yearFrom if yearFrom else yearTo for loop, year in enumerate(range(yearFrom, yearTo+1, 1)): progress(loop, (yearTo - yearFrom+1), status='Year: {0}'.format(year)) self.log.debug('Getting data for {0}...'.format(year)) self.filename = '{0}eve{1}'.format(year, self.extension) self.read_files() progress(1,1,'Completed {0}-{1}'.format(yearFrom, yearTo)) return True def to_df(self): """ """ plays = [] infos = [] datas = [] lineups = [] battings = [] fieldings = [] pitchings = [] runnings = [] for loop, game in enumerate(self.game_list): plays += game['play_data'] infos += game['info'] datas += game['data'] battings += game['stats']['batting'] fieldings += game['stats']['fielding'] pitchings += game['stats']['pitching'] runnings += game['stats']['running'] game['starting_lineup']['1']['game_id'] = game['id'] game['starting_lineup']['1']['home_away'] = 'home' game['starting_lineup']['0']['game_id'] = game['id'] game['starting_lineup']['0']['home_away'] = 'away' lineups.append(game['starting_lineup']['1']) lineups.append(game['starting_lineup']['0']) self.plays = pd.DataFrame(plays) self.info = pd.DataFrame(infos, columns = ['game_id', 'var', 'value']) #self.info = self.info[~self.info.duplicated(subset=['game_id','var'], keep='last')].pivot('game_id','var','value').reset_index() self.lineup = pd.DataFrame(lineups) self.fielding = pd.DataFrame(fieldings, columns = ['game_id','order','stat','player_id']) data_df = pd.DataFrame(datas, columns = ['game_id','order','stat','player_id','value']) self.pitching =
pd.DataFrame(pitchings, columns = ['game_id','order','stat','player_id'])
pandas.DataFrame
import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.tseries.period as period from pandas import period_range, PeriodIndex, Index, date_range def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestPeriodIndex(tm.TestCase): def setUp(self): pass def test_joins(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: joined = index.join(index[:-5], how=kind) tm.assertIsInstance(joined, PeriodIndex) self.assertEqual(joined.freq, index.freq) def test_join_self(self): index = period_range('1/1/2000', '1/20/2000', freq='D') for kind in ['inner', 'outer', 'left', 'right']: res = index.join(index, how=kind) self.assertIs(index, res) def test_join_does_not_recur(self): df = tm.makeCustomDataframe( 3, 2, data_gen_f=lambda *args: np.random.randint(2), c_idx_type='p', r_idx_type='dt') s = df.iloc[:2, 0] res = s.index.join(df.columns, how='outer') expected = Index([s.index[0], s.index[1], df.columns[0], df.columns[1]], object) tm.assert_index_equal(res, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_union_misc(self): index = period_range('1/1/2000', '1/20/2000', freq='D') result = index[:-5].union(index[10:]) tm.assert_index_equal(result, index) # not in order result = _permute(index[:-5]).union(_permute(index[10:])) tm.assert_index_equal(result, index) # raise if different frequencies index = period_range('1/1/2000', '1/20/2000', freq='D') index2 = period_range('1/1/2000', '1/20/2000', freq='W-WED') with tm.assertRaises(period.IncompatibleFrequency): index.union(index2) msg = 'can only call with other PeriodIndex-ed objects' with tm.assertRaisesRegexp(ValueError, msg): index.join(index.to_timestamp()) index3 =
period_range('1/1/2000', '1/20/2000', freq='2D')
pandas.period_range
# -*- coding: utf-8 -*- import pandas as pd d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']), 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])} df =
pd.DataFrame(d)
pandas.DataFrame
import requests import pandas as pd from typing import Dict, List, Union, Tuple PATH_LEGISLATIVAS_2019 = "https://raw.githubusercontent.com/Politica-Para-Todos/ppt-archive/master/legislativas/legislativas-2019/data.json" # mapping between party and manifesto inside PPT repo PARTY_TO_MANIFESTO_LEGISLATIVAS_2019 = { 'A': 'alianca_020919.md', 'BE': 'be_120919.md', 'CDS-PP': 'cdspp.md', 'CH': 'CHEGA_201909.md', 'IL': 'Iniciativa Liberal.md', 'L': 'livre.md', 'MAS': 'mas.md', 'NC': 'NOS_CIDADAOS_Set2019.md', 'PCTP/MRPP': 'PCTP.md', 'PCP-PEV': ['PCP.md', 'pev_31082019.md'], 'MPT': 'mpt27092019.md', 'PDR': 'PDR_22092019.md', 'PNR': 'pnr.md', 'PPD/PSD': 'psd.md', 'PS': 'PS_01092019.md', 'PURP': 'PURP.md', 'PAN': 'pan_31082019.md', 'RIR': 'RIR.md' } def get_data(path: str) -> Dict: """ Load the most recent data provided by PPT """ try: payload = requests.get(path) assert payload.status_code == 200 return payload.json() except Exception as e: print(path) raise e def extract_legislativas_2019() -> Tuple[pd.DataFrame, pd.DataFrame]: """ Extract Portuguese Legislativas 2019 information from PPT community Will return info regarding parties and regarding candidates """ # load data raw_legislativas_2019 = get_data(PATH_LEGISLATIVAS_2019) # we do not use this information raw_legislativas_2019.pop("manifestos") def _get_manifesto(party) -> Union[str, List]: manifesto = PARTY_TO_MANIFESTO_LEGISLATIVAS_2019.get(party, "") # deal with alliances if isinstance(manifesto, list): return [ f"https://raw.githubusercontent.com/Politica-Para-Todos/manifestos/master/legislativas/20191006_legislativas/{m}" for m in manifesto ] return f"https://raw.githubusercontent.com/Politica-Para-Todos/manifestos/master/legislativas/20191006_legislativas/{manifesto}" if manifesto else "" parties = [] candidates = [] for party, values in raw_legislativas_2019['parties'].items(): tmp_party = { "acronym": party.strip(), "name": values.get("name", ""), "description": values.get("description", ""), "description_source": values.get("description_source", ""), "email": values.get("email", ""), "facebook": values.get("facebook", ""), "instagram": values.get("instagram", ""), "logo": f"https://raw.githubusercontent.com/Politica-Para-Todos/ppt-archive/master/legislativas/legislativas-2019/partidos_logos/{values['logo']}" if "logo" in values else "", "twitter": values.get("twitter", ""), "website": values.get("website"), "manifesto": _get_manifesto(party) } # store party info parties.append(tmp_party) for district, main_secundary_candidates in values.get("candidates", {}).items(): for c in main_secundary_candidates.get("main", []) + main_secundary_candidates.get("secundary", []): tmp_candidates = { "party": party.strip(), "district": district.strip(), "name": c.get("name", ""), "position": c.get("position", ""), "type": c.get("type", "") } if c.get("is_lead_candidate", False): tmp_candidates.update({ "biography": c.get("biography", ""), "biography_source": c.get("biography_source", ""), "link_parlamento": c.get("link_parlamento", ""), "photo": f"https://raw.githubusercontent.com/Politica-Para-Todos/ppt-archive/master/legislativas/legislativas-2019/cabeca_de_lista_fotos/{c['photo']}" if "photo" in c else "", "photo_source": c.get("photo_source", ""), }) # store all candidates candidates.append(tmp_candidates) return pd.DataFrame(parties).set_index("acronym"),
pd.DataFrame(candidates)
pandas.DataFrame
"""Tests for gate.py""" import numpy as np import pandas as pd import xarray as xr from timeflux.helpers.testing import DummyData, DummyXArray from timeflux.nodes.gate import Gate xarray_data = DummyXArray() pandas_data = DummyData() node = Gate(event_opens='foo_begins', event_closes='foo_ends', truncate=True) def test_gate_silent(): pandas_data.reset() # Send data but no event node.i.data = pandas_data.next(20) node.update() assert node._status == 'closed' assert node.o.data == None def test_send_opening_closing_event_in_separate_chunks(): pandas_data.reset() # Send an opening event node.clear() node.i.data = pandas_data.next(5) time_open = pd.Timestamp('2018-01-01 00:00:00.104507143') # Sync event to second sample event = pd.DataFrame([['foo_begins']], [time_open], columns=['label']) # Generate a trigger event node.i_events.data = event node.update() expected_data = pd.DataFrame( [ [0.658783, 0.692277, 0.849196, 0.249668, 0.489425], [0.221209, 0.987668, 0.944059, 0.039427, 0.705575], [0.925248, 0.180575, 0.567945, 0.915488, 0.033946], [0.69742, 0.297349, 0.924396, 0.971058, 0.944266], ], [ pd.Timestamp('2018-01-01 00:00:00.104507143'), pd.Timestamp('2018-01-01 00:00:00.202319939'),
pd.Timestamp('2018-01-01 00:00:00.300986584')
pandas.Timestamp
# coding=utf-8 import os import os.path import matplotlib.pyplot as plt import numpy as np import pandas as pd from loganalysis.const import * class Log(object): ''' 调度模块Log分析接口类 主要提供如下3类功能: a) 信息呈现 b)问题发现 c)问题定位 要求所有文件命名符合EI命名格式:子系统_时间.csv ''' def __init__(self, directory, time_interval=None, product_type='Micro'): '''初始化Log实例,把所有Log按照类型分类 Args: directory: Log所在目录 time_interval: 时间范围[start, end],格式为yyyymmddhhmmss product_type:产品类型['Macro', 'Micro'],默认为micro ''' self._directory = directory self._product_type = product_type self._logfiles={} self._time_interval = time_interval @property def product_type(self): return self._product_type @property def directory(self): return self._directory def _filenames_of_type(self, filetype): '''获取指定文件类型的所有文件名 Args: filetype:文件类型 time_interval: 时间范围[start, end],格式为yyyymmddhhmmss Returns: 文件名列表 ''' names_of_filetype = [] for name in np.sort(os.listdir(self._directory)): if not name.endswith(r'.csv'): continue if -1 == name.find(filetype): continue if self._time_interval: time = np.uint64(name.rsplit(r'.')[0].rsplit(r'_')[-1]) if time < self._time_interval[0] or time > self._time_interval[1]: continue names_of_filetype.append(name) return names_of_filetype def describle(self): '''当前目录下相关Log文件总体描述,每类Log文件合并为一个文件 输出文件名,大小,行数,时间范围,airtime范围等,每个Log文件一列 ''' df = pd.DataFrame() for type, logfile in self._logfiles.items(): df.at[type, 'size'] = logfile.size df.at[type, 'num_of_files'] = len(logfile.files) df.at[type, 'num_of_lines'] = logfile.lines df.at[type, 'pctime_start'] = logfile.pctimes[0] df.at[type, 'pctime_end'] = logfile.pctimes[1] df.at[type, 'airtime_start'] = logfile.airtimes[0] df.at[type, 'airtime_end'] = logfile.airtimes[1] df.index.name = 'filename' return df class LogFile(object): '''Log文件接口类''' def __init__(self, type, directory, files, id_filter=None): '''初始化Log实例,把所有Log按照类型分类 Args: file: 文件名 type: log类型 ''' self._files = files self._type = type self._directory = directory self._id_filter = id_filter self._time_filter = None self._size = sum([os.path.getsize(os.path.join(directory, file)) for file in files]) self._pctimes = [-1, -1] self._airtimes = [-1, -1] self._lines = 0 cols = ['LocalTime', 'AirTime'] for data in self.gen_of_cols(cols): if len(data.index) == 0: self._lines = 0 return self._lines = self._lines + data.index.max() if self._pctimes[0] == -1: self._pctimes[0] = data.iat[0, 0] self._pctimes[1] = data.iat[-1, 0] if self._airtimes[0] == -1: self._airtimes[0] = data.iat[0, 1] self._airtimes[1] = data.iat[-1, 1] @property def type(self): return self._type @property def files(self): return self._files @property def size(self): return self._size @property def id_filter(self): return self._id_filter @property def lines(self): '''获取文件总行数''' return self._lines @property def pctimes(self): '''PC时间范围''' return tuple(self._pctimes) @property def airtimes(self): '''AirTime时间范围''' return tuple(self._airtimes) @staticmethod def addtime(time1, time2): time1 = np.uint32(time1) time2 = np.uint32(time2) frm = time1 // 16 + time2 // 16 subfrm = time1 % 16 + time2 % 16 if subfrm >= 10: subfrm -= 10 frm += 1 return frm % 0x10000000 * 16 + subfrm @staticmethod def difftime(time1, time2): time1 = np.uint32(time1) time2 = np.uint32(time2) subfrm1 = time1 % 16 subfrm2 = time2 % 16 frm = time1 // 16 + 0x10000000 - time2 // 16 if subfrm1 >= subfrm2: subfrm = subfrm1 - subfrm2 else: subfrm = subfrm1 + 10 - subfrm2 frm = frm - 1 frm = frm % 0x10000000 return frm * 16 + subfrm @staticmethod def dectime(hextime): hextime = np.uint32(hextime) return hextime // 16 * 10 + hextime % 16 @staticmethod def hextime(dectime): dectime = np.uint32(dectime) return dectime // 10 * 16 + dectime % 10 def gen_of_cols(self, cols=None, val_filter=None): '''获取指定列的生成器 Args: cols: 列名列表,如果为None,表示获取全部列 col_val_filter: 过滤条件,字典格式{'colname': [val1,]} Yields: 生成器格式 ''' filters = {} if val_filter: filters.update(val_filter) if self._id_filter: filters.update(self._id_filter) totcols = cols aircol = 'AirTime' if self._time_filter and aircol not in totcols : totcols.append(aircol) if cols is not None: totcols = list(set.union(set(filters), set(cols))) for file in self._files: filename = os.path.join(self._directory, file) data =
pd.read_csv(filename, na_values='-', usecols=totcols)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, concat from pandas.core.base import DataError from pandas.util import testing as tm def test_rank_apply(): lev1 = tm.rands_array(10, 100) lev2 = tm.rands_array(10, 130) lab1 = np.random.randint(0, 100, size=500) lab2 = np.random.randint(0, 130, size=500) df = DataFrame( { "value": np.random.randn(500), "key1": lev1.take(lab1), "key2": lev2.take(lab2), } ) result = df.groupby(["key1", "key2"]).value.rank() expected = [piece.value.rank() for key, piece in df.groupby(["key1", "key2"])] expected = concat(expected, axis=0) expected = expected.reindex(result.index) tm.assert_series_equal(result, expected) result = df.groupby(["key1", "key2"]).value.rank(pct=True) expected = [ piece.value.rank(pct=True) for key, piece in df.groupby(["key1", "key2"]) ] expected = concat(expected, axis=0) expected = expected.reindex(result.index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grps", [["qux"], ["qux", "quux"]]) @pytest.mark.parametrize( "vals", [ [2, 2, 8, 2, 6], [ pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-08"), pd.Timestamp("2018-01-02"),
pd.Timestamp("2018-01-06")
pandas.Timestamp
# ref: alt-ed-covid-2...analysis_1_vars_and_regression.py # ref: alt-ed-matching-effects-2...analysis_1_vars_and_regression.py import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression import statsmodels.api as sm from statsmodels.iolib.summary2 import summary_col def fsImproveProviderNames(sColName): sMassagedName = sColName sMassagedName = sMassagedName.replace('provider_hirability_1', 'provider_hirability_b_nacc_nself_yother') sMassagedName = sMassagedName.replace('provider_impressed_1', 'provider_impressed_b_nacc_nself_yother') sMassagedName = sMassagedName.replace('provider_hirability_2', 'provider_hirability_c_nacc_yself_nother') sMassagedName = sMassagedName.replace('provider_impressed_2', 'provider_impressed_c_nacc_yself_nother') sMassagedName = sMassagedName.replace('provider_hirability_3', 'provider_hirability_d_nacc_yself_yother') sMassagedName = sMassagedName.replace('provider_impressed_3', 'provider_impressed_d_nacc_yself_yother') sMassagedName = sMassagedName.replace('provider_hirability_4', 'provider_hirability_e_yacc_nself_nother') sMassagedName = sMassagedName.replace('provider_impressed_4', 'provider_impressed_e_yacc_nself_nother') sMassagedName = sMassagedName.replace('provider_hirability_5', 'provider_hirability_f_yacc_nself_yother') sMassagedName = sMassagedName.replace('provider_impressed_5', 'provider_impressed_f_yacc_nself_yother') sMassagedName = sMassagedName.replace('provider_hirability_6', 'provider_hirability_g_yacc_yself_nother') sMassagedName = sMassagedName.replace('provider_impressed_6', 'provider_impressed_g_yacc_yself_nother') sMassagedName = sMassagedName.replace('provider_hirability_7', 'provider_hirability_h_yacc_yself_yother') sMassagedName = sMassagedName.replace('provider_impressed_7', 'provider_impressed_h_yacc_yself_yother') return sMassagedName def fsReformatColumnNames(sColName): sMassagedName = sColName.replace(',', '').replace( ' ', '_').replace('-', '_').replace('>', '').replace('+', '').lower() sMassagedName = sMassagedName.replace('?', '') sMassagedName = sMassagedName.replace('(', '') sMassagedName = sMassagedName.replace(')', '') sMassagedName = sMassagedName.replace('.', '_') sMassagedName = sMassagedName.replace('_/_', '_') sMassagedName = sMassagedName.replace('__', '_') sMassagedName = sMassagedName.replace('how_impressed_would_you_be_if_you_heard_that_someone_studied_at_this_school', 'provider_impressed') sMassagedName = sMassagedName.replace('how_impressed_would_you_be_if_you_heard_that_someone_studied_at_', 'provider_impressed_') sMassagedName = sMassagedName.replace('for_many_professions_learning_at_this_school_can_qualify_a_person_for_an_entry_level_position', 'provider_hirability') return sMassagedName def getData(dropFirstDummy=True): df = pd.read_csv('prestige-hidden.csv') # ref: https://stackoverflow.com/a/51428632/3931488 print(df.columns) # df.replace(to_replace="Not employed at present", value="a", inplace=True) # df.replace(to_replace="I usually spend more time with customers and external business partners than with coworkers.", value="b", inplace=True) # df.replace(to_replace="I usually spend at least an hour each day with customers and external business partners.", value="c", inplace=True) # df.replace(to_replace="I usually spend less than an hour each day in direct contact with customers and external business partners.", value="d", inplace=True) # df = df.replace("Not employed at present", "a") # df = df.replace("I usually spend more time with customers and external business partners than with coworkers.", "b") # df = df.replace("I usually spend at least an hour each day with customers and external business partners.", "c") # df = df.replace("I usually spend less than an hour each day in direct contact with customers and external business partners.", "d") df.rename(columns={ "Do you contribute to hiring and firing decisions at your company?": "manager_effects", "For many professions, alternative credentials can qualify a person for an entry-level position.": "baseline_hirability", # aka favorability "It will soon become fairly conventional for high school graduates to obtain alternative credentials instead of going to college.": "conventional_alt_creds", "It will soon become common for high school graduates to obtain alternative credentials instead of going to college.": "conventional_alt_creds", "When you add up the pros and cons for online education, it's probably a good thing for society overall.": "favor_online_ed", "Which of these industries most closely matches your profession?": "industry", "Gender?": "gender", "Household Income?": "income", "Age?": "age", "What is the highest level of education you have completed?": "education", "Which race/ethnicity best describes you? (Please choose only one.) ": "ethnicity", "What state do you reside in?": "state", "What is the name of a reputable certification or non-college credential in your profession? Use “n/a” if nothing comes to mind.": "named_credential", "I prefer to hire or work with a person that has a college degree rather a person that holds a reputable certification or non-college credential.": "cat_prefer_degree", "Do you tend to work more closely with coworkers at your company or customers and external business partners?": "work_with_external_partners", }, inplace=True) # get dummies ref: https://stackoverflow.com/questions/55738056/using-categorical-variables-in-statsmodels-ols-class df = pd.get_dummies(df, columns=['manager_effects']) df = pd.get_dummies(df, columns=['industry']).rename( fsReformatColumnNames, axis='columns') df = pd.get_dummies(df, columns=['income']) df = pd.get_dummies(df, columns=['age']) df =
pd.get_dummies(df, columns=['education'])
pandas.get_dummies
#!/usr/bin/env python ''' This script generates training dataset for DeepAnchor. Please include following data within a work_dir and arrange them like that: work_dir ----raw ----loop.bedpe # ChIA-PET or other types of loop files in bedpe format ----CTCF_peak.bed.gz # The ChIP-seq peak files of CTCF ----CTCF_motif.tsv # position of all CTCF binding sites ----dna_feature.npz # one-hot representation of DNA sequence for CTCF binding sites ----cadd_feature.npz # cadd features of DNA sequence for CTCF binding sites You should prepare loop.bedpe, CTCF-peak.bed.gz for specific sample, while CTCF_motif.tsv, dna_feature.npz, cadd_feature.npz are non-cell-type-specific and can be downloaded from tutorial. usage: python DeepAnchor_input.py work_dir ''' import os import sys import pandas as pd import numpy as np import tensorflow as tf bedpe_columns = ['chrom1','start1','end1','chrom2','start2','end2','name','score','strand1','strand2'] peak_columns = ['chrom', 'start', 'end', 'name', 'score', 'strand', 'signalValue', 'pValue', 'qValue', 'summit'] motif_columns = ['chrom','start','end','strand','score'] def generate_bed_mark_motif(file_motif, file_bed): ''' 1. file_bed should contain no overlaps 2. We mark file_motif with file_bed and generate three marks: in_bed: 1 if motif is contained in any intervals in file_bed else 0 exclusively_in_bed: 1 if motif is exclusively contained in any intervals in file_bed else 0 maximum_in_bed: 1 if motif is the one with highest score in any intervals in file_bed esle 0 ''' df_motif = pd.read_csv(file_motif, sep='\t', names=motif_columns) os.system('bedtools intersect -a {} -b {} -loj > temp.motif'.format(file_motif, file_bed)) bed_columns = ['bed_chrom','bed_start','bed_end'] df_matrix = pd.read_csv('temp.motif', sep='\t', names=motif_columns + bed_columns) df_matrix = df_matrix.sort_values(['score'], ascending=False) list1, list2, list3 = [], [], [] for bed, sub_motif in df_matrix.groupby(['bed_chrom','bed_start','bed_end']): if bed[0] == '.': pass elif sub_motif.shape[0] > 1: list1 += sub_motif.index.tolist() list3.append(sub_motif.index.tolist()[0]) else: list1 += sub_motif.index.tolist() list2 += sub_motif.index.tolist() list3 += sub_motif.index.tolist() df_motif['in_bed'] = 0 df_motif['exclusively_in_bed'] = 0 df_motif['maximum_in_bed'] = 0 df_motif.loc[list1, 'in_bed'] = 1 df_motif.loc[list2, 'exclusively_in_bed'] = 1 df_motif.loc[list3, 'maximum_in_bed'] = 1 return df_motif def main(argv=sys.argv): work_dir = sys.argv[1] os.chdir(os.path.expanduser(work_dir)) if not os.path.exists('DeepAnchor'): os.mkdir('DeepAnchor') file_bedpe = './raw/loop.bedpe' file_peak = './raw/CTCF_peak.bed.gz' file_motif = './raw/CTCF_motif.tsv' file_dna_onehot = './raw/dna_feature.npz' file_cadd_features = './raw/cadd_feature.npz' print('>>> generate total anchors') if not os.path.exists('./DeepAnchor/total_anchors.bed'): df_loop =
pd.read_csv(file_bedpe, sep='\t', names=bedpe_columns)
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import datetime from pandas.compat import range, lrange import operator import pytest from warnings import catch_warnings import numpy as np from pandas import Series, Index, isna, notna from pandas.core.dtypes.common import is_float_dtype from pandas.core.dtypes.missing import remove_na_arraylike from pandas.core.panel import Panel from pandas.core.panel4d import Panel4D from pandas.tseries.offsets import BDay from pandas.util.testing import (assert_frame_equal, assert_series_equal, assert_almost_equal) import pandas.util.testing as tm def add_nans(panel4d): for l, label in enumerate(panel4d.labels): panel = panel4d[label] tm.add_nans(panel) class SafeForLongAndSparse(object): def test_repr(self): repr(self.panel4d) def test_iter(self): tm.equalContents(list(self.panel4d), self.panel4d.labels) def test_count(self): f = lambda s: notna(s).sum() self._check_stat_op('count', f, obj=self.panel4d, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: pytest.skip("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel4d # # set some NAs # obj.loc[5:10] = np.nan # obj.loc[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na_arraylike(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) with catch_warnings(record=True): for i in range(obj.ndim): result = f(axis=i, skipna=False) expected = obj.apply(wrapper, axis=i) tm.assert_panel_equal(result, expected) else: skipna_wrapper = alternative wrapper = alternative with catch_warnings(record=True): for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): expected = obj.apply(skipna_wrapper, axis=i) tm.assert_panel_equal(result, expected) pytest.raises(Exception, f, axis=obj.ndim) class SafeForSparse(object): def test_get_axis(self): assert self.panel4d._get_axis(0) is self.panel4d.labels assert self.panel4d._get_axis(1) is self.panel4d.items assert self.panel4d._get_axis(2) is self.panel4d.major_axis assert self.panel4d._get_axis(3) is self.panel4d.minor_axis def test_set_axis(self): with catch_warnings(record=True): new_labels = Index(np.arange(len(self.panel4d.labels))) # TODO: unused? # new_items = Index(np.arange(len(self.panel4d.items))) new_major = Index(np.arange(len(self.panel4d.major_axis))) new_minor = Index(np.arange(len(self.panel4d.minor_axis))) # ensure propagate to potentially prior-cached items too # TODO: unused? # label = self.panel4d['l1'] self.panel4d.labels = new_labels if hasattr(self.panel4d, '_item_cache'): assert 'l1' not in self.panel4d._item_cache assert self.panel4d.labels is new_labels self.panel4d.major_axis = new_major assert self.panel4d[0].major_axis is new_major assert self.panel4d.major_axis is new_major self.panel4d.minor_axis = new_minor assert self.panel4d[0].minor_axis is new_minor assert self.panel4d.minor_axis is new_minor def test_get_axis_number(self): assert self.panel4d._get_axis_number('labels') == 0 assert self.panel4d._get_axis_number('items') == 1 assert self.panel4d._get_axis_number('major') == 2 assert self.panel4d._get_axis_number('minor') == 3 def test_get_axis_name(self): assert self.panel4d._get_axis_name(0) == 'labels' assert self.panel4d._get_axis_name(1) == 'items' assert self.panel4d._get_axis_name(2) == 'major_axis' assert self.panel4d._get_axis_name(3) == 'minor_axis' def test_arith(self): with catch_warnings(record=True): self._test_op(self.panel4d, operator.add) self._test_op(self.panel4d, operator.sub) self._test_op(self.panel4d, operator.mul) self._test_op(self.panel4d, operator.truediv) self._test_op(self.panel4d, operator.floordiv) self._test_op(self.panel4d, operator.pow) self._test_op(self.panel4d, lambda x, y: y + x) self._test_op(self.panel4d, lambda x, y: y - x) self._test_op(self.panel4d, lambda x, y: y * x) self._test_op(self.panel4d, lambda x, y: y / x) self._test_op(self.panel4d, lambda x, y: y ** x) pytest.raises(Exception, self.panel4d.__add__, self.panel4d['l1']) @staticmethod def _test_op(panel4d, op): result = op(panel4d, 1) tm.assert_panel_equal(result['l1'], op(panel4d['l1'], 1)) def test_keys(self): tm.equalContents(list(self.panel4d.keys()), self.panel4d.labels) def test_iteritems(self): """Test panel4d.iteritems()""" assert (len(list(self.panel4d.iteritems())) == len(self.panel4d.labels)) def test_combinePanel4d(self): with catch_warnings(record=True): result = self.panel4d.add(self.panel4d) tm.assert_panel4d_equal(result, self.panel4d * 2) def test_neg(self): with catch_warnings(record=True): tm.assert_panel4d_equal(-self.panel4d, self.panel4d * -1) def test_select(self): with catch_warnings(record=True): p = self.panel4d # select labels result = p.select(lambda x: x in ('l1', 'l3'), axis='labels') expected = p.reindex(labels=['l1', 'l3']) tm.assert_panel4d_equal(result, expected) # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) tm.assert_panel4d_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) tm.assert_panel4d_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=3) expected = p.reindex(minor=['A', 'D']) tm.assert_panel4d_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo',), axis='items') tm.assert_panel4d_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) def test_abs(self): with catch_warnings(record=True): result = self.panel4d.abs() expected = np.abs(self.panel4d) tm.assert_panel4d_equal(result, expected) p = self.panel4d['l1'] result = p.abs() expected = np.abs(p) tm.assert_panel_equal(result, expected) df = p['ItemA'] result = df.abs() expected = np.abs(df) assert_frame_equal(result, expected) class CheckIndexing(object): def test_getitem(self): pytest.raises(Exception, self.panel4d.__getitem__, 'ItemQ') def test_delitem_and_pop(self): with catch_warnings(record=True): expected = self.panel4d['l2'] result = self.panel4d.pop('l2') tm.assert_panel_equal(expected, result) assert 'l2' not in self.panel4d.labels del self.panel4d['l3'] assert 'l3' not in self.panel4d.labels pytest.raises(Exception, self.panel4d.__delitem__, 'l3') values = np.empty((4, 4, 4, 4)) values[0] = 0 values[1] = 1 values[2] = 2 values[3] = 3 panel4d = Panel4D(values, lrange(4), lrange(4), lrange(4), lrange(4)) # did we delete the right row? panel4dc = panel4d.copy() del panel4dc[0]
tm.assert_panel_equal(panel4dc[1], panel4d[1])
pandas.util.testing.assert_panel_equal
import os from glob import glob import time import json from PIL import Image import pandas as pd import numpy as np import torchvision as tv from rsp.data import bilinear_upsample, BANDS from tifffile import imread as tiffread from d3m.container import DataFrame as d3m_DataFrame from d3m.metadata import base as metadata_base from kf_d3m_primitives.remote_sensing.featurizer.remote_sensing_pretrained import ( RemoteSensingPretrainedPrimitive, Hyperparams as rs_hp ) from kf_d3m_primitives.remote_sensing.image_retrieval.image_retrieval import ( ImageRetrievalPrimitive, Hyperparams as ir_hp ) from kf_d3m_primitives.remote_sensing.image_retrieval.image_retrieval_pipeline import ImageRetrievalPipeline amdim_path = '/static_volumes/8946fea864c29ed785e00a9cbaa9a50295eb5a334b014f27ba20927104b07f46' moco_path = '/static_volumes/fcc8a5a05fa7dbad8fc55584a77fc5d2c407e03a88610267860b45208e152f1f' def load_nwpu(data_dir: str = '/NWPU-RESISC45', n_imgs = 200): paths = sorted(glob(os.path.join(data_dir, '*/*'))) paths = [os.path.abspath(p) for p in paths] imgs = [Image.open(p) for p in paths[:n_imgs]] labels = [os.path.basename(os.path.dirname(p)) for p in paths[:n_imgs]] transform = tv.transforms.Compose([ tv.transforms.ToTensor(), tv.transforms.Normalize( mean = (0.3680, 0.3810, 0.3436), std = (0.2034, 0.1854, 0.1848), ) ]) imgs = [transform(img) for img in imgs] imgs = d3m_DataFrame(pd.DataFrame({'imgs': imgs})) labels = np.array(labels) return imgs, labels def load_patch(imname): patch = [ tiffread(f'{imname}_{band}.tif') for band in BANDS ] patch = np.stack([bilinear_upsample(xx) for xx in patch]) return patch def load_big_earthnet(): fnames = sorted(glob('/test_data/bigearth-100-single/*/*.tif')) imnames = sorted(list(set(['_'.join(f.split('_')[:-1]) for f in fnames]))) imgs = [ load_patch(img_path).astype(np.float32) for img_path in imnames ] imgs_df = pd.DataFrame({'image_col': imgs, 'index': range(len(imgs))}) imgs_df = d3m_DataFrame(imgs_df) imgs_df.metadata = imgs_df.metadata.add_semantic_type( (metadata_base.ALL_ELEMENTS, 1), 'https://metadata.datadrivendiscovery.org/types/PrimaryKey' ) y = [i.split('/')[3] for i in imnames] return imgs_df, np.array(y) def iterative_labeling(features, labels, seed_idx = 2, n_rounds = 5): # initial query image y = (labels == labels[seed_idx]).astype(np.int) annotations = np.zeros(features.shape[0]) - 1 annotations[seed_idx] = 1 n_pos, n_neg = 1, 0 for i in range(n_rounds): print(f'round {i}') # generate ranking by similarity sampler = ImageRetrievalPrimitive( hyperparams=ir_hp( ir_hp.defaults(), reduce_dimension=256 ) ) sampler.set_training_data( inputs = features, outputs = d3m_DataFrame(
pd.DataFrame({'annotations': annotations})
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( Index, Interval, IntervalIndex, Timedelta, Timestamp, date_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray @pytest.fixture( params=[ (Index([0, 2, 4]), Index([1, 3, 5])), (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])), (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)), (date_range("20170101", periods=3), date_range("20170102", periods=3)), ( date_range("20170101", periods=3, tz="US/Eastern"), date_range("20170102", periods=3, tz="US/Eastern"), ), ], ids=lambda x: str(x[0].dtype), ) def left_right_dtypes(request): """ Fixture for building an IntervalArray from various dtypes """ return request.param class TestAttributes: @pytest.mark.parametrize( "left, right", [ (0, 1), (Timedelta("0 days"), Timedelta("1 day")), (Timestamp("2018-01-01"), Timestamp("2018-01-02")), ( Timestamp("2018-01-01", tz="US/Eastern"), Timestamp("2018-01-02", tz="US/Eastern"), ), ], ) @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex]) def test_is_empty(self, constructor, left, right, closed): # GH27219 tuples = [(left, left), (left, right), np.nan] expected = np.array([closed != "both", False, False]) result = constructor.from_tuples(tuples, closed=closed).is_empty tm.assert_numpy_array_equal(result, expected) class TestMethods: @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"]) def test_set_closed(self, closed, new_closed): # GH 21670 array = IntervalArray.from_breaks(range(10), closed=closed) result = array.set_closed(new_closed) expected = IntervalArray.from_breaks(range(10), closed=new_closed) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "other", [ Interval(0, 1, closed="right"), IntervalArray.from_breaks([1, 2, 3, 4], closed="right"), ], ) def test_where_raises(self, other): ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left")) match = "'value.closed' is 'right', expected 'left'." with pytest.raises(ValueError, match=match): ser.where([True, False, True], other=other) def test_shift(self): # https://github.com/pandas-dev/pandas/issues/31495 a = IntervalArray.from_breaks([1, 2, 3]) result = a.shift() # int -> float expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)]) tm.assert_interval_array_equal(result, expected) def test_shift_datetime(self): a = IntervalArray.from_breaks(date_range("2000", periods=4)) result = a.shift(2) expected = a.take([-1, -1, 0], allow_fill=True) tm.assert_interval_array_equal(result, expected) result = a.shift(-1) expected = a.take([1, 2, -1], allow_fill=True) tm.assert_interval_array_equal(result, expected) class TestSetitem: def test_set_na(self, left_right_dtypes): left, right = left_right_dtypes result = IntervalArray.from_arrays(left, right) if result.dtype.subtype.kind not in ["m", "M"]: msg = "'value' should be an interval type, got <.*NaTType'> instead." with pytest.raises(TypeError, match=msg): result[0] = pd.NaT if result.dtype.subtype.kind in ["i", "u"]: msg = "Cannot set float NaN to integer-backed IntervalArray" with pytest.raises(ValueError, match=msg): result[0] = np.NaN return result[0] = np.nan expected_left = Index([left._na_value] + list(left[1:])) expected_right = Index([right._na_value] + list(right[1:])) expected =
IntervalArray.from_arrays(expected_left, expected_right)
pandas.core.arrays.IntervalArray.from_arrays
