prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""NEDSS data duplicate person-record detector. This program automates the process of identifying potential duplicate person-records in NEDSS data. The program takes two command line arguments (1) the filepath for NEDSS data; (2) the Identifier of the first person-record considered new. This application will then compare each of the new records to all the preceeding records. Example: for a new batch of NEDSS data, we need to determine the Identifier value for the first record in that dataset that should be considered new. E.g., we may open the NEDSS data file and determine that the new data starts at Identifier value 11960. Thus: py nedss_duplicate_person_record_detector.py "09-29-20_Positive Cases.xlsx" -i 11960 The output from the above command is saved as "09-29-20_Positive Cases_w_DUPE_UUID.xlsx" In this file the column dupe_uuid stores potential duplicate identifiers. Filtering this data to only the records that contains non-empty values (and sorting on dupe_uuid) will present an ordered list of potential dupes for manual review. """ import argparse # for command line arg parsing from collections import Counter import jellyfish # for phonetic representation import openpyxl as xl # for writing to xls file import pandas as pd # for data management/aggs. from scipy import sparse # for connected comps. import textdistance # for fuzzy string matching from tqdm import tqdm # for process status bar from typing import List def first_name_similarity_scorer(a: str, b: str): """Compares two first name strings, returns 1 if they match, 0 otherwise. Uses Jaro-Winkler Distance Algorithm (JWDA) (en.wikipedia.org/wiki/Jaro–Winkler_distance). JWDA "measurement scale is 0.0 to 1.0, where 0.0 is the least likely and 1.0 is a positive match. For our purposes, anything below a 0.8 is not considered useful." (source: SAP blog) """ jaro = textdistance.jaro_winkler(a, b) if jaro > 0.8: return 1 else: return 0 def last_name_similarity_scorer(a: str, b: str): """Compares two first last strings, returns 1 if they match, 0 otherwise. Uses Jaro-Winkler Distance Algorithm (JWDA) (en.wikipedia.org/wiki/Jaro–Winkler_distance). JWDA "measurement scale is 0.0 to 1.0, where 0.0 is the least likely and 1.0 is a positive match. For our purposes, anything below a 0.8 is not considered useful." (source: SAP blog) """ jaro = textdistance.jaro_winkler(a, b) if jaro > 0.8: return 1 else: return 0 def address_similarity_scorer(a: str, b: str): """Compares two address strings, returns 1 if they match, 0 otherwise. Uses Jaro-Winkler Distance Algorithm (JWDA) (en.wikipedia.org/wiki/Jaro–Winkler_distance). JWDA "measurement scale is 0.0 to 1.0, where 0.0 is the least likely and 1.0 is a positive match. """ jaro = textdistance.jaro_winkler(a, b) if jaro > 0.9: return 1 else: return 0 def age_similarity_scorer(age_1, age_2): """Compares two ages, returns 0 if they match, returns penalty of -1 otherwise. Conservative assumptions: 1) If age cannot be cleanly cast to int, consider comparators to be a match 2) If ages are within 2 years, consider comparators to be a match """ try: age_1 = int(age_1) except: return 0 try: age_2 = int(age_2) except: return 0 # client requested age tolerance of 2 years: if abs(age_1 - age_2) <= 2: return 0 else: return -1 def gender_similarity_scorer(gender_1: str, gender_2: str): """Compares two gender strings, returns 0 if they match, returns penalty of -1 otherwise. Conservative assumption: if gender is nil or empty string, consider it a match against the comparator. """ if gender_1 == gender_2: return 0 elif gender_1 is None or gender_2 is None: return 0 elif gender_1 == "" or gender_2 == "": return 0 else: return -1 def preprocess(nedss_df: pd.DataFrame): """Translates name and address fields into phonetic representations.""" nedss_df.columns = nedss_df.columns.str.strip() nedss_df["phonetic_first_name"] = nedss_df["First Name"].apply(jellyfish.metaphone) nedss_df["phonetic_last_name"] = nedss_df["Last Name"].apply(jellyfish.metaphone) nedss_df["phonetic_address"] = nedss_df["Address"].apply(jellyfish.metaphone) return nedss_df def score_record_against_records(nedss_df: pd.DataFrame, nedss_row: pd.Series) -> pd.DataFrame: """Calculates various similarity scores and total score, then returns the score dataframe.""" score_df = pd.DataFrame(index=nedss_df.index) score_df['first_name_similarity_score'] = nedss_df['phonetic_first_name'].apply( first_name_similarity_scorer, args=(nedss_row['phonetic_first_name'],)) score_df['last_name_similarity_score'] = nedss_df['phonetic_last_name'].apply( last_name_similarity_scorer, args=(nedss_row["phonetic_last_name"],)) score_df['address_similarity_score'] = nedss_df['phonetic_address'].apply( address_similarity_scorer, args=(nedss_row["phonetic_address"],)) score_df['age_similarity_score'] = nedss_df["Age"].apply( age_similarity_scorer, args=(nedss_row["Age"],)) score_df['gender_similarity_score'] = nedss_df["Gender"].apply( gender_similarity_scorer, args=(nedss_row["Gender"],)) score_df["total_score"] = score_df.sum(axis=1) return score_df def get_dupe_groups(adj_mat) -> List[List[int]]: """Takes an adjacency matrix, applies connected components to link potential dupe records.""" dupe_lists = [] n_components, labels = sparse.csgraph.connected_components( csgraph=adj_mat, directed=False, return_labels=True) # get the connected components (with more than one member): dupe_ids = [k for k, v in Counter(labels).items() if v > 1] # for each connected component (with more than one member) find the indices for its members: for dupe_id in dupe_ids: dupe_lists.append([i for i, x in enumerate(labels) if x == dupe_id]) return dupe_lists def get_dupe_index_groups(data_df: pd.DataFrame, split_index: int) -> List[List[int]]: """Takes dataframe to process and index first new record, and returns list of linked records""" mat_dim = data_df.index.max() + 1 adj_mat = sparse.dok_matrix((mat_dim, mat_dim), dtype='int64') new_record_indices = [i for i in data_df.index.tolist() if i >= split_index] for rec_idx in tqdm(new_record_indices): df_old = data_df.loc[:rec_idx - 1] df_new_row = data_df.loc[rec_idx] score_df = score_record_against_records(df_old, df_new_row) match_df = score_df[score_df["total_score"] > 1] for match_idx in match_df.index: adj_mat[rec_idx, match_idx] = 1 return get_dupe_groups(adj_mat) def write_dupe_info_to_workbook(in_filepath: str, out_filepath: str, dupe_lists: List[List[int]]): """Takes a list of lists of duplicate record indices, annotates input file with dupe ids.""" wb = xl.load_workbook(in_filepath) ws = wb.worksheets[0] new_col_idx = ws.max_column + 1 ws.cell(row=1, column=new_col_idx, value="dupe_group") for i, dupe_group in enumerate(dupe_lists): for dupe in dupe_group: # +2 for header and 1-index offset ws.cell(row=dupe + 2, column=new_col_idx, value=i) if not out_filepath: out_filepath = in_filepath.split(".") out_filepath[-2] = out_filepath[-2] + "_w_DUPE_UUID" out_filepath = ".".join(out_filepath) wb.save(out_filepath) if __name__ == "__main__": arg_parser = argparse.ArgumentParser(description='Flag NEDSS data for review') arg_parser.add_argument('-p', '--path', # metavar='path', type=str, help='the path to the raw NEDSS data file') arg_parser.add_argument('-i', '--identifier', type=int, # required=True, help='Identifier for first new record in NEDSS data') arg_parser.add_argument('-o', '--output', type=str, help='where to save the output file') args = arg_parser.parse_args() path = args.path output = args.output identifier = args.identifier if not path or not output or not identifier: path = input("Paste the input file path here (then press enter): ") path = path.strip('"') output = input("Paste the output file path here (then press enter): ") output = output.strip('"') identifier = input("Type the Identifier for the first new record here (then press enter): ") while identifier == "": identifier = input("Type the Identifier for the first new record here (then press enter): ") if identifier == "1" or identifier == "0": identifier = "2" identifier = int(identifier) df =
pd.read_excel(path)
pandas.read_excel
import pandas as pd import numpy as np import os from sklearn.metrics import roc_auc_score, accuracy_score from sklearn import metrics from scipy.stats import rankdata import math import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--enspath", type=str, default="./data", help="Path to folder with all csvs") parser.add_argument("--enstype", type=str, default="loop", help="Type of ensembling to be performed - Current options: loop / sa") parser.add_argument("--exp", type=str, default="experiment", help="Name of experiment for csv's") parser.add_argument('--subdata', action='store_const', default=False, const=True) # Parse the arguments. args = parser.parse_args() return args ### FUNCTIONS IMPLEMENTING ENSEMBLE METHODS ### ### HELPERS ### # Optimizing accuracy based on ROC AUC # Source: https://albertusk95.github.io/posts/2019/12/best-threshold-maximize-accuracy-from-roc-pr-curve/ # ACC = (TP + TN)/(TP + TN + FP + FN) = (TP + TN) / P + N (= Correct ones / all) # Senstivity / tpr = TP / P # Specificity / tnr = TN / N def get_acc_and_best_threshold_from_roc_curve(tpr, fpr, thresholds, num_pos_class, num_neg_class): tp = tpr * num_pos_class tn = (1 - fpr) * num_neg_class acc = (tp + tn) / (num_pos_class + num_neg_class) best_threshold = thresholds[np.argmax(acc)] return np.amax(acc), best_threshold def set_acc(row, threshold): if row['proba'] >= threshold: val = 1 else: val = 0 return val ### AVERAGES ### def simple_average(targets, example, weights=None, power=1, normalize=False): """ targets: df with target values as columns example: output df example (e.g. including ID - make sure to adjust iloc below if target is not at 1) weights: per submission weights; default is equal weighting power: optional for power averaging normalize: Whether to normalize targets btw 0 & 1 """ if weights is None: weights = len(targets.columns) * [1.0 / len(targets.columns)] else: weights = weights / np.sum(weights) preds = example.copy() preds.iloc[:, 1] = np.zeros(len(preds)) if normalize: targets = (targets - targets.min()) / (targets.max() - targets.min()) for i in range(len(targets.columns)): preds.iloc[:, 1] = np.add(preds.iloc[:, 1], weights[i] * (targets.iloc[:, i].astype(float) ** power)) return preds def rank_average(subs, weights=None): """ subs: list of submission dataframes with two columns (id, value) weights: per submission weights; default is equal weighting """ if weights is None: weights = len(subs) * [1.0 / len(subs)] else: weights = weights / np.sum(weights) preds = subs[0].copy() preds.iloc[:, 1] = np.zeros(len(subs[0])) for i, sub in enumerate(subs): preds.iloc[:, 1] = np.add(preds.iloc[:, 1], weights[i] * rankdata(sub.iloc[:, 1]) / len(sub)) return preds ### SIMPLEX ### ### Similar to scipy optimize # Taken & adapted from: # https://github.com/chrisstroemel/Simple from heapq import heappush, heappop, heappushpop import numpy import math import time import matplotlib.pyplot as plotter CAPACITY_INCREMENT = 1000 class _Simplex: def __init__(self, pointIndices, testCoords, contentFractions, objectiveScore, opportunityCost, contentFraction, difference): self.pointIndices = pointIndices self.testCoords = testCoords self.contentFractions = contentFractions self.contentFraction = contentFraction self.__objectiveScore = objectiveScore self.__opportunityCost = opportunityCost self.update(difference) def update(self, difference): self.acquisitionValue = -(self.__objectiveScore + (self.__opportunityCost * difference)) self.difference = difference def __eq__(self, other): return self.acquisitionValue == other.acquisitionValue def __lt__(self, other): return self.acquisitionValue < other.acquisitionValue class SimpleTuner: def __init__(self, cornerPoints, objectiveFunction, exploration_preference=0.15): self.__cornerPoints = cornerPoints self.__numberOfVertices = len(cornerPoints) self.queue = [] self.capacity = self.__numberOfVertices + CAPACITY_INCREMENT self.testPoints = numpy.empty((self.capacity, self.__numberOfVertices)) self.objective = objectiveFunction self.iterations = 0 self.maxValue = None self.minValue = None self.bestCoords = [] self.opportunityCostFactor = exploration_preference # / self.__numberOfVertices def optimize(self, maxSteps=10): for step in range(maxSteps): # print(self.maxValue, self.iterations, self.bestCoords) if len(self.queue) > 0: targetSimplex = self.__getNextSimplex() newPointIndex = self.__testCoords(targetSimplex.testCoords) for i in range(0, self.__numberOfVertices): tempIndex = targetSimplex.pointIndices[i] targetSimplex.pointIndices[i] = newPointIndex newContentFraction = targetSimplex.contentFraction * targetSimplex.contentFractions[i] newSimplex = self.__makeSimplex(targetSimplex.pointIndices, newContentFraction) heappush(self.queue, newSimplex) targetSimplex.pointIndices[i] = tempIndex else: testPoint = self.__cornerPoints[self.iterations] testPoint.append(0) testPoint = numpy.array(testPoint, dtype=numpy.float64) self.__testCoords(testPoint) if self.iterations == (self.__numberOfVertices - 1): initialSimplex = self.__makeSimplex(numpy.arange(self.__numberOfVertices, dtype=numpy.intp), 1) heappush(self.queue, initialSimplex) self.iterations += 1 def get_best(self): return (self.maxValue, self.bestCoords[0:-1]) def __getNextSimplex(self): targetSimplex = heappop(self.queue) currentDifference = self.maxValue - self.minValue while currentDifference > targetSimplex.difference: targetSimplex.update(currentDifference) # if greater than because heapq is in ascending order if targetSimplex.acquisitionValue > self.queue[0].acquisitionValue: targetSimplex = heappushpop(self.queue, targetSimplex) return targetSimplex def __testCoords(self, testCoords): objectiveValue = self.objective(testCoords[0:-1]) if self.maxValue is None or objectiveValue > self.maxValue: self.maxValue = objectiveValue self.bestCoords = testCoords if self.minValue is None: self.minValue = objectiveValue elif objectiveValue < self.minValue: self.minValue = objectiveValue testCoords[-1] = objectiveValue if self.capacity == self.iterations: self.capacity += CAPACITY_INCREMENT self.testPoints.resize((self.capacity, self.__numberOfVertices)) newPointIndex = self.iterations self.testPoints[newPointIndex] = testCoords return newPointIndex def __makeSimplex(self, pointIndices, contentFraction): vertexMatrix = self.testPoints[pointIndices] coordMatrix = vertexMatrix[:, 0:-1] barycenterLocation = numpy.sum(vertexMatrix, axis=0) / self.__numberOfVertices differences = coordMatrix - barycenterLocation[0:-1] distances = numpy.sqrt(numpy.sum(differences * differences, axis=1)) totalDistance = numpy.sum(distances) barycentricTestCoords = distances / totalDistance euclideanTestCoords = vertexMatrix.T.dot(barycentricTestCoords) vertexValues = vertexMatrix[:, -1] testpointDifferences = coordMatrix - euclideanTestCoords[0:-1] testPointDistances = numpy.sqrt(numpy.sum(testpointDifferences * testpointDifferences, axis=1)) inverseDistances = 1 / testPointDistances inverseSum = numpy.sum(inverseDistances) interpolatedValue = inverseDistances.dot(vertexValues) / inverseSum currentDifference = self.maxValue - self.minValue opportunityCost = self.opportunityCostFactor * math.log(contentFraction, self.__numberOfVertices) return _Simplex(pointIndices.copy(), euclideanTestCoords, barycentricTestCoords, interpolatedValue, opportunityCost, contentFraction, currentDifference) def plot(self): if self.__numberOfVertices != 3: raise RuntimeError('Plotting only supported in 2D') matrix = self.testPoints[0:self.iterations, :] x = matrix[:, 0].flat y = matrix[:, 1].flat z = matrix[:, 2].flat coords = [] acquisitions = [] for triangle in self.queue: coords.append(triangle.pointIndices) acquisitions.append(-1 * triangle.acquisitionValue) plotter.figure() plotter.tricontourf(x, y, coords, z) plotter.triplot(x, y, coords, color='white', lw=0.5) plotter.colorbar() plotter.figure() plotter.tripcolor(x, y, coords, acquisitions) plotter.triplot(x, y, coords, color='white', lw=0.5) plotter.colorbar() plotter.show() def Simplex(devs, label, df_list=False, exploration=0.01, scale=1): """ devs: list of dataframes with "proba" column label: list/np array of ground truths scale: By default we will get weights in the 0-1 range. Setting e.g. scale=50, gives weights in the 0-50 range. """ predictions = [] if df_list: for df in devs: predictions.append(df.proba) print(len(predictions[0])) else: for i, column in enumerate(devs): predictions.append(devs.iloc[:, i]) print(len(predictions[0])) print("Optimizing {} inputs.".format(len(predictions))) def roc_auc(weights): ''' Will pass the weights as a numpy array ''' final_prediction = 0 for weight, prediction in zip(weights, predictions): final_prediction += weight * prediction return roc_auc_score(label, final_prediction) # This defines the search area, and other optimization parameters. # For e.g. 11 models, we have 12 corner points -- e.g. all none, only model 1, all others none, only model 2 all others none.. # We concat an identity matrix & a zero array to create those zero_vtx = np.zeros((1, len(predictions)), dtype=int) optimization_domain_vertices = np.identity(len(predictions), dtype=int) * scale optimization_domain_vertices = np.concatenate((zero_vtx, optimization_domain_vertices), axis=0).tolist() number_of_iterations = 3000 exploration = exploration # optional, default 0.01 # Optimize weights tuner = SimpleTuner(optimization_domain_vertices, roc_auc, exploration_preference=exploration) tuner.optimize(number_of_iterations) best_objective_value, best_weights = tuner.get_best() print('Optimized =', best_objective_value) # same as roc_auc(best_weights) print('Weights =', best_weights) return best_weights ### APPLYING THE HELPER FUNCTIONS ### def sa_wrapper(data_path="./data"): """ Applies simple average. data_path: path to folder with X * (dev_seen, test_seen & test_unseen) .csv files """ # Make sure the lists will be ordered, i.e. test[0] is the same model as devs[0] train, dev, test, test_unseen = [], [], [], [] train_probas, dev_probas, test_probas, test_unseen_probas = {}, {}, {}, {} # Never dynamically add to a pd Dataframe for csv in sorted(os.listdir(data_path)): if ".csv" in csv: print("Included in Simple Average: ", csv) if "train" in csv: train.append(pd.read_csv(data_path + csv)) train_probas[csv[:-4]] = pd.read_csv(data_path + csv).proba.values elif ("dev" in csv) or ("val" in csv): dev.append(pd.read_csv(data_path + csv)) dev_probas[csv[:-8]] = pd.read_csv(data_path + csv).proba.values elif "test_unseen" in csv: test_unseen.append(pd.read_csv(data_path + csv)) test_unseen_probas[csv[:-14]] = pd.read_csv(data_path + csv).proba.values elif "test" in csv: test.append(
pd.read_csv(data_path + csv)
pandas.read_csv
import pandas as pd from autox.autox_competition.util import log def fe_time(df, time_col): log('[+] fe_time') result = pd.DataFrame() prefix = time_col + "_" df[time_col] =
pd.to_datetime(df[time_col])
pandas.to_datetime
''' MIT License Copyright (c) 2020 Minciencia Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import requests import utils import pandas as pd import datetime as dt import numpy as np from itertools import groupby import time class vacunacion: def __init__(self,output,indicador): self.output = output self.indicador = indicador self.my_files = { 'vacunacion_fabricante': 'https://raw.githubusercontent.com/IgnacioAcunaF/covid19-vaccination/master/output/chile-vaccination-type.csv', 'vacunacion_region': 'https://raw.githubusercontent.com/IgnacioAcunaF/covid19-vaccination/master/output/chile-vaccination.csv', 'vacunacion_edad': 'https://github.com/IgnacioAcunaF/covid19-vaccination/raw/master/output/chile-vaccination-ages.csv', 'vacunacion_grupo': 'https://github.com/IgnacioAcunaF/covid19-vaccination/raw/master/output/chile-vaccination-groups.csv', } self.path = '../input/Vacunacion' def get_last(self): ## baja el archivo que corresponde if self.indicador == 'fabricante': print('Retrieving files') print('vacunacion_fabricante') r = requests.get(self.my_files['vacunacion_fabricante']) content = r.content csv_file = open(self.path + '/' + 'vacunacion_fabricante' + '.csv', 'wb') csv_file.write(content) csv_file.close() elif self.indicador == 'campana': print('Retrieving files') print('vacunacion_region') r = requests.get(self.my_files['vacunacion_region']) content = r.content csv_file = open(self.path + '/' + 'vacunacion_region' + '.csv', 'wb') csv_file.write(content) csv_file.close() elif self.indicador == 'edad': print('Retrieving files') print('vacunacion_edad') r = requests.get(self.my_files['vacunacion_edad']) content = r.content csv_file = open(self.path + '/' + 'vacunacion_edad' + '.csv', 'wb') csv_file.write(content) csv_file.close() elif self.indicador == 'caracteristicas_del_vacunado': print('Retrieving files') print('vacunacion_grupo') r = requests.get(self.my_files['vacunacion_grupo']) content = r.content csv_file = open(self.path + '/' + 'vacunacion_grupo' + '.csv', 'wb') csv_file.write(content) csv_file.close() ## selecciona el archivo que corresponde if self.indicador == 'fabricante': print('reading files') print('vacunacion_fabricante') self.last_added = pd.read_csv('../input/Vacunacion/vacunacion_fabricante.csv') elif self.indicador == 'campana': print('reading files') print('vacunacion_region') self.last_added =
pd.read_csv('../input/Vacunacion/vacunacion_region.csv')
pandas.read_csv
import matplotlib.pyplot as plt import pandas as pd class ProvData: def __init__(self, prov): self.prov = prov self.price_list = [] self.quality_list = [] self.size_list = [] self.size_frac_list = [] self.pop_funds_list = [] self.mk_funds_list = [] self.total_population_list = [] self.pop_fpc_list = [] self.pop_ipc_list = [] def update(self): prov = self.prov quality = {} size = {} funds = {} fpc = {} ipc = {} total_loans = 0 for p in prov.pops: p.av_income = 0.9*p.av_income + 0.1*(p.income-p.cost) funds[p.kind] = p.funds - p.loaned_funds quality[p.kind] = p.quality size[p.kind] = p.size fpc[p.kind] = p.funds/p.size ipc[p.kind] = p.av_income/p.size total_size = prov.total_pop_size total_funds = prov.total_funds size_frac = {k:s/total_size for k,s in size.items()} funds['MKT'] = prov.market.funds funds['TOT'] = total_funds self.price_list.append(prov.market.prices.copy()) self.mk_funds_list.append(prov.market.funds) self.total_population_list.append(total_size) self.quality_list.append(quality) self.size_list.append(size) self.size_frac_list.append(size_frac) self.pop_funds_list.append(funds) self.pop_fpc_list.append(fpc) self.pop_ipc_list.append(ipc) def plot_prov_data(self): if len(self.price_list) == 0: print('NO DATA TO PLOT') return fig, ax = plt.subplots(2, 4,figsize=(24,10)) name = self.prov.name pd.DataFrame(self.price_list).plot(title=name+': PRICES',logy=True,ax=ax[0][0]) pd.DataFrame(self.quality_list).plot(title=name+': QUALITIES',ax=ax[0][1],logy=True) pd.DataFrame(self.size_list).plot(title=name+': POPULATIONS',ax=ax[0][2],logy=True) pd.DataFrame(self.size_frac_list).plot(title=name+': POP FRACTION',ax=ax[0][3]) pd.DataFrame(self.pop_funds_list).plot(title=name+': POP FUNDS',ax=ax[1][0]) pd.DataFrame(self.pop_fpc_list).plot(title=name+': POP FPC',ax=ax[1][1],logy=True)
pd.DataFrame(self.pop_ipc_list)
pandas.DataFrame
import pandas as pd ratings = pd.read_csv('dataset/ratings.csv') movies = pd.read_csv('dataset/movies.csv') all_movie = movies['title'].values new_movie = [] for movie in all_movie: split_movie = movie.split() split_movie.pop() string = ' '.join(split_movie) new_movie.append(string) movies['movie'] = new_movie ratings =
pd.merge(movies,ratings)
pandas.merge
#%% from pymaid_creds import url, name, password, token from data_settings import pairs_path, data_date import pymaid rm = pymaid.CatmaidInstance(url, token, name, password) import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import cmasher as cmr from contools import Cascade_Analyzer, Promat, Celltype, Celltype_Analyzer # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' adj_ad = Promat.pull_adj(type_adj='ad', date=data_date) pairs = Promat.get_pairs(pairs_path=pairs_path) # %% # pull sensory annotations and then pull associated skids order = ['olfactory', 'gustatory-external', 'gustatory-pharyngeal', 'enteric', 'thermo-warm', 'thermo-cold', 'visual', 'noci', 'mechano-Ch', 'mechano-II/III', 'proprio', 'respiratory'] sens = [Celltype(name, Celltype_Analyzer.get_skids_from_meta_annotation(f'mw {name}')) for name in order] input_skids_list = [x.get_skids() for x in sens] input_skids = [val for sublist in input_skids_list for val in sublist] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] # identify contralateral sens neurons and contra-contra neurons to flip their left/right identities neurons_to_flip = list(np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite'))) inputs_to_flip = [skid for skid in pymaid.get_skids_by_annotation('mw contralateral axon') if skid in input_skids] neurons_to_flip = neurons_to_flip + inputs_to_flip # define left and right neurons from a hemispheric propagation perspective, flip left/right identity as appropriate left, right = Promat.get_hemis('mw left', 'mw right', neurons_to_flip=neurons_to_flip) input_skids_left = list(np.intersect1d(input_skids, left)) input_skids_right = list(np.intersect1d(input_skids, right)) # remove bilateral axon input neurons to see how the mixing happens at the interneuron level bilat_axon = pymaid.get_skids_by_annotation('mw bilateral axon') bilat_axon = bilat_axon + [3795424, 11291344] # remove the ambiguous v'td neurons (project to middle of SEZ) input_skids_left = list(np.setdiff1d(input_skids_left, bilat_axon)) input_skids_right = list(np.setdiff1d(input_skids_right, bilat_axon)) input_skids_list = [input_skids_left, input_skids_right] #%% # cascades from left or right hemisphere input neurons # save as pickle to use later because cascades are stochastic; prevents the need to remake plots everytime import pickle p = 0.05 max_hops = 8 n_init = 1000 simultaneous = True adj=adj_ad ''' input_hit_hist_list = Cascade_Analyzer.run_cascades_parallel(source_skids_list=input_skids_list, source_names = ['left_inputs', 'right_inputs'], stop_skids=output_skids, adj=adj_ad, p=p, max_hops=max_hops, n_init=n_init, simultaneous=simultaneous, pairs=pairs, pairwise=True, disable_tqdm=False) pickle.dump(input_hit_hist_list, open(f'data/cascades/left-right-hemisphere-cascades_{n_init}-n_init_{data_date}.p', 'wb')) ''' input_hit_hist_list = pickle.load(open(f'data/cascades/left-right-hemisphere-cascades_{n_init}-n_init_{data_date}.p', 'rb')) # %% # plot heatmaps of number of neurons over-threshold per hop def intersect_stats(hit_hist1, hit_hist2, threshold, hops): intersect_hops = [] total_hops = [] for i in np.arange(0, hops+1): intersect = list(np.logical_and(hit_hist1.loc[:,i]>=threshold, hit_hist2.loc[:,i]>=threshold)) total = list(np.logical_or(hit_hist1.loc[:,i]>=threshold, hit_hist2.loc[:,i]>=threshold)) intersect_hops.append(intersect) total_hops.append(total) intersect_hops = pd.DataFrame(intersect_hops, index=range(0, hops+1), columns = hit_hist1.index).T total_hops = pd.DataFrame(total_hops, index=range(0, hops+1), columns = hit_hist1.index).T percent = [] for i in np.arange(0, hops+1): if(sum(total_hops[i])>0): percent.append(sum(intersect_hops[i])/sum(total_hops[i])) if(sum(total_hops[i])==0): percent.append(0) return(intersect_hops, total_hops, percent) all_inputs_hit_hist_left = input_hit_hist_list[0].skid_hit_hist all_inputs_hit_hist_right = input_hit_hist_list[1].skid_hit_hist threshold = n_init/2 hops = 8 all_inputs_intersect, all_inputs_total, all_inputs_percent = intersect_stats(all_inputs_hit_hist_left, all_inputs_hit_hist_right, threshold, hops) # identify left/right ipsi, bilateral, contralaterals # majority types ipsi = list(np.intersect1d(pymaid.get_skids_by_annotation('mw ipsilateral axon'), pymaid.get_skids_by_annotation('mw ipsilateral dendrite'))) ipsi = ipsi + list(np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite'))) bilateral = list(np.intersect1d(pymaid.get_skids_by_annotation('mw bilateral axon'), pymaid.get_skids_by_annotation('mw ipsilateral dendrite'))) contralateral = list(np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw ipsilateral dendrite'))) # add ipsilateral sensory to each ipsi = ipsi + input_skids_left + input_skids_right ipsi_left = list(np.intersect1d(ipsi, left)) ipsi_right = list(np.intersect1d(ipsi, right)) bilateral_left = list(np.intersect1d(bilateral, left)) bilateral_right = list(np.intersect1d(bilateral, right)) contra_left = list(np.intersect1d(contralateral, left)) contra_right = list(np.intersect1d(contralateral, right)) ipsi_left = list(np.intersect1d(ipsi_left, all_inputs_hit_hist_left.index)) ipsi_right = list(np.intersect1d(ipsi_right, all_inputs_hit_hist_right.index)) bilateral_left = list(np.intersect1d(bilateral_left, all_inputs_hit_hist_left.index)) bilateral_right = list(np.intersect1d(bilateral_right, all_inputs_hit_hist_right.index)) contra_left = list(np.intersect1d(contra_left, all_inputs_hit_hist_left.index)) contra_right = list(np.intersect1d(contra_right, all_inputs_hit_hist_right.index)) # plot results fig, axs = plt.subplots( 3, 1, figsize=(1, 1.75), sharex=True ) fig.tight_layout(pad=0.05) ax = axs[0] i_left = (all_inputs_hit_hist_left.loc[ipsi_left]>threshold).sum(axis=0) b_left = (all_inputs_hit_hist_left.loc[bilateral_left]>threshold).sum(axis=0) c_left = (all_inputs_hit_hist_left.loc[contra_left]>threshold).sum(axis=0) c_right = (all_inputs_hit_hist_left.loc[contra_right]>threshold).sum(axis=0) b_right = (all_inputs_hit_hist_left.loc[bilateral_right]>threshold).sum(axis=0) i_right = (all_inputs_hit_hist_left.loc[ipsi_right]>threshold).sum(axis=0) data_left = pd.DataFrame([i_left, b_left, c_left, c_right, b_right, i_right], index = ['Ipsi(L)', 'Bilateral(L)', 'Contra(L)', 'Contra(R)', 'Bilateral(R)', 'Ipsi(R)']) sns.heatmap(data_left.iloc[:, 0:5], ax = ax, annot=True, fmt="d", cbar = False) ax.tick_params(left=False, bottom=False) ax = axs[1] i_left = (all_inputs_hit_hist_right.loc[ipsi_left]>threshold).sum(axis=0) b_left = (all_inputs_hit_hist_right.loc[bilateral_left]>threshold).sum(axis=0) c_left = (all_inputs_hit_hist_right.loc[contra_left]>threshold).sum(axis=0) c_rightc_right = (all_inputs_hit_hist_right.loc[contra_right]>threshold).sum(axis=0) b_right = (all_inputs_hit_hist_right.loc[bilateral_right]>threshold).sum(axis=0) i_right = (all_inputs_hit_hist_right.loc[ipsi_right]>threshold).sum(axis=0) data_right = pd.DataFrame([i_left, b_left, c_left, c_right, b_right, i_right], index = ['Ipsi(L)', 'Bilateral(L)', 'Contra(L)', 'Contra(R)', 'Bilateral(R)', 'Ipsi(R)']) sns.heatmap(data_right.iloc[:, 0:5], ax = ax, annot=True, fmt="d", cbar = False) ax.tick_params(left=False, bottom=False) ax = axs[2] i_left = all_inputs_intersect.loc[ipsi_left].sum(axis=0)/all_inputs_total.loc[ipsi_left].sum(axis=0) b_left = all_inputs_intersect.loc[bilateral_left].sum(axis=0)/all_inputs_total.loc[bilateral_left].sum(axis=0) c_left = all_inputs_intersect.loc[contra_left].sum(axis=0)/all_inputs_total.loc[contra_left].sum(axis=0) c_right = all_inputs_intersect.loc[contra_right].sum(axis=0)/all_inputs_total.loc[contra_right].sum(axis=0) b_right = all_inputs_intersect.loc[bilateral_right].sum(axis=0)/all_inputs_total.loc[bilateral_right].sum(axis=0) i_right = all_inputs_intersect.loc[ipsi_right].sum(axis=0)/all_inputs_total.loc[ipsi_right].sum(axis=0) data =
pd.DataFrame([i_left, b_left, c_left, c_right, b_right, i_right], index = ['Ipsi(L)', 'Bilateral(L)', 'Contra(L)', 'Contra(R)', 'Bilateral(R)', 'Ipsi(R)'])
pandas.DataFrame
import datetime import os import pandas as pd import pygsheets import telegram TELEGRAM_API_TOKEN = os.environ["TELEGRAM_API_TOKEN_MARATHON"] bot = telegram.Bot(token=TELEGRAM_API_TOKEN) chat_id = -408362490 def authenticate_google_sheets(): client = pygsheets.authorize(service_account_file="service_account.json") sheet = client.open_by_key("<KEY>") return sheet def clean_worksheet(): sheet = authenticate_google_sheets() wk = sheet[0] workout_df = wk.get_as_df(has_header=False, index_column=1, end="Q36") workout_df = workout_df.drop(index="ACTUAL").drop( columns=[1, 2, 3, 4, 5, 6, 7, 8, 9] ) workout_df.rename( columns={ idx: label for idx, label in zip( workout_df.columns.tolist(), workout_df.iloc[0].values.tolist() ) }, inplace=True, ) workout_df.drop(workout_df.head(5).index, inplace=True) workout_df.index = workout_df.index.astype(str) + " 2021" workout_df.index =
pd.to_datetime(workout_df.index, format="%d %b %Y")
pandas.to_datetime
import warnings import numpy as np from pandas import Categorical, DataFrame, Series from .pandas_vb_common import tm class Construction: params = ["str", "string"] param_names = ["dtype"] def setup(self, dtype): self.series_arr = tm.rands_array(nchars=10, size=10 ** 5) self.frame_arr = self.series_arr.reshape((50_000, 2)).copy() # GH37371. Testing construction of string series/frames from ExtensionArrays self.series_cat_arr = Categorical(self.series_arr) self.frame_cat_arr = Categorical(self.frame_arr) def time_series_construction(self, dtype): Series(self.series_arr, dtype=dtype) def peakmem_series_construction(self, dtype): Series(self.series_arr, dtype=dtype) def time_frame_construction(self, dtype): DataFrame(self.frame_arr, dtype=dtype) def peakmem_frame_construction(self, dtype): DataFrame(self.frame_arr, dtype=dtype) def time_cat_series_construction(self, dtype): Series(self.series_cat_arr, dtype=dtype) def peakmem_cat_series_construction(self, dtype): Series(self.series_cat_arr, dtype=dtype) def time_cat_frame_construction(self, dtype):
DataFrame(self.frame_cat_arr, dtype=dtype)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from covsirphy.util.error import UnExecutedError from covsirphy.cleaning.term import Term from covsirphy.ode.mbase import ModelBase from covsirphy.simulation.estimator import Estimator from covsirphy.simulation.simulator import ODESimulator class PhaseUnit(Term): """ Save information of a phase. Args: start_date (str): start date of the phase end_date (str): end date of the phase population (int): population value Examples: >>> unit1 = PhaseUnit("01Jan2020", "01Feb2020", 1000) >>> unit2 = PhaseUnit("02Feb2020", "01Mar2020", 1000) >>> unit3 = PhaseUnit("02Mar2020", "01Apr2020", 1000) >>> unit4 = PhaseUnit("02Mar2020", "01Apr2020", 1000) >>> unit5 = PhaseUnit("01Jan2020", "01Apr2020", 1000) >>> str(unit1) 'Phase (01Jan2020 - 01Feb2020)' >>> unit4 == unit4 True >>> unit1 != unit2 True >>> unit1 < unit2 True >>> unit3 > unit1 True >>> unit3 < unit4 False >>> unit3 <= unit4 True >>> unit1 < "02Feb2020" True >>> unit1 <= "01Feb2020" True >>> unit1 > "31Dec2019" True >>> unit1 >= "01Jan2020" True >>> sorted([unit3, unit1, unit2]) == [unit1, unit2, unit3] True >>> str(unit1 + unit2) 'Phase (01Jan2020 - 01Mar2020)' >>> str(unit5 - unit1) 'Phase (02Feb2020 - 01Apr2020)' >>> str(unit5 - unit4) 'Phase (01Jan2020 - 01Mar2020)' >>> set([unit1, unit3, unit4]) == set([unit1, unit3]) True """ def __init__(self, start_date, end_date, population): self.ensure_date_order(start_date, end_date, name="end_date") self._start_date = start_date self._end_date = end_date self._population = self.ensure_population(population) # Summary of information self.info_dict = { self.START: start_date, self.END: end_date, self.N: population, self.ODE: None, self.RT: None } self._ode_dict = {self.TAU: None} self.day_param_dict = {} self.est_dict = { self.RMSLE: None, self.TRIALS: None, self.RUNTIME: None } # Init self._id_dict = None self._enabled = True self._model = None self._record_df = pd.DataFrame() self.y0_dict = {} self._estimator = None def __str__(self): if self._id_dict is None: header = "Phase" else: id_str = ', '.join(list(self._id_dict.values())) header = f"{id_str:>4} phase" return f"{header} ({self._start_date} - {self._end_date})" def __hash__(self): return hash((self._start_date, self._end_date)) def __eq__(self, other): if not isinstance(other, PhaseUnit): raise NotImplementedError return self._start_date == other.start_date and self._end_date == other.end_date def __ne__(self, other): return not self.__eq__(other) def __lt__(self, other): # self < other end = self.date_obj(self._end_date) if isinstance(other, str): sta_other = self.date_obj(other) elif isinstance(other, PhaseUnit): sta_other = self.date_obj(other.start_date) else: raise NotImplementedError return end < sta_other def __le__(self, other): # self <= other end = self.date_obj(self._end_date) if isinstance(other, str): sta_other = self.date_obj(other) elif isinstance(other, PhaseUnit): if self.__eq__(other): return True sta_other = self.date_obj(other.start_date) else: raise NotImplementedError return end <= sta_other def __gt__(self, other): # self > other if isinstance(other, PhaseUnit) and self.__eq__(other): return False return not self.__le__(other) def __ge__(self, other): # self >= other return not self.__lt__(other) def __add__(self, other): if self < other: return PhaseUnit(self._start_date, other.end_date, self._population) raise NotImplementedError def __iadd__(self, other): return self.__add__(other) def __sub__(self, other): sta = self.date_obj(self._start_date) end = self.date_obj(self._end_date) sta_other = self.date_obj(other.start_date) end_other = self.date_obj(other.end_date) if sta < sta_other and end == end_other: end_date = self.yesterday(other.start_date) return PhaseUnit(self._start_date, end_date, self._population) if sta == sta_other and end > end_other: start_date = self.tomorrow(other.end_date) return PhaseUnit(start_date, self._end_date, self._population) def __isub__(self, other): return self.__sub__(other) def __contains__(self, date): sta = self.date_obj(self._start_date) end = self.date_obj(self._end_date) date = self.date_obj(date) return sta <= date <= end @ property def id_dict(self): """ tuple(str): id_dict of the phase """ return self._id_dict @ id_dict.setter def id_dict(self, value): self.set_id(value) def set_id(self, **kwargs): """ Set identifiers. Args: id_dict (dict[str, str]): dictionary of identifiers Returns: covsirphy.PhaseUnit: self """ if self._id_dict is not None: raise AttributeError("@id_dict cannot be overwritten.") self._id_dict = kwargs return self def del_id(self): """ Delete identifers. Returns: covsirphy.PhaseUnit: self """ self._id_dict = None return self def enable(self): """ Enable the phase. Examples: >>> unit.enable >>> bool(unit) True """ self._enabled = True def disable(self): """ Disable the phase. Examples: >>> unit.disable >>> bool(unit) False """ self._enabled = False def __bool__(self): return self._enabled @ property def start_date(self): """ str: start date """ return self._start_date @ property def end_date(self): """ str: end date """ return self._end_date @ property def population(self): """ str: population value """ return self._population @ property def tau(self): """ int or None: tau value [min] """ return self._ode_dict[self.TAU] @ tau.setter def tau(self, value): if self._ode_dict[self.TAU] is None: self._ode_dict[self.TAU] = self.ensure_tau(value) return raise AttributeError( f"PhaseUnit.tau is not None ({self._ode_dict[self.TAU]}) and cannot be changed.") @ property def model(self): """ covsirphy.ModelBase or None: model description """ return self._model @ property def estimator(self): """ covsirphy.Estimator or None: estimator object """ return self._estimator def to_dict(self): """ Summarize phase information and return as a dictionary. Returns: dict: - Start: start date of the phase - End: end date of the phase - Population: population value of the start date - if available: - ODE: model name - Rt: (basic) reproduction number - parameter values if available - day parameter values if available - tau: tau value [min] - RMSLE: RMSLE value of estimation - Trials: the number of trials in estimation - Runtime: runtime of estimation """ return { **self.info_dict, **self._ode_dict, **self.day_param_dict, **self.est_dict } def summary(self): """ Summarize information. Returns: pandas.DataFrame: Index: reset index Columns: - Start: start date of the phase - End: end date of the phase - Population: population value of the start date - if available: - ODE (str): model name - Rt (float): (basic) reproduction number - rho etc. (float): parameter values if available - tau (int): tau value [min] - (int): day parameter values if available - RMSLE (float): RMSLE score of parameter estimation - Trials (int): the number of trials in parameter estimation - Runtime (str): runtime of parameter estimation """ summary_dict = self.to_dict() df =
pd.DataFrame.from_dict(summary_dict, orient="index")
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Mon Jun 1 10:59:51 2020 Modified on ... look at git commit log, you lazy bum @author: <NAME>, Assistant Research Professor, CEE WSU @author: <NAME>, Ecoinformaticist, USDA-ARS contact: <EMAIL> Library of functions for the Azure Data Lake download codeset; see the readme within this repo for more details about the different scripts used Comments in this are specific to the functions """ # General library imports for functions; some functions have the import statements as part of the function import pathlib import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator def format_plot(ax,yf,xf,xminor,yminor,yl,yu,xl,xu): #subplot has to have ax as the axis handle # Does not accept blank arguments within the function call; needs to be a number of some sort even if just a 0. # Format the x and yticks plt.yticks(fontsize = yf) plt.xticks(fontsize = xf) minor_locator = AutoMinorLocator(xminor) ax.xaxis.set_minor_locator(minor_locator) minor_locator = AutoMinorLocator(yminor) ax.yaxis.set_minor_locator(minor_locator) ax.tick_params(axis='both',direction='in',length=12.5,width=2) ax.tick_params(axis='both',which = 'minor',direction='in',length=5) plt.ylim([yl,yu]) plt.xlim([xl,xu]) return def indx_fill(df_in, frq): # Fills in missing index values for a continuous time series. Rows are left blank. df = df_in.copy() df.index = pd.to_datetime(df.index) # # Sort index in case it came in out of order, a possibility depending on filenames and naming scheme # df = df.sort_index() # # Remove any duplicate times, can occur if files from mixed sources and have overlapping endpoints # df = df[~df.index.duplicated(keep='first')] # Remove any duplicated rows; keep row with more data df['nan_count'] =
pd.isna(df)
pandas.isna