from bs4 import BeautifulSoup from bs4.element import Comment import pandas as pd import requests # Processa o sitemap principal, para encontrar os sitemaps internos (organizados po dia) sitemap_url = 'https://towardsdatascience.com/sitemap/sitemap.xml' xml = requests.get(sitemap_url).content soup = BeautifulSoup(xml, "xml") sitemaps = soup.find_all('sitemap') # Cria as listas que serão as colunas do dataframe c_titulo = list() c_url = list() c_data = list() c_ano = list() c_mes = list() c_dia = list() c_dia_semana = list() c_ultima_atualizacao = list() c_frequencia_atualizacao = list() c_prioridade = list() for sitemap_inter in sitemaps: # Processa as features de 1 sitemap interno (url, ano, data) loc = sitemap_inter.find('loc').text xml_data = requests.get(loc).content soup = BeautifulSoup(xml_data, "xml") # Extrai a data e o tipo de sitemap (posts ou tags) sitemap_url_split = loc.split('/') sitemap_url_end = sitemap_url_split[-1] if not sitemap_url_end.startswith('posts'): continue # Obtem a data do sitemap, a partir da url date = sitemap_url_end.replace('posts-', '').replace('.xml', '') sitemap_date_split = date.split('-') year = sitemap_date_split[0] month = sitemap_date_split[1] day = sitemap_date_split[2] day_of_week = pd.Timestamp(date).day_name() print('Processando o sitemap: ' + sitemap_url_end) # Processa as urls de 1 sitemap interno, contendo o cabaçalho dos artigos urlset = soup.find_all('url') for item in urlset: loc = item.find('loc').text print('...Extraindo dados do artigo: ' + loc) # Extrai o titulo da url loc_end = loc.split('/')[-1] loc_split = loc_end.split('-') title = '' for i in range(len(loc_split) - 1): title += ' ' + loc_split[i] title = title.strip() c_titulo.append(title) c_url.append(loc) c_data.append(date) c_ano.append(year) c_mes.append(month) c_dia.append(day) c_dia_semana.append(day_of_week) c_ultima_atualizacao.append(item.find('lastmod').text) c_frequencia_atualizacao.append(item.find('changefreq').text) c_prioridade.append(item.find('priority').text) # Cria o dataframe para salvar em .csv dict = { 'titulo': c_titulo, 'url': c_url, 'data': c_data, 'ano': c_ano, 'mes': c_mes, 'dia': c_dia, 'diaSemana': c_dia_semana, 'ultimaAtualizacao': c_ultima_atualizacao, 'frequenciaAtualizacao': c_frequencia_atualizacao, 'prioridade': c_prioridade} df =
pd.DataFrame(dict)
pandas.DataFrame
import pandas as pd from genomics_data_index.storage.io.mutation.NucleotideSampleData import NucleotideSampleData def test_combine_vcf_mask(): num_annotations = 9 data_vcf = [ ['SampleA', 'ref', 10, 'A', 'T', 'SNP', 'file', 'ref:10:A:T'] + [pd.NA] * num_annotations, ] data_mask = [ ['SampleA', 'ref', 1, 1, '?', 'UNKNOWN_MISSING', 'file', 'ref:1:1:?'] ] columns = ['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID', 'ANN.Allele', 'ANN.Annotation', 'ANN.Annotation_Impact', 'ANN.Gene_Name', 'ANN.Gene_ID', 'ANN.Feature_Type', 'ANN.Transcript_BioType', 'ANN.HGVS.c', 'ANN.HGVS.p'] sample_data = NucleotideSampleData('SampleA', vcf_file=None, vcf_file_index=None, mask_bed_file=None, preprocessed=True) vcf_df = pd.DataFrame(data_vcf, columns=columns) mask_df = pd.DataFrame(data_mask, columns=['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID']) combined_df = sample_data.combine_vcf_mask(vcf_frame=vcf_df, mask_frame=mask_df) combined_df = combined_df.sort_values('POS').fillna('NA') assert combined_df.columns.tolist() == columns assert 2 == len(combined_df) assert ['ref', 'ref'] == combined_df['CHROM'].tolist() assert [1, 10] == combined_df['POS'].tolist() assert [1, 'A'] == combined_df['REF'].tolist() assert ['?', 'T'] == combined_df['ALT'].tolist() assert ['UNKNOWN_MISSING', 'SNP'] == combined_df['TYPE'].tolist() assert ['ref:1:1:?', 'ref:10:A:T'] == combined_df['VARIANT_ID'].tolist() assert ['NA', 'NA'] == combined_df['ANN.Annotation'].tolist() def test_combine_vcf_mask_overlap_feature(): num_annotations = 9 data_vcf = [ ['SampleA', 'ref', 10, 'A', 'T', 'SNP', 'file', 'ref:10:A:T'] + [pd.NA] * num_annotations, ] data_mask = [ ['SampleA', 'ref', 10, 1, '?', 'UNKNOWN_MISSING', 'file', 'ref:10:1:?'] ] columns = ['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID', 'ANN.Allele', 'ANN.Annotation', 'ANN.Annotation_Impact', 'ANN.Gene_Name', 'ANN.Gene_ID', 'ANN.Feature_Type', 'ANN.Transcript_BioType', 'ANN.HGVS.c', 'ANN.HGVS.p'] sample_data = NucleotideSampleData('SampleA', vcf_file=None, vcf_file_index=None, mask_bed_file=None, preprocessed=True) vcf_df = pd.DataFrame(data_vcf, columns=columns) mask_df = pd.DataFrame(data_mask, columns=['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID']) combined_df = sample_data.combine_vcf_mask(vcf_frame=vcf_df, mask_frame=mask_df) combined_df = combined_df.sort_values('POS').fillna('NA') assert combined_df.columns.tolist() == columns assert 1 == len(combined_df) assert ['ref'] == combined_df['CHROM'].tolist() assert [10] == combined_df['POS'].tolist() assert [1] == combined_df['REF'].tolist() assert ['?'] == combined_df['ALT'].tolist() assert ['UNKNOWN_MISSING'] == combined_df['TYPE'].tolist() assert ['ref:10:1:?'] == combined_df['VARIANT_ID'].tolist() assert ['NA'] == combined_df['ANN.Annotation'].tolist() def test_combine_vcf_mask_no_mask_features(): num_annotations = 9 data_vcf = [ ['SampleA', 'ref', 10, 'A', 'T', 'SNP', 'file', 'ref:10:A:T'] + [pd.NA] * num_annotations, ] data_mask = [ ] columns = ['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID', 'ANN.Allele', 'ANN.Annotation', 'ANN.Annotation_Impact', 'ANN.Gene_Name', 'ANN.Gene_ID', 'ANN.Feature_Type', 'ANN.Transcript_BioType', 'ANN.HGVS.c', 'ANN.HGVS.p'] sample_data = NucleotideSampleData('SampleA', vcf_file=None, vcf_file_index=None, mask_bed_file=None, preprocessed=True) vcf_df = pd.DataFrame(data_vcf, columns=columns) mask_df = pd.DataFrame(data_mask, columns=['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID']) combined_df = sample_data.combine_vcf_mask(vcf_frame=vcf_df, mask_frame=mask_df) combined_df = combined_df.sort_values('POS').fillna('NA') assert combined_df.columns.tolist() == columns assert 1 == len(combined_df) assert ['ref'] == combined_df['CHROM'].tolist() assert [10] == combined_df['POS'].tolist() assert ['A'] == combined_df['REF'].tolist() assert ['T'] == combined_df['ALT'].tolist() assert ['SNP'] == combined_df['TYPE'].tolist() assert ['ref:10:A:T'] == combined_df['VARIANT_ID'].tolist() assert ['NA'] == combined_df['ANN.Annotation'].tolist() def test_combine_vcf_mask_no_vcf_feature(): data_vcf = [ ] data_mask = [ ['SampleA', 'ref', 10, 1, '?', 'UNKNOWN_MISSING', 'file', 'ref:10:1:?'] ] columns = ['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID', 'ANN.Allele', 'ANN.Annotation', 'ANN.Annotation_Impact', 'ANN.Gene_Name', 'ANN.Gene_ID', 'ANN.Feature_Type', 'ANN.Transcript_BioType', 'ANN.HGVS.c', 'ANN.HGVS.p'] sample_data = NucleotideSampleData('SampleA', vcf_file=None, vcf_file_index=None, mask_bed_file=None, preprocessed=True) vcf_df = pd.DataFrame(data_vcf, columns=columns) mask_df = pd.DataFrame(data_mask, columns=['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID']) combined_df = sample_data.combine_vcf_mask(vcf_frame=vcf_df, mask_frame=mask_df) combined_df = combined_df.sort_values('POS').fillna('NA') assert combined_df.columns.tolist() == columns assert 1 == len(combined_df) assert ['ref'] == combined_df['CHROM'].tolist() assert [10] == combined_df['POS'].tolist() assert [1] == combined_df['REF'].tolist() assert ['?'] == combined_df['ALT'].tolist() assert ['UNKNOWN_MISSING'] == combined_df['TYPE'].tolist() assert ['ref:10:1:?'] == combined_df['VARIANT_ID'].tolist() assert ['NA'] == combined_df['ANN.Annotation'].tolist() def test_combine_vcf_mask_same_position_different_sequence(): num_annotations = 9 data_vcf = [ ['SampleA', 'ref', 10, 'A', 'T', 'SNP', 'file', 'ref:10:A:T'] + [pd.NA] * num_annotations, ] data_mask = [ ['SampleA', 'ref2', 10, 1, '?', 'UNKNOWN_MISSING', 'file', 'ref2:10:1:?'] ] columns = ['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID', 'ANN.Allele', 'ANN.Annotation', 'ANN.Annotation_Impact', 'ANN.Gene_Name', 'ANN.Gene_ID', 'ANN.Feature_Type', 'ANN.Transcript_BioType', 'ANN.HGVS.c', 'ANN.HGVS.p'] sample_data = NucleotideSampleData('SampleA', vcf_file=None, vcf_file_index=None, mask_bed_file=None, preprocessed=True) vcf_df = pd.DataFrame(data_vcf, columns=columns) mask_df =
pd.DataFrame(data_mask, columns=['SAMPLE', 'CHROM', 'POS', 'REF', 'ALT', 'TYPE', 'FILE', 'VARIANT_ID'])
pandas.DataFrame
# USAGE # python test_network.py --model santa_not_santa.model --image images/examples/santa_01.png # import the necessary packages from keras.preprocessing.image import img_to_array from keras.models import load_model import numpy as np import argparse import imutils import cv2 from PIL import Image import glob import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-m", "--model", required=True, help="path to trained model model") ap.add_argument("-i", "--image", required=True, help="path to input image") args = vars(ap.parse_args()) x =[] li = [] for filename in glob.glob(args["image"]+"/*.png"): x.append(filename[11:]) new_set = [int(s.replace('.png', '')) for s in x] new_set.sort() new_n_set = ["parse_imgs/"+ str(s) + ".png" for s in new_set] #print(new_n_set) for filename in new_n_set: # load the image image = cv2.imread(filename) orig = image.copy() # pre-process the image for classification image = cv2.resize(image, (30, 30)) image = image.astype("float") / 255.0 image = img_to_array(image) image = np.expand_dims(image, axis=0) # load the trained convolutional neural network print("[INFO] loading network...") model = load_model(args["model"]) a = model.predict(image)[0] #print(a) pred = str(np.argmax(a)) li.append(pred) print(str(np.argmax(a))+"\t" +filename) df = pd.DataFrame({'pred':li}) writer =
ExcelWriter('abc.xlsx')
pandas.ExcelWriter
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex) def test_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_dup_no_colindex) def test_no_extra_vars(self): for df in self.df_list: assert ('__idx__','__key__') not in df.columns class TestPortfolioAverages: input_data = DataFrameTest() expect_avgs_no_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001), (1, 'b', 1.0550000000000002), (2, 'a', 1.1050000000000002), (2, 'b', 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET']) expect_avgs_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001, 1.025), (1, 'b', 1.0550000000000002, 1.0550000000000002), (2, 'a', 1.1050000000000002, 1.12), (2, 'b', 1.0750000000000002, 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET', 'RET_wavg']) expect_ports = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, 1), (10516, 'a', '1/2/2000', 1.02, 1, 1), (10516, 'a', '1/3/2000', 1.03, 1, 1), (10516, 'a', '1/4/2000', 1.04, 0, 1), (10516, 'b', '1/1/2000', 1.05, 1, 1), (10516, 'b', '1/2/2000', 1.06, 1, 1), (10516, 'b', '1/3/2000', 1.07, 1, 2), (10516, 'b', '1/4/2000', 1.08, 1, 2), (10517, 'a', '1/1/2000', 1.09, 0, 2), (10517, 'a', '1/2/2000', 1.1, 0, 2), (10517, 'a', '1/3/2000', 1.11, 0, 2), (10517, 'a', '1/4/2000', 1.12, 1, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'portfolio']) avgs, ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar') w_avgs, w_ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar', wtvar='weight') def test_simple_averages(self): assert_frame_equal(self.expect_avgs_no_wt, self.avgs, check_dtype=False) def test_weighted_averages(self): assert_frame_equal(self.expect_avgs_wt, self.w_avgs, check_dtype=False) def test_portfolio_construction(self): print(self.ports) assert_frame_equal(self.expect_ports, self.ports, check_dtype=False) assert_frame_equal(self.expect_ports, self.w_ports, check_dtype=False) class TestWinsorize(DataFrameTest): def test_winsor_40_subset_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.022624), (10516, 'a', '1/2/2000', 1.022624), (10516, 'a', '1/3/2000', 1.02672), (10516, 'a', '1/4/2000', 1.02672), (10516, 'b', '1/1/2000', 1.062624), (10516, 'b', '1/2/2000', 1.062624), (10516, 'b', '1/3/2000', 1.06672), (10516, 'b', '1/4/2000', 1.06672), (10517, 'a', '1/1/2000', 1.102624), (10517, 'a', '1/2/2000', 1.102624), (10517, 'a', '1/3/2000', 1.10672), (10517, 'a', '1/4/2000', 1.10672), ], columns = ['PERMNO', 'byvar', 'Date', 'RET']) wins = dero.pandas.winsorize(self.df, .4, subset='RET', byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, wins, check_less_precise=True) class TestRegBy(DataFrameTest): def create_indf(self): indf = self.df_weight.copy() indf['key'] = indf['PERMNO'].astype(str) + '_' + indf['byvar'] return indf def test_regby_nocons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.48774684748988806, '10516_a'), (0.9388636664168903, '10516_b'), (0.22929206076239614, '10517_a'), ], columns = ['coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key', cons=False) print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (-32.89999999999997, 29.999999999999982, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons_low_obs(self): indf = self.create_indf().loc[:8,:] #makes it so that one byvar only has one obs expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (nan, nan, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) class TestExpandMonths(DataFrameTest): def test_expand_months_tradedays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-31 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['Daily Date', 'byvar', 'Date', 'TICKER']) em = dero.pandas.expand_months(self.single_ticker_df) assert_frame_equal(expect_df.sort_index(axis=1), em.sort_index(axis=1)) def test_expand_months_calendardays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-01 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-02 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-08 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-09 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-15 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-16 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-17 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (
Timestamp('2000-01-19 00:00:00')
pandas.Timestamp
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/24 15:02 Desc: 东方财富网-数据中心-新股数据-打新收益率 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html 东方财富网-数据中心-新股数据-新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html """ import pandas as pd import requests from tqdm import tqdm from akshare.utils import demjson def _get_page_num_dxsyl() -> int: """ 东方财富网-数据中心-新股数据-打新收益率-总页数 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 总页数 :rtype: int """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "st": "16", "sr": "-1", "ps": "500", "p": '1', "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) total_page = data_json["pages"] return total_page def stock_dxsyl_em() -> pd.DataFrame: """ 东方财富网-数据中心-新股数据-打新收益率 http://data.eastmoney.com/xg/xg/dxsyl.html :return: 指定市场的打新收益率数据 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" page_num = _get_page_num_dxsyl() big_df = pd.DataFrame() for page in tqdm(range(1, page_num + 1), leave=False): params = { "st": "16", "sr": "-1", "ps": "500", "p": str(page), "type": "NS", "sty": "NSDXSYL", "js": "({data:[(x)],pages:(pc)})", } res = requests.get(url, params=params) data_text = res.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(',') for item in data_json["data"]]) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", "-", ] big_df = big_df[[ "序号", "股票代码", "股票简称", "发行价", "最新价", "网上-发行中签率", "网上-有效申购股数", "网上-有效申购户数", "网上-超额认购倍数", "网下-配售中签率", "网下-有效申购股数", "网下-有效申购户数", "网下-配售认购倍数", "总发行数量", "开盘溢价", "首日涨幅", "打新收益", "上市日期", ]] big_df["发行价"] = pd.to_numeric(big_df["发行价"], errors='coerce') big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["网上-发行中签率"] = pd.to_numeric(big_df["网上-发行中签率"]) big_df["网上-有效申购股数"] = pd.to_numeric(big_df["网上-有效申购股数"]) big_df["网上-有效申购户数"] = pd.to_numeric(big_df["网上-有效申购户数"]) big_df["网上-超额认购倍数"] = pd.to_numeric(big_df["网上-超额认购倍数"]) big_df["网下-配售中签率"] = pd.to_numeric(big_df["网下-配售中签率"]) big_df["网下-有效申购股数"] = pd.to_numeric(big_df["网下-有效申购股数"]) big_df["网下-有效申购户数"] = pd.to_numeric(big_df["网下-有效申购户数"]) big_df["网下-配售认购倍数"] = pd.to_numeric(big_df["网下-配售认购倍数"]) big_df["总发行数量"] = pd.to_numeric(big_df["总发行数量"]) big_df["开盘溢价"] = pd.to_numeric(big_df["开盘溢价"]) big_df["首日涨幅"] = pd.to_numeric(big_df["首日涨幅"]) big_df["打新收益"] = pd.to_numeric(big_df["打新收益"]) return big_df def stock_xgsglb_em(symbol: str = "京市A股") -> pd.DataFrame: """ 新股申购与中签查询 http://data.eastmoney.com/xg/xg/default_2.html :param symbol: choice of {"全部股票", "沪市A股", "科创板", "深市A股", "创业板", "京市A股"} :type symbol: str :return: 新股申购与中签数据 :rtype: pandas.DataFrame """ market_map = { "全部股票": """(APPLY_DATE>'2010-01-01')""", "沪市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE in ("069001001001","069001001003","069001001006"))""", "科创板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE in ("058001001","058001008"))(TRADE_MARKET_CODE="069001001006")""", "深市A股": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE in ("069001002001","069001002002","069001002003","069001002005"))""", "创业板": """(APPLY_DATE>'2010-01-01')(SECURITY_TYPE_CODE="058001001")(TRADE_MARKET_CODE="069001002002")""", } url = "http://datacenter-web.eastmoney.com/api/data/v1/get" if symbol == "京市A股": params = { 'sortColumns': 'APPLY_DATE', 'sortTypes': '-1', 'pageSize': '500', 'pageNumber': '1', 'columns': 'ALL', 'reportName': 'RPT_NEEQ_ISSUEINFO_LIST', 'quoteColumns': 'f14~01~SECURITY_CODE~SECURITY_NAME_ABBR', 'source': 'NEEQSELECT', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, 1+int(total_page)), leave=False): params.update({ 'pageNumber': page }) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.reset_index(inplace=True) big_df['index'] = big_df.index + 1 big_df.columns = [ '序号', '-', '代码', '-', '简称', '申购代码', '发行总数', '-', '发行价格', '发行市盈率', '申购日', '发行结果公告日', '上市日', '网上发行数量', '顶格申购所需资金', '申购上限', '网上申购缴款日', '网上申购退款日', '-', '网上获配比例', '最新价', '首日收盘价', '网下有效申购倍数', '每百股获利', '-', '-', '-', '-', '-', '-', ] big_df = big_df[[ '序号', '代码', '简称', '申购代码', '发行总数', '网上发行数量', '顶格申购所需资金', '申购上限', '发行价格', '最新价', '首日收盘价', '申购日', '网上申购缴款日', '网上申购退款日', '上市日', '发行结果公告日', '发行市盈率', '网上获配比例', '网下有效申购倍数', '每百股获利', ]] big_df['发行总数'] = pd.to_numeric(big_df['发行总数']) big_df['网上发行数量'] = pd.to_numeric(big_df['网上发行数量']) big_df['顶格申购所需资金'] = pd.to_numeric(big_df['顶格申购所需资金']) big_df['申购上限'] = pd.to_numeric(big_df['申购上限']) big_df['发行价格'] = pd.to_numeric(big_df['发行价格']) big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['首日收盘价'] = pd.to_numeric(big_df['首日收盘价']) big_df['发行市盈率'] = pd.to_numeric(big_df['发行市盈率']) big_df['网上获配比例'] = pd.to_numeric(big_df['网上获配比例']) big_df['网下有效申购倍数'] = pd.to_numeric(big_df['网下有效申购倍数']) big_df['每百股获利'] = pd.to_numeric(big_df['每百股获利']) big_df['申购日'] = pd.to_datetime(big_df['申购日']).dt.date big_df['网上申购缴款日'] = pd.to_datetime(big_df['网上申购缴款日']).dt.date big_df['网上申购退款日'] = pd.to_datetime(big_df['网上申购退款日']).dt.date big_df['上市日'] = pd.to_datetime(big_df['上市日']).dt.date big_df['发行结果公告日'] = pd.to_datetime(big_df['发行结果公告日']).dt.date return big_df else: params = { 'sortColumns': 'APPLY_DATE,SECURITY_CODE', 'sortTypes': '-1,-1', 'pageSize': '5000', 'pageNumber': '1', 'reportName': 'RPTA_APP_IPOAPPLY', 'columns': 'SECURITY_CODE,SECURITY_NAME,TRADE_MARKET_CODE,APPLY_CODE,TRADE_MARKET,MARKET_TYPE,ORG_TYPE,ISSUE_NUM,ONLINE_ISSUE_NUM,OFFLINE_PLACING_NUM,TOP_APPLY_MARKETCAP,PREDICT_ONFUND_UPPER,ONLINE_APPLY_UPPER,PREDICT_ONAPPLY_UPPER,ISSUE_PRICE,LATELY_PRICE,CLOSE_PRICE,APPLY_DATE,BALLOT_NUM_DATE,BALLOT_PAY_DATE,LISTING_DATE,AFTER_ISSUE_PE,ONLINE_ISSUE_LWR,INITIAL_MULTIPLE,INDUSTRY_PE_NEW,OFFLINE_EP_OBJECT,CONTINUOUS_1WORD_NUM,TOTAL_CHANGE,PROFIT,LIMIT_UP_PRICE,INFO_CODE,OPEN_PRICE,LD_OPEN_PREMIUM,LD_CLOSE_CHANGE,TURNOVERRATE,LD_HIGH_CHANG,LD_AVERAGE_PRICE,OPEN_DATE,OPEN_AVERAGE_PRICE,PREDICT_PE,PREDICT_ISSUE_PRICE2,PREDICT_ISSUE_PRICE,PREDICT_ISSUE_PRICE1,PREDICT_ISSUE_PE,PREDICT_PE_THREE,ONLINE_APPLY_PRICE,MAIN_BUSINESS', 'filter': market_map[symbol], 'source': 'WEB', 'client': 'WEB', } r = requests.get(url, params=params) data_json = r.json() total_page = data_json['result']['pages'] big_df = pd.DataFrame() for page in tqdm(range(1, total_page+1), leave=False): params.update({"pageNumber": page}) r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json['result']['data']) big_df = pd.concat([big_df, temp_df], ignore_index=True) big_df.columns = [ "股票代码", "股票简称", "_", "申购代码", "_", "_", "_", "发行总数", "网上发行", "_", "顶格申购需配市值", "_", "申购上限", "_", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "中签率", "询价累计报价倍数", "_", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "行业市盈率", "_", "_", "_", ] big_df = big_df[ [ "股票代码", "股票简称", "申购代码", "发行总数", "网上发行", "顶格申购需配市值", "申购上限", "发行价格", "最新价", "首日收盘价", "申购日期", "中签号公布日", "中签缴款日期", "上市日期", "发行市盈率", "行业市盈率", "中签率", "询价累计报价倍数", "配售对象报价家数", "连续一字板数量", "涨幅", "每中一签获利", ] ] big_df['申购日期'] = pd.to_datetime(big_df['申购日期']).dt.date big_df['中签号公布日'] = pd.to_datetime(big_df['中签号公布日']).dt.date big_df['中签缴款日期'] = pd.to_datetime(big_df['中签缴款日期']).dt.date big_df['发行总数'] = pd.to_numeric(big_df['发行总数']) big_df['网上发行'] = pd.to_numeric(big_df['网上发行']) big_df['顶格申购需配市值'] = pd.to_numeric(big_df['顶格申购需配市值']) big_df['申购上限'] = pd.to_numeric(big_df['申购上限']) big_df['发行价格'] = pd.to_numeric(big_df['发行价格']) big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['首日收盘价'] = pd.to_numeric(big_df['首日收盘价']) big_df['发行市盈率'] = pd.to_numeric(big_df['发行市盈率']) big_df['行业市盈率'] = pd.to_nume
ric(big_df['行业市盈率'])
pandas.to_numeric
"""MovieLens dataset""" import numpy as np import os import re import pandas as pd import scipy.sparse as sp import torch as th import dgl from dgl.data.utils import download, extract_archive, get_download_dir _urls = { 'ml-100k' : 'http://files.grouplens.org/datasets/movielens/ml-100k.zip', 'ml-1m' : 'http://files.grouplens.org/datasets/movielens/ml-1m.zip', 'ml-10m' : 'http://files.grouplens.org/datasets/movielens/ml-10m.zip', } READ_DATASET_PATH = get_download_dir() GENRES_ML_100K =\ ['unknown', 'Action', 'Adventure', 'Animation', 'Children', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western'] GENRES_ML_1M = GENRES_ML_100K[1:] GENRES_ML_10M = GENRES_ML_100K + ['IMAX'] class MovieLens(object): """MovieLens dataset used by GCMC model TODO(minjie): make this dataset more general The dataset stores MovieLens ratings in two types of graphs. The encoder graph contains rating value information in the form of edge types. The decoder graph stores plain user-movie pairs in the form of a bipartite graph with no rating information. All graphs have two types of nodes: "user" and "movie". The training, validation and test set can be summarized as follows: training_enc_graph : training user-movie pairs + rating info training_dec_graph : training user-movie pairs valid_enc_graph : training user-movie pairs + rating info valid_dec_graph : validation user-movie pairs test_enc_graph : training user-movie pairs + validation user-movie pairs + rating info test_dec_graph : test user-movie pairs Attributes ---------- train_enc_graph : dgl.DGLHeteroGraph Encoder graph for training. train_dec_graph : dgl.DGLHeteroGraph Decoder graph for training. train_labels : torch.Tensor The categorical label of each user-movie pair train_truths : torch.Tensor The actual rating values of each user-movie pair valid_enc_graph : dgl.DGLHeteroGraph Encoder graph for validation. valid_dec_graph : dgl.DGLHeteroGraph Decoder graph for validation. valid_labels : torch.Tensor The categorical label of each user-movie pair valid_truths : torch.Tensor The actual rating values of each user-movie pair test_enc_graph : dgl.DGLHeteroGraph Encoder graph for test. test_dec_graph : dgl.DGLHeteroGraph Decoder graph for test. test_labels : torch.Tensor The categorical label of each user-movie pair test_truths : torch.Tensor The actual rating values of each user-movie pair user_feature : torch.Tensor User feature tensor. If None, representing an identity matrix. movie_feature : torch.Tensor Movie feature tensor. If None, representing an identity matrix. possible_rating_values : np.ndarray Available rating values in the dataset Parameters ---------- name : str Dataset name. Could be "ml-100k", "ml-1m", "ml-10m" device : torch.device Device context mix_cpu_gpu : boo, optional If true, the ``user_feature`` attribute is stored in CPU use_one_hot_fea : bool, optional If true, the ``user_feature`` attribute is None, representing an one-hot identity matrix. (Default: False) symm : bool, optional If true, the use symmetric normalize constant. Otherwise, use left normalize constant. (Default: True) test_ratio : float, optional Ratio of test data valid_ratio : float, optional Ratio of validation data """ def __init__(self, name, device, mix_cpu_gpu=False, use_one_hot_fea=False, symm=True, test_ratio=0.1, valid_ratio=0.1): self._name = name self._device = device self._symm = symm self._test_ratio = test_ratio self._valid_ratio = valid_ratio # download and extract download_dir = get_download_dir() zip_file_path = '{}/{}.zip'.format(download_dir, name) download(_urls[name], path=zip_file_path) extract_archive(zip_file_path, '{}/{}'.format(download_dir, name)) if name == 'ml-10m': root_folder = 'ml-10M100K' else: root_folder = name self._dir = os.path.join(download_dir, name, root_folder) print("Starting processing {} ...".format(self._name)) self._load_raw_user_info() self._load_raw_movie_info() print('......') if self._name == 'ml-100k': self.all_train_rating_info = self._load_raw_rates(os.path.join(self._dir, 'u1.base'), '\t') self.test_rating_info = self._load_raw_rates(os.path.join(self._dir, 'u1.test'), '\t') self.all_rating_info =
pd.concat([self.all_train_rating_info, self.test_rating_info])
pandas.concat
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3), pd.period_range("2012Q1", periods=3, freq="Q"), pd.Index(list("abc")), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3), ], ids=lambda x: type(x).__name__, ) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._mgr.blocks[0].values is not index def test_constructor_pass_none(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(None, index=range(5)) assert s.dtype == np.float64 s = Series(None, index=range(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(index=np.array([None])) expected = Series(index=Index([None])) tm.assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp = Series([np.nan, np.nan], dtype=np.float64) assert exp.dtype == np.float64 tm.assert_series_equal(Series([np.nan, np.nan]), exp) tm.assert_series_equal(Series(np.array([np.nan, np.nan])), exp) exp = Series([pd.NaT, pd.NaT]) assert exp.dtype == "datetime64[ns]" tm.assert_series_equal(Series([pd.NaT, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, pd.NaT])), exp) tm.assert_series_equal(Series([pd.NaT, np.nan]), exp) tm.assert_series_equal(Series(np.array([pd.NaT, np.nan])), exp) tm.assert_series_equal(Series([np.nan, pd.NaT]), exp) tm.assert_series_equal(Series(np.array([np.nan, pd.NaT])), exp) def test_constructor_cast(self): msg = "could not convert string to float" with pytest.raises(ValueError, match=msg): Series(["a", "b", "c"], dtype=float) def test_constructor_unsigned_dtype_overflow(self, uint_dtype): # see gh-15832 msg = "Trying to coerce negative values to unsigned integers" with pytest.raises(OverflowError, match=msg): Series([-1], dtype=uint_dtype) def test_constructor_coerce_float_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Series([1, 2, 3.5], dtype=any_int_dtype) def test_constructor_coerce_float_valid(self, float_dtype): s = Series([1, 2, 3.5], dtype=float_dtype) expected = Series([1, 2, 3.5]).astype(float_dtype) tm.assert_series_equal(s, expected) def test_constructor_dtype_no_cast(self): # see gh-1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 assert s[1] == 5 def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly inferring on dateimelike looking when object dtype is # specified s = Series([Timestamp("20130101"), "NOV"], dtype=object) assert s.iloc[0] == Timestamp("20130101") assert s.iloc[1] == "NOV" assert s.dtype == object # the dtype was being reset on the slicing and re-inferred to datetime # even thought the blocks are mixed belly = "216 3T19".split() wing1 = "2T15 4H19".split() wing2 = "416 4T20".split() mat = pd.to_datetime("2016-01-22 2019-09-07".split()) df = pd.DataFrame({"wing1": wing1, "wing2": wing2, "mat": mat}, index=belly) result = df.loc["3T19"] assert result.dtype == object result = df.loc["216"] assert result.dtype == object def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [ np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None]), ]: result = Series(arr) assert result.dtype == "M8[ns]" def test_constructor_dtype_datetime64(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) assert isna(s).all() # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(iNaT, index=range(5)) assert not isna(s).all() s = Series(np.nan, dtype="M8[ns]", index=range(5)) assert isna(s).all() s = Series([datetime(2001, 1, 2, 0, 0), iNaT], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" s = Series([datetime(2001, 1, 2, 0, 0), np.nan], dtype="M8[ns]") assert isna(s[1]) assert s.dtype == "M8[ns]" # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) assert s.dtype == "M8[ns]" s.iloc[0] = np.nan assert s.dtype == "M8[ns]" # GH3414 related expected = Series( [datetime(2013, 1, 1), datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]", ) result = Series(Series(dates).astype(np.int64) / 1000000, dtype="M8[ms]") tm.assert_series_equal(result, expected) result = Series(dates, dtype="datetime64[ns]") tm.assert_series_equal(result, expected) expected = Series( [pd.NaT, datetime(2013, 1, 2), datetime(2013, 1, 3)], dtype="datetime64[ns]" ) result = Series([np.nan] + dates[1:], dtype="datetime64[ns]") tm.assert_series_equal(result, expected) dts = Series(dates, dtype="datetime64[ns]") # valid astype dts.astype("int64") # invalid casting msg = r"cannot astype a datetimelike from \[datetime64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): dts.astype("int32") # ints are ok # we test with np.int64 to get similar results on # windows / 32-bit platforms result = Series(dts, dtype=np.int64) expected = Series(dts.astype(np.int64)) tm.assert_series_equal(result, expected) # invalid dates can be help as object result = Series([datetime(2, 1, 1)]) assert result[0] == datetime(2, 1, 1, 0, 0) result = Series([datetime(3000, 1, 1)]) assert result[0] == datetime(3000, 1, 1, 0, 0) # don't mix types result = Series([Timestamp("20130101"), 1], index=["a", "b"]) assert result["a"] == Timestamp("20130101") assert result["b"] == 1 # GH6529 # coerce datetime64 non-ns properly dates = date_range("01-Jan-2015", "01-Dec-2015", freq="M") values2 = dates.view(np.ndarray).astype("datetime64[ns]") expected = Series(values2, index=dates) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, dates) tm.assert_series_equal(result, expected) # GH 13876 # coerce to non-ns to object properly expected = Series(values2, index=dates, dtype=object) for dtype in ["s", "D", "ms", "us", "ns"]: values1 = dates.view(np.ndarray).astype(f"M8[{dtype}]") result = Series(values1, index=dates, dtype=object) tm.assert_series_equal(result, expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) tm.assert_numpy_array_equal(series1.values, dates2) assert series1.dtype == object # these will correctly infer a datetime s = Series([None, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([np.nan, pd.NaT, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, None, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" s = Series([pd.NaT, np.nan, "2013-08-05 15:30:00.000001"]) assert s.dtype == "datetime64[ns]" # tz-aware (UTC and other tz's) # GH 8411 dr = date_range("20130101", periods=3) assert Series(dr).iloc[0].tz is None dr = date_range("20130101", periods=3, tz="UTC") assert str(Series(dr).iloc[0].tz) == "UTC" dr = date_range("20130101", periods=3, tz="US/Eastern") assert str(Series(dr).iloc[0].tz) == "US/Eastern" # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) assert s.dtype == "object" assert s[2] is pd.NaT assert "NaT" in str(s) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) assert s.dtype == "object" assert s[2] is np.nan assert "NaN" in str(s) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range("20130101", periods=3, tz="US/Eastern") s = Series(dr) assert s.dtype.name == "datetime64[ns, US/Eastern]" assert s.dtype == "datetime64[ns, US/Eastern]" assert is_datetime64tz_dtype(s.dtype) assert "datetime64[ns, US/Eastern]" in str(s) # export result = s.values assert isinstance(result, np.ndarray) assert result.dtype == "datetime64[ns]" exp = pd.DatetimeIndex(result) exp = exp.tz_localize("UTC").tz_convert(tz=s.dt.tz) tm.assert_index_equal(dr, exp) # indexing result = s.iloc[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[0] assert result == Timestamp( "2013-01-01 00:00:00-0500", tz="US/Eastern", freq="D" ) result = s[Series([True, True, False], index=s.index)] tm.assert_series_equal(result, s[0:2]) result = s.iloc[0:1] tm.assert_series_equal(result, Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1], s.iloc[1:]]) tm.assert_series_equal(result, s) # short str assert "datetime64[ns, US/Eastern]" in str(s) # formatting with NaT result = s.shift() assert "datetime64[ns, US/Eastern]" in str(result) assert "NaT" in str(result) # long str t = Series(date_range("20130101", periods=1000, tz="US/Eastern")) assert "datetime64[ns, US/Eastern]" in str(t) result = pd.DatetimeIndex(s, freq="infer") tm.assert_index_equal(result, dr) # inference s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] ) assert s.dtype == "datetime64[ns, US/Pacific]" assert lib.infer_dtype(s, skipna=True) == "datetime64" s = Series( [ pd.Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), pd.Timestamp("2013-01-02 14:00:00-0800", tz="US/Eastern"), ] ) assert s.dtype == "object" assert lib.infer_dtype(s, skipna=True) == "datetime" # with all NaT s = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]") expected = Series(pd.DatetimeIndex(["NaT", "NaT"], tz="US/Eastern")) tm.assert_series_equal(s, expected) @pytest.mark.parametrize("arr_dtype", [np.int64, np.float64]) @pytest.mark.parametrize("dtype", ["M8", "m8"]) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s", "h", "m", "D"]) def test_construction_to_datetimelike_unit(self, arr_dtype, dtype, unit): # tests all units # gh-19223 dtype = f"{dtype}[{unit}]" arr = np.array([1, 2, 3], dtype=arr_dtype) s = Series(arr) result = s.astype(dtype) expected = Series(arr.astype(dtype)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("arg", ["2013-01-01 00:00:00", pd.NaT, np.nan, None]) def test_constructor_with_naive_string_and_datetimetz_dtype(self, arg): # GH 17415: With naive string result = Series([arg], dtype="datetime64[ns, CET]") expected = Series(pd.Timestamp(arg)).dt.tz_localize("CET") tm.assert_series_equal(result, expected) def test_constructor_datetime64_bigendian(self): # GH#30976 ms = np.datetime64(1, "ms") arr = np.array([np.datetime64(1, "ms")], dtype=">M8[ms]") result = Series(arr) expected = Series([Timestamp(ms)]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("interval_constructor", [IntervalIndex, IntervalArray]) def test_construction_interval(self, interval_constructor): # construction from interval & array of intervals intervals = interval_constructor.from_breaks(np.arange(3), closed="right") result = Series(intervals) assert result.dtype == "interval[int64]" tm.assert_index_equal(Index(result.values), Index(intervals)) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_interval(self, data_constructor): # GH 23563: consistent closed results in interval dtype data = [pd.Interval(0, 1), pd.Interval(0, 2), None] result = pd.Series(data_constructor(data)) expected = pd.Series(IntervalArray(data)) assert result.dtype == "interval[float64]" tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_interval_mixed_closed(self, data_constructor): # GH 23563: mixed closed results in object dtype (not interval dtype) data = [pd.Interval(0, 1, closed="both"), pd.Interval(0, 2, closed="neither")] result = Series(data_constructor(data)) assert result.dtype == object assert result.tolist() == data def test_construction_consistency(self): # make sure that we are not re-localizing upon construction # GH 14928 s = Series(pd.date_range("20130101", periods=3, tz="US/Eastern")) result = Series(s, dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.dt.tz_convert("UTC"), dtype=s.dtype) tm.assert_series_equal(result, s) result = Series(s.values, dtype=s.dtype) tm.assert_series_equal(result, s) @pytest.mark.parametrize( "data_constructor", [list, np.array], ids=["list", "ndarray[object]"] ) def test_constructor_infer_period(self, data_constructor): data = [pd.Period("2000", "D"), pd.Period("2001", "D"), None] result = pd.Series(data_constructor(data)) expected = pd.Series(period_array(data)) tm.assert_series_equal(result, expected) assert result.dtype == "Period[D]" def test_constructor_period_incompatible_frequency(self): data = [pd.Period("2000", "D"), pd.Period("2001", "A")] result = pd.Series(data) assert result.dtype == object assert result.tolist() == data def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range("20130101", periods=5, freq="D") s = Series(pi) assert s.dtype == "Period[D]" expected = Series(pi.astype(object)) tm.assert_series_equal(s, expected) def test_constructor_dict(self): d = {"a": 0.0, "b": 1.0, "c": 2.0} result = Series(d, index=["b", "c", "d", "a"]) expected = Series([1, 2, np.nan, 0], index=["b", "c", "d", "a"]) tm.assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx, dtype=np.float64) expected.iloc[0] = 0 expected.iloc[1] = 1 tm.assert_series_equal(result, expected) def test_constructor_dict_list_value_explicit_dtype(self): # GH 18625 d = {"a": [[2], [3], [4]]} result = Series(d, index=["a"], dtype="object") expected = Series(d, index=["a"]) tm.assert_series_equal(result, expected) def test_constructor_dict_order(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6, else # order by value d = {"b": 1, "a": 0, "c": 2} result = Series(d) expected = Series([1, 0, 2], index=list("bac")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_constructor_dict_extension(self, data, dtype): d = {"a": data} result = Series(d, index=["a"]) expected = Series(data, index=["a"], dtype=dtype) assert result.dtype == dtype tm.assert_series_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float("nan")]) def test_constructor_dict_nan_key(self, value): # GH 18480 d = {1: "a", value: "b", float("nan"): "c", 4: "d"} result = Series(d).sort_values() expected = Series(["a", "b", "c", "d"], index=[1, value, np.nan, 4]) tm.assert_series_equal(result, expected) # MultiIndex: d = {(1, 1): "a", (2, np.nan): "b", (3, value): "c"} result = Series(d).sort_values() expected = Series( ["a", "b", "c"], index=Index([(1, 1), (2, np.nan), (3, value)]) ) tm.assert_series_equal(result, expected) def test_constructor_dict_datetime64_index(self): # GH 9456 dates_as_str = ["1984-02-19", "1988-11-06", "1989-12-03", "1990-03-15"] values = [42544017.198965244, 1234565, 40512335.181958228, -1] def create_data(constructor): return dict(zip((constructor(x) for x in dates_as_str), values)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, "%Y-%m-%d")) data_Timestamp = create_data(Timestamp) expected = Series(values, (Timestamp(x) for x in dates_as_str)) result_datetime64 = Series(data_datetime64) result_datetime = Series(data_datetime) result_Timestamp = Series(data_Timestamp) tm.assert_series_equal(result_datetime64, expected) tm.assert_series_equal(result_datetime, expected) tm.assert_series_equal(result_Timestamp, expected) def test_constructor_dict_tuple_indexer(self): # GH 12948 data = {(1, 1, None): -1.0} result = Series(data) expected = Series( -1.0, index=MultiIndex(levels=[[1], [1], [np.nan]], codes=[[0], [0], [-1]]) ) tm.assert_series_equal(result, expected) def test_constructor_mapping(self, non_dict_mapping_subclass): # GH 29788 ndm = non_dict_mapping_subclass({3: "three"}) result = Series(ndm) expected = Series(["three"], index=[3]) tm.assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) assert list(s) == data def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) assert tuple(s) == data def test_constructor_dict_of_tuples(self): data = {(1, 2): 3, (None, 5): 6} result = Series(data).sort_values() expected = Series([3, 6], index=MultiIndex.from_tuples([(1, 2), (None, 5)])) tm.assert_series_equal(result, expected) def test_constructor_set(self): values = {1, 2, 3, 4, 5} with pytest.raises(TypeError, match="'set' type is unordered"): Series(values) values = frozenset(values) with pytest.raises(TypeError, match="'frozenset' type is unordered"): Series(values) # https://github.com/pandas-dev/pandas/issues/22698 @pytest.mark.filterwarnings("ignore:elementwise comparison:FutureWarning") def test_fromDict(self): data = {"a": 0, "b": 1, "c": 2, "d": 3} series = Series(data) tm.assert_is_sorted(series.index) data = {"a": 0, "b": "1", "c": "2", "d": datetime.now()} series = Series(data) assert series.dtype == np.object_ data = {"a": 0, "b": "1", "c": "2", "d": "3"} series = Series(data) assert series.dtype == np.object_ data = {"a": "0", "b": "1"} series = Series(data, dtype=float) assert series.dtype == np.float64 def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index, dtype=np.float64) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series("foo", index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == "M8[ns]" assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == "category" assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1)]) assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), timedelta(days=2), np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # mixed with NaT td = Series([timedelta(days=1), NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([timedelta(days=1), np.nan], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(300000000), pd.NaT], dtype="m8[ns]") assert td.dtype == "timedelta64[ns]" # improved inference # GH5689 td = Series([np.timedelta64(300000000), NaT]) assert td.dtype == "timedelta64[ns]" # because iNaT is int, not coerced to timedelta td = Series([np.timedelta64(300000000), iNaT]) assert td.dtype == "object" td = Series([np.timedelta64(300000000), np.nan]) assert td.dtype == "timedelta64[ns]" td = Series([pd.NaT, np.timedelta64(300000000)]) assert td.dtype == "timedelta64[ns]" td = Series([np.timedelta64(1, "s")]) assert td.dtype == "timedelta64[ns]" # these are frequency conversion astypes # for t in ['s', 'D', 'us', 'ms']: # with pytest.raises(TypeError): # td.astype('m8[%s]' % t) # valid astype td.astype("int64") # invalid casting msg = r"cannot astype a timedelta from \[timedelta64\[ns\]\] to \[int32\]" with pytest.raises(TypeError, match=msg): td.astype("int32") # this is an invalid casting msg = "Could not convert object to NumPy timedelta" with pytest.raises(ValueError, match=msg): Series([timedelta(days=1), "foo"], dtype="m8[ns]") # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ["foo"]) assert td.dtype == "object" # these will correctly infer a timedelta s = Series([None, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([np.nan, pd.NaT, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, None, "1 Day"]) assert s.dtype == "timedelta64[ns]" s = Series([pd.NaT, np.nan, "1 Day"]) assert s.dtype == "timedelta64[ns]" # GH 16406 def test_constructor_mixed_tz(self): s = Series([Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")]) expected = Series( [Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(s, expected) def test_NaT_scalar(self): series = Series([0, 1000, 2000, iNaT], dtype="M8[ns]") val = series[3] assert isna(val) series[2] = val assert isna(series[2]) def test_NaT_cast(self): # GH10747 result = Series([np.nan]).astype("M8[ns]") expected = Series([NaT]) tm.assert_series_equal(result, expected) def test_constructor_name_hashable(self): for n in [777, 777.0, "name", datetime(2001, 11, 11), (1,), "\u05D0"]: for data in [[1, 2, 3], np.ones(3), {"a": 0, "b": 1}]: s =
Series(data, name=n)
pandas.Series
''' Copyright <NAME> and <NAME> 2015, 2016, 2017, 2018 ''' from __future__ import print_function # Python 2.7 and 3 compatibility import os import sys import time import shutil #import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt # Standard imports from numpy import pi from numpy.linalg import inv from stat import S_ISREG, ST_CTIME, ST_MODE from pandas import HDFStore, Series, DataFrame from collections import OrderedDict from pathlib import Path # pyEPR custom imports from . import hfss from . import logger from . import config from . import AttrDict from .hfss import ureg, CalcObject, ConstantVecCalcObject, set_property from .toolbox import print_NoNewLine, print_color, deprecated, fact, epsilon_0, hbar, Planck, fluxQ, nck, \ divide_diagonal_by_2, print_matrix, DataFrame_col_diff, get_instance_vars,\ sort_df_col, sort_Series_idx from .toolbox_circuits import Calcs_basic from .toolbox_plotting import cmap_discrete, legend_translucent from .numeric_diag import bbq_hmt, make_dispersive import matplotlib as mpl from .toolbox_report import plot_convergence_f_vspass, plot_convergence_max_df, plot_convergence_solved_elem, plot_convergence_maxdf_vs_sol class Project_Info(object): """ Class containing options and information about the manipulation and analysis in HFSS. Junction info: ----------------------- self.junctions : OrderedDict() A Josephson tunnel junction has to have its parameters specified here for the analysis. Each junction is given a name and is specified by a dictionary. It has the following properties: 1. `Lj_variable` : Name of HFSS variable that specifies junction inductance Lj defined on the boundary condition in HFSS. DO NOT USE Global names that start with $. 2. `rect` : Name of HFSS rectangle on which lumped boundary condition is specified. 3. `line` : Name of HFSS polyline which spans the length of the recntalge. Used to define the voltage across the junction. Used to define the current orientation for each junction. Used to define sign of ZPF. 4. `length` : Length in HFSS of the junction rectangle and line (specified in meters). Example definition: ..code-block python # Define a single junction pinfo = Project_Info('') pinfo.junctions['j1'] = {'Lj_variable' : 'Lj1', 'rect' : 'JJrect1', 'line' : 'JJline1', 'length' : parse_units('50um')} # Length is in meters # Specify multiple junctions in HFSS model n_junctions = 5 for i in range(1, 1+n_junctions): pinfo.junctions[f'j{i}'] = {'Lj_variable' : f'Lj{i}', 'rect' : f'JJrect{i}', 'line' : f'JJline{i}', 'length' : parse_units('50um')} HFSS app connection settings ----------------------- project_path : str Directory path to the hfss project file. Should be the directory, not the file. default = None: Assumes the project is open, and thus gets the project based on `project_name` project_name : str, None Name of the project within the project_path. "None" will get the current active one. design_name : str, None Name of the design within the project. "None" will get the current active one. setup_name : str, None Name of the setup within the design. "None" will get the current active one. Additional init setting: ----------------------- do_connect : True by default. Connect to HFSS HFSS desgin settings ----------------------- describe junction parameters junc_rects = None Name of junction rectangles in HFSS junc_lines = None Name of lines in HFSS used to define the current orientation for each junction junc_LJ_names = None Name of junction inductance variables in HFSS. Note, DO NOT USE Global names that start with $. junc_lens = None Junciton rect. length, measured in meters. """ class _Dissipative: #TODO: remove and turn to dict def __init__(self): self.dielectrics_bulk = None self.dielectric_surfaces = None self.resistive_surfaces = None self.seams = None def __init__(self, project_path=None, project_name=None, design_name=None, do_connect = True): self.project_path = str(Path(project_path)) if not (project_path is None) else None # Path: format path correctly to system convention self.project_name = project_name self.design_name = design_name self.setup_name = None ## HFSS desgin: describe junction parameters # TODO: introduce modal labels self.junctions = OrderedDict() # See above for help self.ports = OrderedDict() ## Dissipative HFSS volumes and surfaces self.dissipative = self._Dissipative() self.options = config.options_hfss # Conected to HFSS variable self.app = None self.desktop = None self.project = None self.design = None self.setup = None if do_connect: self.connect() _Forbidden = ['app', 'design', 'desktop', 'project', 'dissipative', 'setup', '_Forbidden', 'junctions'] def save(self, hdf): ''' hdf : pd.HDFStore ''' hdf['project_info'] = pd.Series(get_instance_vars(self, self._Forbidden)) hdf['project_info_dissip'] = pd.Series(get_instance_vars(self.dissipative)) hdf['project_info_options'] = pd.Series(get_instance_vars(self.options)) hdf['project_info_junctions'] = pd.DataFrame(self.junctions) hdf['project_info_ports'] = pd.DataFrame(self.ports) @deprecated def connect_to_project(self): return self.connect() def connect(self): ''' Connect to HFSS design. ''' #logger.info('Connecting to HFSS ...') self.app, self.desktop, self.project = hfss.load_ansys_project( self.project_name, self.project_path) self.project_name = self.project.name self.project_path = self.project.get_path() # Design if self.design_name is None: self.design = self.project.get_active_design() self.design_name = self.design.name logger.info(f'\tOpened active design\n\tDesign: {self.design_name} [Solution type: {self.design.solution_type}]') else: try: self.design = self.project.get_design(self.design_name) except Exception as e: tb = sys.exc_info()[2] logger.error(f"Original error: {e}\n") raise(Exception(' Did you provide the correct design name? Failed to pull up design.').with_traceback(tb)) #if not ('Eigenmode' == self.design.solution_type): # logger.warning('\tWarning: The design tpye is not Eigenmode. Are you sure you dont want eigenmode?') # Setup try: n_setups = len(self.design.get_setup_names()) if n_setups == 0: logger.warning('\tNo design setup detected.') if self.design.solution_type == 'Eigenmode': logger.warning('\tCreating eigenmode default setup one.') self.design.create_em_setup() self.setup_name = 'Setup' self.setup = self.design.get_setup(name=self.setup_name) self.setup_name = self.setup.name logger.info(f'\tOpened setup: {self.setup_name} [{type(self.setup)}]') except Exception as e: tb = sys.exc_info()[2] logger.error(f"Original error: {e}\n") raise(Exception(' Did you provide the correct setup name? Failed to pull up setup.').with_traceback(tb)) # Finalize self.project_name = self.project.name self.design_name = self.design.name logger.info('\tConnected successfully.\t :)\t :)\t :)\t\n') return self def check_connected(self): """Checks if fully connected including setup """ return\ (self.setup is not None) and\ (self.design is not None) and\ (self.project is not None) and\ (self.desktop is not None) and\ (self.app is not None) def disconnect(self): ''' Disconnect from existing HFSS design. ''' assert self.check_connected( ) is True, "it does not appear that you have connected to HFSS yet. use connect()" self.project.release() self.desktop.release() self.app.release() hfss.release() ### UTILITY FUNCTIONS def get_dm(self): ''' Get the design and modeler .. code-block:: python oDesign, oModeler = projec.get_dm() ''' oDesign = self.design oModeler = oDesign.modeler return oDesign, oModeler def get_all_variables_names(self): """Returns array of all project and local design names.""" return self.project.get_variable_names() + self.design.get_variable_names() def get_all_object_names(self): """Returns array of strings""" oObjects = [] for s in ["Non Model", "Solids", "Unclassified", "Sheets", "Lines"]: oObjects += self.design.modeler.get_objects_in_group(s) return oObjects def validate_junction_info(self): """ Validate that the user has put in the junction info correctly. Do no also forget to check the length of the rectangles/line of the junction if you change it. """ all_variables_names = self.get_all_variables_names() all_object_names = self.get_all_object_names() for jjnm, jj in self.junctions.items(): assert jj['Lj_variable'] in all_variables_names, "pyEPR project_info user error found: Seems like for junction `%s` you specified a design or project variable for `Lj_variable` that does not exist in HFSS by the name: `%s` " % ( jjnm, jj['Lj_variable']) for name in ['rect', 'line']: assert jj[name] in all_object_names, "pyEPR project_info user error found: Seems like for junction `%s` you specified a %s that does not exist in HFSS by the name: `%s` " % ( jjnm, name, jj[name]) #TODO: Check the length of the rectnagle #============================================================================== #%% Main compuation class & interface with HFSS #============================================================================== class pyEPR_HFSS(object): """ This class defines a pyEPR_HFSS object which calculates and saves Hamiltonian parameters from an HFSS simulation. Further, it allows one to calcualte dissipation, etc """ def __init__(self, *args, **kwargs): ''' Parameters: ------------------- project_info : Project_Info Suplpy the project info or the parameters to create pinfo Example use: ------------------- ''' if (len(args) == 1) and (args[0].__class__.__name__ == 'Project_Info'): #isinstance(args[0], Project_Info): # fails on module repload with changes project_info = args[0] else: assert len(args) == 0, 'Since you did not pass a Project_info object as a arguemnt, we now assuem you are trying to create a project info object here by apassing its arguments. See Project_Info. It does not take any arguments, only kwargs.' project_info = Project_Info(*args, **kwargs) # Input self.pinfo = project_info if self.pinfo.check_connected() is False: self.pinfo.connect() self.verbose = True #TODO: change verbose to logger. remove verbose flags self.append_analysis = False #TODO # hfss connect module self.fields = self.setup.get_fields() self.solutions = self.setup.get_solutions() # Variations - the following get updated in update_variation_information self.nmodes = int(1) self.listvariations = ("",) self.nominalvariation = '0' self.nvariations = 0 self.update_variation_information() self.hfss_variables = OrderedDict() # container for eBBQ list of varibles if self.verbose: print('Design \"%s\" info:'%self.design.name) print('\t%-15s %d\n\t%-15s %d' %('# eigenmodes', self.nmodes, '# variations', self.nvariations)) # Setup data saving self.setup_data() self.latest_h5_path = None # #self.get_latest_h5() ''' #TODO: to be implemented to use old files if self.latest_h5_path is not None and self.append_analysis: latest_bbq_analysis = pyEPR_Analysis(self.latest_h5_path) if self.verbose: print( 'Varied variables and values : ', latest_bbq_analysis.get_swept_variables(), \ 'Variations : ', latest_bbq_analysis.variations) ''' @property def setup(self): return self.pinfo.setup @property def design(self): return self.pinfo.design @property def project(self): return self.pinfo.project @property def desktop(self): return self.pinfo.desktop @property def app(self): return self.pinfo.app @property def junctions(self): return self.pinfo.junctions @property def ports(self): return self.pinfo.ports @property def options(self): return self.pinfo.options def get_latest_h5(self): ''' No longer used. Could be added back in. ''' dirpath = self.data_dir entries1 = (os.path.join(dirpath, fn) for fn in os.listdir(dirpath)) # get all entries in the directory w/ stats entries2 = ((os.stat(path), path) for path in entries1) entries3 = ((stat[ST_CTIME], path) # leave only regular files, insert creation date for stat, path in entries2 if S_ISREG(stat[ST_MODE]) and path[-4:]=='hdf5') #NOTE: on Windows `ST_CTIME` is a creation date but on Unix it could be something else #NOTE: use `ST_MTIME` to sort by a modification date paths_sorted = [] for cdate, path in sorted(entries3): paths_sorted.append(path) #print time.ctime(cdate), os.path.basename(path) if len(paths_sorted) > 0: self.latest_h5_path = paths_sorted[-1] if self.verbose: print('This simulations has been analyzed, latest data in ' + self.latest_h5_path) else: self.latest_h5_path = None if self.verbose: print('This simulation has never been analyzed') def setup_data(self): ''' Set up folder paths for saving data to. ''' data_dir = Path(config.root_dir) / \ Path(self.project.name)/Path(self.design.name) #if self.verbose: # print("\nResults will be saved to:\n" +'- '*20+'\n\t'+ str(data_dir)+'\n'+'- '*20+'\n') if len(self.design.name) > 50: print_color('WARNING! DESING FILENAME MAY BE TOO LONG! ') if not data_dir.is_dir(): data_dir.mkdir(parents=True, exist_ok=True) self.data_dir = str(data_dir) self.data_filename = str( data_dir / (time.strftime('%Y-%m-%d %H-%M-%S', time.localtime()) + '.hdf5')) """ @deprecated def calc_p_j(self, modes=None, variation=None): ''' Calculates the p_j for all the modes. Requires a calculator expression called P_J. ''' lv = self.get_lv(variation) if modes is None: modes = range(self.nmodes) pjs = OrderedDict() for ii, m in enumerate(modes): print('Calculating p_j for mode ' + str(m) + ' (' + str(ii) + '/' + str(np.size(modes)-1) + ')') self.solutions.set_mode(m+1, 0) self.fields = self.setup.get_fields() P_J = self.fields.P_J pjs['pj_'+str(m)] = P_J.evaluate(lv=lv) self.pjs = pjs if self.verbose: print(pjs) return pjs """ def calc_p_junction_single(self, mode): ''' This function is used in the case of a single junction only. For multiple junctions, see `calc_p_junction`. Assumes no lumped capacitive elements. ''' pj = OrderedDict() pj_val = (self.U_E-self.U_H)/self.U_E pj['pj_'+str(mode)] = np.abs(pj_val) print(' p_j_' + str(mode) + ' = ' + str(pj_val)) return pj #TODO: replace this method with the one below, here because osme funcs use it still def get_freqs_bare(self, variation): #str(self.get_lv(variation)) freqs_bare_vals = [] freqs_bare_dict = OrderedDict() freqs, kappa_over_2pis = self.solutions.eigenmodes( self.get_lv_EM(variation)) for m in range(self.nmodes): freqs_bare_dict['freq_bare_'+str(m)] = 1e9*freqs[m] freqs_bare_vals.append(1e9*freqs[m]) if kappa_over_2pis is not None: freqs_bare_dict['Q_'+str(m)] = freqs[m]/kappa_over_2pis[m] else: freqs_bare_dict['Q_'+str(m)] = 0 self.freqs_bare = freqs_bare_dict self.freqs_bare_vals = freqs_bare_vals return freqs_bare_dict, freqs_bare_vals def get_freqs_bare_pd(self, variation): ''' Retun pd.Sereis of modal freq and qs for given variation ''' freqs, kappa_over_2pis = self.solutions.eigenmodes( self.get_lv_EM(variation)) if kappa_over_2pis is None: kappa_over_2pis = np.zeros(len(freqs)) freqs = pd.Series(freqs, index=range(len(freqs))) # GHz Qs = freqs / pd.Series(kappa_over_2pis, index=range(len(freqs))) return freqs, Qs def get_lv(self, variation=None): ''' List of variation variables. Returns list of var names and var values. Such as ['Lj1:=','13nH', 'QubitGap:=','100um'] Parameters ----------- variation : string number such as '0' or '1' or ... ''' if variation is None: lv = self.nominalvariation lv = self.parse_listvariations(lv) else: lv = self.listvariations[ureg(variation)] lv = self.parse_listvariations(lv) return lv def get_lv_EM(self, variation): if variation is None: lv = self.nominalvariation #lv = self.parse_listvariations_EM(lv) else: lv = self.listvariations[ureg(variation)] #lv = self.parse_listvariations_EM(lv) return str(lv) def parse_listvariations_EM(self, lv): lv = str(lv) lv = lv.replace("=", ":=,") lv = lv.replace(' ', ',') lv = lv.replace("'", "") lv = lv.split(",") return lv def parse_listvariations(self, lv): lv = str(lv) lv = lv.replace("=", ":=,") lv = lv.replace(' ', ',') lv = lv.replace("'", "") lv = lv.split(",") return lv def get_variables(self, variation=None): lv = self.get_lv(variation) variables = OrderedDict() for ii in range(int(len(lv)/2)): variables['_'+lv[2*ii][:-2]] = lv[2*ii+1] self.variables = variables return variables def calc_energy_electric(self, variation=None, volume='AllObjects', smooth=False): r''' Calculates two times the peak electric energy, or 4 times the RMS, :math:`4*\mathcal{E}_{\mathrm{elec}}` (since we do not divide by 2 and use the peak phasors). .. math:: \mathcal{E}_{\mathrm{elec}}=\frac{1}{4}\mathrm{Re}\int_{V}\mathrm{d}v\vec{E}_{\text{max}}^{*}\overleftrightarrow{\epsilon}\vec{E}_{\text{max}} volume : string | 'AllObjects' smooth : bool | False Smooth the electric field or not when performing calculation Example use to calcualte the energy participation of a substrate .. code-block python ℰ_total = epr_hfss.calc_energy_electric(volume='AllObjects') ℰ_substr = epr_hfss.calc_energy_electric(volume='Box1') print(f'Energy in substrate = {100*ℰ_substr/ℰ_total:.1f}%') ''' calcobject = CalcObject([], self.setup) vecE = calcobject.getQty("E") if smooth: vecE = vecE.smooth() A = vecE.times_eps() B = vecE.conj() A = A.dot(B) A = A.real() A = A.integrate_vol(name=volume) lv = self.get_lv(variation) return A.evaluate(lv=lv) def calc_energy_magnetic(self, variation=None, volume='AllObjects', smooth=True): ''' See calc_energy_electric ''' calcobject = CalcObject([], self.setup) vecH = calcobject.getQty("H") if smooth: vecH = vecH.smooth() A = vecH.times_mu() B = vecH.conj() A = A.dot(B) A = A.real() A = A.integrate_vol(name=volume) lv = self.get_lv(variation) return A.evaluate(lv=lv) def calc_p_electric_volume(self, name_dielectric3D, relative_to='AllObjects', E_total=None ): r''' Calculate the dielectric energy-participatio ratio of a 3D object (one that has volume) relative to the dielectric energy of a list of object objects. This is as a function relative to another object or all objects. When all objects are specified, this does not include any energy that might be stored in any lumped elements or lumped capacitors. Returns: --------- ℰ_object/ℰ_total, (ℰ_object, _total) ''' if E_total is None: logger.debug('Calculating ℰ_total') ℰ_total = self.calc_energy_electric(volume=relative_to) else: ℰ_total = E_total logger.debug('Calculating ℰ_object') ℰ_object = self.calc_energy_electric(volume=name_dielectric3D) return ℰ_object/ℰ_total, (ℰ_object, ℰ_total) def calc_current(self, fields, line): ''' Function to calculate Current based on line. Not in use line : integration line between plates - name ''' self.design.Clear_Field_Clac_Stack() comp = fields.Vector_H exp = comp.integrate_line_tangent(line) I = exp.evaluate(phase = 90) self.design.Clear_Field_Clac_Stack() return I def calc_avg_current_J_surf_mag(self, variation, junc_rect, junc_line): ''' Peak current I_max for mdoe J in junction J The avg. is over the surface of the junction. I.e., spatial. ''' lv = self.get_lv(variation) jl, uj = self.get_junc_len_dir(variation, junc_line) uj = ConstantVecCalcObject(uj, self.setup) calc = CalcObject([], self.setup) #calc = calc.getQty("Jsurf").mag().integrate_surf(name = junc_rect) calc = (((calc.getQty("Jsurf")).dot(uj)).imag() ).integrate_surf(name=junc_rect) I = calc.evaluate(lv=lv) / jl # phase = 90 #self.design.Clear_Field_Clac_Stack() return I def calc_current_line_voltage(self, variation, junc_line_name, junc_L_Henries): ''' Peak current I_max for prespecified mode calculating line voltage across junction. Parameters: ------------------------------------------------ variation: variation number junc_line_name: name of the HFSS line spanning the junction junc_L_Henries: junction inductance in henries TODO: Smooth? ''' lv = self.get_lv(variation) v_calc_real = CalcObject([], self.setup).getQty( "E").real().integrate_line_tangent(name=junc_line_name) v_calc_imag = CalcObject([], self.setup).getQty( "E").imag().integrate_line_tangent(name=junc_line_name) V = np.sqrt(v_calc_real.evaluate(lv=lv)**2 + v_calc_imag.evaluate(lv=lv)**2) freq = CalcObject( [('EnterOutputVar', ('Freq', "Complex"))], self.setup).real().evaluate() return V/(2*np.pi*freq*junc_L_Henries) # I=V/(wL)s def calc_line_current(self, variation, junc_line_name): lv = self.get_lv(variation) calc = CalcObject([], self.setup) calc = calc.getQty("H").imag().integrate_line_tangent( name=junc_line_name) #self.design.Clear_Field_Clac_Stack() return calc.evaluate(lv=lv) def get_junc_len_dir(self, variation, junc_line): ''' Return the length and direction of a junction defined by a line Inputs: variation: simulation variation junc_line: polyline object Outputs: jl (float) junction length uj (list of 3 floats) x,y,z coordinates of the unit vector tangent to the junction line ''' # lv = self.get_lv(variation) u = [] for coor in ['X', 'Y', 'Z']: calc = CalcObject([], self.setup) calc = calc.line_tangent_coor(junc_line, coor) u.append(calc.evaluate(lv=lv)) jl = float(np.sqrt(u[0]**2+u[1]**2+u[2]**2)) uj = [float(u[0]/jl), float(u[1]/jl), float(u[2]/jl)] return jl, uj def get_Qseam(self, seam, mode, variation): r''' Caculate the contribution to Q of a seam, by integrating the current in the seam with finite conductance: set in the config file ref: http://arxiv.org/pdf/1509.01119.pdf ''' lv = self.get_lv(variation) Qseam = OrderedDict() print('Calculating Qseam_' + seam + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') # overestimating the loss by taking norm2 of j, rather than jperp**2 j_2_norm = self.fields.Vector_Jsurf.norm_2() int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseam['Qseam_'+seam+'_' + str(mode)] = config.Dissipation_params.gseam/yseam print('Qseam_' + seam + '_' + str(mode) + str(' = ') + str(config.Dissipation_params.gseam/config.Dissipation_params.yseam)) return Series(Qseam) def get_Qseam_sweep(self, seam, mode, variation, variable, values, unit, pltresult=True): # values = ['5mm','6mm','7mm'] # ref: http://arxiv.org/pdf/1509.01119.pdf self.solutions.set_mode(mode+1, 0) self.fields = self.setup.get_fields() freqs_bare_dict, freqs_bare_vals = self.get_freqs_bare(variation) self.omega = 2*np.pi*freqs_bare_vals[mode] print(variation) print(type(variation)) print(ureg(variation)) self.U_H = self.calc_energy_magnetic(variation) lv = self.get_lv(variation) Qseamsweep = [] print('Calculating Qseam_' + seam + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') for value in values: self.design.set_variable(variable, str(value)+unit) # overestimating the loss by taking norm2 of j, rather than jperp**2 j_2_norm = self.fields.Vector_Jsurf.norm_2() int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseamsweep.append(config.Dissipation_params.gseam/yseam) # Qseamsweep['Qseam_sweep_'+seam+'_'+str(mode)] = gseam/yseam #Cprint 'Qseam_' + seam + '_' + str(mode) + str(' = ') + str(gseam/yseam) if pltresult: _, ax = plt.subplots() ax.plot(values, Qseamsweep) ax.set_yscale('log') ax.set_xlabel(variable+' ('+unit+')') ax.set_ylabel('Q'+'_'+seam) return Qseamsweep def get_Qdielectric(self, dielectric, mode, variation): Qdielectric = OrderedDict() print('Calculating Qdielectric_' + dielectric + ' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') U_dielectric = self.calc_energy_electric(variation, volume=dielectric) p_dielectric = U_dielectric/self.U_E #TODO: Update make p saved sep. and get Q for diff materials, indep. specify in pinfo Qdielectric['Qdielectric_'+dielectric+'_' + str(mode)] = 1/(p_dielectric*config.Dissipation_params.tan_delta_sapp) print('p_dielectric'+'_'+dielectric+'_' + str(mode)+' = ' + str(p_dielectric)) return Series(Qdielectric) def get_Qsurface_all(self, mode, variation): ''' caculate the contribution to Q of a dieletric layer of dirt on all surfaces set the dirt thickness and loss tangent in the config file ref: http://arxiv.org/pdf/1509.01854.pdf ''' lv = self.get_lv(variation) Qsurf = OrderedDict() print('Calculating Qsurface for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')') # A = self.fields.Mag_E**2 # A = A.integrate_vol(name='AllObjects') # U_surf = A.evaluate(lv=lv) calcobject = CalcObject([], self.setup) vecE = calcobject.getQty("E") A = vecE B = vecE.conj() A = A.dot(B) A = A.real() A = A.integrate_surf(name='AllObjects') U_surf = A.evaluate(lv=lv) U_surf *= config.Dissipation_params.th*epsilon_0*config.Dissipation_params.eps_r p_surf = U_surf/self.U_E Qsurf['Qsurf_'+str(mode)] = 1 / \ (p_surf*config.Dissipation_params.tan_delta_surf) print('p_surf'+'_'+str(mode)+' = ' + str(p_surf)) return Series(Qsurf) def calc_Q_external(self, variation, freq_GHz, U_E): ''' Calculate the coupling Q of mode m with each port p Expected that you have specified the mode before calling this ''' Qp = pd.Series({}) freq = freq_GHz * 1e9 # freq in Hz for port_nm, port in self.pinfo.ports.items(): I_peak = self.calc_avg_current_J_surf_mag(variation, port['rect'], port['line']) U_dissip = 0.5 * port['R'] * I_peak**2 * 1 / freq p = U_dissip / (U_E/2) # U_E is 2x the peak electrical energy kappa = p * freq Q = 2 * np.pi * freq / kappa Qp['Q_' + port_nm] = Q return Qp def calc_p_junction(self, variation, U_H, U_E, Ljs): ''' Expected that you have specified the mode before calling this, `self.set_mode(num)` Expected to precalc U_H and U_E for mode, will retunr pandas series object junc_rect = ['junc_rect1', 'junc_rect2'] name of junc rectangles to integrate H over junc_len = [0.0001] specify in SI units; i.e., meters LJs = [8e-09, 8e-09] SI units calc_sign = ['junc_line1', 'junc_line2'] This function assumes there are no lumped capacitors in model. Potential errors: If you dont have a line or rect by the right name you will prob get an erorr o the type: com_error: (-2147352567, 'Exception occurred.', (0, None, None, None, 0, -2147024365), None) ''' Pj = pd.Series({}) Sj = pd.Series({}) for junc_nm, junc in self.pinfo.junctions.items(): logger.debug(f'Calculating participation for {(junc_nm, junc)}') # Get peak current though junction I_peak if self.pinfo.options.method_calc_P_mj is 'J_surf_mag': I_peak = self.calc_avg_current_J_surf_mag( variation, junc['rect'], junc['line']) elif self.pinfo.options.method_calc_P_mj is 'line_voltage': I_peak = self.calc_current_line_voltage( variation, junc['line'], Ljs[junc_nm]) else: raise NotImplementedError( 'Other calculation methods (self.pinfo.options.method_calc_P_mj) are possible but not implemented here. ') Pj['p_' + junc_nm] = Ljs[junc_nm] * \ I_peak**2 / U_E # divie by U_E: participation normed to be between 0 and 1 by the total capacitive energy # which should be the total inductive energy # Sign bit Sj['s_' + junc_nm] = + \ 1 if (self.calc_line_current( variation, junc['line'])) > 0 else -1 if self.verbose: print('\t{:<15} {:>8.6g} {:>5s}'.format( junc_nm, Pj['p_' + junc_nm], '+' if Sj['s_' + junc_nm] > 0 else '-')) return Pj, Sj def do_EPR_analysis(self, variations=None, modes=None): """ Main analysis routine Load results with pyEPR_Analysis ..code-block python pyEPR_Analysis(self.data_filename, variations=variations) ``` Optional Parameters: ------------------------ variations : list | None Example list of variations is ['0', '1'] A variation is a combination of project/design variables in an optimetric sweep modes : list | None Modes to analyze for example modes = [0, 2, 3] HFSS Notes: ------------------------ Assumptions: Low dissipation (high-Q). Right now, we assume that there are no lumped capcitors to simply calculations. Not required. We assume that there are only lumped inductors, so that U_tot = U_E+U_H+U_L and U_C =0, so that U_tot = 2*U_E; """ self._run_time = time.strftime('%Y%m%d_%H%M%S', time.localtime()) self.update_variation_information() if modes is None: modes = range(self.nmodes) if variations is None: variations = self.variations # Setup save and save pinfo #TODO: The pd.HDFStore is used to store the pandas sereis and dataframe, but is otherwise cumbersome. # We should move to a better saving paradigm if self.latest_h5_path is not None and self.append_analysis: shutil.copyfile(self.latest_h5_path, self.data_filename) hdf = pd.HDFStore(self.data_filename) self.pinfo.save(hdf) # This will save only 1 globalinstance ### Main loop - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for ii, variation in enumerate(variations): #TODO: Move this into a funciton calle self.analyze_variation print(f'\nVariation {variation} [{ii+1}/{len(variations)}]') # Previously analyzed? if (variation+'/hfss_variables') in hdf.keys() and self.append_analysis: print_NoNewLine(' previously analyzed ...\n') continue self.lv = self.get_lv(variation) time.sleep(0.4) if self.has_fields() == False: logger.error(f" Error: HFSS does not have field solution for mode={mode}.\ Skipping this mode in the analysis") continue freqs_bare_GHz, Qs_bare = self.get_freqs_bare_pd(variation) self.hfss_variables[variation] = pd.Series( self.get_variables(variation=variation)) Ljs =