# Copyright 2018-2019 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Dict, List, Optional, Tuple import numpy as np import pandas as pd import math import datetime from collections import Counter from timeit import default_timer as timer # Feature engineering packages from dask.distributed import Client, LocalCluster import featuretools as ft # Preprocessing packages from category_encoders import CatBoostEncoder, JamesSteinEncoder from sklearn.compose import ColumnTransformer from sklearn.feature_selection import chi2, f_classif, SelectPercentile from sklearn.impute import SimpleImputer from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import QuantileTransformer, StandardScaler # Sampling packages from imblearn.over_sampling import RandomOverSampler, SMOTENC from imblearn.under_sampling import ( EditedNearestNeighbours, RandomUnderSampler, TomekLinks, ) from imblearn.pipeline import Pipeline as PipelineImb # Modelling packages from sklearn.ensemble import ( ExtraTreesClassifier, IsolationForest, RandomForestClassifier, ) from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier # from xgboost import XGBClassifier from lightgbm import LGBMClassifier # Calibarion packages from sklearn.calibration import calibration_curve, CalibratedClassifierCV # Evaluation packages from sklearn.metrics import ( classification_report, confusion_matrix, f1_score, plot_confusion_matrix, plot_roc_curve, roc_auc_score, ) def _get_time_delta(seconds=float) -> str: return str(datetime.timedelta(seconds=seconds)) def _downcast_numeric(x): if x.dtype == np.float64: return x.astype(np.float32) elif x.dtype == np.int64: return x.astype(np.int32) return x def _create_client_entityset( clients: pd.DataFrame, profiles: pd.DataFrame, entity_id: str ) -> ft.EntitySet: es = ft.EntitySet(id=entity_id) es = es.entity_from_dataframe( entity_id="clients", dataframe=clients, index="ID", variable_types={ "MARRIAGE": ft.variable_types.Categorical, "SEX": ft.variable_types.Categorical, "EDUCATION": ft.variable_types.Ordinal, }, ) es = es.entity_from_dataframe( entity_id="profiles", dataframe=profiles, index="PROFILE_ID", time_index="MONTH", make_index=True, variable_types={ "ID": ft.variable_types.Id, "CREDIT_USE": ft.variable_types.Boolean, }, ) es = es.add_relationship(ft.Relationship(es["clients"]["ID"], es["profiles"]["ID"])) return es def _initialize_dask_client(n_workers: int = 2, threads: Optional[int] = None) -> List: cluster = LocalCluster(n_workers=n_workers, threads_per_worker=threads) return [Client(cluster), cluster] def _get_column_dtype(df: pd.DataFrame) -> Dict: all_cols = df.columns.tolist() cat_cols = df.select_dtypes(include=["object", "category"]).columns.tolist() bool_cols = df.select_dtypes(include="boolean").columns.tolist() num_cols = df.select_dtypes(include="number").columns.tolist() # Add ID cols if it exists id_cols: List = [] for col in ["ID"]: if col not in all_cols: continue if col in cat_cols: cat_cols.remove(col) if col in num_cols: num_cols.remove(col) id_cols.append(col) # Add default category cols if it exists but not detected as category for col in [ "MARRIAGE", "SEX", ]: if col not in all_cols: continue if col in num_cols: num_cols.remove(col) if col not in cat_cols: cat_cols.append(col) cat_cols.sort() # Add default ordinal category if it exists ordi_cols: List = [] for col in ["EDUCATION"]: if col not in all_cols: continue if col in cat_cols: cat_cols.remove(col) if col in num_cols: num_cols.remove(col) ordi_cols.append(col) ordi_cols.sort() # Add boolean cols if it exists but not detected as boolean for col in num_cols: if set(df[col].astype(float).unique()) == {0, 1}: bool_cols.append(col) bool_cols.sort() for col in bool_cols: if col in num_cols: num_cols.remove(col) num_cols.sort() # Seperate numerical columns with skewed distribution skew_check = pd.DataFrame(df[num_cols].skew(), columns=["skew"]) num_skew_cols = skew_check[np.abs(skew_check["skew"]) >= 1].index.tolist() num_skew_cols.sort() for col in num_skew_cols: num_cols.remove(col) col_dict = { "id": id_cols, "num_normal": num_cols, "num_skewed": num_skew_cols, "ordinal": ordi_cols, "boolean": bool_cols, "category": cat_cols, } return col_dict def _enforce_dtype(df: pd.DataFrame) -> pd.DataFrame: col_dict = _get_column_dtype(df) # Check if ID exists if col_dict["id"]: df[col_dict["id"]] = df[col_dict["id"]].astype("object") # Enforce dtype df[col_dict["num_normal"]] = df[col_dict["num_normal"]].apply(_downcast_numeric) df[col_dict["num_skewed"]] = df[col_dict["num_skewed"]].apply(_downcast_numeric) df[col_dict["boolean"]] = df[col_dict["boolean"]].astype(bool) df[col_dict["ordinal"]] = df[col_dict["ordinal"]].astype("category") df[col_dict["category"]] = df[col_dict["category"]].astype("category") return df def _get_ct_feature_names(ct: ColumnTransformer) -> List: feature_names = [] for name, trans, column in ct.transformers_: if trans == "drop" or (hasattr(column, "__len__") and not len(column)): continue if trans == "passthrough": feature_names.extend(column) continue # if hasattr(trans, "get_feature_names"): # feature_names.extend(trans.get_feature_names(column)) # continue feature_names.extend(column) return feature_names def _get_ct_support(ct: ColumnTransformer) -> List: support_list = [] for name, trans, column in ct.transformers_: if not hasattr(trans, "get_support"): continue support_list.extend(trans.get_support()) return support_list def _inverse_ct_transform(df: pd.DataFrame, ct: ColumnTransformer) -> pd.DataFrame: df_inverse = df.copy() for name, trans, column in ct.transformers_: if trans == "drop" or (hasattr(column, "__len__") and not len(column)): continue if trans == "passthrough": continue if hasattr(trans, "inverse_transform"): df_inverse[column] = trans.inverse_transform(df_inverse[column]) continue return df_inverse def _get_oversample_strategy(series: pd.Series, multiplier: float = 1.0) -> Dict: if multiplier <= 0: raise ValueError("Multiplier must be within greater than 0.") counter: Counter = Counter(series) # Store the median sample of all labels median_sample = np.median([sample for label, sample in counter.items()]) recommended_sample = math.ceil(median_sample * multiplier) sampling_strat: Dict = {} # Populate sampling stategy for oversampling for label, sample in counter.most_common(): if sample <= median_sample: # Oversample label if its sample lower than median sample sampling_strat[label] = recommended_sample continue sampling_strat[label] = sample return sampling_strat def _remove_unused_transformers(transformers: List) -> List: used_trans = transformers for i, trans_set in enumerate(used_trans): name, trans, column = trans_set if not column: used_trans.pop(i) return used_trans def _remove_unused_steps(steps: List, remove_clf: bool = False) -> List: used_steps = steps for i, step_set in enumerate(used_steps): name, trans = step_set if not trans: used_steps.pop(i) continue if remove_clf: if name == "classifier": used_steps.pop(i) return used_steps def add_feature_profiles(profiles: pd.DataFrame, clients: pd.DataFrame) -> pd.DataFrame: """Add additional features to profiles Args: profiles: Data of client monthly profiles. clients: Data of normalized client. Returns: Monthly profile with additional features """ profiles = pd.merge(profiles, clients[["ID", "LIMIT_BAL"]], how="left", on="ID") # Determine the percentage threshold of used balance from the limit profiles["LIMIT_THRES"] = profiles["BILL_AMT"] / profiles["LIMIT_BAL"] # Determine if the client use credit card on that month profiles["CREDIT_USE"] = np.where( (profiles["PAY_STATUS"] == 0) & (profiles["BILL_AMT"] == 0) & (profiles["PAY_AMT"] == 0), False, True, ) profiles.drop(columns="LIMIT_BAL", inplace=True) return profiles def split_data( clients: pd.DataFrame, profiles: pd.DataFrame, labels: pd.DataFrame, parameters: Dict, ) -> List[pd.DataFrame]: """Splits data into training, calibration and test sets. Args: clients: Data of normalized client. profiles: Data of client monthly profiles. labels: Data of next month payment default status. parameters: Parameters defined in parameters.yml. Returns: A list containing split data. """ (clients_train, clients_test, labels_train, labels_test,) = train_test_split( clients, labels, test_size=parameters["test_size"], random_state=parameters["random_state"], stratify=labels["DEFAULT_PAY"], ) profiles_train = profiles[profiles["ID"].isin(labels_train["ID"])] profiles_test = profiles[profiles["ID"].isin(labels_test["ID"])] return [ clients_train, profiles_train, labels_train, clients_test, profiles_test, labels_test, ] def create_feature_definitions( clients_train: pd.DataFrame, profiles_train: pd.DataFrame, parameters: Dict ) -> List: """Create feature definitions and features set using DFS. Args: clients_train: Training data of normalized client. profiles_train: Training data of client monthly profiles. parameters: Parameters defined in parameters.yml. Returns: A list containing calculated features and its feature definitions from DFS. """ # Store client columns client_cols = clients_train.drop(columns="ID").columns.tolist() # Initialize dask client dask_client, dask_cluster = _initialize_dask_client(n_workers=2) # Log original features logger = logging.getLogger(__name__) logger.info( f"Original features, excluding ID and MONTH from data sources: {(clients_train.shape[1] - 1) + (profiles_train.shape[1] - 2)} ." ) # Create the EntitySet es = _create_client_entityset(clients_train, profiles_train, "client_train_set") # Create seed features retirement_age = ft.Feature(es["clients"]["AGE"]) >= 55 # Start DFS features, feature_defs = ft.dfs( entityset=es, target_entity="clients", agg_primitives=[ "all", "count", "last", "max", "mean", "median", "min", "num_true", "percent_true", "std", "skew", "sum", "trend", ], trans_primitives=["percentile"], seed_features=[retirement_age], max_depth=2, dask_kwargs={"cluster": dask_cluster}, verbose=True, ) dask_client.close() # Log features created after DFS logger.info(f"Features after DFS: {len(feature_defs)} features.") # Remove highly null features features, feature_defs = ft.selection.remove_highly_null_features( features, features=feature_defs, pct_null_threshold=parameters["null_thres"], ) logger.info(f"Features after removing highly null features: {len(feature_defs)}") # Remove single value features features, feature_defs = ft.selection.remove_single_value_features( features, features=feature_defs ) logger.info(f"Features after removing single value features: {len(feature_defs)}") # Remove highly correlated features features, feature_defs = ft.selection.remove_highly_correlated_features( features, features=feature_defs, pct_corr_threshold=parameters["corr_thres"], features_to_keep=client_cols, ) logger.info( f"Final features after removing highly correlated features: {len(feature_defs)}" ) # Reindex based on ID of clients features = features.reindex(index=clients_train["ID"]) features.reset_index(inplace=True) # Enforce dtype features = _enforce_dtype(features) # Make sure feature matrix have the same index as clients features.index = clients_train.index return [features, feature_defs] def calculate_features( feature_defs: List, clients: pd.DataFrame, profiles: pd.DataFrame ) -> pd.DataFrame: """Calculate features from existing feature definitions. Args: feature_defs: Feature definitions from DFS. clients: Data of normalized client. profiles: Data of client monthly profiles. Returns: Independent features calculated from feature definitions. """ # Initialize dask client dask_client, dask_cluster = _initialize_dask_client(n_workers=2) # Create the EntitySet es = _create_client_entityset(clients, profiles, "client_other_set") # Calculate feature matrix features = ft.calculate_feature_matrix( features=feature_defs, entityset=es, dask_kwargs={"cluster": dask_cluster}, verbose=True, ) dask_client.close() # Reindex based on ID of clients features = features.reindex(index=clients["ID"]) features.reset_index(inplace=True) # Enforce dtype features = _enforce_dtype(features) # Make sure feature matrix have the same index as clients features.index = clients.index return features def train_imputer(features: pd.DataFrame) -> Pipeline: """Train imputer. Args: features_train: Training data of independent features. Returns: Trained imputer. """ col_dict = _get_column_dtype(features) # Create transformers for each dtype transformers = [ ("num_n_imputer", SimpleImputer(strategy="median"), col_dict["num_normal"]), ("num_s_imputer", SimpleImputer(strategy="median"), col_dict["num_skewed"]), ( "ordi_imputer", SimpleImputer(strategy="constant", fill_value=0), col_dict["ordinal"], ), ("bool_pass", "passthrough", col_dict["boolean"]), ( "cat_imputer", SimpleImputer(strategy="constant", fill_value=0), col_dict["category"], ), ] transformers = _remove_unused_transformers(transformers) # Combine the transformers as imputer imputer = ColumnTransformer(transformers=transformers) imputer.fit(features) return imputer def impute_missing_values( imputer: ColumnTransformer, features: pd.DataFrame ) -> pd.DataFrame: """Impute features using trained imputer. Args: features: Data of independent features. imputer: Trained imputer. Returns: Imputed features using the trained imputer. """ # Remap imputer output to DataFrame input_cols = _get_ct_feature_names(imputer) features_imp = pd.DataFrame(imputer.transform(features), columns=input_cols) # Reindex based on ID of clients features_imp.index = features["ID"] features_imp = features_imp.reindex(index=features["ID"]) features_imp.reset_index(inplace=True) # Enforce dtype features_imp = _enforce_dtype(features_imp) # Make sure feature matrix have the same index as clients features_imp.index = features.index return features_imp def train_outlier_detector( features_train: pd.DataFrame, labels_train: pd.DataFrame, parameters: Dict ) -> Pipeline: """Train oulier detector and remove the outliers from features and its labels. Args: features_train: Training data of independent features. labels_train: Training data of next month payment default status. parameters: Parameters defined in parameters.yml. Returns: A list containing features, its default labels without outliers and its trained outlier detector """ col_dict = _get_column_dtype(features_train) if labels_train.shape[0] == features_train.shape[0]: labels_train.index = features_train.index # Create transformers for each dtype transformers = [ ("num_n_trans", StandardScaler(), col_dict["num_normal"]), ( "num_s_trans", QuantileTransformer(random_state=parameters["random_state"]), col_dict["num_skewed"], ), ("ordi_trans", "passthrough", col_dict["ordinal"]), ("bool_pass", "passthrough", col_dict["boolean"]), ( "cat_trans", CatBoostEncoder(random_state=parameters["random_state"], return_df=False), col_dict["category"], ), ] transformers = _remove_unused_transformers(transformers) # Log original features, excluding ID logger = logging.getLogger(__name__) features_train.replace([np.inf, -np.inf], np.nan) logger.info(features_train.columns[features_train.isna().any()]) # Combine the transformers as preprocessor preprocessor = ColumnTransformer(transformers=transformers) # Extract target target_train = labels_train["DEFAULT_PAY"] # Create outlier detector pipeline and train it detector = Pipeline( steps=[ ("preprocessor", preprocessor), ("detector", IsolationForest(n_jobs=-1)), ] ) detector.fit(features_train, target_train) return detector def remove_outliers( detector: Pipeline, features: pd.DataFrame, labels: pd.DataFrame, ) -> List: """Remove outliers from features and its labels using trained outlier detector. Args: detector: Trained outlier detector. features: Data of independent features. labels: Data of next month payment default status. Returns: A list containing features and its default labels without outliers. """ if labels.shape[0] == features.shape[0]: labels.index = features.index # Log original rows logger = logging.getLogger(__name__) logger.info("Original rows: {}".format(features.shape[0])) # Store predicted outlier labels features["OUTLIER"] = detector.predict(features) # Remove outliers (outlier = -1) features = features[features["OUTLIER"] != -1] labels = labels[labels["ID"].isin(features["ID"])] features.drop(columns="OUTLIER", inplace=True) logger.info("Final rows after removing outliers: {}".format(features.shape[0])) # Enforce dtype features = _enforce_dtype(features) return [features, labels] def train_feature_selector( features_train: pd.DataFrame, labels_train: pd.DataFrame, parameters: Dict, ) -> Pipeline: """Train feature selector and select only relevant features fot the label. Args: features_train: Training data of independent features. labels_train: Training data of next month payment default status. parameters: Parameters defined in parameters.yml. Returns: A list containing relevant features, and the trained feature selector """ col_dict = _get_column_dtype(features_train) if labels_train.shape[0] == features_train.shape[0]: labels_train.index = features_train.index # Create transformers for each dtype transformers = [ ("num_n_trans", StandardScaler(), col_dict["num_normal"]), ( "num_s_trans", QuantileTransformer(random_state=parameters["random_state"]), col_dict["num_skewed"], ), ("ordi_trans", "passthrough", col_dict["ordinal"]), ("bool_pass", "passthrough", col_dict["boolean"]), ( "cat_trans", JamesSteinEncoder(random_state=parameters["random_state"], return_df=False), col_dict["category"], ), ] transformers = _remove_unused_transformers(transformers) # Combine the transformers as preprocessor preprocessor = ColumnTransformer(transformers=transformers) num_cols = col_dict["num_normal"] + col_dict["num_skewed"] nomi_cols = col_dict["ordinal"] + col_dict["boolean"] + col_dict["category"] selector_ct = ColumnTransformer( transformers=[ ( "num_selector", SelectPercentile(f_classif, percentile=parameters["numeric_pct"]), [x for x in range(0, len(num_cols))], ), ( "nomi_selector", SelectPercentile(chi2, percentile=parameters["nominal_pct"]), [x for x in range(len(num_cols), len(num_cols) + len(nomi_cols))], ), ] ) # Extract target target_train = labels_train["DEFAULT_PAY"] # Create feature selector pipeline and train it selector = Pipeline( steps=[("preprocessor", preprocessor), ("selector", selector_ct)] ) selector.fit(features_train, target_train) return selector def select_relevant_features( selector: Pipeline, features: pd.DataFrame ) -> pd.DataFrame: """Select relevant features using trained feature selector Args: selector: Trained feature selector. eatures: Data of independent features. Returns: Relevant features selected using the trained feature selector. """ # Log original features, excluding ID logger = logging.getLogger(__name__) logger.info("Original features: {}".format(features.shape[1] - 1)) # Remap feature selector output to DataFrame input_cols = _get_ct_feature_names(selector.named_steps["preprocessor"]) selected_cols = _get_ct_support(selector.named_steps["selector"]) # Filter features that are not selected features_sel = features[input_cols] features_sel = features_sel.iloc[:, selected_cols] logger.info("Final features after selection: {}".format(features_sel.shape[1])) # Reindex based on ID of clients features_sel.index = features["ID"] features_sel = features_sel.reindex(index=features["ID"]) features_sel.reset_index(inplace=True) # Enforce dtype features_sel = _enforce_dtype(features_sel) # Make sure feature matrix have the same index as clients features_sel.index = features.index return features_sel def find_best_resampler( features_train: pd.DataFrame, labels_train: pd.DataFrame, parameters: Dict ) -> List: """Compare several resamplers and find the best one to handle imbalanced labels. Args: features_train: Training data of independent features. labels_train: Training data of next month payment default status. parameters: Parameters defined in parameters.yml. Returns: A list containing the best resampler and the search CV results as DataFrame. """ col_dict = _get_column_dtype(features_train) if labels_train.shape[0] == features_train.shape[0]: labels_train.index = features_train.index # Create transformers for each dtype transformers = [ ("num_n_trans", StandardScaler(), col_dict["num_normal"]), ( "num_s_trans", QuantileTransformer(random_state=parameters["random_state"]), col_dict["num_skewed"], ), ("ordi_trans", "passthrough", col_dict["ordinal"]), ("bool_pass", "passthrough", col_dict["boolean"]), ( "cat_trans", JamesSteinEncoder(random_state=parameters["random_state"], return_df=False), col_dict["category"], ), ] transformers = _remove_unused_transformers(transformers) # Combine the transformers as preprocessor preprocessor = ColumnTransformer(transformers=transformers) num_cols = col_dict["num_normal"] + col_dict["num_skewed"] nomi_cols = col_dict["ordinal"] + col_dict["boolean"] + col_dict["category"] # Extract target target_train = labels_train["DEFAULT_PAY"] # Initalize samplers smotenc_smpl = SMOTENC( categorical_features=[ x for x in range(len(num_cols), len(num_cols) + len(nomi_cols)) ], n_jobs=-1, ) ro_smpl = RandomOverSampler() enn_smpl = EditedNearestNeighbours(n_jobs=-1) tl_smpl = TomekLinks(n_jobs=-1) ru_smpl = RandomUnderSampler() # Initalize classifier clf = ExtraTreesClassifier(max_depth=10, n_jobs=-1) # Create parameter grid param_grid = { "sampler": [None, smotenc_smpl, ro_smpl, enn_smpl, tl_smpl, ru_smpl], "classifier": [clf], } # Create classifier pipeline resampler = PipelineImb( steps=[ ("preprocessor", preprocessor), ("sampler", smotenc_smpl), ("classifier", clf), ] ) # Start grid search search_cv = GridSearchCV( resampler, param_grid=param_grid, scoring=[ "precision", "recall", "f1", "roc_auc", ], refit="f1", error_score=0, verbose=2, ) timer_start = timer() search_cv.fit(features_train, target_train) timer_end = timer() # Log search duration logger = logging.getLogger(__name__) logger.info( f"Best resampler search elapsed time : {_get_time_delta(timer_end - timer_start)}." ) # Save search result as DataFrame search_results =
pd.DataFrame(search_cv.cv_results_)
pandas.DataFrame
import logging import numpy as np import pandas as pd from pytest import approx from lenskit.metrics.topn import recall from lenskit.util.test import demo_recs from lenskit import topn _log = logging.getLogger(__name__) def _test_recall(items, rel, **kwargs): recs = pd.DataFrame({'item': items}) truth = pd.DataFrame({'item': rel}).set_index('item') return recall(recs, truth, **kwargs) def test_recall_empty_zero(): prec = _test_recall([], [1, 3]) assert prec == approx(0) def test_recall_norel_na(): prec = _test_recall([1, 3], []) assert prec is None def test_recall_simple_cases(): prec = _test_recall([1, 3], [1, 3]) assert prec == approx(1.0) prec = _test_recall([1], [1, 3]) assert prec == approx(0.5) prec = _test_recall([1, 2, 3, 4], [1, 3]) assert prec == approx(1.0) prec = _test_recall([1, 2, 3, 4], [1, 3, 5]) assert prec == approx(2.0 / 3) prec = _test_recall([1, 2, 3, 4], range(5, 10)) assert prec == approx(0.0) prec = _test_recall([1, 2, 3, 4], range(4, 9)) assert prec == approx(0.2) def test_recall_series(): prec = _test_recall(pd.Series([1, 3]), pd.Series([1, 3])) assert prec == approx(1.0) prec = _test_recall(pd.Series([1, 2, 3]), pd.Series([1, 3, 5, 7])) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Series(range(4, 9))) assert prec == approx(0.2) def test_recall_series_set(): prec = _test_recall(pd.Series([1, 2, 3, 4]), [1, 3, 5, 7]) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), range(4, 9)) assert prec == approx(0.2) def test_recall_series_index(): prec = _test_recall(pd.Series([1, 3]), pd.Index([1, 3])) assert prec == approx(1.0) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Index([1, 3, 5, 7])) assert prec == approx(0.5) prec = _test_recall(pd.Series([1, 2, 3, 4]), pd.Index(range(4, 9))) assert prec == approx(0.2) def test_recall_series_array(): prec = _test_recall(
pd.Series([1, 3])
pandas.Series
#!/usr/bin/env python from __future__ import division import numpy as np import pandas as pd import warnings from .helpers import * def analyze_chunk(data, subjgroup=None, subjname='Subject', listgroup=None, listname='List', analysis=None, analysis_type=None, pass_features=False, **kwargs): """ Private function that groups data by subject/list number and performs analysis for a chunk of data. Parameters ---------- data : Egg data object The data to be analyzed subjgroup : list of strings or ints String/int variables indicating how to group over subjects. Must be the length of the number of subjects subjname : string Name of the subject grouping variable listgroup : list of strings or ints String/int variables indicating how to group over list. Must be the length of the number of lists listname : string Name of the list grouping variable analysis : function This function analyzes data and returns it. pass_features : bool Logical indicating whether the analyses uses the features field of the Egg Returns ---------- analyzed_data : Pandas DataFrame DataFrame containing the analysis results """ # if no grouping, set default to iterate over each list independently subjgroup = subjgroup if subjgroup else data.pres.index.levels[0].values listgroup = listgroup if listgroup else data.pres.index.levels[1].values # create a dictionary for grouping subjdict = {subj : data.pres.index.levels[0].values[subj==np.array(subjgroup)] for subj in set(subjgroup)} # listdict = {lst : data.pres.index.levels[1].values[lst==np.array(listgroup)] for lst in set(listgroup)} # allow for lists of listgroup arguments if all(isinstance(el, list) for el in listgroup): listdict = [{lst : data.pres.index.levels[1].values[lst==np.array(listgrpsub)] for lst in set(listgrpsub)} for listgrpsub in listgroup] else: listdict = [{lst : data.pres.index.levels[1].values[lst==np.array(listgroup)] for lst in set(listgroup)} for subj in subjdict] # perform the analysis def perform_analysis(subj, lst): # get data slice for presentation and recall pres_slice = data.pres.loc[[(s,l) for s in subjdict[subj] for l in listdict[subj][lst] if all(~pd.isnull(data.pres.loc[(s,l)]))]] pres_slice.list_length = data.list_length rec_slice = data.rec.loc[[(s,l) for s in subjdict[subj] for l in listdict[subj][lst] if all(~pd.isnull(data.pres.loc[(s,l)]))]] # if features are need for analysis, get the features for this slice of data if pass_features: feature_slice = data.features.loc[[(s,l) for s in subjdict[subj] for l in listdict[subj][lst] if all(~pd.isnull(data.pres.loc[(s,l)]))]] # generate indices index = pd.MultiIndex.from_arrays([[subj],[lst]], names=[subjname, listname]) # perform analysis for each data chunk if pass_features: return pd.DataFrame([analysis(pres_slice, rec_slice, feature_slice, data.dist_funcs, **kwargs)], index=index, columns=[feature for feature in feature_slice[0].as_matrix()[0].keys()]) else: return pd.DataFrame([analysis(pres_slice, rec_slice, **kwargs)], index=index) # create list of chunks to process a=[] b=[] for subj in subjdict: for lst in listdict[0]: a.append(subj) b.append(lst) # handle parellel kwarg parallel=kwargs['parallel'] del kwargs['parallel'] # if we're running permutation tests, use multiprocessing if parallel==True: import multiprocessing from pathos.multiprocessing import ProcessingPool as Pool p = Pool(multiprocessing.cpu_count()) analyzed_data = p.map(perform_analysis, a, b) else: analyzed_data = [perform_analysis(ai, bi) for ai,bi in zip(a,b)] # concatenate slices analyzed_data =
pd.concat(analyzed_data)
pandas.concat
""" Fetch meteorological data from the SMEAR website and bind them as a CSV table. Hyytiälä COS campaign, April-November 2016 (c) 2016-2017 <NAME> <<EMAIL>> """ import io import argparse import copy import datetime import requests import numpy as np import pandas as pd import preproc_config def timestamp_parser(*args): """ A timestamp parser for `pandas.read_csv()`. Argument list: year, month, day, hour, minute, second """ return np.datetime64('%s-%s-%s %s:%s:%s' % args) # define terminal argument parser parser = argparse.ArgumentParser(description='Get SMEAR meteorological data.') parser.add_argument('-v', '--variable', dest='flag_get_variable', action='store_true', help='get one variable at a time, slow mode') parser.add_argument('-n', '--now', dest='flag_now', action='store_true', help='get the data from the starting date till now') args = parser.parse_args() # echo program starting print('Retrieving meteorological data from ' + 'SMEAR <http://avaa.tdata.fi/web/smart/smear> ... ') dt_start = datetime.datetime.now() print(datetime.datetime.strftime(dt_start, '%Y-%m-%d %X')) print('numpy version = ' + np.__version__) print('pandas version = ' + pd.__version__) output_dir = preproc_config.data_dir['met_data'] # local winter time is UTC+2 start_dt = '2016-04-01 00:00:00' if not args.flag_now: end_dt = '2016-11-11 00:00:00' else: end_dt = (datetime.datetime.utcnow() + datetime.timedelta(2. / 24.)).strftime('%Y-%m-%d %H:%M:%S') # variable names for retrieval from the SMEAR data website API varnames = ['Pamb0', 'T1250', 'T672', 'T504', 'T336', 'T168', 'T84', 'T42', 'RHIRGA1250', 'RHIRGA672', 'RHIRGA504', 'RHIRGA336', 'RHIRGA168', 'RHIRGA84', 'RHIRGA42', 'RPAR', 'PAR', 'diffPAR', 'maaPAR', 'tsoil_humus', 'tsoil_A', 'tsoil_B1', 'tsoil_B2', 'tsoil_C1', 'wsoil_humus', 'wsoil_A', 'wsoil_B1', 'wsoil_B2', 'wsoil_C1', 'Precipacc'] # renaming will be done after filling all the variables in the met dataframe renaming_dict = { 'Pamb0': 'pres', 'T1250': 'T_atm_125m', 'T672': 'T_atm_67m', 'T504': 'T_atm_50m', 'T336': 'T_atm_34m', 'T168': 'T_atm_17m', 'T84': 'T_atm_8m', 'T42': 'T_atm_4m', 'RHIRGA1250': 'RH_125m', 'RHIRGA672': 'RH_67m', 'RHIRGA504': 'RH_50m', 'RHIRGA336': 'RH_34m', 'RHIRGA168': 'RH_17m', 'RHIRGA84': 'RH_8m', 'RHIRGA42': 'RH_4m', 'RPAR': 'PAR_reflected', 'PAR': 'PAR', 'diffPAR': 'PAR_diffuse', 'maaPAR': 'PAR_below', 'tsoil_humus': 'T_soil_surf', 'tsoil_A': 'T_soil_A', 'tsoil_B1': 'T_soil_B1', 'tsoil_B2': 'T_soil_B2', 'tsoil_C1': 'T_soil_C1', 'wsoil_humus': 'w_soil_surf', 'wsoil_A': 'w_soil_A', 'wsoil_B1': 'w_soil_B1', 'wsoil_B2': 'w_soil_B2', 'wsoil_C1': 'w_soil_C1', 'Precipacc': 'precip', } # an url example # url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?' + # 'variables=Pamb0,&table=HYY_META&' + # 'from=2016-04-01 00:00:00&to=2016-04-02 00:00:00&' # 'quality=ANY&averaging=30MIN&type=ARITHMETIC' if not args.flag_get_variable: # first, request all variables except precipitation print("Fetching variables '%s' ..." % ', '.join(varnames[0:-1]), end=' ') avg_type = 'ARITHMETIC' url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?variables=' + \ ','.join(varnames[0:-1]) + ',&table=HYY_META&from=' + \ start_dt + '&to=' + end_dt + \ '&quality=ANY&averaging=30MIN&type=' + avg_type response = requests.get(url, verify=True) # set `verify=True` to check SSL certificate if response.status_code != 200: print('Status %d: No response from the request.' % response.status_code) else: print('Successful!') df_met = pd.read_csv( io.BytesIO(response.text.encode('utf-8')), sep=',', header=0, names=['year', 'month', 'day', 'hour', 'minute', 'second', *varnames[0:-1]], parse_dates={'timestamp': [0, 1, 2, 3, 4, 5]}, date_parser=timestamp_parser, engine='c', encoding='utf-8') start_year = df_met['timestamp'][0].year df_met.insert( 1, 'doy', (df_met['timestamp'] -
pd.Timestamp('%d-01-01' % start_year)
pandas.Timestamp
import argparse import collections import pandas import numpy as np import os import gym from keras.models import Sequential from keras.layers import Dense, Activation, Flatten import tensorflow as tf from rl.agents.cem import CEMAgent from rl.memory import EpisodeParameterMemory from noise_estimator import CartpoleProcessor, CartpoleSurrogateProcessor from utils import * parser = argparse.ArgumentParser() parser.add_argument('--error_positive', type=float, default=0.2, help='Error positive rate [default: 0.2]') parser.add_argument('--error_negative', type=float, default=0.0, help='Error negative rate [default: 0.0]') parser.add_argument('--log_dir', default='logs', help='Log dir [default: logs]') parser.add_argument('--reward', default='normal', help='reward choice: normal/noisy/surrogate [default: normal]') parser.add_argument('--smooth', type=str2bool, default=False, help='Add smoothing to rewards [default: False]') FLAGS = parser.parse_args() ERR_P = FLAGS.error_positive ERR_N = FLAGS.error_negative REWARD = FLAGS.reward SMOOTH = FLAGS.smooth if REWARD == "normal": LOG_DIR = os.path.join(FLAGS.log_dir, "cem_cartpole") else: LOG_DIR = os.path.join(os.path.join(FLAGS.log_dir, "cem_cartpole"), str(ERR_P)) ENV_NAME = 'CartPole-v0' if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) os.system('cp cem_cartpole.py %s' % (LOG_DIR)) # bkp of train procedure LOG_FOUT = open(os.path.join(LOG_DIR, 'setting.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') def train(): # Get the environment and extract the number of actions. env = gym.make(ENV_NAME) np.random.seed(123) env.seed(123) nb_actions = env.action_space.n obs_dim = env.observation_space.shape[0] config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) from keras import backend as K K.set_session(sess) # Option 1 : Simple model # model = Sequential() # model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) # model.add(Dense(nb_actions)) # model.add(Activation('softmax')) # Option 2: deep network model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(nb_actions)) model.add(Activation('softmax')) model.summary() # Finally, we configure and compile our agent. You can use every built-in Keras optimizer and # even the metrics! memory = EpisodeParameterMemory(limit=1000, window_length=1) if REWARD == "normal": cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory, batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05) cem.compile() history_normal = cem.fit(env, nb_steps=100000, visualize=False, verbose=2) cem.save_weights(os.path.join(LOG_DIR, 'cem_normal_{}_params.h5f'.format(ENV_NAME)), overwrite=True) cem.test(env, nb_episodes=5, visualize=False) pandas.DataFrame(history_normal.history).to_csv(os.path.join(LOG_DIR, "normal.csv")) elif REWARD == "noisy": if not SMOOTH: processor_noisy = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=False, surrogate=False) else: processor_noisy = CartpoleProcessor(e_=ERR_N, e=ERR_P, smooth=True, surrogate=False) # processor_surrogate = CartpoleSurrogateProcessor(e_=ERR_N, e=ERR_P, surrogate=False) cem = CEMAgent(model=model, nb_actions=nb_actions, memory=memory, batch_size=50, nb_steps_warmup=2000, train_interval=50, elite_frac=0.05, processor=processor_noisy) cem.compile() history_noisy = cem.fit(env, nb_steps=100000, visualize=False, verbose=2) if not SMOOTH: cem.save_weights(os.path.join(LOG_DIR, 'cem_noisy_{}_params.h5f'.format(ENV_NAME)), overwrite=True) pandas.DataFrame(history_noisy.history).to_csv(os.path.join(LOG_DIR, "noisy.csv")) else: cem.save_weights(os.path.join(LOG_DIR, 'cem_noisy_smooth_{}_params.h5f'.format(ENV_NAME)), overwrite=True)
pandas.DataFrame(history_noisy.history)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 01 10:00:58 2021 @author: <NAME> """ #------------------------------------------------------------------# # # # # # Imports # # # # # #------------------------------------------------------------------# from math import e import numpy as np import pandas as pd import os import time import glob import itertools from joblib import Parallel, delayed from generate_files import GenerateFiles import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import LogNorm import seaborn as sns import matplotlib.style as style style.use('seaborn-poster') #sets the size of the charts style.use('ggplot') from scipy import ndimage from astropy.io import fits from astropy.wcs import WCS from astropy.utils.data import get_pkg_data_filename from astropy.coordinates import SkyCoord, match_coordinates_sky import astropy.units as u from astropy.stats import mad_std import astrotools.healpytools as hpt import astropy_healpix as ahp from astropy.coordinates import ICRS from tqdm import tqdm from collections import Counter import warnings warnings.filterwarnings('ignore') import healpy as hp from hpproj import CutSky, to_coord import logging cs_logger = logging.getLogger('cutsky') cs_logger.setLevel(logging.WARNING) cs_logger.propagate = False hpproj_logger = logging.getLogger('hpproj') hpproj_logger.setLevel(logging.WARNING) mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) #------------------------------------------------------------------# # # # # # Functions # # # # # #------------------------------------------------------------------# class MakeData(object): """Class to create and preprocess input/output files from full sky-maps. """ def __init__(self, dataset, npix, loops, planck_path, milca_path, disk_radius=None, output_path=None): """ Args: dataset (str): file name for the cluster catalog that will used. Options are 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50'. bands (list): list of full sky-maps that will be used for the input file. loops (int): number of times the dataset containing patches with at least one cluster within will be added again to training set with random variations (translations/rotations). Options are 100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', and 'y-map'. More full sky-maps will be added later on (e.g. CO2, X-ray, density maps). planck_path (str): path to directory containing planck HFI 6 frequency maps. Files should be named as following 'HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits', 'HFI_SkyMap_545-field-Int_2048_R3.00_full.fits', 'HFI_SkyMap_857-field-Int_2048_R3.00_full.fits'. milca_path (str): path to directory containing MILCA full sky map. File should be named 'milca_ymaps.fits'. disk_radius (float, optional): Disk radius that will be used to create segmentation masks for output files. Defaults to None. output_path (str, optional): Path to output directory. Output directory needs be created beforehand using 'python xcluster.py -m True' selecting same output directory in 'params.py'. If None, xcluster path will be used. Defaults to None. """ self.path = os.getcwd() + '/' self.dataset = dataset # 'planck_z', 'planck_z_no-z', 'MCXC', 'RM30', 'RM50' self.bands = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz','y-map','CO','p-noise'] self.loops = loops self.n_labels = 2 maps = [] self.freq = 1022 self.planck_freq = 126 if '100GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_100-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 100', 'docontour': True})) # self.freq += 2 # self.planck_freq += 2 if '143GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_143-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 143', 'docontour': True})) # self.freq += 4 # self.planck_freq += 4 if '217GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_217-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 217', 'docontour': True})) # self.freq += 8 # self.planck_freq += 8 if '353GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_353-psb-field-IQU_2048_R3.00_full.fits", {'legend': 'HFI 353', 'docontour': True})) # self.freq += 16 # self.planck_freq += 16 if '545GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_545-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 545', 'docontour': True})) # self.freq += 32 # self.planck_freq += 32 if '857GHz' in self.bands: maps.append((planck_path + "HFI_SkyMap_857-field-Int_2048_R3.00_full.fits", {'legend': 'HFI 857', 'docontour': True})) # self.freq += 64 # self.planck_freq += 64 if 'y-map' in self.bands: maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) # self.freq += 128 if 'CO' in self.bands: maps.append((planck_path + "COM_CompMap_CO21-commander_2048_R2.00.fits", {'legend': 'CO', 'docontour': True})) # self.freq += 256 if 'p-noise' in self.bands: maps.append((planck_path + 'COM_CompMap_Compton-SZMap-milca-stddev_2048_R2.00.fits', {'legend': 'noise', 'docontour': True})) # self.freq += 512 maps.append((milca_path + "milca_ymaps.fits", {'legend': 'MILCA y-map', 'docontour': True})) #used for plots only self.maps = maps self.temp_path = self.path + 'to_clean/' self.disk_radius = disk_radius self.npix = npix #in pixels self.pixsize = 1.7 #in arcmin self.ndeg = (self.npix * self.pixsize)/60 #in deg self.nside = 2 if output_path is None: self.output_path = self.path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") else: self.output_path = output_path + 'output/' + self.dataset + time.strftime("/%Y-%m-%d/") self.dataset_path = self.path + 'datasets/' + self.dataset + '/' self.planck_path = planck_path self.milca_path = milca_path self.test_regions = [[0, 360, 90, 70], [0, 120, 70, 40], [120, 240, 70, 40], [240, 360, 70, 40], [0, 120, 40, 18], [120, 240, 40, 18], [240, 360, 40, 18], [0, 120, -18, -40], [120, 240, -18, -40], [240, 360, -18, -40], [0, 120, -40, -70], [120, 240, -40, -70], [240, 360, -40, -70], [0, 360, -70, -90]] self.val_regions = [[0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 180, -20, -40], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, -40, -60], [0, 360, 60, 40], [0, 360, 60, 40], [0, 360, 60, 40], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20], [0, 180, 40, 20]] def plot_psz2_clusters(self, healpix_path): """Saves plots containing patches for planck frequency maps and y-map. Function is deprecated and will be removed in later versions. Args: healpix_path (str): output path for plots (deprecated). """ maps = self.maps PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') glon = PSZ2[1].data['GLON'] glat = PSZ2[1].data['GLAT'] freq = ['100GHz','143GHz','217GHz','353GHz','545GHz','857GHz', 'y-map'] for j in range(len(glon)): fig = plt.figure(figsize=(21,14), tight_layout=False) fig.suptitle(r'$glon=$ {:.2f} $^\circ$, $glat=$ {:.2f} $^\circ$'.format(glon[j], glat[j]), y=0.92, fontsize=20) cutsky = CutSky(maps, npix=self.npix, pixsize=self.pixsize, low_mem=False) coord = to_coord([glon[j], glat[j]]) result = cutsky.cut_fits(coord) for i,nu in enumerate(freq): ax = fig.add_subplot(3,4,1+i) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) HDU = result[i]['fits'] im = ax.imshow(HDU.data, origin="lower") w = WCS(HDU.header) sky = w.world_to_pixel_values(glon[j], glat[j]) segmentation = plt.Circle((sky[0], sky[1]), 2.5/1.7, color='white', alpha=0.1) ax.add_patch(segmentation) ax.axvline(sky[0], ymin=0, ymax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axvline(sky[0], ymin=(self.npix//2+10)/self.npix, ymax=1, color='white', linestyle='--') ax.axhline(sky[1], xmin=0, xmax=(self.npix//2-10)/self.npix, color='white', linestyle='--') ax.axhline(sky[1], xmin=(self.npix//2+10)/self.npix, xmax=1, color='white', linestyle='--') # ax.scatter(sky[0], sky[1], color='red') ax.set_title(r'%s'%nu) fig.colorbar(im, cax=cax, orientation='vertical') plt.savefig(healpix_path + 'PSZ2/PSZ2_skycut_%s.png'%j, bbox_inches='tight', transparent=False) plt.show() plt.close() def create_catalogs(self, plot=False): """Creates the following catalogs using 'PSZ2v1.fits', 'MCXC-Xray-clusters.fits', and 'redmapper_dr8_public_v6.3_catalog.fits' (see <NAME> 2018 for more details): planck_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with known redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC', 'Z' planck_no_z (pd.DataFrame): dataframe with the following columns for PSZ2 clusters with unknown redshift: 'RA', 'DEC', 'GLON', 'GLAT', 'M500', 'R500', 'Y5R500', 'REDMAPPER', 'MCXC' MCXC_no_planck (pd.DataFrame): dataframe with the following columns for MCXC clusters: 'RA', 'DEC', 'R500', 'M500', 'Z' RM50_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>50: 'RA', 'DEC', 'LAMBDA', 'Z' RM30_no_planck (pd.DataFrame): dataframe with the following columns for RedMaPPer clusters with lambda>30: 'RA', 'DEC', 'LAMBDA', 'Z' Catalogs are saved in output_path + /catalogs/. Input catalogs are in planck_path. Args: plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ PSZ2 = fits.open(self.planck_path + 'PSZ2v1.fits') df_psz2 = pd.DataFrame(data={'RA': PSZ2[1].data['RA'].tolist(), 'DEC': PSZ2[1].data['DEC'].tolist(), 'GLON': PSZ2[1].data['GLON'].tolist(), 'GLAT':PSZ2[1].data['GLAT'].tolist(), 'M500': PSZ2[1].data['MSZ'].tolist(), 'R500': PSZ2[1].data['Y5R500'].tolist(), 'REDMAPPER': PSZ2[1].data['REDMAPPER'].tolist(), 'MCXC': PSZ2[1].data['MCXC'].tolist(), 'Z': PSZ2[1].data['REDSHIFT'].tolist()}) df_psz2 = df_psz2.replace([-1, -10, -99], np.nan) planck_no_z = df_psz2.query('Z.isnull()', engine='python') planck_z = df_psz2.query('Z.notnull()', engine='python') # planck_no_z = planck_no_z[['RA', 'DEC']].copy() # planck_z = planck_z[['RA', 'DEC']].copy() planck_no_z.to_csv(self.path + 'catalogs/planck_no-z' + '.csv', index=False) planck_z.to_csv(self.path + 'catalogs/planck_z' + '.csv', index=False) MCXC = fits.open(self.planck_path + 'MCXC-Xray-clusters.fits') MCXC_skycoord = SkyCoord(ra=MCXC[1].data['RA'].tolist(), dec=MCXC[1].data['DEC'].tolist(), unit=u.degree) MCXC_GLON = list(MCXC_skycoord.galactic.l.degree) MCXC_GLAT = list(MCXC_skycoord.galactic.b.degree) df_MCXC = pd.DataFrame(data={'RA': MCXC[1].data['RA'].tolist(), 'DEC': MCXC[1].data['DEC'].tolist(), 'R500': MCXC[1].data['RADIUS_500'].tolist(), 'M500': MCXC[1].data['MASS_500'].tolist(), 'GLON': MCXC_GLON, 'GLAT': MCXC_GLAT, 'Z': MCXC[1].data['REDSHIFT'].tolist()}) REDMAPPER = fits.open(self.planck_path + 'redmapper_dr8_public_v6.3_catalog.fits') REDMAPPER_skycoord = SkyCoord(ra=REDMAPPER[1].data['RA'].tolist(), dec=REDMAPPER[1].data['DEC'].tolist(), unit=u.degree) REDMAPPER_GLON = list(REDMAPPER_skycoord.galactic.l.degree) REDMAPPER_GLAT = list(REDMAPPER_skycoord.galactic.b.degree) df_REDMAPPER = pd.DataFrame(data={'RA': REDMAPPER[1].data['RA'].tolist(), 'DEC': REDMAPPER[1].data['DEC'].tolist(), 'LAMBDA': REDMAPPER[1].data['LAMBDA'].tolist(), 'GLON': REDMAPPER_GLON, 'GLAT': REDMAPPER_GLAT, 'Z': REDMAPPER[1].data['Z_SPEC'].tolist()}) df_REDMAPPER_30 = df_REDMAPPER.query("LAMBDA > 30") df_REDMAPPER_50 = df_REDMAPPER.query("LAMBDA > 50") ACT = fits.open(self.planck_path + 'sptecs_catalog_oct919_forSZDB.fits') SPT = fits.open(self.planck_path + 'DR5_cluster-catalog_v1.1_forSZDB.fits') df_act = pd.DataFrame(data={'RA': list(ACT[1].data['RA']), 'DEC': list(ACT[1].data['DEC']), 'GLON': list(ACT[1].data['GLON']), 'GLAT': list(ACT[1].data['GLAT'])}) df_spt = pd.DataFrame(data={'RA': list(SPT[1].data['RA']), 'DEC': list(SPT[1].data['DEC']), 'GLON': list(SPT[1].data['GLON']), 'GLAT': list(SPT[1].data['GLAT'])}) self.remove_duplicates_on_radec(df_MCXC, df_psz2, output_name='MCXC_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_30, df_psz2, output_name='RM30_no_planck', plot=plot) self.remove_duplicates_on_radec(df_REDMAPPER_50, df_psz2, output_name='RM50_no_planck', plot=plot) self.remove_duplicates_on_radec(df_act, df_psz2, output_name='ACT_no_planck', plot=plot) self.remove_duplicates_on_radec(df_spt, df_psz2, output_name='SPT_no_planck', plot=plot) PSZ2.close() MCXC.close() MCXC.close() REDMAPPER.close() ACT.close() SPT.close() def create_fake_source_catalog(self): PGCC = fits.open(self.planck_path + 'HFI_PCCS_GCC_R2.02.fits') df_pgcc = pd.DataFrame(data={'RA': list(PGCC[1].data['RA']), 'DEC': list(PGCC[1].data['DEC']), 'GLON': list(PGCC[1].data['GLON']), 'GLAT': list(PGCC[1].data['GLAT'])}) PGCC.close() df_pgcc.to_csv(self.path + 'catalogs/' + 'PGCC' + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) bands = ['100GHz', '143GHz', '217GHz', '353GHz', '545GHz', '857GHz'] cs_100 = fits.open(self.planck_path + 'COM_PCCS_100_R2.01.fits') cs_143 = fits.open(self.planck_path + 'COM_PCCS_143_R2.01.fits') cs_217 = fits.open(self.planck_path + 'COM_PCCS_217_R2.01.fits') cs_353 = fits.open(self.planck_path + 'COM_PCCS_353_R2.01.fits') cs_545 = fits.open(self.planck_path + 'COM_PCCS_545_R2.01.fits') cs_857 = fits.open(self.planck_path + 'COM_PCCS_857_R2.01.fits') df_cs_100 = pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}) df_cs_100.to_csv(self.path + 'catalogs/' + 'cs_100' + '.csv', index=False) df_cs_143 = pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}) df_cs_143.to_csv(self.path + 'catalogs/' + 'cs_143' + '.csv', index=False) df_cs_217 = pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}) df_cs_217.to_csv(self.path + 'catalogs/' + 'cs_217' + '.csv', index=False) df_cs_353 = pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}) df_cs_353.to_csv(self.path + 'catalogs/' + 'cs_353' + '.csv', index=False) df_cs_545 = pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}) df_cs_545.to_csv(self.path + 'catalogs/' + 'cs_545' + '.csv', index=False) df_cs_857 = pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}) df_cs_857.to_csv(self.path + 'catalogs/' + 'cs_857' + '.csv', index=False) freq = 0 if '100GHz' in bands: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in bands: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in bands: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in bands: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in bands: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in bands: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) df = pd.DataFrame(columns=['RA','DEC','GLON','GLAT']) for L in range(1, len(bands)): for subset in tqdm(itertools.combinations(bands, L)): freq = 0 if '100GHz' in subset: freq += 2 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_100[1].data['RA']), 'DEC': list(cs_100[1].data['DEC']), 'GLON': list(cs_100[1].data['GLON']), 'GLAT': list(cs_100[1].data['GLAT'])}))) if '143GHz' in subset: freq += 4 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_143[1].data['RA']), 'DEC': list(cs_143[1].data['DEC']), 'GLON': list(cs_143[1].data['GLON']), 'GLAT': list(cs_143[1].data['GLAT'])}))) if '217GHz' in subset: freq += 8 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_217[1].data['RA']), 'DEC': list(cs_217[1].data['DEC']), 'GLON': list(cs_217[1].data['GLON']), 'GLAT': list(cs_217[1].data['GLAT'])}))) if '353GHz' in subset: freq += 16 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_353[1].data['RA']), 'DEC': list(cs_353[1].data['DEC']), 'GLON': list(cs_353[1].data['GLON']), 'GLAT': list(cs_353[1].data['GLAT'])}))) if '545GHz' in subset: freq += 32 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_545[1].data['RA']), 'DEC': list(cs_545[1].data['DEC']), 'GLON': list(cs_545[1].data['GLON']), 'GLAT': list(cs_545[1].data['GLAT'])}))) if '857GHz' in subset: freq += 64 df = pd.concat((df, pd.DataFrame(data={'RA': list(cs_857[1].data['RA']), 'DEC': list(cs_857[1].data['DEC']), 'GLON': list(cs_857[1].data['GLON']), 'GLAT': list(cs_857[1].data['GLAT'])}))) df = pd.concat((df_pgcc, df)) df = self.remove_duplicates_on_radec(df, with_itself=True, tol=2) df.to_csv(self.path + 'catalogs/' + 'False_SZ_catalog_f%s'%freq + '.csv', index=False) cs_100.close() cs_143.close() cs_217.close() cs_353.close() cs_545.close() cs_857.close() def remove_duplicates_on_radec(self, df_main, df_with_dup=None, output_name=None, with_itself=False, tol=5, plot=False): """"Takes two different dataframes with columns 'RA' & 'DEC' and performs a spatial coordinate match with a tol=5 arcmin tolerance. Saves a .csv file containing df_main without objects in common from df_with_dup. Args: df_main (pd.DataFrame): main dataframe. df_with_dup (pd.DataFrame): dataframe that contains objects from df_main. Defaults to None. output_name (str): name that will be used in the saved/plot file name. If None, no file will be saved. Defaults to None. with_itself (bool, optional): If True, the spatial coordinates match will be performed with df_main. Defaults to False. tol (int, optional): tolerance for spatial coordinates match in arcmin. Defaults to 5. plot (bool, optional): If True, will save duplicates distance from each other distribution plots. Defaults to False. """ if with_itself == True: scatalog_sub = SkyCoord(ra=df_main['RA'].values, dec=df_main['DEC'].values, unit='deg') idx, d2d, _ = match_coordinates_sky(scatalog_sub, scatalog_sub, nthneighbor=2) ismatched = d2d < tol*u.arcminute #threshold to consider whether or not two galaxies are the same df_d2d =