pd.Series({})
pandas.Series
import sys # Do not show error traceback sys.tracebacklimit=0 # Check if all packages installed try: from pandas.core.frame import DataFrame import pandas as pd except ImportError as e: print("Package <pandas> needed to be installed before getting data ! ") raise e try: import requests except ImportError as e: print("Package <requests> needed to be installed before getting data ! ") raise e try: import xlwt except ImportError as e: print("Package <xlwt> needed to be installed before getting data ! ") raise e try: import csv except ImportError as e: print("Package <csv> needed to be installed before getting data ! ") raise e class StockTimeSeries(object): def __init__(self, apikey : str): self.apikey = apikey # Get Stock Information # daily stock price def GetDailyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type daily stock price The results will show daily stock price Parameters ---------- stock_id : str Choose the stock you want to get daily data """ base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_DAILY", "symbol": stock_id, "outputsize": "full","apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Time Series (Daily)"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. volume"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. volume" : "Volume"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # weekly stock price def GetWeeklyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type weekly stock price The results will show weekly stock price Parameters ---------- stock_id : str Choose the stock you want to get weekly data """ # https://www.alphavantage.co/query?function=TIME_SERIES_WEEKLY_ADJUSTED&symbol=IBM&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_WEEKLY_ADJUSTED", "symbol": stock_id,"apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Weekly Adjusted Time Series"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. adjusted close", "6. volume", "7. dividend amount"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. adjusted close" : "Adjusted Close", "6. volume" : "Volume", "7. dividend amount" : "Dividend Amount"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # monthly stock price def GetMonthlyStockPrice(self, stock_id : str) -> DataFrame: """return DataFrame type monthly stock price The results will show monthly stock price Parameters ---------- stock_id : str Choose the stock you want to get monthly data """ # https://www.alphavantage.co/query?function=TIME_SERIES_MONTHLY_ADJUSTED&symbol=IBM&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new = pd.DataFrame() params = {"function": "TIME_SERIES_MONTHLY_ADJUSTED", "symbol": stock_id,"apikey": self.apikey} response = requests.get(base_url, params=params) data = response.json() # dict daily_data = data["Monthly Adjusted Time Series"] for dict in daily_data: small_dict = daily_data[dict] small_dict["Datetime"] = dict df = df.append(pd.DataFrame([small_dict])) df_new = df[["Datetime", "1. open", "2. high", "3. low", "4. close", "5. adjusted close", "6. volume", "7. dividend amount"]] df_new = df_new.rename(columns = {"1. open" : "Open", "2. high": "High", "3. low" : "Low", "4. close" : "Close", "5. adjusted close" : "Adjusted Close", "6. volume" : "Volume", "7. dividend amount" : "Dividend Amount"}) col_name = df_new.columns.tolist() col_name.insert(0,"Symbol") df_new = df_new.reindex(columns=col_name) df_new["Symbol"] = stock_id return df_new # intraday stock price - most recent 1 to 2 months data def GetIntradayStockPrice(self, stock_id : str, interval : str) -> DataFrame: """return DataFrame type intraday stock price The results will show intraday stock price at certain interval you choose Parameters ---------- stock_id : str Choose the stock you want to get intraday data interval : str Choose "1min" or "5min" or "15min" or "30min" or "60min" at time interval for intraday data """ # https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&outputsize=full&apikey=demo base_url = 'https://www.alphavantage.co/query?' df = pd.DataFrame() df_new =
pd.DataFrame()
pandas.DataFrame
import boto3 import json,io from fbprophet.serialize import model_to_json, model_from_json import pandas as pd from fbprophet import Prophet import datetime import matplotlib.pyplot as plt from fastapi import FastAPI app = FastAPI() def gen_datetime(datetime_str): """ input: datetime string : format example -> '2010-11-02 21:00:00' returns dataframe containing date points till the end of the month """ numdays = 30 try: base = datetime.datetime.strptime(datetime_str,'%Y-%m-%d %H:%M:%S') except Exception as e: print("The datetime format is not correct",e) return pd.DataFrame() dates = [str((base + datetime.timedelta(days=x))) for x in range(numdays) if (base + datetime.timedelta(days=x)).month == base.month] return
pd.DataFrame(dates, columns=["ds"])
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) class TestPeriodIndexSeriesMethods(object): """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) if isinstance(expected, pd.Index): tm.assert_index_equal(result, expected) else: # comp op results in bool tm.assert_numpy_array_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', '2011-05', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period('2011-01', freq='M') exp = pd.Index([0, 1, 2, 3], name='idx') tm.assert_index_equal(result, exp) result = Period('2011-01', freq='M') - idx exp = pd.Index([0, -1, -2, -3], name='idx') tm.assert_index_equal(result, exp) def test_pi_ops_errors(self): idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') s = pd.Series(idx) msg = r"unsupported operand type\(s\)" for obj in [idx, s]: for ng in ["str", 1.5]: with tm.assert_raises_regex(TypeError, msg): obj + ng with pytest.raises(TypeError): # error message differs between PY2 and 3 ng + obj with tm.assert_raises_regex(TypeError, msg): obj - ng with pytest.raises(TypeError): np.add(obj, ng) if _np_version_under1p10: assert np.add(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.add(ng, obj) with pytest.raises(TypeError): np.subtract(obj, ng) if _np_version_under1p10: assert np.subtract(ng, obj) is NotImplemented else: with pytest.raises(TypeError): np.subtract(ng, obj) def test_pi_ops_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') expected = PeriodIndex(['2011-03', '2011-04', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='2M', name='idx') expected = PeriodIndex(['2011-07', '2011-08', 'NaT', '2011-10'], freq='2M', name='idx') self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex(['2011-05', '2011-01', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex(['2010-12', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex(['2010-10', '2010-12', 'NaT', '2011-06'], freq='M', name='idx') self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') f = lambda x: x + pd.offsets.Day() exp = PeriodIndex(['2011-01-02', '2011-02-02', '2011-03-02', '2011-04-02'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x + pd.offsets.Day(2) exp = PeriodIndex(['2011-01-03', '2011-02-03', '2011-03-03', '2011-04-03'], freq='D', name='idx') self._check(idx, f, exp) f = lambda x: x - pd.offsets.Day(2) exp = PeriodIndex(['2010-12-30', '2011-01-30', '2011-02-27', '2011-03-30'], freq='D', name='idx') self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01'], freq='D', name='idx') s = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period msg_idx = r"Input has different freq from PeriodIndex\(freq=D\)" msg_s = r"Input cannot be converted to Period\(freq=D\)" for obj, msg in [(idx, msg_idx), (s, msg_s)]: with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj + pd.offsets.Hour(2) with tm.assert_raises_regex( period.IncompatibleFrequency, msg): pd.offsets.Hour(2) + obj with tm.assert_raises_regex( period.IncompatibleFrequency, msg): obj - pd.offsets.Hour(2) def test_pi_sub_period(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, -11, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period('2012-01', freq='M')) tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp = pd.Index([12, 11, 10, 9], name='idx') tm.assert_index_equal(result, exp) result = np.subtract(pd.Period('2012-01', freq='M'), idx) if _np_version_under1p10: assert result is NotImplemented else: tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name='idx') tm.assert_index_equal(idx - pd.Period('NaT', freq='M'), exp) tm.assert_index_equal(pd.Period('NaT', freq='M') - idx, exp) def test_pi_sub_pdnat(self): # GH 13071 idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') exp = pd.TimedeltaIndex([pd.NaT] * 4, name='idx') tm.assert_index_equal(pd.NaT - idx, exp) tm.assert_index_equal(idx - pd.NaT, exp) def test_pi_sub_period_nat(self): # GH 13071 idx = PeriodIndex(['2011-01', 'NaT', '2011-03', '2011-04'], freq='M', name='idx') result = idx - pd.Period('2012-01', freq='M') exp = pd.Index([-12, np.nan, -10, -9], name='idx') tm.assert_index_equal(result, exp) result = pd.Period('2012-01', freq='M') - idx exp =
pd.Index([12, np.nan, 10, 9], name='idx')
pandas.Index
#!/usr/bin/python # Imports import pandas as pd import numpy as np from collections import Counter import tqdm import math, os from sklearn.metrics import mean_squared_error from scipy.sparse.csgraph import minimum_spanning_tree as mst_nsim from scipy.sparse.linalg import svds from scipy.sparse import csr_matrix from scipy import sparse import implicit from .data import preprocess_binary # Methods def compute_rmse(preds, ground_truth): grouped = pd.DataFrame({'count' : ground_truth.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() pred_values = [] real_values = [] for index, row in tqdm.tqdm(grouped.iterrows(), total=grouped.shape[0], position=0): user_index = preds.index.tolist().index(row['user_nickname']) town_index = preds.columns.tolist().index(row['town']) #pred_values.append(predictions[(predictions.index==row['user_nickname'])][row['town']][0]) pred_values.append(preds.iloc[user_index,town_index]) real_values.append(float(row['count'])) rms = math.sqrt(mean_squared_error(real_values, pred_values)) return rms def compute_precision_recall_N(PR, valid, N): grouped_val = pd.DataFrame({'count' : valid.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() concat_preds = pd.DataFrame() for interval in range(1000,PR.shape[0]+1000,1000): flat_preds = pd.melt(PR.iloc[interval-1000:interval], id_vars='user_nickname', value_vars=PR.iloc[interval-1000:interval].columns, # list of days of the week var_name='town', value_name='predicted_count') flat_preds['user_nickname'] = PR.iloc[interval-1000:interval].index.tolist() * len(PR.columns) flat_preds = flat_preds[flat_preds.predicted_count >= 0.] flat_preds = flat_preds.groupby('user_nickname')[['user_nickname','town','predicted_count']].apply(lambda grp: grp.nlargest(N,'predicted_count')) concat_preds =
pd.concat([concat_preds, flat_preds], axis=0)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Tue Nov 7 15:14:59 2017 @author: 028375 """ from __future__ import unicode_literals, division import pandas as pd import os.path import numpy as np def get_Cost(Outputs,DataFrame0,DateType0,Date0,CostType0,flag0): if flag0==1: Cost0=DataFrame0[DataFrame0[DateType0]<=Date0][['ContractID','Upfront结算货币']] elif flag0==0: Cost0=DataFrame0[DataFrame0[DateType0]>Date0][['ContractID','Upfront结算货币']] Cost0['Upfront结算货币']=-Cost0['Upfront结算货币'] Outputs=pd.merge(Outputs,Cost0,how='left',on='ContractID') Outputs=Outputs.rename(columns={'Upfront结算货币':CostType0}) Outputs[CostType0]=Outputs[CostType0].replace(np.nan,0.) return Outputs def get_Cost_NPV(Outputs,DataFrame0,DateType0,Date0,CostType1,CostType2,CostType3,NPVType): Outputs=get_Cost(Outputs,DataFrame0,DateType0,Date0,CostType1,1) Outputs=get_Cost(Outputs,DataFrame0,DateType0,Date0,CostType2,0) Outputs[CostType3]=Outputs[CostType1]+Outputs[CostType2] NPV0=DataFrame0[['ContractID','RMB合约估值']] Outputs=pd.merge(Outputs,NPV0,how='left',on='ContractID') Outputs=Outputs.rename(columns={'RMB合约估值':NPVType}) Outputs[NPVType]=Outputs[NPVType].replace(np.nan,0.) return Outputs def Collateral_Separate(Outputs,collateral,CollateralType): tmp=collateral[collateral['现金流类型']==CollateralType][['ContractID','确认金额(结算货币)']] tmp=tmp.groupby(by=['ContractID'],as_index=False)['确认金额(结算货币)'].sum() Outputs=pd.merge(Outputs,tmp,how='left',on='ContractID') Outputs=Outputs.rename(columns={'确认金额(结算货币)':CollateralType}) Outputs[CollateralType]=Outputs[CollateralType].replace(np.nan,0.) return Outputs def Check2(lastmonth,thismonth,collateral,lastdate,spotdate): #成本&估值 ContractID=thismonth['ContractID'].append(lastmonth['ContractID']).drop_duplicates() Outputs=pd.DataFrame(ContractID).reset_index(drop=True) Cost00='成本_期初表_到期' Cost01='成本_期初表_存续' Cost0='成本_期初表' NPV0='估值_期初表' Cost10='成本_期末表_存续' Cost11='成本_期末表_新起' Cost1='成本_期末表' NPV1='估值_期末表' Outputs=get_Cost_NPV(Outputs,lastmonth,'MATURITYDATEREAL',spotdate,Cost00,Cost01,Cost0,NPV0) Outputs=get_Cost_NPV(Outputs,thismonth,'EffectDate',lastdate,Cost10,Cost11,Cost1,NPV1) #现金流 collateral=collateral.rename(columns={'交易编号':'ContractID'}) Outputs=Collateral_Separate(Outputs,collateral,'前端期权费') Outputs=Collateral_Separate(Outputs,collateral,'前端支付') Outputs=Collateral_Separate(Outputs,collateral,'部分赎回') Outputs=Collateral_Separate(Outputs,collateral,'期间结算') Outputs=Collateral_Separate(Outputs,collateral,'定结期间结算') Outputs=Collateral_Separate(Outputs,collateral,'其他') Outputs=Collateral_Separate(Outputs,collateral,'到期结算') Outputs=Collateral_Separate(Outputs,collateral,'全部赎回') #检查结果 PnL0=Outputs[Cost0]+Outputs[NPV0] PnL1=Outputs[Cost1]+Outputs[NPV1] Upfront0=Outputs['前端期权费']+Outputs['前端支付'] Redemption0=Outputs['部分赎回'] Redemption1=Outputs['全部赎回'] PayOnExpiry=Outputs['到期结算'] Status1='两期同时存续' Status2='上月合约自然到期' Status3='上月合约非自然到期' Status4='本月新起且存续' Status5='本月新起且到期' flag1=(PnL0.round(decimals=1)==0) flag2=(PnL1.round(decimals=1)==0) flag3=((Outputs[Cost0]-Outputs[Cost1]-Upfront0-Redemption0).round(decimals=1)==0) flag4=((Redemption0+Redemption1+PayOnExpiry).round(decimals=1)==0) flag5=((Upfront0+Redemption0+Outputs[Cost1]).round(decimals=1)==0) Outputs[Status1]=0 Outputs.loc[(~flag1)&(~flag2)&flag3,[Status1]]=1 Outputs.loc[(~flag1)&(~flag2)&(~flag3),[Status1]]=100 Outputs[Status2]=0 Outputs.loc[(Outputs[Cost00]!=0)&flag2,[Status2]]=1 Outputs[Status3]=0 Outputs.loc[(Outputs[NPV0]!=0)&(Outputs[Status1]+Outputs[Status2]==0)&(~flag4),[Status3]]=1 Outputs.loc[(Outputs[NPV0]!=0)&(Outputs[Status1]+Outputs[Status2]==0)&flag4,[Status3]]=100 Outputs[Status4]=0 Outputs.loc[flag1&(~flag2)&flag5,[Status4]]=1 Outputs.loc[flag1&(~flag2)&(~flag5),[Status4]]=100 Outputs[Status5]=0 Outputs.loc[flag1&flag2&((Upfront0!=0)|(PayOnExpiry!=0)|(Redemption1!=0)),[Status5]]=1 Outputs.loc[flag1&flag2&((Upfront0==0)&(PayOnExpiry==0)&(Redemption1==0)),[Status5]]=100 Outputs['Status']='异常' Outputs.loc[Outputs[Status1]==1,['Status']]=Status1 Outputs.loc[Outputs[Status2]==1,['Status']]=Status2 Outputs.loc[Outputs[Status3]==1,['Status']]=Status3 Outputs.loc[Outputs[Status4]==1,['Status']]=Status4 Outputs.loc[Outputs[Status5]==1,['Status']]=Status5 return Outputs def Check1(lastmonth,thismonth,collateral,FXRate): thismonth['合约估值']=pd.to_numeric(thismonth['合约估值'],errors='coerce') lastmonth['合约估值']=pd.to_numeric(lastmonth['合约估值'],errors='coerce') thismonth['Upfront结算货币']=pd.to_numeric(thismonth['Upfront结算货币'],errors='coerce') lastmonth['Upfront结算货币']=pd.to_numeric(lastmonth['Upfront结算货币'],errors='coerce') thismonth['Upfront结算货币']=thismonth['Upfront结算货币'].replace(np.nan,0.) lastmonth['Upfront结算货币']=lastmonth['Upfront结算货币'].replace(np.nan,0.) FXRate=FXRate[['FROMCCY','FX']] thismonth=pd.merge(thismonth,FXRate,how='left',left_on='币种',right_on='FROMCCY') lastmonth=pd.merge(lastmonth,FXRate,how='left',left_on='币种',right_on='FROMCCY') del thismonth['FROMCCY'],lastmonth['FROMCCY'] thismonth['RMB合约估值']=thismonth['合约估值']*thismonth['FX'] lastmonth['RMB合约估值']=lastmonth['合约估值']*lastmonth['FX'] lastmonth['MATURITYDATEREAL']=pd.to_datetime(lastmonth['MATURITYDATEREAL']) thismonth=thismonth.rename(columns={'起始日':'EffectDate'}) thismonth['EffectDate']=pd.to_datetime(thismonth['EffectDate']) thismonth=thismonth.rename(columns={'合约编号':'ContractID'}) lastmonth=lastmonth.rename(columns={'合约编号':'ContractID'}) collateral['确认金额(结算货币)']=pd.to_numeric(collateral['确认金额(结算货币)'],errors='coerce') collateral['确认金额(结算货币)']=collateral['确认金额(结算货币)'].replace(np.nan,0.) return lastmonth,thismonth,collateral def Check0(lastmonth,thismonth,collateral): lastmonth_dupl=lastmonth[lastmonth.duplicated(subset='合约编号')] thismonth_dupl=thismonth[thismonth.duplicated(subset='合约编号')] collateral_dupl=collateral[collateral.duplicated()] lastmonth=lastmonth.drop_duplicates(subset='合约编号') thismonth=thismonth.drop_duplicates(subset='合约编号') collateral=collateral.drop_duplicates() return lastmonth,thismonth,collateral,lastmonth_dupl,thismonth_dupl,collateral_dupl if __name__=="__main__": path0=os.path.dirname(os.path.realpath(__file__))+'//' path1='Opt_DM\TheBegin.xlsx' path2='Opt_DM\TheEnd.xlsx' path3='Opt_DM\Collateral.xlsx' path4='Opt_DM\FX.xlsx' path5='Opt_DM\Report.xlsx' spotdate=
pd.to_datetime('2017-11-30')
pandas.to_datetime
# notebook: 00-oh-preprocess_data.ipynb # %% [markdown] # # Data Cleanup and Pre-processing # # Before we can analyze the data we need to clean the raw data and bring it to a format suited for the analyses. # %% # Basic imports and setup. import sys import logging from pathlib import Path import pandas as pd from neuropsymodelcomparison.dataprocessing import analysis logging.basicConfig(level=logging.INFO, stream=sys.stdout) # %% [markdown] # Read in raw data from files. # %% data_path = Path.cwd() / 'data' # Run from project root. raw_data_path = data_path / 'raw' users = pd.read_csv(raw_data_path / 'users.csv', dtype={'gaming_exp': pd.Int8Dtype()}) blocks = pd.read_csv(raw_data_path / 'blocks.csv', index_col='id', parse_dates=['time_iso'], dtype={'rating':
pd.Int8Dtype()
pandas.Int8Dtype
""" DOCSTRING """ import matplotlib.pyplot import numpy import os import pandas import PIL import seaborn import skimage import time class EDA: """ DOCSTRING """ def __init__(self): dict_labels = { 0: "No DR", 1: "Mild", 2: "Moderate", 3: "Severe", 4: "Proliferative DR"} def __call__(self): labels = pandas.read_csv("labels/trainLabels.csv") plot_classification_frequency(labels, "level", "Retinopathy_vs_Frequency_All") plot_classification_frequency(labels, "level", "Retinopathy_vs_Frequency_Binary", True) def change_labels(df, category): """ Changes the labels for a binary classification. Either the person has a degree of retinopathy, or they don't. INPUT df: Pandas DataFrame of the image name and labels category: column of the labels OUTPUT Column containing a binary classification of 0 or 1 """ return [1 if l > 0 else 0 for l in df[category]] def plot_classification_frequency(df, category, file_name, convert_labels=False): """ Plots the frequency at which labels occur. INPUT df: Pandas DataFrame of the image name and labels category: category of labels, from 0 to 4 file_name: file name of the image convert_labels: argument specified for converting to binary classification RETURN None """ if convert_labels == True: labels['level'] = change_labels(labels, 'level') seaborn.set(style="whitegrid", color_codes=True) seaborn.countplot(x=category, data=labels) pyplot.title('Retinopathy vs Frequency') pyplot.savefig(file_name) return class ImageToArray: """ DOCSTRING """ def __call__(self): start_time = time.time() labels =
pandas.read_csv("../labels/trainLabels_master_256_v2.csv")
pandas.read_csv
# Copyright 2021 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ zeroshot probing pipeline """ from typing import List, Optional, Tuple from absl import app from absl import flags from absl import logging from ml_collections import FrozenConfigDict import pandas as pd from pandas import DataFrame from labtools import catch_exp_failures from labtools import maybe_rlocation from probing._src.configurable import configurable from probing.configs import get_configs from probing.dataset.dataset import create_dataset from probing.zeroshot.run_probing import run_zeroshot from probing.zeroshot.run_scoring import zeroshot_scoring def _zeroshot_pipeline( configs: List[Tuple[str, FrozenConfigDict]], ngram_gbc_path: str, max_examples: Optional[int] = None, ) -> DataFrame: """ zeroshot partial pipeline """ result_csvs = [] _, meta = create_dataset() ngram_gbc_path = maybe_rlocation(ngram_gbc_path) ngrams =
pd.read_csv(ngram_gbc_path)
pandas.read_csv
import streamlit as st import pandas as pd import numpy as np import altair as alt import pydeck as pdk import matplotlib.pyplot as plt from nltk.tokenize import TweetTokenizer from nltk.corpus import stopwords import string from wordcloud import WordCloud import json import business_weekday_plot # [TODO] put a divider in between each viz st.set_option('deprecation.showPyplotGlobalUse', False) st.title("What are some opportunities to present useful information for users researching restaurants on Yelp?") st.markdown("The following data visualizations help a Yelp product team explore different factors that influence \ a diner's restaurant research journey: Restaurant characteristics (such as location, peak hours), and reviews \ from Yelp community.") st.markdown("Analysis done by: <NAME>(seungmyl) and <NAME>") @st.cache # add caching so we load the data only once def load_data(json_file): return pd.read_json(json_file, lines=True) # Loading data, use partially selected portions for review and user. business_df = load_data(json_file = "../yelp_dataset/yelp_academic_dataset_business.json") review_df = pd.read_csv("../yelp_dataset/review_pit_restaurant.csv").drop("Unnamed: 0", axis=1) checkin = load_data(json_file = "../yelp_dataset/yelp_academic_dataset_checkin.json") # user_df = pd.read_csv("../yelp_dataset/user_top_500k.csv").drop("Unnamed: 0", axis=1) # Visualization 1 # st.markdown("Visualization 1: When do diners checkin to restaurants across different cities?") # cities = list(business_df.groupby(["city"]).count().sort_values(by="categories", ascending=False).head(10).index) # viz1_cities = st.multiselect("Choose cities you wish to compare", cities[:5], cities[:5]) # business_masked_df = business_df[lambda x: x["city"].isin(viz1_cities)] # business_ids = pd.DataFrame(business_masked_df[['business_id',"city"]].set_index("business_id").to_dict()) # st.write(business_ids) # checkin = checkin.join(business_ids, on="business_id", how="inner") # st.write(checkin.head(50)) # dfs = list() # def parser(row): # df_parsed = pd.DataFrame(row.date.split(", "), columns=["date"]) # df_parsed["date"] = pd.to_datetime(df_parsed["date"]) # df_parsed["city"] = row["city"] # df_parsed["weekday"] = df_parsed["date"].dt.day_name() # df_parsed["hour"] = df_parsed["date"].dt.hour # dfs.append(df_parsed) # checkin.apply(lambda x: parser(x), axis=1) # viz1_df = pd.concat(dfs, axis=1) # viz1_df.to_csv("visualization1.csv") # st.write(viz1_df.head()) # viz1 = business_masked_df.groupby(["city", "weekday", "hour"]).sum() # st.bar_chart(viz1) # Select the city you want to explore. # Visualization 1 st.markdown("Visualization 1: When do diners checkin to restaurants across different cities?") cities = list(business_df.groupby(["city"]).count().sort_values(by="categories", ascending=False).head(10).index) city = st.selectbox("Choose your favorite city", cities) city_masked = business_df[lambda x: x["city"]==city][lambda x: x["categories"].str.contains("Restaurant", na=False)] # Select type of cuisine cuisine = st.selectbox( 'Select your favorite food', ('Anything', 'Mexican', 'Korean', 'Chinese', 'Pizza', 'American', 'Dessert', 'Salad', 'Burgers', 'Indian')) attribute_list = ("delivery", "take-out", "parking", "vegetarian", "vegan", "WiFi") city_cuisine_masked = city_masked if cuisine != "Anything": city_cuisine_masked = city_masked[city_masked["categories"].str.contains(cuisine, na=True)] # Select Business attributes # options = list(range(len(attribute_list))) # attributes = st.multiselect("attributes", options, format_func=lambda x: attribute_list[x]) # def attributeFinder(value_dict, attribute): # try: # if value_dict.get(attribute,False) not in ["No", "no", False]: # return True # except: # return False # return False # city_cuisine_attribute_masked = city_cuisine_masked # for value in attributes: # city_cuisine_attribute_masked = city_cuisine_attribute_masked[city_masked["attributes"].apply(lambda x: attributeFinder(x, attribute_list[value]))] # Plot the map # Adding code so we can have map default to the center of the data # midpoint = (np.average(city_masked['latitude']), np.average(city_masked['longitude'])) # layer = pdk.Layer( # 'ScatterplotLayer', # data=city_cuisine_masked, # get_position='[longitude, latitude]', # get_color='[200, 30, 0, 160]', # get_radius=100, # picakble=True, # wireframe=True, # ) # view_state = pdk.ViewState( # latitude=midpoint[0], # longitude=midpoint[1], # zoom=10, # ) # st.pydeck_chart(pdk.Deck( # map_style='mapbox://styles/mapbox/light-v9', # initial_view_state=view_state, # layers=[ layer # ], # tooltip={ # "html": "<b>address:</b> {address}" # "<br/> <b>name:</b> {name}" # " <br/> <b>stars:</b> {stars} ", # "style": {"color": "white"}, # }, # )) st.markdown("Visualization 2: What type of cuisines are we likely to find in this city?") ## Visualization 2: What type of cuisines are we likely to find in this city? unique_categories = dict() stop_words = ["Food", "Grocery", "Restaurants", "Nightlife"] def findUniqueCategory(row): values = row.split(", ") for i in values: if i not in stop_words: unique_categories[i] = unique_categories.get(i, 0)+1 city_masked["categories"].apply(lambda x: findUniqueCategory(x)) #Only return top 10 categories unique_categories = pd.Series(pd.Series(unique_categories)).sort_values(ascending=False).head(10) fig1, ax1 = plt.subplots() ax1.pie(unique_categories, labels=unique_categories.index, autopct='%1.1f%%', startangle=90) ax1.axis('equal') st.pyplot() # Select the restaurant restaurant = st.selectbox( 'Select your restaurant', city_cuisine_masked["name"].to_list()) business_id = city_cuisine_masked[city_cuisine_masked["name"]==restaurant]["business_id"].values[0] checkin_parsed = business_weekday_plot.dateParser(checkin, business_id) # [TODO] Add weekday selection weekday = "Monday" checkin_df = business_weekday_plot.getCheckinByHour(checkin_parsed, weekday, business_id) st.markdown("Checkin counts by hour for day: "+weekday) st.bar_chart(checkin_df) st.markdown("##Looking at Reviews from Yelp Community") st.markdown("Visualization 3: What word(s) are most frequently used words to describe different cuisine types?") # Visualization 3: What word(s) are most frequently used to describe different cuisine types? # Select type of cuisine unique_categories = dict() pit_business_df = business_df[lambda x: x["city"]=="Pittsburgh"][lambda x: x["categories"].str.contains("Restaurant", na=False)] tokens = dict() tknzr = TweetTokenizer() common_keywords = ["good", "place", "food", "restaurant", "service", "like", "also", "one", "menu", "get", "would", "...", "order", "ordered", "time", "really", "us", "go", "i've", "i'm", "before", "well", "back" "try", "great", "little", "got", "nice", "even", "could", "came", "much"] def tokenizer_wrapper(row): stop = stopwords.words('english') + list(string.punctuation) + common_keywords tmp = [i for i in tknzr.tokenize(row.lower()) if i not in stop] for word in tmp: tokens[word] = tokens.get(word, 0) + 1 categories = ['Mexican', 'Korean', 'Chinese', 'Pizza', 'American', 'Dessert', 'Salad', 'Burgers', 'Indian'] review_cuisine = st.selectbox( 'Select your favorite food for reviews analysis', ["Choose One"] + categories) if review_cuisine != 'Choose One': pit_business_df = pit_business_df[pit_business_df["categories"].str.contains(review_cuisine, na=True)] if st.checkbox("Show Review Wordcloud of cuisine type: " + review_cuisine): # Tokenize the review text, Will only work on Pittsburgh # For the sake of computation time, I only took the reviews with at least 10 vote counts # COMMENT: Would be better to use TF-IDF to actually extract category-specific keywords, but for simplicity, we manually created common words to remove pit_cuisine_business_df = pit_business_df[pit_business_df["categories"].str.contains(review_cuisine, na=True)] selected_businesses = pit_cuisine_business_df["business_id"].unique() review_business_masked = review_df[lambda x: x["business_id"].isin(selected_businesses)] review_business_masked["vote_total"] = review_business_masked["useful"] + review_business_masked["funny"] + review_business_masked["cool"] review_business_masked = review_business_masked[lambda x: x["vote_total"]>10] review_business_masked["text"].apply(lambda x: tokenizer_wrapper(x)) tokens = pd.Series(tokens).sort_values(ascending=False).head(50) wc = WordCloud().fit_words(tokens) st.image(wc.to_array()) st.markdown("Visualization 4: How has user appreciation for “cool”, “useful”, and “funny” reviews changed over the years?") # Visualization 4: How engaging are top reviewers for diners looking to research restaurants? # I could not get time data for users => changed to reviews # st.write(user_df.head()) review_df["date"] =
pd.to_datetime(review_df["date"])
pandas.to_datetime
import datetime import numpy as np import streamlit as st import pandas as pd from sqlalchemy import create_engine import visualization import joblib import random import SessionState VALUES = [ 0, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500, 750, 1_000, 5_000, 10_000, 25_000, 50_000, 75_000, 100_000, 200_000, # 250_000, 300_000, 400_000, 500_000, 750_000, 1_000_000, # 2_000_000, # 3_000_000, # 6_000_000, ] BIG_VALUES = [val for val in VALUES if val >= 100_000] L_SUM = sum([val for val in VALUES[:len(VALUES) // 2]]) R_SUM = sum([val for val in VALUES[len(VALUES) // 2:]]) engine = create_engine('postgresql://{user}:{pw}@{host}:{port}/{dbname}'. format(user=st.secrets['username'], pw=st.secrets['password'], host=st.secrets['host'], port=5432, dbname=st.secrets['dbname'])) session = SessionState.get(run_id=0) def generate(random_chars=12, alphabet="0123456789abcdef"): r = random.SystemRandom() return ''.join([r.choice(alphabet) for i in range(random_chars)]) query_params = st.experimental_get_query_params() if not hasattr(st, 'game_id') or not query_params: st.game_id = generate(8) session.game_id = st.game_id st.experimental_set_query_params(round_number=1, game_id=st.game_id, prev_offer=0) def main(): st.set_page_config( page_title="DEAL OR NO DEAL", page_icon="🤑", initial_sidebar_state="expanded") st.sidebar.title('DEAL OR NO DEAL') selected_banker = st.sidebar.selectbox('Pick your Banker', ['Random Forest', 'LightGBM', 'XGBoost'], 0) if st.sidebar.button('New Game'): new_game() st.sidebar.markdown(""" This is a simulation of the Deal or No Deal Banker's offers. The code for this project can be found at [my Github](https://github.com/jstock29/dealnodeal) and the data that I painstakingly collected from over 100 episodes of the show is on [my Kaggle](https://www.kaggle.com/jaredstock/deal-or-no-deal-game-data). You can see what the RoboBanker will offer by simulating a board at various rounds. Each round you should pick the correct number of values from the board: 1. Pick 6 - 6 Total 2. Pick 5 - 11 Total 3. Pick 4 - 15 Total 4. Pick 3 - 18 Total 5. Pick 2 - 20 Total 6. Pick 1 - 21 Total 7. Pick 1 - 22 Total 8. Pick 1 - 23 Total 9. Pick 1 - 24 Total 10. Pick 1 -25 Total After each round you can see what my RoboBanker is offering you and decide if that's a deal you want to take or not. I will not give you that money though. FYI: Anonymous game data is sent to my database so I can maybe do stuff with it later. I don't know why that would sketch you out, this is all fake, but there you go. """) st.sidebar.caption('<NAME> | NYC | 2021') app_state = st.experimental_get_query_params() game_id = app_state['game_id'][0] round_number = int(app_state['round_number'][0]) prev_offer = float(app_state['prev_offer'][0]) offer = 0. # st.write(app_state) st.header('Board') st.write('') col1, col2, col3 = st.beta_columns(3) l_cols = VALUES[:len(VALUES) // 2] r_cols = VALUES[len(VALUES) // 2:] model = joblib.load(f'bankers/{selected_banker}.pkl') with col1: values_1 = [st.checkbox(str(val), key=session.run_id) for val in VALUES[:len(VALUES) // 2]] left_sum = sum([val for i, val in enumerate(l_cols) if not values_1[i]]) with col2: values_2 = [st.checkbox(str(val), key=session.run_id) for val in VALUES[len(VALUES) // 2:]] right_sum = sum([val for i, val in enumerate(r_cols) if not values_2[i]]) values = values_1 + values_2 choices = [val for i, val in enumerate(VALUES) if values[i]] remaining = [val for i, val in enumerate(VALUES) if not values[i]] remaining_bigs = [_ for _ in remaining if _ in BIG_VALUES] average = np.average(remaining) _max = max(remaining) if right_sum == 0: balance = (left_sum / L_SUM) elif left_sum == 0: balance = (right_sum / R_SUM) else: balance = (right_sum / R_SUM) / (left_sum / L_SUM) ev = expected_value(remaining) with col3: st.subheader('Info') st.write(f'Round: {round_number}') st.write(f'Picked: {len(choices)}') st.write(f'Previous Offer: {prev_offer}') st.write(f'Expected Value: {round(ev, 0)}') st.write(f'Probability of having a big value: {round(len(remaining_bigs) / len(remaining) * 100, 1)}%') st.subheader('Banker Offer') if len(choices) > 5: X = pd.DataFrame({'Round': [round_number], 'Board Average': [ev], 'Previous Offer': [prev_offer]}) p = model.predict(X) offer = float(p[0]) st.write(f'Offer: ${round(float(offer), 2)}') if offer / ev <= 1: st.progress(offer / ev) else: st.progress(1) st.caption(f'Offer % of Expected Value: {round((offer / ev) * 100, 2)}%') else: st.info('Pick values to see offers') col14, col15 = st.beta_columns(2) if len(choices) == 6 or len(choices) == 11 or len(choices) == 15 or len(choices) == 18 or len(choices) >= 20: with col14: if st.button('Deal!'): round_data = { "Game ID": game_id, "Round": round_number, "Remaining Values": str(remaining), "Board Value": sum(remaining), "Board Average": round(average, 0), "Board Balance": round(balance, 3), "Probability of Big Value": round(len(remaining_bigs) / len(remaining), 3), "Previous Offer": prev_offer, "Offer": round(offer, 0), "Offer Percent of Average": round(offer / average, 4), "model":selected_banker, "datetime":datetime.datetime.now(), "Deal": True } df = pd.DataFrame(round_data, index=[0]) populate_round(df, 'player_games') with col15: if st.button('No Deal!'): round_data = { "Game ID": game_id, "Round": round_number, "Remaining Values": str(remaining), "Board Value": sum(remaining), "Board Average": round(average, 0), "Board Balance": round(balance, 3), "Probability of Big Value": round(len(remaining_bigs) / len(remaining), 3), "Previous Offer": prev_offer, "Offer": round(offer, 0), "Offer Percent of Average": round(offer / average, 4), "model":selected_banker, "datetime":datetime.datetime.now(), "Deal": False } round_number += 1 st.experimental_set_query_params(round_number=round_number, game_id=game_id, prev_offer=round(offer, 0)) df =
pd.DataFrame(round_data, index=[0])
pandas.DataFrame
import sys import os import json import pandas as pd from sklearn.utils import class_weight import numpy as np from keras import optimizers, callbacks import tensorflow as tf from sklearn.metrics import accuracy_score from utils.ml_utils import data_to_pkl from arg_parser import UserArgs, ArgParser import matplotlib font = {'size': 10} matplotlib.rc('font', **font) class DragonTrainer(object): def __init__(self, model_name, ext): self.model_name = model_name base_train_dir = UserArgs.base_train_dir self.training_dir_wo_ext = os.path.join( base_train_dir, model_name) self.training_dir = os.path.join( base_train_dir, model_name + ext) if UserArgs.test_mode: self.training_dir = os.path.join(self.training_dir, "test") self.training_dir_wo_ext = os.path.join(self.training_dir_wo_ext, "test") def create_training_dir(self): # check if directory already exists if os.path.exists(self.training_dir): print(f"Training dir {self.training_dir} already exists..") if os.path.exists(os.path.join(self.training_dir, "best-checkpoint")): print("Found pretrained model") return False else: raise Exception(f"Training dir {self.training_dir} already exists.. " f"No pretrained model found...") print(f"Current training directory for this run: {self.training_dir}") os.makedirs(self.training_dir) # save current hyper params to training dir ArgParser.save_to_file(UserArgs, self.training_dir, self.model_name) return True @staticmethod def _init_optimizer(optimizer, lr): opt_name = optimizer.lower() if opt_name == 'adam': optimizer = optimizers.Adam(lr=lr) elif opt_name == 'rmsprop': optimizer = optimizers.RMSprop(lr=lr) elif opt_name == 'sgd': optimizer = optimizers.SGD(lr=lr, momentum=0.9, nesterov=True) else: raise ValueError('unknown optimizer %s' % opt_name) return optimizer @staticmethod def subset_accuracy(y_gt, y_prediction, subset_indices): y_prediction = tf.transpose(tf.gather(tf.transpose(y_prediction), subset_indices)) arg_p = tf.gather(subset_indices, tf.arg_max(y_prediction, 1)) y_gt = tf.transpose(tf.gather(tf.transpose(y_gt), subset_indices)) arg_y = tf.gather(subset_indices, tf.arg_max(y_gt, 1)) return tf.reduce_mean(tf.to_float(tf.equal(arg_y, arg_p))) @staticmethod def calc_dragon_wgt(Y_true, Y_pred, train_distribution): classes_idx, n_samples = train_distribution acc_per_class = [] weights_per_class = [] for i, (c,n) in enumerate(zip(classes_idx,n_samples)): idx = np.where(Y_true == c)[0] if len(idx) != 0: acc_per_class = acc_per_class + [sum(Y_true[idx] == Y_pred[idx])/len(idx)] weights_per_class = weights_per_class + [n] weights_per_class = (np.array(weights_per_class) / sum(weights_per_class)) return sum(acc_per_class*weights_per_class) @staticmethod def calc_per_class_acc(Y_true, Y_pred): counts_per_class = pd.Series(Y_true).value_counts().to_dict() accuracy = ((Y_pred == Y_true) / np.array( [counts_per_class[y] for y in Y_true])).sum() / len(counts_per_class) return accuracy @staticmethod def balance_data_with_sample_weights(Y_labels, add_dummy_class=True): class_weights = class_weight.compute_class_weight('balanced', np.unique(Y_labels), Y_labels) if add_dummy_class: class_weights = np.insert(class_weights, 0, 0) # add 1 zero so 200 -> 201 sample_weights = np.array([class_weights[y] for y in Y_labels]) return sample_weights @staticmethod def harmonic_acc(ms_acc, fs_acc): return (2 * (ms_acc * fs_acc)) / (ms_acc + fs_acc) @staticmethod def training_evaluation(model_instance, X_data, Y_data, classes_subsets, eval_sp_params): # gextract classes subsets all_classes, ms_classes, fs_classes = classes_subsets # Estimate accuracies: regualr accuracy, per class accuracy and dragon wgt accuracy X, X_many, X_few = X_data Y, Y_many, Y_few = Y_data # all classes accuracy (generalized accuracy) _, _, reg_acc, pc_acc, wgt_acc = \ DragonTrainer.__evaluate(model_instance, X, Y, all_classes, eval_sp_params) # ms classes accuracy (generalized many-shot accuracy) _, _, ms_reg_acc, ms_pc_acc, ms_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_many, Y_many, all_classes, eval_sp_params) # fs classes accuracy (generalized few-shot accuracy) _, _, fs_reg_acc, fs_pc_acc, fs_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_few, Y_few, all_classes, eval_sp_params) reg_harmonic_acc = DragonTrainer.harmonic_acc(ms_pc_acc, fs_pc_acc) pc_harmonic_acc = DragonTrainer.harmonic_acc(ms_pc_acc, fs_pc_acc) wgt_harmonic_acc = DragonTrainer.harmonic_acc(ms_pc_acc, fs_pc_acc) # many among many accuracy _, _, ms_ms_reg_acc, ms_ms_pc_acc, ms_ms_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_many, Y_many, ms_classes, eval_sp_params) # few among few accuracy _, _, fs_fs_reg_acc, fs_fs_pc_acc, fs_fs_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_few, Y_few, fs_classes, eval_sp_params) res_df = pd.DataFrame(columns=['reg_acc', 'per_class_acc', 'wgt_acc']) res_df.loc["All"] = [reg_acc, pc_acc, wgt_acc] #res_df.loc["MS"] = [ms_reg_acc, ms_pc_acc, ms_wgt_acc] #res_df.loc["FS"] = [fs_reg_acc, fs_pc_acc, fs_wgt_acc] #res_df.loc["Harmonic"] = [reg_harmonic_acc, pc_harmonic_acc, wgt_harmonic_acc] #res_df.loc["MS/MS"] = [ms_ms_reg_acc, ms_ms_pc_acc, ms_ms_wgt_acc] #res_df.loc["FS/FS"] = [fs_fs_reg_acc, fs_fs_pc_acc, fs_fs_wgt_acc] print(res_df) res = {} res['val_wgtAcc'] = wgt_acc res['val_perClassAcc'] = pc_acc #res['val_ms_pc_acc'] = ms_pc_acc #res['val_fs_pc_acc'] = fs_pc_acc #res['val_har_acc'] = pc_harmonic_acc return res def prepare_callbacks_for_training(self, model_instance, eval_params, use_custom_eval=True): """ Prepare Keras Callbacks for model training Returns a list of keras callbacks """ training_CB = [] if eval_params is None: monitor, mon_mode = 'val_acc', 'max' else: X_val, Y_val, val_classes, train_distribution, \ ms_classes, fs_classes, X_val_many, Y_val_many, X_val_few, Y_val_few = eval_params evaluate_specific_params = (train_distribution, ms_classes, fs_classes) # Set the monitor (metric) for validation. # This is used for early-stopping during development. monitor, mon_mode = None, None if use_custom_eval: if UserArgs.train_dist == "dragon": monitor, mon_mode = 'val_wgtAcc', 'max' else: monitor, mon_mode = 'val_perClassAcc', 'max' training_CB += [callbacks.LambdaCallback( on_epoch_end=lambda epoch, logs: logs.update( DragonTrainer.training_evaluation(model_instance, (X_val, X_val_many, X_val_few), (Y_val, Y_val_many, Y_val_few), (val_classes, ms_classes, fs_classes), evaluate_specific_params)) )] else: monitor, mon_mode = 'val_har_acc', 'max' training_CB += [callbacks.LambdaCallback( on_epoch_end=lambda epoch, logs: logs.update( DragonTrainer.training_evaluation(model_instance, (X_val, X_val_many, X_val_few), (Y_val, Y_val_many, Y_val_few), (val_classes, ms_classes, fs_classes), evaluate_specific_params)) )] print(f'monitoring = {monitor}') # Save a model checkpoint only when monitor indicates that the best performance so far training_CB += [ callbacks.ModelCheckpoint(monitor=monitor, mode=mon_mode, save_best_only=True, filepath=os.path.join(self.training_dir, 'best-checkpoint'), verbose=UserArgs.verbose)] # Set an early stopping callback training_CB += [callbacks.EarlyStopping(monitor=monitor, mode=mon_mode, patience=UserArgs.patience, verbose=UserArgs.verbose, min_delta=UserArgs.min_delta)] # Log training history to CSV training_CB += [callbacks.CSVLogger(os.path.join(self.training_dir, 'training_log.csv'), separator='|', append=True)] # Flush stdout buffer on every epoch training_CB += [callbacks.LambdaCallback(on_epoch_end=lambda epoch, logs: sys.stdout.flush())] return training_CB @staticmethod def __evaluate(model_instance, X, Y, classes_subset, eval_sp_params): # Inner function to avoid code duplication # returns: regular accuracy score, per class accuracy score, dragon wgt score train_distribution, ms_classes, fs_classes = eval_sp_params predictions = model_instance.predict_val_layer(X) subset_preds = classes_subset[(predictions[:, classes_subset]).argmax(axis=1)] # evaluate performance using regular accuracy function reg_acc = float(accuracy_score(Y, subset_preds)) # evaluate performance using per class accuracy pc_acc = DragonTrainer.calc_per_class_acc(Y, subset_preds) # evaluate performance using average accuracy score function (dragon evaluation) wgt_acc = DragonTrainer.calc_dragon_wgt(Y, subset_preds, train_distribution) return predictions, subset_preds, reg_acc, pc_acc, wgt_acc def evaluate_and_save_metrics(self, model_instance, train_data, val_data, test_data, test_eval_params, plot_thresh=True, should_save_predictions=True, should_save_metrics=True): X_train, Y_train, Attributes_train, train_classes = train_data X_val, Y_val, Attributes_val, val_classes = val_data X_test, Y_test, Attributes_test, test_classes = test_data _, _, _, train_distribution, \ ms_classes, fs_classes, X_test_many, Y_test_many, X_test_few, Y_test_few = test_eval_params evaluate_specific_params = (train_distribution, ms_classes, fs_classes) # Evaluate on train data train_preds_score, train_preds_argmax, train_reg_acc, train_pc_acc, train_wgt_acc \ = DragonTrainer.__evaluate(model_instance, X_train, Y_train, train_classes, evaluate_specific_params) # Evaluate on val data val_preds_score, val_preds_argmax, val_reg_acc, val_pc_acc, val_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_val, Y_val, val_classes, evaluate_specific_params) # Evaluate on test data test_preds_score, test_preds_argmax, test_reg_acc, test_pc_acc, test_wgt_acc = \ DragonTrainer.__evaluate(model_instance, X_test, Y_test, test_classes, evaluate_specific_params) # Print Results res_df =
pd.DataFrame(columns=['reg_acc', 'per_class_acc', 'wgt_acc'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Feb 19 16:49:28 2018 @author: <NAME> __________________________________________________ ### MacPyver.vector ### ### The Swissknife like Python-Package for ### ### work in general and with GIS ### __________________________________________________ """ import os import pandas as pd from osgeo import ogr import numpy as np #import cPickle as pickle class shp_attr_tbl(): ''' put in full path of shp file init creates list of fieldnames in the shape with the method get_attr_tbl it reads in the dbf to a pandas dataframe possible to read dbf's directly to dataframe, just put ending .dbf instead of .shp ''' def __init__(self,shp_name): #dictionary to translate the geometry _geometry_dic = {-2147483647:"Point25D", -2147483646:"LineString25D", -2147483645:"Polygon25D", -2147483644:"MultiPoint25D", -2147483643:"MultiLineString25D", -2147483642:"MultiPolygon25D", 0: "Geometry", 1: "Point", 2: "Line", 3:"Polygon", 4:"MultiPoint", 5: "MultiLineString", 6: "MultiPolygon", 100: "No Geometry"} self.name =shp_name.split(os.sep)[-1] self.path = (os.sep).join(shp_name.split(os.sep)[:-1]) driver = ogr.GetDriverByName("ESRI Shapefile") ds = driver.Open(shp_name) layer = ds.GetLayer() layerDefinition = layer.GetLayerDefn() self.fieldnames = [] if not shp_name.endswith('.dbf'): self.geometrytype = _geometry_dic[layer.GetGeomType()] self.extent = layer.GetExtent() self.spatialref = layer.GetSpatialRef().ExportToPrettyWkt() self.featurecount = layer.GetFeatureCount() for i in range(layerDefinition.GetFieldCount()): self.fieldnames.append(layerDefinition.GetFieldDefn(i).GetName()) def get_attr_tbl(self, fields = None): '''if no fields passed, it will read in all columns, if some field passed, it will just read this subset returned data is pandas dataframe''' if not fields: used_fields = self.fieldnames else: #create difference list diffl = list(set(fields).difference(self.fieldnames)) #create intersection list intersl = list(set(fields).intersection(self.fieldnames)) if diffl: print ("ERROR: one or more fields are not in fieldnames:\n{0}".format(diffl)) print ("used matching fields to create the attribute table:\n{0}".format(intersl)) #create list of columns (fields) to use used_fields = intersl #create empty dictionary to store all values dic = {} for fi in used_fields: dic[fi] = [] #reset pointer to begining of the file driver = ogr.GetDriverByName("ESRI Shapefile") ds = driver.Open(self.path + os.sep + self.name) layer = ds.GetLayer() #fill dic per row in layer / and per field for feature in layer: for fi in used_fields: get_value = feature.GetField(fi) #if missing value np.nan is assigned if not get_value: get_value = np.nan dic[fi].append(get_value) #save as pd in object self.attributes =
pd.DataFrame(dic)
pandas.DataFrame
import od_lib.definitions.path_definitions as path_definitions import pandas as pd import datetime import os # output directory ELECTORAL_TERMS = path_definitions.ELECTORAL_TERMS save_path = os.path.join(ELECTORAL_TERMS, "electoral_terms.csv") if not os.path.exists(ELECTORAL_TERMS): os.makedirs(ELECTORAL_TERMS) electoral_terms = [ { "id": 1, "start_date": ( datetime.datetime.strptime("1949-09-07", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1953-10-05", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 2, "start_date": ( datetime.datetime.strptime("1953-10-06", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1957-10-14", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 3, "start_date": ( datetime.datetime.strptime("1957-10-15", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1961-10-16", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 4, "start_date": ( datetime.datetime.strptime("1961-10-17", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1965-10-18", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 5, "start_date": ( datetime.datetime.strptime("1965-10-19", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1969-10-19", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 6, "start_date": ( datetime.datetime.strptime("1969-10-20", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1972-12-12", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 7, "start_date": ( datetime.datetime.strptime("1972-12-13", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1976-12-13", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 8, "start_date": ( datetime.datetime.strptime("1976-12-14", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1980-11-03", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 9, "start_date": ( datetime.datetime.strptime("1980-11-04", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1983-03-28", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 10, "start_date": ( datetime.datetime.strptime("1983-03-29", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1987-02-17", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 11, "start_date": ( datetime.datetime.strptime("1987-02-18", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1990-12-19", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 12, "start_date": ( datetime.datetime.strptime("1990-12-20", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1994-11-09", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 13, "start_date": ( datetime.datetime.strptime("1994-11-10", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("1998-10-25", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 14, "start_date": ( datetime.datetime.strptime("1998-10-26", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2002-10-16", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 15, "start_date": ( datetime.datetime.strptime("2002-10-17", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2005-10-17", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 16, "start_date": ( datetime.datetime.strptime("2005-10-18", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2009-10-26", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 17, "start_date": ( datetime.datetime.strptime("2009-10-27", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2013-10-21", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 18, "start_date": ( datetime.datetime.strptime("2013-10-22", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2017-10-23", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, { "id": 19, "start_date": ( datetime.datetime.strptime("2017-10-24", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), "end_date": ( datetime.datetime.strptime("2021-10-24", "%Y-%m-%d") - datetime.datetime(1970, 1, 1) ).total_seconds(), }, ]
pd.DataFrame(electoral_terms)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd # In[2]: train = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Train-1542865627584.csv") beneficiary = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Train_Beneficiarydata-1542865627584.csv") inpatient = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Train_Inpatientdata-1542865627584.csv") outpatient = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Train_Outpatientdata-1542865627584.csv") tt = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Test-1542969243754.csv") tb = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Test_Beneficiarydata-1542969243754.csv") ti = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Test_Inpatientdata-1542969243754.csv") to = pd.read_csv("D:/ML/Dataset/MedicalInsurance/Test_Outpatientdata-1542969243754.csv") # In[3]: df_procedures1 = pd.DataFrame(columns = ['Procedures']) df_procedures1['Procedures'] = pd.concat([inpatient["ClmProcedureCode_1"], inpatient["ClmProcedureCode_2"], inpatient["ClmProcedureCode_3"], inpatient["ClmProcedureCode_4"], inpatient["ClmProcedureCode_5"], inpatient["ClmProcedureCode_6"]], axis=0, sort=True).dropna() df_procedures1['Procedures'].head(10) # In[4]: df_procedures1.shape # In[5]: grouped_procedure_df = df_procedures1['Procedures'].value_counts() grouped_procedure_df # In[6]: df_diagnosis = pd.DataFrame(columns = ['Diagnosis']) df_diagnosis['Diagnosis'] = pd.concat([inpatient["ClmDiagnosisCode_1"], inpatient["ClmDiagnosisCode_2"], inpatient["ClmDiagnosisCode_3"], inpatient["ClmDiagnosisCode_4"], inpatient["ClmDiagnosisCode_5"], inpatient["ClmDiagnosisCode_6"], inpatient["ClmDiagnosisCode_7"], inpatient["ClmDiagnosisCode_8"], inpatient["ClmDiagnosisCode_9"], inpatient["ClmDiagnosisCode_10"]], axis=0, sort=True).dropna() df_diagnosis['Diagnosis'].head(10) # In[7]: df_diagnosis.shape # In[8]: grouped_diagnosis_df = df_diagnosis['Diagnosis'].value_counts() grouped_diagnosis_df # In[9]: grouped_procedure_df1 = grouped_procedure_df.to_frame() grouped_procedure_df1 # In[10]: grouped_procedure_df1.columns = ['count'] grouped_procedure_df1 # In[11]: grouped_procedure_df1['Procedure'] = grouped_procedure_df1.index grouped_procedure_df1 # In[12]: grouped_procedure_df1['Percentage'] = (grouped_procedure_df1['count']/sum(grouped_procedure_df1['count']))*100 grouped_procedure_df1['Percentage'] # In[13]: grouped_diagnosis_df = grouped_diagnosis_df.to_frame() grouped_diagnosis_df.columns = ['count'] grouped_diagnosis_df['Diagnosis'] = grouped_diagnosis_df.index grouped_diagnosis_df['Percentage'] = (grouped_diagnosis_df['count']/sum(grouped_diagnosis_df['count']))*100 grouped_diagnosis_df['Percentage'] # In[14]: # taking only top 20 plot_procedure_df1 = grouped_procedure_df1.head(20) plot_diagnosis_df1 = grouped_diagnosis_df.head(20) # In[15]: # Plotting the most commonly used diagnosis and procedures from matplotlib import pyplot as plt plot_procedure_df1['Procedure'] = plot_procedure_df1['Procedure'].astype(str) plot_procedure_df1.sort_values(by=['Percentage']) plot_procedure_df1.plot(x ='Procedure', y='Percentage', kind='bar', color ='green', title='Procedure Distribution- Inpatient', figsize=(15,10)); # In[16]: plot_diagnosis_df1['Diagnosis'] = plot_diagnosis_df1['Diagnosis'].astype(str) plot_diagnosis_df1.sort_values(by=['Percentage']) plot_diagnosis_df1.plot(x ='Diagnosis', y='Percentage', kind='bar', color ='green', title='Diagnosis Distribution- Inpatient', figsize=(15,10)); # In[17]: df_procedures2 = pd.DataFrame(columns = ['Procedures']) df_procedures2['Procedures'] = pd.concat([outpatient["ClmProcedureCode_1"], outpatient["ClmProcedureCode_2"], outpatient["ClmProcedureCode_3"], outpatient["ClmProcedureCode_4"], outpatient["ClmProcedureCode_5"], outpatient["ClmProcedureCode_6"]], axis=0, sort=True).dropna() df_procedures2['Procedures'].head(10) # In[18]: grouped_procedure_df2 = df_procedures2['Procedures'].value_counts() # In[19]: df_diagnosis2 = pd.DataFrame(columns = ['Diagnosis']) df_diagnosis2['Diagnosis'] = pd.concat([outpatient["ClmDiagnosisCode_1"], outpatient["ClmDiagnosisCode_2"], outpatient["ClmDiagnosisCode_3"], outpatient["ClmDiagnosisCode_4"], outpatient["ClmDiagnosisCode_5"], outpatient["ClmDiagnosisCode_6"], outpatient["ClmDiagnosisCode_7"], outpatient["ClmDiagnosisCode_8"], outpatient["ClmDiagnosisCode_9"], outpatient["ClmDiagnosisCode_10"]], axis=0, sort=True).dropna() df_diagnosis2['Diagnosis'].head(10) grouped_diagnosis_df2 = df_diagnosis2['Diagnosis'].value_counts() # In[20]: grouped_procedure_df_op = grouped_procedure_df2.to_frame() grouped_procedure_df_op.columns = ['count'] grouped_procedure_df_op['Procedure'] = grouped_procedure_df_op.index grouped_procedure_df_op['Percentage'] = (grouped_procedure_df_op['count']/sum(grouped_procedure_df_op['count']))*100 grouped_procedure_df_op['Percentage'] # In[21]: grouped_diagnosis_df_op = grouped_diagnosis_df2.to_frame() grouped_diagnosis_df_op.columns = ['count'] grouped_diagnosis_df_op['Diagnosis'] = grouped_diagnosis_df_op.index grouped_diagnosis_df_op['Percentage'] = (grouped_diagnosis_df_op['count']/sum(grouped_diagnosis_df_op['count']))*100 grouped_diagnosis_df_op['Percentage'] # In[22]: # taking only top 20 plot_procedure_df2 = grouped_procedure_df_op.head(20) plot_diagnosis_df2 = grouped_diagnosis_df_op.head(20) # In[23]: # Plotting the most commonly used diagnosis and procedures from matplotlib import pyplot as plt plot_procedure_df2['Procedure'] = plot_procedure_df2['Procedure'].astype(str) plot_procedure_df2.sort_values(by=['Percentage']) plot_procedure_df2.plot(x ='Procedure', y='Percentage', kind='bar', color ='yellow', title='Procedure Distribution- Outpatient', figsize=(15,7)); # In[24]: plot_diagnosis_df2['Diagnosis'] = plot_diagnosis_df2['Diagnosis'].astype(str) plot_diagnosis_df2.sort_values(by=['Percentage']) plot_diagnosis_df2.plot(x ='Diagnosis', y='Percentage', kind='bar', color ='yellow', title='Diagnosis Distribution- Outpatient', figsize=(15,7)) # In[25]: T_fraud = train['PotentialFraud'].value_counts() grouped_train_df = T_fraud.to_frame() grouped_train_df.columns = ['count'] grouped_train_df['Fraud'] = grouped_train_df.index grouped_train_df['Percentage'] = (grouped_train_df['count']/sum(grouped_train_df['count']))*100 grouped_train_df['Percentage'].plot( kind='bar',color = "blue", title = 'Distribution') # In[26]: Train_f = pd.DataFrame(columns = ['PotentialFraud', 'Provider']) Train_f = train.loc[(train['PotentialFraud'] == 'Yes')] Train_f # In[27]: fraud_provider_ip_df = pd.merge(inpatient, Train_f, how='inner', on='Provider') fraud_provider_ip_df # In[28]: len(fraud_provider_ip_df) # In[29]: (len(fraud_provider_ip_df)/len(inpatient)) * 100 # In[30]: fraud_provider_op_df = pd.merge(outpatient, Train_f, how='inner', on='Provider') fraud_provider_op_df # In[31]: len(fraud_provider_op_df) # In[32]: (len(fraud_provider_op_df)/len(outpatient))*100 # In[33]: df_procedures2 = pd.DataFrame(columns = ['Procedures']) df_procedures2['Procedures'] = pd.concat([fraud_provider_ip_df["ClmProcedureCode_1"], fraud_provider_ip_df["ClmProcedureCode_2"], fraud_provider_ip_df["ClmProcedureCode_3"], fraud_provider_ip_df["ClmProcedureCode_4"], fraud_provider_ip_df["ClmProcedureCode_5"], fraud_provider_ip_df["ClmProcedureCode_6"]], axis=0, sort=True).dropna() df_procedures2['Procedures'].head(10) # In[34]: grouped_F_procedure_df = df_procedures2['Procedures'].value_counts() grouped_F_procedure_df # In[35]: grouped_F_procedure_df2 = grouped_F_procedure_df.to_frame() grouped_F_procedure_df2.columns = ['count'] grouped_F_procedure_df2['Procedure'] = grouped_F_procedure_df2.index grouped_F_procedure_df2['Percentage'] = (grouped_F_procedure_df2['count']/sum(grouped_F_procedure_df2['count']))*100 grouped_F_procedure_df2['Percentage'] # In[36]: df_diagnosis2 = pd.DataFrame(columns = ['Diagnosis']) df_diagnosis2['Diagnosis'] = pd.concat([fraud_provider_ip_df["ClmDiagnosisCode_1"], fraud_provider_ip_df["ClmDiagnosisCode_2"], fraud_provider_ip_df["ClmDiagnosisCode_3"], fraud_provider_ip_df["ClmDiagnosisCode_4"], fraud_provider_ip_df["ClmDiagnosisCode_5"], fraud_provider_ip_df["ClmDiagnosisCode_6"], fraud_provider_ip_df["ClmDiagnosisCode_7"], fraud_provider_ip_df["ClmDiagnosisCode_8"], fraud_provider_ip_df["ClmDiagnosisCode_9"], fraud_provider_ip_df["ClmDiagnosisCode_10"]], axis=0, sort=True).dropna() df_diagnosis2['Diagnosis'].head(10) # In[37]: grouped_F_diagnosis_df = df_diagnosis2['Diagnosis'].value_counts() grouped_F_diagnosis_df # In[38]: grouped_F_diagnosis_df2 = grouped_F_diagnosis_df.to_frame() grouped_F_diagnosis_df2.columns = ['count'] grouped_F_diagnosis_df2['Diagnosis'] = grouped_F_diagnosis_df2.index grouped_F_diagnosis_df2['Percentage'] = (grouped_F_diagnosis_df2['count']/sum(grouped_F_diagnosis_df2['count']))*100 grouped_F_diagnosis_df2['Percentage'] # In[39]: plot_F_procedure_df1 = grouped_F_procedure_df2.head(20) plot_F_diagnosis_df1 = grouped_F_diagnosis_df2.head(20) # In[40]: plot_F_procedure_df1.plot(x ='Procedure', y='Percentage', kind = 'bar', color ='g', figsize=(15,7)) # In[41]: plot_F_diagnosis_df1.plot(x ='Diagnosis', y='Percentage', kind = 'bar', color ='y', figsize=(15,7)) # In[42]: df_procedures_op2 = pd.DataFrame(columns = ['Procedures']) df_procedures_op2['Procedures'] =
pd.concat([fraud_provider_op_df["ClmProcedureCode_1"], fraud_provider_op_df["ClmProcedureCode_2"], fraud_provider_op_df["ClmProcedureCode_3"], fraud_provider_op_df["ClmProcedureCode_4"], fraud_provider_op_df["ClmProcedureCode_5"], fraud_provider_op_df["ClmProcedureCode_6"]], axis=0, sort=True).dropna()
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Apr 26 17:17:19 2019 @author: sdenaro """ import pandas as pd import numpy as np import matplotlib.pyplot as plt prices=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 from itertools import product import numpy as np import pandas as pd from scipy import stats import torch from tensorqtl import core from src import logger def QTL_pairwise(genotypes_df, phenotypes_df, residualizer=None, report_maf=False, return_r_matrix=False): """ Wrapper for `tensorqtl.core.calculate_corr` and reimplementation of `tensorqtl.cis.calculate_association`. Sample names must be axis 0 for each input (i.e. index for pd.Series and columns for pd.DataFrame) """ if isinstance(genotypes_df, pd.Series): genotypes_df = genotypes_df.to_frame().T if isinstance(phenotypes_df, pd.Series): phenotypes_df = phenotypes_df.to_frame().T assert genotypes_df.columns.equals(phenotypes_df.columns) # Prepare variables as torch tensors genotypes_t = torch.tensor(genotypes_df.values, dtype=torch.float).to("cpu") phenotypes_t = torch.tensor(phenotypes_df.values, dtype=torch.float).to("cpu") core.impute_mean(genotypes_t) dof = genotypes_t.shape[1] - 2 if residualizer is None else residualizer.dof # Compute pairwise correlations and associated stats r_nominal_t, genotype_var_t, phenotype_var_t = core.calculate_corr(genotypes_t, phenotypes_t, residualizer=residualizer, return_var=True) std_ratio_t = torch.sqrt(phenotype_var_t.reshape(1,-1) / genotype_var_t.reshape(-1,1)) r_nominal_t = r_nominal_t.squeeze() r2_nominal_t = r_nominal_t.double().pow(2) slope_t = r_nominal_t * std_ratio_t.squeeze() tstat_t = r_nominal_t * torch.sqrt(dof / (1 - r2_nominal_t)) slope_se_t = (slope_t.double() / tstat_t).float() if return_r_matrix: return pd.DataFrame(r_nominal_t.numpy(), index=genotypes_df.index, columns=phenotypes_df.index) # Prepare results as dataframe. genotype_ids, phenotype_ids = zip(*product(genotypes_df.index, phenotypes_df.index)) results = pd.DataFrame({ "variant_id": genotype_ids, "phenotype_id": phenotype_ids, "tstat": tstat_t.flatten().numpy(), "slope": slope_t.flatten().numpy(), "slope_se": slope_se_t.flatten().numpy(), "r": r_nominal_t.flatten().numpy(), "r2": r2_nominal_t.flatten().numpy() }) results["pval_nominal"] = 2*stats.t.cdf(-np.abs(results["tstat"]), dof) if report_maf: # calculate MAF n2 = 2 * genotypes_t.shape[1] # total number of alleles af_t = genotypes_t.sum(1) / n2 # allele frequency ix_t = af_t <= 0.5 maf_t = torch.where(ix_t, af_t, 1 - af_t) # minor allele frequency # calculate MA samples and counts m = genotypes_t > 0.5 a = m.sum(1).int() b = (genotypes_t < 1.5).sum(1).int() ma_samples_t = torch.where(ix_t, a, b) # number of samples with a minor allele a = (genotypes_t * m.float()).sum(1).int() ma_count_t = torch.where(ix_t, a, n2-a) # total number of minor alleles results["maf"] = maf_t.flatten().numpy() results["ma_samples"] = ma_samples_t.flatten().numpy() results["ma_count"] = ma_count_t.flatten().numpy() return results.sort_values("pval_nominal") #--------------------------------------------------------------------------------------------------# def QTL_diff(genotypes_df, phenotypes_df, covariates_df, condition_s, report_maf=True): if isinstance(genotypes_df, pd.Series): genotypes_df = genotypes_df.to_frame().T if isinstance(phenotypes_df, pd.Series): phenotypes_df = phenotypes_df.to_frame().T als_qtl = QTL_pairwise( genotypes_df = genotypes_df.loc[:,condition_s == "ALS"], phenotypes_df = phenotypes_df.loc[:,condition_s == "ALS"], covariates_df = covariates_df.loc[:,condition_s == "ALS"] if covariates_df is not None else None, report_maf = report_maf ).drop(columns=["ma_count"], errors="ignore") ctr_qtl = QTL_pairwise( genotypes_df = genotypes_df.loc[:,condition_s == "CTR"], phenotypes_df = phenotypes_df.loc[:,condition_s == "CTR"], covariates_df = covariates_df.loc[:,condition_s == "CTR"] if covariates_df is not None else None, report_maf = report_maf ).drop(columns=["ma_count"], errors="ignore") merged_qtl = als_qtl.merge(ctr_qtl, on=["variant_id", "phenotype_id"], suffixes=["_ALS", "_CTR"]) # Compute differential statistics merged_qtl["z"] = (merged_qtl["slope_ALS"] - merged_qtl["slope_CTR"]) / (merged_qtl["slope_se_ALS"] + merged_qtl["slope_se_CTR"]) merged_qtl["pval"] = stats.norm.sf(abs(merged_qtl["z"]))*2 return merged_qtl def QTL_by_pairs(G, omic_df, pairs, covariates_df, report_maf=False, condition_s=None): """Iterate over either genotype or omic (rather than performing full pairwise).""" phen_id = pairs.columns[0] # Iterate over the feature that requires fewer QTL calls if pairs["variant_id"].nunique() < pairs[phen_id].nunique(): logger.write("Iterating over variants...") grouped_pairs = pairs.groupby("variant_id") else: logger.write("Iterating over phenotypes...") grouped_pairs = pairs.groupby(phen_id) results = [] for i,feature in enumerate(grouped_pairs.groups.keys()): logger.update("{} of {} features tested".format(i,grouped_pairs.ngroups)) df = grouped_pairs.get_group(feature) genotypes_df = G.get_genotypes(df["variant_id"].unique()) phenotypes_df = omic_df.loc[df[phen_id].unique()] if condition_s is None: res = QTL_pairwise(genotypes_df, phenotypes_df, covariates_df, report_maf) else: res = QTL_diff(genotypes_df, phenotypes_df, covariates_df, condition_s, report_maf) results.append(res) logger.flush() return
pd.concat(results)
pandas.concat
from itertools import product from typing import Iterator, Optional import numpy as np import pandas as pd from glycan import Glycan, PTMComposition class Glycoprotein: """ A protein with glycans. :ivar dict glycosylation_sites: glycosylation sites :ivar int sites: number of glycosylation sites .. automethod:: __init__ .. automethod:: __str__ """ def __init__(self, sites: int, library: Optional[pd.DataFrame]=None) -> None: """ Create a new glycoprotein. :param int sites: number of glycosylation sites :param pd.DataFrame library: dataframe describing a glycan library; mus contain two columns (name and composition) :return: nothing :rtype: None """ self.sites = sites self.glycan_library = [] if library is not None: for _, row in library.iterrows(): if
pd.isnull(row.iloc[1])
pandas.isnull