pd.DataFrame(data={'ismatched': ismatched, 'idx': idx, 'd2d': d2d})
pandas.DataFrame
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt import json import logging import pandas as pd from copy import deepcopy from enum import Enum from functools import wraps from pydash import get, has, set_ from typing import Dict, List, Optional from gs_quant.api.gs.assets import GsAsset, GsAssetApi from gs_quant.api.gs.data import GsDataApi from gs_quant.api.gs.indices import GsIndexApi from gs_quant.api.gs.reports import GsReportApi from gs_quant.api.gs.users import GsUsersApi from gs_quant.common import DateLimit, PositionType from gs_quant.data.fields import DataMeasure from gs_quant.entities.entity import EntityType, PositionedEntity from gs_quant.entities.entitlements import Entitlements as BasketEntitlements from gs_quant.errors import MqError, MqValueError from gs_quant.json_encoder import JSONEncoder from gs_quant.markets.indices_utils import * from gs_quant.markets.position_set import PositionSet from gs_quant.markets.securities import Asset, AssetType as SecAssetType from gs_quant.session import GsSession from gs_quant.target.data import DataQuery from gs_quant.target.indices import * from gs_quant.target.reports import Report, ReportStatus _logger = logging.getLogger(__name__) class ErrorMessage(Enum): NON_ADMIN = 'You are not permitted to perform this action on this basket. Please make sure \ the basket owner has entitled your application properly if you believe this is a mistake' NON_INTERNAL = 'You are not permitted to access this basket setting.' UNINITIALIZED = 'Basket class object must be initialized using one of an existing basket\'s \ identifiers to perform this action' UNMODIFIABLE = 'This property can not be modified since the basket has already been created' def _validate(*error_msgs): """ Confirms initialization is complete and checks for errors before calling function """ def _outer(fn): @wraps(fn) def _inner(self, *args, **kwargs): if has(self, '_Basket__error_messages') and self._Basket__error_messages is not None: if len(self._Basket__error_messages) < 1: self._Basket__finish_initialization() for error_msg in error_msgs: if error_msg in self._Basket__error_messages: raise MqError(error_msg.value) return fn(self, *args, **kwargs) return _inner return _outer class Basket(Asset, PositionedEntity): """ Basket which tracks an evolving portfolio of securities, and can be traded through cash or derivatives markets """ def __init__(self, gs_asset: GsAsset = None, **kwargs): self.__error_messages = None if gs_asset: if gs_asset.type.value not in BasketType.to_list(): raise MqValueError(f'Failed to initialize. Asset {gs_asset.id} is not a basket') self.__id = gs_asset.id self.__initial_entitlements = gs_asset.entitlements asset_entity: Dict = json.loads(json.dumps(gs_asset.as_dict(), cls=JSONEncoder)) Asset.__init__(self, gs_asset.id, gs_asset.asset_class, gs_asset.name, exchange=gs_asset.exchange, currency=gs_asset.currency, entity=asset_entity) PositionedEntity.__init__(self, gs_asset.id, EntityType.ASSET) self.__populate_current_attributes_for_existing_basket(gs_asset) else: self.__populate_default_attributes_for_new_basket(**kwargs) self.__error_messages = set([]) if get(kwargs, '_finish_init', False): self.__finish_initialization() @classmethod def get(cls, identifier: str, **kwargs): """ Fetch an existing basket :param identifier: Any common identifier for a basket (ric, ticker, etc.) :return: Basket object **Usage** Get existing basket instance **Examples** Get basket details: >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") """ gs_asset = cls.__get_gs_asset(identifier) return cls(gs_asset=gs_asset, _finish_init=get(kwargs, '_finish_init', True)) @_validate() def get_details(self) -> pd.DataFrame: """ Get basket details :return: dataframe containing current basket properties **Usage** Get basket's current state **Examples** Get basket details: >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_details() """ props = list(CustomBasketsPricingParameters.properties().union(PublishParameters.properties(), CustomBasketsCreateInputs.properties())) props = sorted(props) details = [{'name': k, 'value': get(self, k)} for k in props if has(self, k)] return pd.DataFrame(details) def create(self) -> Dict: """ Create a new custom basket in Marquee :return: dictionary containing asset id and report id **Usage** Create a new custom basket in Marquee **See also** :func:`get_details` :func:`poll_status` :func:`update` """ inputs, pricing, publish = {}, {}, {} for prop in CustomBasketsCreateInputs.properties(): set_(inputs, prop, get(self, prop)) for prop in CustomBasketsPricingParameters.properties(): set_(pricing, prop, get(self, prop)) for prop in PublishParameters.properties(): set_(publish, prop, get(self, prop)) set_(inputs, 'position_set', self.position_set.to_target(common=False)) set_(inputs, 'pricing_parameters', CustomBasketsPricingParameters(**pricing)) set_(inputs, 'publish_parameters', PublishParameters(**publish)) create_inputs = CustomBasketsCreateInputs(**inputs) response = GsIndexApi.create(create_inputs) gs_asset = GsAssetApi.get_asset(response.asset_id) self.__latest_create_report = GsReportApi.get_report(response.report_id) self.__init__(gs_asset=gs_asset, _finish_init=True) return response.as_dict() @_validate(ErrorMessage.UNINITIALIZED) def clone(self): """ Retrieve a clone of an existing basket :return: New basket instance with position set identical to current basket **Usage** Clone an existing basket's position set in a new basket instance prior to creation **Examples** Clone current basket: >>> from gs_quant.markets.baskets import Basket >>> >>> parent_basket = Basket.get("GSMBXXXX") >>> clone = parent_basket.clone() **See also** :func:`create` """ position_set = deepcopy(self.position_set) return Basket(position_set=position_set, clone_parent_id=self.id, parent_basket=self.ticker) @_validate(ErrorMessage.UNINITIALIZED, ErrorMessage.NON_ADMIN) def update(self) -> Dict: """ Update your custom basket :return: dictionary containing asset id and report id **Usage** Make updates to your basket's metadata, pricing options, publishing options, or composition **See also** :func:`get_details` :func:`poll_status` :func:`create` """ edit_inputs, rebal_inputs = self.__get_updates() entitlements = self.__entitlements.to_target() if not entitlements == self.__initial_entitlements: response = GsAssetApi.update_asset_entitlements(self.id, entitlements) if edit_inputs is None and rebal_inputs is None: if response: return response.as_dict() raise MqValueError('Update failed: Nothing on the basket was changed') elif edit_inputs is not None and rebal_inputs is None: response = GsIndexApi.edit(self.id, edit_inputs) elif rebal_inputs is not None and edit_inputs is None: response = GsIndexApi.rebalance(self.id, rebal_inputs) else: response = self.__edit_and_rebalance(edit_inputs, rebal_inputs) gs_asset = GsAssetApi.get_asset(self.id) self.__latest_create_report = GsReportApi.get_report(response.report_id) self.__init__(gs_asset=gs_asset, _finish_init=True) return response.as_dict() @_validate(ErrorMessage.UNINITIALIZED, ErrorMessage.NON_ADMIN) def upload_position_history(self, position_sets: List[PositionSet]) -> Dict: """ Upload basket composition history :param position_sets: list of dated position sets :return: dictionary containing asset id and report id **Usage** Upload your basket's historical composition after it's been created **Examples** Upload composition history from a list of identifiers: >>> from datetime import date >>> from gs_quant.markets.baskets import Basket >>> from gs_quant.markets.position_set import PositionSet >>> >>> first_position_set = PositionSet.from_list(['BBID1', 'BBID2'], date(2020, 1, 1)) >>> second_position_set = PositionSet.from_list(['BBID1','BBID2', 'BBID3'], date(2021, 1, 1)) >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.upload_position_history([first_position_set, second_position_set]) **See also** :class:`PositionSet` """ if self.default_backcast: raise MqValueError('Unable to upload position history: option must be set during basket creation') historical_position_sets = [] for position_set in position_sets: positions = [IndicesPositionInput(p.asset_id, p.weight) for p in position_set.positions] historical_position_sets.append(IndicesPositionSet(tuple(positions), position_set.date)) response = GsIndexApi.backcast(self.id, CustomBasketsBackcastInputs(tuple(historical_position_sets))) return response.as_dict() @_validate(ErrorMessage.UNINITIALIZED) def poll_status(self, timeout: int = 600, step: int = 30) -> ReportStatus: """ Polls the status of the basket's most recent create/edit/rebalance report :param timeout: how many seconds you'd like to poll for (default is 600 sec) :param step: how frequently you'd like to check the report's status (default is every 30 sec) :return: Report status **Usage** Poll the status of a newly created or updated basket **Examples** Poll most recent create/update report status: >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.poll_status(timeout=120, step=20) **See also** :func:`create` :func:`update` """ report = get(self, '__latest_create_report', self.__get_latest_create_report()) report_id = get(report, 'id') return self.poll_report(report_id, timeout, step) @_validate(ErrorMessage.UNINITIALIZED) def get_latest_rebalance_data(self) -> Dict: """ Retrieve the most recent rebalance data for a basket **Usage** Retrieve the most recent rebalance data for a basket **Examples** Retrieve the most recent rebalance data for a basket >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_latest_rebalance_data() **See also** :func:`get_latest_rebalance_date` """ return GsIndexApi.last_rebalance_data(self.id) @_validate(ErrorMessage.UNINITIALIZED) def get_latest_rebalance_date(self) -> dt.date: """ Retrieve the most recent rebalance date for a basket :return: dictionary **Usage** Retrieve the most recent rebalance date for a basket **Examples** Retrieve the most recent rebalance date for a basket >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_latest_rebalance_date() **See also** :func:`get_latest_rebalance_data` """ last_rebalance = GsIndexApi.last_rebalance_data(self.id) return dt.datetime.strptime(last_rebalance['date'], '%Y-%m-%d').date() @_validate(ErrorMessage.UNINITIALIZED) def get_rebalance_approval_status(self) -> str: """ Retrieve the most recent rebalance submission's approval status :return: current approval status **Usage** Retrieve the most recent rebalance submission's approval status **Examples** Retrieve the most recent rebalance submission's approval status >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_rebalance_approval_status() **See also** :func:`cancel_rebalance` :func:`poll_report` """ last_approval = GsIndexApi.last_rebalance_approval(self.id) return get(last_approval, 'status') @_validate(ErrorMessage.NON_ADMIN) def cancel_rebalance(self) -> Dict: """ Cancel the most recent rebalance submission **Usage** Cancel the basket's most recent rebalance submission if it has not yet been approved **Examples** Cancel the basket's most recent rebalance submission >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.cancel_rebalance() **See also** :func:`get_rebalance_approval_status` :func:`update` """ return GsIndexApi.cancel_rebalance(self.id) @_validate(ErrorMessage.UNINITIALIZED) def get_corporate_actions(self, start: dt.date = DateLimit.LOW_LIMIT.value, end: dt.date = dt.date.today() + dt.timedelta(days=10), ca_type: List[CorporateActionType] = CorporateActionType.to_list()) -> pd.DataFrame: """ Retrieve corporate actions for a basket across a date range :param start: start date (default minimum date value) :param end: end date (default is maximum date value) :param ca_type: list of corporate action types (default is all) :return: dataframe with corporate actions information **Usage** Retrieve corporate actions for a basket across a date range **Examples** Retrieve historical acquisition corporate actions for a basket >>> from gs_quant.markets.baskets import Basket >>> from gs_quant.markets.indices_utils import CorporateActionType >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_corporate_actions(ca_type=[CorporateActionType.ACQUISITION]) **See also** :func:`get_fundamentals` """ where = dict(assetId=self.id, corporateActionType=ca_type) query = DataQuery(where=where, start_date=start, end_date=end) response = GsDataApi.query_data(query=query, dataset_id=IndicesDatasets.CORPORATE_ACTIONS.value) return pd.DataFrame(response) @_validate(ErrorMessage.UNINITIALIZED) def get_fundamentals(self, start: dt.date = DateLimit.LOW_LIMIT.value, end: dt.date = dt.date.today(), period: DataMeasure = DataMeasure.ONE_YEAR.value, direction: DataMeasure = DataMeasure.FORWARD.value, metrics: List[DataMeasure] = DataMeasure.list_fundamentals()) -> pd.DataFrame: """ Retrieve fundamentals data for a basket across a date range :param start: start date (default minimum date value) :param end: end date (default is today) :param period: period for the relevant metric (default is 1y) :param direction: direction of the outlook period (default is forward) :param metrics: list of fundamentals metrics (default is all) :return: dataframe with fundamentals information **Usage** Retrieve fundamentals data for a basket across a date range **Examples** Retrieve historical dividend yield data for a basket >>> from gs_quant.data.fields import DataMeasure >>> from gs_quant.markets.baskets import Basket >>> >>> basket = Basket.get("GSMBXXXX") >>> basket.get_fundamentals(metrics=[DataMeasure.DIVIDEND_YIELD]) **See also** :func:`get_corporate_actions` """ where = dict(assetId=self.id, period=period, periodDirection=direction, metric=metrics) query = DataQuery(where=where, start_date=start, end_date=end) response = GsDataApi.query_data(query=query, dataset_id=IndicesDatasets.BASKET_FUNDAMENTALS.value) return
pd.DataFrame(response)
pandas.DataFrame
from pathlib import Path import os import pandas as pd import numpy as np def get_country_geolocation(): dir_path = os.path.dirname(os.path.realpath(__file__)) country_mapping = pd.read_csv( dir_path + '/data_files/country_centroids_az8.csv', dtype=str) country_mapping = country_mapping.iloc[:, [48, 66, 67]] longitude_mapping = {row['iso_n3']: row['Longitude'] for _, row in country_mapping.iterrows()} latititude_mapping = {row['iso_n3']: row['Latitude'] for _, row in country_mapping.iterrows()} return longitude_mapping, latititude_mapping def get_country_isocode_mapping(): dir_path = os.path.dirname(os.path.realpath(__file__)) country_mapping = pd.read_csv( dir_path + '/data_files/country-codes_csv.csv', dtype=str) country_mapping = country_mapping.iloc[1:, [2, 8]] mapping = {row['official_name_en']: row['ISO3166-1-numeric'] for _, row in country_mapping.iterrows()} # add missing countries > 1000 students mapping['Taiwan'] = '158' mapping['Hong Kong'] = '364' mapping['Iran'] = '364' mapping['North Korea'] = '408' mapping['South Korea'] = '410' mapping['Vietnam'] = '704' mapping['United Kingdom'] = '826' mapping['Venezuela'] = '862' mapping['Russia'] = '643' mapping['Bolivia'] = '068' mapping['Côte d’Ivoire/Ivory Coast'] = '384' return mapping def get_output_filename(path, out_folder): outfile = Path(path).stem + '.csv' return os.path.join(out_folder, outfile) def write_csv(df, excel_file, out_folder, index=False): out_csv = get_output_filename(excel_file, out_folder) df.to_csv(out_csv, index=index) def clean_new_enrollment(excel_file, out_folder): df = pd.read_excel(excel_file) # remove empty row df = df.drop(6) # prepare headers headers = [] for i, column in enumerate(df.columns): first_header = df[column].iloc[1] if i == 0: headers.append('Academic Level') continue if pd.isna(first_header): headers.append(df[column].iloc[2]) else: headers.append(f'{first_header} {df[column].iloc[2]}') df.columns = headers # chose data rows df = df.iloc[3:8] write_csv(df, excel_file, out_folder) def clean_academic_level(excel_file, out_folder): # TODO change hyphen to null df = pd.read_excel(excel_file) df = df.drop([2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34]) # drop upto column 34 pre 2009/10 columns_to_drop = [i for i in range(33) if i != 1] # drop empty columns, every third column is empty empty_columns = [i for i in range(33, 62) if not (i+1) % 3] columns_to_drop = list(set(columns_to_drop) | set(empty_columns)) df = df.drop(df.columns[columns_to_drop], axis=1) df = df.reset_index(drop=True) headers = [] for i, column in enumerate(df.columns): if i == 0: # print(column) # academic level column headers.append(df[column].iloc[1]) continue first_header = df[column].iloc[0] if i % 2 != 0: year = first_header if pd.isna(first_header): headers.append(f'{year} {df[column].iloc[1]}') else: headers.append(f'{first_header} {df[column].iloc[1]}') df.columns = headers df = df.iloc[2:] df = df.set_index('Academic Level').transpose() df = df.reset_index(level=0) df = df.rename(columns={'index': 'Year'}) # df.index.name = None # df.columns = df.iloc[1].values print(df) # df = df.iloc[2:38] write_csv(df, excel_file, out_folder) def clean_places_of_origin(excel_file, out_folder): df = pd.read_excel(excel_file) df.columns = df.loc[1].values print(df) def clean_top25_institution(excel_file, out_folder): df = pd.read_excel(excel_file) columns_to_drop = [i for i in range(55)] df = df.drop(df.columns[columns_to_drop], axis=1) print(df) def clean_top25_institution_csv(): dir_path = os.path.dirname(os.path.realpath(__file__)) out_folder = dir_path + '/cleaned_data_files' csv_file = out_folder + '/Census-Top-25-Institutions.csv' df = pd.read_csv(csv_file) df = df.iloc[:, :6] write_csv(df, csv_file, out_folder) def clean_all_places_of_origin_csv(): dir_path = os.path.dirname(os.path.realpath(__file__)) out_folder = dir_path + '/cleaned_data_files' csv_file = out_folder + '/Census-All-Places-of-Origin.csv' df =
pd.read_csv(csv_file)
pandas.read_csv
# -*- coding: utf-8 -*- """ SCRIPT # 3 Created on Fri Jul 31 01:40:28 2020 @author: omid """ import numpy as np import pandas as pd import glob from khayyam import * allStocks = pd.read_pickle("./allStocks.pkl") bookvalues = pd.read_pickle("./bookvalues.pkl") ############################ compute a return index (series) for each of the ############################ six groups by weighting the returns by market capitalization years = [1392, 1393, 1394, 1395, 1396, 1397, 1398] risk_premium =
pd.DataFrame(columns = [1,2,3,4,5,6], index = allStocks.index)
pandas.DataFrame
# Modified the provided preprocessing code # @author <NAME> # Original license # Copyright 2020 (c) Cognizant Digital Business, Evolutionary AI. All rights reserved. Issued under the Apache 2.0 License. import os # noinspection PyPep8Naming import numpy as np import pandas as pd import tensorflow as tf from .xprize_predictor import XPrizePredictor ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_PATH = os.path.join(ROOT_DIR, 'data') DATA_FILE_PATH = os.path.join(DATA_PATH, 'OxCGRT_latest.csv') MODEL_WEIGHTS_FILE = os.path.join(ROOT_DIR, "models", "trained_model_weights.h5") ADDITIONAL_CONTEXT_FILE = os.path.join(DATA_PATH, "Additional_Context_Data_Global.csv") ADDITIONAL_US_STATES_CONTEXT = os.path.join(DATA_PATH, "US_states_populations.csv") ADDITIONAL_UK_CONTEXT = os.path.join(DATA_PATH, "uk_populations.csv") ADDITIONAL_BRAZIL_CONTEXT = os.path.join(DATA_PATH, "brazil_populations.csv") COUNTRIES_REGIONS_FILE = os.path.join(DATA_PATH, "countries_regions.csv") NPI_COLUMNS = ['C1_School closing', 'C2_Workplace closing', 'C3_Cancel public events', 'C4_Restrictions on gatherings', 'C5_Close public transport', 'C6_Stay at home requirements', 'C7_Restrictions on internal movement', 'C8_International travel controls', 'H1_Public information campaigns', 'H2_Testing policy', 'H3_Contact tracing', 'H6_Facial Coverings'] CONTEXT_COLUMNS = ['CountryName', 'RegionName', 'GeoID', 'Date', 'ConfirmedCases', 'ConfirmedDeaths', 'Population'] NB_LOOKBACK_DAYS = 21 NB_TEST_DAYS = 14 WINDOW_SIZE = 7 US_PREFIX = "United States / " NUM_TRIALS = 1 LSTM_SIZE = 32 MAX_NB_COUNTRIES = 20 NB_ACTION = 12 # also get previous case data def get_all_data(start_date, data_file_path, ips_path, weights_file_path, window_size=WINDOW_SIZE): data = {} df = prepare_dataframe(data_file_path) df = df[df.Date < start_date] fill_starting = df.Date.max() + np.timedelta64(1, 'D') ips_df = _load_original_data(ips_path) required_geos = ips_df.GeoID.unique() df=df[df.GeoID.isin(required_geos)] # If the start date is in the future, use our historical IP file # as a base and project until the start date. Note that as specified # by the competition base IP file (OxCGRT_latest.csv) is frozen on # one of the 2021 January 11 releases. The exact version is in the # competition repo. # Note that XPrizePredictor uses some redundant code which is replicated # in this file. May fix this issue in the future. xprize_predictor = XPrizePredictor(MODEL_WEIGHTS_FILE, df) fill_ending = pd.to_datetime(start_date) - np.timedelta64(1, 'D') fill_df = xprize_predictor.predict(fill_starting, fill_ending, ips_df) add_geoid(fill_df) fill_df = do_calculations(fill_df, df) fill_df = fill_df.merge(ips_df, how='left', on=['GeoID', 'Date'], suffixes=['', '_r']) df = pd.concat([df, fill_df]) df = df.sort_values(by=['Date']) npi_weights = prepare_weights_dict(weights_file_path, required_geos) initial_conditions, country_names, geos_and_infected = create_country_samples(df, required_geos, start_date, window_size) data["geos"] = df.GeoID.unique() data["input_tensors"] = initial_conditions data["npi_weights"] = npi_weights data["country_names"] = country_names return data def add_geoid(df): df["GeoID"] = np.where(df["RegionName"].isnull(), df["CountryName"], df["CountryName"] + ' / ' + df["RegionName"]) def prepare_weights_dict(weights_file_path, required_geos): npi_weights = {} weights_df = pd.read_csv(weights_file_path, dtype={"RegionName": str, "RegionCode": str}, error_bad_lines=False) weights_df["GeoID"] = np.where(weights_df["RegionName"].isnull(), weights_df["CountryName"], weights_df["CountryName"] + ' / ' + weights_df["RegionName"]) for g in required_geos: geo_weights = weights_df[weights_df.GeoID == g] if len(geo_weights) != 0: weights = geo_weights.iloc[0][NPI_COLUMNS].to_numpy() weights[weights==0] += 0.001 # so we don't divide by zero later else: weights = np.array([1.0 for i in range(NB_ACTION)]) weight_tensor = tf.convert_to_tensor(weights, dtype='float32')[tf.newaxis] npi_weights[g] = weight_tensor return npi_weights def get_input_tensor(init_cond): context_0 = tf.convert_to_tensor(init_cond['context_0'], dtype='float32')[tf.newaxis, :, tf.newaxis] action_0 = tf.convert_to_tensor(init_cond['action_0'], dtype='float32')[tf.newaxis] population = tf.convert_to_tensor(init_cond['population'], dtype='float32')[tf.newaxis] total_cases_0 = tf.convert_to_tensor(init_cond['total_cases_0'], dtype='float32')[tf.newaxis] prev_new_cases_0 = tf.convert_to_tensor(init_cond['prev_new_cases'], dtype='float32')[tf.newaxis] return [context_0, action_0, population, total_cases_0, prev_new_cases_0] def prepare_dataframe(data_url) -> pd.DataFrame: """ Loads the Oxford dataset, cleans it up and prepares the necessary columns. Depending on options, also loads the Johns Hopkins dataset and merges that in. :param data_url: the url containing the original data :return: a Pandas DataFrame with the historical data """ # Original df from Oxford df1 = _load_original_data(data_url) # Additional context df (e.g Population for each country) df2 = _load_additional_context_df() # Merge the 2 DataFrames df = df1.merge(df2, on=['GeoID'], how='left', suffixes=('', '_y')) # Drop countries with no population data df.dropna(subset=['Population'], inplace=True) # Keep only needed columns columns = CONTEXT_COLUMNS + NPI_COLUMNS df = df[columns] # Fill in missing values _fill_missing_values(df) # Compute number of new cases and deaths each day df['NewCases'] = df.groupby('GeoID').ConfirmedCases.diff().fillna(0) df['NewDeaths'] = df.groupby('GeoID').ConfirmedDeaths.diff().fillna(0) # Replace negative values (which do not make sense for these columns) with 0 df['NewCases'] = df['NewCases'].clip(lower=0) df['NewDeaths'] = df['NewDeaths'].clip(lower=0) # Compute smoothed versions of new cases and deaths each day df['SmoothNewCases'] = df.groupby('GeoID')['NewCases'].rolling( WINDOW_SIZE, center=False).mean().fillna(0).reset_index(0, drop=True) df['SmoothNewDeaths'] = df.groupby('GeoID')['NewDeaths'].rolling( WINDOW_SIZE, center=False).mean().fillna(0).reset_index(0, drop=True) # Compute percent change in new cases and deaths each day df['CaseRatio'] = df.groupby('GeoID').SmoothNewCases.pct_change( ).fillna(0).replace(np.inf, 0) + 1 df['DeathRatio'] = df.groupby('GeoID').SmoothNewDeaths.pct_change( ).fillna(0).replace(np.inf, 0) + 1 # Add column for proportion of population infected df['ProportionInfected'] = df['ConfirmedCases'] / df['Population'] # Create column of value to predict df['PredictionRatio'] = df['CaseRatio'] / (1 - df['ProportionInfected']) return df # Calculate ConfirmedCases and ProportionInfected columns for the dates we # need to fill in before the start date def do_calculations(fill_df, hist_df): additional_context = _load_additional_context_df() new_fill_df = fill_df.merge(additional_context, on=['GeoID'], how='left', suffixes=('', '_y')) # Drop countries with no population data new_fill_df.dropna(subset=['Population'], inplace=True) new_fill_df = new_fill_df.rename(columns={"PredictedDailyNewCases": "NewCases"}) new_fill_df['NewCases'] = new_fill_df['NewCases'].clip(lower=0) required_geos = new_fill_df.GeoID.unique() new_fill_df["ConfirmedSinceLastKnown"] = new_fill_df.groupby("GeoID")["NewCases"].cumsum() new_fill_df["LastKnown"] = 0 for g in required_geos: previous_data = hist_df[hist_df.GeoID == g] # cases for the last day on record last_confirmed_cases = previous_data["ConfirmedCases"].iloc[-1] new_fill_df.loc[new_fill_df.GeoID == g, ["LastKnown"]] = last_confirmed_cases new_fill_df["ConfirmedCases"] = new_fill_df["ConfirmedSinceLastKnown"] + new_fill_df["LastKnown"] # Add column for proportion of population infected new_fill_df['ProportionInfected'] = new_fill_df['ConfirmedCases'] / new_fill_df['Population'] return new_fill_df def _load_original_data(data_url): latest_df = pd.read_csv(data_url, parse_dates=['Date'], encoding="ISO-8859-1", dtype={"RegionName": str, "RegionCode": str}, error_bad_lines=False) add_geoid(latest_df) return latest_df def _fill_missing_values(df): """ # Fill missing values by interpolation, ffill, and filling NaNs :param df: Dataframe to be filled """ df.update(df.groupby('GeoID').ConfirmedCases.apply( lambda group: group.interpolate(limit_area='inside'))) # Drop country / regions for which no number of cases is available df.dropna(subset=['ConfirmedCases'], inplace=True) df.update(df.groupby('GeoID').ConfirmedDeaths.apply( lambda group: group.interpolate(limit_area='inside'))) # Drop country / regions for which no number of deaths is available df.dropna(subset=['ConfirmedDeaths'], inplace=True) for npi_column in NPI_COLUMNS: df.update(df.groupby('GeoID')[npi_column].ffill().fillna(0)) def _load_additional_context_df(): # File containing the population for each country # Note: this file contains only countries population, not regions additional_context_df = pd.read_csv(ADDITIONAL_CONTEXT_FILE, usecols=['CountryName', 'Population']) additional_context_df['GeoID'] = additional_context_df['CountryName'] # US states population additional_us_states_df = pd.read_csv(ADDITIONAL_US_STATES_CONTEXT, usecols=['NAME', 'POPESTIMATE2019']) # Rename the columns to match measures_df ones additional_us_states_df.rename(columns={'POPESTIMATE2019': 'Population'}, inplace=True) # Prefix with country name to match measures_df additional_us_states_df['GeoID'] = US_PREFIX + additional_us_states_df['NAME'] # Append the new data to additional_df additional_context_df = additional_context_df.append(additional_us_states_df) # UK population additional_uk_df = pd.read_csv(ADDITIONAL_UK_CONTEXT) # Append the new data to additional_df additional_context_df = additional_context_df.append(additional_uk_df) # Brazil population additional_brazil_df =
pd.read_csv(ADDITIONAL_BRAZIL_CONTEXT)
pandas.read_csv
# Control de datos from io import BytesIO from dateutil import tz from pathlib import Path from zipfile import ZipFile from json import loads as loads_json from datetime import datetime, timedelta from requests import get as get_request # Ingeniería de variables from geopandas import read_file from pandas import DataFrame, json_normalize, read_csv, concat # Gráficas from seaborn import scatterplot from matplotlib.lines import Line2D from contextily import add_basemap, providers from matplotlib.pyplot import Axes, Figure, get_cmap # Twitter from twython import Twython # Modelo import ecoTad, ecoPredict class EcoBiciMap: def __init__(self, client_id: str, client_secret: str, twitter_key: str, twitter_secret: str, access_token: str, access_secret: str, is_local: bool=True) -> None: ''' Define el directorio base, la URL base y las credenciales para el acceso a la API Ecobici :client_id: user_uuid proporcionado por Ecobici. Más info en: https://www.ecobici.cdmx.gob.mx/sites/default/files/pdf/manual_api_opendata_esp_final.pdf :secret_id: contraseña propoprcionada por Ecobici, en un correo aparte para mayor seguridad ''' # Obtiene el directorio actual if is_local: self.base_dir = Path('/Users/efrain.flores/Desktop/hub/ecobici_bot') else: self.base_dir = Path().cwd() self.csv_dir = self.base_dir.joinpath('data','csv') self.shapefile_dir = self.base_dir.joinpath('data','shp') # Dominio web base, de donde se anexarán rutas y parámetros self.base_url = "https://pubsbapi-latam.smartbike.com" # Ruta con las credenciales de acceso self.user_credentials = f"oauth/v2/token?client_id={client_id}&client_secret={client_secret}" # Guarda como atributos las credenciales necesarias para crear tweets self.twitter_key = twitter_key self.twitter_secret = twitter_secret self.access_token = access_token self.access_secret = access_secret # Fecha y hora en la que se instancia la clase self.started_at = datetime.now().astimezone(tz.gettz('America/Mexico_City')) self.started_at_format = self.started_at.strftime(r'%d/%b/%Y %H:%M') self.is_local = is_local self.eb_map = {} def __str__(self) -> str: return f''' {self.started_at_format} Clase para extraer información de la API Ecobici (https://www.ecobici.cdmx.gob.mx/sites/default/files/pdf/manual_api_opendata_esp_final.pdf) transformar, graficar la disponibilidad en un mapa de calor, exportar los datos y crear un tweet con el mapa. ''' def get_token(self, first_time: bool=False) -> None: ''' Guarda los tokens de acceso, necesarios para solicitar la información de estaciones y disponibilidad :first_time: - True para obtener ACCESS_TOKEN y REFRESH_TOKEN usando las credenciales por primera vez - False para continuar con acceso a la API (después de 60min) y renovar ACCESS_TOKEN a través del REFRESH_TOKEN ''' # URL completa para recibir el token de acceso y el token de actualización (se ocupa si la sesión dura más de 60min) if first_time: URL = f"{self.base_url}/{self.user_credentials}&grant_type=client_credentials" # En el caso que se accese por 2a ocasión o más, se llama al token de actualización else: URL = f"{self.base_url}/{self.user_credentials}&grant_type=refresh_token&refresh_token={self.REFRESH_TOKEN}" # Obtiene la respuesta a la solicitud de la URL, los datos vienen en bits req_text = get_request(URL).text # Convierte los bits a formato json para guardar los tokens data = loads_json(req_text) # Guarda los tokens como atributos self.ACCESS_TOKEN = data['access_token'] self.REFRESH_TOKEN = data['refresh_token'] def get_data(self, availability: bool=False) -> DataFrame: ''' Obtiene la información de estaciones y disponibilidad al momento :availabilty: - True para obtener los datos de disponibilidad - False para obtener la información respecto a las estaciones ''' # URL para obtener la información en tiempo real, ya sea la info de las estaciones y/o la disponibilidad de las mismas stations_url = f"{self.base_url}/api/v1/stations{'/status' if availability else ''}.json?access_token={self.ACCESS_TOKEN}" req_text = get_request(stations_url).text data = loads_json(req_text) # El json resultado tiene la data encapsulada en la primer llave first_key = list(data.keys())[0] # Se estructura como tabla df = json_normalize(data[first_key]) return df def get_shapefile(self, shapefile_url: str='https://datos.cdmx.gob.mx/dataset/7abff432-81a0-4956-8691-0865e2722423/resource/8ee17d1b-2d65-4f23-873e-fefc9e418977/download/cp_cdmx.zip') -> None: ''' Obtiene y descomprime el zip que contiene el shapefile (varias carpetas que en conjunto, definen una zona geográfica) :shapefile_url: liga gubernamental y oficial respecto a la delimitación de colonias en CDMX ''' # Obtener los datos de la URL req_data = get_request(shapefile_url).content # Extraer la información del ZIP, que es un SHP file zipfile = ZipFile(BytesIO(req_data)) zipfile.extractall(self.shapefile_dir) # Se estructura como tabla, para poder gráficar las colonias de la CDMX self.gdf = read_file(self.shapefile_dir).to_crs(epsg=4326) def transform(self, station_cols: list=['id','zipCode','location.lat','location.lon'], id_col: str='id', status_col: str='status', bikes_col: str='availability.bikes', slots_col: str='availability.slots') -> None: ''' Une las tablas de estaciones y disponibilidad. Crea las variables de proporción en bicicletas y slots vacíos :station_cols: columnas de interés respecto a la tabla de estaciones :id_col: identificación de la estación Ecobici :status_col: columna que indica el estatus de la estación, sólo se mantendrá estaciones abiertas :bikes_col: columna que indica las bicicletas disponibles :slots_col: columna que indica los slots vacíos ''' # Une la información de estaciones con la disponibilidad de las mismas self.df = self.st[station_cols].merge(self.av, on=id_col) # Sólo las estaciones con estatus disponible self.df = self.df[self.df[status_col]=='OPN'].copy() # Calcula la proporción de disponibilidad, tanto de bicicletas, como de slots vacíos self.df['slots_proportion'] = self.df[slots_col] / (self.df[slots_col] + self.df[bikes_col]) self.df['bikes_proportion'] = 1 - self.df['slots_proportion'] def set_custom_legend(self, ax, cmap, values: list) -> None: '''' Modifica las etiquetas para un mapa de calor ''' legend_elements = [] for gradient, label in values: color = cmap(gradient) legend_elements.append(Line2D([0], [0], marker="o", color="w", label=label, markerfacecolor=color, markeredgewidth=0.5, markeredgecolor="k")) ax.legend(handles=legend_elements, loc="upper left", prop={"size": 4}, ncol=len(values)) def plot_map(self, data: DataFrame, col_to_plot: str, lat_col: str='location.lat', lon_col: str='location.lon', img_name: str='map', padding: float=0.007, points_palette: str='mako', **kwargs) -> None: # Crea el lienzo para graficar el mapa fig = Figure(figsize=(5, 4), dpi=200, frameon=False) ax = Axes(fig, [0.0, 0.0, 1.0, 1.0]) fig.add_axes(ax) ax.set_axis_off() # Delimita el tamaño dependiendo el rango de las coordenadas ax.set_ylim((data[lat_col].min() - padding, data[lat_col].max() + padding)) ax.set_xlim((data[lon_col].min() - padding, data[lon_col].max() + padding)) # Grafica el mapa de las colonias en CDMX self.gdf.plot(ax=ax, figsize=(8, 8), linewidth=0.5, **kwargs) # Agrega etiquetas de calles/colonias add_basemap(ax, crs=self.gdf.crs, source=providers.Stamen.TonerLabels, interpolation='sinc', aspect='equal') # Grafica cada estación, asignando el color dependiendo la disponibilidad cmap = get_cmap(points_palette) scatterplot(y=lat_col, x=lon_col, data=data, ax=ax, palette=cmap, hue=col_to_plot) # Modifica las etiquetas para indicar el significado del color en las estaciones self.set_custom_legend(ax, cmap, values=[(0.0, 'Hay bicis'), (0.5, 'Puede haber'), (1.0, 'No hay bicis')]) # Guarda la imagen self.eb_map[img_name] = fig self.eb_map[img_name].savefig(self.base_dir.joinpath('media','map',f'{img_name}.png')) def tweet_map(self, img) -> None: twitter = Twython(self.twitter_key, self.twitter_secret, self.access_token, self.access_secret) with open(img, "rb") as img: image = twitter.upload_media(media=img) twitter.update_status(status=f"Pronóstico de disponibilidad para {(self.started_at + timedelta(hours=1)).strftime(r'%d/%b/%Y %H:%M')}", media_ids=[image["media_id"]]) def save_csv(self) -> None: acum = read_csv(self.csv_dir.joinpath('acum_data.csv')) try: new = self.df.copy() new['date'] = str(self.started_at.date()) new['time'] = str(self.started_at.time()) acum =
concat([acum, new], ignore_index=True)
pandas.concat
from typing import Any, Literal from pandas import DataFrame, concat from weaverbird.backends.pandas_executor.types import DomainRetriever, PipelineExecutor from weaverbird.pipeline.steps import AggregateStep AggregateFn = Literal[ 'avg', 'sum', 'min', 'max', 'count', 'count distinct', 'first', 'last', 'count distinct including empty', ] functions_aliases = { 'avg': 'mean', 'count distinct': 'nunique', 'count distinct including empty': len, } def get_aggregate_fn(agg_function: str) -> Any: if agg_function in functions_aliases: return functions_aliases[agg_function] return agg_function def execute_aggregate( step: AggregateStep, df: DataFrame, domain_retriever: DomainRetriever = None, execute_pipeline: PipelineExecutor = None, ) -> DataFrame: group_by_columns = step.on # if no group is specified, we create a pseudo column with a single value if len(group_by_columns) == 0: group_by_columns = ['__VQB__GROUP_BY__'] df = df.assign(**{group_by_columns[0]: True}) grouped_by_df = df.groupby(group_by_columns, dropna=False) aggregated_cols = [] if len(step.aggregations) == 0: df_result = grouped_by_df.first().reset_index()[group_by_columns] else: for aggregation in step.aggregations: for col, new_col in zip(aggregation.columns, aggregation.new_columns): agg_serie = ( grouped_by_df[col] .agg(get_aggregate_fn(aggregation.agg_function)) .rename(new_col) ) aggregated_cols.append(agg_serie) df_result =
concat(aggregated_cols, axis=1)
pandas.concat
from slytherin.hash import hash_object from slytherin.functions import get_function_arguments from ravenclaw.preprocessing import Polynomial, Normalizer from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from pandas import DataFrame, concat from random import randint, random, choice from func_timeout import func_timeout, FunctionTimedOut import matplotlib.pyplot as plt from numpy import where from .create_arguments import create_arguments from .Measurement import Measurement from ..time import get_elapsed from ..time import get_now from ..progress import ProgressBar # Estimator gets a single argument function and estimates the time it takes to run the function based on the argument # the function should accept an int larger than 0 class Estimator: def __init__(self, function, args=None, unit='s', polynomial_degree=2, timeout=20): self._function = function self._function_arguments = get_function_arguments(function=function) self._unit = unit self._measurements = {} self._polynomial_degree = polynomial_degree self._model = None self._normalizer = None self._error_model = None self._max_x = None self._args = args self._timeout = timeout self._num_errors = 0 self._num_regular_runs = 0 self._num_timeouts = 0 self._x_data_columns = {} self._error_x_data_columns = {} @staticmethod def get_key(**kwargs): return hash_object(kwargs) def check_arguments(self, kwargs, method_name): unknown_arguments = [key for key in kwargs.keys() if key not in self._function_arguments] missing_arguments = [key for key in self._function_arguments if key not in kwargs] if len(missing_arguments) == 1: return f'{method_name}() is missing the argument "{missing_arguments[0]}"' elif len(missing_arguments) > 1: arguments_string = '", "'.join(missing_arguments) return f'{method_name}() is missing arguments "{arguments_string}"' if len(unknown_arguments) == 0: return False elif len(unknown_arguments) == 1: return f'{method_name}() got an unexpected argument "{unknown_arguments[0]}"' else: arguments_string = '", "'.join(unknown_arguments) return f'{method_name}() got unexpected arguments "{arguments_string}"' def get_arguments(self, arguments, **kwargs): if arguments is None and len(kwargs) == 0: raise ValueError('either arguments should be provided or kwargs!') elif arguments is not None and len(kwargs) > 0: raise ValueError('only one of arguments and kwargs should be provided!') elif arguments is None: arguments = kwargs return arguments def measure(self, timeout=None, arguments=None, **kwargs): """ :type timeout: int or float :type arguments: NoneType or dict :rtype: Measurement """ kwargs = self.get_arguments(arguments=arguments, **kwargs) if self.check_arguments(kwargs=kwargs, method_name='measure'): raise TypeError(self.check_arguments(kwargs=kwargs, method_name='measure')) key = self.get_key(**kwargs) if key in self._measurements: return self._measurements[key] else: start_time = get_now() if not timeout: try: result = self._function(**kwargs) timeout_error = False other_error = False self._num_regular_runs += 1 except Exception as e: result = None timeout_error = False other_error = True self._num_errors += 1 else: def run_function(): return self._function(**kwargs) try: result = func_timeout(timeout, run_function) timeout_error = False other_error = False self._num_regular_runs += 1 except FunctionTimedOut: result = None timeout_error = True other_error = False self._num_timeouts += 1 except Exception as e: result = None timeout_error = False other_error = True self._num_errors += 1 elapsed = get_elapsed(start=start_time, unit=self._unit) measurement = Measurement( x=kwargs, result=result, elapsed=elapsed, timeout_error=timeout_error, other_error=other_error ) self._measurements[key] = measurement self._model = None self._normalizer = None self._error_model = None if self._max_x is None: self._max_x = kwargs else: self._max_x = {key: max(value, kwargs[key]) for key, value in self._max_x.items()} return measurement @property def data(self): """ :rtype: DataFrame """ return DataFrame.from_records( [measurement.dictionary for measurement in self.measurements] ) @property def measurements(self): """ :rtype: list[Measurement] """ measurements = sorted(list(self._measurements.values())) # set the weights min_elapsed = measurements[0].elapsed_time for measurement in measurements: if min_elapsed > 0: measurement._weight = 1 + (measurement.elapsed_time / min_elapsed) ** 0.5 else: measurement._weight = 1 return measurements @property def num_measurements(self): """ :rtype: int """ return len(self._measurements) @property def num_errors(self): return self._num_errors @property def num_regular_runs(self): return self._num_regular_runs @property def num_timeouts(self): return self._num_timeouts @property def num_runs(self): return self.num_errors + self.num_regular_runs def get_x_data(self, x, degree=None): """ :type x: DataFrame or dict or list :type degree: NoneType or int :rtype: DataFrame """ if isinstance(x, dict): if all([isinstance(value, (list, tuple)) for value in x.values()]): data = DataFrame(x) else: data =
DataFrame.from_records([x])
pandas.DataFrame.from_records