# ' % kmergrammar # ' % <NAME> mm2842 # ' % 15th May 2017 # ' # Introduction # ' Some of the code below is still under active development # ' ## Required libraries # + name = 'import_libraries', echo=False import os import sys import numpy as np import pandas as pd import sqlalchemy import logging import time from math import log import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from itertools import product from sklearn import metrics from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.externals import joblib # + name= 'hello_world', echo=False def hello_world(): print("Aksunai qanuipit!") def createKmerSet(kmersize): """ write all possible kmers :param kmersize: integer, 8 :return uniq_kmers: list of sorted unique kmers """ kmerSet = set() nucleotides = ["a", "c", "g", "t"] kmerall = product(nucleotides, repeat=kmersize) for i in kmerall: kmer = ''.join(i) kmerSet.add(kmer) uniq_kmers = sorted(list(kmerSet)) return uniq_kmers def compute_kmer_entropy(kmer): """ compute shannon entropy for each kmer :param kmer: string :return entropy: float """ prob = [float(kmer.count(c)) / len(kmer) for c in dict.fromkeys(list(kmer))] entropy = - sum([p * log(p) / log(2.0) for p in prob]) return round(entropy, 2) def make_stopwords(kmersize): """ write filtered out kmers :param kmersize: integer, 8 :return stopwords: list of sorted low-complexity kmers """ kmersize_filter = {5: 1.3, 6: 1.3, 7: 1.3, 8: 1.3, 9: 1.3, 10: 1.3} limit_entropy = kmersize_filter.get(kmersize) kmerSet = set() nucleotides = ["a", "c", "g", "t"] kmerall = product(nucleotides, repeat=kmersize) for n in kmerall: kmer = ''.join(n) if compute_kmer_entropy(kmer) < limit_entropy: kmerSet.add(make_newtoken(kmer)) else: continue stopwords = sorted(list(kmerSet)) return stopwords def createNewtokenSet(kmersize): """ write all possible newtokens :param kmersize: integer, 8 :return uniq_newtokens: list of sorted unique newtokens """ newtokenSet = set() uniq_kmers = createKmerSet(kmersize) for kmer in uniq_kmers: newtoken = make_newtoken(kmer) newtokenSet.add(newtoken) uniq_newtokens = sorted(list(newtokenSet)) return uniq_newtokens def make_newtoken(kmer): """ write a collapsed kmer and kmer reverse complementary as a newtoken :param kmer: string e.g., "AT" :return newtoken: string e.g., "atnta" :param kmer: string e.g., "TA" :return newtoken: string e.g., "atnta" """ kmer = str(kmer).lower() newtoken = "n".join(sorted([kmer, kmer.translate(str.maketrans('tagc', 'atcg'))[::-1]])) return newtoken def write_ngrams(sequence): """ write a bag of newtokens of size n :param sequence: string e.g., "ATCG" :param (intern) kmerlength e.g., 2 :return newtoken_string: string e.g., "atnta" "gatc" "cgcg" """ seq = str(sequence).lower() finalstart = (len(seq) - kmerlength) + 1 allkmers = [seq[start:(start + kmerlength)] for start in range(0, finalstart)] tokens = [make_newtoken(kmer) for kmer in allkmers if len(kmer) == kmerlength and "n" not in kmer] newtoken_string = " ".join(tokens) return newtoken_string def save_plot_prc(precision, recall, avg_prec, figure_file, name): """ make plot for precission recall :param precission: precission :param recall: recall :param avg_prec: avg_prec :param figure_file: figure_file :param name: name :return plot precission recall curve """ plt.clf() title = 'Precision Recall Curve - double strand ' + name plt.title(title) plt.plot(recall, precision, label='Precission = %0.2f' % avg_prec) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.savefig(figure_file) def save_plot_roc(false_positive_rate, true_positive_rate, roc_auc, figure_file, name): """ make plot for roc_auc :param false_positive_rate: false_positive_rate :param true_positive_rate: true_positive_rate :param roc_auc: roc_auc :param figure_file: figure_file :param name: name :return roc_auc """ plt.clf() title = 'Receiver Operating Characteristic - double strand ' + name plt.title(title) plt.plot(false_positive_rate, true_positive_rate, 'b', label='AUC = %0.2f' % roc_auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([-0.1, 1.2]) plt.ylim([-0.1, 1.2]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.savefig(figure_file) if sys.argv[1] == "-help": print( "Usage: python kgrammar_bag-of-k-mer_training_testing.py [kmersize, integer] [mode filtered, 'True', or 'False' (i.e., mode full)] [dataset_name, string]") print("Example: python kgrammar_bag-of-k-mer_training_testing.py 8 False FEA4") quit() else: kmersize = sys.argv[1] # e.g 8 if sys.argv[2] == 'True': filtered = True full = False mode = "_mode_filtered_" elif sys.argv[2] == 'False': filtered = False full = True mode = "_mode_full_" dataset_name = sys.argv[3] # e.g "KN1" kmerlength = int(kmersize) newtoken_size = 1 + (kmerlength * 2) pathname = os.path.dirname(sys.argv[0]) WORKING_DIR = os.path.abspath(pathname) all_tokens = createNewtokenSet(kmerlength) if kmerlength > 4: stpwrds = make_stopwords(kmerlength) else: filtered = False full = True mode = "_mode_full_" print("for k < 5 only full mode is available!") expected_tokens = len(all_tokens) run_id = str(int(time.time())) file_name = WORKING_DIR + '/output/bag-of-k-mers/' + dataset_name + '/kgrammar_bag-of-k-mers_model_' + run_id + '_' + dataset_name + '_' + str( kmerlength) + '_' + mode + '.txt' logging.basicConfig(level=logging.INFO, filename=file_name, filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") logging.info("kmer_grammar_bag-of-k-mers RUN ID") logging.info(run_id) logging.info("WORKING_DIR") logging.info(WORKING_DIR) logging.info("input: kmerlength") logging.info(str(kmersize)) logging.info("input: dataset") logging.info(str(dataset_name)) logging.info("input: filtered") logging.info(filtered) inengine = 'sqlite:///' + WORKING_DIR + '/input_databases/' + dataset_name + '/data_model.db' dbcon = sqlalchemy.create_engine(inengine) logging.info(inengine) print('*' * 80) print("Kgrammer run id: ", run_id) print("-d %s -k %d -filtered %s" % (dataset_name, kmerlength, str(sys.argv[2]))) trainquery = "SELECT * FROM train ORDER BY RANDOM()" dftrain = pd.read_sql_query(trainquery, dbcon) dftrain.columns = ["chr_num", "left_idx", "right_idx", "dna_string", "bound"] print("training set is ready") testquery = "SELECT * FROM test ORDER BY RANDOM()" dftest = pd.read_sql_query(testquery, dbcon) dftest.columns = ["chr_num", "left_idx", "right_idx", "dna_string", "bound"] print("test set is ready") print("Collecting tokens") dftrain["tokens"] = dftrain["dna_string"].apply(write_ngrams) dftest["tokens"] = dftest["dna_string"].apply(write_ngrams) train_tokens = dftrain["tokens"].tolist() test_tokens = dftest["tokens"].tolist() print("Collecting labels") train_labels = dftrain["bound"].tolist() test_labels = dftest["bound"].tolist() unique_train_labels = len(list(set(train_labels))) unique_test_labels = len(list(set(test_labels))) # Check that labels are as many as expected for binary classification if unique_train_labels < 2 or unique_test_labels < 2: print("ERROR: Expected 2 train and test labels. Got %d train labels and %d test labels" % ( unique_train_labels, unique_test_labels)) logging.info("Unique train labels = %d" % unique_train_labels) logging.info("Unique test labels = %d" % unique_test_labels) print("log file: " + WORKING_DIR + '/' + file_name) quit() Y_DEV = np.asarray(train_labels) Y_holdout = np.asarray(test_labels) print("Building a vocabulary from tokens") tmpvectorizer = TfidfVectorizer(min_df=1, max_df=1.0, sublinear_tf=True, use_idf=True) X_TFIDF_ALL = tmpvectorizer.fit_transform(all_tokens) # newtoken sequences to numeric index. vcblry = tmpvectorizer.get_feature_names() if full: print("keeping all low-complexity k-mers") kmer_names = vcblry feature_names = np.asarray(kmer_names) # key transformation to use the fancy index into the report else: print("removing %d low-complexity k-mers" % len(stpwrds)) kmer_names = [x for x in vcblry if x not in stpwrds] feature_names = np.asarray(kmer_names) # key transformation to use the fancy index into the report # Check that tokens are as many as expected math.pow(4, kmerlength)/2 if len(kmer_names) > expected_tokens: print("ERROR: Expected %d tokens. Obtained %d tokens" % (expected_tokens, len(kmer_names))) logging.info("Expecting %d tokens" % expected_tokens) logging.info("Feature index contains %d tokens" % len(kmer_names)) logging.info("ERROR: expected %d tokens, got %d tokens" % (expected_tokens, len(kmer_names))) logging.info("ERROR: More features than expected!") print("log file: " + WORKING_DIR + '/' + file_name) quit() else: print("Expected %d tokens. Obtained %d tokens" % (expected_tokens, len(kmer_names))) logging.info("Feature index contains %d tokens" % len(kmer_names)) print("Extracting features from the training data using TfidfVectorizer") vectorizer = TfidfVectorizer(min_df=1, max_df=1.0, sublinear_tf=True, use_idf=True, vocabulary=kmer_names) # vectorizer for kmer frequencies X_TFIDF_DEV = vectorizer.fit_transform(train_tokens) print("train_samples: %d, n_features: %d" % X_TFIDF_DEV.shape) print("Positive n_labels: %d Negative n_labels: %d" % (train_labels.count(0), train_labels.count(1))) logging.info("Train dataset") logging.info("n_samples: %d, n_features: %d" % X_TFIDF_DEV.shape) logging.info("Positive n_labels: %d Negative n_labels: %d" % (test_labels.count(0), test_labels.count(1))) print("Extracting features from the holdout data using TfidfVectorizer") X_TFIDF_test = vectorizer.fit_transform(test_tokens) print("test_samples: %d, n_features: %d" % X_TFIDF_test.shape) print("Positive n_labels: %d Negative n_labels: %d" % (train_labels.count(0), train_labels.count(1))) logging.info("Test dataset") logging.info("n_samples: %d, n_features: %d" % X_TFIDF_test.shape) logging.info("Positive n_labels: %d Negative n_labels: %d" % (test_labels.count(0), test_labels.count(1))) print("Fiting a LogisticRegression (LR) model to the training set") TFIDF_LR = LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False) logging.info(TFIDF_LR) TFIDF_LR.fit(X_TFIDF_DEV, Y_DEV) print("Predicting labels for holdout set") LR_hold_TFIDF_pred = TFIDF_LR.predict(X_TFIDF_test) # y_pred LR_hold_TFIDF_prob = TFIDF_LR.predict_proba(X_TFIDF_test)[:, 1] # y_score print("Evaluating model") print(metrics.classification_report(Y_holdout, LR_hold_TFIDF_pred)) # y_true, y_pred print("Accuracy") print(metrics.accuracy_score(Y_holdout, LR_hold_TFIDF_pred)) # y_true, y_pred logging.info("LR evaluation") logging.info(metrics.classification_report(Y_holdout, LR_hold_TFIDF_pred)) # y_true, y_pred logging.info("Accuracy") logging.info(metrics.accuracy_score(Y_holdout, LR_hold_TFIDF_pred)) # y_true, y_pred logging.info("ROC_AUC") logging.info(metrics.roc_auc_score(Y_holdout, LR_hold_TFIDF_prob)) # y_true, y_score fpr, tpr, thresholds = metrics.roc_curve(Y_holdout, LR_hold_TFIDF_prob, pos_label=1) roc_auc = metrics.auc(fpr, tpr) roc_figure_file = WORKING_DIR + "/output/bag-of-k-mers/" + dataset_name + "/kgrammar_bag-of-k-mer_model_roc_" + mode + dataset_name + "_" + kmersize + "_" + run_id + ".png" save_plot_roc(fpr, tpr, roc_auc, roc_figure_file, dataset_name) precision, recall, thresholds = metrics.precision_recall_curve(Y_holdout, LR_hold_TFIDF_prob, pos_label=1) avg_prc = metrics.average_precision_score(Y_holdout, LR_hold_TFIDF_prob) prc_figure_file = WORKING_DIR + "/output/bag-of-k-mers/" + dataset_name + "/kgrammar_bag-of-k-mer_model_prc" + mode + dataset_name + "_" + kmersize + "_" + run_id + ".png" save_plot_prc(precision, recall, avg_prc, prc_figure_file, dataset_name) # Export the kmer weights from the LR classifier to a sqlite3 database if hasattr(TFIDF_LR, 'coef_'): top = np.argsort(TFIDF_LR.coef_[0])[-5:] # select the top 5 index botton = np.argsort(TFIDF_LR.coef_[0])[:5] # select the bottom 5 index logging.info("database table LR_results") logging.info("top 5 positive kmers") logging.info(" ".join([i.split('n')[0].upper() for i in feature_names[top]])) logging.info(" ".join([i.split('n')[1].upper() for i in feature_names[top]])) logging.info("top 5 negative kmers") logging.info(" ".join([i.split('n')[0].upper() for i in feature_names[botton]])) logging.info(" ".join([i.split('n')[1].upper() for i in feature_names[botton]])) print("Saving data to database table LR_results") print('*' * 80) print("%s: %s" % ("pos kmers", " ".join([i.split('n')[0].upper() for i in feature_names[top]]))) print("%s: %s" % ("pos kmers", " ".join([i.split('n')[1].upper() for i in feature_names[top]]))) print() # making room print("%s: %s" % ("neg kmers", " ".join([i.split('n')[0] for i in feature_names[botton]]))) print("%s: %s" % ("neg kmers", " ".join([i.split('n')[1] for i in feature_names[botton]]))) print('*' * 80) print() # making room LR_weights = [] for idx, kmer_score in enumerate(TFIDF_LR.coef_[0]): features = feature_names[idx].split('n') LR_weights.append({'kmer': features[0].upper(), 'revcomp': features[1].upper(), 'score': kmer_score}) LR_weights_feature =
pd.DataFrame(LR_weights)
pandas.DataFrame
import pandas as pd from frozendict import frozendict from copy import copy import uuid from pm4pymdl.objects.mdl.exporter import exporter as mdl_exporter class Shared: TSTCT = {} EKBE_belnr_ebeln = {} EKPO_matnr_ebeln = {} EKPO_ebeln_banfn = {} EKPO_ebeln_ebelp = {} EKPO_objects = list() MSEG_mblnr_matnr = {} MSEG_mblnr_zeile = {} MSEG_mblnr_ebeln = {} MSEG_mblnr_ebeln_ebelp = {} MSEG_objects = list() RSEG_belnr_matnr = {} RSEG_belnr_ebeln_ebelp = {} RSEG_objects = list() BSEG_belnr_augbl = {} BSEG_belnr_buzei = {} BSEG_objects = list() MARA_objects = list() LFA1_objects = list() EBAN_events = {} EKKO_events = {} MKPF_events = {} RBKP_events = {} BKPF_events = {} events = [] def read_tstct(): df = pd.read_csv("TSTCT.tsv", sep="\t", dtype={"SPRSL": str, "TCODE": str, "TTEXT": str}) stream = df.to_dict('r') for el in stream: Shared.TSTCT[el["TCODE"]] = el["TTEXT"] def get_activity(tcode): if tcode in Shared.TSTCT: return Shared.TSTCT[tcode] def read_ekbe(): df = pd.read_csv("EKBE.tsv", sep="\t", dtype={"EBELN": str, "EBELP": str, "BELNR": str}) stream = df.to_dict('r') for el in stream: if str(el["BELNR"]).lower() != "nan": if not el["BELNR"] in Shared.EKBE_belnr_ebeln: Shared.EKBE_belnr_ebeln[el["BELNR"]] = set() Shared.EKBE_belnr_ebeln[el["BELNR"]].add(el["EBELN"]) def read_ekpo(): df = pd.read_csv("EKPO.tsv", sep="\t", dtype={"EBELN": str, "EBELP": str, "MATNR": str, "BANFN": str, "BNFPO": str, "NETPR": float, "PEINH": float, "NETWR": float, "BTWR": float}) stream = df.to_dict('r') for el in stream: if str(el["MATNR"]).lower() != "nan": if not el["MATNR"] in Shared.EKPO_matnr_ebeln: Shared.EKPO_matnr_ebeln[el["MATNR"]] = set() Shared.EKPO_matnr_ebeln[el["MATNR"]].add(el["EBELN"]) if str(el["BANFN"]).lower() != "nan": if not el["EBELN"] in Shared.EKPO_ebeln_banfn: Shared.EKPO_ebeln_ebelp[el["EBELN"]] = set() Shared.EKPO_ebeln_ebelp[el["EBELN"]].add(el["BANFN"]) if not el["EBELN"] in Shared.EKPO_ebeln_ebelp: Shared.EKPO_ebeln_ebelp[el["EBELN"]] = set() Shared.EKPO_ebeln_ebelp[el["EBELN"]].add(el["EBELN"] + "_" + el["EBELP"]) Shared.EKPO_objects.append( {"object_id": el["EBELN"] + "_" + el["EBELP"], "object_type": "EBELN_EBELP", "object_matnr": el["MATNR"], "object_netpr": el["NETPR"], "object_peinh": el["PEINH"], "object_netwr": el["NETWR"], "object_brtwr": el["BRTWR"], "object_table": "EKPO", "object_ebeln": el["EBELN"], "object_ebelp": el["EBELP"]}) print("read ekpo") def read_mseg(): df = pd.read_csv("MSEG.tsv", sep="\t", dtype={"MBLNR": str, "ZEILE": str, "MATNR": str, "LIFNR": str, "KUNNR": str, "EBELN": str, "EBELP": str}) stream = df.to_dict('r') for el in stream: if str(el["MATNR"]).lower() != "nan": if not el["MBLNR"] in Shared.MSEG_mblnr_matnr: Shared.MSEG_mblnr_matnr[el["MBLNR"]] = set() Shared.MSEG_mblnr_matnr[el["MBLNR"]].add(el["MATNR"]) if not el["MBLNR"] in Shared.MSEG_mblnr_zeile: Shared.MSEG_mblnr_zeile[el["MBLNR"]] = set() Shared.MSEG_mblnr_zeile[el["MBLNR"]].add(el["MBLNR"] + "_" + el["ZEILE"]) if str(el["EBELN"]).lower() != "nan" and str(el["EBELP"]).lower() != "nan": if not el["MBLNR"] in Shared.MSEG_mblnr_ebeln: Shared.MSEG_mblnr_ebeln[el["MBLNR"]] = set() Shared.MSEG_mblnr_ebeln[el["MBLNR"]].add(el["EBELN"]) if not el["MBLNR"] in Shared.MSEG_mblnr_ebeln_ebelp: Shared.MSEG_mblnr_ebeln_ebelp[el["MBLNR"]] = set() Shared.MSEG_mblnr_ebeln_ebelp[el["MBLNR"]].add(el["EBELN"] + "_" + el["EBELP"]) Shared.MSEG_objects.append( {"object_id": el["MBLNR"] + "_" + el["ZEILE"], "object_type": "MBLNR_ZEILE", "object_matnr": el["MATNR"], "object_lifnr": el["LIFNR"], "object_kunnr": el["KUNNR"], "object_table": "MSEG", "object_mblnr": el["MBLNR"], "object_zeile": el["ZEILE"]}) print("read mseg") def read_rseg(): df = pd.read_csv("RSEG.tsv", sep="\t", dtype={"BELNR": str, "EBELN": str, "EBELP": str, "MATNR": str, "WRBTR": float}) stream = df.to_dict('r') for el in stream: if str(el["MATNR"]).lower() != "nan": if not el["BELNR"] in Shared.RSEG_belnr_matnr: Shared.RSEG_belnr_matnr[el["BELNR"]] = set() Shared.RSEG_belnr_matnr[el["BELNR"]].add(el["MATNR"]) if not el["BELNR"] in Shared.RSEG_belnr_ebeln_ebelp: Shared.RSEG_belnr_ebeln_ebelp[el["BELNR"]] = set() Shared.RSEG_belnr_ebeln_ebelp[el["BELNR"]].add(el["BELNR"] + "_" + el["EBELN"] + "_" + el["EBELP"]) Shared.RSEG_objects.append( {"object_id": el["BELNR"] + "_" + el["EBELN"] + "_" + el["EBELP"], "object_type": "BELNR_EBELN_EBELP", "object_matnr": el["MATNR"], "object_wrbtr": el["WRBTR"], "object_table": "RSEG", "object_belnr": el["BELNR"], "object_ebeln": el["EBELN"], "object_ebelp": el["EBELP"], "object_ebeln_ebelp": el["EBELN"] + "_" + el["EBELP"]}) print("read rseg") def read_bseg(): df = pd.read_csv("BSEG.tsv", sep="\t", dtype={"BELNR": str, "BUZEI": str, "AUGBL": str, "WRBTR": str}) stream = df.to_dict("r") for el in stream: if str(el["AUGBL"]).lower() != "nan": if not el["BELNR"] in Shared.BSEG_belnr_augbl: Shared.BSEG_belnr_augbl[el["BELNR"]] = set() Shared.BSEG_belnr_augbl[el["BELNR"]].add(el["AUGBL"]) if not el["BELNR"] in Shared.BSEG_belnr_buzei: Shared.BSEG_belnr_buzei[el["BELNR"]] = set() Shared.BSEG_belnr_buzei[el["BELNR"]].add(el["BELNR"] + "_" + el["BUZEI"]) Shared.BSEG_objects.append( {"object_id": el["BELNR"] + "_" + el["BUZEI"], "object_type": "BELNR_BUZEI", "object_augbl": el["AUGBL"], "object_wrbtr": el["WRBTR"], "object_table": "BSEG", "object_belnr": el["BELNR"], "object_buzei": el["BUZEI"]}) print("read bseg") def read_mara(): df = pd.read_csv("MARA.tsv", sep="\t", dtype={"MATNR": str, "ERSDA": str, "ERNAM": str, "MBRSH": str, "MATKL": str, "NTGEW": str, "VOLUMN": str, "TRAGR": str}) # MATNR str # ERSDA str # ERNAM str # MBRSH str # MATKL str # NTGEW str # VOLUMN str # TRAGR str stream = df.to_dict("r") for el in stream: Shared.MARA_objects.append( {"object_id": el["MATNR"], "object_type": "MATNR", "object_table": "MARA", "object_ersda": el["ERSDA"], "object_mbrsh": el["MBRSH"], "object_matkl": el["MATKL"], "object_ntgew": el["NTGEW"], "object_volum": el["VOLUM"], "object_tragr": el["TRAGR"]}) print("read mara") def read_lfa1(): df = pd.read_csv("LFA1.tsv", sep="\t", dtype={"LIFNR": str, "LAND1": str, "NAME1": str, "ORT01": str, "REGIO": str}) stream = df.to_dict("r") for el in stream: Shared.LFA1_objects.append( {"object_id": el["LIFNR"], "object_type": "LIFNR", "object_table": "LFA1", "object_land1": el["LAND1"], "object_name1": el["NAME1"], "object_ort01": el["ORT01"], "object_regio": el["REGIO"]}) print("read lfa1") def read_eban(): df = pd.read_csv("EBAN.tsv", sep="\t", dtype={"BANFN": str, "BNFPO": str, "ERNAM": str, "ERDAT": str, "MATNR": str}) df["ERDAT"] = pd.to_datetime(df["ERDAT"], format="%d.%m.%Y", errors='coerce') stream = df.to_dict('r') for el in stream: if not el["BANFN"] in Shared.EBAN_events: Shared.EBAN_events[el["BANFN"]] = list() Shared.EBAN_events[el["BANFN"]].append({"event_activity": get_activity("ME51N"), "event_timestamp": el["ERDAT"], "event_table": "EBAN"}) Shared.EBAN_events[el["BANFN"]] = sorted(Shared.EBAN_events[el["BANFN"]], key=lambda x: x["event_timestamp"]) def read_ekko(): df = pd.read_csv("EKKO.tsv", sep="\t", dtype={"EBELN": str, "AEDAT": str, "ERNAM": str, "LIFNR": str}) df["AEDAT"] = pd.to_datetime(df["AEDAT"], format="%d.%m.%Y", errors='coerce') stream = df.to_dict('r') for el in stream: if not el["EBELN"] in Shared.EKKO_events: Shared.EKKO_events[el["EBELN"]] = list() Shared.EKKO_events[el["EBELN"]].append( {"event_activity": get_activity("ME21N"), "event_timestamp": el["AEDAT"], "event_table": "EKKO"}) Shared.EKKO_events[el["EBELN"]] = sorted(Shared.EKKO_events[el["EBELN"]], key=lambda x: x["event_timestamp"]) def read_mkpf(): df = pd.read_csv("MKPF.tsv", sep="\t", dtype={"MBLNR": str, "CPUDT": str, "CPUTM": str, "USNAM": str, "TCODE": str, "TCODE2": str}) df["event_timestamp"] = df["CPUDT"] + " " + df["CPUTM"] df["event_timestamp"] = pd.to_datetime(df["event_timestamp"], format="%d.%m.%Y %H:%M:%S", errors='coerce') stream = df.to_dict('r') for el in stream: if str(el["TCODE"]).lower() != "nan": if not el["MBLNR"] in Shared.MKPF_events: Shared.MKPF_events[el["MBLNR"]] = list() Shared.MKPF_events[el["MBLNR"]].append( {"event_activity": get_activity(el["TCODE"]), "event_timestamp": el["event_timestamp"], "event_resource": el["USNAM"], "event_table": "MKPF"}) Shared.MKPF_events[el["MBLNR"]] = sorted(Shared.MKPF_events[el["MBLNR"]], key=lambda x: x["event_timestamp"]) def read_rbkp(): df = pd.read_csv("RBKP.tsv", sep="\t", dtype={"BELNR": str, "USNAM": str, "TCODE": str, "CPUDT": str, "CPUTM": str}) df["event_timestamp"] = df["CPUDT"] + " " + df["CPUTM"] df["event_timestamp"] = pd.to_datetime(df["event_timestamp"], format="%d.%m.%Y %H:%M:%S", errors='coerce') stream = df.to_dict('r') for el in stream: if str(el["TCODE"]).lower() != "nan": if not el["BELNR"] in Shared.RBKP_events: Shared.RBKP_events[el["BELNR"]] = list() Shared.RBKP_events[el["BELNR"]].append( {"event_activity": get_activity(el["TCODE"]), "event_timestamp": el["event_timestamp"], "event_resource": el["USNAM"], "event_table": "RBKP"}) Shared.RBKP_events[el["BELNR"]] = sorted(Shared.RBKP_events[el["BELNR"]], key=lambda x: x["event_timestamp"]) def read_bkpf(): df = pd.read_csv("BKPF.tsv", sep="\t", dtype={"BELNR": str, "CPUDT": str, "CPUTM": str, "USNAM": str, "TCODE": str}) rbkp_df = pd.read_csv("RBKP.tsv", sep="\t", dtype={"BELNR": str, "USNAM": str, "TCODE": str, "CPUDT": str, "CPUTM": str}) df = df[df["BELNR"].isin(rbkp_df["BELNR"])] df["event_timestamp"] = df["CPUDT"] + " " + df["CPUTM"] df["event_timestamp"] = pd.to_datetime(df["event_timestamp"], format="%d.%m.%Y %H:%M:%S", errors='coerce') stream = df.to_dict('r') for el in stream: if str(el["TCODE"]).lower() != "nan": if not el["BELNR"] in Shared.BKPF_events: Shared.BKPF_events[el["BELNR"]] = list() Shared.BKPF_events[el["BELNR"]].append( {"event_activity": get_activity(el["TCODE"]), "event_timestamp": el["event_timestamp"], "event_resource": el["USNAM"], "event_table": "BKPF"}) Shared.BKPF_events[el["BELNR"]] = sorted(Shared.BKPF_events[el["BELNR"]], key=lambda x: x["event_timestamp"]) def write_events(): for evk in Shared.EBAN_events: evs = Shared.EBAN_events[evk] i = 0 while i < len(evs): ev = evs[i] ev["event_id"] = str(uuid.uuid4()) nev = copy(ev) nev["BANFN"] = evk Shared.events.append(nev) i = i + 1 for evk in Shared.EKKO_events: evs = Shared.EKKO_events[evk] i = 0 while i < len(evs): ev = evs[i] ev["event_id"] = str(uuid.uuid4()) nev = copy(ev) nev["EBELN"] = evk Shared.events.append(nev) if i == 0: if evk in Shared.EKPO_ebeln_banfn: for it in Shared.EKPO_ebeln_banfn[evk]: nev = copy(ev) nev["BANFN"] = it Shared.events.append(nev) if evk in Shared.EKPO_ebeln_ebelp: for it in Shared.EKPO_ebeln_ebelp[evk]: nev = copy(ev) nev["EBELN_EBELP"] = it Shared.events.append(nev) if i == len(evs) - 1: if evk in Shared.EKBE_belnr_ebeln: for doc in Shared.EKBE_belnr_ebeln[evk]: nev = copy(ev) nev["MBLNR"] = doc Shared.events.append(nev) i = i + 1 for evk in Shared.MKPF_events: evs = Shared.MKPF_events[evk] i = 0 while i < len(evs): ev = evs[i] ev["event_id"] = str(uuid.uuid4()) nev = copy(ev) nev["MBLNR"] = evk Shared.events.append(nev) if i == 0: """ if evk in Shared.EKPO_matnr_ebeln: for ord in Shared.EKPO_matnr_ebeln[evk]: nev = copy(ev) nev["EBELN"] = ord Shared.events.append(nev) """ if evk in Shared.MSEG_mblnr_ebeln: for it in Shared.MSEG_mblnr_ebeln[evk]: nev = copy(ev) nev["EBELN"] = it Shared.events.append(nev) if evk in Shared.MSEG_mblnr_ebeln_ebelp: for it in Shared.MSEG_mblnr_ebeln_ebelp[evk]: nev = copy(ev) nev["EBELN_EBELP"] = it Shared.events.append(nev) if evk in Shared.MSEG_mblnr_matnr: for mat in Shared.MSEG_mblnr_matnr[evk]: nev = copy(ev) nev["MATNR"] = mat Shared.events.append(nev) if evk in Shared.MSEG_mblnr_zeile: for it in Shared.MSEG_mblnr_zeile[evk]: nev = copy(ev) nev["MBLNR_ZEILE"] = it Shared.events.append(nev) i = i + 1 for evk in Shared.RBKP_events: evs = Shared.RBKP_events[evk] i = 0 while i < len(evs): ev = evs[i] ev["event_id"] = str(uuid.uuid4()) nev = copy(ev) nev["BELNR"] = evk Shared.events.append(nev) if i == 0: if evk in Shared.RSEG_belnr_matnr: for mat in Shared.RSEG_belnr_matnr[evk]: nev = copy(ev) nev["MATNR"] = mat Shared.events.append(nev) if evk in Shared.RSEG_belnr_ebeln_ebelp: for it in Shared.RSEG_belnr_ebeln_ebelp[evk]: nev = copy(ev) nev["BELNR_EBELN_EBELP"] = it Shared.events.append(nev) nev = copy(ev) nev["EBELN_EBELP"] = it.split("_")[1] + "_" + it.split("_")[2] Shared.events.append(nev) if evk in Shared.EKBE_belnr_ebeln: for it in Shared.EKBE_belnr_ebeln[evk]: nev = copy(ev) nev["EBELN"] = it Shared.events.append(nev) i = i + 1 for evk in Shared.BKPF_events: evs = Shared.BKPF_events[evk] i = 0 while i < len(evs): ev = evs[i] ev["event_id"] = str(uuid.uuid4()) nev = copy(ev) nev["BELNR"] = evk Shared.events.append(nev) if i == 0: if evk in Shared.BSEG_belnr_augbl: for it in Shared.BSEG_belnr_augbl[evk]: nev = copy(ev) nev["AUGBL"] = it Shared.events.append(nev) if evk in Shared.BSEG_belnr_buzei: for it in Shared.BSEG_belnr_buzei[evk]: nev = copy(ev) nev["BELNR_BUZEI"] = it Shared.events.append(nev) i = i + 1 if __name__ == "__main__": read_bseg() read_tstct() read_eban() read_bkpf() read_ekbe() read_ekpo() read_mseg() read_rseg() read_mara() read_lfa1() read_ekko() read_mkpf() read_rbkp() write_events() Shared.events = sorted(Shared.events, key=lambda x: x["event_timestamp"]) print("written events") events_df = pd.DataFrame(Shared.events) print("got dataframe") events_df.type = "exploded" ekpo_objects = pd.DataFrame(Shared.EKPO_objects) mseg_objects = pd.DataFrame(Shared.MSEG_objects) rseg_objects = pd.DataFrame(Shared.RSEG_objects) mara_objects =
pd.DataFrame(Shared.MARA_objects)
pandas.DataFrame
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df =
pandas.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Read the txt files containing the raw design tables from Chen, Sun and Wu (1993), format them and store them in a new excel file, with one sheet per run size. Created on Wed Jan 19 15:57:58 2022 @author: <NAME> - alexandre dot bohyn [at] kuleuven dot be """ import os # % Packages import re import pandas as pd # Function to format the file def format_file(fname: str): # Create dictionary for the designs designs_dict =
pd.DataFrame()
pandas.DataFrame
import asyncio from collections import defaultdict, namedtuple from dataclasses import dataclass, fields as dataclass_fields from datetime import date, datetime, timedelta, timezone from enum import Enum from itertools import chain, repeat import logging import pickle from typing import Collection, Dict, Generator, Iterable, Iterator, KeysView, List, \ Mapping, Optional, Sequence, Set, Tuple, Union import aiomcache import numpy as np import pandas as pd from pandas.core.common import flatten from sqlalchemy import sql from sqlalchemy.orm import aliased from sqlalchemy.orm.attributes import InstrumentedAttribute from sqlalchemy.sql.elements import BinaryExpression from athenian.api import metadata from athenian.api.async_utils import gather, read_sql_query from athenian.api.cache import cached, CancelCache, short_term_exptime from athenian.api.controllers.logical_repos import coerce_logical_repos from athenian.api.controllers.miners.filters import JIRAFilter, LabelFilter from athenian.api.controllers.miners.github.commit import BRANCH_FETCH_COMMITS_COLUMNS, \ DAG, fetch_precomputed_commit_history_dags, fetch_repository_commits_no_branch_dates from athenian.api.controllers.miners.github.dag_accelerated import searchsorted_inrange from athenian.api.controllers.miners.github.label import fetch_labels_to_filter from athenian.api.controllers.miners.github.logical import split_logical_repositories from athenian.api.controllers.miners.github.precomputed_prs import \ discover_inactive_merged_unreleased_prs, MergedPRFactsLoader, OpenPRFactsLoader, \ update_unreleased_prs from athenian.api.controllers.miners.github.release_load import ReleaseLoader from athenian.api.controllers.miners.github.release_match import PullRequestToReleaseMapper, \ ReleaseToPullRequestMapper from athenian.api.controllers.miners.github.released_pr import matched_by_column from athenian.api.controllers.miners.jira.issue import generate_jira_prs_query from athenian.api.controllers.miners.types import DeploymentConclusion, MinedPullRequest, \ nonemax, nonemin, PRParticipants, PRParticipationKind, PullRequestFacts, PullRequestFactsMap from athenian.api.controllers.prefixer import Prefixer from athenian.api.controllers.settings import LogicalRepositorySettings, ReleaseMatch, \ ReleaseSettings from athenian.api.db import add_pdb_misses, Database, DatabaseLike from athenian.api.defer import AllEvents, defer from athenian.api.int_to_str import int_to_str from athenian.api.models.metadata.github import Base, NodePullRequestJiraIssues, \ PullRequest, PullRequestComment, PullRequestCommit, PullRequestLabel, PullRequestReview, \ PullRequestReviewComment, PullRequestReviewRequest, PushCommit, Release from athenian.api.models.metadata.jira import Component, Issue from athenian.api.models.persistentdata.models import DeploymentNotification from athenian.api.models.precomputed.models import GitHubPullRequestDeployment from athenian.api.tracing import sentry_span @dataclass class PRDataFrames(Mapping[str, pd.DataFrame]): """Set of dataframes with all the PR data we can reach.""" prs: pd.DataFrame commits: pd.DataFrame releases: pd.DataFrame jiras: pd.DataFrame reviews: pd.DataFrame review_comments: pd.DataFrame review_requests: pd.DataFrame comments: pd.DataFrame labels: pd.DataFrame deployments: pd.DataFrame def __iter__(self) -> Iterator[str]: """Implement iter() - return an iterator over the field names.""" return iter((f.name for f in dataclass_fields(self))) def __getitem__(self, key: str) -> pd.DataFrame: """Implement self[key].""" try: return getattr(self, key) except AttributeError: raise KeyError(key) from None def __setitem__(self, key: str, value: pd.DataFrame) -> None: """Implement self[key] = value.""" for f in dataclass_fields(self): if key == f.name: break else: raise KeyError(key) setattr(self, key, value) def __len__(self) -> int: """Implement len().""" return len(dataclass_fields(self)) class PullRequestMiner: """Load all the information related to Pull Requests from the metadata DB. Iterate over it \ to access individual PR objects.""" CACHE_TTL = short_term_exptime log = logging.getLogger("%s.PullRequestMiner" % metadata.__package__) ReleaseMappers = namedtuple("ReleaseMappers", [ "map_releases_to_prs", "map_prs_to_releases", "load_releases"]) mappers = ReleaseMappers( map_releases_to_prs=ReleaseToPullRequestMapper.map_releases_to_prs, map_prs_to_releases=PullRequestToReleaseMapper.map_prs_to_releases, load_releases=ReleaseLoader.load_releases, ) def __init__(self, dfs: PRDataFrames): """Initialize a new instance of `PullRequestMiner`.""" self._dfs = dfs @property def dfs(self) -> PRDataFrames: """Return the bound dataframes with PR information.""" return self._dfs def __len__(self) -> int: """Return the number of loaded pull requests.""" return len(self._dfs.prs) def __iter__(self) -> Generator[MinedPullRequest, None, None]: """Iterate over the individual pull requests.""" assert self._dfs.prs.index.nlevels == 2 df_fields = [f.name for f in dataclass_fields(MinedPullRequest) if f.name != "pr"] dfs = [] grouped_df_iters = [] index_backup = [] for k in df_fields: plural = k.endswith("s") df = getattr(self._dfs, k if plural else (k + "s")) # type: pd.DataFrame dfs.append(df) # our very own groupby() allows us to call take() with reduced overhead node_ids = df.index.get_level_values(0).values.astype(int, copy=False) with_repos = k == "release" if df.index.nlevels > 1: # the second level adds determinism to the iteration order second_level = df.index.get_level_values(1).values node_ids_bytes = int_to_str(node_ids) if second_level.dtype == int: order_keys = np.char.add(node_ids_bytes, int_to_str(second_level)) else: order_keys = np.char.add(node_ids_bytes, second_level.astype("S", copy=False)) else: order_keys = node_ids df_order = np.argsort(order_keys) if not with_repos: unique_node_ids, node_ids_unique_counts = np.unique(node_ids, return_counts=True) offsets = np.zeros(len(node_ids_unique_counts) + 1, dtype=int) np.cumsum(node_ids_unique_counts, out=offsets[1:]) groups = self._iter_by_split(df_order, offsets) grouped_df_iters.append(iter(zip(unique_node_ids, repeat(None), groups))) else: _, unique_counts = np.unique(order_keys, return_counts=True) node_ids = node_ids[df_order] repos = df.index.get_level_values(1).values[df_order].astype("U") offsets = np.zeros(len(unique_counts) + 1, dtype=int) np.cumsum(unique_counts, out=offsets[1:]) groups = self._iter_by_split(df_order, offsets) grouped_df_iters.append(iter(zip( node_ids[offsets[:-1]], repos[offsets[:-1]], groups))) if plural: index_backup.append(df.index) df.index = df.index.droplevel(0) else: index_backup.append(None) try: grouped_df_states = [] for i in grouped_df_iters: try: grouped_df_states.append(next(i)) except StopIteration: grouped_df_states.append((None, None, None)) empty_df_cache = {} pr_columns = [PullRequest.node_id.name, PullRequest.repository_full_name.name] pr_columns.extend(self._dfs.prs.columns) if not self._dfs.prs.index.is_monotonic_increasing: raise IndexError("PRs index must be pre-sorted ascending: " "prs.sort_index(inplace=True)") for pr_tuple in self._dfs.prs.itertuples(): (pr_node_id, repo), *pr_tuple = pr_tuple items = {"pr": dict(zip(pr_columns, [pr_node_id, repo] + pr_tuple))} for i, (k, (state_pr_node_id, state_repo, gdf), git, df) in enumerate(zip( df_fields, grouped_df_states, grouped_df_iters, dfs)): while state_pr_node_id is not None and ( state_pr_node_id < pr_node_id or (state_pr_node_id == pr_node_id and state_repo is not None and state_repo < repo)): try: state_pr_node_id, state_repo, gdf = next(git) except StopIteration: state_pr_node_id, state_repo, gdf = None, None, None grouped_df_states[i] = state_pr_node_id, state_repo, gdf if state_pr_node_id == pr_node_id and \ (state_repo is None or state_repo == repo): if not k.endswith("s"): # much faster than items.iloc[gdf[0]] gdf = {c: v for c, v in zip(df.columns, df._data.fast_xs(gdf[0]))} else: gdf = df.take(gdf) items[k] = gdf else: try: items[k] = empty_df_cache[k] except KeyError: if k.endswith("s"): empty_val = df.iloc[:0].copy() else: empty_val = {c: None for c in df.columns} items[k] = empty_df_cache[k] = empty_val yield MinedPullRequest(**items) finally: for df, index in zip(dfs, index_backup): if index is not None: df.index = index def drop(self, node_ids: Collection[int]) -> pd.Index: """ Remove PRs from the given collection of PR node IDs in-place. Node IDs don't have to be all present. :return: Actually removed node IDs. """ removed = self._dfs.prs.index.get_level_values(0).intersection(node_ids) if removed.empty: return removed self._dfs.prs.drop(removed, inplace=True) for df in self._dfs.values(): df.drop(removed, inplace=True, errors="ignore", level=0 if isinstance(df.index, pd.MultiIndex) else None) return removed def _deserialize_mine_cache(buffer: bytes) -> Tuple[PRDataFrames, PullRequestFactsMap, Set[str], PRParticipants, LabelFilter, JIRAFilter, Dict[str, ReleaseMatch], asyncio.Event]: stuff = pickle.loads(buffer) event = asyncio.Event() event.set() return (*stuff, event) @sentry_span def _postprocess_cached_prs( result: Tuple[PRDataFrames, PullRequestFactsMap, Set[str], PRParticipants, LabelFilter, JIRAFilter, bool, Dict[str, ReleaseMatch], asyncio.Event], date_to: date, repositories: Set[str], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, with_jira_map: bool, pr_blacklist: Optional[Tuple[Collection[int], Dict[str, List[int]]]], truncate: bool, **_) -> Tuple[PRDataFrames, PullRequestFactsMap, Set[str], PRParticipants, LabelFilter, JIRAFilter, bool, Dict[str, ReleaseMatch], asyncio.Event]: dfs, _, cached_repositories, cached_participants, cached_labels, cached_jira, \ cached_with_jira_map, _, _ = result if with_jira_map and not cached_with_jira_map: raise CancelCache() cls = PullRequestMiner if (repositories - cached_repositories or not cls._check_participants_compatibility(cached_participants, participants) or not cached_labels.compatible_with(labels) or not cached_jira.compatible_with(jira)): raise CancelCache() to_remove = set() if pr_blacklist is not None: to_remove.update(pr_blacklist[0]) if no_logical_repos := (coerce_logical_repos(repositories).keys() == repositories): to_remove.update(dfs.prs.index.get_level_values(0).values[ np.in1d(dfs.prs.index.get_level_values(1).values, list(repositories), assume_unique=True, invert=True), ]) time_to = None if truncate else pd.Timestamp(date_to, tzinfo=timezone.utc) to_remove.update(cls._find_drop_by_participants(dfs, participants, time_to)) to_remove.update(cls._find_drop_by_labels(dfs, labels)) to_remove.update(cls._find_drop_by_jira(dfs, jira)) cls._drop(dfs, to_remove) if not no_logical_repos: dfs.prs = dfs.prs.take(np.flatnonzero( np.in1d(dfs.prs.index.get_level_values(1).values, list(repositories), assume_unique=True), )) return result @classmethod @sentry_span @cached( exptime=lambda cls, **_: cls.CACHE_TTL, serialize=lambda r: pickle.dumps(r[:-1]), deserialize=_deserialize_mine_cache, key=lambda date_from, date_to, exclude_inactive, release_settings, logical_settings, updated_min, updated_max, pr_blacklist, truncate, **_: ( # noqa date_from.toordinal(), date_to.toordinal(), exclude_inactive, release_settings, logical_settings, updated_min.timestamp() if updated_min is not None else None, updated_max.timestamp() if updated_max is not None else None, ",".join(map(str, sorted(pr_blacklist[0]) if pr_blacklist is not None else [])), truncate, ), postprocess=_postprocess_cached_prs, ) async def _mine(cls, date_from: date, date_to: date, repositories: Set[str], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, with_jira_map: bool, branches: pd.DataFrame, default_branches: Dict[str, str], exclude_inactive: bool, release_settings: ReleaseSettings, logical_settings: LogicalRepositorySettings, updated_min: Optional[datetime], updated_max: Optional[datetime], pr_blacklist: Optional[Tuple[Collection[int], Dict[str, List[int]]]], truncate: bool, prefixer: Prefixer, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, rdb: Database, cache: Optional[aiomcache.Client], ) -> Tuple[PRDataFrames, PullRequestFactsMap, Set[str], PRParticipants, LabelFilter, JIRAFilter, bool, Dict[str, ReleaseMatch], asyncio.Event]: assert isinstance(date_from, date) and not isinstance(date_from, datetime) assert isinstance(date_to, date) and not isinstance(date_to, datetime) assert isinstance(repositories, set) assert isinstance(mdb, Database) assert isinstance(pdb, Database) assert isinstance(rdb, Database) assert (updated_min is None) == (updated_max is None) time_from, time_to = (pd.Timestamp(t, tzinfo=timezone.utc) for t in (date_from, date_to)) pr_blacklist_expr = ambiguous = None if pr_blacklist is not None: pr_blacklist, ambiguous = pr_blacklist if len(pr_blacklist) > 0: pr_blacklist_expr = PullRequest.node_id.notin_any_values(pr_blacklist) if logical_settings.has_logical_prs(): physical_repos = coerce_logical_repos(repositories).keys() else: physical_repos = repositories pdags = await fetch_precomputed_commit_history_dags(physical_repos, account, pdb, cache) fetch_branch_dags_task = asyncio.create_task( cls._fetch_branch_dags( physical_repos, pdags, branches, account, meta_ids, mdb, pdb, cache), name="_fetch_branch_dags", ) # the heaviest task should always go first tasks = [ cls.mappers.map_releases_to_prs( repositories, branches, default_branches, time_from, time_to, participants.get(PRParticipationKind.AUTHOR, []), participants.get(PRParticipationKind.MERGER, []), jira, release_settings, logical_settings, updated_min, updated_max, pdags, prefixer, account, meta_ids, mdb, pdb, rdb, cache, pr_blacklist_expr, None, truncate=truncate), cls.fetch_prs( time_from, time_to, physical_repos, participants, labels, jira, exclude_inactive, pr_blacklist_expr, None, branches, pdags, account, meta_ids, mdb, pdb, cache, updated_min=updated_min, updated_max=updated_max, fetch_branch_dags_task=fetch_branch_dags_task), cls.map_deployments_to_prs( physical_repos, time_from, time_to, participants, labels, jira, updated_min, updated_max, prefixer, branches, pdags, account, meta_ids, mdb, pdb, cache, pr_blacklist, fetch_branch_dags_task=fetch_branch_dags_task), ] # the following is a very rough approximation regarding updated_min/max: # we load all of none of the inactive merged PRs # see also: load_precomputed_done_candidates() which generates `ambiguous` if not exclude_inactive and (updated_min is None or updated_min <= time_from): tasks.append(cls._fetch_inactive_merged_unreleased_prs( time_from, time_to, repositories, participants, labels, jira, default_branches, release_settings, logical_settings.has_logical_prs(), prefixer, account, meta_ids, mdb, pdb, cache)) # we don't load inactive released undeployed PRs because nobody needs them ( (released_prs, releases, release_settings, matched_bys, release_dags, precomputed_observed), (prs, branch_dags, _), deployed_prs, *unreleased, ) = await gather(*tasks) del pr_blacklist_expr deployed_releases_task = None if not deployed_prs.empty: covered_prs = prs.index.union(released_prs.index) if unreleased: covered_prs = covered_prs.union(unreleased[0].index) new_prs = deployed_prs.index.difference(covered_prs) if not new_prs.empty: new_prs = deployed_prs[[ PullRequest.merged_at.name, PullRequest.repository_full_name.name, ]].loc[new_prs] min_deployed_merged = new_prs[PullRequest.merged_at.name].min() if min_deployed_merged < time_from: deployed_releases_task = asyncio.create_task( cls.mappers.load_releases( new_prs[PullRequest.repository_full_name.name].unique(), branches, default_branches, min_deployed_merged, time_from, release_settings, logical_settings, prefixer, account, meta_ids, mdb, pdb, rdb, cache), name="PullRequestMiner.mine/deployed_releases", ) concatenated = [prs, released_prs, deployed_prs, *unreleased] missed_prs = cls._extract_missed_prs(ambiguous, pr_blacklist, deployed_prs, matched_bys) if missed_prs: add_pdb_misses(pdb, "PullRequestMiner.mine/blacklist", sum(len(v) for v in missed_prs.values())) # these PRs are released by branch and not by tag, and we require by tag. # we have not fetched them yet because they are in pr_blacklist # and they are in pr_blacklist because we have previously loaded them in # load_precomputed_done_candidates(); # now fetch only these `missed_prs`, respecting the filters. pr_whitelist = PullRequest.node_id.in_( list(chain.from_iterable(missed_prs.values()))) tasks = [ cls.mappers.map_releases_to_prs( missed_prs, branches, default_branches, time_from, time_to, participants.get(PRParticipationKind.AUTHOR, []), participants.get(PRParticipationKind.MERGER, []), jira, release_settings, logical_settings, updated_min, updated_max, pdags, prefixer, account, meta_ids, mdb, pdb, rdb, cache, None, pr_whitelist, truncate, precomputed_observed=precomputed_observed), cls.fetch_prs( time_from, time_to, missed_prs.keys(), participants, labels, jira, exclude_inactive, None, pr_whitelist, branches, branch_dags, account, meta_ids, mdb, pdb, cache, updated_min=updated_min, updated_max=updated_max, fetch_branch_dags_task=fetch_branch_dags_task), ] missed_released_prs, (missed_prs, *_) = await gather(*tasks) concatenated.extend([missed_released_prs, missed_prs]) fetch_branch_dags_task.cancel() # 99.999% that it was awaited, but still prs = pd.concat(concatenated, copy=False) prs.reset_index(inplace=True) prs.drop_duplicates([PullRequest.node_id.name, PullRequest.repository_full_name.name], inplace=True) prs.set_index(PullRequest.node_id.name, inplace=True) prs.sort_index(inplace=True) if unreleased: unreleased = np.array([ unreleased[0].index.values, unreleased[0][PullRequest.repository_full_name.name].values, ], dtype=object).T tasks = [ # bypass the useless inner caching by calling _mine_by_ids directly cls._mine_by_ids( prs, unreleased, repositories, time_to, releases, matched_bys, branches, default_branches, release_dags, release_settings, logical_settings, prefixer, account, meta_ids, mdb, pdb, rdb, cache, truncate=truncate, with_jira=with_jira_map, extra_releases_task=deployed_releases_task, physical_repositories=physical_repos), OpenPRFactsLoader.load_open_pull_request_facts(prs, repositories, account, pdb), ] (dfs, unreleased_facts, unreleased_prs_event), open_facts = await gather( *tasks, op="PullRequestMiner.mine/external_data") to_drop = cls._find_drop_by_participants(dfs, participants, None if truncate else time_to) to_drop |= cls._find_drop_by_labels(dfs, labels) if exclude_inactive: to_drop |= cls._find_drop_by_inactive(dfs, time_from, time_to) cls._drop(dfs, to_drop) facts = open_facts for k, v in unreleased_facts.items(): # merged unreleased PR precomputed facts if v is not None: # it can be None because the pdb table is filled in two steps facts[k] = v dfs.prs = split_logical_repositories( dfs.prs, dfs.labels, repositories, logical_settings) return dfs, facts, repositories, participants, labels, jira, with_jira_map, matched_bys, \ unreleased_prs_event _deserialize_mine_cache = staticmethod(_deserialize_mine_cache) _postprocess_cached_prs = staticmethod(_postprocess_cached_prs) def _deserialize_mine_by_ids_cache( buffer: bytes) -> Tuple[PRDataFrames, PullRequestFactsMap, asyncio.Event]: dfs, facts = pickle.loads(buffer) event = asyncio.Event() event.set() return dfs, facts, event @classmethod @cached( exptime=lambda cls, **_: cls.CACHE_TTL, serialize=lambda r: pickle.dumps(r[:-1]), deserialize=_deserialize_mine_by_ids_cache, key=lambda prs, unreleased, releases, time_to, logical_settings, truncate=True, with_jira=True, **_: ( # noqa ",".join(map(str, prs.index.values)), ",".join(map(str, unreleased)), ",".join(map(str, releases[Release.node_id.name].values)), time_to.timestamp(), logical_settings, truncate, with_jira, ), ) async def mine_by_ids(cls, prs: pd.DataFrame, unreleased: Collection[Tuple[int, str]], logical_repositories: Union[Set[str], KeysView[str]], time_to: datetime, releases: pd.DataFrame, matched_bys: Dict[str, ReleaseMatch], branches: pd.DataFrame, default_branches: Dict[str, str], dags: Dict[str, DAG], release_settings: ReleaseSettings, logical_settings: LogicalRepositorySettings, prefixer: Prefixer, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, rdb: Database, cache: Optional[aiomcache.Client], truncate: bool = True, with_jira: bool = True, physical_repositories: Optional[Union[Set[str], KeysView[str]]] = None, ) -> Tuple[PRDataFrames, PullRequestFactsMap, asyncio.Event]: """ Fetch PR metadata for certain PRs. :param prs: pandas DataFrame with fetched PullRequest-s. Only the details about those PRs \ will be loaded from the DB. :param truncate: Do not load anything after `time_to`. :param with_jira: Value indicating whether to load the mapped JIRA issues. :return: 1. List of mined DataFrame-s. \ 2. mapping to PullRequestFacts of unreleased merged PRs. \ 3. Synchronization for updating the pdb table with merged unreleased PRs. """ return await cls._mine_by_ids( prs, unreleased, logical_repositories, time_to, releases, matched_bys, branches, default_branches, dags, release_settings, logical_settings, prefixer, account, meta_ids, mdb, pdb, rdb, cache, truncate=truncate, with_jira=with_jira, physical_repositories=physical_repositories) _deserialize_mine_by_ids_cache = staticmethod(_deserialize_mine_by_ids_cache) @classmethod @sentry_span async def _mine_by_ids(cls, prs: pd.DataFrame, unreleased: Collection[Tuple[int, str]], logical_repositories: Union[Set[str], KeysView[str]], time_to: datetime, releases: pd.DataFrame, matched_bys: Dict[str, ReleaseMatch], branches: pd.DataFrame, default_branches: Dict[str, str], dags: Dict[str, DAG], release_settings: ReleaseSettings, logical_settings: LogicalRepositorySettings, prefixer: Prefixer, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, rdb: Database, cache: Optional[aiomcache.Client], truncate: bool = True, with_jira: bool = True, extra_releases_task: Optional[asyncio.Task] = None, physical_repositories: Optional[Union[Set[str], KeysView[str]]] = None, ) -> Tuple[PRDataFrames, PullRequestFactsMap, asyncio.Event]: assert prs.index.nlevels == 1 node_ids = prs.index if len(prs) > 0 else set() facts = {} # precomputed PullRequestFacts about merged unreleased PRs unreleased_prs_event: asyncio.Event = None merged_unreleased_indexes = [] @sentry_span async def fetch_reviews(): return await cls._read_filtered_models( PullRequestReview, node_ids, time_to, meta_ids, mdb, columns=[PullRequestReview.submitted_at, PullRequestReview.state, PullRequestReview.user_login, PullRequestReview.user_node_id], created_at=truncate) @sentry_span async def fetch_review_comments(): return await cls._read_filtered_models( PullRequestReviewComment, node_ids, time_to, meta_ids, mdb, columns=[PullRequestReviewComment.created_at, PullRequestReviewComment.user_login, PullRequestReviewComment.user_node_id], created_at=truncate) @sentry_span async def fetch_review_requests(): return await cls._read_filtered_models( PullRequestReviewRequest, node_ids, time_to, meta_ids, mdb, columns=[PullRequestReviewRequest.created_at], created_at=truncate) @sentry_span async def fetch_comments(): return await cls._read_filtered_models( PullRequestComment, node_ids, time_to, meta_ids, mdb, columns=[PullRequestComment.created_at, PullRequestComment.user_login, PullRequestComment.user_node_id], created_at=truncate) @sentry_span async def fetch_commits(): return await cls._read_filtered_models( PullRequestCommit, node_ids, time_to, meta_ids, mdb, columns=[PullRequestCommit.authored_date, PullRequestCommit.committed_date, PullRequestCommit.author_login, PullRequestCommit.committer_login, PullRequestCommit.author_user_id, PullRequestCommit.committer_user_id], created_at=truncate) @sentry_span async def fetch_labels(): return await cls._read_filtered_models( PullRequestLabel, node_ids, time_to, meta_ids, mdb, columns=[sql.func.lower(PullRequestLabel.name).label(PullRequestLabel.name.name), PullRequestLabel.description, PullRequestLabel.color], created_at=False) fetch_labels_task = asyncio.create_task( fetch_labels(), name="PullRequestMiner.mine_by_ids/fetch_labels") @sentry_span async def map_releases(): anyhow_merged_mask = prs[PullRequest.merged_at.name].notnull().values if truncate: merged_mask = (prs[PullRequest.merged_at.name] < time_to).values nonlocal merged_unreleased_indexes merged_unreleased_indexes = np.flatnonzero(anyhow_merged_mask & ~merged_mask) else: merged_mask = anyhow_merged_mask if len(unreleased): prs_index = np.char.add( int_to_str(prs.index.values), (prs_repos := prs[PullRequest.repository_full_name.name].values.astype("S")), ) if isinstance(unreleased, np.ndarray): unreleased_index = np.char.add( int_to_str(unreleased[:, 0].astype(int)), unreleased[:, 1].astype(prs_repos.dtype), ) else: unreleased_index = np.char.add( int_to_str(np.fromiter((p[0] for p in unreleased), int, len(unreleased))), np.array([p[1] for p in unreleased], dtype=prs_repos.dtype), ) merged_mask &= np.in1d(prs_index, unreleased_index, invert=True) merged_prs = prs.take(np.flatnonzero(merged_mask)) nonlocal releases if extra_releases_task is not None: await extra_releases_task extra_releases, _ = extra_releases_task.result() releases = releases.append(extra_releases, ignore_index=True) labels = None if logical_settings.has_logical_prs(): nonlocal physical_repositories if physical_repositories is None: physical_repositories = coerce_logical_repos(logical_repositories).keys() if logical_settings.has_prs_by_label(physical_repositories): await fetch_labels_task labels = fetch_labels_task.result() merged_prs = split_logical_repositories( merged_prs, labels, logical_repositories, logical_settings) else: merged_prs = split_logical_repositories(merged_prs, None, set(), logical_settings) df_facts, other_facts = await gather( cls.mappers.map_prs_to_releases( merged_prs, releases, matched_bys, branches, default_branches, time_to, dags, release_settings, prefixer, account, meta_ids, mdb, pdb, cache, labels=labels), MergedPRFactsLoader.load_merged_unreleased_pull_request_facts( prs.take(np.flatnonzero(anyhow_merged_mask & ~merged_mask)), nonemax(releases[Release.published_at.name].nonemax(), time_to), LabelFilter.empty(), matched_bys, default_branches, release_settings, prefixer, account, pdb), ) nonlocal facts nonlocal unreleased_prs_event df, facts, unreleased_prs_event = df_facts facts.update(other_facts) return df async def _fetch_labels(): await fetch_labels_task return fetch_labels_task.result() @sentry_span async def fetch_jira(): _map = aliased(NodePullRequestJiraIssues, name="m") _issue = aliased(Issue, name="i") _issue_epic = aliased(Issue, name="e") selected = [ PullRequest.node_id, _issue.key, _issue.title, _issue.type, _issue.status, _issue.created, _issue.updated, _issue.resolved, _issue.labels, _issue.components, _issue.acc_id, _issue_epic.key.label("epic"), ] if not with_jira: df = pd.DataFrame(columns=[col.name for col in selected if col not in (_issue.acc_id, _issue.components)]) df[PullRequest.node_id.name] = df[PullRequest.node_id.name].astype(int) return df.set_index([PullRequest.node_id.name, _issue.key.name]) df = await read_sql_query( sql.select(selected).select_from(sql.join( PullRequest, sql.join( _map, sql.join(_issue, _issue_epic, sql.and_( _issue.epic_id == _issue_epic.id, _issue.acc_id == _issue_epic.acc_id), isouter=True), sql.and_(_map.jira_id == _issue.id, _map.jira_acc == _issue.acc_id)), sql.and_(PullRequest.node_id == _map.node_id, PullRequest.acc_id == _map.node_acc), )).where(sql.and_(PullRequest.node_id.in_(node_ids), PullRequest.acc_id.in_(meta_ids), _issue.is_deleted.is_(False))), mdb, columns=selected, index=[PullRequest.node_id.name, _issue.key.name]) if df.empty: df.drop([Issue.acc_id.name, Issue.components.name], inplace=True, axis=1) return df components = df[[Issue.acc_id.name, Issue.components.name]] \ .groupby(Issue.acc_id.name, sort=False).aggregate(lambda s: set(flatten(s))) rows = await mdb.fetch_all( sql.select([Component.acc_id, Component.id, Component.name]) .where(sql.or_(*(sql.and_(Component.id.in_(vals), Component.acc_id == int(acc)) for acc, vals in zip(components.index.values, components[Issue.components.name].values))))) cmap = {} for r in rows: cmap.setdefault(r[0], {})[r[1]] = r[2].lower() df[Issue.labels.name] = ( df[Issue.labels.name].apply(lambda i: [s.lower() for s in (i or [])]) + df[[Issue.acc_id.name, Issue.components.name]] .apply(lambda row: ([cmap[row[Issue.acc_id.name]][c] for c in row[Issue.components.name]] if row[Issue.components.name] is not None else []), axis=1) ) df.drop([Issue.acc_id.name, Issue.components.name], inplace=True, axis=1) return df # the order is important: it provides the best performance # we launch coroutines from the heaviest to the lightest dfs = await gather( fetch_commits(), map_releases(), fetch_jira(), fetch_reviews(), fetch_review_comments(), fetch_review_requests(), fetch_comments(), _fetch_labels(), cls.fetch_pr_deployments(node_ids, prefixer, account, pdb, rdb), ) dfs = PRDataFrames(prs, *dfs) if len(merged_unreleased_indexes): # if we truncate and there are PRs merged after `time_to` merged_unreleased_prs = prs.take(merged_unreleased_indexes) label_matches = np.flatnonzero(np.in1d( dfs.labels.index.get_level_values(0).values, merged_unreleased_prs.index.values)) labels = {} for k, v in zip(dfs.labels.index.get_level_values(0).values[label_matches], dfs.labels[PullRequestLabel.name.name].values[label_matches]): try: labels[k].append(v) except KeyError: labels[k] = [v] other_unreleased_prs_event = asyncio.Event() unreleased_prs_event = AllEvents(unreleased_prs_event, other_unreleased_prs_event) merged_unreleased_prs = split_logical_repositories( merged_unreleased_prs, dfs.labels, logical_repositories, logical_settings) await defer(update_unreleased_prs( merged_unreleased_prs, pd.DataFrame(), time_to, labels, matched_bys, default_branches, release_settings, account, pdb, other_unreleased_prs_event), "update_unreleased_prs/truncate(%d)" % len(merged_unreleased_indexes)) return dfs, facts, unreleased_prs_event @classmethod @sentry_span async def mine(cls, date_from: date, date_to: date, time_from: datetime, time_to: datetime, repositories: Set[str], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, with_jira_map: bool, branches: pd.DataFrame, default_branches: Dict[str, str], exclude_inactive: bool, release_settings: ReleaseSettings, logical_settings: LogicalRepositorySettings, prefixer: Prefixer, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, rdb: Database, cache: Optional[aiomcache.Client], updated_min: Optional[datetime] = None, updated_max: Optional[datetime] = None, pr_blacklist: Optional[Tuple[Collection[int], Dict[str, List[int]]]] = None, truncate: bool = True, ) -> Tuple["PullRequestMiner", PullRequestFactsMap, Dict[str, ReleaseMatch], asyncio.Event]: """ Mine metadata about pull requests according to the numerous filters. :param account: State DB account ID. :param meta_ids: Metadata (GitHub) account IDs. :param date_from: Fetch PRs created starting from this date, inclusive. :param date_to: Fetch PRs created ending with this date, inclusive. :param time_from: Precise timestamp of since when PR events are allowed to happen. :param time_to: Precise timestamp of until when PR events are allowed to happen. :param repositories: PRs must belong to these repositories (prefix excluded). :param participants: PRs must have these user IDs in the specified participation roles \ (OR aggregation). An empty dict means everybody. :param labels: PRs must be labeled according to this filter's include & exclude sets. :param jira: JIRA filters for those PRs that are matched with JIRA issues. :param with_jira_map: Value indicating whether we must load JIRA issues mapped to PRs. \ This is independent from filtering PRs by `jira`. :param branches: Preloaded DataFrame with branches in the specified repositories. :param default_branches: Mapping from repository names to their default branch names. :param exclude_inactive: Ors must have at least one event in the given time frame. :param release_settings: Release match settings of the account. :param logical_settings: Logical repository settings of the account. :param updated_min: PRs must have the last update timestamp not older than it. :param updated_max: PRs must have the last update timestamp not newer than or equal to it. :param mdb: Metadata db instance. :param pdb: Precomputed db instance. :param rdb: Persistentdata db instance. :param cache: memcached client to cache the collected data. :param pr_blacklist: completely ignore the existence of these PR node IDs. \ The second tuple element is the ambiguous PRs: released by branch \ while there were no tag releases and the strategy is `tag_or_branch`. :param truncate: activate the "time machine" and erase everything after `time_to`. :return: 1. New `PullRequestMiner` with the PRs satisfying to the specified filters. \ 2. Precomputed facts about unreleased pull requests. \ This is an optimization which breaks the abstraction a bit. \ 3. `matched_bys` - release matches for each repository. \ 4. Synchronization for updating the pdb table with merged unreleased PRs. \ Another abstraction leakage that we have to deal with. """ date_from_with_time = datetime.combine(date_from, datetime.min.time(), tzinfo=timezone.utc) date_to_with_time = datetime.combine(date_to, datetime.min.time(), tzinfo=timezone.utc) assert time_from >= date_from_with_time assert time_to <= date_to_with_time dfs, facts, _, _, _, _, _, matched_bys, event = await cls._mine( date_from, date_to, repositories, participants, labels, jira, with_jira_map, branches, default_branches, exclude_inactive, release_settings, logical_settings, updated_min, updated_max, pr_blacklist, truncate, prefixer, account, meta_ids, mdb, pdb, rdb, cache) cls._truncate_prs(dfs, time_from, time_to) return cls(dfs), facts, matched_bys, event @classmethod @sentry_span async def fetch_prs(cls, time_from: Optional[datetime], time_to: datetime, repositories: Union[Set[str], KeysView[str]], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, exclude_inactive: bool, pr_blacklist: Optional[BinaryExpression], pr_whitelist: Optional[BinaryExpression], branches: pd.DataFrame, dags: Optional[Dict[str, DAG]], account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, cache: Optional[aiomcache.Client], columns=PullRequest, updated_min: Optional[datetime] = None, updated_max: Optional[datetime] = None, fetch_branch_dags_task: Optional[asyncio.Task] = None, with_labels: bool = False, ) -> Tuple[pd.DataFrame, Dict[str, DAG], Optional[pd.DataFrame]]: """ Query pull requests from mdb that satisfy the given filters. Note: we cannot filter by regular PR labels here due to the DB schema limitations, so the caller is responsible for fetching PR labels and filtering by them afterward. Besides, we cannot filter by participation roles different from AUTHOR and MERGER. Note: we cannot load PRs that closed before time_from but released between `time_from` and `time_to`. Hence the caller should map_releases_to_prs separately. There can be duplicates: PR closed between `time_from` and `time_to` and released between `time_from` and `time_to`. Note: we cannot load PRs that closed before time_from but deployed between `time_from` and `time_to`. Hence the caller should map_deployments_to_prs separately. There can be duplicates: PR closed between `time_from` and `time_to` and deployed between `time_from` and `time_to`. We have to resolve the merge commits of rebased PRs so that they do not appear force-push-dropped. :return: pandas DataFrame with the PRs indexed by node_id; \ commit DAGs that contain the branch heads; \ (if was required) DataFrame with PR labels. """ assert isinstance(mdb, Database) assert isinstance(pdb, Database) pr_list_coro = cls._fetch_prs_by_filters( time_from, time_to, repositories, participants, labels, jira, exclude_inactive, pr_blacklist, pr_whitelist, meta_ids, mdb, cache, columns=columns, updated_min=updated_min, updated_max=updated_max, ) if columns is not PullRequest and PullRequest.merge_commit_id not in columns and \ PullRequest.merge_commit_sha not in columns: prs, labels = await pr_list_coro return prs, dags, labels if with_labels else None if fetch_branch_dags_task is None: fetch_branch_dags_task = cls._fetch_branch_dags( repositories, dags, branches, account, meta_ids, mdb, pdb, cache) dags, (prs, labels) = await gather(fetch_branch_dags_task, pr_list_coro) async def load_labels(): if not with_labels: return None if labels is not None: return labels return await fetch_labels_to_filter(prs.index.values, meta_ids, mdb) prs, labels = await gather( cls.mark_dead_prs(prs, branches, dags, meta_ids, mdb, columns), load_labels(), ) return prs, dags, labels @classmethod async def mark_dead_prs(cls, prs: pd.DataFrame, branches: pd.DataFrame, dags: Dict[str, DAG], meta_ids: Tuple[int, ...], mdb: Database, columns=PullRequest, ) -> pd.DataFrame: """ Add and fill "dead" column in the `prs` DataFrame. A PR is considered dead (force-push-dropped) if it does not exit in the commit DAG and \ we cannot detect its rebased clone. """ prs["dead"] = False if branches.empty: return prs merged_prs = prs.take(np.nonzero(( prs[PullRequest.merged_at.name] <= datetime.now(timezone.utc) - timedelta(hours=1) ).values)[0]) # timedelta(hours=1) must match the `exptime` of `fetch_repository_commits()` # commits DAGs are cached and may be not fully up to date, so otherwise some PRs may # appear as wrongly force push dropped; see also: DEV-554 if merged_prs.empty: return prs pr_numbers = merged_prs[PullRequest.number.name].values assert merged_prs.index.nlevels == 1 pr_node_ids = merged_prs.index.values pr_repos = merged_prs[PullRequest.repository_full_name.name].values repo_order = np.argsort(pr_repos) unique_pr_repos, pr_repo_counts = np.unique(pr_repos, return_counts=True) pr_merge_hashes = \ merged_prs[PullRequest.merge_commit_sha.name].values.astype("S40")[repo_order] pos = 0 queries = [] dead = [] acc_id_cond = PushCommit.acc_id.in_(meta_ids) min_commit_date = merged_prs[PullRequest.merged_at.name].min() committed_date_cond = PushCommit.committed_date >= min_commit_date substr = sql.func.substr(PushCommit.message, 1, 32) sqlite = mdb.url.dialect == "sqlite" for repo, n_prs in zip(unique_pr_repos, pr_repo_counts): begin_pos = pos end_pos = pos + n_prs pos += n_prs repo_pr_merge_hashes = pr_merge_hashes[begin_pos:end_pos] dag_hashes = dags[repo][0] if len(dag_hashes) == 0: # no branches found in `fetch_repository_commits()` continue not_found = dag_hashes[ searchsorted_inrange(dag_hashes, repo_pr_merge_hashes) ] != repo_pr_merge_hashes indexes = repo_order[begin_pos:end_pos][not_found] dead.extend(dead_node_ids := pr_node_ids[indexes]) repo_cond = PushCommit.repository_full_name == repo for pr_node_id, n in zip(dead_node_ids, pr_numbers[indexes]): if sqlite: # SQLite does not support parameter recycling acc_id_cond = PushCommit.acc_id.in_(meta_ids) committed_date_cond = PushCommit.committed_date >= min_commit_date substr = sql.func.substr(PushCommit.message, 1, 32) repo_cond = PushCommit.repository_full_name == repo queries.append( sql.select([PushCommit.node_id.label("commit_node_id"), PushCommit.sha.label("sha"), sql.literal_column("'" + repo + "'").label("repo"), sql.literal_column(str(pr_node_id)).label("pr_node_id"), PushCommit.committed_date, PushCommit.pushed_date]) .where(sql.and_(acc_id_cond, repo_cond, committed_date_cond, substr.like("Merge pull request #%d from %%" % n)))) if not queries: return prs prs.loc[dead, "dead"] = True # we may have MANY queries here and Postgres responds with StatementTooComplexError # split them by 100-sized batches to stay below the resource limits batch_size = 100 tasks = [] for batch_index in range(0, len(queries), batch_size): batch = queries[batch_index:batch_index + batch_size] if len(batch) == 1: query = batch[0] else: query = sql.union_all(*batch) tasks.append(read_sql_query(query, mdb, [ "commit_node_id", "sha", "repo", "pr_node_id", PushCommit.committed_date, PushCommit.pushed_date, ])) resolveds = await gather(*tasks, op="mark_dead_prs commit SQL UNION ALL-s") resolved = pd.concat(resolveds) # look up the candidates in the DAGs pr_repos = resolved["repo"].values repo_order = np.argsort(pr_repos) unique_pr_repos, pr_repo_counts = np.unique(pr_repos, return_counts=True) pr_merge_hashes = resolved["sha"].values.astype("S")[repo_order] pos = 0 alive_indexes = [] for repo, n_prs in zip(unique_pr_repos, pr_repo_counts): begin_pos = pos end_pos = pos + n_prs pos += n_prs repo_pr_merge_hashes = pr_merge_hashes[begin_pos:end_pos] dag_hashes = dags[repo][0] found = dag_hashes[ searchsorted_inrange(dag_hashes, repo_pr_merge_hashes) ] == repo_pr_merge_hashes alive_indexes.extend(repo_order[begin_pos:end_pos][found]) if (resolved := resolved.take(alive_indexes)).empty: return prs # take the commit that was committed the latest; if there are multiple, prefer the one # with pushed_date = null resolved.sort_values([PushCommit.committed_date.name, PushCommit.pushed_date.name], ascending=False, inplace=True, na_position="first") resolved.drop_duplicates("pr_node_id", inplace=True) # patch the commit IDs and the hashes alive_node_ids = resolved["pr_node_id"].values if columns is PullRequest or PullRequest.merge_commit_id in columns: prs.loc[alive_node_ids, PullRequest.merge_commit_id.name] = \ resolved["commit_node_id"].values if columns is PullRequest or PullRequest.merge_commit_sha in columns: prs.loc[alive_node_ids, PullRequest.merge_commit_sha.name] = resolved["sha"].values prs.loc[alive_node_ids, "dead"] = False return prs @classmethod async def _fetch_branch_dags(cls, repositories: Iterable[str], dags: Optional[Dict[str, DAG]], branches: pd.DataFrame, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, cache: Optional[aiomcache.Client], ) -> Dict[str, DAG]: if dags is None: dags = await fetch_precomputed_commit_history_dags( repositories, account, pdb, cache) return await fetch_repository_commits_no_branch_dates( dags, branches, BRANCH_FETCH_COMMITS_COLUMNS, True, account, meta_ids, mdb, pdb, cache) @classmethod @sentry_span async def _fetch_prs_by_filters(cls, time_from: Optional[datetime], time_to: datetime, repositories: Set[str], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, exclude_inactive: bool, pr_blacklist: Optional[BinaryExpression], pr_whitelist: Optional[BinaryExpression], meta_ids: Tuple[int, ...], mdb: Database, cache: Optional[aiomcache.Client], columns=PullRequest, updated_min: Optional[datetime] = None, updated_max: Optional[datetime] = None, ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: assert (updated_min is None) == (updated_max is None) filters = [ (sql.case( [(PullRequest.closed, PullRequest.closed_at)], else_=sql.text("'3000-01-01'"), # backed up with a DB index ) >= time_from) if time_from is not None else sql.true(), PullRequest.created_at < time_to, PullRequest.acc_id.in_(meta_ids), PullRequest.hidden.is_(False), PullRequest.repository_full_name.in_(repositories), ] if exclude_inactive and updated_min is None: # this does not provide 100% guarantee because it can be after time_to, # we need to properly filter later filters.append(PullRequest.updated_at >= time_from) if updated_min is not None: filters.append(PullRequest.updated_at.between(updated_min, updated_max)) if pr_blacklist is not None: filters.append(pr_blacklist) if pr_whitelist is not None: filters.append(pr_whitelist) if len(participants) == 1: if PRParticipationKind.AUTHOR in participants: filters.append(PullRequest.user_login.in_( participants[PRParticipationKind.AUTHOR])) elif PRParticipationKind.MERGER in participants: filters.append( PullRequest.merged_by_login.in_(participants[PRParticipationKind.MERGER])) elif len(participants) == 2 and PRParticipationKind.AUTHOR in participants and \ PRParticipationKind.MERGER in participants: filters.append(sql.or_( PullRequest.user_login.in_(participants[PRParticipationKind.AUTHOR]), PullRequest.merged_by_login.in_(participants[PRParticipationKind.MERGER]), )) if columns is PullRequest: selected_columns = [PullRequest] remove_acc_id = False else: selected_columns = columns = list(columns) if remove_acc_id := (PullRequest.acc_id not in selected_columns): selected_columns.append(PullRequest.acc_id) if PullRequest.merge_commit_id in columns or PullRequest.merge_commit_sha in columns: # needed to resolve rebased merge commits if PullRequest.number not in selected_columns: selected_columns.append(PullRequest.number) if labels: singles, multiples = LabelFilter.split(labels.include) embedded_labels_query = not multiples if all_in_labels := (set(singles + list(chain.from_iterable(multiples)))): filters.append( sql.exists().where(sql.and_( PullRequestLabel.acc_id == PullRequest.acc_id, PullRequestLabel.pull_request_node_id == PullRequest.node_id, sql.func.lower(PullRequestLabel.name).in_(all_in_labels), ))) if labels.exclude: filters.append( sql.not_(sql.exists().where(sql.and_( PullRequestLabel.acc_id == PullRequest.acc_id, PullRequestLabel.pull_request_node_id == PullRequest.node_id, sql.func.lower(PullRequestLabel.name).in_(labels.exclude), )))) if not jira: query = sql.select(selected_columns).where(sql.and_(*filters)) else: query = await generate_jira_prs_query( filters, jira, None, mdb, cache, columns=selected_columns) prs = await read_sql_query(query, mdb, columns, index=PullRequest.node_id.name) if remove_acc_id: del prs[PullRequest.acc_id.name] if PullRequest.closed.name in prs: cls.adjust_pr_closed_merged_timestamps(prs) _, first_encounters = np.unique(prs.index.values, return_index=True) if len(first_encounters) < len(prs): prs = prs.take(first_encounters) if not labels or embedded_labels_query: return prs, None df_labels = await fetch_labels_to_filter(prs.index, meta_ids, mdb) left = cls.find_left_by_labels( prs.index, df_labels.index, df_labels[PullRequestLabel.name.name].values, labels) prs = prs.take(np.flatnonzero(prs.index.isin(left))) return prs, df_labels @staticmethod def adjust_pr_closed_merged_timestamps(prs_df: pd.DataFrame) -> None: """Force set `closed_at` and `merged_at` to NULL if not `closed`. Remove `closed`.""" not_closed = ~prs_df[PullRequest.closed.name].values prs_df.loc[not_closed, PullRequest.closed_at.name] = pd.NaT prs_df.loc[not_closed, PullRequest.merged_at.name] = pd.NaT prs_df.drop(columns=PullRequest.closed.name, inplace=True) @classmethod @sentry_span async def _fetch_inactive_merged_unreleased_prs( cls, time_from: datetime, time_to: datetime, repos: Union[Set[str], KeysView[str]], participants: PRParticipants, labels: LabelFilter, jira: JIRAFilter, default_branches: Dict[str, str], release_settings: ReleaseSettings, has_logical_repos: bool, prefixer: Prefixer, account: int, meta_ids: Tuple[int, ...], mdb: Database, pdb: Database, cache: Optional[aiomcache.Client]) -> pd.DataFrame: node_id_map = await discover_inactive_merged_unreleased_prs( time_from, time_to, repos, participants, labels, default_branches, release_settings, prefixer, account, pdb, cache) if not jira: return await read_sql_query(sql.select([PullRequest]) .where(PullRequest.node_id.in_(node_id_map)), mdb, PullRequest, index=PullRequest.node_id.name) df = await