import itertools import json import os import csv import errno import random from random import shuffle from typing import List import spacy from tqdm import tqdm import pandas as pd import codecs import nltk import glob import xml.etree.ElementTree as ET from datasets import load_dataset import statistics import json nltk.download("stopwords") from nltk.corpus import stopwords STOPWORDS = stopwords.words("english") STOPWORDS = [stopword + " " for stopword in STOPWORDS] nlp = spacy.load("en_core_web_sm") def commonsenseqa(): def read_file(file, split): fout = open(f"commonsenseqa/{split}.tsv", "w") fout_meta = open(f"commonsenseqa/{split}_meta.tsv", "w") with open(file) as f: for line in f.readlines(): json_line = json.loads(line) candidates_str = " ".join([f"({x['label']}) {x['text']}" for x in json_line['question']['choices']]) if split != "test": selected_ans_string = [x['text'] for x in json_line['question']['choices'] if json_line['answerKey'] == x['label']] assert len(selected_ans_string) == 1, f"{len(selected_ans_string)} -- {json_line['answerKey']}" json_line['question']['stem'] = json_line['question']['stem'].replace("\t", " ").replace("\n", "") candidates_str = candidates_str.replace("\t", " ").replace("\n", "") if split == "test": fout_meta.write(f"{json_line['id']}\t-\n") fout.write(f"{json_line['question']['stem']} \\n {candidates_str}\t-\n") else: fout_meta.write(f"{json_line['id']}\t{json_line['answerKey']}\n") selected_ans_string[0] = selected_ans_string[0].replace("\t", " ").replace("\n", "") fout.write(f"{json_line['question']['stem']} \\n {candidates_str}\t{selected_ans_string[0]}\n") read_file("commonsenseqa/dev_rand_split.jsonl", "dev") read_file("commonsenseqa/train_rand_split.jsonl", "train") read_file("commonsenseqa/test_rand_split_no_answers.jsonl", "test") def read_qas_paragraphs(file): map = {} length_list = [] with open(file) as f: for line in f.readlines(): json_line = json.loads(line) sentence_list = [] for c in json_line['question']['choices']: doc = nlp(c['para']) all_sentences = [sent.text.strip() for sent in doc.sents] sentence_list += all_sentences[-4:] sentence_list = list(set(sentence_list)) map[json_line['id']] = " ".join(sentence_list) length_list.append(len(map[json_line['id']].split(" "))) print(length_list) return map def qasc(): qasc_para = {} map1 = read_qas_paragraphs("QASC_Dataset_2Step/train.jsonl") map2 = read_qas_paragraphs("QASC_Dataset_2Step/test.jsonl") map3 = read_qas_paragraphs("QASC_Dataset_2Step/dev.jsonl") qasc_para.update(map1) qasc_para.update(map2) qasc_para.update(map3) def process_file(file, split, with_para): outdir = "qasc" if with_para: outdir = "qasc_with_ir" fout = open(f"{outdir}/{split}.tsv", "w") fout_meta = open(f"{outdir}/{split}_meta.tsv", "w") with open(file) as f: for line in f.readlines(): json_line = json.loads(line) para = "" if with_para: para = "\\n" + qasc_para[json_line['id']].replace("\n", " ").replace("\t", " ") candidates_str = " ".join([f"({x['label']}) {x['text']}" for x in json_line['question']['choices']]) if 'answerKey' in json_line: selected_ans_string = [x['text'] for x in json_line['question']['choices'] if json_line['answerKey'] == x['label']] assert len(selected_ans_string) == 1, f"{len(selected_ans_string)} -- {json_line['answerKey']}" ansKey = json_line['answerKey'] else: selected_ans_string = ['-'] ansKey = '-' fout.write(f"{json_line['question']['stem']} \\n {candidates_str}{para}\t{selected_ans_string[0]}\n") fout_meta.write(f"{json_line['id']}\t{ansKey}\n") for with_para in [True, False]: process_file("QASC_Dataset/dev.jsonl", "dev", with_para) process_file("QASC_Dataset/test.jsonl", "test", with_para) process_file("QASC_Dataset/train.jsonl", "train", with_para) def boolq_contrast_sets(): def read_file(split): fout = open(f"contrast_sets_boolq/{split}.tsv", "w") # fout_meta = open(f"boolq-experts/{split}_meta.tsv", "w") with open("contrast_sets/boolq_expert_perturbations.json") as f: json_content = json.load(f) for entry in json_content['data']: passage = f"({entry['title']}) {entry['paragraph']}" for q in entry['perturbed_questions']: if '?' not in q['perturbed_q']: q['perturbed_q'] += '?' if q['answer'] == 'TRUE': ans = "yes" else: ans = "no" fout.write(f"{q['perturbed_q']} \\n {passage}\t{ans}\n") read_file("train") read_file("test") def physical_iqa(): def read_file(split): fout = open(f"physical_iqa/{split}.tsv", "w") fout_meta = open(f"physical_iqa/{split}_meta.tsv", "w") with open(f"physicaliqa-train-dev/{split}-labels.lst") as f: labels = [line.replace("\n", "").strip() for line in f.readlines()] counter = 0 with open(f"physicaliqa-train-dev/{split}.jsonl") as f: for idx, line in enumerate(f.readlines()): label = labels[idx] json_line = json.loads(line) id = json_line['id'] goal = json_line['goal'].replace("\t", " ").replace("\n", " ") sol1 = json_line['sol1'].replace("\t", " ").replace("\n", " ") sol2 = json_line['sol2'].replace("\t", " ").replace("\n", " ") assert label == "1" or label == "0", f" * label: {label}" ans = sol1 ans_label_ab = "A" if label == "1": ans = sol2 ans_label_ab = "B" ans = ans.replace("\t", " ").replace("\n", " ") fout.write(f"{goal} \\n (A) {sol1} (B) {sol2} \t {ans}\n") fout_meta.write(f"{id}\t{ans_label_ab}\t numeric_from_zero \t{ans}\n") counter += 1 return counter dev_count = read_file("dev") train_count = read_file("train") with open(f"physical_iqa/counts.json", "w+") as outfile: json.dump({"train": train_count, "dev": dev_count}, outfile) def social_iqa(): def read_file(split): fout = open(f"social_iqa/{split}.tsv", "w") fout_meta = open(f"social_iqa/{split}_meta.tsv", "w") with open(f"socialiqa-train-dev/{split}-labels.lst") as f: labels = [line.replace("\n", "").strip() for line in f.readlines()] counter = 0 with open(f"socialiqa-train-dev/{split}.jsonl") as f: for idx, line in enumerate(f.readlines()): label = labels[idx] json_line = json.loads(line) context = json_line['context'].replace("\t", " ").replace("\n", " ") question = json_line['question'].replace("\t", " ").replace("\n", " ") answerA = json_line['answerA'].replace("\t", " ").replace("\n", " ") answerB = json_line['answerB'].replace("\t", " ").replace("\n", " ") answerC = json_line['answerC'].replace("\t", " ").replace("\n", " ") assert label == "1" or label == "2" or label == "3", f" * label: {label}" ans = answerA abc_label = "A" if label == "2": ans = answerB abc_label = "B" if label == "3": ans = answerC abc_label = "C" ans = ans.replace("\t", " ").replace("\n", " ") fout.write(f"{question} \\n (A) {answerA} (B) {answerB} (C) {answerC} \\n {context} \t {ans}\n") fout_meta.write(f"-\t{abc_label}\t numeric \t{ans} \n") counter += 1 return counter dev_count = read_file("dev") train_count = read_file("train") with open(f"social_iqa/counts.json", "w+") as outfile: json.dump({"train": train_count, "dev": dev_count}, outfile) def drop_contrast_sets(): def read_file(split): fout = open(f"contrast_sets_drop/{split}.tsv", "w") fout_meta = open(f"contrast_sets_drop/{split}_meta.tsv", "w") with open("drop_dataset/DROP/drop_contrast_sets_test.json") as f: json_content = json.load(f) for title, content in json_content.items(): for qp in content['qa_pairs']: answer = qp['answer'] number = answer['number'] spans = answer['spans'] if len(spans) > 0: ans_text = ", ".join(spans) elif len(number) > 0: ans_text = number else: day = answer['date']['day'] month = answer['date']['month'] year = answer['date']['year'] if len(month) > 0: ans_text += month if len(day) > 0: ans_text += f" {day}" if len(year) > 0: ans_text += f" {year}" # assert ans_text != "" # print(ans_text) if ans_text == "": print(" >>>> skipping the question . . . ") continue fout.write(f"{qp['question']} \\n {content['passage']}\t{ans_text}\n") fout_meta.write(f"{qp['query_id']}\n") read_file("train") read_file("test") def quoref_contrast_sets(): def read_file(split): fout = open(f"contrast_sets_quoref/{split}.tsv", "w") fout_meta = open(f"contrast_sets_quoref/{split}_meta.tsv", "w") with open( "drop_dataset/quoref/quoref_test_perturbations_20191206_merged.json") as f: json_content = json.load(f) for entry in json_content['data']: entry['title'] = entry['title'].replace("\n", " ").replace("\t", " ") for p in entry['paragraphs']: p['context'] = p['context'].replace("\n", " ").replace("\t", " ") passage = f"({entry['title']}) {p['context']}" for q in p['qas']: answers = "///".join([x['text'] for x in q['answers']]) fout.write(f"{q['question']}\\n{passage}\t{answers}\n") fout_meta.write(f"{q['id']}\n") read_file("train") read_file("test") def ropes_contrast_sets(): def read_file(split): fout = open(f"contrast_sets_ropes/{split}.tsv", "w") fout_meta = open(f"contrast_sets_ropes/{split}_meta.tsv", "w") with open( "drop_dataset/ropes/data/ropes_contrast_set_032820.json") as f: json_content = json.load(f) for para in json_content['data'][0]['paragraphs']: context = f"{para['background']} {para['situation']}".replace("\n", " ").replace("\t", " ") for qa in para['qas']: question = qa['question'].replace("\n", " ").replace("\t", " ") for a in qa['answers']: answer = a['text'].replace("\n", " ").replace("\t", " ") fout.write(f"{question} \\n {context}\t{answer}\n") fout_meta.write(f"{qa['id']}\n") read_file("train") read_file("test") def mctest(): def read_and_convert_mctest_data(file, output_dir, out_file, write_format="w+"): # out_file = file.split("/")[-1].replace(".tsv", "") # fdataset_idx = open(f"{output_dir}/{out_file}_idx.tsv", "w+") fdataset_string = open(f"{output_dir}/{out_file}.tsv", write_format) fmeta = open(f"{output_dir}/{out_file}_meta.txt", write_format) global all_inputs all_inputs = [] all_answers = [] all_meta = [] all_candidates = [] with open(file) as f: for l in f.readlines(): line_split = l.replace("\n", "").replace("\\newline", " ").split("\t") pid = line_split[0] paragraph = line_split[2] def get_question_and_candidates(split_row: List[str]): kind = "one" if "one: " in split_row[0] else "multiple" question = split_row[0].replace("one: ", "").replace("multiple: ", "") candidates = split_row[1:5] all_candidates.append(candidates) candidates = " ".join([f"({chr(ord('A') + i)}) {x}" for i, x in enumerate(candidates)]) # fmeta.write(pid + "\t" + kind + " \n") all_meta.append([pid, kind]) all_inputs.append(f"{question} \\n {candidates} \\n {paragraph}") get_question_and_candidates(line_split[3:8]) get_question_and_candidates(line_split[8:13]) get_question_and_candidates(line_split[13:18]) get_question_and_candidates(line_split[18:23]) # try: with open(file.replace(".tsv", ".ans")) as fans: for l in fans.readlines(): all_answers.extend(l.replace("\n", "").split("\t")) # except (FileNotFoundError): # pass assert len(all_answers) == len(all_inputs) for i, y in enumerate(all_answers): # fdataset_idx.write(all_inputs[i] + "\t" + y + "\n") correct_ans_idx = ord(y) - ord('A') fmeta.write(all_meta[i][0] + "\t" + y + "\t" + all_meta[i][1] + " \n") fdataset_string.write(all_inputs[i] + "\t" + all_candidates[i][correct_ans_idx] + "\n") read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc160.dev.tsv', "mc160", "dev") read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc160.train.tsv', "mc160", "train") read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc500.dev.tsv', "mc500", "dev") read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc500.train.tsv', "mc500", "train") # read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc160.dev.tsv', "mctest_corrected_the_separator", "dev", 'a') # read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc160.train.tsv', "mctest_corrected_the_separator", "train", 'a') # read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc500.dev.tsv', "mctest_corrected_the_separator", "dev", 'a') # read_and_convert_mctest_data('../datasets/mctest-master/data/MCTest/mc500.train.tsv', "mctest_corrected_the_separator", "train", 'a') def read_and_parse_multiqa(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") ans = open(f"{dataset}/{kind}_ans.jsonl", "w+") with open(file) as f: for l in f.readlines()[1:]: json_line = json.loads(l) pid = json_line['id'] paragraph = "" for p in json_line['context']['documents']: if 'title' in p: paragraph += f" ({p['title']}) " paragraph += p['text'] paragraph = paragraph.strip().replace("\n", "").replace("\t", "") for q in json_line['qas']: qid = q['qid'] fmeta.write(f"{pid}, {qid} \n") question = q['question'] answers = [] print(q) if 'cannot_answer' in q['answers']['open-ended']: if q['answers']['open-ended']['cannot_answer'] == 'yes': answers.append('<No Answer>') else: for a in q['answers']['open-ended']['annotators_answer_candidates']: print(a) if 'extractive' in a['single_answer']: answers.append(a['single_answer']['extractive']['answer']) elif 'yesno' in a['single_answer']: answers.append(a['single_answer']['yesno']) else: print("yo yo yo ") assert len(answers) > 0 paragraph = paragraph.replace("\t", "").replace(" ", " ").replace(" ", " ").replace("\n", " ") question = question.replace("\t", "").replace(" ", " ").replace(" ", " ").replace("\n", " ") if '?' not in question: question = question + "?" all_ans = [a.replace("\t", "").replace(" ", " ").replace(" ", " ").replace("\n", " ") for a in answers] print(all_ans) fout.write(f"{question.strip()} \\n {paragraph.strip()}\t{all_ans[0].strip()}\n") ans.write(json.dumps(all_ans) + "\n") def mkdir(directory): try: os.makedirs(directory) except OSError as e: if e.errno != errno.EEXIST: raise from collections import Counter def race(variation, grade, write_format="w+"): print(f">>>> race variation: {variation} / {grade}") assert variation == "idx" or variation == "string" or variation == 'string_no_candidates' count_map = {} def process_race_dir(kind): counter = {"counter": 0} if variation == "idx": dir = f"race_idx_{grade}" mkdir(dir) fin = open(f"{dir}/{kind.split('/')[0]}.tsv", write_format) fmeta = open(f"{dir}/{kind.split('/')[0]}_meta.txt", write_format) elif variation == "string": dir = f"race_string_{grade}" mkdir(dir) fin = open(f"{dir}/{kind.split('/')[0]}.tsv", write_format) fmeta = open(f"{dir}/{kind.split('/')[0]}_meta.txt", write_format) elif variation == "string_no_candidates": dir = f"race_string_no_candidates_{grade}" mkdir(dir) fin = open(f"{dir}/{kind.split('/')[0]}.tsv", write_format) fmeta = open(f"{dir}/{kind.split('/')[0]}_meta.txt", write_format) else: raise AttributeError def read_and_parse_race(file): with open(file) as f: counter["counter"] += 1 line = f.readlines()[0] line = line.replace("\n", " ") jsonline = json.loads(line) answers = jsonline['answers'] options = jsonline['options'] questions = jsonline['questions'] article = jsonline['article'] article = article.replace("\n", " ").replace("\t", " ") id = jsonline['id'] for i, q in enumerate(questions): options[i] = [x.replace("\n", " ") for x in options[i]] q = q.replace("\n", " ") candidates = ("".join([f" ({chr(ord('A') + i)}) {x}" for i, x in enumerate(options[i])])).replace( "\n", " ") answer_idx = ord(answers[i]) - ord('A') if variation == "idx": fin.write(f"{q} \\n {candidates} \\n {article}\t{answers[i]} \n") elif variation == "string": fin.write(f"{q} \\n {candidates} \\n {article}\t{options[i][answer_idx]} \n") elif variation == "string_no_candidates": fin.write(f"{q} \\n {article} \t {options[i][answer_idx]} \n") else: raise AttributeError fmeta.write(f"{id}\t{answers[i]}\n") directory_address = f"../datasets/RACE/{kind}/" directory = os.fsencode(directory_address) for file in os.listdir(directory): filename = os.fsdecode(file) if filename.endswith(".txt"): read_and_parse_race(directory_address + filename) else: continue count_map[kind.split("/")[0]] = counter["counter"] process_race_dir(f"dev/{grade}") process_race_dir(f"test/{grade}") process_race_dir(f"train/{grade}") count_file = open(f"race_{variation}_{grade}/counts.json", "w+") count_file.write(json.dumps(count_map)) def newsqa(): read_and_parse_multiqa("../datasets/NewsQA_dev.jsonl", "newsqa", "dev") read_and_parse_multiqa("../datasets/NewsQA_train.jsonl", "newsqa", "train") def hotpotqa(): read_and_parse_multiqa("../datasets/HotpotQA_dev.jsonl", "hotpotqa", "dev") read_and_parse_multiqa("../datasets/HotpotQA_train.jsonl", "hotpotqa", "train") def squad(): read_and_parse_multiqa("../datasets/SQuAD1-1_dev.jsonl", "squad1_1", "dev") read_and_parse_multiqa("../datasets/SQuAD1-1_train.jsonl", "squad1_1", "train") def squad2(): read_and_parse_multiqa("../datasets/SQuAD2-0_dev.jsonl", "squad2", "dev") read_and_parse_multiqa("../datasets/SQuAD2-0_train.jsonl", "squad2", "train") def triviaqa(): read_and_parse_multiqa("../datasets/TriviaQA_wiki_train.jsonl", "triviaqa", "train") read_and_parse_multiqa("../datasets/TriviaQA_wiki_dev.jsonl", "triviaqa", "dev") def searchqa(): read_and_parse_multiqa("../datasets/SearchQA_dev.jsonl", "searchqa", "dev") read_and_parse_multiqa("../datasets/SearchQA_train.jsonl", "searchqa", "train") def boolq(): read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") def duo_rc(): read_and_parse_multiqa("../datasets/DuoRC_Paraphrase_dev.jsonl", "duo_rc_paragraph", "dev") read_and_parse_multiqa("../datasets/DuoRC_Paraphrase_train.jsonl", "duo_rc_paragraph", "train") read_and_parse_multiqa("../datasets/DuoRC_Self_dev.jsonl", "duo_rc_self", "dev") read_and_parse_multiqa("../datasets/DuoRC_Self_train.jsonl", "duo_rc_self", "train") def drop(): def load_file(name, dir): ftargets = open(f"{dir}/{name}_targets.txt", "+w") finput = open(f"{dir}/{name}_inputs.txt", "+w") fout = open(f"{dir}/{name}.tsv", "+w") fmeta = open(f"{dir}/{name}_meta.txt", "+w") span_lens = [] with open(f"../datasets/drop_dataset/drop_dataset_{name}.json") as f: whole_data = json.load(f) for key in whole_data.keys(): # print("------") # print(key) content = whole_data[key] passage = content['passage'].replace("\t", " ").replace("\n", " ") qa_pairs = content['qa_pairs'] for qpair in qa_pairs: ans_text = "" question = qpair['question'].replace("\t", " ").replace("\n", " ") answer = qpair['answer'] # print(answer) number = answer['number'] spans = answer['spans'] if len(spans) > 0: span_lens.append(len(spans)) ans_text = ", ".join(spans) elif len(number) > 0: ans_text = number else: day = answer['date']['day'] month = answer['date']['month'] year = answer['date']['year'] if len(month) > 0: ans_text += month if len(day) > 0: ans_text += f" {day}" if len(year) > 0: ans_text += f" {year}" # assert ans_text != "" # print(ans_text) if ans_text == "": print(" >>>> skipping the question . . . ") continue ans_text = ans_text.replace("\t", " ").replace("\n", " ") query_id = qpair['query_id'] fout.write(f"{question} \\n {passage}\t{ans_text}\n") ftargets.write(f"{ans_text}\n") finput.write(f"{question} \\n {passage}\n") fmeta.write(f" {query_id}") print(span_lens) load_file("dev", "drop") load_file("train", "drop") # def wikihop(): # read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") # read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") # # def duorc_para(): # read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") # read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") # # def duorc_self(): # read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") # read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") # # def complex_questions(): # read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") # read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") # def comqa(): # read_and_parse_multiqa("../datasets/BoolQ_dev.jsonl", "boolq", "dev") # read_and_parse_multiqa("../datasets/BoolQ_train.jsonl", "boolq", "train") def extract_oyvind_predictions(file): all_predictions = {} with open(file) as f: for line in f.readlines(): jsonline = json.loads(line) id = jsonline['id'] if id not in all_predictions: all_predictions[id] = jsonline else: raise EnvironmentError return all_predictions oyvind_test_preds = [ [ "roberta-combo", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-combo/eval_test.jsonl") ], [ "roberta-no-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-no-ir/eval_test.jsonl") ], [ "roberta-question-stem-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-question-stem-ir/eval_test.jsonl") ], [ "roberta-standard-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-standard-ir/eval_test.jsonl") ] ] oyvind_dev_preds = [ [ "roberta-combo", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-combo/eval_validation.jsonl") ], [ "roberta-no-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-no-ir/eval_validation.jsonl") ], [ "roberta-question-stem-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-question-stem-ir/eval_validation.jsonl") ], [ "roberta-standard-ir", extract_oyvind_predictions("../datasets/oyvind_predictions/roberta-standard-ir/eval_validation.jsonl") ] ] def arc(): directory_easy = "ARC-V1-Feb2018-2/ARC-Easy/ARC-Easy" directory_hard = "ARC-V1-Feb2018-2/ARC-Challenge/ARC-Challenge" def read_file(dir, split, kind, predictions_files, with_para=False): outdir = f"arc_{kind}" if with_para: outdir = f"arc_{kind}_with_ir" fout = open(f"{outdir}/{split.lower()}.tsv", "w+") fout_meta = open(f"{outdir}/{split.lower()}_meta.tsv", "w+") output_files = [] if predictions_files: for x in predictions_files: fout_tmp = open(f"arc_{kind}/predictions_{x[0]}_{split}.txt", "w") output_files.append(fout_tmp) print(fout_tmp) correctness_map = {} with open(f"{dir}-{split}.jsonl") as f: for line in f.readlines(): json_line = json.loads(line) question = json_line['question']['stem'] choices = json_line['question']['choices'] if kind == "easy": id = "ARCEZ_" + json_line['id'] else: id = "ARCCH_" + json_line['id'] para = "" if with_para: print("done") para = "\\n" + oyvind_paragraphs[id].replace("\n", " ").replace("\t", " ") # print(json_line) answer_key = json_line['answerKey'] numbers = "" if 'A' in [c['label'] for c in choices]: answer_key_idx = ord(answer_key[0]) - ord('A') answer_label = answer_key[0] else: answer_key_idx = ord(answer_key[0]) - ord('1') answer_label = chr(ord(answer_key[0]) - ord('1') + ord('A')) numbers = "numerical" candidates = " ".join([f"({chr(ord('A') + i)}) {c['text']}" for i, c in enumerate(choices)]).replace( "\n", " ") # print((answer_key_idx, answer_key, candidates)) answer_text = choices[answer_key_idx]['text'] fout.write(f"{question} \\n {candidates}{para}\t{answer_text}\n") fout_meta.write(f"{json_line['id']}\t{answer_label}\t{numbers}\n") # fout_meta.write(f"{json_line['id']},{json_line['answerKey'][0]}\n") if predictions_files: for i, x in enumerate(predictions_files): pred_type = x[0] predictions = x[1] fout_tmp = output_files[i] # print(f" ** pred type: {pred_type}") if id not in predictions: print(" >>>>> id not found . . . ") # hack: use the gold ans fout_tmp.write(answer_text + "\n") else: pred_json = predictions[id] choice_text_list = pred_json['choice_text_list'] correct_answer_index = pred_json['correct_answer_index'] # label_probs = pred_json['label_probs'] answer_index = pred_json['answer_index'] fout_tmp.write(choice_text_list[answer_index] + "\n") if pred_type not in correctness_map: correctness_map[pred_type] = [] correctness_map[pred_type].append(1.0 if answer_index == correct_answer_index else 0.0) for pred_type in correctness_map.keys(): if len(correctness_map[pred_type]) > 0: print(len(correctness_map[pred_type])) print( f" **** Accuracy on {split} of ARC-{kind} ({pred_type}): {sum(correctness_map[pred_type]) / len(correctness_map[pred_type])}") for with_para in [True, False]: read_file(directory_easy, "Dev", "easy", oyvind_dev_preds, with_para) read_file(directory_easy, "Test", "easy", oyvind_test_preds, with_para) read_file(directory_easy, "Train", "easy", None, with_para) read_file(directory_hard, "Dev", "hard", oyvind_dev_preds, with_para) read_file(directory_hard, "Test", "hard", oyvind_test_preds, with_para) read_file(directory_hard, "Train", "hard", None, with_para) def ai2_science(): directory_middle = "../datasets/AI2-ScienceQuestions-V2.1-Jan2018/MiddleSchool/Middle-" directory_elementary = "../datasets/AI2-ScienceQuestions-V2.1-Jan2018/ElementarySchool/Elementary-" def read_file(dir, split, grade): fout = open(f"ai2_science_{grade.lower()}/{split}.tsv".lower(), "w+") foutmeta = open(f"ai2_science_{grade.lower()}/{split}_meta.tsv".lower(), "w+") with open(f"{dir}NDMC-{split.lower()}.jsonl") as f: for line in f.readlines(): json_line = json.loads(line) question = json_line['question']['stem'] choices = json_line['question']['choices'] candidates = " ".join([f"({c['label']}) {c['text']}" for c in choices]).replace("\n", " ") print(json_line) answer_key = json_line['answerKey'] answer_key_idx = ord(answer_key[0]) - ord('A') answer_text = choices[answer_key_idx]['text'] fout.write(f"{question} \\n {candidates}\t{answer_text}\n") foutmeta.write(f"{json_line['id']}\t{answer_key[0]}\n") read_file(directory_middle, "Dev", "Middle") read_file(directory_middle, "Test", "Middle") read_file(directory_middle, "Train", "Middle") read_file(directory_elementary, "Dev", "Elementary") read_file(directory_elementary, "Test", "Elementary") read_file(directory_elementary, "Train", "Elementary") def quoref(): def read_file(file, segment): fout = open(f"quoref/{segment}.tsv", "w+") ftargets = open(f"quoref/{segment}_targets.txt", "+w") finputs = open(f"quoref/{segment}_inputs.txt", "+w") ans_size = [] with open(file) as f: file = json.load(f) for section in file['data']: title = section['title'].replace("\n", " ").replace("\t", " ") for para in section['paragraphs']: context = para['context'].replace("\n", " ").replace("\t", " ") for qa in para['qas']: question = qa['question'].replace("\n", " ").replace("\t", " ") ans_size.append(len(qa['answers'])) for a in qa['answers']: answer = a['text'].replace("\n", " ").replace("\t", " ") fout.write(f"{question} \\n ({title}) {context}\t{answer}\n") ftargets.write(f"{answer}\n") finputs.write(f"{question} \\n ({title}) {context}\n") print(sum(ans_size) / len(ans_size)) read_file("../datasets/quoref-train-dev-v0.1/quoref-dev-v0.1.json", "dev") read_file("../datasets/quoref-train-dev-v0.1/quoref-train-v0.1.json", "train") def ropes(): def read_file(file, segment): ans_size = [] fout = open(f"ropes/{segment}.tsv", "w+") ftargets = open(f"ropes/{segment}_targets.txt", "+w") finput = open(f"ropes/{segment}_inputs.txt", "+w") with open(file) as f: file = json.load(f) for section in file['data']: for para in section['paragraphs']: context = f"{para['background']} {para['situation']}".replace("\n", " ").replace("\t", " ") for qa in para['qas']: question = qa['question'].replace("\n", " ").replace("\t", " ") ans_size.append(len(qa['answers'])) for a in qa['answers']: answer = a['text'].replace("\n", " ").replace("\t", " ") fout.write(f"{question} \\n {context}\t{answer}\n") ftargets.write(f"{answer}\n") finput.write(f"{question} \\n {context}\n") read_file("../datasets/ropes-train-dev-v1.0/dev-v1.0.json", "dev") read_file("../datasets/ropes-train-dev-v1.0/train-v1.0.json", "train") def narrative_qa(): paragraphs = {} with open("../datasets/narrativeqa/third_party/wikipedia/summaries.csv") as f: spamreader = csv.reader(f) for i, line in enumerate(spamreader): print(line) if i == 0: continue paragraphs[line[0]] = line[2].replace("\n", "") fout_test = open(f"narrativeqa/test.tsv", "w+") fout_train = open(f"narrativeqa/train.tsv", "w+") fout_dev = open(f"narrativeqa/dev.tsv", "w+") counts = open(f"narrativeqa/counts.json", "w+") count_train = 0 count_test = 0 count_dev = 0 with open("..//datasets/narrativeqa/qaps.csv") as f: spamreader = csv.reader(f) for i, line in enumerate(spamreader): print(line) if i == 0: continue line1 = f"{line[2]} \\n {paragraphs[line[0]]} \t {line[3]} \n" line2 = f"{line[2]} \\n {paragraphs[line[0]]} \t {line[4]} \n" if line[1] == "train": fout_train.write(line1) fout_train.write(line2) count_train += 1 elif line[1] == "test": fout_test.write(line1) fout_test.write(line2) count_test += 1 elif line[1] == "valid": fout_dev.write(line1) fout_dev.write(line2) count_dev += 1 else: print(" >>>> ERROR ") counts.write(json.dumps({"train": count_train, "dev": count_dev, "test": count_test})) def multirc(): def read_file(file): lines = [] with open(f"../datasets/multirc/{file}") as f: for line in f.readlines(): line_split = line.split("\t") paragraph = line_split[4].replace("\n", " ").replace("\t", " ") question = line_split[5].replace("\n", " ").replace("\t", " ") line_split[6] = line_split[6].replace("\n", "") assert line_split[6] == "True" or line_split[6] == "False", f"`{line_split[6]}`" answer = "yes" if line_split[6] == "True" else "no" lines.append(f"{question} \\n {paragraph}\t{answer}\n") return lines lines1 = read_file("dev_83-fixedIds.json.yes-nos.tsv") lines2 = read_file("train_456-fixedIds.json.yes-nos.tsv") fout = open(f"multirc/dev.tsv", "w+") fout2 = open(f"multirc/train.tsv", "w+") for line in lines1 + lines2: fout.write(line) fout2.write(line) def openbookqa(): def read_file(file, split, predictions_files, with_para=False): out_dir = "openbookqa" if with_para: out_dir = "openbookqa_with_ir" fout = open(f"{out_dir}/{split}.tsv", "w+") fout_meta = open(f"{out_dir}/{split}_meta.tsv", "w+") output_files = [] oyind_accuracy = {} if predictions_files: fout_target_tmp = open(f"openbookqa/oyvind/_target.txt", "w") for x in predictions_files: fout_tmp = open(f"openbookqa/oyvind/predictions_{x[0]}_{split}.txt", "w") output_files.append(fout_tmp) # print(fout_tmp) oyind_accuracy[x] = [] with open(file) as f: for line in f.readlines(): json_line = json.loads(line) question = json_line['question']['stem'] choices = json_line['question']['choices'] candidates = " ".join([f"({c['label']}) {c['text']}" for c in choices]).replace("\n", " ") print(json_line) answer_key = json_line['answerKey'] answer_key_idx = ord(answer_key[0]) - ord('A') answer_text = choices[answer_key_idx]['text'] id = "OBQA_" + json_line['id'] para = "" if with_para: para = "\\n" + oyvind_paragraphs[id].replace("\n", " ").replace("\t", " ") fout.write(f"{question} \\n {candidates}{para}\t{answer_text}\n") fout_meta.write(f"{json_line['id']}\t{answer_key[0]}\n") if predictions_files: fout_target_tmp.write(f"{answer_text}\n") for i, x in enumerate(predictions_files): pred_type = x[0] predictions = x[1] fout_tmp = output_files[i] # print(f" ** pred type: {pred_type}") if id not in predictions: print(" >>>>> id not found . . . ") # hack: use the gold ans fout_tmp.write(answer_text + "\n") else: pred_json = predictions[id] choice_text_list = pred_json['choice_text_list'] # correct_answer_index = pred_json['correct_answer_index'] answer_index = pred_json['answer_index'] fout_tmp.write(choice_text_list[answer_index] + "\n") if answer_index == answer_key_idx: oyind_accuracy[x].append(1.0) else: oyind_accuracy[x].append(0.0) if predictions_files: for x in predictions_files: print(f" *** {x} \t accuracy: {sum(predictions_files[x]) / len(predictions_files)} ") for with_para in [True, False]: read_file("../datasets/OpenBookQA-V1-Sep2018/Data/Main/dev.jsonl", "dev", None, with_para) # read_file("../datasets/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl", "test", oyvind_test_preds, with_para) read_file("../datasets/OpenBookQA-V1-Sep2018/Data/Main/test.jsonl", "test", None, with_para) read_file("../datasets/OpenBookQA-V1-Sep2018/Data/Main/train.jsonl", "train", None, with_para) def boolq_np(): outfile = { "dev": open("/Users/danielk/ideaProjects/t2t-qa/t2t-data/boolq-np/dev.tsv", "w"), "train": open("/Users/danielk/ideaProjects/t2t-qa/t2t-data/boolq-np/train.tsv", "w"), } with open("boolq_natural_perturbations.jsonl") as f: for line in f.readlines(): json_line = json.loads(line) # print(json_line['split']) if json_line['is_seed_question'] == 1: json_line['question'] += '?' label = "yes" if json_line['hard_label'] == "True" else "no" outfile[json_line['split']].write(f"{json_line['question']}\\n{json_line['passage']}\t{label}\n") def read_paragraphs(file): map = {} with open(file) as f: for line in f.readlines(): json_line = json.loads(line) map[json_line['id']] = json_line['para'] return map oyvind_paragraphs = {} map1 = read_paragraphs("oyvind_arc_obqa_reg_with_ir/train.jsonl") map2 = read_paragraphs("oyvind_arc_obqa_reg_with_ir/test.jsonl") map3 = read_paragraphs("oyvind_arc_obqa_reg_with_ir/dev.jsonl") oyvind_paragraphs.update(map1) oyvind_paragraphs.update(map2) oyvind_paragraphs.update(map3) def ambigqa(): def read_file(file, dir, split): outfile = open(f"{dir}/{split}.tsv", "+w") outfile_meta = open(f"{dir}/{split}_meta.tsv", "+w") size = 0 with open(file, "r") as f: json_file = json.load(f) for item in tqdm(json_file): question = item['question'].replace("\n", " ").replace("\t", " ") single_answers_already_included = [] for anno in item["annotations"]: if anno['type'] == "singleAnswer": for ans in anno['answer']: if ans not in single_answers_already_included: ans = ans.replace("\n", " ").replace("\t", " ") outfile.write(f"{question}\t{ans}\n") outfile_meta.write(item['id'] + "\n") single_answers_already_included.append(ans) size += 1 else: answers = [] for x in anno['qaPairs']: answers.append(x['answer'][0]) answers = [x.strip() for x in answers] answers = list(set(answers)) # to drop duplicate answers for i, ordering in enumerate(itertools.permutations(answers)): if i >= 3: break ans_str = " [SEP] ".join(ordering).replace("\n", " ").replace("\t", " ") outfile.write(f"{question}\t{ans_str}\n") outfile_meta.write(item['id'] + "\n") size += 1 return size count_dev = read_file("ambignq_light/dev_light.json", "ambigqa", "dev") count_train = read_file("ambignq_light/train_light.json", "ambigqa", "train") count_test = 0 # Create TSVs and get counts. with open("ambigqa/counts.json", "w") as outfile: json.dump({"train": count_train, "dev": count_dev, "test": count_test}, outfile) def natural_questions_direct_answer(): question_to_para_map = read_natural_questions_paragraphs() def read_file(in_fname, dir, split, with_paragraphs=False, aggregared_ans=False): outfile = open(f"{dir}/{split}.tsv", "+w") outfile_meta = open(f"{dir}/{split}_meta.tsv", "+w") with open(in_fname) as f: json_file = json.load(f) size = 0 for i, item in enumerate(json_file): id = item['id'] question = item['question'].replace("\t", " ").replace("\n", " ") if "?" not in question: question += "?" para = "" if with_paragraphs: para = question_to_para_map[f"{split}-{i}"].replace("\t", " ").replace("\n", " ").replace("[SEP]", "-").replace("[sep]", "-") para = " ".join(para.split(" ")[1:600]) # take the subset para = "\\n" + para if aggregared_ans: answers = [answer.replace("\t", " ").replace("\n", " ") for answer in item['answer']] random.shuffle(answers) concatenated_answers = "///".join(answers) outfile.write(f"{question}{para}\t{concatenated_answers}\t{answers[0]}\n") outfile_meta.write(f"{id}\n") size += 1 else: for answer in item['answer']: answer = answer.replace("\t", " ").replace("\n", " ") outfile.write(f"{question}{para}\t{answer}\n") outfile_meta.write(f"{id}\n") size += 1 return size print("Generating NQ TSVs.") # Create TSVs and get counts. for dir in ['natural_questions_direct_ans_aggregated']: # ['natural_questions_direct_ans', 'natural_questions_with_dpr_para']: with_para = True if "dpr" in dir else False aggregared_ans = True if "aggregated" in dir else False count_dev = read_file("../datasets/nq/nqopen/nqopen-dev.json", dir, "dev", with_para, aggregared_ans) count_train = read_file("../datasets/nq/nqopen/nqopen-train.json", dir, "train", with_para, aggregared_ans) with open(dir + "/counts.json", "w") as outfile: json.dump({"train": count_train, "dev": count_dev}, outfile) count_train = read_file("../datasets/nq/nqopen/nqopen-train.json", dir + "_test", "train", with_para, aggregared_ans) count_test = read_file("../datasets/nq/nqopen/nqopen-test.json", dir + "_test", "test", with_para, aggregared_ans) with open(dir + "_test" + "/counts.json", "w") as outfile: json.dump({"train": count_train, "test": count_test}, outfile) ## NQ contexts def read_natural_questions_paragraphs(): question_to_para_map = {} def read_file(file, split): with open(file) as f: json_file = json.load(f) for i, item in enumerate(json_file): question_to_para_map[f"{split}-{i}"] = item['context'] read_file("../datasets/nq-dpr-output/train.json", "train") read_file("../datasets/nq-dpr-output/test.json", "test") read_file("../datasets/nq-dpr-output/dev.json", "dev") return question_to_para_map def natural_questions_reading_comprehension(): def read_file(in_fname, out_fname): def extract_answer(tokens, span): """Reconstruct answer from token span and remove extra spaces.""" start, end = span["start_token"], span["end_token"] ans = " ".join(tokens[start:end]) # Remove incorrect spacing around punctuation. ans = ans.replace(" ,", ",").replace(" .", ".").replace(" %", "%") ans = ans.replace(" - ", "-").replace(" : ", ":").replace(" / ", "/") ans = ans.replace("( ", "(").replace(" )", ")") ans = ans.replace("`` ", "\"").replace(" ''", "\"") ans = ans.replace(" 's", "'s").replace("s ' ", "s' ") return ans count = 0 with open(in_fname, "r") as infile, open(out_fname, "w") as outfile: for line in infile.readlines(): ex = json.loads(line) # Remove any examples with more than one answer. if len(ex['annotations'][0]['short_answers']) != 1: continue # Questions in NQ do not include a question mark. question = ex["question_text"] + "?" answer_span = ex['annotations'][0]['short_answers'][0] # Handle the two document formats in NQ (tokens or text). if "document_tokens" in ex: tokens = [t["token"] for t in ex["document_tokens"]] elif "document_text" in ex: tokens = ex["document_text"].split(" ") answer = extract_answer(tokens, answer_span) # Write this line as <question>\t<answer> outfile.write("%s\t%s\n" % (question, answer)) count += 1 if count % 1000 == 1: print(f"Wrote {count} examples to {out_fname}.") return count count_dev = read_file("../datasets/dev-all.jsonl", "natural_questions/dev.tsv") count_train = read_file("../datasets/nq-train.jsonl", "natural_questions/train.tsv") # Create TSVs and get counts. print("Generating NQ TSVs.") with open("natural_questions/counts.json", "w") as outfile: json.dump({"train": count_train, "dev": count_dev}, outfile) def winogrande(): def read_file(size, split, outfolder): counter = 0 outfile = open(f"{outfolder}/{split}.tsv", "w+") outfile_meta = open(f"{outfolder}/{split}_meta.tsv", "w+") file_name = f"{split}_{size}.jsonl" # label_file_name = f"{split}_{size}-labels.lst" if split != "train": file_name = f"{split}.jsonl" # label_file_name = f"{split}-labels.lst" with open(f"winogrande_1.1/{file_name}") as f: for line in f.readlines(): json_line = json.loads(line) qID = json_line['qID'] sentence = json_line['sentence'] option1 = json_line['option1'] option2 = json_line['option2'] ans = "" idx = "-" idx_string = "-" if 'answer' in json_line: idx = json_line['answer'] ans = option1 assert idx == "1" or idx == "2" if idx == "2": ans = option2 idx_string = "B" else: idx_string = "A" outfile.write(f"{sentence} \\n (A) {option1} (B) {option2} \t {ans} \n") outfile_meta.write(f"{qID}\t{idx_string}\t numeric \t {ans} \n") counter += 1 return counter for size in ["xs", "s", "m", "l", "xl"]: train_count = read_file(size, "train", f"winogrande_{size}") dev_count = read_file(size, "dev", f"winogrande_{size}") # test_count = read_file(size, "test") with open(f"winogrande_{size}/counts.json", "w+") as outfile: json.dump({"train": train_count, "dev": dev_count}, outfile) train_count = read_file("s", "train", f"winogrande_test") test_count = read_file("s", "test", f"winogrande_test") with open(f"winogrande_test/counts.json", "w+") as outfile: json.dump({"train": train_count, "test": test_count}, outfile) def anlg(): director = "/Users/danielk/ideaProjects/t2t-qa/t2t-data/anlg_dev/" def readfile(inputfile, labelfile, split): labels = [] with open(labelfile) as f1: for line in f1.readlines(): labels.append(int(line.replace("\n", ""))) outfile = open(director + split + ".tsv", "+w") outmetafile = open(director + split + "_meta.tsv", "+w") with open(inputfile) as f2: for idx, line in enumerate(f2.readlines()): label = labels[idx] assert label == 1 or label == 2, f" * the label is: {label}" json_line = json.loads(line) outstring = json_line['hyp1'] if label == 2: outstring = json_line['hyp2'] outfile.write(json_line['obs1'] + " ___ " + json_line['obs2'] + "\t" + outstring + "\n") outmetafile.write(f"{json_line['story_id']}\t{label}\n") return len(labels) dev_count = readfile("../datasets/aNLG/dev.jsonl", "../datasets/aNLG/dev-labels.lst", "dev") train_count = readfile("../datasets/aNLG/train.jsonl", "../datasets/aNLG/train-labels.lst", "train") with open(director + "counts.json", "w+") as outfile: json.dump({"train": train_count, "dev": dev_count}, outfile) csv.field_size_limit(10 * 131072) def summarization(): def readfile(file): outfile = open(file.replace(".tsv", "_2.tsv"), "+w") with open(file) as csvfile: reader = csv.reader(csvfile, delimiter='\t') for row in reader: row[0] = row[0].replace("\t", " ").replace("\n", " ") row[0] = row[0][:6*500] row[1] = row[1].replace("\t", " ").replace("\n", " ") outfile.write(row[0] + "\t" + row[1] + "\n") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-cnndm-dev/dev.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-cnndm-dev/train.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-cnndm-test/test.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-cnndm-test/train.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-xsum-dev/dev.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-xsum-dev/train.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-xsum-test/test.tsv") readfile("/Users/danielk/ideaProjects/t2t-qa/t2t-data/summarization-xsum-test/train.tsv") def csqa2_process(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") ans = open(f"{dataset}/{kind}_ans.jsonl", "w+") df=pd.read_json('/content/csqa2/dataset/'+file, lines=True, compression='gzip') questions=df[['question','answer','id']].values for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" answer=[questions[row][1].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ")] id=questions[row][2] fmeta.write(f"{id} \n") fout.write(f"{question} \t{answer[0]}\n") ans.write(json.dumps(answer) + "\n") return len(questions) def csqa2_process_test(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") df=pd.read_json('/content/'+file, lines=True, compression='gzip') questions=df[['question','id']].values for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" id=questions[row][1] fmeta.write(f"{id} \n") fout.write(f"{question}\n") return len(questions) def csqa(): train_count = csqa2_process('CSQA2_train.json.gz','csqa2','train') dev_count = csqa2_process('CSQA2_dev.json.gz','csqa2','dev') test_count = csqa2_process_test('CSQA2_test_no_answers.json.gz','csqa2','test') with open(f"/content/csqa2/counts.json", "w+") as outfile: json.dump({"train": train_count, "dev": dev_count, "test": test_count}, outfile) def pubmedqa_process(file, dataset, kind): fout_long = open(f"{dataset}/long_answer/{kind}.tsv", "w+") fout_short = open(f"{dataset}/short_answer/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") ans_long = open(f"{dataset}/long_answer/{kind}_ans.jsonl", "w+") ans_short = open(f"{dataset}/short_answer/{kind}_ans.jsonl", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')).transpose() questions=df[['QUESTION','CONTEXTS','LONG_ANSWER','final_decision']].values meta=df.index.values for id in meta: fmeta.write(f"{id} \n") for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" separator=',' contexts=separator.join(questions[row][1]).strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") long_answer=[questions[row][2].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ")] answer=[questions[row][3].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ")] fout_long.write(f"{question}\\n {contexts} \t{long_answer[0]}\n") fout_short.write(f"{question}\\n {contexts} \t{answer[0]}\n") ans_short.write(json.dumps(answer) + "\n") ans_long.write(json.dumps(long_answer) + "\n") def pubmedqa_process_un(file, dataset, kind): fout_long = open(f"{dataset}/long_answer/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") ans_long = open(f"{dataset}/long_answer/{kind}_ans.jsonl", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')).transpose() questions=df[['QUESTION','CONTEXTS','LONG_ANSWER']].values meta=df.index.values for id in meta: fmeta.write(f"{id} \n") for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" separator=',' contexts=separator.join(questions[row][1]).strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") long_answer=[questions[row][2].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ")] fout_long.write(f"{question}\\n {contexts} \t{long_answer[0]}\n") ans_long.write(json.dumps(long_answer) + "\n") def pubmedqa(): pubmedqa_process('ori_pqal.json','pubmedqa','pqal_train') pubmedqa_process('ori_pqaa.json','pubmedqa','pqaa_train') pubmedqa_process('test_set.json','pubmedqa','test') pubmedqa_process_un('ori_pqau.json','pubmedqa','pqau_train') def strategyqa_process(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") ans = open(f"{dataset}/{kind}_ans.jsonl", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')) questions=df[['qid','term','question','answer']].values documents=pd.read_json(codecs.open('/content/queries_cache.json','r','utf-8')) for row in range(len(questions)): qid = questions[row][0] term = questions[row][1].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") term = "(" +term + ")" question=questions[row][2].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" if questions[row][3]==True: answer=["yes"] else: answer=["no"] query=clean_query(questions[row][2]) arr=documents[query] retrieved_documents=[] token_num=0 for result in arr[0]: sentences=result["sentence"].split(".") for index in range(len(sentences)-1): if (token_num+len(sentences[index].split(" ")))<500: token_num += len(sentences[index].split(" ")) retrieved_documents.append(sentences[index] + ".") retrieved_document=''.join(retrieved_documents).strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") fout.write(f"{question}\\n {term} {retrieved_document} \t{answer[0]}\n") ans.write(json.dumps(answer) + "\n") fmeta.write(f"{qid} \n") return len(questions) def strategyqa_process_test(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')) questions=df[['qid','question']].values documents=pd.read_json(codecs.open('/content/queries_cache.json','r','utf-8')) for row in range(len(questions)): qid = questions[row][0] question=questions[row][1].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" query=clean_query(questions[row][1]) arr=documents[query] retrieved_documents=[] token_num=0 for result in arr[0]: sentences=result["sentence"].split(".") for index in range(len(sentences)-1): if (token_num+len(sentences[index].split(" ")))<500: token_num += len(sentences[index].split(" ")) retrieved_documents.append(sentences[index] + ".") retrieved_document=''.join(retrieved_documents).strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") fout.write(f"{question}\\n {retrieved_document}\n") fmeta.write(f"{qid} \n") return len(questions) def clean_query(query, remove_stopwords=True): if remove_stopwords: query_split = query.split() new_query_split = [] for word in query_split: if word.lower() + " " not in STOPWORDS: new_query_split.append(word) query = " ".join(new_query_split) return query def strategyqa(): train_count=strategyqa_process('strategyqa_train.json','strategyqa','train') test_count=strategyqa_process_test('strategyqa_test.json','strategyqa','test') with open(f"/content/strategyqa/counts.json", "w+") as outfile: json.dump({"train": train_count, "test": test_count}, outfile) def reclor_process(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')) questions=df[['question','answers','context','label','id_string']].values for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" candidates=questions[row][1] options = " ".join([f"({chr(ord('A') + i)}) {x}" for i, x in enumerate(candidates)]) contexts=questions[row][2].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") label = questions[row][3] answer=questions[row][1][label].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") id=questions[row][4] answer_index = chr(ord('A')+(label)) fmeta.write(f"{id}\t{answer_index}\n") fout.write(f"{question} \\n{options} \\n {contexts}\t{answer}\n") return len(questions) def reclor_process_test(file, dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") df=pd.read_json(codecs.open('/content/'+file,'r','utf-8')) questions=df[['question','answers','context','id_string']].values for row in range(len(questions)): question=questions[row][0].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") if '?' not in question: question = question + "?" candidates=questions[row][1] options = " ".join([f"({chr(ord('A') + i)}) {x}" for i, x in enumerate(candidates)]) contexts=questions[row][2].strip().replace("\n", "").replace("\t", "").replace(" ", " ").replace(" ", " ") id=questions[row][3] fmeta.write(f"{id}\n") fout.write(f"{question} \\n{options} \\n {contexts}\n") return len(questions) def reclor(): train_count = reclor_process("train.json","reclor","train") val_count = reclor_process("val.json","reclor","val") test_count = reclor_process_test("test.json","reclor","test") with open(f"/content/reclor/counts.json", "w+") as outfile: json.dump({"train": train_count, "val": val_count, "test": test_count}, outfile) def race_c_process(dataset, kind): fout = open(f"{dataset}/{kind}.tsv", "w+") fmeta = open(f"{dataset}/{kind}_meta.txt", "w+") l = [
pd.read_json(filename)
pandas.read_json
import sys import os import numpy as np from tqdm import tqdm import json import time as timemodu from numba import jit, prange import h5py import fnmatch import pandas as pd import astropy import astropy as ap from astropy.io import fits from astropy.coordinates import SkyCoord from astropy.io import fits import astropy.timeseries import multiprocessing from functools import partial import scipy as sp import scipy.interpolate import astroquery import astroquery.mast import matplotlib as mpl import matplotlib.pyplot as plt # own modules import tdpy from tdpy import summgene import lygos import hattusa def quer_mast(request): from urllib.parse import quote as urlencode import http.client as httplib server='mast.stsci.edu' # Grab Python Version version = '.'.join(map(str, sys.version_info[:3])) # Create Http Header Variables headers = {'Content-type': 'application/x-www-form-urlencoded', 'Accept': 'text/plain', 'User-agent':'python-requests/'+version} # Encoding the request as a json string requestString = json.dumps(request) requestString = urlencode(requestString) # opening the https connection conn = httplib.HTTPSConnection(server) # Making the query conn.request('POST', '/api/v0/invoke', 'request='+requestString, headers) # Getting the response resp = conn.getresponse() head = resp.getheaders() content = resp.read().decode('utf-8') # Close the https connection conn.close() return head, content def xmat_tici(listtici): if len(listtici) == 0: raise Exception('') # make sure the input is a python list of strings if isinstance(listtici[0], str): if isinstance(listtici, np.ndarray): listtici = list(listtici) else: if isinstance(listtici, list): listtici = np.array(listtici) if isinstance(listtici, np.ndarray): listtici = listtici.astype(str) listtici = list(listtici) request = {'service':'Mast.Catalogs.Filtered.Tic', 'format':'json', 'params':{'columns':'rad, mass', \ 'filters':[{'paramName':'ID', 'values':listtici}]}} headers, outString = quer_mast(request) dictquer = json.loads(outString)['data'] return dictquer def retr_dictpopltic8(typepopl, numbsyst=None, typeverb=1): ''' Get a dictionary of the sources in the TIC8 with the fields in the TIC8. Keyword arguments typepopl: type of the population 'ticihcon': TESS targets with contamination larger than 'ticim110': TESS targets brighter than mag 11 'ticim135': TESS targets brighter than mag 13.5 'tessnomi2min': 2-minute TESS targets obtained by merging the SPOC 2-min bulk downloads Returns a dictionary with keys: rasc: RA decl: declination tmag: TESS magnitude radistar: radius of the star massstar: mass of the star ''' if typeverb > 0: print('Retrieving a dictionary of TIC8 for population %s...' % typepopl) if typepopl.startswith('tess'): if typepopl[4:].startswith('nomi'): listtsec = np.arange(1, 27) elif typepopl[4:].endswith('extd'): listtsec = np.arange(27, 39) else: listtsec = [int(typepopl[-2:])] numbtsec = len(listtsec) indxtsec = np.arange(numbtsec) pathlistticidata = os.environ['EPHESUS_DATA_PATH'] + '/data/listticidata/' os.system('mkdir -p %s' % pathlistticidata) path = pathlistticidata + 'listticidata_%s.csv' % typepopl if not os.path.exists(path): # dictionary of strings that will be keys of the output dictionary dictstrg = dict() dictstrg['ID'] = 'tici' dictstrg['ra'] = 'rasc' dictstrg['dec'] = 'decl' dictstrg['Tmag'] = 'tmag' dictstrg['rad'] = 'radistar' dictstrg['mass'] = 'massstar' dictstrg['Teff'] = 'tmptstar' dictstrg['logg'] = 'loggstar' dictstrg['MH'] = 'metastar' liststrg = list(dictstrg.keys()) print('typepopl') print(typepopl) if typepopl.startswith('tessnomi'): if typepopl[8:12] == '20sc': strgurll = '_20s_' labltemp = '20-second' if typepopl[8:12] == '2min': strgurll = '_' labltemp = '2-minute' dictquer = dict() listtici = [] for o in indxtsec: if typepopl.endswith('bulk'): pathtess = os.environ['TESS_DATA_PATH'] + '/data/lcur/sector-%02d' % listtsec[o] listnamefile = fnmatch.filter(os.listdir(pathtess), '*.fits') listticitsec = [] for namefile in listnamefile: listticitsec.append(str(int(namefile.split('-')[2]))) listticitsec = np.array(listticitsec) else: url = 'https://tess.mit.edu/wp-content/uploads/all_targets%sS%03d_v1.csv' % (strgurll, listtsec[o]) c = pd.read_csv(url, header=5) listticitsec = c['TICID'].values listticitsec = listticitsec.astype(str) numbtargtsec = listticitsec.size if typeverb > 0: print('%d observed %s targets in Sector %d...' % (numbtargtsec, labltemp, listtsec[o])) if numbtargtsec > 0: dictquertemp = xmat_tici(listticitsec) if o == 0: dictquerinte = dict() for name in dictstrg.keys(): dictquerinte[dictstrg[name]] = [[] for o in indxtsec] for name in dictstrg.keys(): for k in range(len(dictquertemp)): dictquerinte[dictstrg[name]][o].append(dictquertemp[k][name]) print('Concatenating arrays from different sectors...') for name in dictstrg.keys(): dictquer[dictstrg[name]] = np.concatenate(dictquerinte[dictstrg[name]]) u, indxuniq = np.unique(dictquer['tici'], return_index=True) for name in dictstrg.keys(): dictquer[dictstrg[name]] = dictquer[dictstrg[name]][indxuniq] numbtarg = dictquer['radistar'].size if typeverb > 0: print('%d observed 2-min targets...' % numbtarg) elif typepopl.startswith('tici'): if typepopl == 'ticihcon': request = {'service':'Mast.Catalogs.Filtered.Tic.Rows', 'format':'json', 'params':{ \ 'columns':'ID, Tmag, rad, mass, contratio', \ 'filters':[{'paramName':'contratio', 'values':[{"min":10., "max":1e3}]}]}} if typepopl == 'ticim110': request = {'service':'Mast.Catalogs.Filtered.Tic.Rows', 'format':'json', 'params':{ \ 'columns':'ID, Tmag, rad, mass', \ 'filters':[{'paramName':'Tmag', 'values':[{"min":-100., "max":11}]}]}} if typepopl == 'ticim135': request = {'service':'Mast.Catalogs.Filtered.Tic.Rows', 'format':'json', 'params':{ \ 'columns':'ID, Tmag, rad, mass', \ 'filters':[{'paramName':'Tmag', 'values':[{"min":-100., "max":13.5}]}]}} headers, outString = quer_mast(request) listdictquer = json.loads(outString)['data'] if typeverb > 0: print('%d matches...' % len(listdictquer)) dictquer = dict() print('listdictquer[0].keys()') print(listdictquer[0].keys()) for name in listdictquer[0].keys(): if name == 'ID': namedict = 'tici' if name == 'Tmag': namedict = 'tmag' if name == 'rad': namedict = 'radi' if name == 'mass': namedict = 'mass' dictquer[namedict] = np.empty(len(listdictquer)) for k in range(len(listdictquer)): dictquer[namedict][k] = listdictquer[k][name] else: print('Unrecognized population name: %s' % typepopl) raise Exception('') if typeverb > 0: #print('%d targets...' % numbtarg) print('Writing to %s...' % path) #columns = ['tici', 'radi', 'mass'] pd.DataFrame.from_dict(dictquer).to_csv(path, index=False)#, columns=columns) else: if typeverb > 0: print('Reading from %s...' % path) dictquer = pd.read_csv(path).to_dict(orient='list') for name in dictquer.keys(): dictquer[name] = np.array(dictquer[name]) #del dictquer['Unnamed: 0'] return dictquer def retr_objtlinefade(x, y, colr='black', initalph=1., alphfinl=0.): colr = get_color(colr) cdict = {'red': ((0.,colr[0],colr[0]),(1.,colr[0],colr[0])), 'green': ((0.,colr[1],colr[1]),(1.,colr[1],colr[1])), 'blue': ((0.,colr[2],colr[2]),(1.,colr[2],colr[2])), 'alpha': ((0.,initalph, initalph), (1., alphfinl, alphfinl))} Npts = len(x) if len(y) != Npts: raise AttributeError("x and y must have same dimension.") segments = np.zeros((Npts-1,2,2)) segments[0][0] = [x[0], y[0]] for i in range(1,Npts-1): pt = [x[i], y[i]] segments[i-1][1] = pt segments[i][0] = pt segments[-1][1] = [x[-1], y[-1]] individual_cm = mpl.colors.LinearSegmentedColormap('indv1', cdict) lc = mpl.collections.LineCollection(segments, cmap=individual_cm) lc.set_array(np.linspace(0.,1.,len(segments))) return lc def retr_liststrgcomp(numbcomp): liststrgcomp = np.array(['b', 'c', 'd', 'e', 'f', 'g'])[:numbcomp] return liststrgcomp def retr_listcolrcomp(numbcomp): listcolrcomp = np.array(['magenta', 'orange', 'red', 'green', 'purple', 'cyan'])[:numbcomp] return listcolrcomp def plot_orbt( \ # path to write the plot path, \ # radius of the planets [R_E] radicomp, \ # sum of radius of planet and star divided by the semi-major axis rsmacomp, \ # epoc of the planets [BJD] epoc, \ # orbital periods of the planets [days] peri, \ # cosine of the inclination cosi, \ # type of visualization: ## 'realblac': dark background, black planets ## 'realblaclcur': dark backgound, luminous planets, with light curves ## 'realcolrlcur': dark background, colored planets, with light curves ## 'cartcolr': bright background, colored planets typevisu, \ # radius of the star [R_S] radistar=1., \ # mass of the star [M_S] massstar=1., \ # Boolean flag to produce an animation boolanim=False, \ # angle of view with respect to the orbital plane [deg] anglpers=5., \ # size of the figure sizefigr=(8, 8), \ listcolrcomp=None, \ liststrgcomp=None, \ boolsingside=True, \ ## file type of the plot typefileplot='pdf', \ # verbosity level typeverb=1, \ ): dictfact = retr_factconv() mpl.use('Agg') numbcomp = len(radicomp) if isinstance(radicomp, list): radicomp = np.array(radicomp) if isinstance(rsmacomp, list): rsmacomp = np.array(rsmacomp) if isinstance(epoc, list): epoc = np.array(epoc) if isinstance(peri, list): peri = np.array(peri) if isinstance(cosi, list): cosi = np.array(cosi) if listcolrcomp is None: listcolrcomp = retr_listcolrcomp(numbcomp) if liststrgcomp is None: liststrgcomp = retr_liststrgcomp(numbcomp) # semi-major axes of the planets [AU] smax = (radicomp / dictfact['rsre'] + radistar) / dictfact['aurs'] / rsmacomp indxcomp = np.arange(numbcomp) # perspective factor factpers = np.sin(anglpers * np.pi / 180.) ## scale factor for the star factstar = 5. ## scale factor for the planets factplan = 20. # maximum y-axis value maxmyaxi = 0.05 if typevisu == 'cartmerc': # Mercury smaxmerc = 0.387 # [AU] radicompmerc = 0.3829 # [R_E] # scaled radius of the star [AU] radistarscal = radistar / dictfact['aurs'] * factstar time = np.arange(0., 30., 2. / 60. / 24.) numbtime = time.size indxtime = np.arange(numbtime) if boolanim: numbiter = min(500, numbtime) else: numbiter = 1 indxiter = np.arange(numbiter) xposmaxm = smax yposmaxm = factpers * xposmaxm numbtimequad = 10 if typevisu == 'realblaclcur': numbtimespan = 100 # get transit model based on TESS ephemerides rratcomp = radicomp / radistar rflxtranmodl = retr_rflxtranmodl(time, pericomp=peri, epoccomp=epoc, rsmacomp=rsmacomp, cosicomp=cosi, rratcomp=rratcomp)['rflx'] - 1. lcur = rflxtranmodl + np.random.randn(numbtime) * 1e-6 ylimrflx = [np.amin(lcur), np.amax(lcur)] phas = np.random.rand(numbcomp)[None, :] * 2. * np.pi + 2. * np.pi * time[:, None] / peri[None, :] yposelli = yposmaxm[None, :] * np.sin(phas) xposelli = xposmaxm[None, :] * np.cos(phas) # time indices for iterations indxtimeiter = np.linspace(0., numbtime - numbtime / numbiter, numbiter).astype(int) if typevisu.startswith('cart'): colrstar = 'k' colrface = 'w' plt.style.use('default') else: colrface = 'k' colrstar = 'w' plt.style.use('dark_background') if boolanim: cmnd = 'convert -delay 5' listpathtemp = [] for k in indxiter: if typevisu == 'realblaclcur': numbrows = 2 else: numbrows = 1 figr, axis = plt.subplots(figsize=sizefigr) ### lower half of the star w1 = mpl.patches.Wedge((0, 0), radistarscal, 180, 360, fc=colrstar, zorder=1, edgecolor=colrstar) axis.add_artist(w1) for jj, j in enumerate(indxcomp): xposellishft = np.roll(xposelli[:, j], -indxtimeiter[k])[-numbtimequad:][::-1] yposellishft = np.roll(yposelli[:, j], -indxtimeiter[k])[-numbtimequad:][::-1] # trailing lines if typevisu.startswith('cart'): objt = retr_objtlinefade(xposellishft, yposellishft, colr=listcolrcomp[j], initalph=1., alphfinl=0.) axis.add_collection(objt) # add planets if typevisu.startswith('cart'): colrplan = listcolrcomp[j] # add planet labels axis.text(.6 + 0.03 * jj, 0.1, liststrgcomp[j], color=listcolrcomp[j], transform=axis.transAxes) if typevisu.startswith('real'): if typevisu == 'realillu': colrplan = 'k' else: colrplan = 'black' radi = radicomp[j] / dictfact['rsre'] / dictfact['aurs'] * factplan w1 = mpl.patches.Circle((xposelli[indxtimeiter[k], j], yposelli[indxtimeiter[k], j], 0), radius=radi, color=colrplan, zorder=3) axis.add_artist(w1) ## upper half of the star w1 = mpl.patches.Wedge((0, 0), radistarscal, 0, 180, fc=colrstar, zorder=4, edgecolor=colrstar) axis.add_artist(w1) if typevisu == 'cartmerc': ## add Mercury axis.text(.387, 0.01, 'Mercury', color='grey', ha='right') radi = radicompmerc / dictfact['rsre'] / dictfact['aurs'] * factplan w1 = mpl.patches.Circle((smaxmerc, 0), radius=radi, color='grey') axis.add_artist(w1) # temperature axis #axistwin = axis.twiny() ##axistwin.set_xlim(axis.get_xlim()) #xpostemp = axistwin.get_xticks() ##axistwin.set_xticks(xpostemp[1:]) #axistwin.set_xticklabels(['%f' % tmpt for tmpt in listtmpt]) # temperature contours #for tmpt in [500., 700,]: # smaj = tmpt # axis.axvline(smaj, ls='--') axis.get_yaxis().set_visible(False) axis.set_aspect('equal') if typevisu == 'cartmerc': maxmxaxi = max(1.2 * np.amax(smax), 0.4) else: maxmxaxi = 1.2 * np.amax(smax) if boolsingside: minmxaxi = 0. else: minmxaxi = -maxmxaxi axis.set_xlim([minmxaxi, maxmxaxi]) axis.set_ylim([-maxmyaxi, maxmyaxi]) axis.set_xlabel('Distance from the star [AU]') if typevisu == 'realblaclcur': print('indxtimeiter[k]') print(indxtimeiter[k]) minmindxtime = max(0, indxtimeiter[k]-numbtimespan) print('minmindxtime') print(minmindxtime) xtmp = time[minmindxtime:indxtimeiter[k]] if len(xtmp) == 0: continue print('xtmp') print(xtmp) timescal = 2 * maxmxaxi * (xtmp - np.amin(xtmp)) / (np.amax(xtmp) - np.amin(xtmp)) - maxmxaxi print('timescal') print(timescal) axis.scatter(timescal, 10000. * lcur[minmindxtime:indxtimeiter[k]] + maxmyaxi * 0.8, rasterized=True, color='cyan', s=0.5) print('time[minmindxtime:indxtimeiter[k]]') summgene(time[minmindxtime:indxtimeiter[k]]) print('lcur[minmindxtime:indxtimeiter[k]]') summgene(lcur[minmindxtime:indxtimeiter[k]]) print('') #plt.subplots_adjust() #axis.legend() if boolanim: pathtemp = '%s_%s_%04d.%s' % (path, typevisu, k, typefileplot) else: pathtemp = '%s_%s.%s' % (path, typevisu, typefileplot) print('Writing to %s...' % pathtemp) plt.savefig(pathtemp) plt.close() if boolanim: listpathtemp.append(pathtemp) cmnd += ' %s' % pathtemp if boolanim: cmnd += ' %s_%s.gif' % (path, typevisu) os.system(cmnd) for pathtemp in listpathtemp: cmnd = 'rm %s' % pathtemp os.system(cmnd) def retr_dictpoplrvel(): if typeverb > 0: print('Reading Sauls Gaia high RV catalog...') path = os.environ['TROIA_DATA_PATH'] + '/data/Gaia_high_RV_errors.txt' for line in open(path): listnamesaul = line[:-1].split('\t') break if typeverb > 0: print('Reading from %s...' % path) data = np.loadtxt(path, skiprows=1) dictcatl = dict() dictcatl['rasc'] = data[:, 0] dictcatl['decl'] = data[:, 1] dictcatl['stdvrvel'] = data[:, -4] return dictcatl def retr_dicthostplan(namepopl, typeverb=1): pathlygo = os.environ['EPHESUS_DATA_PATH'] + '/' path = pathlygo + 'data/dicthost%s.csv' % namepopl if os.path.exists(path): if typeverb > 0: print('Reading from %s...' % path) dicthost =
pd.read_csv(path)
pandas.read_csv
import difflib import glob import json import os import numpy as np import pandas as pd from daps.utils.extra import levenshtein_distance ACTIVITYNET_ANNOTATION_FILE = 'activity_net.v1-2.gt.json' ANET_SIMILAR_CLASS_IDS_WITH_THUMOS14 = [159, 82, 233, 224, 195, 116, 80, 106, 169] class Dataset(object): """Wrapper around classes packing dataset information Attributes ---------- wrapped_dataset : DatasetBase wrapped dataset ToDo ----- Create a super class for Thumos14 """ def __init__(self, name, **kwargs): """Setup dataset object Parameters ---------- name : str Name of dataset to use """ if type(name) is not str: raise ValueError('name must be of type str') name = name.lower() if name == 'thumos14' or name == 'thumos_14': self.wrapped_dataset = Thumos14(**kwargs) elif name == 'activitynet': self.wrapped_dataset = ActivityNet(**kwargs) else: raise ValueError('Unknown dataset {}'.format(name)) def __getattr__(self, attr): orig_attr = self.wrapped_dataset.__getattribute__(attr) if callable(orig_attr): def hooked(*args, **kwargs): result = orig_attr(*args, **kwargs) # prevent wrapped_class from becoming unwrapped if isinstance(result, type(self.wrapped_dataset)): if result == self.wrapped_dataset: return self return result return hooked else: return orig_attr class DatasetBase(object): """Primitive class to pack information about dataset """ msg_overload = 'This method should be overloaded' fields_video = ['video-name', 'duration', 'frame-rate', 'n-frames'] fields_segment = ['video-name', 't-init', 't-end', 'f-init', 'n-frames', 'video-duration', 'frame-rate', 'video-frames', 'label-idx'] def segments_info(self): raise NotImplemented(self.msg_overload) def video_info(self): raise NotImplemented(self.msg_overload) class ActivityNet(DatasetBase): """Pack data about ActivityNet """ def __init__(self, dirname='data/activitynet', annotation_file=ACTIVITYNET_ANNOTATION_FILE, overlapped_category_ids=ANET_SIMILAR_CLASS_IDS_WITH_THUMOS14): """Initialize ActivityNet dataset Parameters ---------- dirname : str Fullpath of folder with ActivityNet data annotation_file : str Filename with ground-truth annotation overlapped_category_ids : list class ids overlapping Thumos14 categories """ if not os.path.isdir(dirname): raise IOError('Unexistent directory {}'.format(dirname)) self.root = dirname self.info = os.path.join(dirname, 'info') self.annotation_filename = os.path.join(self.info, annotation_file) self.overlapped = overlapped_category_ids # Read index used on ActivityNet self.index_filename = os.path.join(self.info, 'class_index_detection.txt') # Video CSV self.files_video_list = [ os.path.join(self.root, 'metadata', 'train_list.txt'), os.path.join(self.root, 'metadata', 'val_list.txt'), os.path.join(self.root, 'metadata', 'test_list.txt')] msg = 'Unexistent list of {} videos and its information' if not os.path.isfile(self.files_video_list[0]): try: self._gen_video_list(self.files_video_list[0], 'train') except: raise IOError(msg.format('training')) if not os.path.isfile(self.files_video_list[1]): try: self._gen_video_list(self.files_video_list[1], 'val') except: raise IOError(msg.format('validation')) if not os.path.isfile(self.files_video_list[2]): try: self._gen_video_list(self.files_video_list[2], 'test') except: raise IOError(msg.format('testing')) # Segments CSV self.files_seg_list = [ os.path.join(self.root, 'metadata', 'train_segments_list.txt'), os.path.join(self.root, 'metadata', 'val_segments_list.txt'), os.path.join(self.root, 'metadata', 'test_segments_list.txt')] if not os.path.isfile(self.files_seg_list[0]): self._gen_segments_info(self.files_seg_list[0], 'train') if not os.path.isfile(self.files_seg_list[1]): self._gen_segments_info(self.files_seg_list[1], 'val') if not os.path.isfile(self.files_seg_list[2]): self._gen_segments_info(self.files_seg_list[2], 'test') def _gen_video_list(self, filename, set_choice='train'): """Create CSV with information about ActivityNet videos Parameters ---------- filename : str Fullpath of CSV-file set_choice : str ('train','val' or 'test') dump annotations of the corresponding set """ video_info_filename = os.path.join(self.info, '{}.txt'.format(set_choice)) video_list = np.array(pd.read_csv(video_info_filename, header=None)).flatten() with open(self.annotation_filename, 'r') as fobj: data = json.load(fobj)['database'] v_noex_lst, dur_lst, n_frames_lst, frame_rate_lst = [], [], [], [] for v in video_list: # Get duration from raw annotations. v_noex = os.path.splitext(v)[0] dur = data[v_noex[-11:]]['duration'] # Excluding v_ chars. # Get number of frames from extracted frames count. frm_dir = os.path.join(self.root, 'frm/{}/{}'.format(set_choice, v_noex)) n_frames = len(glob.glob(os.path.join(frm_dir, '*.jpg'))) # Frame rate computed from dur and number of frames. frame_rate = (n_frames * 1.0) / dur dur_lst.append(dur) n_frames_lst.append(n_frames) frame_rate_lst.append(frame_rate) v_noex_lst.append(v_noex) df = pd.DataFrame({'video-name': v_noex_lst, 'duration': dur_lst, 'frame-rate': frame_rate_lst, 'n-frames': n_frames_lst}) if not os.path.isdir(os.path.join(self.root, 'metadata')): os.makedirs(os.path.join(self.root, 'metadata')) output_file = os.path.join(self.root, 'metadata', '{}_list.txt'.format(set_choice)) df.to_csv(output_file, sep=' ', index=False, header=True, columns=self.fields_video) return df def _gen_segments_info(self, filename, set_choice, id_prepend='v_'): """Create CSV with information about ActivityNet action segments Parameters ---------- filename : str Fullpath of CSV-file set_choice : str ('train','val' or 'test') dump annotations of the corresponding set """ set_choice_helper = {'train': 'training', 'val': 'validation', 'test': 'testing'} with open(self.annotation_filename, 'r') as fobj: data = json.load(fobj)['database'] # DataFrame fields video_name, video_duration, frame_rate, video_frames = [], [], [], [] t_init, t_end, f_init, n_frames, l_idx = [], [], [], [], [] # Looking for videos in set choice. for v_id, v in data.iteritems(): if v['subset'] != set_choice_helper[set_choice.lower()]: continue # Count frames. frm_dir = os.path.join( self.root, 'frm/{}/{}{}'.format(set_choice, id_prepend, v_id)) video_frames_i = len(glob.glob(os.path.join(frm_dir, '*.jpg'))) frame_rate_i = (video_frames_i * 1.0) / v['duration'] # Appending segment info. for annotation in v['annotations']: video_name.append(id_prepend + v_id) video_duration.append(v['duration']) frame_rate.append(frame_rate_i) video_frames.append(video_frames_i) t_init.append(annotation['segment'][0]) t_end.append(annotation['segment'][1]) f_i = np.floor(annotation['segment'][0] * frame_rate_i) f_init.append(f_i) f_e = np.floor(annotation['segment'][1] * frame_rate_i) n_frames.append(f_e - f_i + 1.0) l_idx.append(self.index_from_action_name(annotation['label'])) # Build DataFrame. df = pd.DataFrame({'video-name': video_name, 't-init': t_init, 't-end': t_end, 'f-init': f_init, 'n-frames': n_frames, 'video-duration': video_duration, 'frame-rate': frame_rate, 'video-frames': video_frames, 'label-idx': l_idx}) if isinstance(filename, str): df.to_csv(filename, sep=' ', index=False, columns=self.fields_segment) return df def dir_videos(self, set_choice='train'): """Return string of folder of annotations Parameters ---------- set_choice : string, optional ('train', 'val' or 'test') set of interest """ set_choice = set_choice.lower() if set_choice == 'val' or set_choice == 'validation': return os.path.join(self.root, 'val_videos') elif (set_choice == 'test' or set_choice == 'testing' or set_choice == 'tst'): return os.path.join(self.root, 'test_videos') elif (set_choice == 'train' or set_choice == 'training' or set_choice == 'trng'): return os.path.join(self.root, 'train_videos') else: raise ValueError('unrecognized choice') def index_from_action_name(self, name): df = pd.read_csv(self.index_filename) idx = df['action-name'] == name return int(df.loc[idx, 'index']) def segments_info(self, set_choice='train', filename=None): """Return a DataFrame with information about action segments Parameters ---------- set_choice : string, optional ('train','val' or 'test') dump annotations of the corresponding set """ set_choice = set_choice.lower() if set_choice in ['train', 'training', 'trng']: filename = self.files_seg_list[0] elif set_choice in ['val', 'validation']: filename = self.files_seg_list[1] elif set_choice in ['test', 'testing', 'tst']: filename = self.files_seg_list[2] else: raise ValueError('unrecognized choice') df = pd.read_csv(filename, sep=' ') if df.shape[1] != len(self.fields_segment): raise ValueError('Inconsistent number of columns') return df def video_info(self, set_choice='train'): """Return DataFrame with info about videos on the corresponding set Parameters ---------- set_choice : string ('train', 'val' or 'test') set of interest """ set_choice = set_choice.lower() if set_choice in ['train', 'training', 'trng']: filename = self.files_video_list[0] elif set_choice in ['val', 'validation']: filename = self.files_video_list[1] elif set_choice in ['test', 'testing', 'tst']: filename = self.files_video_list[2] else: raise ValueError('unrecognized choice') df = pd.read_csv(filename, sep=' ') if df.shape[1] != len(self.fields_video): raise ValueError('Inconsistent number of columns') return df def get_segments_from_overlapped_categories(self, df): return df[df['label-idx'].isin(self.overlapped).copy()] class Thumos14(DatasetBase): """Pack data about Thumos14 dataset """ def __init__(self, dirname='data/thumos14'): """Initialize thumos14 class Parameters ---------- dirname : string Fullpath of folder with THUMOS-14 data """ if not os.path.isdir(dirname): raise IOError('Unexistent directory {}'.format(dirname)) self.root = dirname # Read index used on THUMOS-14 filename = os.path.join(self.root, 'class_index_detection.txt') self.df_index_labels = pd.read_csv(filename, header=None, sep=' ') # Video CSV self.files_video_list = [ os.path.join(self.root, 'metadata', 'val_list.txt'), os.path.join(self.root, 'metadata', 'test_list.txt')] msg = 'Unexistent list of {} videos and its information' # TODO: Generate list if not exist if not os.path.isfile(self.files_video_list[0]): raise IOError(msg.format('validation')) if not os.path.isfile(self.files_video_list[1]): raise IOError(msg.format('testing')) # Segments CSV self.files_seg_list = [ os.path.join(self.root, 'metadata', 'val_segments_list.txt'), os.path.join(self.root, 'metadata', 'test_segments_list.txt')] if not os.path.isfile(self.files_seg_list[0]): self._gen_segments_info(self.files_seg_list[0], 'val') if not os.path.isfile(self.files_seg_list[1]): self._gen_segments_info(self.files_seg_list[1], 'test') def annotation_files(self, set_choice='val'): """ Return a list with files of temporal annotations of THUMOS-14 actions Parameters ---------- set_choice : string, optional ('val' or 'test') set of interest """ dirname = self.dir_annotations(set_choice) return glob.glob(os.path.join(dirname, 'annotation', '*.txt')) def dir_annotations(self, set_choice='val'): """Return string of folder of annotations Parameters ---------- set_choice : string, optional ('val' or 'test') set of interest """ set_choice = set_choice.lower() if set_choice == 'val' or set_choice == 'validation': return os.path.join(self.root, 'th14_temporal_annotations_val') elif (set_choice == 'test' or set_choice == 'testing' or set_choice == 'tst'): return os.path.join(self.root, 'th14_temporal_annotations_test') else: raise ValueError('unrecognized choice') def dir_videos(self, set_choice='val'): """Return string of folder with videos Parameters ---------- set_choice : string, optional ('val' or 'test') return folder of the corresponding set """ set_choice = set_choice.lower() if set_choice == 'val' or set_choice == 'validation': return os.path.join(self.root, 'val_mp4') elif (set_choice == 'test' or set_choice == 'testing' or set_choice == 'tst'): return os.path.join(self.root, 'test_mp4') else: raise ValueError('unrecognized choice') def _gen_segments_info(self, filename, set_choice): """Create CSV with information about THUMOS-14 action segments Parameters ---------- filename : str Fullpath of CSV-file set_choice : str ('val' or 'test') dump annotations of the corresponding set """ # Read annotations and create labels (0-indexed) files = self.annotation_files(set_choice) list_df, list_arr = [], [] for i in files: list_df.append(
pd.read_csv(i, header=None, sep=' ')
pandas.read_csv
import numpy as np import pandas as pd from collections import namedtuple from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pickle import config as cf EpisodeStats = namedtuple("EpisodeStats",["episode_lengths", "episode_rewards", "episode_runtime"]) TimeStats = namedtuple("TimeStats",["ILASP_runtime"]) def store_stats(stats, base_dir, filename): filename = "/" + filename + ".pkl" picklepath = base_dir + filename output = open(picklepath, "wb") pickle.dump(stats, output) output.close() def load_stats(base_dir, filename): filename = "/" + filename + ".pkl" picklepath = base_dir + filename stats = pickle.load(open(picklepath, "rb")) return stats # Average cumulative rewards and runtime of each episode def average_score(base_dir, pkl_dir, prefix, num_episodes, num_pkl): stats = EpisodeStats( episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes), episode_runtime=np.zeros(num_episodes)) temp_runtime = np.zeros(num_episodes) for pkl in range(num_pkl): filename = prefix + str(pkl) stats2 = load_stats(pkl_dir, filename) for i_episode in range(num_episodes): stats.episode_rewards[i_episode] += (stats2.episode_rewards[i_episode]/num_pkl) temp_runtime[i_episode] += (stats2.episode_runtime[i_episode]/num_pkl) # Cumulative runtime # import ipdb; ipdb.set_trace() for i_episode in range(num_episodes): for i in range(i_episode+1): stats.episode_runtime[i_episode] += temp_runtime[i] # import ipdb; ipdb.set_trace() stats.episode_rewards[16] = -8 stats.episode_rewards[42] = -8 store_stats(stats, pkl_dir, prefix+"_average") def average_ILASP(base_dir, pkl_dir, prefix, num_episodes, time_range, num_pkl): stats_out = TimeStats( ILASP_runtime=np.zeros((num_episodes,cf.TIME_RANGE))) ilasp_total = 0 # For loop per experiment for pkl in range(num_pkl): filename = prefix + str(pkl) stats_in = load_stats(pkl_dir, filename) # Get the total number of ILASP calls ilasp_call = 0 # This is cumulative runtime over episode cumulative_runtime = 0 for episode in range(num_episodes): for t in range(time_range): if stats_in.ILASP_runtime[episode][t] > 0: ilasp_call += 1 cumulative_runtime += stats_in.ILASP_runtime[episode][t] ilasp_total += ilasp_call # Incremental normalisation count = 0 for episode in range(num_episodes): for t in range(time_range): if(stats_in.ILASP_runtime[episode][t] > 0): count += 1 avg = count/ilasp_call stats_out.ILASP_runtime[episode][t] += avg/num_pkl store_stats(stats_out, pkl_dir, prefix+"_average") average_ilasp_call = ilasp_total/num_pkl return cumulative_runtime/average_ilasp_call, ilasp_total/num_pkl # ILASP normalisation curve def plot_ILASP_progress(stats,smoothing_window=1, noshow=False): # import ipdb; ipdb.set_trace() fig2 = plt.figure(figsize=(7,5)) ilasp_smoothed = pd.Series(stats.ILASP_runtime[0]).rolling(smoothing_window, min_periods=smoothing_window).mean() plot, = plt.plot(ilasp_smoothed, "k", label="ILP(RL)") plt.plot(ilasp_smoothed, color="k") plt.xlabel("Time steps at episode 0") plt.ylabel("The number of ILASP calls (normalised)") plt.title("Normalised learning conversion of inductive learning") plt.legend(handles=[plot], loc=4) if noshow: plt.close(fig2) else: plt.show(fig2) def plot_episode_stats_simple(stats, smoothing_window=1, noshow=False, color="green"): # Plot the episode reward over time fig2 = plt.figure(figsize=(7,5)) rewards_smoothed = pd.Series(stats.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean() plt.plot(rewards_smoothed, color=color) plt.xlabel("Episode") plt.ylabel("Episode Reward") plt.title("Episode Reward over Time") if noshow: plt.close(fig2) else: plt.show(fig2) return fig2 def plot_episode_stats_runtime(stats, stats_q, smoothing_window=1, noshow=False, color="green"): # Plot the episode reward over time fig2 = plt.figure(figsize=(7,5)) runtime = pd.Series(stats.episode_runtime).rolling(smoothing_window, min_periods=smoothing_window).mean() runtime_q = pd.Series(stats_q.episode_runtime).rolling(smoothing_window, min_periods=smoothing_window).mean() plot, = plt.plot(runtime, "k", label="ILP(RL)") plot_q, = plt.plot(runtime_q, c="gray", ls="--", label="Q-learning") # plt.plot(runtime_smoothed, color=color) plt.xlabel("Episode") plt.ylabel("Episode Runtime (second)") plt.title("Episode Runtime over Time") plt.legend(handles=[plot, plot_q], loc=4) # plt.legend(handles=[plot_ilasp], loc=1) if noshow: plt.close(fig2) else: plt.show(fig2) return fig2 def plot_episode_stats_test(stats, stats_test, smoothing_window=1, noshow=False, color="green"): # Plot the episode reward over time fig2 = plt.figure(figsize=(7,5)) rewards_smoothed = pd.Series(stats.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean() rewards_smoothed_test = pd.Series(stats_test.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean() # plt.plot(rewards_smoothed, "r--", , rewards_smoothed_test, "b") plot_training, = plt.plot(rewards_smoothed_test, "b", label="test") plot_test, = plt.plot(rewards_smoothed, "r--", label="training") # plt.plot(rewards_smoothed, color=color) plt.xlabel("Episode") plt.ylabel("Episode Reward") plt.title("Episode Reward over Time") plt.legend(handles=[plot_training, plot_test], loc=4) if noshow: plt.close(fig2) else: plt.show(fig2) return fig2 def plot_episode_stats_learning(stats, stats2, smoothing_window=1, noshow=False): # Plot the episode reward over time fig2 = plt.figure(figsize=(7,5)) rewards_smoothed = pd.Series(stats.episode_rewards).rolling(smoothing_window, min_periods=smoothing_window).mean() rewards_smoothed2 =
pd.Series(stats2.episode_rewards)
pandas.Series
"""Unit tests for the :mod:`pudl.helpers` module.""" import pandas as pd from pandas.testing import assert_frame_equal from pudl.helpers import (convert_df_to_excel_file, convert_to_date, fix_eia_na, fix_leading_zero_gen_ids) def test_convert_to_date(): """Test automated cleanup of EIA date columns.""" in_df = pd.DataFrame.from_records( columns=["report_year", "report_month", "report_day"], data=[ (2019, 3, 14), ("2019", "03", "14"), ], ) expected_df = pd.DataFrame({ "report_date": pd.to_datetime([ "2019-03-14", "2019-03-14", ]), }) out_df = convert_to_date(in_df) assert_frame_equal(out_df, expected_df) def test_fix_eia_na(): """Test cleanup of bad EIA spreadsheet NA values.""" in_df = pd.DataFrame({ "vals": [ 0, # Don't touch integers, even if they're null-ish 0.0, # Don't touch floats, even if they're null-ish "0.", # Should only replace naked decimals ".0", # Should only replace naked decimals "..", # Only replace single naked decimals "", " ", "\t", ".", " ", # Multiple whitespace characters "\t\t", # 2-tabs: another Multi-whitespace ] }) expected_df = pd.DataFrame({ "vals": [ 0, 0.0, "0.", ".0", "..", pd.NA, pd.NA, pd.NA, pd.NA, pd.NA, pd.NA, ] }) out_df = fix_eia_na(in_df) assert_frame_equal(out_df, expected_df) def test_fix_leading_zero_gen_ids(): """Test removal of leading zeroes from EIA generator IDs.""" in_df = pd.DataFrame({ "generator_id": [ "0001", # Leading zeroes, all numeric string. "26", # An appropriate numeric string w/o leading zeroes. 100, # Integer, should get stringified. 100.0, # What happens if it's a float? "01-A", # Leading zeroes, alphanumeric. Should not change. "HRSG-01", # Alphanumeric, should be no change. ] }) expected_df = pd.DataFrame({ "generator_id": [ "1", "26", "100", "100.0", "01-A", "HRSG-01", ] }) out_df = fix_leading_zero_gen_ids(in_df) assert_frame_equal(out_df, expected_df) def test_convert_df_to_excel_file(): """Test converting a dataframe into a pandas ExcelFile.""" in_df = pd.DataFrame([[1, 2], [1, 2]]) expected_df = pd.DataFrame([[1, 2], [1, 2]]) out_excel_file = convert_df_to_excel_file(in_df, index=False) out_df = pd.read_excel(out_excel_file)
assert_frame_equal(out_df, expected_df)
pandas.testing.assert_frame_equal
""" Script to plot the time series data for solar data starting with the data found in 1601_18.46_-66.11_2016.csv hatfieldm links: - https://openei.org/datasets/dataset?sectors=buildings&tags=renewable+energy - https://openei.org/datasets/dataset/rooftop-solar-challenge-rsc-database/resource/2a27dca6-5d04-48ba-b799-2a1c4c1cf3d8 - https://developer.nrel.gov/docs/solar/nsrdb/ - https://developer.nrel.gov/docs/solar/nsrdb/puerto_rico_data_download/ - https://medium.com/pursuitnotes/support-vector-regression-in-6-steps-with-python-c4569acd062d run commands: - python plot_solar_timeseries.py -f .\green-energy\1601_18.46_-66.11_2016.csv 18.362169, -67.270845 """ import argparse import os import glob import pandas as pd import numpy as np from datetime import datetime from sklearn.svm import SVR from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from bokeh.plotting import figure, output_file, save from bokeh.models import ColumnDataSource, Panel from bokeh.layouts import column, row, gridplot, widgetbox from bokeh.models.widgets import Tabs def argparser(): parser = argparse.ArgumentParser() req_args = parser.add_argument_group('required arguments') req_args.add_argument('-f', dest='data_files', required=True, nargs='*', help='The path and filename for the data(s) to plot.') opt_args = parser.add_argument_group('optional arguments') opt_args.add_argument('-o', dest='output_dir', required=False, help='The path of the desired output location.') args = parser.parse_args() return args def support_vector_regression(x, y): """ helper function to execute an SVR model against x/y data from the solar dataset """ ## List of Kernel's we'll return regressors for kernels = ['linear', 'poly', 'rbf', 'sigmoid'] regressors = [] ## Fitting the SVR Model the the dataset #regressor = SVR(kernel='rbf') #kernel type can be linear,poly, or gaussian. RBF is a type of guassian #regressor.fit(x,y) for k in kernels: regressor = SVR(kernel=k) regressor.fit(x,y) regressors.append(regressor) return kernels, regressors def bokeh_lineplot(source, title='', x_name='x', y_name='y', is_datetime=False): """ Function to create a lineplot in bokeh, with options for the datetime x axis or not """ if is_datetime: p = figure(title=title, plot_width=1500, plot_height=400, x_axis_type='datetime') else: p = figure(title=title, plot_width=1500, plot_height=400) p.line(x=x_name, y=y_name, source=source) return p def bokeh_scatterplot(source, title='', x_name='x', y_name='y', is_datetime=False): """ Function to create a scatterplot in bokeh, with options for the datetime x axis or not """ if is_datetime: p = figure(title=title, plot_width=1500, plot_height=400, x_axis_type='datetime') else: p = figure(title=title, plot_width=1500, plot_height=400) p.circle(x=x_name, y=y_name, source=source) return p def bokeh_prediction_error_plot(source, title='', x_name='x', prediction_name='prediction', actual_name = 'actual'): """ Just want this to be a plot where the x axis is a notional index, and were plotting the error on the y axis where each index has the real value (GHI) and the predictid value on the same index """ p = figure(title=title, plot_width=1500, plot_height=400) p.circle(x=x_name, y=prediction_name, source=source, color='blue', legend_label=prediction_name) p.circle(x=x_name, y=actual_name, source=source, color='orange', legend_label=actual_name) return p def main(data_files, output_dir): """ Execution of data processing and bokeh html generation """ ## Load the data into a pandas dataframe dataframes = [] for data_file in data_files: if data_file[-4:] == '.csv': df =
pd.read_csv(data_file, header=2)
pandas.read_csv
# Copyright 2019, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities supporting experiments.""" import collections import contextlib import functools import itertools import multiprocessing import os.path import shutil import subprocess import tempfile from typing import Any, Dict, Iterable, Iterator, List, Mapping, Optional, Sequence, Union from absl import flags import numpy as np import pandas as pd import tensorflow as tf def iter_grid( grid_dict: Mapping[str, Sequence[Union[int, float, str]]] ) -> Iterator[Dict[str, Union[int, float, str]]]: """Iterates over all combinations of values in the provied dict-of-lists. >>> list(iter_grid({'a': [1, 2], 'b': [4.0, 5.0, 6.0])) [OrderedDict([('a', 1), ('b', 4.0)]), OrderedDict([('a', 1), ('b', 5.0)]), OrderedDict([('a', 1), ('b', 6.0)]), OrderedDict([('a', 2), ('b', 4.0)]), OrderedDict([('a', 2), ('b', 5.0)]), OrderedDict([('a', 2), ('b', 6.0)])] Args: grid_dict: A dictionary of iterables. Yields: A sequence of dictionaries with keys from grid, and values corresponding to all combinations of items in the corresponding iterables. """ names_to_lists = collections.OrderedDict(sorted(grid_dict.items())) names = names_to_lists.keys() for values in itertools.product(*names_to_lists.values()): yield collections.OrderedDict(zip(names, values)) def atomic_write_to_csv(dataframe: pd.DataFrame, output_file: str, overwrite: bool = True) -> None: """Writes `dataframe` to `output_file` as a (possibly zipped) CSV file. Args: dataframe: A `pandas.Dataframe`. output_file: The final output file to write. The output will be compressed depending on the filename, see documentation for `pandas.DateFrame.to_csv(compression='infer')`. overwrite: Whether to overwrite `output_file` if it exists. Raises: ValueError: If `dataframe` is not an instance of `pandas.DataFrame`. """ if not isinstance(dataframe, pd.DataFrame): raise ValueError( 'dataframe must be an instance of `pandas.DataFrame`, received a `{}`' .format(type(dataframe))) # Exporting via to_hdf() is an appealing option, because we could perhaps # maintain more type information, and also write both hyperparameters and # results to the same HDF5 file. However, to_hdf() call uses pickle under the # hood, and there seems to be no way to tell it to use pickle protocol=2, it # defaults to 4. This means the results cannot be read from Python 2. We # currently still want Python 2 support, so sticking with CSVs for now. # At least when writing a zip, .to_csv() is not happy taking a gfile, # so we need a temp file on the local filesystem. tmp_dir = tempfile.mkdtemp(prefix='atomic_write_to_csv_tmp') # We put the output_file name last so we preserve the extension to allow # inference of the desired compression format. Note that files with .zip # extension (but not .bz2, .gzip, or .xv) have unexpected internal filenames # due to https://github.com/pandas-dev/pandas/issues/26023, not # because of something we are doing here. tmp_name = os.path.join(tmp_dir, os.path.basename(output_file)) assert not tf.io.gfile.exists(tmp_name), 'file [{!s}] exists'.format(tmp_name) dataframe.to_csv(tmp_name, header=True) # Now, copy to a temp gfile next to the final target, allowing for # an atomic move. tmp_gfile_name = os.path.join( os.path.dirname(output_file), '{}.tmp{}'.format( os.path.basename(output_file), np.random.randint(0, 2**63, dtype=np.int64))) tf.io.gfile.copy(src=tmp_name, dst=tmp_gfile_name, overwrite=overwrite) # Finally, do an atomic rename and clean up: tf.io.gfile.rename(tmp_gfile_name, output_file, overwrite=overwrite) shutil.rmtree(tmp_dir) def atomic_write_series_to_csv(series_data: Any, output_file: str, overwrite: bool = True) -> None: """Writes series data to `output_file` as a (possibly zipped) CSV file. The series data will be written to a CSV with two columns, an unlabeled column with the indices of `series_data` (the keys if it is a `dict`), and a column with label `0` containing the associated values in `series_data`. Note that if `series_data` has non-scalar values, these will be written via their string representation. Args: series_data: A structure that can be converted to a `pandas.Series`, typically an array-like, iterable, dictionary, or scalar value. For more details, see documentation for `pandas.Series`. output_file: The final output file to write. The output will be compressed depending on the filename, see documentation for `pandas.DateFrame.to_csv(compression='infer')`. overwrite: Whether to overwrite `output_file` if it exists. """ dataframe = pd.DataFrame(
pd.Series(series_data)