cls.filter_jira(node_id_map, jira, meta_ids, mdb, cache) if not has_logical_repos: return df append = defaultdict(list) node_ids = df.index.values repository_full_names = df[PullRequest.repository_full_name.name].values for i, (pr_node_id, physical_repo) in enumerate(zip(node_ids, repository_full_names)): logical_repos = node_id_map[pr_node_id] if physical_repo != (first_logical_repo := logical_repos[0]): repository_full_names[i] = first_logical_repo for logical_repo in logical_repos[1:]: append[logical_repo].append(i) if append: chunks = [] for logical_repo, indexes in append.items(): subdf = df.take(indexes) subdf[PullRequest.repository_full_name.name] = logical_repo chunks.append(subdf) df = pd.concat([df] + chunks) return df @classmethod @sentry_span async def filter_jira(cls, pr_node_ids: Collection[int], jira: JIRAFilter, meta_ids: Tuple[int, ...], mdb: Database, cache: Optional[aiomcache.Client], columns=PullRequest) -> pd.DataFrame: """Filter PRs by JIRA properties.""" assert jira filters = [PullRequest.node_id.in_(pr_node_ids)] query = await generate_jira_prs_query(filters, jira, meta_ids, mdb, cache, columns=columns) query = query.with_statement_hint(f"Rows(pr repo #{len(pr_node_ids)})") return await read_sql_query( query, mdb, columns, index=PullRequest.node_id.name) @classmethod @sentry_span async def fetch_pr_deployments(cls, pr_node_ids: Iterable[int], prefixer: Prefixer, account: int, pdb: Database, rdb: Database, ) -> pd.DataFrame: """Load the deployments for each PR node ID.""" ghprd = GitHubPullRequestDeployment cols = [ghprd.pull_request_id, ghprd.deployment_name, ghprd.repository_id] df = await read_sql_query( sql.select(cols) .where(sql.and_(ghprd.acc_id == account, ghprd.pull_request_id.in_any_values(pr_node_ids))), con=pdb, columns=cols, index=ghprd.deployment_name.name) cols = [DeploymentNotification.name, DeploymentNotification.environment, DeploymentNotification.conclusion, DeploymentNotification.finished_at] details = await read_sql_query( sql.select(cols) .where(sql.and_(DeploymentNotification.account_id == account, DeploymentNotification.name.in_(df.index.values))), con=rdb, columns=cols, index=DeploymentNotification.name.name, ) details.index.name = ghprd.deployment_name.name df = df.join(details) df.reset_index(inplace=True) df.set_index([ghprd.pull_request_id.name, ghprd.deployment_name.name], inplace=True) repo_node_to_name = prefixer.repo_node_to_name.get df[PullRequest.repository_full_name.name] = \ [repo_node_to_name(r) for r in df[ghprd.repository_id.name].values] return df @staticmethod def _check_participants_compatibility(cached_participants: PRParticipants, participants: PRParticipants) -> bool: if not cached_participants: return True if not participants: return False for k, v in participants.items(): if v - cached_participants.get(k, set()): return False return True @classmethod @sentry_span def _remove_spurious_prs(cls, time_from: datetime, dfs: PRDataFrames) -> None: old_releases = np.where(dfs.releases[Release.published_at.name] < time_from)[0] if len(old_releases) == 0: return cls._drop(dfs, dfs.releases.index[old_releases]) @classmethod def _drop(cls, dfs: PRDataFrames, pr_ids: Collection[int]) -> None: if len(pr_ids) == 0: return for df in dfs.values(): df.drop(pr_ids, level=0 if isinstance(df.index, pd.MultiIndex) else None, inplace=True, errors="ignore") @classmethod @sentry_span def _find_drop_by_participants(cls, dfs: PRDataFrames, participants: PRParticipants, time_to: Optional[datetime], ) -> pd.Index: if not participants: return pd.Index([]) if time_to is not None: for df_name, col in (("commits", PullRequestCommit.committed_date), ("reviews", PullRequestReview.created_at), ("review_comments", PullRequestReviewComment.created_at), ("review_requests", PullRequestReviewRequest.created_at), ("comments", PullRequestComment.created_at)): df = getattr(dfs, df_name) setattr(dfs, df_name, df.take(np.where(df[col.name] < time_to)[0])) passed = [] dict_iter = ( (dfs.prs, PullRequest.user_login, None, PRParticipationKind.AUTHOR), (dfs.prs, PullRequest.merged_by_login, PullRequest.merged_at, PRParticipationKind.MERGER), # noqa (dfs.releases, Release.author, Release.published_at, PRParticipationKind.RELEASER), ) for df, part_col, date_col, pk in dict_iter: col_parts = participants.get(pk) if not col_parts: continue mask = df[part_col.name].isin(col_parts) if time_to is not None and date_col is not None: mask &= df[date_col.name] < time_to passed.append(df.index.get_level_values(0).take(np.flatnonzero(mask))) reviewers = participants.get(PRParticipationKind.REVIEWER) if reviewers: ulkr = PullRequestReview.user_login.name ulkp = PullRequest.user_login.name user_logins = pd.merge(dfs.reviews[ulkr].droplevel(1), dfs.prs[ulkp], left_index=True, right_index=True, how="left", copy=False) ulkr += "_x" ulkp += "_y" passed.append(user_logins.index.take(np.where( (user_logins[ulkr] != user_logins[ulkp]) & user_logins[ulkr].isin(reviewers), )[0]).unique()) for df, col, pk in ( (dfs.comments, PullRequestComment.user_login, PRParticipationKind.COMMENTER), (dfs.commits, PullRequestCommit.author_login, PRParticipationKind.COMMIT_AUTHOR), (dfs.commits, PullRequestCommit.committer_login, PRParticipationKind.COMMIT_COMMITTER)): # noqa col_parts = participants.get(pk) if not col_parts: continue passed.append(df.index.get_level_values(0).take(np.flatnonzero( df[col.name].isin(col_parts))).unique()) while len(passed) > 1: new_passed = [] for i in range(0, len(passed), 2): if i + 1 < len(passed): new_passed.append(passed[i].union(passed[i + 1])) else: new_passed.append(passed[i]) passed = new_passed return dfs.prs.index.get_level_values(0).difference(passed[0]) @classmethod @sentry_span def _find_drop_by_labels(cls, dfs: PRDataFrames, labels: LabelFilter) -> pd.Index: if not labels: return pd.Index([]) df_labels_index = dfs.labels.index.get_level_values(0) df_labels_names = dfs.labels[PullRequestLabel.name.name].values pr_node_ids = dfs.prs.index.get_level_values(0) left = cls.find_left_by_labels(pr_node_ids, df_labels_index, df_labels_names, labels) if not labels.include: return df_labels_index.difference(left) return pr_node_ids.difference(left) @classmethod def find_left_by_labels(cls, full_index: pd.Index, df_labels_index: pd.Index, df_labels_names: Sequence[str], labels: LabelFilter) -> pd.Index: """ Post-filter PRs by their loaded labels. :param full_index: All the PR node IDs, not just those that correspond to labeled PRs. :param df_labels_index: (PR node ID, label name) DataFrame index. There may be several \ rows for the same PR node ID. :param df_labels_names: (PR node ID, label name) DataFrame column. """ left_include = left_exclude = None if labels.include: singles, multiples = LabelFilter.split(labels.include) left_include = df_labels_index.take( np.nonzero(np.in1d(df_labels_names, singles))[0], ).unique() for group in multiples: passed = df_labels_index for label in group: passed = passed.intersection( df_labels_index.take(np.nonzero(df_labels_names == label)[0])) if passed.empty: break left_include = left_include.union(passed) if labels.exclude: left_exclude = full_index.difference(df_labels_index.take( np.nonzero(np.in1d(df_labels_names, list(labels.exclude)))[0], ).unique()) if labels.include: if labels.exclude: left = left_include.intersection(left_exclude) else: left = left_include else: left = left_exclude return left @classmethod @sentry_span def _find_drop_by_jira(cls, dfs: PRDataFrames, jira: JIRAFilter) -> pd.Index: if not jira: return pd.Index([]) left = [] jira_index = dfs.jiras.index.get_level_values(0) pr_node_ids = dfs.prs.index.get_level_values(0) if jira.labels: df_labels_names = dfs.jiras[Issue.labels.name].values df_labels_index = pd.Index(np.repeat(jira_index, [len(v) for v in df_labels_names])) df_labels_names = list(pd.core.common.flatten(df_labels_names)) # if jira.labels.include is empty, we effectively drop all unmapped PRs # that is the desired behavior left.append(cls.find_left_by_labels( pr_node_ids, df_labels_index, df_labels_names, jira.labels)) if jira.epics: left.append(jira_index.take(np.where( dfs.jiras["epic"].isin(jira.epics))[0]).unique()) if jira.issue_types: left.append(dfs.jiras.index.get_level_values(0).take(np.where( dfs.jiras[Issue.type.name].str.lower().isin(jira.issue_types))[0]).unique()) result = left[0] for other in left[1:]: result = result.intersection(other) return pr_node_ids.difference(result) @classmethod @sentry_span def _find_drop_by_inactive(cls, dfs: PRDataFrames, time_from: datetime, time_to: datetime) -> pd.Index: activities = [ dfs.prs[PullRequest.created_at.name], dfs.prs[PullRequest.closed_at.name], dfs.commits[PullRequestCommit.committed_date.name], dfs.review_requests[PullRequestReviewRequest.created_at.name], dfs.reviews[PullRequestReview.created_at.name], dfs.comments[PullRequestComment.created_at.name], dfs.releases[Release.published_at.name], dfs.deployments[DeploymentNotification.finished_at.name], ] for df in activities: if df.index.nlevels > 1: df.index = df.index.droplevel(1) df.name = "timestamp" activities =
pd.concat(activities, copy=False)
pandas.concat
import os import subprocess import re import json import time import pandas as pd from keyboard import press from shutil import copy from distutils.dir_util import copy_tree class Script(object): """Master object for holding and modifying .cmd script settings, creating .cmd files, and running them through Vensim/Vengine""" def __init__(self, controlfile): print("Initialising", self) for k, v in controlfile['simsettings'].items(): self.__setattr__(k, v if isinstance(v, str) else v.copy()) self.runcmd = "MENU>RUN_OPTIMIZE|o\n" self.savecmd = f"MENU>VDF2TAB|!|!|{self.savelist}|\n" self.basename = controlfile['baserunname'] self.cmdtext = [] def copy_model_files(self, dirname): """Create subdirectory and copy relevant model files to it, then change working directory to subdirectory""" os.makedirs(dirname, exist_ok=True) os.chdir(f"./{dirname}") # Copy needed files from the working directory into the sub-directory for s in ['model', 'payoff', 'optparm', 'sensitivity', 'savelist', 'senssavelist']: if getattr(self, s): copy(f"../{getattr(self, s)}", "./") for slist in ['data', 'changes']: for file in getattr(self, slist): copy(f"../{file}", "./") def add_suffixes(self, settingsfxs): """Cleanly modifies .cmd script settings with specified suffixes""" for s, sfx in settingsfxs.items(): if hasattr(self, s): self.__setattr__(s, getattr(self, s)[:-4] + sfx + getattr(self, s)[-4:]) def update_changes(self, chglist): """Reformats chglist as needed to extend changes settings; see compile_script for details""" # Combines and flattens list of paired change names & suffixes flatlist = [i for s in [[f"{self.basename}_{n}_{sfx}.out" for n in name] if isinstance(name, list) else [f"{self.basename}_{name}_{sfx}.out"] for name, sfx in chglist] for i in s] self.changes.extend(flatlist) def write_script(self, scriptname): """Compiles and writes actual .cmd script file""" self.cmdtext.extend(["SPECIAL>NOINTERACTION\n", f"SPECIAL>LOADMODEL|{self.model}\n"]) for s in ['payoff', 'sensitivity', 'optparm', 'savelist', 'senssavelist']: if hasattr(self, s): self.cmdtext.append(f"SIMULATE>{s}|{getattr(self, s)}\n") if hasattr(self, 'data'): datatext = ','.join(self.data) self.cmdtext.append(f"SIMULATE>DATA|\"{','.join(self.data)}\"\n") if hasattr(self, 'changes'): self.cmdtext.append(f"SIMULATE>READCIN|{self.changes[0]}\n") for file in self.changes[1:]: self.cmdtext.append(f"SIMULATE>ADDCIN|{file}\n") self.cmdtext.extend(["\n", f"SIMULATE>RUNNAME|{scriptname}\n", self.runcmd, self.savecmd, "SPECIAL>CLEARRUNS\n", "MENU>EXIT\n"]) with open(f"{scriptname}.cmd", 'w') as scriptfile: scriptfile.writelines(self.cmdtext) def run_script(self, scriptname, controlfile, subdir, logfile): """Runs .cmd script file using function robust to Vengine errors, and returns payoff value if applicable""" return run_vengine_script(scriptname, controlfile['vensimpath'], controlfile['timelimit'], '.log', check_opt, logfile) class CtyScript(Script): """Script subclass for country optimization runs""" def __init__(self, controlfile): super().__init__(controlfile) self.genparams = controlfile['genparams'].copy() def prep_subdir(self, scriptname, controlfile, subdir): """Creates subdirectory for country-specific files and output""" self.copy_model_files(subdir) copy(f"../{scriptname}.cmd", "./") self.genparams.append(f"[{subdir}]") for file in self.changes: clean_outfile(file, self.genparams) def run_script(self, scriptname, controlfile, subdir, logfile): self.prep_subdir(scriptname, controlfile, subdir) run_vengine_script(scriptname, controlfile['vensimpath'], controlfile['timelimit'], '.log', check_opt, logfile) copy(f"./{scriptname}.out", "..") # Copy the .out file to parent directory os.chdir("..") class CtyMCScript(CtyScript): """Script subclass for country MCMC optimizations""" def run_script(self, scriptname, controlfile, subdir, logfile): self.prep_subdir(scriptname, controlfile, subdir) run_vengine_script(scriptname, controlfile['vensimpath'], controlfile['timelimit'], '_MCMC_points.tab', check_MC, logfile) # Create downsample and copy to parent directory downsample(scriptname, controlfile['samplefrac']) copy(f"./{scriptname}_MCMC_sample_frac.tab", "..") copy(f"./{scriptname}.out", "..") # Copy the .out file to parent directory os.chdir("..") class LongScript(Script): """Script subclass for long calibration runs e.g. all-params""" def run_script(self, scriptname, controlfile, subdir, logfile): return run_vengine_script(scriptname, controlfile['vensimpath'], controlfile['timelimit']*5, '.log', check_opt, logfile) class ScenScript(Script): """Script subclass for scenario analysis with .cin files""" def update_changes(self, chglist): scen = chglist.pop() super().update_changes(chglist) self.changes.append(scen) chglist.append(scen) def run_script(self, scriptname, controlfile, subdir, logfile): return run_vengine_script(scriptname, controlfile['vensimpath'], controlfile['timelimit'], '.vdf', check_run, logfile) class ScenRunScript(ScenScript): """Script subclass for scenario analysis runs (not optimizations)""" def __init__(self, controlfile): super().__init__(controlfile) self.runcmd = "MENU>RUN|o\n" class ScenSensScript(ScenScript): """Script subclass for scenario sensitivity analysis""" def __init__(self, controlfile): super().__init__(controlfile) self.sensitivity = self.basename + '_full.vsc' self.runcmd = "MENU>RUN_SENSITIVITY|o\n" self.savecmd = f"MENU>SENS2FILE|!|!|%#[\n" class SMSensScript(ScenScript): """Script subclass for submodel sensitivity analysis""" def __init__(self, controlfile): super().__init__(controlfile) self.runcmd = "MENU>RUN_SENSITIVITY|o\n" self.savecmd = f"MENU>SENS2FILE|!|!|>T\n" def compile_script(controlfile, scriptclass, name, namesfx, settingsfxs, logfile, chglist=[], subdir=None): """Master function for assembling & running .cmd script Parameters ---------- controlfile : JSON object Master control file specifying sim settings, runname, etc. scriptclass : Script object Type of script object to instantiate, depending on run type name : str namesfx : str Along with `name`, specifies name added to baserunname for run settingsfxs : dict of str Dict of suffixes to append to filenames in simsettings; use to distinguish versions of e.g. .mdl, .voc, .vpd etc. files logfile : str of filename/path chglist : list of tuples of (str or list, str) Specifies changes files to be used in script; specify as tuples corresponding to `name`, `namesfx` of previous run .out to use; tuples can also take a list of `names` as first element, taking each with the same second element; `chglist` can also take one non-tuple str as its last element, which will be added directly (e.g. for policy scenario .cin files) subdir : str, optional Name of subdirectory to create/use for run, if applicable Returns ------- float Payoff value of the script run, if applicable, else 0 """ mainscript = scriptclass(controlfile) mainscript.add_suffixes(settingsfxs) mainscript.update_changes(chglist) scriptname = f"{mainscript.basename}_{name}_{namesfx}" mainscript.write_script(scriptname) return mainscript.run_script(scriptname, controlfile, subdir, logfile) def write_log(string, logfile): """Writes printed script output to a logfile""" with open(logfile,'a') as f: f.write(string + "\n") print(string) def check_opt(scriptname, logfile): """Check function for use with run_vengine_script for optimizations""" if check_zeroes(scriptname): write_log(f"Help! {scriptname} is being repressed!", logfile) return not check_zeroes(scriptname) def check_MC(scriptname, logfile, threshold=0.01): """Check function for use with run_vengine_script for MCMC""" if abs(compare_payoff(scriptname, logfile)) >= threshold: write_log(f"{scriptname} is a self-perpetuating autocracy! re-running MC...", logfile) return False return True def check_run(scriptname, logfile): """Check function for use with run_vengine_script for normal & sens runs""" if not os.path.exists(f"./{scriptname}.vdf"): write_log(f"Help! {scriptname} is being repressed!", logfile) return os.path.exists(f"./{scriptname}.vdf") def run_vengine_script(scriptname, vensimpath, timelimit, checkfile, check_func, logfile): """Call Vensim with command script using subprocess; monitor output file for changes to see if Vensim has stalled out, and restart if it does, or otherwise bugs out; return payoff if applicable""" write_log(f"Initialising {scriptname}!", logfile) while True: proc = subprocess.Popen(f"{vensimpath} \"./{scriptname}.cmd\"") time.sleep(2) press('enter') # Necessary to bypass the popup message in Vengine while True: try: # Break out of loop if run completes within specified timelimit proc.wait(timeout=timelimit) break except subprocess.TimeoutExpired: try: # If run not complete before timelimit, check to see if still ongoing write_log(f"Checking for {scriptname}{checkfile}...", logfile) timelag = time.time() - os.path.getmtime(f"./{scriptname}{checkfile}") if timelag < (timelimit): write_log(f"At {time.ctime()}, {round(timelag,3)}s since last output, " "continuing...", logfile) continue else: # If output isn't being written, kill and restart run proc.kill() write_log(f"At {time.ctime()}, {round(timelag,3)}s since last output. " "Calibration timed out!", logfile) break except FileNotFoundError: # If output isn't being written, kill and restart run proc.kill() write_log("Calibration timed out!", logfile) break if proc.returncode != 1: # Note that Vengine returns 1 on MENU>EXIT, not 0! write_log(f"Return code is {proc.returncode}", logfile) write_log("Vensim! Trying again...", logfile) continue try: # Ensure output is not bugged (specifics depend on type of run) if check_func(scriptname, logfile): break except FileNotFoundError: write_log("Outfile not found! That's it, I'm dead.", logfile) pass time.sleep(2) if os.path.exists(f"./{scriptname}.out"): payoffvalue = read_payoff(f"{scriptname}.out") write_log(f"Payoff for {scriptname} is {payoffvalue}, calibration complete!", logfile) return payoffvalue return 0 # Set default payoff value for simtypes that don't generate one def modify_mdl(country, modelname, newmodelname): """Opens .mdl as text, identifies Rgn subscript, and replaces with appropriate country name""" with open(modelname,'r') as f: filedata = f.read() rgnregex = re.compile(r"Rgn(\s)*?:(\n)?[\s\S]*?(\n\t~)") newdata = rgnregex.sub(f"Rgn:\n\t{country}\n\t~", filedata) with open(newmodelname,'w') as f: f.write(newdata) def split_voc(vocname, fractolfactor, mcsettings): """Splits .VOC file into multiple versions, for main, country, initial, full model, general MCMC, and country MCMC calibration""" with open(vocname,'r') as f0: filedata = f0.readlines() vocmain = [line for line in filedata if line[0] == ':' or '[Rgn]' not in line] voccty = [line for line in filedata if line[0] == ':' or '[Rgn]' in line] vocfull = filedata.copy() vocinit = voccty.copy() # Identify and multiply fracitonal tolerance by fractolfactor for initial runs for l, line in enumerate(vocinit): if ':FRACTIONAL_TOLERANCE' in line: fractol = float(line.split('=')[1]) vocinit[l] = f":FRACTIONAL_TOLERANCE={min(fractol*fractolfactor,0.1)}\n" # Set restarts to 1 for vocs besides initial for voc in (vocmain, voccty, vocfull): for l, line in enumerate(voc): if ':RESTART_MAX' in line: voc[l] = ':RESTART_MAX=1\n' vocmainmc = ''.join(vocmain) vocctymc = ''.join(voccty) # Make necessary substitutions for MCMC settings for k,v in mcsettings.items(): vocmainmc = re.sub(f":{re.escape(k)}=.*", f":{k}={v}", vocmainmc) vocctymc = re.sub(f":{re.escape(k)}=.*", f":{k}={v}", vocctymc) # Write various voc versions to separate .voc files for fname, suffix in zip([vocmain, voccty, vocinit, vocfull, vocmainmc, vocctymc], ['m', 'c', 'i', 'f', 'mmc', 'cmc']): with open(f"{vocname[:-4]}_{suffix}.voc", 'w') as f: f.writelines(fname) def check_zeroes(scriptname): """Check if an .out file has any parameters set to zero (indicates Vengine error), return True if any parameters zeroed OR if # runs = # restarts, and False otherwise""" filename = f"{scriptname}.out" with open(filename,'r') as f0: filedata = f0.readlines() checklist = [] for line in filedata: if line[0] != ':': if ' = 0 ' in line: checklist.append(True) else: checklist.append(False) elif ':RESTART_MAX' in line: restarts = re.findall(r'\d+', line)[0] # Ensure number of simulations != number of restarts if f"After {restarts} simulations" in filedata[0]: checklist.append(True) return any(checklist) def clean_outfile(outfilename, linekey): """Clean an outfile to include only lines containing a string in [linekey] Note that [linekey] should be a list of strings to keep""" with open(outfilename,'r') as f: filedata = f.readlines() newdata = [line for line in filedata if any(k in line for k in linekey)] with open(outfilename, 'w') as f: f.writelines(newdata) def create_mdls(controlfile, logfile): """Creates copies of the base .mdl file for each country in list (and one main copy) and splits .VOC files""" model = controlfile['simsettings']['model'] for c in controlfile['countrylist']: newmodel = model[:-4] + f'_{c}.mdl' modify_mdl(c, model, newmodel) mainmodel = model[:-4] + '_main.mdl' c_list = [f'{c}\\\n\t\t' if i % 8 == 7 else c for i,c in enumerate(countrylist)] countrylist_str = str(c_list)[1:-1].replace("'","") modify_mdl(countrylist_str, model, mainmodel) split_voc(controlfile['simsettings']['optparm'], controlfile['fractolfactor'], controlfile['mcsettings']) write_log("Files are ready! moving to calibration", logfile) def read_payoff(outfile, line=1): """Identifies payoff value from .OUT or .REP file - use line 1 (default) for .OUT, or use line 0 for .REP""" with open(outfile) as f: payoffline = f.readlines()[line] payoffvalue = [float(s) for s in re.findall(r'-?\d+\.?\d+[eE+-]*\d+', payoffline)][0] return payoffvalue def compare_payoff(scriptname, logfile): """Returns the difference in payoffs between .OUT and .REP file, which should be zero in most cases except when MCMC bugs out""" difference = read_payoff(f"{scriptname}.out") - read_payoff(f"{scriptname}.rep", 0) write_log(f".OUT and .REP payoff difference is {difference}", logfile) return difference def increment_seed(vocfile, logfile): """Increments random number seed in a .VOC file by 1""" with open(vocfile, 'r') as f: vocdata = f.read() seedregex = re.compile(r':SEED=\d+') try: i = int(re.search(r'\d+', re.search(seedregex, vocdata).group()).group()) newdata = seedregex.sub(f":SEED={i+1}", vocdata) with open(vocfile, 'w') as f: f.write(newdata) except: write_log("No seed found, skipping incrementing.", logfile) def downsample(scriptname, samplefrac): """Downsamples an MCMC _sample tab file according to specified samplefrac, then deletes MCMC _sample and _points files to free up disk space (files can be VERY large otherwise!)""" rawdf = pd.read_csv(f"{scriptname}_MCMC_sample.tab", sep='\t') newdf = rawdf.sample(frac=samplefrac) newdf.to_csv(f"{scriptname}_MCMC_sample_frac.tab", sep='\t', index=False) os.remove(f"{scriptname}_MCMC_sample.tab") os.remove(f"{scriptname}_MCMC_points.tab") def merge_samples(baserunname, countrylist): """Combines downsampled MCMC outputs into a single sensitivity input tabfile and creates .vsc file using it for sensitivity control""" filelist = [f"{baserunname}_{c}_MC_MCMC_sample_frac.tab" for c in countrylist] dflist = [] for f in filelist: ctydf = pd.read_csv(f, sep='\t') dflist.append(ctydf) sensdf =
pd.concat(dflist, axis=1)
pandas.concat
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [TS('2016-10-20'), TS('2016-11-21'), TS('2016-12-20')], index=['CLX16', 'CLZ16', 'CLF17'] ) def test_not_in_roll_one_generic_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:2] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) midx = pd.MultiIndex.from_product([timestamps, ['CLX16']]) midx.names = ['date', 'contract'] cols = pd.Index([0], name='generic') wts_exp = pd.DataFrame([1.0, 1.0], index=midx, columns=cols) # with DatetimeIndex wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) # with tuple wts = mappings.roller(tuple(timestamps), contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) def test_not_in_roll_one_generic_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_non_numeric_column_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([["CL1"], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [("CL1", 'CLX16', 1.0, ts)] assert wts == wts_exp def test_finished_roll_pre_expiry_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-2) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-9, -8] transition = pd.DataFrame([[1.0, 0.0], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_filtering_front_contracts_static_transition(dates): # NOQA contract_dates = dates.iloc[0:2] ts = dates.iloc[1] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_roll_with_holiday(dates): contract_dates = dates.iloc[-2:] ts = pd.Timestamp("2016-11-17") cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) holidays = [np.datetime64("2016-11-18")] # the holiday moves the roll schedule up one day, since Friday is # excluded as a day wts = mappings.static_transition(ts, contract_dates, transition, holidays) wts_exp = [(0, 'CLZ16', 0.5, ts), (0, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_zero_weight_back_contract_no_contract_static_transition(dates): # NOQA contract_dates = dates.iloc[0:1] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_aggregate_weights(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list) idx = pd.MultiIndex.from_product([[ts], ["CLX16", "CLZ16"]], names=["date", "contract"]) cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_aggregate_weights_drop_date(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list, drop_date=True) idx = pd.Index(["CLX16", "CLZ16"], name="contract") cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_static_bad_transitions(dates): contract_dates = dates.iloc[[0]] ts = dates.iloc[0] + BDay(-8) # transition does not contain 'front' column cols = pd.MultiIndex.from_product([[0], ['not_front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition does not sum to one across rows cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.0], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) # transition is not monotonic increasing in back transition = pd.DataFrame([[0.7, 0.3], [0.8, 0.2], [0.0, 1.0]], index=idx, columns=cols) with pytest.raises(ValueError): mappings.static_transition(ts, contract_dates, transition) def test_no_roll_date_two_generics_static_transition(dates): dt = dates.iloc[0] contract_dates = dates ts = dt + BDay(-8) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_two_generics_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:3] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=transition) midx = pd.MultiIndex.from_product([timestamps, ['CLX16', 'CLZ16']]) midx.names = ['date', 'contract'] cols = pd.Index([0, 1], name='generic') wts_exp = pd.DataFrame([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]], index=midx, columns=cols) assert_frame_equal(wts, wts_exp) def test_during_roll_two_generics_one_day_static_transition(dates): contract_dates = dates ts = dates.iloc[0] + BDay(-1) cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.5, 0.5, 0.5, 0.5], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 0.5, ts), (0, 'CLZ16', 0.5, ts), (1, 'CLZ16', 0.5, ts), (1, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_invalid_contract_dates(): ts = [pd.Timestamp("2016-10-19")] cols = pd.MultiIndex.from_product([[0, 1], ['front', 'back']]) idx = [-1, 0] trans = pd.DataFrame([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0]], index=idx, columns=cols) non_unique_index = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-11-21')], index=['instr1', 'instr1']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_index, mappings.static_transition, transition=trans) non_unique_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-20')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.roller(ts, non_unique_vals, mappings.static_transition, transition=trans) non_monotonic_vals = pd.Series([pd.Timestamp('2016-10-20'), pd.Timestamp('2016-10-19')], index=['instr1', 'instr2']) with pytest.raises(ValueError): mappings.static_transition(ts[0], non_monotonic_vals, transition=trans) not_enough_vals = pd.Series([pd.Timestamp('2016-10-19')], index=['instr1']) with pytest.raises(IndexError): mappings.static_transition(ts[0], not_enough_vals, transition=trans) def test_during_roll_two_generics_one_day_static_roller(dates): dt = dates.iloc[0] contract_dates = dates timestamps = pd.DatetimeIndex([dt + BDay(-1)]) cols =
pd.MultiIndex.from_product([[0, 1], ['front', 'back']])
pandas.MultiIndex.from_product
import pytest import numpy as np import pandas as pd from systrade.trading.brokers import PaperBroker T_START = pd.to_datetime('2019/07/10-09:30:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') T_END = pd.to_datetime('2019/07/10-10:00:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') TIMEINDEX = pd.date_range(start=T_START,end=T_END,freq='1min') DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX)) , 'tick1':np.arange(len(TIMEINDEX)-1,-1,-1)}, index=TIMEINDEX) # DATA_DF = pd.DataFrame(data={'tick0':np.arange(len(TIMEINDEX))}, # index=TIMEINDEX) class TestPaperBroker: def test_init(self): testseries = pd.Series(np.arange(10)) with pytest.raises(TypeError): broker = PaperBroker(testseries) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,slippage_time=1.0) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,transaction_cost=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,transaction_cost=-0.5) with pytest.raises(TypeError): broker = PaperBroker(DATA_DF,spread_pct=lambda x: x**2) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=-0.5) with pytest.raises(ValueError): broker = PaperBroker(DATA_DF,spread_pct=200) def test_next_extant_time(self): broker = PaperBroker(DATA_DF) t_get = pd.to_datetime('2019/07/10-09:35:05:000000', format='%Y/%m/%d-%H:%M:%S:%f') t_out = broker.next_extant_time(t_get) t_expect = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') assert t_out==t_expect t_get = pd.to_datetime('2019/07/10-11:35:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): t_out = broker.next_extant_time(t_get) def test_get_timeindex_subset(self): broker = PaperBroker(DATA_DF) t0 = pd.to_datetime('2019/07/10-09:29:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') t1 = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): tind = broker.get_timeindex_subset(t0,t1) t0 = pd.to_datetime('2019/07/10-09:34:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') t1 = pd.to_datetime('2019/07/10-11:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') with pytest.raises(ValueError): tind = broker.get_timeindex_subset(t0,t1) with pytest.raises(TypeError): tind = broker.get_timeindex_subset(0,t1) with pytest.raises(TypeError): tind = broker.get_timeindex_subset(t0,1) t1 = pd.to_datetime('2019/07/10-09:36:00:000000', format='%Y/%m/%d-%H:%M:%S:%f') tind = broker.get_timeindex_subset(t0,t1) print(tind) print(pd.date_range(t0,t1,freq='1min')) assert np.array_equal(tind.values,pd.date_range(t0,t1,freq='1min').values) def test_get_firstlast_times(self): broker = PaperBroker(DATA_DF) t0,t1 = broker.get_firstlast_times() assert t0==T_START assert t1==T_END def test_get_tick_list(self): broker = PaperBroker(DATA_DF) ticks = broker.get_tick_list() assert ticks == ['tick0','tick1'] def test_get_price_list(self): broker = PaperBroker(DATA_DF) t0 = T_START t1 = T_START + pd.DateOffset(minutes=5) with pytest.raises(ValueError): prices = broker.get_price_list('badtick',t0,t1) with pytest.raises(ValueError): prices = broker.get_price_list(['badtick'],t0,t1) prices = broker.get_price_list('tick0',t0,t1) assert np.array_equal(prices['tick0'].values , np.arange(6) ) prices = broker.get_price_list(['tick0','tick1'],t0,t1) assert np.array_equal(prices['tick0'].values , np.arange(6) ) assert np.array_equal(prices['tick1'].values , np.arange(len(TIMEINDEX)-1,len(TIMEINDEX)-7,-1) ) def test_get_unslipped_price(self): broker = PaperBroker(DATA_DF) t_get = T_START+pd.DateOffset(minutes=5) with pytest.raises(ValueError): pp = broker.get_unslipped_price('badtick',t_get) price = broker.get_unslipped_price('tick0',t_get) assert price == 5 def test_get_price(self): broker = PaperBroker(DATA_DF, slippage_time=
pd.DateOffset(seconds=30)
pandas.DateOffset
import os from contextlib import contextmanager import numpy as np import pandas as pd import pyarrow import pyarrow.parquet as pq import tarfile from .tables import Table from .cohort import ProcedureCohort NEW_COLUMNS = { 'Table1_Encounter_Info.csv': None, 'Table2_Flowsheet_status.csv' : { 'flowsheet_days_since_birth' : 'days_from_dob', 'display_name' : 'name', 'flowsheet_value': 'value', # 'flowsheet_unit' : 'unit', 'flowsheet_time' : 'time', }, 'Table2_Flowsheet.csv' : { 'flowsheet_days_since_birth' : 'days_from_dob', 'display_name' : 'name', 'flowsheet_value': 'value', # 'flowsheet_unit' : 'unit', 'flowsheet_time' : 'time', }, 'Table3_Lab.csv' : { 'lab_collection_days_since_birth' : 'days_from_dob', 'lab_component_name' : 'name', 'lab_result_value': 'value', 'lab_result_unit' : 'unit', 'lab_collection_time' : 'time' }, 'Table6_Procedures.csv' : { 'order_name' : 'procedure' }, } class SWAN(): def __init__(self, root_dir = '/data/compass/SWAN'): self.root = root_dir self.raw_dir = os.path.join(self.root,'raw') self.encounters = Table(os.path.join(self.raw_dir,'Table1_Encounter_Info.csv')) self.flowsheet = Table(os.path.join(self.raw_dir, 'Table2_Flowsheet.csv')) self.labs = Table(os.path.join(self.raw_dir, 'Table3_Lab.csv')) self.procedures = Table(os.path.join(self.raw_dir,'Table6_Procedures.csv')) self.diagnosis = Table(os.path.join(self.raw_dir,'Table7_DX.csv')) self.transfusion = Table(os.path.join(self.raw_dir,'Table5_Blood_Transfusion.csv')) self.medications = Table(os.path.join(self.raw_dir,'Table4_Administered_Medications.csv')) def sel(self, procedures, labs=None, flowsheet=None, encounter_id=None): output_col_order = [ 'person_id','encounter_id','procedure', 'days_from_dob_procstart', 'days_from_dob','day','time', 'name','value'] out_dfs = [] # Grab list of encounters from procedures, then fetch labs and flowsheet data from those encounters proc_df = self.procedures.sel(order_name=list(procedures)) proc_df.days_from_dob_procstart =
pd.to_numeric(proc_df.days_from_dob_procstart, errors='coerce')
pandas.to_numeric