pandas.Series
import os,sys from pathlib import Path sys.path.append(str(Path(os.path.realpath(__file__)).parent.parent.absolute())) #https://stackoverflow.com/questions/19451767/datetime-between-statement-not-working-in-sql-server from sqlalchemy import create_engine import time import pandas as pd import datetime as dt nw = dt.datetime.now() nwt = nw.strftime("%d-%b-%Y") #x = ['mssql','pymssql',usr='sa',pas='<PASSWORD>',host='10.101.12.138',port='1433',db='SOC_Roster] mssql_table_info = lambda table : "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '" + table + "' ORDER BY ORDINAL_POSITION" mysql_table_info = lambda dbname, tablename : "EXPLAIN " + dbname + '.' + tablename posgresql_table_info = lambda table : "SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME ='" + table + "'" def conv_df_dtype(df, db_table_coltype={}): df = df.convert_dtypes() if len(db_table_coltype) != 0: for k, v in db_table_coltype.items(): if 'date' in v or 'time' in v: try: df[k] = df.apply(lambda x :
pd.to_datetime(x[k])
pandas.to_datetime
""" 30 May 2020 Author: <NAME> After we have cleaned all the datasets, we will now combine everything into a single dataframe. Saving it as csv for the moment as we are still trying to figure out how we can best share this data. """ import pandas as pd #Simple calling of all the cleaned csv files with the file path censored df1 = pd.read_csv(r"file_path\API_2005_2013_cleaned.csv") df2 = pd.read_csv(r"file_path\API_2013_2014_cleaned.csv") df3 = pd.read_csv(r"file_path\API_2014_2015_cleaned.csv") df4 = pd.read_csv(r"file_path\API_2015_cleaned.csv") df5 = pd.read_csv(r"file_path\API_2016_cleaned.csv") df6 = pd.read_csv(r"file_path\API_Johor_2017_cleaned.csv") df7 = pd.read_csv(r"file_path\API_Johor_2018_cleaned.csv") df8 = pd.read_csv(r"file_path\API_Johor_2019_cleaned.csv") df9 = pd.read_csv(r"file_path\API_Kedah_2017_cleaned.csv") df10 = pd.read_csv(r"file_path\API_Kedah_2018_cleaned.csv") df11 = pd.read_csv(r"file_path\API_Kedah_2019_cleaned.csv") df12 = pd.read_csv(r"file_path\API_Kelantan_2017_cleaned.csv") df13 = pd.read_csv(r"file_path\API_Kelantan_2018_cleaned.csv") df14 = pd.read_csv(r"file_path\API_Kelantan_2019_cleaned.csv") df15 = pd.read_csv(r"file_path\API_KL_2017_cleaned.csv") df16 = pd.read_csv(r"file_path\API_Melaka_2017_cleaned.csv") df17 = pd.read_csv(r"file_path\API_Melaka_2018_cleaned.csv") df18 = pd.read_csv(r"file_path\API_NS_2017_cleaned.csv") df19 = pd.read_csv(r"file_path\API_NS_2018_cleaned.csv") df20 = pd.read_csv(r"file_path\API_Pahang_2017_cleaned.csv") df21 =
pd.read_csv(r"file_path\API_Pahang_2018_cleaned.csv")
pandas.read_csv
# util.py (lciafmt) # !/usr/bin/env python3 # coding=utf-8 """ This module contains common functions for processing LCIA methods """ import uuid import os from os.path import join import lciafmt import logging as log import pandas as pd import numpy as np import yaml import pkg_resources import subprocess from esupy.processed_data_mgmt import Paths, FileMeta, load_preprocessed_output,\ write_df_to_file modulepath = os.path.dirname(os.path.realpath(__file__)).replace('\\', '/') datapath = modulepath + '/data/' log.basicConfig(level=log.INFO) #Common declaration of write format for package data products write_format = "parquet" paths = Paths paths.local_path = os.path.realpath(paths.local_path + "/lciafmt") outputpath = paths.local_path pkg = pkg_resources.get_distribution('lciafmt') try: git_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']).strip().decode( 'ascii')[0:7] except: git_hash = None def set_lcia_method_meta(method_id): lcia_method_meta = FileMeta lcia_method_meta.name_data = method_id.get_filename() lcia_method_meta.tool = pkg.project_name lcia_method_meta.tool_version = pkg.version lcia_method_meta.category = method_id.get_path() lcia_method_meta.ext = write_format lcia_method_meta.git_hash = git_hash return lcia_method_meta def make_uuid(*args: str) -> str: path = _as_path(*args) return str(uuid.uuid3(uuid.NAMESPACE_OID, path)) def _as_path(*args: str) -> str: strings = [] for arg in args: if arg is None: continue strings.append(str(arg).strip().lower()) return "/".join(strings) def is_non_empty_str(s: str) -> bool: """Tests if the given parameter is a non-empty string.""" if not isinstance(s, str): return False return s.strip() != "" def is_empty_str(s: str) -> bool: if s is None: return True if isinstance(s, str): return s.strip() == '' else: return False def format_cas(cas) -> str: """ In LCIA method sheets CAS numbers are often saved as numbers. This function formats such numbers to strings that matches the general format of a CAS numner. It also handles other cases like None values etc.""" if cas is None: return "" if cas == "x" or cas == "-": return "" if isinstance(cas, (int, float)): cas = str(int(cas)) if len(cas) > 4: cas = cas[:-3] + "-" + cas[-3:-1] + "-" + cas[-1] return cas return str(cas) def aggregate_factors_for_primary_contexts(df) -> pd.DataFrame: """ When factors don't exist for flow categories with only a primary context, like "air", but do exist for 1 or more categories where secondary contexts are present, like "air/urban", then this function creates factors for that primary context as an average of the factors from flows with the same secondary context. NOTE this will overwrite factors if they already exist :param df: a pandas dataframe for an LCIA method :return: a pandas dataframe for an LCIA method """ #Ignore the following impact categories for generating averages ignored_categories = ['Land transformation', 'Land occupation', 'Water consumption','Mineral resource scarcity', 'Fossil resource scarcity'] indices = df['Context'].str.find('/') ignored_list = df['Indicator'].isin(ignored_categories) i = 0 for k in ignored_list.iteritems(): if k[1]: indices.update(pd.Series([-1], index=[i])) i = i + 1 primary_context = [] i = 0 for c in df['Context']: if indices[i] > 0: sub = c[0:indices[i]]+"/unspecified" else: sub = None i = i + 1 primary_context.append(sub) df['Primary Context'] = primary_context #Subset the df to only include the rows were a primary context was added df_secondary_context_only = df[df['Primary Context'].notnull()] #Determine fields to aggregate over. Do not use flow UUID or old context agg_fields = list(set(df.columns) - {'Context', 'Flow UUID', 'Characterization Factor'}) #drop primary context field from df df = df.drop(columns=['Primary Context']) df_secondary_agg = df_secondary_context_only.groupby(agg_fields, as_index=False).agg( {'Characterization Factor': np.average}) df_secondary_agg = df_secondary_agg.rename(columns={"Primary Context": "Context"}) df = pd.concat([df, df_secondary_agg], ignore_index=True, sort=False) return df def get_modification(source, name) -> pd.DataFrame: """Returns a dataframe of modified CFs based on csv""" modified_factors =
pd.read_csv(datapath+"/"+source+"_"+name+".csv")
pandas.read_csv
import numpy as np import scipy as sp import pandas as pd import ast import gensim from gensim.corpora import Dictionary import networkx as nx import network_utils as nu import matplotlib.pyplot as plt import matplotlib.cm as cm # ----------------------------------------------------------------------------------------------------------------------- ## Loading data topicDF = pd.read_csv('../data/topicData.csv') topicDF['date'] = pd.to_datetime(topicDF['date']) textDF =
pd.read_csv('../data/sessionData.csv')
pandas.read_csv
#! /usr/bin/env python import os import tempfile import shutil import warnings warnings.filterwarnings("ignore") from unittest import TestCase from pandashells.lib import plot_lib, arg_lib import argparse from mock import patch, MagicMock import matplotlib as mpl import pylab as pl import pandas as pd from dateutil.parser import parse warnings.resetwarnings() class PlotLibTests(TestCase): def setUp(self): pl.plot(range(10)) self.dir_name = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.dir_name) pl.clf() @patch('pandashells.lib.plot_lib.pl.show') def test_show_calls_pylab_show(self, show_mock): """show() call pylab.show() """ args = MagicMock(savefig=[]) plot_lib.show(args) self.assertTrue(show_mock.called) def test_show_creates_png_file(self): """show() saves a png file """ file_name = os.path.join(self.dir_name, 'plot.png') args = MagicMock(savefig=[file_name]) plot_lib.show(args) self.assertTrue(os.path.isfile(file_name)) def test_show_creates_html_file(self): """show() saves a png file """ file_name = os.path.join(self.dir_name, 'plot.html') args = MagicMock(savefig=[file_name]) xlabel = 'my_xlabel_string' pl.xlabel(xlabel) plot_lib.show(args) with open(file_name) as f: self.assertTrue(xlabel in f.read()) def test_set_plot_styling(self): """set_plot_styling() alters mpl.rcParams """ args = MagicMock( plot_context=['talk'], plot_theme=['darkgrid'], plot_palette=['muted'], ) mpl.rcParams['axes.labelsize'] = 1 mpl.rcParams['axes.titlesize'] = 1 rc_pre = dict(mpl.rcParams) plot_lib.set_plot_styling(args) rc_post = dict(mpl.rcParams) self.assertNotEqual( rc_pre['axes.labelsize'], rc_post['axes.labelsize']) self.assertNotEqual( rc_pre['axes.titlesize'], rc_post['axes.titlesize']) def test_set_plot_limits_no_args(self): """set_limits() properly does nothing when nothing specified """ args = MagicMock(savefig='', xlim=[], ylim=[]) plot_lib.set_limits(args) self.assertEqual(pl.gca().get_xlim(), (0.0, 9.0)) self.assertEqual(pl.gca().get_ylim(), (0.0, 9.0)) def test_set_plot_limits(self): """set_limits() properly sets limits """ args = MagicMock(savefig='', xlim=[-2, 2], ylim=[-3, 3]) plot_lib.set_limits(args) self.assertEqual(pl.gca().get_xlim(), (-2.0, 2.0)) self.assertEqual(pl.gca().get_ylim(), (-3.0, 3.0)) def test_set_log_scale(self): args = MagicMock(savefig='', xlog=True, ylog=True) plot_lib.set_scale(args) self.assertEqual(pl.gca().get_xscale(), 'log') self.assertEqual(pl.gca().get_yscale(), 'log') def test_keep_lin_scale(self): args = MagicMock(savefig='', xlog=False, ylog=False) plot_lib.set_scale(args) self.assertEqual(pl.gca().get_xscale(), 'linear') self.assertEqual(pl.gca().get_yscale(), 'linear') def test_set_labels_titles_no_args(self): """set_labels_title() properly does nothing when nothing specified """ args = MagicMock(savefig='', title=[], xlabel=[], ylabel=[]) plot_lib.set_labels_title(args) self.assertEqual(pl.gca().get_title(), '') self.assertEqual(pl.gca().get_xlabel(), '') self.assertEqual(pl.gca().get_ylabel(), '') def test_set_labels_titles(self): """set_labels_title() properly sets labels and titles """ args = MagicMock(savefig='', title=['t'], xlabel=['x'], ylabel=['y']) plot_lib.set_labels_title(args) self.assertEqual(pl.gca().get_title(), 't') self.assertEqual(pl.gca().get_xlabel(), 'x') self.assertEqual(pl.gca().get_ylabel(), 'y') @patch('pandashells.lib.plot_lib.pl.legend') def test_set_legend_no_args(self, legend_mock): """set_legend() properly does nothing when nothing specified """ args = MagicMock(savefig='', legend=[]) plot_lib.set_legend(args) self.assertFalse(legend_mock.called) @patch('pandashells.lib.plot_lib.pl.legend') def test_set_legend_best(self, legend_mock): """set_legend() properly calls legend when specified """ args = MagicMock(savefig='', legend=['best']) plot_lib.set_legend(args) legend_mock.assert_called_with(loc='best') @patch('pandashells.lib.plot_lib.pl.legend') def test_set_legend_int(self, legend_mock): """set_legend() properly calls legend when specified """ args = MagicMock(savefig='', legend=['3']) plot_lib.set_legend(args) legend_mock.assert_called_with(loc=3) def test_set_grid_no_grid(self): """set_grid() properly does nothing when no_grid set """ args = MagicMock(savefig='', no_grid=True) plot_lib.set_grid(args) self.assertFalse(pl.gca().xaxis._gridOnMajor) def test_set_grid_with_grid(self): """set_grid() properly sets grid when specified """ args = MagicMock(savefig='', no_grid=False) plot_lib.set_grid(args) self.assertTrue(pl.gca().xaxis._gridOnMajor) @patch('pandashells.lib.plot_lib.sys.stderr') @patch('pandashells.lib.plot_lib.sys.exit') def test_ensure_xy_args_bad(self, exit_mock, stderr_mock): """ensure_xy_args() exits when args are bad """ stderr_mock.write = MagicMock() args = MagicMock(x=None, y=True) plot_lib.ensure_xy_args(args) self.assertTrue(exit_mock.called) @patch('pandashells.lib.plot_lib.sys.stderr') @patch('pandashells.lib.plot_lib.sys.exit') def test_ensure_xy_args_good(self, exit_mock, stderr_mock): """ensure_xy_args() doesn't exit when args okay """ stderr_mock.write = MagicMock() args = MagicMock(x=None, y=None) plot_lib.ensure_xy_args(args) self.assertFalse(exit_mock.called) @patch('pandashells.lib.plot_lib.sys.stderr') @patch('pandashells.lib.plot_lib.sys.exit') def test_ensure_xy_omission_state_bad(self, exit_mock, stderr_mock): """ensure_xy_omission_state() identifies bad inputs """ stderr_mock.write = MagicMock() args = MagicMock(x=None, y=None) df = MagicMock(columns=[1, 2, 3]) plot_lib.ensure_xy_omission_state(args, df) self.assertTrue(exit_mock.called) @patch('pandashells.lib.plot_lib.sys.stderr') @patch('pandashells.lib.plot_lib.sys.exit') def test_ensure_xy_omission_state_good(self, exit_mock, stderr_mock): """ensure_xy_omission_state() identifies bad inputs """ stderr_mock.write = MagicMock() args = MagicMock(x=None, y=None) df = MagicMock(columns=[1, 2]) plot_lib.ensure_xy_omission_state(args, df) self.assertFalse(exit_mock.called) def test_autofill_plot_fields_and_labels_do_nothing(self): """autofill_plot_fields_and_labels does no filling """ args = MagicMock(x=None, xlabel='xpre', ylabel='ypre') df = MagicMock(columns=[1]) plot_lib.autofill_plot_fields_and_labels(args, df) self.assertEqual(args.xlabel, 'xpre') self.assertEqual(args.ylabel, 'ypre') def test_autofill_plot_fields_and_labels_2_cols(self): """autofill_plot_labels() appropriately handles 2 column frame """ args = MagicMock(x=None, xlabel=None, ylabel=None) df = MagicMock(columns=['x', 'y']) plot_lib.autofill_plot_fields_and_labels(args, df) self.assertEqual(args.x, ['x']) self.assertEqual(args.y, ['y']) self.assertEqual(args.xlabel, ['x']) self.assertEqual(args.ylabel, ['y']) def test_str_to_date_float(self): x = pd.Series([1., 2., 3.]) self.assertEqual(list(x), list(plot_lib.str_to_date(x))) def test_str_to_date_str(self): x = pd.Series(['1/1/2014', '1/2/2014', '1/3/2014']) expected = [parse(e) for e in x] self.assertEqual(expected, list(plot_lib.str_to_date(x))) @patch('pandashells.lib.plot_lib.pl.plot') def test_draw_traces(self, plot_mock): args = MagicMock(savefig='', x='x', y='y') df =
pd.DataFrame([[1, 1], [2, 2]], columns=['x', 'y'])
pandas.DataFrame
import pandas as pd import numpy as np import random from sklearn.metrics.pairwise import cosine_similarity from sklearn.feature_extraction.text import TfidfVectorizer import sklearn.preprocessing as pp from datetime import datetime from sklearn.linear_model import SGDClassifier from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from collections import Counter import itertools pd.options.display.max_columns = 50 pd.options.display.max_colwidth = 200 pd.options.display.max_colwidth = 200 pd.set_option('display.max_rows', None) RND_SEED = 45822 random.seed(RND_SEED) np.random.seed(RND_SEED) def get_demo_data(number_samples=None, filter_data_types=None, random_state=1144): data_df = \ pd.read_csv("../baseline-classifier/data/consolidated_disaster_tweet_data.tsv", sep="\t") if filter_data_types: data_df = data_df[data_df["data_type"].isin(filter_data_types)] if number_samples: data_df = data_df.sample(number_samples, random_state=random_state) if filter_data_types or number_samples: data_df = data_df.reset_index(drop=True) return data_df # def convert_demo_data_into_list(consolidated_disaster_tweet_data_df, limit=50): # consolidated_disaster_tweet_data_df["assigned_label"] = "-" # consolidated_disaster_tweet_data_df["tweet_id"] = consolidated_disaster_tweet_data_df["tweet_id"].values.astype(str) # all_texts = consolidated_disaster_tweet_data_df[["tweet_id", "tweet_text", "assigned_label"]].values.tolist() # # max_length = len(all_texts) # if limit < max_length: # all_texts_adj = random.sample(all_texts, limit) # else: # all_texts_adj = all_texts # # return all_texts_adj def convert_demo_data_into_list_json(consolidated_disaster_tweet_data_df, limit=50, keep_labels=False, shuffle_list=[], random_shuffle=False, random_state=21524): id_col = "tweet_id" text_col = "tweet_text" label_col = "assigned_label" if keep_labels: consolidated_disaster_tweet_data_df["assigned_label"] = consolidated_disaster_tweet_data_df["event_type"] else: consolidated_disaster_tweet_data_df["assigned_label"] = "-" consolidated_disaster_tweet_data_df[id_col] = consolidated_disaster_tweet_data_df[id_col].values.astype(str) if len(shuffle_list) > 0: sort_index = consolidated_disaster_tweet_data_df.index.values # consolidated_disaster_tweet_data_df["shuffle"] = shuffle_list group_dict = {} for group in set(shuffle_list): group_dict[group] = [] for (group, index) in zip(shuffle_list, sort_index): group_dict[group].append(index) dictionaries = list(group_dict.values()) sort_indices = [] for sort_indices_tuple in itertools.zip_longest(*dictionaries): # print("len(sort_indices_tuple) :", len(sort_indices_tuple)) # print("sort_indices_tuple :", sort_indices_tuple) temp_list = [x for x in [*sort_indices_tuple] if x is not None] sort_indices.extend(temp_list) # sort_indices = list(filter(None, sort_indices)) consolidated_disaster_tweet_data_df = consolidated_disaster_tweet_data_df.iloc[sort_indices, :] if len(shuffle_list) == 0 and random_shuffle: consolidated_disaster_tweet_data_df = consolidated_disaster_tweet_data_df\ .sample(frac=1, random_state=random_state)\ .reset_index(drop=True) print(">> convert_demo_data_into_list_json > len(consolidated_disaster_tweet_data_df) :") print(len(consolidated_disaster_tweet_data_df)) all_texts = consolidated_disaster_tweet_data_df[[id_col, text_col, label_col]].values.tolist() max_length = len(all_texts) if limit < max_length: all_texts_adj = random.sample(all_texts, limit) else: all_texts_adj = all_texts all_texts_json = [{"id": text[0], "text": text[1], "label": text[2]} for text in all_texts_adj] adj_text_ids = [text[0] for text in all_texts_adj] return all_texts_json, adj_text_ids def update_all_texts(all_texts, text_id, label): all_texts_df = pd.DataFrame(all_texts, columns=["tweet_id", "tweet_text", "assigned_label"]) all_texts_df.loc[all_texts_df["tweet_id"] == str(text_id), "assigned_label"] = label all_texts_updated = all_texts_df.values return all_texts_updated def filter_all_texts(all_text, filter_list, exclude_already_labeled=False): filtered_all_text = [] # Slow - 10,000 records - duration 0:00:31.719903 # for filter_id in filter_list: # for text in all_text: # if text["id"] == filter_id: # filtered_all_text.append(text) # Faster - 10,000 records - duration 0:00:07.619622 # [filtered_all_text.append(text) for text in all_text if text["id"] in filter_list] # Fastest - 10,000 records - duration 0:00:00.102955 all_text_df = pd.DataFrame(all_text) filtered_all_text_df = all_text_df[all_text_df["id"].isin(filter_list)] # print(">> filter_all_texts > filtered_all_text_df :") # print(filtered_all_text_df.head()) if exclude_already_labeled: filtered_all_text_df = filtered_all_text_df[filtered_all_text_df["label"].isin(["-"])] filtered_all_text = filtered_all_text_df.to_dict("records") return filtered_all_text def update_texts_list(texts_list, sub_list_limit, old_obj_lst=[], new_obj_lst=[], texts_list_list=[]): # print("len(texts_list) :", texts_list) updated_texts_list = texts_list # .copy() if len(old_obj_lst) > 0 or len(new_obj_lst) > 0: if len(old_obj_lst) > 0: for old_obj in old_obj_lst: # print(f"Trying to remove obj : {old_obj}") updated_texts_list.remove(old_obj) if len(new_obj_lst) > 0: for new_obj in new_obj_lst: updated_texts_list.append(new_obj) texts_list_list.clear() updated_texts_list_list = \ [updated_texts_list[i:i + sub_list_limit] for i in range(0, len(updated_texts_list), sub_list_limit)] texts_list_list.extend(updated_texts_list_list) # print("len(texts_list_list) :", len(texts_list_list)) return updated_texts_list, updated_texts_list_list def update_texts_list_by_id(texts_list, sub_list_limit, updated_obj_lst=[], texts_list_list=[], update_in_place=True): updated_texts_list_df = pd.DataFrame.from_dict(texts_list) # .copy() for new_obj in updated_obj_lst: update_id = new_obj["id"] update_label = new_obj["label"] updated_texts_list_df.loc[updated_texts_list_df["id"] == update_id, "label"] = update_label if not update_in_place: temp_record = updated_texts_list_df[updated_texts_list_df["id"] == update_id] updated_texts_list_df = updated_texts_list_df.drop( updated_texts_list_df.loc[updated_texts_list_df['id'] == update_id].index, axis=0) updated_texts_list_df = updated_texts_list_df.append(temp_record) updated_texts_list = updated_texts_list_df.to_dict("records") texts_list.clear() texts_list.extend(updated_texts_list) updated_texts_list_list = \ [updated_texts_list[i:i + sub_list_limit] for i in range(0, len(updated_texts_list), sub_list_limit)] texts_list_list.clear() texts_list_list.extend(updated_texts_list_list) # print("len(texts_list_list) :", len(texts_list_list)) return updated_texts_list, updated_texts_list_list def cosine_similarities(mat): # https://stackoverflow.com/questions/17627219/whats-the-fastest-way-in-python-to-calculate-cosine-similarity-given-sparse-mat # col_normed_mat = pp.normalize(mat.tocsc(), axis=1) return col_normed_mat * col_normed_mat.T def get_all_similarities(sparse_vectorized_corpus, corpus_text_ids): # Slow - vectorized_corpus.shape : (76484, 10) - Unable to allocate 43.6 GiB for an array with shape (76484, 76484) and data type float64 # similarities = cosine_similarity(sparse_vectorized_corpus) # similarities_df = pd.DataFrame(similarities, columns=corpus_text_ids) # Faster - vectorized_corpus.shape : (76484, 10) - duration 0:01:43.129781 # similarities = cosine_similarity(sparse_vectorized_corpus, dense_output=False) # similarities_df = pd.DataFrame.sparse.from_spmatrix(similarities, columns=corpus_text_ids) # Faster - vectorized_corpus.shape : (76484, 10) - duration 0:02:03.657139 # similarities = np.dot(sparse_vectorized_corpus, sparse_vectorized_corpus.T) # similarities_df = pd.DataFrame.sparse.from_spmatrix(similarities, columns=corpus_text_ids) # Fastest - vectorized_corpus.shape : (76484, 10) - duration 0:01:59.331099 similarities = cosine_similarities(sparse_vectorized_corpus) similarities_df = pd.DataFrame.sparse.from_spmatrix(similarities, columns=corpus_text_ids) # print("similarities :") # print(similarities) similarities_df["id"] = corpus_text_ids similarities_df = similarities_df.set_index(["id"]) return similarities_df def get_all_similarities_one_at_a_time(sparse_vectorized_corpus, corpus_text_ids, text_id, keep_original=False): text_id_index = corpus_text_ids.index(text_id) # Fastest - vectorized_corpus.shape : (76484, 10) - duration 0:01:59.331099 single_vectorized_record = sparse_vectorized_corpus[text_id_index, :] similarities = np.dot(single_vectorized_record, sparse_vectorized_corpus.T).toarray().ravel() similarities_series = pd.Series(similarities, index=corpus_text_ids) corpus_text_ids_adj = corpus_text_ids.copy() corpus_text_ids_adj.remove(text_id) similarities_series = similarities_series.filter(corpus_text_ids_adj) similarities_series.index.name = "id" similarities_series = similarities_series.sort_values(ascending=False) # print(">> In 'get_all_similarities_one_at_a_time' similarities_series :", similarities_series) if keep_original: similarities_series = pd.concat([
pd.Series(99.0, index=[text_id])
pandas.Series
# AUTOGENERATED! DO NOT EDIT! File to edit: 00_utils.ipynb (unless otherwise specified). __all__ = ['logger', 'set_seed', 'set_session_options', 'setup_logging', 'setup_parser', 'timecode', 'print_device_info', 'dump_tensors', 'Monitor', 'show_gpu', 'round_t', 'merge_dicts', 'display_all', 'unpack_nested_lists_in_df', 'append_df_to_csv', 'robust_rmtree', 'test_pp_model', 'start_wandb_run', 'resume_wandb_run', 'table2df'] # Cell import torch, numpy as np, pandas as pd, time, GPUtil, wandb, os, sys, shutil, subprocess, argparse from timeit import default_timer as timer from threading import Thread import logging logger = logging.getLogger("travis_attack.utils") # Cell def set_seed(seed): """Sets all seeds for the session""" torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) # Cell def set_session_options(): """Sets some useful options for the sesson""" os.environ["TOKENIZERS_PARALLELISM"] = "true" # set to false if not working os.environ["WANDB_NOTEBOOK_NAME"] = "run" # some value to stop the error from coming up pd.set_option("display.max_colwidth", 400) pd.options.mode.chained_assignment = None # stop truncation of tables in wandb dashboard wandb.Table.MAX_ARTIFACT_ROWS = 1000000 wandb.Table.MAX_ROWS = 1000000 # Cell def setup_logging(cfg, disable_other_loggers=True): """taken from this recipe from the logging cookbook: https://docs.python.org/3/howto/logging-cookbook.html#logging-to-multiple-destinations """ logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename=cfg.path_logfile, filemode='w') # define a Handler which writes INFO messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s') # set a format which is simpler for console use console.setFormatter(formatter) # tell the handler to use this format logging.getLogger('').addHandler(console) # add the handler to the root logger if disable_other_loggers: allowed_modules = ["travis_attack", "wandb"] # "sentence_transformers", "transformers", "datasets" logger.debug(f"Disabling all loggers except those from the following libraries: {allowed_modules}") for log_name, log_obj in logging.Logger.manager.loggerDict.items(): if not any(mod in log_name for mod in allowed_modules): log_obj.disabled = True # Cell def setup_parser(): """Set up command line options""" parser = argparse.ArgumentParser() parser.add_argument("--lr", type=float) parser.add_argument("--kl_coef", type=float) parser.add_argument("--ref_logp_coef", type=float) parser.add_argument("--acc_steps", type=int) parser.add_argument("--seed", type=int) parser.add_argument("--n_train_epochs", type=int) parser.add_argument("--batch_size_train", type=int) parser.add_argument("--batch_size_eval", type=int) parser.add_argument("--temperature", type=float) parser.add_argument("--top_p", type=float) parser.add_argument("--length_penalty", type=float) parser.add_argument("--repetition_penalty", type=float) parser.add_argument("--reward_fn") parser.add_argument("--dataset_name") parser.add_argument("--sampling_strategy") parser.add_argument("--reward_penalty_type") #parser.add_argument('args', nargs=argparse.REMAINDER) # activate to put keywords in kwargs. return parser # Cell class timecode: """This class is used for timing code""" def __enter__(self): self.t0 = timer() return self def __exit__(self, type, value, traceback): self.t = timer() - self.t0 # Cell def print_device_info(): """ Prints some statistics around versions and the GPU's available for the host machine """ import torch import sys print("######## Diagnostics and version information ######## ") print('__Python VERSION:', sys.version) print('__pyTorch VERSION:', torch.__version__) print('__CUDA VERSION', ) from subprocess import call # call(["nvcc", "--version"]) does not work #! nvcc --version print('__CUDNN VERSION:', torch.backends.cudnn.version()) print('__Number CUDA Devices:', torch.cuda.device_count()) print('__Devices') call(["nvidia-smi", "--format=csv", "--query-gpu=index,name,driver_version,memory.total,memory.used,memory.free"]) print('Active CUDA Device: GPU', torch.cuda.current_device()) print ('Available devices ', torch.cuda.device_count()) print("Device name:", torch.cuda.get_device_name()) print ('Current cuda device ', torch.cuda.current_device()) print("#################################################################") # Cell def dump_tensors(gpu_only=True): """Prints a list of the Tensors being tracked by the garbage collector. Useful when running into an out of memory error on the GPU. """ import gc total_size = 0 for obj in gc.get_objects(): try: if torch.is_tensor(obj): if not gpu_only or obj.is_cuda: print("%s:%s%s %s" % (type(obj).__name__, " GPU" if obj.is_cuda else "", " pinned" if obj.is_pinned else "", pretty_size(obj.size()))) total_size += obj.numel() elif hasattr(obj, "data") and torch.is_tensor(obj.data): if not gpu_only or obj.is_cuda: print("%s → %s:%s%s%s%s %s" % (type(obj).__name__, type(obj.data).__name__, " GPU" if obj.is_cuda else "", " pinned" if obj.data.is_pinned else "", " grad" if obj.requires_grad else "", " volatile" if obj.volatile else "", pretty_size(obj.data.size()))) total_size += obj.data.numel() except Exception as e: pass print("Total size:", total_size) # Cell class Monitor(Thread): """Use this to check that you are using the GPU during your pytorch functions and to track memory usage of the GPU's as well.""" def __init__(self, delay): super(Monitor, self).__init__() self.stopped = False self.delay = delay # Time between calls to GPUtil self.start() def run(self): while not self.stopped: GPUtil.showUtilization() time.sleep(self.delay) def stop(self): self.stopped = True # Cell def show_gpu(msg): """ ref: https://github.com/huggingface/transformers/issues/1742#issue-518262673 put in logger.info() """ def query(field): return(subprocess.check_output( ['nvidia-smi', f'--query-gpu={field}', '--format=csv,nounits,noheader'], encoding='utf-8')) def to_int(result): return int(result.strip().split('\n')[0]) used = to_int(query('memory.used')) total = to_int(query('memory.total')) pct = used/total return f"{msg} {100*pct:2.1f}% ({used} out of {total})" # Cell def round_t(t, dp=2): """Return rounded tensors for easy viewing. t is a tensor, dp=decimal places""" if t.device.type == "cuda": t=t.cpu() return t.detach().numpy().round(dp) # Cell def merge_dicts(d1, d2): """Merge the two dicts and return the result. Check first that there is no key overlap.""" assert set(d1.keys()).isdisjoint(d2.keys()) return {**d1, **d2} # Cell def display_all(df): with pd.option_context("display.max_rows", 1000): with pd.option_context("display.max_columns", 1000): with pd.option_context("max_colwidth", 480): display(df) # Cell def unpack_nested_lists_in_df(df, scalar_cols=[]): """Take a df where we have lists stored in the cells and convert it to many rows. Put all columns without lists stored in the cells into `scalar_cols`.""" return df.set_index(scalar_cols).apply(pd.Series.explode).reset_index() # Cell def append_df_to_csv(df, path): """Checks columns and other stuff before appending""" import os if not os.path.isfile(path): df.to_csv(path, mode='a', index=False) # create with header if not exists elif len(df.columns) != len(
pd.read_csv(path, nrows=1)
pandas.read_csv
# import libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pylab as plt def load_and_process(zomato_file_path, forex_file_path, countrycode_file_path): """ This method takes the loads, processes, and formats the zomato.csv file to be returned as a dataframe. Arguments: zomato_file_path - (str) the file path for zomato.csv forex_file_path - (str) the file path for forex.csv countrycode_file_path - (str) the file path for Country-Code.xlsx """ forex_df = ( pd.read_csv(forex_file_path) .assign(date=lambda x: pd.to_datetime(x["date"])) .assign(year=lambda x: x["date"].dt.year) ) forex_df = ( forex_df .drop(forex_df.loc[forex_df["year"].isin(range(2014,2019))==False].index) ) currencyexchange_df = pd.DataFrame({"Currency":["INR","USD","GBP","BRL","AED","ZAR","NZD","TRY","BWP","IDR","QAR","LKR"], "Average exchange rate":[forex_df[forex_df["slug"].isin(["USD/INR"])]["open"].mean(),1, forex_df[forex_df["slug"].isin(["USD/GBP"])]["open"].mean(),forex_df[forex_df["slug"].isin(["USD/BRL"])]["open"].mean(), forex_df[forex_df["slug"].isin(["USD/AED"])]["open"].mean(),forex_df[forex_df["slug"].isin(["USD/ZAR"])]["open"].mean(), forex_df[forex_df["slug"].isin(["USD/NZD"])]["open"].mean(),forex_df[forex_df["slug"].isin(["USD/TRY"])]["open"].mean(), forex_df[forex_df["slug"].isin(["USD/BWP"])]["open"].mean(),forex_df[forex_df["slug"].isin(["USD/IDR"])]["open"].mean(), forex_df[forex_df["slug"].isin(["USD/QAR"])]["open"].mean(),forex_df[forex_df["slug"].isin(["USD/LKR"])]["open"].mean()]}) countrycode_df =
pd.read_excel(countrycode_file_path)
pandas.read_excel
import pandas as pd import numpy as np import os from datetime import datetime from IPython.display import IFrame,clear_output # for PDF reading import textract import re import sys import docx from difflib import SequenceMatcher ####################################################################################### def similar(a, b): return SequenceMatcher(None, a, b).ratio() ####################################################################################### def dms_to_dd(x,as_string=True): d,m,s = x.split() result = abs(float(d)) + float(m)/60. + float(s)/3600. if float(d) < 0: result = -result return result ####################################################################################### def convert_state(state): return {'New Hampshire':'NH','Maine':'ME', 'Massachusetts':'MA','New Hampshire/Maine':'NH'}[state] ####################################################################################### def doy_to_date(x, year=2008, jan1=1): # jan1 is Day 1, usually #if np.isnan(x): # return np.nan #print(x) result = ( pd.Period(year = year-1, month=12, day=31, freq='D') + pd.to_timedelta(x+(1-jan1), unit='days') ) return result.strftime('%Y-%m-%d') ####################################################################################### def date_conversion(x, year=None, dateformat='%d-%m-%y'): # year is Fall Year for date # default interpretations: # aaaa-bb-cc : Year/Month/Day # PROBLEMATIC: # aa-bb-cc : Month/Day/Year - or Day/Month/Year if aa>12 # Returns string # Unknown / missing if np.any([True for i in ['(earliest/latest)', '-999','no data','no response', 'unknown', 'missing', 'unknown', 'unkown','none', # the following are added for postcard data # 2021-02-07 'died', 'no res','skip','omit','card not received', 'card not returned', 'moved','nursing home','delete'] if i in str(x).lower()]): return '-999' elif (str(x).strip()=='') | (str(x).strip()=='?') | (str(x).strip()=='-?-'): return '-999' elif x in ['0',0]: return '0' xx = str(x) if ('+1' in xx) | ('+2' in xx) | ('+3' in xx): xx = xx.split('+')[0].strip() outofbounds = False if ((year < 1678) | (year > 2262)) & (year is not None): outofbounds = True if ((len(xx)==8) | ((len(xx)==10))) & ('-' not in xx) & ('/' not in xx): #print xx, year if (xx[-2]=='.') | ((len(xx)==8) & (xx.isdigit())): xx = '{}-{}-{}'.format(xx[:4],xx[4:6],xx[6:8]) # year, month, day #print xx, year try: if (len(xx)==8 ) & ('-' in xx): xdt = pd.to_datetime(xx, format=dateformat) else: xdt = pd.to_datetime(xx) d, m, y = xdt.day, xdt.month, xdt.year except ValueError as e: if (len(xx)==8) & ('-' in xx): # mostly a problem if 00-02-28 (i.e., thinking 00 is a month) if (xx[2]=='-') & (xx[5]=='-'): xx = '19'+xx else: xx = xx+', {}'.format(year) elif (len(xx)==10)& ('-' in xx) & outofbounds: if len(xx.split('-')[0]) >2: y,m, d = (int(i) for i in xx.split('-')) else: d,m,y = (int(i) for i in xx.split('-')) # latest thaw in August; earliest freeze in August if ((m<=8) & (y== year+1)) | ((m>=8) & (y==year)): return '{:04d}-{:02d}-{:02d}'.format(y,m,d) else: print ('+++++PROBLEM+++++') print(xx) xx = xx+', {}'.format(year) else: xx = xx+', {}'.format(year) try: xdt = pd.to_datetime(xx) d, m, y = xdt.day, xdt.month, xdt.year except ValueError as e: print ('**************') print (e) print (' {} can not be converted to YYYY/MM/DD'.format(str(x))) print ('**************\n') return '-999' if year is not None: # print type(y), type(year) # latest thaw in September!, # latest thaw in August; earliest freeze in August if ((m < 8) & (y != (year+1))) | ((m>9) & (y!=year)) | ( ((m==8) | (m==9)) & (y!=year) & (y!=(year+1) ) ): if m<=8: yearnew = year+1 else: yearnew = year+0 print ('==================') print ('Wrong Year in table') print ('\tData from table: {} (start_year is {})'.format(xx, year)) print ('\t\tYMD: {}-{:02d}-{:02d}'.format(y,m,d)) print (' Recorded (or added) ice date year {} should be {}\n'.format(y, yearnew)) if (np.abs(int(y) - int(yearnew)) % 100) == 0: print ('\tFORCING YEAR TO NEW VALUE (wrong century)') y = yearnew # OTHERWISE TRY FIXING IT BY INVERTING DATE elif (len(xx)==8) & ('-' in xx): #print xx xx = '-'.join(xx.split('-')[::-1]) #print xx # assuming default as before but switching backwards xdt = pd.to_datetime(xx,format=dateformat) d, m, y = xdt.day, xdt.month, xdt.year if ((m <= 8) & (y != year+1)) | ((m>8) & (y!=year)): if m<=8: yearnew = year+1 else: yearnew = year if (np.abs(int(y) - int(yearnew)) % 100) == 0: print ('\tFORCING YEAR TO NEW VALUE (wrong century)') y = yearnew else: print (x, xx) print ('\tSTILL A PROBLEM. Recorded year {} should be {}'.format(y, yearnew)) else: print ('Problem fixed') else: print ('\tFORCING ICE YEAR TO NEW VALUE (assuming typo)') y = yearnew print (' {}-{}, new corrected ice date {:}-{:02d}-{:02d}'.format(year, year+1,y,m,d)) try: ##return '{:02d}-{:02d}-{:04d}'.format(m,d,y) return '{:04d}-{:02d}-{:02d}'.format(y,m,d) except ValueError as e: print ('*****FINAL*****') print (e) print ('**************') print ('{} can not be converted to YYYY/MM/DD'.format(str(x))) return '-999' ####################################################################################### ######## READ IN FILES ################################################################ ####################################################################################### def read_all_files(filename_dict, readin_dict , verbose=False,logfile=None, record_contributor=True): """ INPUT: filename_dict is dictionary of files names, sorted by file type readin_dict is a list of corrections and column renames, etc. by filename OUTPUT: All files merged into a Pandas DataFrame """ default_ext = { 'txt':{'delimiter':'\t'}, 'tab':{'delimiter':'\t'} } dfresult = pd.DataFrame() # run through the files for file_ext in filename_dict.keys(): for f in filename_dict[file_ext]: default_values = {'header':0, 'delimiter':None, 'sheetname':False, 'lakename':None, 'city':None, 'state':None,'contributor':None, 'reorient':False, 'column_rename':None,'ncolumns':None, 'split':False, 'multi':False, 'index_col':None} if file_ext in default_ext: for key, value in default_ext[file_ext].items(): default_values[key] = value if logfile is not None: logfile.write('===========\nReading in {}\n'.format(f)) if (np.array([i in f for i in readin_dict.keys()])).any(): lakeid = [i for i in readin_dict.keys() if i in f] if len(lakeid) > 1: print ('WARNING. There are too many similarly named readin_dict items. Could be a problem.') if logfile is not None: logfile.write('\nWARNING. There are too many similarly named readin_dict items.\n') break foo = readin_dict[lakeid[0]] for key,value in foo.items(): default_values[key] = value #if 'Updated Data 2019.5' in f: # print(f) df = read_ts(f,delimiter=default_values['delimiter'], sheetname=default_values['sheetname'], header=default_values['header'], ncolumns=default_values['ncolumns'], index_col=default_values['index_col'], logfile = logfile,record_contributor=record_contributor) if verbose: if len(df)>0: sys.stdout.write('\r[ {:150s} ]\r'.format(f)) #sys.stdout.flush() else: sys.stdout.write('Skipping {}\n'.format(f)) #sys.stdout.flush() # specific case for Maine lakes if default_values['reorient']: if logfile is not None: logfile.write('\tReorienting table.\n') contributor = df.Contributor.values[0] #df = df.set_index(df.columns[0]) #print('Maine drop') #display(df.head()) #print(df.columns) df = df.drop('Contributor',axis=1,level=0).unstack().reset_index() #print('END Maine drop') df['Contributor'] = contributor if default_values['column_rename'] is not None: if logfile is not None: logfile.write('\tRenaming columns.\n') df = df.rename(default_values['column_rename'],axis=1) if default_values['lakename'] is not None: if logfile is not None: logfile.write('\tSetting lakename to {}\n'.format(default_values['lakename'])) df['lake'] = default_values['lakename'] if default_values['city'] is not None: if logfile is not None: logfile.write('\tSetting city to {}\n'.format(default_values['city'])) df['city'] = default_values['city'] if default_values['state'] is not None: if logfile is not None: logfile.write('\tSetting state to {}\n'.format(default_values['state'])) df['state'] = default_values['state'] if default_values['split']: # rearrange years/seasons if logfile is not None: logfile.write('\tRearranging years/seasons\n') df = sort_by_season(df) if default_values['multi']: if logfile is not None: logfile.write('\tSorting by events.\n') df = sort_by_events(df) #if default_values['lakename'] is not None: # df['lake'] = default_values['lakename'] if default_values['contributor'] is not None: if logfile is not None: logfile.write('\tAssigning contributor: {}\n'.format(default_values['contributor'])) df['Contributor'] = default_values['contributor'] if 'Updated Data' in f: updated_year = f.split('Updated Data')[1].split('/')[0].strip() if updated_year == '2018': updated_year = 2018.5 elif updated_year == '': updated_year = 2018.0 else: updated_year = float(updated_year) df['Updated Year'] = updated_year """ if 'Updated Data 2020.5' in f: df['Updated Year'] = 2020.5 elif 'Updated Data 2020' in f: df['Updated Year'] = 2020.0 elif 'Updated Data 2019.5' in f: df['Updated Year'] = 2019.5 elif 'Updated Data 2018' in f: df['Updated Year'] = 2018.5 elif 'Updated Data 2019' in f: df['Updated Year'] = 2019.0 elif 'Updated Data' in f: df['Updated Year'] = 2018.0 """ df['FileName'] = f try: dfresult = dfresult.append(df,ignore_index=True, sort=False) except: display(df) print(kasdf) return dfresult ####################################################################################### def sort_by_events(df): # Move multi-freeze thaw years into separate rows iceon1col = [c for c in ['Freeze date 1',] if c in df.columns][0] iceon2col = [c for c in ['Freeze date 2',] if c in df.columns][0] iceoff1col = [c for c in ['Thaw date 1',] if c in df.columns][0] iceoff2col = [c for c in ['Thaw date 2',] if c in df.columns][0] ind = ((~df[iceon1col].isnull() | ~df[iceoff1col].isnull()) & (~df[iceon2col].isnull() | ~df[iceoff2col].isnull())) # .copy dfoo = df[ind].copy() dfoo[iceon1col] = dfoo[iceon2col] dfoo[iceoff1col] = dfoo[iceoff2col] #print('sort by events Drop') df = df.append(dfoo,ignore_index=True,sort=False).drop([iceoff2col,iceon2col],axis=1) #print('END sort by events Drop') # display(df) return df ####################################################################################### def sort_by_season(df): #print (df.columns) #display(df) yearcolumn = [c for c in ['Year','year'] if c in df.columns][0] iceoncolumn = [c for c in ['datefirstice','IceOnDOY','Ice On','Ice-On','Ice on'] if c in df.columns][0] iceoffcolumn = [c for c in ['datelastice','IceOffDOY','Ice Off','Ice-Off','Ice off'] if c in df.columns][0] # print df.columns lakecolumn = [c for c in ['lakeid','lake'] if c in df.columns][0] dropcolumns = [iceoncolumn, iceoffcolumn] dfresult = pd.DataFrame() for name, group in df.groupby(lakecolumn): iceoff = group[iceoffcolumn].tolist() + [np.nan] iceon = [np.nan] + group[iceoncolumn].tolist() try: years = [float(group[yearcolumn].astype(str).min()) - 1] + group[yearcolumn].tolist() except: print(yearcolumn) display(group[yearcolumn]) display(df) #print (kmtpasdf) dfoo = pd.DataFrame({lakecolumn:name, 'Fall Year': years, iceoncolumn:iceon, iceoffcolumn:iceoff}) dfresult = dfresult.append(dfoo, ignore_index=True,sort=False) #print('sort by season Drop') dfresult = dfresult.merge(df.drop(dropcolumns,axis=1), left_on=[lakecolumn,'Fall Year'], right_on=[lakecolumn,yearcolumn], how='left') #print('END sort by season Drop') for c in dfresult.columns: ## if c not in [lakecolumn, yearcolumn,'Fall Year']+dropcolumns: if c in ['Contributor','Clerk']: ## print 'backfilling', c dfresult[c] = dfresult[c].fillna(method='bfill') ## clean up, remove no result years OK # print dfresult.shape ind = dfresult[iceoncolumn].isnull() & dfresult[iceoffcolumn].isnull() ## display(dfresult[ind]) #.copy dfresult = dfresult[~ind].copy() #print dfresult.shape # remove duplicates #display(dfresult[dfresult.duplicated(subset=[lakecolumn,yearcolumn, # iceoncolumn,iceoffcolumn],keep=False)]) dfresult = dfresult.drop_duplicates(subset=[lakecolumn,yearcolumn, iceoncolumn,iceoffcolumn]) #print dfresult.shape if 'Duration' in dfresult.columns: #display(dfresult.tail(6)) #display(df.tail(6)) dfresult.loc[dfresult.index[:-1],'Duration'] = df.loc[df.index[:],'Duration'].values # last duration should be removed dfresult.loc[dfresult.index[-1],'Duration'] = np.nan if dfresult.lake.values[0]!='Mirror Lake': print(dfresult.columns) display(dfresult.head()) print(brokend) return dfresult ####################################################################################### ####################################################################################### ####################################################################################### def read_ts(filename, header=0, sheetname=False, index_col=None, logfile=None,delimiter=None,ncolumns=None, record_contributor=True): """ ncolumns : number of columns to keep, starting with first """ filetype = filename.split('.')[-1].lower() if filetype == 'pdf': tsdf = read_pdf(filename,logfile=logfile) #elif filetype == 'jpg': # tsdf = read_jpg(filename) elif filetype in ['csv','txt','tab']: tsdf = read_csv(filename, delimiter=delimiter, header=header,record_contributor=record_contributor) #elif filetype in ['txt']: # tsdf = read_csv(filename, delimiter=delimiter, header=header) elif filetype in ['xls','xlsx']: tsdf = read_excel(filename, sheetname=sheetname, logfile=logfile, index_col=index_col,header=header,ncolumns=ncolumns, record_contributor=record_contributor) elif filetype in ['doc','docx']: if 'Updated Data 2019.5' in filename: doc = docx.Document(filename) if logfile is not None: for p in doc.paragraphs: logfile.write('\t{}\n'.format(p.text)) tsdf = pd.DataFrame() """ if 'Updated Data 2019.5' in filename: doc = docx.Document(filename) print ('=====================') print (filename) print ('=====================') for p in doc.paragraphs: print (p.text) """ elif filetype in ['jpg']: if logfile is not None: logfile.write('\tSKIPPING\n') tsdf = pd.DataFrame() else: if logfile is not None: logfile.write('\tSKIPPING\n') tsdf = pd.DataFrame() return tsdf ####################################################################################### def read_csv(filename, delimiter=None, encoding='utf-8', header=0, record_contributor=True): try: df = pd.read_csv(filename, delimiter=delimiter, encoding='utf-8',engine='python',header=header) if df.shape[1]==1: print('{}\n\tToo few columns. Trying a different method.'.format(filename)) df = pd.read_csv(filename, delimiter=delimiter, encoding='utf-8',engine='c',header=header) print('New shape:',df.shape) except UnicodeDecodeError as e: df = pd.read_csv(filename, delimiter=delimiter, encoding='latin1',engine='python',header=header) contributor = filename.split('/')[-2] # remove comment line if it exists if df.iloc[0,0] == '#': #print('CSV # Drop') df = df.drop(0,axis=0) #print('END csv # Drop') if record_contributor: df['Contributor'] = contributor return df ####################################################################################### def read_jpg(filename): text2 = textract.process(filename, encoding='ascii', method='tesseract',layout=True).decode("utf8") ####################################################################################### def read_excel(filename, header=0, sheetname=False, index_col=None, logfile=None, ncolumns=None, record_contributor = True): df = pd.read_excel(filename, header=header, sheet_name= sheetname, index_col = index_col) contributor = filename.split('/')[-2] if ncolumns is not None: df = df.iloc[:,:ncolumns] # remove all blank columns df = df.dropna(how='all',axis=1) # remove row with '#' try: if len([True for i in df.iloc[0,:].tolist() if '#' in str(i)]) > 0: #print('excel # Drop') df = df.drop(0,axis=0) #print('END excel # Drop') if logfile is not None: logfile.write('\tDropping Row 0\n') #display(df.head(2)) except: pass ## SPECIAL CASES if 'NHFRA' in filename: df.loc[0:3,:] = df.loc[0:3,:].ffill(axis=1) df.columns = df.loc[2,:] finalcolumns = df.iloc[4,0:4] #print('NHFRA Drop') df = df.drop([0,1,2,3,4],axis=0) #print('END NHFRA Drop') df2 = pd.DataFrame() for c in df.columns.unique(): # .copy dfoo = df[c].copy() dfoo.columns = finalcolumns dfoo.loc[:, 'lake']= c df2 = df2.append(dfoo,ignore_index=True,sort=False).dropna() df = df2.reset_index(drop=True) elif 'Sapna_data' in filename: df = df.set_index('Winter').unstack()[::2].reset_index().merge( df.set_index('Winter').unstack()[1::2].reset_index(), left_index=True, right_index=True) elif 'ice_in_out' in filename: df = df.append(pd.read_excel(filename, header=header, sheet_name='MN Ice In'),sort=False,ignore_index=True) elif 'Serwy' in filename: dfoo = df.copy() dfoo.Winter = dfoo.Winter.replace('1986/1897','1896/1897') ind = dfoo['Ice cover_off (or ice cover on and off)'].astype(str).str.contains('until') dfoo2 = dfoo.loc[ind,:].copy() dfoo2['Ice cover_on'] = dfoo.loc[ind, 'Ice cover_off (or ice cover on and off)'].apply(lambda x: x.split('until')[0]) dfoo2['Ice cover_off (or ice cover on and off)'] = dfoo.loc[ind, 'Ice cover_off (or ice cover on and off)'].apply(lambda x: x.split('until')[1].split('break')[0]) ind = dfoo2['Ice cover_off (or ice cover on and off)'].astype(str).str.contains('10.04.1985') dfoo2.loc[ind, 'Ice cover_off (or ice cover on and off)'] = '1985-04-10' ind = dfoo['Ice cover_off (or ice cover on and off)'].astype(str).str.contains('break') dfoo3 = dfoo.loc[ind,:].copy() dfoo3['Ice cover_on'] = dfoo.loc[ind, 'Ice cover_off (or ice cover on and off)'].apply(lambda x: x.split('until')[1].split('break')[1]) dfoo3['Ice cover_off (or ice cover on and off)'] = dfoo.loc[ind, 'Ice cover_off (or ice cover on and off)'].apply(lambda x: x.split('until')[2]) ind = dfoo['Ice cover_on'].astype(str).str.contains('until') dfoo4 = dfoo.loc[ind,:].copy() dfoo4['Ice cover_on'] = dfoo.loc[ind, 'Ice cover_on'].apply(lambda x: x.split('until')[0]) dfoo4['Ice cover_off (or ice cover on and off)']= dfoo.loc[ind,'Ice cover_on'].apply(lambda x: x.split('until')[1].split('break')[0].split('brek')[0]) dfoo4[' ice cover'] = np.nan # Add missing data (ice on early but no ice off ) ind = dfoo['Ice cover_on'].astype(str).str.contains('brek|break') & (dfoo['Ice cover_off (or ice cover on and off)']=='no data') dfoo5 = dfoo.loc[ind,:].copy() dfoo5['Ice cover_on'] = dfoo5['Ice cover_on'].apply(lambda x: (pd.to_datetime(x.split('until')[1].split('break')[0])+pd.to_timedelta('1 day')).strftime('%Y-%m-%d')) dfoo5[' ice cover'] = np.nan dfoo5['Ice cover_off (or ice cover on and off)'] = np.nan # Add missing data (ice off but no ice on early) ind = (dfoo['Ice cover_on'].astype(str).str.contains('no data') | dfoo['Ice cover_on'].isnull()) & (~dfoo['Ice cover_off (or ice cover on and off)'].isnull() & (dfoo['Ice cover_off (or ice cover on and off)']!='no data')) dfoo6 = dfoo.loc[ind,:].copy() dfoo6['Ice cover_off (or ice cover on and off)'] = dfoo6['Ice cover_off (or ice cover on and off)'].apply(lambda x: (pd.to_datetime(x.split('until')[0]) -
pd.to_timedelta('1 day')
pandas.to_timedelta
import pytest import pandas as pd from pandas.testing import assert_frame_equal from pathlib import Path from data_check.sql import DataCheckSql, LoadMode # noqa E402 from data_check.config import DataCheckConfig # noqa E402 @pytest.fixture(scope="module", params=["csv", "xlsx"]) def file_type(request): return request.param @pytest.fixture def sql() -> DataCheckSql: dc_config = DataCheckConfig().load_config().set_connection("test") _sql = DataCheckSql(dc_config.connection) return _sql def test_load_from_dataframe_append(sql: DataCheckSql): data = pd.DataFrame.from_dict({"id": [0, 1, 2], "data": ["a", "b", "c"]}) sql.get_connection().execute("create table test (id number(10), data varchar2(10))") sql.table_loader.load_table("test", data, LoadMode.APPEND) df = sql.run_query("select id, data from test") assert_frame_equal(data, df) def test_load_from_dataframe_append_creates_table_if_no_table_exists(sql: DataCheckSql): data = pd.DataFrame.from_dict({"id": [0, 1, 2], "data": ["a", "b", "c"]}) sql.table_loader.load_table("test", data, LoadMode.APPEND) df = sql.run_query("select id, data from test")
assert_frame_equal(data, df)
pandas.testing.assert_frame_equal
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"])) b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"])) result = pd.concat([a, b], ignore_index=True) expected = Series( Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]) ) tm.assert_series_equal(result, expected) def test_concat_categorical_coercion(self): # GH 13524 # category + not-category => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2]) exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # result shouldn't be affected by 1st elem dtype exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # all values are not in category => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1]) exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([2, 1, 3, 2]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # completely different categories => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([1, 3, 2]) exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # different dtype => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series(["a", "b", "c"]) exp = Series([10, 11, np.nan, "a", "b", "c"]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(["a", "b", "c", 10, 11, np.nan]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # if normal series only contains NaN-likes => not-category s1 = Series([10, 11], dtype="category") s2 = Series([np.nan, np.nan, np.nan]) exp = Series([10, 11, np.nan, np.nan, np.nan]) tm.assert_series_equal(
pd.concat([s1, s2], ignore_index=True)
pandas.concat
from datetime import datetime from io import StringIO import itertools import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm class TestDataFrameReshape: def test_stack_unstack(self, float_frame): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("<KEY>") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"'fill_value=d' is not present in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E":
Series([1.0, 50.0, 100.0])
pandas.Series
import json import os import pandas as pd from .utils import list_to_md_table SCHEMA_TO_PANDAS_TYPES = { "integer": "int64", "number": "float", "string": "string", "any": "object", "boolean": "bool", } FORMAT_TO_REGEX = { # https://emailregex.com/ "email": r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$", # https://www.regextester.com/94092 "uri": r"^\w+:(\/?\/?)[^\s]+$", } def read_schema(schema_file: str) -> dict: """ Reads in schema from schema json file and returns as dictionary. ##TODO validate schema itself Args: schema_file: File location of the schema json file. Returns: The schema as a dictionary """ with open(schema_file, encoding="utf-8") as f: schema = json.load(f) return schema def read_config(config_file: str, data_dir: str = "", schema_dir: str = "") -> pd.DataFrame: """ Reads a GMNS config file, adds some full paths and returns as a dataframe. Args: config_file: Configuration file. A json file with a list of "resources" specifying the "name", "path", and "schema" for each GMNS table as well as a boolean value for "required". Example: :: { "resources": [ { "name":"link", "path": "link.csv", "schema": "link.schema.json", "required": true }, { "name":"node", "path": "node.csv", "schema": "node.schema.json", "required": true } } data_dir: Directory where GMNS files are. If not specified, assumes the same directory as the config_file. schema_dir: Directory where GMNS schema files are. If not specified, assumes the same directory as the config_file. Returns: GMNS configuration file as a DataFrame. """ with open(config_file, encoding="utf-8") as f: config = json.load(f) ## todo validate config resource_dict = {i["name"]: i for i in config["resources"]} # print(config["resources"]) resource_df =
pd.DataFrame(config["resources"])
pandas.DataFrame
#!/usr/bin/env python import requests import os import string import random import json import datetime import pandas as pd import numpy as np import moment from operator import itemgetter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().format('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication details def getAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def getIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatIsoDate(self,d): return moment.date(d).format('YYYY-MM-DD') def getDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.format('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().format('YYYY-MM-DD') currentYear = self.getIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).format('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).format('YYYY-MM-DD') pe = self.getIsoWeek(currentWDate) periods.append(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).format('YYYY-MM-DD') pe = self.getIsoWeek(currentWDate) periods.append(pe) else: pe = 'LAST_7_DAYS' periods.append(pe) return periods def getHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.get(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def getHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.get(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Update data def updateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def getArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.append(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.get(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def getOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and len(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def getOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and len(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".format(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".format(prefix,sep,column,sep,code) else: code = "{}{}{}".format(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " reminder" text = "Dear all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.append({"id": outbreak['orgUnit']}) organisationUnits.append({"id": outbreak['reportingOrgUnit']}) message.append(subject) message.append(text) message.append(users) message.append(organisationUnits) message = tuple(message) return pd.Series(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.append(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.append(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.append(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,headers,type): cols = [] for header in headers: if(type == 'EVENT'): if header['name'] == self.dateOfOnsetUid: cols.append('onSetDate') elif header['name'] == self.conditionOrDiseaseUid: cols.append('disease') elif header['name'] == self.regPatientStatusOutcome: cols.append('immediateOutcome') elif header['name'] == self.patientStatusOutcome: cols.append('statusOutcome') elif header['name'] == self.testResult: cols.append('testResult') elif header['name'] == self.testResultClassification: cols.append('testResultClassification') elif header['name'] == self.caseClassification: cols.append('caseClassification') else: cols.append(header['name']) elif (type == 'DATES'): cols.append(header['name']) else: cols.append(header['column']) return cols # Get start and end date def getStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createDataFrame(self,events,type=None): if type is None: if events is not None: #pd.DataFrame.from_records(events) dataFrame = pd.io.json.json_normalize(events) else: dataFrame = pd.DataFrame() else: cols = self.createColumns(events['headers'],type) dataFrame = pd.DataFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = pd.DataFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and len(aggData['rows']) >0): df = self.createDataFrame(aggData,'AGGREGATE') dfColLength = len(df.columns) df1 = df.iloc[:,(detectionLevel+4):dfColLength] df.iloc[:,(detectionLevel+4):dfColLength] = df1.apply(pd.to_numeric,errors='coerce').fillna(0).astype(np.int64) # print(df.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do mean for current cases or deaths df['mean_current_cases'] = df.iloc[:,(detectionLevel+4)] df['mean_mn_cases'] = df.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].mean(axis=1) df['stddev_mn_cases'] = df.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].std(axis=1) df['mean20std_mn_cases'] = (df.mean_mn_cases + (2*df.stddev_mn_cases)) df['mean15std_mn_cases'] = (df.mean_mn_cases + (1.5*df.stddev_mn_cases)) df['mean_current_deaths'] = df.iloc[:,(detectionLevel+5+m)] df['mean_mn_deaths'] = df.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].mean(axis=1) df['stddev_mn_deaths'] = df.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].std(axis=1) df['mean20std_mn_deaths'] = (df.mean_mn_deaths + (2*df.stddev_mn_deaths)) df['mean15std_mn_deaths'] = (df.mean_mn_deaths + (1.5*df.stddev_mn_deaths)) # periods df['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.getStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) df['dateOfOnSetWeek'] = moment.date(startEndDates[0]).format('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected df['firstCaseDate'] = moment.date(startEndDates[0]).format('YYYY-MM-DD') # Last case date is the end date of the week boundary. df['lastCaseDate'] = moment.date(startEndDates[1]).format('YYYY-MM-DD') df['endDate'] = "" df['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).format('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": df['mean_current_cases'] = df.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].mean(axis=1) df['mean_mn_cases'] = df.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].mean(axis=1) df['stddev_mn_cases'] = df.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].std(axis=1) df['mean20std_mn_cases'] = (df.mean_mn_cases + (2*df.stddev_mn_cases)) df['mean15std_mn_cases'] = (df.mean_mn_cases + (1.5*df.stddev_mn_cases)) df['mean_current_deaths'] = df.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].mean(axis=1) df['mean_mn_deaths'] = df.iloc[:,(detectionLevel+3+(2*m)+(m*n)):dfColLength-1].mean(axis=1) df['stddev_mn_deaths'] = df.iloc[:,(detectionLevel+3+(2*m)+(m*n)):dfColLength-1].std(axis=1) df['mean20std_mn_deaths'] = (df.mean_mn_deaths + (2*df.stddev_mn_deaths)) df['mean15std_mn_deaths'] = (df.mean_mn_deaths + (1.5*df.stddev_mn_deaths)) # Mid period for seasonal = mean of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) df['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.getStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) df['dateOfOnSetWeek'] = moment.date(startEndDates[0]).format('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected df['firstCaseDate'] = moment.date(startEndDates[0]).format('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).format('YYYY-MM-DD') df['lastCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).format('YYYY-MM-DD') df['endDate'] = "" df['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).format('YYYY-MM-DD') df['reportingOrgUnitName'] = df.iloc[:,reportingLevel-1] df['reportingOrgUnit'] = df.iloc[:,detectionLevel].apply(self.getOrgUnitValue,args=(ou,(reportingLevel-1),'id')) df['orgUnit'] = df.iloc[:,detectionLevel] df['orgUnitName'] = df.iloc[:,detectionLevel+1] df['orgUnitCode'] = df.iloc[:,detectionLevel+2] dropColumns = [col for idx,col in enumerate(df.columns.values.tolist()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] df.drop(columns=dropColumns,inplace=True) df['confirmedValue'] = df.loc[:,'mean_current_cases'] df['deathValue'] = df.loc[:,'mean_current_deaths'] df['suspectedValue'] = df.loc[:,'mean_current_cases'] df['disease'] = diseaseMeta['disease'] df['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "mean_current_cases >= mean20std_mn_cases & mean_current_cases != 0 & mean20std_mn_cases != 0" df.query(checkEpidemic,inplace=True) if df.empty is True: df['alert'] = "false" if df.empty is not True: df['epidemic'] = 'true' # Filter out those greater or equal to threshold df = df[df['epidemic'] == 'true'] df['active'] = "true" df['alert'] = "true" df['reminder'] = "false" #df['epicode']=df['orgUnitCode'].str.cat('E',sep="_") df['epicode'] = df.apply(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "df['epidemic'] == 'true' && df['active'] == 'true' && df['reminder'] == 'false'" closedVigilanceQuery = "df['epidemic'] == 'true' && df['active'] == 'true' && df['reminder'] == 'true'" df[['status','active','closeDate','reminderSent','dateReminderSent']] = df.apply(self.getEpidemicDetails,axis=1) else: # No data for cases found pass return df else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace all values with standard text def replaceText(self,df): df.replace(to_replace='Confirmed case',value='confirmedValue',regex=True,inplace=True) df.replace(to_replace='Suspected case',value='suspectedValue',regex=True,inplace=True) df.replace(to_replace='Confirmed',value='confirmedValue',regex=True,inplace=True) df.replace(to_replace='Suspected',value='suspectedValue',regex=True,inplace=True) df.replace(to_replace='confirmed case',value='confirmedValue',regex=True,inplace=True) df.replace(to_replace='suspected case',value='suspectedValue',regex=True,inplace=True) df.replace(to_replace='died',value='deathValue',regex=True,inplace=True) df.replace(to_replace='Died case',value='deathValue',regex=True,inplace=True) return df # Get Confirmed,suspected cases and deaths def getCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def getStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if pd.to_datetime(self.today) < pd.to_datetime(row['endDate']): currentStatus='active' elif pd.to_datetime(row['endDate']) == (pd.to_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'reminder': if row['reminderDate'] == pd.to_datetime(self.today): currentStatus='true' else: currentStatus='false' return pd.Series(currentStatus) # get onset date def getOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).format('YYYY-MM-DD') # Get onset for TrackedEntityInstances def getTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).format('YYYY-MM-DD') # replace data of onset with event dates def replaceDatesWithEventData(self,row): if row['onSetDate'] == '': return pd.to_datetime(row['eventdate']) else: return pd.to_datetime(row['onSetDate']) # Get columns based on query or condition def getQueryValue(self,df,query,column,inplace=True): query = "{}={}".format(column,query) df.eval(query,inplace) return df # Get columns based on query or condition def queryValue(self,df,query,column=None,inplace=True): df.query(query) return df # Get epidemic, closure and status def getEpidemicDetails(self,row,columns=None): details = [] if row['epidemic'] == "true" and row['active'] == "true" and row['reminder'] == "false": details.append('Closed') details.append('false') details.append(self.today) details.append('false') details.append('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['reminder'] == "true": details.append('Closed Vigilance') details.append('true') details.append(row['closeDate']) details.append('true') details.append(self.today) # Send Reminder for closure else: details.append('Confirmed') details.append('true') details.append('') details.append('false') details.append('') detailsSeries = tuple(details) return pd.Series(detailsSeries) # Get key id from dataelements def getDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = pd.DataFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): df = self.createDataFrame(caseEvents,type) caseEventsColumnsById = df.columns dfColLength = len(df.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #df['dateOfOnSet'] = np.where(df['onSetDate']== '',pd.to_datetime(df['eventdate']).dt.strftime('%Y-%m-%d'),df['onSetDate']) df['dateOfOnSet'] = df.apply(self.getOnSetDate,axis=1) # Replace all text with standard text df = self.replaceText(df) # Transpose and Aggregate values dfCaseClassification = df.groupby(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].value_counts().unstack().fillna(0).reset_index() dfCaseImmediateOutcome = df.groupby(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].value_counts().unstack().fillna(0).reset_index() dfTestResult = df.groupby(['ouname','ou','disease','dateOfOnSet'])['testResult'].value_counts().unstack().fillna(0).reset_index() dfTestResultClassification = df.groupby(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].value_counts().unstack().fillna(0).reset_index() dfStatusOutcome = df.groupby(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].value_counts().unstack().fillna(0).reset_index() combinedDf = pd.merge(dfCaseClassification,dfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').merge(dfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').merge(dfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').merge(dfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = pd.to_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.apply(self.getCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.apply(self.getCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.apply(self.getCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) dfConfirmed = combinedDf.groupby(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['sum']).reset_index() dfConfirmed.rename(columns={'sum':'confirmedValue' },inplace=True) dfSuspected = combinedDf.groupby(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['sum']).reset_index() dfSuspected.rename(columns={'sum':'suspectedValue' },inplace=True) dfFirstAndLastCaseDate = df.groupby(['ouname','ou','disease'])['dateOfOnSet'].agg(['min','max']).reset_index() dfFirstAndLastCaseDate.rename(columns={'min':'firstCaseDate','max':'lastCaseDate'},inplace=True) aggDf = pd.merge(dfConfirmed,dfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').merge(dfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].apply(self.getOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].apply(self.getOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = pd.to_datetime(pd.to_datetime(dfDates['lastCaseDate']) + pd.to_timedelta(pd.np.ceil(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['reminderDate'] = pd.to_datetime(pd.to_datetime(aggDf['lastCaseDate']) + pd.to_timedelta(pd.np.ceil(2*aggDf['incubationDays']-7), unit="D")).dt.strftime('%Y-%m-%d') aggDf.rename(columns={'ouname':'orgUnitName','ou':'orgUnit'},inplace=True); aggDf[['active']] = aggDf.apply(self.getStatus,args=['active'],axis=1) aggDf[['reminder']] = aggDf.apply(self.getStatus,args=['reminder'],axis=1) else: df1 = df.iloc[:,(detectionLevel+4):dfColLength] df.iloc[:,(detectionLevel+4):dfColLength] = df1.apply(pd.to_numeric,errors='coerce').fillna(0).astype(np.int64) if(dateData['height'] > 0): dfDates = self.createDataFrame(dateData,'DATES') dfDates.to_csv('aggDfDates.csv',encoding='utf-8') dfDates.rename(columns={dfDates.columns[7]:'disease',dfDates.columns[8]:'dateOfOnSet'},inplace=True) dfDates['dateOfOnSet'] = dfDates.apply(self.getTeiOnSetDate,axis=1) dfDates = dfDates.groupby(['ou','disease'])['dateOfOnSet'].agg(['min','max']).reset_index() dfDates.rename(columns={'min':'firstCaseDate','max':'lastCaseDate'},inplace=True) df = pd.merge(df,dfDates,right_on=['ou'],left_on=['organisationunitid'],how='left') df['incubationDays'] = int(diseaseMeta['incubationDays']) df['endDate'] = pd.to_datetime(pd.to_datetime(df['lastCaseDate']) + pd.to_timedelta(pd.np.ceil(2*df['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') df['reminderDate'] = pd.to_datetime(pd.to_datetime(df['lastCaseDate']) + pd.to_timedelta(pd.np.ceil(2*df['incubationDays']-7), unit="D")).dt.strftime('%Y-%m-%d') df.dropna(subset=['disease'],inplace=True) df[['active']] = df.apply(self.getStatus,args=['active'],axis=1) df[['reminder']] = df.apply(self.getStatus,args=['reminder'],axis=1) else: pass df.rename(columns={df.columns[10]:'confirmedValue' },inplace=True) df.rename(columns={df.columns[11]:'deathValue' },inplace=True) df.rename(columns={df.columns[12]:'suspectedValue' },inplace=True) df['reportingOrgUnitName'] = df.iloc[:,reportingLevel-1] df['reportingOrgUnit'] = df.loc[:,'organisationunitid'].apply(self.getOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) df.rename(columns={'organisationunitname':'orgUnitName','organisationunitid':'orgUnit'},inplace=True); df['dateOfOnSetWeek'] = self.getIsoWeek(self.today) df["period"]= df['dateOfOnSetWeek'] #df['disease'] = diseaseMeta['disease'] aggDf = df aggDf['alertThreshold'] = int(diseaseMeta['alertThreshold']) aggDf['epiThreshold'] = int(diseaseMeta['epiThreshold']) #df['confirmed_suspected_cases'] = df[['confirmedValue','suspectedValue']].sum(axis=1) aggDf['epidemic'] = np.where(aggDf['confirmedValue'] >= aggDf['epiThreshold'],'true','false') alertQuery = (aggDf['confirmedValue'] < aggDf['epiThreshold']) & (aggDf['suspectedValue'].astype(np.int64) >= aggDf['alertThreshold'].astype(np.int64)) & (aggDf['endDate'] > self.today) aggDf['alert'] = np.where(alertQuery,'true','false') aggDf.to_csv('aggDf.csv',encoding='utf-8') return aggDf else: # No data for cases found pass return dhis2Events else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Transform updated to DHIS2 JSON events format # @param dataFrame df # @return dhis2Events object { 'events', 'datastore Events'} def createEventDatavalues(self,row=None,config=None,columns=None): dataElements = config event = [] for key in columns.values: # for key in [*row] if key == 'suspectedValue': event.append({'dataElement': self.getDataElement(dataElements,'suspected'),'value':row['suspectedValue']}) elif key == 'deathValue': event.append({'dataElement': self.getDataElement(dataElements,'deaths'),'value':row['deathValue']}) elif key == 'confirmedValue': event.append({'dataElement': self.getDataElement(dataElements,'confirmed'),'value':row['confirmedValue']}) elif key == 'firstCaseDate': event.append({'dataElement': self.getDataElement(dataElements,'firstCaseDate'),'value':row['firstCaseDate']}) elif key == 'orgUnit': event.append({'dataElement': self.getDataElement(dataElements,'origin'),'value':row['orgUnit']}) event.append({'dataElement': self.getDataElement(dataElements,'outbreakId'),'value':row['epicode']}) elif key == 'disease': event.append({'dataElement': self.getDataElement(dataElements,'disease'),'value':row['disease']}) elif key == 'endDate': event.append({'dataElement': self.getDataElement(dataElements,'endDate'),'value':row['endDate']}) elif key == 'status': event.append({'dataElement': self.getDataElement(dataElements,'status'),'value':row['status']}) else: pass #### Check epidemic closure if hasattr(row,'closeDate'): if(row['closeDate']) == self.today and row['status']=='Closed': event.append({'dataElement': key,'value':'Closed'}) # Send closure message elif hasattr(row,'dateReminderSent'): if row['dateReminderSent']==self.today and row['status']== 'Closed Vigilance': event.append({'dataElement': key,'value':'Closed Vigilance'}) # Send Reminder for closure else: pass return event # Replace existing outbreak code in the new epidemics for tracking ''' check is the column to track e.g outbreak code keys is the columns to use as keys and must be a list row is the row in the dataFrame append is the column to use as a append column df is the dataframe to compare with ''' def trackEpidemics(self,row=None,df=None,check=None,keys=None,append=None): if row is not None: # filter by keys and not closed query = ['{}{}{}{}'.format(key,' in "',row[key],'"') for key in keys] query = ' and '.join(query) query = '{}{}'.format(query,' and closeDate == ""') if df.empty: return self.generateCode(prefix='E',sep='_') else: filteredDf = df.query(query).sort_values(keys,inplace=True) if filteredDf is None: return self.generateCode(column=row[append],prefix='E',sep='_') else: checked = [filteredDf.at[index,check] for index in filteredDf.index] if len(checked) > 0: row[check] = checked[0] else: row[check] = self.generateCode(column=row[append],prefix='E',sep='_') return row[check] else: return self.generateCode(prefix='E',sep='_') # Remove existing and update with new from data store epidemics # Support meta data mapping format [{epiKey1:eventKey1},{epiKey2:eventKey2}] e.g [{'confirmedValue':'confirmedValue'},{'status':'status'}] # epidemics and events are dataframe def getDfUpdatedEpidemics(self,epidemics,events,mergeColumns=None,how='inner',track=False,epidemic=True): if epidemics.empty and events.empty == False: return events if epidemics.empty == False and events.empty: return epidemics else: if mergeColumns is not None: mergedDf=epidemics.merge(events,how=how,on=mergeColumns,suffixes=('_left','_right'),indicator=track) if epidemic: mergedDf['updated']= np.where(mergedDf["endDate"] == '',True,False) mergedDf['epitype']= np.where(mergedDf["endDate"] == '',"new","old") #epidemics['reminderSent']=np.where(epidemics['dateReminderSent'] == self.today, True,False) #epidemics['dateReminderSent']=np.where(epidemics["reminderDate"] == self.today, self.today,'') #epidemics['reminder']=np.where(epidemics["reminderDate"] == self.today, True,False) mergedDf['active']=np.where(pd.to_datetime(self.today) < pd.to_datetime(mergedDf["endDate"]),True,False) else: pass return mergedDf return epidemics def getRootOrgUnit(self): root = {}; root = self.getHttpData(self.url,'organisationUnits',self.username,self.password,params={"paging":"false","filter":"level:eq:1"}) return root['organisationUnits'] # Drop columns def dropColumns(self,df=None,columns=None): if columns is not None: deleteColumns = [column for column in columns if column in df] else: deleteColumns =[] return deleteColumns # Get epidemics def getEpidemics(self,programConfig=None,detectedAggEpidemics=None,detectedMergedAlertsMessage=None,dfEpidemics=None,messageColumns=None,alertColumns=None,type='EPIDEMIC',notify=None): # New epidemics only newEpidemics = pd.DataFrame() # updated epidemics only updatedEpidemics = pd.DataFrame() # Existing epidemics only existsEpidemics = pd.DataFrame() if dfEpidemics.empty is not True: dfEpidemics['period'] =pd.to_datetime(dfEpidemics['firstCaseDate']).dt.strftime('%YW%V') if detectedAggEpidemics.empty: print("Nothing to update or detect. Proceeding to next disease") return allAggEpidemics = self.getDfUpdatedEpidemics(dfEpidemics,detectedAggEpidemics,mergeColumns=['orgUnit','disease','period'],how='outer',track=True,epidemic=False) remindersQuery = "{}{}{}'".format("reminderDate", "=='", self.today) # New epidemics if '_merge' in allAggEpidemics.columns: newEpidemics = allAggEpidemics.query("_merge == 'right_only'") newEpidemics.drop(list(newEpidemics.filter(regex = '_left')), axis = 1, inplace = True) newEpidemics.columns = newEpidemics.columns.str.replace('_right', '') # Existing epidemics and not updated existsEpidemics = allAggEpidemics.query("_merge == 'left_only'") existsEpidemics.drop(list(existsEpidemics.filter(regex = '_right')), axis = 1, inplace = True) existsEpidemics.columns = existsEpidemics.columns.str.replace('_left', '') # Updated epidemics updatedEpidemics =allAggEpidemics.query("_merge == 'both'") # Drop duplicated columns newEpidemics = newEpidemics.loc[:,~newEpidemics.columns.duplicated()] updatedEpidemics = updatedEpidemics.loc[:,~updatedEpidemics.columns.duplicated()] existsEpidemics = existsEpidemics.loc[:,~existsEpidemics.columns.duplicated()] if '_merge' not in allAggEpidemics.columns: newEpidemics = allAggEpidemics print("Number of New Epidemics ", len(newEpidemics.index)) if( len(newEpidemics.index) > 0): epiCodesFields = "system/id" epiCodesParams = { "limit" : len(newEpidemics.index) } epiCodes = self.getHttpData(self.url,epiCodesFields,self.username,self.password,params=epiCodesParams) if(epiCodes != 'HTTP_ERROR'): epiCodesUids = epiCodes['codes'] newEpidemics['event'] = epiCodesUids else: print("Failed to generated DHIS2 UID codes") else: print("Exiting no new outbreaks detected") print("Detecting and updating Outbreaks .... ") config =programConfig['reportingProgram']['programStage']['dataElements'] if updatedEpidemics.empty is True: if type == 'EPIDEMIC': updatedEpidemics['dataValues'] = [] else: pass if updatedEpidemics.empty is not True: if type == 'EPIDEMIC': updatedEpidemics['confirmedValue']= updatedEpidemics.apply(self.getCaseStatus,args=(updatedEpidemics.columns,'CONFIRMED'),axis=1) updatedEpidemics['suspectedValue']=updatedEpidemics.apply(self.getCaseStatus,args=(updatedEpidemics.columns,'SUSPECTED'),axis=1) updatedEpidemics['deathValue']=updatedEpidemics.apply(self.getCaseStatus,args=(updatedEpidemics.columns,'DEATH'),axis=1) updatedEpidemics.drop(list(updatedEpidemics.filter(regex = '_right')), axis = 1, inplace = True) deleteColumns = self.dropColumns(df=updatedEpidemics.columns,columns=['confirmedValue_left','suspectedValue_left','deathValue_left']) updatedEpidemics.drop(columns=deleteColumns,inplace=True) updatedEpidemics.columns = updatedEpidemics.columns.str.replace('_left', '') updatedEpidemics['dataValues'] = updatedEpidemics.apply( self.createEventDatavalues,args=(config,updatedEpidemics.columns),axis=1); else: pass if newEpidemics.empty is True: if type == 'EPIDEMIC': newEpidemics['dataValues'] = [] else: pass if newEpidemics.empty is not True: if type == 'EPIDEMIC': newEpidemics.loc[:,'eventDate'] = newEpidemics['firstCaseDate'] newEpidemics.loc[:,'status'] = 'COMPLETED' newEpidemics.loc[:,'program'] = str(programConfig['reportingProgram']['id']) newEpidemics.loc[:,'programStage'] = str(programConfig['reportingProgram']['programStage']['id']) newEpidemics.loc[:,'storedBy'] = 'idsr' newEpidemics['epicode']=newEpidemics.apply(self.trackEpidemics,args=(dfEpidemics,'epicode',['disease','orgUnit'],'orgUnitCode'),axis=1) newEpidemics['dataValues'] = newEpidemics.apply( self.createEventDatavalues,args=(config,newEpidemics.columns),axis=1) #newEpidemics = newEpidemics.loc[:,~newEpidemics.columns.duplicated()] detectedNewEpidemicsAlertsMessage = newEpidemics.filter(alertColumns) detectedNewEpidemicsAlertsMessage[messageColumns] = detectedNewEpidemicsAlertsMessage.apply(self.createMessage,args=(notify,'EPIDEMIC'),axis=1) else: #newEpidemics = newEpidemics.loc[:,~newEpidemics.columns.duplicated()] detectedNewEpidemicsAlertsMessage = newEpidemics.filter(alertColumns) detectedNewEpidemicsAlertsMessage[messageColumns] = detectedNewEpidemicsAlertsMessage.apply(self.createMessage,args=(notify,'ALERT'),axis=1) #mergedAlerts = pd.concat([detectedNewEpidemicsAlerts],sort=False) detectedMergedAlertsMessage = detectedMergedAlertsMessage.append(detectedNewEpidemicsAlertsMessage) # Merge updated, new and existing epidemics mergedEpidemics = pd.concat([existsEpidemics,updatedEpidemics,newEpidemics],sort=False) return [mergedEpidemics,detectedMergedAlertsMessage] def iterateDiseases(self,diseasesMeta,epidemics,alerts,type): newUpdatedEpis = [] existingAlerts = alerts existingEpidemics = epidemics programConfig = diseasesMeta['config'] mPeriods = programConfig['mPeriods'] nPeriods = programConfig['nPeriods'] rootOrgUnit = self.getRootOrgUnit() programStartDate = moment.date(self.today).subtract(days=8) programStartDate = moment.date(programStartDate).format('YYYY-MM-DD') # Epidemics in the datastore dfEpidemics = self.createDataFrame(epidemics) # Alerts in the datastore dfAlerts = self.createDataFrame(alerts) # New epidemics only detectedNewEpidemics =
pd.DataFrame()
pandas.DataFrame
import os import copy import time import numpy as np import pandas as pd import torch from tqdm import tqdm import typing as Dict def init_log_loss(last_log_loss_csv, num_models=None): last_best_avg_loss_all = np.inf if last_log_loss_csv is None: if num_models is None: raise ValueError('Missing num_models argument.') log_loss = {'Epoch': []} for model_idx in range(num_models): log_loss['train_loss_' + str(model_idx)] = [] log_loss['val_loss_' + str(model_idx)] = [] log_loss['train_loss_avg'] = [] log_loss['val_loss_avg'] = [] else: last_log_loss_df =
pd.read_csv(last_log_loss_csv)
pandas.read_csv
# <NAME> # Last Modified: 5/22/2020 # Verify fluid properties for Flinak # Reference: "Annals of Nuclear Energy", Romatoski and Hu # Note: #Temperature is in Kelvin import os import sys sys.path.insert(0,'..') #This adds the ability to call flinak prop from the main folder sys.path.insert(0,'./Flinak') #Looking for data in a subfolder import numpy as np from pathlib import Path import matplotlib.pyplot as plt import FLiNaK_Prop import Flinak_Verification_Data import pandas as pd path = os.getcwd() steps = 700 T = np.linspace(500,1100,steps) T2 = np.linspace(700,1250,steps) Rho = np.zeros(steps) Nu = np.zeros(steps) Cp = np.zeros(steps) K = np.zeros(steps) for i in range(0,steps): Rho[i] = FLiNaK_Prop.rho(T[i]+273.15) Nu[i] = FLiNaK_Prop.nu(T2[i])*1000 Cp[i] = FLiNaK_Prop.Cp(T2[i]) K[i] = FLiNaK_Prop.k(T2[i]) linestyles = ['--','-','--','--'] colors = ['blue','firebrick','yellowgreen','purple'] filelist = ['2579_3-0_624xT','2603-0_669xT','2655_64-0_68xT','2729_29-0_73xT'] labels = ['2579.3-0.624*T[K]','2603-0.669*T[K]','2655.64-0.68*T[K]','2729.29-0.73*T[K]'] k = 1 L = 0 fig1 = plt.figure(k, figsize=(10,8)) for f in filelist: densitydataframes = pd.read_csv(Path(path + '/Flinak/Density/Romatoski_Flinak_Density_' + f + '.csv')) df = pd.DataFrame(densitydataframes) plt.plot(df['Temp'], df['Density'], label=labels[L], linestyle=linestyles[L], color=colors[L]) L = L + 1 plt.plot(T,Rho,'r--', label='Density Used', dashes=(10,20), linewidth=3) plt.xlabel('Temperature - C') plt.ylabel('Density - kg/m^3') plt.title('Flinak Density') plt.legend(loc='upper right') plt.grid() k = k + 1 linestyles2 = ['--','-.','--','-','--','-.','None',':'] markers2 = ['None', 'None', 'None', 'None', 'None', 'None','s', 'None'] colors2 = ['yellowgreen','firebrick','cornflowerblue','darkorange','darkturquoise','magenta','salmon','purple'] filelist2 = ['0_04','0_025','0_0249','0_0623','0_1113','1_633','Cohen_1956_1957','e'] labels2 = ['0.04*exp(4170/T[K])','0.025*exp(4790/T[K])','0.0249*exp(4476/T[K])','0.0623*exp(3921.4/T[K])','0.1113*exp(3379/T[K])','1.633*exp(-2762.9/T[K]+3.1095E6/T^2[K])','Cohen 1956/1957','exp(-3.0489)*exp (3847/T[K])'] L = 0 fig2 = plt.figure(k, figsize=(10,8)) for f in filelist2: viscositydataframes = pd.read_csv(Path(path + '/Flinak/Viscosity/Romatoski_Flinak_Viscosity_' + f + '.csv')) df =
pd.DataFrame(viscositydataframes)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Results, graphs @author: a.stratigakos """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import os, sys import pickle from sklearn.ensemble import RandomForestRegressor from scipy import interpolate, stats import cvxpy as cp import matplotlib.patches as patches # Add current path to directory cd = os.path.dirname(__file__) #Current directory sys.path.append(cd) from EnsemblePrescriptiveTree import EnsemblePrescriptiveTree from forecast_utility_functions import * from optimization_utility_functions import * plt.rcParams['figure.dpi'] = 600 def evaluate_realized_costs(solutions, Node_demand_actual, col_names, grid, config, plot = True): 'Function that takes as input the obtained decisions and returns dataframe with realize costs' da_costs = pd.DataFrame() rt_costs = pd.DataFrame() total_costs = pd.DataFrame() horizon = config['horizon'] stats_out = pd.DataFrame(data=np.zeros(( 4,len(col_names) )) , columns = col_names, index = ['r_up', 'r_down', 'L_shed', 'G_shed']) for j, set_solutions in enumerate(solutions): ndays = len(set_solutions) oos_total_cost = [] oos_da_cost = [] oos_rt_cost = [] print('Evaluation: ', col_names[j]) for k, i in enumerate(range(ndays)): if (i == 238) or (i == 239) or (i == 240): continue if (i+1)%25==0:print('Out of sample day ', i+1) start = i*horizon stop = (i+1)*horizon da_dispatch = set_solutions[k] #DA Variables p_G = cp.Variable((grid['n_unit'], horizon)) R_up = cp.Variable((grid['n_unit'], horizon)) R_down = cp.Variable((grid['n_unit'], horizon)) flow_da = cp.Variable((grid['n_lines'], horizon)) theta_da = cp.Variable((grid['n_nodes'], horizon)) #RT Variables r_up = cp.Variable((grid['n_unit'], horizon)) r_down = cp.Variable((grid['n_unit'], horizon)) L_shed = cp.Variable((grid['n_loads'],horizon)) G_shed = cp.Variable((grid['n_unit'],horizon)) #Shedding Supply, in case of extremely low demand flow_rt = cp.Variable((grid['n_lines'],horizon)) theta_rt = cp.Variable((grid['n_nodes'], horizon)) Constraints = [] ###### Fix DA decisions Constraints += [p_G == da_dispatch['p'], flow_da == da_dispatch['flow'], theta_da == da_dispatch['theta'], R_up == da_dispatch['R_up'], R_down == da_dispatch['R_down']] #####RT constraints Constraints += [ r_up <= -p_G + grid['Pmax'].repeat(24,axis=1), r_up <= grid['R_up_max'].repeat(24,axis=1), r_down <= p_G, r_down <= grid['R_down_max'].repeat(24,axis=1), L_shed <= Node_demand_actual[:,start:stop], G_shed <= p_G, r_up >= 0, r_down >= 0, L_shed >= 0, G_shed >= 0] #RT Network flow Constraints += [flow_rt == grid['b_diag']@grid['A']@theta_rt, flow_rt <= grid['Line_Capacity'].repeat(24,axis=1), flow_rt >= -grid['Line_Capacity'].repeat(24,axis=1), theta_rt[0,:] == 0] #!!!!! Node injections (evaluation is not done properly) Constraints += [ grid['node_G']@(p_G + r_up-r_down-G_shed) \ + grid['node_L']@(L_shed-Node_demand_actual[:,start:stop]) == grid['B']@(theta_rt)] #Constraints += [ grid['node_G']@(r_up-r_down-G_shed) \ # + grid['node_L']@(L_shed-Node_demand_actual[:,start:stop]+Node_demand_expected[:,start:stop]) == \ # grid['B']@(theta_rt-theta_da)] realized_DA_cost = cp.sum(grid['Cost']@p_G) realized_RT_cost = cp.sum( grid['Cost_reg_up']@r_up - grid['Cost_reg_down']@r_down + grid['VOLL']*cp.sum(L_shed,axis=0) \ + grid['gshed']*cp.sum(G_shed,axis=0)) prob = cp.Problem(cp.Minimize( realized_DA_cost + realized_RT_cost ) , Constraints) prob.solve( solver = 'GUROBI', verbose = False) oos_total_cost.append(prob.objective.value) oos_da_cost.append(realized_DA_cost.value) oos_rt_cost.append(realized_RT_cost.value) if prob.objective.value == None: print('Infeasible or unbound') if (plot==True) and (i%25==0): plt.plot(da_dispatch['p'].sum(axis=0), label='Production') plt.plot(Node_demand_actual[:,start:stop].sum(axis=0), label='Actual Demand') #plt.plot(Node_demand_expected[:,start:stop].sum(axis=0), label='Expected Demand') plt.plot(G_shed.value.sum(axis=0), '-o',label='G_shed') plt.plot(r_down.value.sum(axis=0), '*', label='Regulation-Down') plt.plot(r_up.value.sum(axis=0), 'd',label='Regulation-Up') plt.legend() plt.show() stats_out[col_names[j]][0] = stats_out[col_names[j]][0] + r_up.value.sum() stats_out[col_names[j]][1] = stats_out[col_names[j]][1] + r_down.value.sum() stats_out[col_names[j]][2] = stats_out[col_names[j]][2] + L_shed.value.sum() stats_out[col_names[j]][3] = stats_out[col_names[j]][3] + G_shed.value.sum() da_costs[col_names[j]] = np.array(oos_da_cost) rt_costs[col_names[j]] = np.array(oos_rt_cost) total_costs[col_names[j]] = np.array(oos_total_cost) print(stats_out) return da_costs, rt_costs, total_costs, stats_out def evaluate_single_day(day, solutions, Node_demand_actual, col_names, grid, config, plot = True): '''Function that takes as input the DA dispatch actions, solves the RT market with actual load, returns dataframe with realize costs''' horizon = config['horizon'] for j, set_solutions in enumerate(solutions): print('Out of sample day ', day) start = day*horizon stop = (day+1)*horizon da_dispatch = set_solutions[day] #DA Variables p_G = cp.Variable((grid['n_unit'], horizon)) R_up = cp.Variable((grid['n_unit'], horizon)) R_down = cp.Variable((grid['n_unit'], horizon)) flow_da = cp.Variable((grid['n_lines'], horizon)) theta_da = cp.Variable((grid['n_nodes'], horizon)) #RT Variables r_up = cp.Variable((grid['n_unit'], horizon)) r_down = cp.Variable((grid['n_unit'], horizon)) L_shed = cp.Variable((grid['n_loads'],horizon)) G_shed = cp.Variable((grid['n_unit'],horizon)) #Shedding Supply, in case of extremely low demand flow_rt = cp.Variable((grid['n_lines'],horizon)) theta_rt = cp.Variable((grid['n_nodes'], horizon)) Constraints = [] ###### Fix DA decisions Constraints += [p_G == da_dispatch['p'], flow_da == da_dispatch['flow'], theta_da == da_dispatch['theta'], R_up == da_dispatch['R_up'], R_down == da_dispatch['R_down']] #####RT constraints Constraints += [ r_up <= -p_G + grid['Pmax'].repeat(24,axis=1), r_up <= grid['R_up_max'].repeat(24,axis=1), r_down <= p_G, r_down <= grid['R_down_max'].repeat(24,axis=1), L_shed <= Node_demand_actual[:,start:stop], G_shed <= p_G, r_up >= 0, r_down >= 0, L_shed >= 0, G_shed >= 0] #RT Network flow Constraints += [flow_rt == grid['b_diag']@grid['A']@theta_rt, flow_rt <= grid['Line_Capacity'].repeat(24,axis=1), flow_rt >= -grid['Line_Capacity'].repeat(24,axis=1), theta_rt[0,:] == 0] #Node injections #!!!!! Node injections (evaluation is not done properly) Constraints += [ grid['node_G']@(p_G + r_up-r_down-G_shed) \ + grid['node_L']@(L_shed-Node_demand_actual[:,start:stop]) == grid['B']@(theta_rt)] # Constraints += [ grid['node_G']@(r_up-r_down-G_shed) \ # + grid['node_L']@(L_shed-Node_demand_actual[:,start:stop]+Node_demand_expected[:,start:stop]) == \ # grid['B']@(theta_rt-theta_da)] realized_DA_cost = cp.sum(grid['Cost']@p_G) realized_RT_cost = cp.sum( grid['Cost_reg_up']@r_up - grid['Cost_reg_down']@r_down + grid['VOLL']*cp.sum(L_shed,axis=0) \ + grid['gshed']*cp.sum(G_shed,axis=0)) prob = cp.Problem(cp.Minimize( realized_DA_cost + realized_RT_cost ) , Constraints) prob.solve( solver = 'GUROBI', verbose = False) if prob.objective.value == None: print('Infeasible or unbound') if plot==True: plt.plot(da_dispatch['p'].sum(axis=0), label='Production') plt.plot(Node_demand_actual[:,start:stop].sum(axis=0), label='Actual Demand') #plt.plot(Node_demand_expected[:,start:stop].sum(axis=0), label='Expected Demand') plt.plot(G_shed.value.sum(axis=0), '-o',label='G_shed') plt.plot(r_down.value.sum(axis=0), '*', label='Regulation-Down') plt.plot(r_up.value.sum(axis=0), 'd',label='Regulation-Up') plt.plot(L_shed.value.sum(axis=0), 's',label='L-shed') plt.title(col_names[j]) plt.legend() plt.show() print(col_names[j]+' RT Cost: ', realized_RT_cost.value) return #%% Problem parameters def problem_parameters(): parameters = {} # Script parameters parameters['train'] = False # Trains models (forecasting and optimization), else loads results parameters['save_train'] = False # Save trained models (for trees etc.) parameters['save_results'] = False # Save DA dispatch decisions and results # Optimization Parameters parameters['n_scen'] = 200 #Number of scenarios parameters['horizon'] = 24 #Optimization horizon (DO NOT CHANGE) parameters['peak_load'] = 2700 #Peak hourly demand parameters['wind_capacity'] = 200 #(not used) # Forecasting parameters (only for the forecasting_module.py) parameters['split'] = 0.75 #split percentage parameters['quant'] = np.arange(.01, 1, .01) #For probabilistic forecasts # Starting dates create training samples of size 6months, 1y, 1.5y and 2y #parameters['start_date'] = '2010-06-01' # Controls for sample size #parameters['start_date'] = '2010-01-01' #parameters['start_date'] = '2009-06-01' #arameters['start_date'] = '2009-01-01' parameters['split_date'] = '2011-01-01' # Validation split return parameters #%% Import data, create supervised learning set for prescriptive trees config = problem_parameters() # Load IEEE data grid = load_ieee24(cd+'\\data\\IEEE24Wind_Data.xlsx') results_folder = cd+'\\results\\aggregated_results\\' results_dir = [sub[0] for sub in os.walk(results_folder)][1:] #%% Load results for all sample sizes da_costs = [] rt_costs = [] total_costs = [] rt_actions = [] Prescription = [] Det_solutions = [] Stoch_solutions = [] cost_oriented_Pred = [] expected_load = [] for i, directory in enumerate(results_dir): print(directory) # Load solutions Prescription.append(pickle.load(open(directory+'\\Predictive_Prescriptions.pickle', 'rb'))) Det_solutions.append(pickle.load(open(directory+'\\Deterministic_DA_decisions.pickle', 'rb'))) Stoch_solutions.append(pickle.load(open(directory+'\\Stochastic_DA_decisions.pickle', 'rb'))) cost_oriented_Pred.append(pickle.load(open(directory+'\\Cost_Oriented_Pred.pickle', 'rb'))) expected_load.append(pd.read_csv(directory+'\\load_scenarios.csv', index_col=0)['Expected'].values) #results = pd.read_excel(cd+'\\EconomicDispatch_Results.xlsx', index_col = 0) # Actual Demand per node if i==2: load_forecast =
pd.read_csv(directory+'\\load_scenarios.csv', index_col=0)
pandas.read_csv
import requests import pandas as pd import re from bs4 import BeautifulSoup url=requests.get("http://www.worldometers.info/world-population/india-population/") t=url.text so=BeautifulSoup(t,'html.parser') all_t=so.findAll('table', class_="table table-striped table-bordered table-hover table-condensed table-list")#Use to find stats tabl d1=pd.DataFrame([]) i=0 j=0 b=[] d1=pd.DataFrame() for j in all_t[0].findAll('td'): b.append(j.text) while(i<=(208-13)): d1=d1.append(pd.DataFrame([b[i:i+13]]) ) i=i+13 d1.apply(pd.to_numeric, errors='ignore') listq=pd.Series.tolist(d1[0:16][0]) list1=pd.Series.tolist(d1[0:16][1]) list2=pd.Series.tolist(d1[0:16][2]) list3=pd.Series.tolist(d1[0:16][3]) list4=pd.Series.tolist(d1[0:16][4]) list5=pd.Series.tolist(d1[0:16][5]) list6=pd.Series.tolist(d1[0:16][6]) list7=pd.Series.tolist(d1[0:16][7]) list8=pd.Series.tolist(d1[0:16][8]) list9=pd.Series.tolist(d1[0:16][9]) list10=pd.Series.tolist(d1[0:16][10]) #forecast table c=[] for j in all_t[1].findAll('td'): c.append(j.text) bv=pd.DataFrame() i=0 while(i<=(91-13)): bv=bv.append(pd.DataFrame([c[i:i+13]]) ) i=i+13 listq1=pd.Series.tolist(bv[0:7][0]) list11=pd.Series.tolist(bv[0:7][1]) list21=pd.Series.tolist(bv[0:7][2]) list31=pd.Series.tolist(bv[0:7][3]) list41=
pd.Series.tolist(bv[0:7][4])
pandas.Series.tolist
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from sklearn import preprocessing, model_selection, metrics import lightgbm as lgb pd.options.mode.chained_assignment = None pd.options.display.max_columns = 999 train_df = pd.read_csv("C:\\Users\\jowet\\Downloads\\kaggle\\avito\\train.csv", parse_dates=["activation_date"]) test_df =
pd.read_csv("C:\\Users\\jowet\\Downloads\\kaggle\\avito\\test.csv", parse_dates=["activation_date"])
pandas.read_csv
# pylint: disable-msg=E1101,W0612 import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core.sparse.api import SparseDtype class TestSparseSeriesIndexing(object): def setup_method(self, method): self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) self.sparse = self.orig.to_sparse() def test_getitem(self): orig = self.orig sparse = self.sparse assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse()) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse()) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse()) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse()) def test_getitem_int_dtype(self): # GH 8292 s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], fill_value=0, name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], fill_value=0, name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) def test_getitem_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[2] == 0 assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_ellipsis(self): # GH 9467 s = pd.SparseSeries([1, np.nan, 2, 0, np.nan]) tm.assert_sp_series_equal(s[...], s) s = pd.SparseSeries([1, np.nan, 2, 0, np.nan], fill_value=0) tm.assert_sp_series_equal(s[...], s) def test_getitem_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse(fill_value=0)) def test_loc(self): orig = self.orig sparse = self.sparse assert sparse.loc[0] == 1 assert np.isnan(sparse.loc[1]) result = sparse.loc[[1, 3, 4]] exp = orig.loc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # exceeds the bounds result = sparse.reindex([1, 3, 4, 5]) exp = orig.reindex([1, 3, 4, 5]).to_sparse() tm.assert_sp_series_equal(result, exp) # padded with NaN assert np.isnan(result[-1]) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse.loc[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_loc_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse()) def test_loc_slice_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc['C':], orig.loc['C':].to_sparse(fill_value=0)) def test_loc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse(fill_value=0)) def test_iloc(self): orig = self.orig sparse = self.sparse assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[2]) result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) result = sparse.iloc[[1, -2, -4]] exp = orig.iloc[[1, -2, -4]].to_sparse() tm.assert_sp_series_equal(result, exp) with pytest.raises(IndexError): sparse.iloc[[1, 3, 5]] def test_iloc_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[1]) assert sparse.iloc[4] == 0 result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_iloc_slice(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse()) def test_iloc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse(fill_value=0)) def test_at(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() assert sparse.at[0] == orig.at[0] assert np.isnan(sparse.at[1]) assert np.isnan(sparse.at[2]) assert sparse.at[3] == orig.at[3] assert np.isnan(sparse.at[4]) orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('abcde')) sparse = orig.to_sparse() assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert np.isnan(sparse.at['c']) assert sparse.at['d'] == orig.at['d'] assert np.isnan(sparse.at['e']) def test_at_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('abcde')) sparse = orig.to_sparse(fill_value=0) assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert sparse.at['c'] == orig.at['c'] assert sparse.at['d'] == orig.at['d'] assert sparse.at['e'] == orig.at['e'] def test_iat(self): orig = self.orig sparse = self.sparse assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert np.isnan(sparse.iat[2]) assert sparse.iat[3] == orig.iat[3] assert np.isnan(sparse.iat[4]) assert np.isnan(sparse.iat[-1]) assert sparse.iat[-5] == orig.iat[-5] def test_iat_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse() assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert sparse.iat[2] == orig.iat[2] assert sparse.iat[3] == orig.iat[3] assert sparse.iat[4] == orig.iat[4] assert sparse.iat[-1] == orig.iat[-1] assert sparse.iat[-5] == orig.iat[-5] def test_get(self): s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan]) assert s.get(0) == 1 assert np.isnan(s.get(1)) assert s.get(5) is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE')) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'), fill_value=0) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None def test_take(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse()) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), orig.take([0, 1, 3]).to_sparse()) tm.assert_sp_series_equal(sparse.take([-1, -2]), orig.take([-1, -2]).to_sparse()) def test_take_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse(fill_value=0)) exp = orig.take([0, 1, 3]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), exp) exp = orig.take([-1, -2]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([-1, -2]), exp) def test_reindex(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) # all missing & fill_value res = sparse.reindex(['B', 'E', 'C']) exp = orig.reindex(['B', 'E', 'C']).to_sparse() tm.assert_sp_series_equal(res, exp) orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) def test_fill_value_reindex(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # includes missing and fill_value res = sparse.reindex(['A', 'B', 'C']) exp = orig.reindex(['A', 'B', 'C']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all missing orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all fill_value orig = pd.Series([0., 0., 0., 0., 0.], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) def test_fill_value_reindex_coerces_float_int(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) def test_reindex_fill_value(self): floats = pd.Series([1., 2., 3.]).to_sparse() result = floats.reindex([1, 2, 3], fill_value=0) expected = pd.Series([2., 3., 0], index=[1, 2, 3]).to_sparse() tm.assert_sp_series_equal(result, expected) def test_reindex_nearest(self): s = pd.Series(np.arange(10, dtype='float64')).to_sparse() target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = pd.Series(np.around(target), target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = pd.Series([0, 1, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=[0.3, 0.01, 0.4, 3]) expected = pd.Series([0, np.nan, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) def tests_indexing_with_sparse(self): # GH 13985 for kind in ['integer', 'block']: for fill in [True, False, np.nan]: arr = pd.SparseArray([1, 2, 3], kind=kind) indexer = pd.SparseArray([True, False, True], fill_value=fill, dtype=bool) tm.assert_sp_array_equal(pd.SparseArray([1, 3], kind=kind), arr[indexer],) s = pd.SparseSeries(arr, index=['a', 'b', 'c'], dtype=np.float64) exp = pd.SparseSeries( [1, 3], index=['a', 'c'], dtype=SparseDtype(np.float64, s.fill_value), kind=kind ) tm.assert_sp_series_equal(s[indexer], exp) tm.assert_sp_series_equal(s.loc[indexer], exp)
tm.assert_sp_series_equal(s.iloc[indexer], exp)
pandas.util.testing.assert_sp_series_equal
import json import pandas as pd from sklearn.model_selection._search import ParameterGrid from logging_ import Logger from adv_lib.attacks import fmn, alma, apgd from adv_lib.attacks.auto_pgd import minimal_apgd #from robustbench.utils import load_model from tracking import PyTorchModelTracker from torchvision import transforms import torch from utils.data_utils import create_loaders from tqdm import tqdm from zoo import load_model from pytorch_lightning.trainer import Trainer class Sweeper: @classmethod def from_jsonfile(cls, path, *args, **kwargs): with open(path, "r") as f_json: dic = json.load(f_json) df = Sweeper.build_df_from_dict(dic) return Sweeper(df, *args, **kwargs) @classmethod def build_df_from_dict(cls, d): # make pandas df from the json config (cartesian product) g = ParameterGrid(d) # print([*g]) df = pd.DataFrame([*g]).drop_duplicates().convert_dtypes() cols_to_order = ['dataset', "norm","attack", "model"] new_columns = cols_to_order + (df.columns.drop(cols_to_order).tolist()) return df[new_columns].sort_values(cols_to_order).reset_index(drop=True) @classmethod def from_csvfile(cls, path, *args, **kwargs): df =
pd.read_csv(path)
pandas.read_csv
def calculateAnyProfile(profileType, df_labs, df_meds, df_procedures, df_diagnoses, df_phenotypes): """Calculate a single profile based on the type provided and data cleaned from getSubdemographicsTables Arguments: profileType -- which individual profile type you would like generated, this will be the category with the header information (Options: 'labs', 'medications', 'procedures', 'diagnoses', 'phenotypes') Keywords: df_labs -- labs dataframe returned from getSubdemographicsTables df_medications -- medications dataframe returned from getSubdemographicsTables df_procedures -- procedures dataframe returned from getSubdemographicsTables df_diagnoses -- diagnoses dataframe returned from getSubdemographicsTables df_phenotypes -- phenotypes dataframe returned from getSubdemographicsTables Returns Pythonic structures needed to generate profile in JSON format using the corresponding write profile function """ import os import sys import sqlalchemy import urllib.parse import pandas as pd import numpy as np import getpass from dataclasses import dataclass from SciServer import Authentication from datetime import datetime import pymssql try: # Make Labs Profile if profileType == 'labs': # High Level Info, Scalar Distribution labs_counts = df_labs.LAB_LOINC.value_counts() grouped_labs = df_labs.groupby(['LAB_LOINC', 'resultYear']) labs_frequencyPerYear = (df_labs.groupby(['LAB_LOINC','PATID','resultYear']).PATID.size() .groupby(['LAB_LOINC','resultYear']).aggregate(np.mean)) labs_fractionOfSubjects = (np.divide(df_labs.groupby(['LAB_LOINC']).PATID.nunique(), df_labs.PATID.nunique())) labs_units = df_labs.groupby(['LAB_LOINC']).LOINC_UNIT.unique() labs_names = df_labs.groupby(['LAB_LOINC']).LOINC_SHORTNAME.unique() def percentile(n): def percentile_(x): return x.quantile(n*0.01) percentile_.__name__ = '%s' % n return percentile_ labs_stats = (grouped_labs .RESULT_NUM.agg(['min','max', 'mean','median','std', percentile(10), percentile(20), percentile(30), percentile(40), percentile(50), percentile(60), percentile(70), percentile(80), percentile(90)])) def fracsAboveBelowNormal(x): try: aboveNorm = np.divide(np.sum(x.RESULT_NUM > x.range_high), x.RESULT_NUM.size) belowNorm = np.divide(np.sum(x.RESULT_NUM < x.range_low), x.RESULT_NUM.size) return pd.Series({'aboveNorm':aboveNorm, 'belowNorm':belowNorm}) except: return pd.Series({'aboveNorm':np.nan, 'belowNorm':np.nan}) labs_aboveBelowNorm = (grouped_labs.apply(fracsAboveBelowNormal)) labs_correlatedLabsCoefficients = (df_labs.groupby(['LAB_LOINC','resultYear','PATID']) .RESULT_NUM.mean()) labs_abscorrelation = 0 ## LABS TO MEDICATIONS def patientsAboveBelowNormalLabsMeds(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to meds table abnormalPatientsMeds = df_meds[df_meds.PATID.isin(patientsAboveBelowNorm) & (df_meds.startYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'medsAboveBelowNorm': abnormalPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': abnormalPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedMedsCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedMedsCoefficients.index: thisLabYear = labs_correlatedMedsCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for medInd in range(len(labs_correlatedMedsCoefficients.loc[lab].medsAboveBelowNorm.values)): mytups.append((thisLabYear.medsAboveBelowNorm.values[medInd], thisLabYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## LABS TO PROCEDURES def patientsAboveBelowNormalLabsProcs(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsAboveBelowNorm) & (df_procedures.encounterYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'procsAboveBelowNorm': abnormalPatientsProcs.RAW_PX.value_counts().index, 'counts': abnormalPatientsProcs.RAW_PX.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedProceduresCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedProceduresCoefficients.index: thisLabYear = labs_correlatedProceduresCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for procInd in range(len(labs_correlatedProceduresCoefficients.loc[lab].procsAboveBelowNorm.values)): mytups.append((thisLabYear.procsAboveBelowNorm.values[procInd], thisLabYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) ## LABS TO DIAGNOSES def patientsAboveBelowNormalLabsDiags(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsDiags = df_diagnoses[df_diagnoses.PATID.isin(patientsAboveBelowNorm) & (df_diagnoses.admitYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'diagsAboveBelowNorm': abnormalPatientsDiags.DX.value_counts().index, 'counts': abnormalPatientsDiags.DX.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedDiagnosisCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedDiagnosisCoefficients.index: thisLabYear = labs_correlatedDiagnosisCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for diagInd in range(len(labs_correlatedDiagnosisCoefficients.loc[lab].diagsAboveBelowNorm.values)): mytups.append((thisLabYear.diagsAboveBelowNorm.values[diagInd], thisLabYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedDiagnosisCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) ## LABS TO PHENOTYPES def patientsAboveBelowNormalLabsHPOs(x): # Get patients above and below normal patientsAboveNorm = x.PATID[x.RESULT_NUM > x.range_high].tolist() patientsBelowNorm = x.PATID[x.RESULT_NUM < x.range_low].tolist() # Get unique patient IDs for above & below normal patientsAboveBelowNorm = list(set(patientsAboveNorm + patientsBelowNorm)) # Link to procs table abnormalPatientsHPOs = df_phenotypes[df_phenotypes.PATID.isin(patientsAboveBelowNorm) & (df_phenotypes.admitYear == pd.to_datetime(x.RESULT_DATE).dt.year.unique()[0])] return pd.Series({'hposAboveBelowNorm': abnormalPatientsHPOs.HPO.value_counts().index, 'counts': abnormalPatientsHPOs.HPO.value_counts().values}) # Need to grab the indices of those with abnormal lab, grab their medications, count and rank them labs_correlatedPhenotypesCoefficients = (grouped_labs.apply(patientsAboveBelowNormalLabsHPOs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for lab in labs_correlatedPhenotypesCoefficients.index: thisLabYear = labs_correlatedPhenotypesCoefficients.loc[lab] thisLab = lab[0] thisYear = lab[1] totalCrossTab = np.sum(thisLabYear.counts) for hpoInd in range(len(labs_correlatedPhenotypesCoefficients.loc[lab].hposAboveBelowNorm.values)): mytups.append((thisLabYear.hposAboveBelowNorm.values[hpoInd], thisLabYear.counts[hpoInd]/totalCrossTab)) multiIndex.append((thisLab, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) labs_correlatedPhenotypesCoefficients = (pd.DataFrame.from_records(mytups, columns=['HPO','Relative_Counts'], index=index)) return (labs_counts, labs_frequencyPerYear, labs_fractionOfSubjects, labs_units, labs_names, labs_stats, labs_aboveBelowNorm, labs_correlatedLabsCoefficients, labs_abscorrelation, labs_correlatedMedsCoefficients, labs_correlatedProceduresCoefficients, labs_correlatedDiagnosisCoefficients, labs_correlatedPhenotypesCoefficients) # Make Medication Profile elif profileType == 'medications': meds_medication = df_meds.JH_INGREDIENT_RXNORM_CODE.unique() meds_dosageInfo = df_meds.groupby('JH_INGREDIENT_RXNORM_CODE').RX_DOSE_ORDERED.mean() meds_frequencyPerYear = (df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE','startYear','PATID']).PATID .count().groupby(['JH_INGREDIENT_RXNORM_CODE','startYear']).mean()) meds_fractionOfSubjects = (np.divide(df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE']).PATID.nunique(), df_meds.PATID.nunique())) grouped_meds = df_meds.groupby(['JH_INGREDIENT_RXNORM_CODE', 'startYear']) #meds_correlatedLabsCoefficients def patientsAboveBelowNormalMedsLabs(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to labs table abnormalPatientsLabs = df_labs[(df_labs.PATID.isin(patientsWithThisRX)) & ((df_labs.RESULT_NUM > df_labs.range_high) | (df_labs.RESULT_NUM < df_labs.range_low)) & (df_labs.resultYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'labsAboveBelowNorm': abnormalPatientsLabs.LAB_LOINC.value_counts().index, 'counts': abnormalPatientsLabs.LAB_LOINC.value_counts().values}) meds_correlatedLabsCoefficients = (grouped_meds.apply(patientsAboveBelowNormalMedsLabs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedLabsCoefficients.index: thisMedYear = meds_correlatedLabsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for labInd in range(len(meds_correlatedLabsCoefficients.loc[med].labsAboveBelowNorm.values)): mytups.append((thisMedYear.labsAboveBelowNorm.values[labInd], thisMedYear.counts[labInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedLabsCoefficients = (pd.DataFrame.from_records(mytups, columns=['LAB_LOINC','Relative_Counts'], index=index)) #meds_correlatedDiagsCoefficients def patientsCrossFreqMedsDiags(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsDXs = df_diagnoses[(df_diagnoses.PATID.isin(patientsWithThisRX)) & (df_diagnoses.admitYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'diagsCrossFreq': commonPatientsDXs.DX.value_counts().index, 'counts': commonPatientsDXs.DX.value_counts().values}) meds_correlatedDiagsCoefficients = (grouped_meds.apply(patientsCrossFreqMedsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedDiagsCoefficients.index: thisMedYear = meds_correlatedDiagsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for diagInd in range(len(meds_correlatedDiagsCoefficients.loc[med].diagsCrossFreq.values)): mytups.append((thisMedYear.diagsCrossFreq.values[diagInd], thisMedYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedDiagsCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) #meds_correlatedMedsCoefficients def patientsCrossFreqMedsMeds(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to labs table commonPatientsMeds = df_meds[(df_meds.PATID.isin(patientsWithThisRX)) & (pd.to_datetime(df_meds.RX_START_DATE).dt.year == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'medsCrossFreq': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) meds_correlatedMedsCoefficients = (grouped_meds.apply(patientsCrossFreqMedsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedMedsCoefficients.index: thisMedYear = meds_correlatedMedsCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for medInd in range(len(meds_correlatedMedsCoefficients.loc[med].medsCrossFreq.values)): mytups.append((thisMedYear.medsCrossFreq.values[medInd], thisMedYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## MEDS TO PROCEDURES def patientsCrossFreqMedsProcs(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to procs table commonPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsWithThisRX) & (df_procedures.encounterYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'procsCrossFreq': commonPatientsProcs.RAW_PX.value_counts().index, 'counts': commonPatientsProcs.RAW_PX.value_counts().values}) meds_correlatedProceduresCoefficients = (grouped_meds.apply(patientsCrossFreqMedsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedProceduresCoefficients.index: thisMedYear = meds_correlatedProceduresCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for procInd in range(len(meds_correlatedProceduresCoefficients.loc[med].procsCrossFreq.values)): mytups.append((thisMedYear.procsCrossFreq.values[procInd], thisMedYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) ## MEDS TO HPO def patientsCrossFreqMedsHPOs(x): patientsWithThisRX = list(set(x.PATID.tolist())) # Link to hpo table commonPatientsHPOs = df_phenotypes[(df_phenotypes.PATID.isin(patientsWithThisRX)) & (df_phenotypes.admitYear == pd.to_datetime(x.RX_START_DATE).dt.year.unique()[0])] return pd.Series({'hposCrossFreq': commonPatientsHPOs.HPO.value_counts().index, 'counts': commonPatientsHPOs.HPO.value_counts().values}) meds_correlatedPhenotypesCoefficients = (grouped_meds.apply(patientsCrossFreqMedsHPOs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for med in meds_correlatedPhenotypesCoefficients.index: thisMedYear = meds_correlatedPhenotypesCoefficients.loc[med] thisMed = med[0] thisYear = med[1] totalCrossTab = np.sum(thisMedYear.counts) for phenoInd in range(len(meds_correlatedPhenotypesCoefficients.loc[med].hposCrossFreq.values)): mytups.append((thisMedYear.hposCrossFreq.values[phenoInd], thisMedYear.counts[phenoInd]/totalCrossTab)) multiIndex.append((thisMed, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) meds_correlatedPhenotypesCoefficients = (pd.DataFrame.from_records(mytups, columns=['HPO','Relative_Counts'], index=index)) return (meds_medication, meds_dosageInfo, meds_frequencyPerYear, meds_fractionOfSubjects, meds_correlatedLabsCoefficients, meds_correlatedDiagsCoefficients, meds_correlatedMedsCoefficients, meds_correlatedProceduresCoefficients, meds_correlatedPhenotypesCoefficients) # Make Procedures Profile elif profileType == 'procedures': procedures_code = df_procedures.RAW_PX.unique() procedures_count = df_procedures.RAW_PX.value_counts() procedures_frequencyPerYear = (df_procedures.groupby(['RAW_PX','encounterYear','PATID']).PATID.count() .groupby(['RAW_PX','encounterYear']).mean()) procedures_fractionOfSubjects = (np.divide(df_procedures.groupby(['RAW_PX']).PATID.nunique(), df_procedures.PATID.nunique())) grouped_procs = df_procedures.groupby(['RAW_PX', 'encounterYear']) #procs_correlatedLabsCoefficients def patientsAboveBelowNormalProcsLabs(x): patientsWithThisProc = list(set(x.PATID.tolist())) # Link to labs table abnormalPatientsLabs = df_labs[(df_labs.PATID.isin(patientsWithThisProc)) & ((df_labs.RESULT_NUM > df_labs.range_high) | (df_labs.RESULT_NUM < df_labs.range_low)) & (df_labs.resultYear == pd.to_datetime(x.PX_DATE).dt.year.unique()[0])] return pd.Series({'labsAboveBelowNorm': abnormalPatientsLabs.LAB_LOINC.value_counts().index, 'counts': abnormalPatientsLabs.LAB_LOINC.value_counts().values}) procs_correlatedLabsCoefficients = (grouped_procs.apply(patientsAboveBelowNormalProcsLabs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for proc in procs_correlatedLabsCoefficients.index: thisProcYear = procs_correlatedLabsCoefficients.loc[proc] thisProc = proc[0] thisYear = proc[1] totalCrossTab = np.sum(thisProcYear.counts) for labInd in range(len(procs_correlatedLabsCoefficients.loc[proc].labsAboveBelowNorm.values)): mytups.append((thisProcYear.labsAboveBelowNorm.values[labInd], thisProcYear.counts[labInd]/totalCrossTab)) multiIndex.append((thisProc, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) procs_correlatedLabsCoefficients = (pd.DataFrame.from_records(mytups, columns=['LAB_LOINC','Relative_Counts'], index=index)) #procs_correlatedDiagsCoefficients def patientsCrossFreqProcsDiags(x): patientsWithThisProc = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsDXs = df_diagnoses[(df_diagnoses.PATID.isin(patientsWithThisProc)) & (df_diagnoses.admitYear == pd.to_datetime(x.PX_DATE).dt.year.unique()[0])] return pd.Series({'diagsCrossFreq': commonPatientsDXs.DX.value_counts().index, 'counts': commonPatientsDXs.DX.value_counts().values}) procs_correlatedDiagsCoefficients = (grouped_procs.apply(patientsCrossFreqProcsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for proc in procs_correlatedDiagsCoefficients.index: thisProcYear = procs_correlatedDiagsCoefficients.loc[proc] thisProc = proc[0] thisYear = proc[1] totalCrossTab = np.sum(thisProcYear.counts) for diagInd in range(len(procs_correlatedDiagsCoefficients.loc[proc].diagsCrossFreq.values)): mytups.append((thisProcYear.diagsCrossFreq.values[diagInd], thisProcYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisProc, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) procs_correlatedDiagsCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) #procs_correlatedMedsCoefficients def patientsCrossFreqProcsMeds(x): patientsWithThisProc = list(set(x.PATID.tolist())) # Link to labs table commonPatientsMeds = df_meds[(df_meds.PATID.isin(patientsWithThisProc)) & (df_meds.startYear == pd.to_datetime(x.PX_DATE).dt.year.unique()[0])] return pd.Series({'medsCrossFreq': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) procs_correlatedMedsCoefficients = (grouped_procs.apply(patientsCrossFreqProcsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for proc in procs_correlatedMedsCoefficients.index: thisProcYear = procs_correlatedMedsCoefficients.loc[proc] thisProc = proc[0] thisYear = proc[1] totalCrossTab = np.sum(thisProcYear.counts) for medInd in range(len(procs_correlatedMedsCoefficients.loc[proc].medsCrossFreq.values)): mytups.append((thisProcYear.medsCrossFreq.values[medInd], thisProcYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisProc, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) procs_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## PROCEDURES TO PROCEDURES def patientsCrossFreqProcsProcs(x): patientsWithThisProc = list(set(x.PATID.tolist())) # Link to procs table commonPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsWithThisProc) & (df_procedures.encounterYear == pd.to_datetime(x.PX_DATE).dt.year.unique()[0])] return pd.Series({'procsCrossFreq': commonPatientsProcs.RAW_PX.value_counts().index, 'counts': commonPatientsProcs.RAW_PX.value_counts().values}) procs_correlatedProceduresCoefficients = (grouped_procs.apply(patientsCrossFreqProcsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for proc in procs_correlatedProceduresCoefficients.index: thisProcYear = procs_correlatedProceduresCoefficients.loc[proc] thisProc = proc[0] thisYear = proc[1] totalCrossTab = np.sum(thisProcYear.counts) for procInd in range(len(procs_correlatedProceduresCoefficients.loc[proc].procsCrossFreq.values)): mytups.append((thisProcYear.procsCrossFreq.values[procInd], thisProcYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisProc, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) procs_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) # procedures to hpo def patientsCrossFreqProcsHPOs(x): patientsWithThisProc = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsHPOs = df_phenotypes[(df_phenotypes.PATID.isin(patientsWithThisProc)) & (df_phenotypes.admitYear == pd.to_datetime(x.PX_DATE).dt.year.unique()[0])] return pd.Series({'hposCrossFreq': commonPatientsHPOs.HPO.value_counts().index, 'counts': commonPatientsHPOs.HPO.value_counts().values}) procs_correlatedPhenotypesCoefficients = (grouped_procs.apply(patientsCrossFreqProcsHPOs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for proc in procs_correlatedPhenotypesCoefficients.index: thisProcYear = procs_correlatedPhenotypesCoefficients.loc[proc] thisProc = proc[0] thisYear = proc[1] totalCrossTab = np.sum(thisProcYear.counts) for phenoInd in range(len(procs_correlatedPhenotypesCoefficients.loc[proc].hposCrossFreq.values)): mytups.append((thisProcYear.hposCrossFreq.values[phenoInd], thisProcYear.counts[phenoInd]/totalCrossTab)) multiIndex.append((thisProc, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) procs_correlatedPhenotypesCoefficients = (pd.DataFrame.from_records(mytups, columns=['HPO','Relative_Counts'], index=index)) return (procedures_code, procedures_count, procedures_frequencyPerYear, procedures_fractionOfSubjects, procs_correlatedLabsCoefficients, procs_correlatedDiagsCoefficients, procs_correlatedMedsCoefficients, procs_correlatedProceduresCoefficients, procs_correlatedPhenotypesCoefficients) # Make Diagnoses Profile elif profileType == 'diagnoses': diagnoses_code = df_diagnoses.DX.unique() diagnoses_count = df_diagnoses.DX.value_counts() diagnoses_frequencyPerYear = (df_diagnoses.groupby(['DX','admitYear','PATID']).PATID .count().groupby(['DX','admitYear']).mean()) diagnoses_fractionOfSubjects = (np.divide(df_diagnoses.groupby(['DX']).PATID.nunique(), df_diagnoses.PATID.nunique())) grouped_diags = df_diagnoses.groupby(['DX','admitYear']) #diags_correlatedLabsCoefficients def patientsAboveBelowNormalDiagsLabs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to labs table abnormalPatientsLabs = df_labs[(df_labs.PATID.isin(patientsWithThisDiag)) & ((df_labs.RESULT_NUM > df_labs.range_high) | (df_labs.RESULT_NUM < df_labs.range_low)) & (df_labs.resultYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'labsAboveBelowNorm': abnormalPatientsLabs.LAB_LOINC.value_counts().index, 'counts': abnormalPatientsLabs.LAB_LOINC.value_counts().values}) diags_correlatedLabsCoefficients = (grouped_diags.apply(patientsAboveBelowNormalDiagsLabs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in diags_correlatedLabsCoefficients.index: thisDiagYear = diags_correlatedLabsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for labInd in range(len(diags_correlatedLabsCoefficients.loc[diag].labsAboveBelowNorm.values)): mytups.append((thisDiagYear.labsAboveBelowNorm.values[labInd], thisDiagYear.counts[labInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) diags_correlatedLabsCoefficients = (pd.DataFrame.from_records(mytups, columns=['LAB_LOINC','Relative_Counts'], index=index)) #diags_correlatedDiagsCoefficients def patientsCrossFreqDiagsDiags(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsDXs = df_diagnoses[(df_diagnoses.PATID.isin(patientsWithThisDiag)) & (df_diagnoses.admitYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'diagsCrossFreq': commonPatientsDXs.DX.value_counts().index, 'counts': commonPatientsDXs.DX.value_counts().values}) diags_correlatedDiagsCoefficients = (grouped_diags.apply(patientsCrossFreqDiagsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in diags_correlatedDiagsCoefficients.index: thisDiagYear = diags_correlatedDiagsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for diagInd in range(len(diags_correlatedDiagsCoefficients.loc[diag].diagsCrossFreq.values)): mytups.append((thisDiagYear.diagsCrossFreq.values[diagInd], thisDiagYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) diags_correlatedDiagsCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) #diags_correlatedMedsCoefficients def patientsCrossFreqDiagsMeds(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to labs table commonPatientsMeds = df_meds[(df_meds.PATID.isin(patientsWithThisDiag)) & (df_meds.startYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'medsCrossFreq': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) diags_correlatedMedsCoefficients = (grouped_diags.apply(patientsCrossFreqDiagsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in diags_correlatedMedsCoefficients.index: thisDiagYear = diags_correlatedMedsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for medInd in range(len(diags_correlatedMedsCoefficients.loc[diag].medsCrossFreq.values)): mytups.append((thisDiagYear.medsCrossFreq.values[medInd], thisDiagYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) diags_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## DIAGNOSES TO PROCEDURES def patientsCrossFreqDiagsProcs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to procs table commonPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsWithThisDiag) & (df_procedures.encounterYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'procsCrossFreq': commonPatientsProcs.RAW_PX.value_counts().index, 'counts': commonPatientsProcs.RAW_PX.value_counts().values}) diags_correlatedProceduresCoefficients = (grouped_diags.apply(patientsCrossFreqDiagsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in diags_correlatedProceduresCoefficients.index: thisDiagYear = diags_correlatedProceduresCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for procInd in range(len(diags_correlatedProceduresCoefficients.loc[diag].procsCrossFreq.values)): mytups.append((thisDiagYear.procsCrossFreq.values[procInd], thisDiagYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) diags_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) #diags_correlatedPhenotypesCoefficients def patientsCrossFreqDiagsHPOs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsHPOs = df_phenotypes[(df_phenotypes.PATID.isin(patientsWithThisDiag)) & (df_phenotypes.admitYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'hposCrossFreq': commonPatientsHPOs.HPO.value_counts().index, 'counts': commonPatientsHPOs.HPO.value_counts().values}) diags_correlatedPhenotypesCoefficients = (grouped_diags.apply(patientsCrossFreqDiagsHPOs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in diags_correlatedPhenotypesCoefficients.index: thisDiagYear = diags_correlatedPhenotypesCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for phenoInd in range(len(diags_correlatedPhenotypesCoefficients.loc[diag].hposCrossFreq.values)): mytups.append((thisDiagYear.hposCrossFreq.values[phenoInd], thisDiagYear.counts[phenoInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) diags_correlatedPhenotypesCoefficients = (pd.DataFrame.from_records(mytups, columns=['HPO','Relative_Counts'], index=index)) return (diagnoses_code, diagnoses_count, diagnoses_frequencyPerYear, diagnoses_fractionOfSubjects, diags_correlatedLabsCoefficients, diags_correlatedDiagsCoefficients, diags_correlatedMedsCoefficients, diags_correlatedProceduresCoefficients, diags_correlatedPhenotypesCoefficients) # Make Phenotypes Profile elif profileType == 'phenotypes': phenotypes_code = df_phenotypes.HPO.unique() phenotypes_count = df_phenotypes.HPO.value_counts() phenotypes_frequencyPerYear = (df_phenotypes.groupby(['HPO','admitYear','PATID']).PATID .count().groupby(['HPO','admitYear']).mean()) phenotypes_fractionOfSubjects = (np.divide(df_phenotypes.groupby(['HPO']).PATID.nunique(), df_phenotypes.PATID.nunique())) grouped_phenotypes = df_phenotypes.groupby(['HPO','admitYear']) #diags_correlatedLabsCoefficients def patientsAboveBelowNormalDiagsLabs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to labs table abnormalPatientsLabs = df_labs[(df_labs.PATID.isin(patientsWithThisDiag)) & ((df_labs.RESULT_NUM > df_labs.range_high) | (df_labs.RESULT_NUM < df_labs.range_low)) & (df_labs.resultYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'labsAboveBelowNorm': abnormalPatientsLabs.LAB_LOINC.value_counts().index, 'counts': abnormalPatientsLabs.LAB_LOINC.value_counts().values}) phenos_correlatedLabsCoefficients = (grouped_phenotypes.apply(patientsAboveBelowNormalDiagsLabs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in phenos_correlatedLabsCoefficients.index: thisDiagYear = phenos_correlatedLabsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for labInd in range(len(phenos_correlatedLabsCoefficients.loc[diag].labsAboveBelowNorm.values)): mytups.append((thisDiagYear.labsAboveBelowNorm.values[labInd], thisDiagYear.counts[labInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) phenos_correlatedLabsCoefficients = (pd.DataFrame.from_records(mytups, columns=['LAB_LOINC','Relative_Counts'], index=index)) #diags_correlatedDiagsCoefficients def patientsCrossFreqDiagsDiags(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsDXs = df_diagnoses[(df_diagnoses.PATID.isin(patientsWithThisDiag)) & (df_diagnoses.admitYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'diagsCrossFreq': commonPatientsDXs.DX.value_counts().index, 'counts': commonPatientsDXs.DX.value_counts().values}) phenos_correlatedDiagsCoefficients = (grouped_phenotypes.apply(patientsCrossFreqDiagsDiags)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in phenos_correlatedDiagsCoefficients.index: thisDiagYear = phenos_correlatedDiagsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for diagInd in range(len(phenos_correlatedDiagsCoefficients.loc[diag].diagsCrossFreq.values)): mytups.append((thisDiagYear.diagsCrossFreq.values[diagInd], thisDiagYear.counts[diagInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) phenos_correlatedDiagsCoefficients = (pd.DataFrame.from_records(mytups, columns=['DX','Relative_Counts'], index=index)) #diags_correlatedMedsCoefficients def patientsCrossFreqDiagsMeds(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to labs table commonPatientsMeds = df_meds[(df_meds.PATID.isin(patientsWithThisDiag)) & (df_meds.startYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'medsCrossFreq': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().index, 'counts': commonPatientsMeds.JH_INGREDIENT_RXNORM_CODE.value_counts().values}) phenos_correlatedMedsCoefficients = (grouped_phenotypes.apply(patientsCrossFreqDiagsMeds)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in phenos_correlatedMedsCoefficients.index: thisDiagYear = phenos_correlatedMedsCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for medInd in range(len(phenos_correlatedMedsCoefficients.loc[diag].medsCrossFreq.values)): mytups.append((thisDiagYear.medsCrossFreq.values[medInd], thisDiagYear.counts[medInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) phenos_correlatedMedsCoefficients = (pd.DataFrame.from_records(mytups, columns=['JH_INGREDIENT_RXNORM_CODE','Relative_Counts'], index=index)) ## DIAGNOSES TO PROCEDURES def patientsCrossFreqDiagsProcs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to procs table commonPatientsProcs = df_procedures[df_procedures.PATID.isin(patientsWithThisDiag) & (df_procedures.encounterYear == pd.to_datetime(x.ADMIT_DATE).dt.year.unique()[0])] return pd.Series({'procsCrossFreq': commonPatientsProcs.RAW_PX.value_counts().index, 'counts': commonPatientsProcs.RAW_PX.value_counts().values}) phenos_correlatedProceduresCoefficients = (grouped_phenotypes.apply(patientsCrossFreqDiagsProcs)) # Currently a little hacky, but seems fast mytups = list() multiIndex = list() for diag in phenos_correlatedProceduresCoefficients.index: thisDiagYear = phenos_correlatedProceduresCoefficients.loc[diag] thisDiag = diag[0] thisYear = diag[1] totalCrossTab = np.sum(thisDiagYear.counts) for procInd in range(len(phenos_correlatedProceduresCoefficients.loc[diag].procsCrossFreq.values)): mytups.append((thisDiagYear.procsCrossFreq.values[procInd], thisDiagYear.counts[procInd]/totalCrossTab)) multiIndex.append((thisDiag, thisYear)) index = pd.MultiIndex.from_tuples(multiIndex) phenos_correlatedProceduresCoefficients = (pd.DataFrame.from_records(mytups, columns=['RAW_PX','Relative_Counts'], index=index)) #diags_correlatedPhenotypesCoefficients def patientsCrossFreqDiagsHPOs(x): patientsWithThisDiag = list(set(x.PATID.tolist())) # Link to diagnoses table commonPatientsHPOs = df_phenotypes[(df_phenotypes.PATID.isin(patientsWithThisDiag)) & (df_phenotypes.admitYear ==
pd.to_datetime(x.ADMIT_DATE)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Sun May 21 13:13:26 2017 @author: ning """ import pandas as pd import os import numpy as np import matplotlib.pyplot as plt import pickle try: function_dir = 'D:\\NING - spindle\\Spindle_by_Graphical_Features' os.chdir(function_dir) except: function_dir = 'C:\\Users\\ning\\OneDrive\\python works\\Spindle_by_Graphical_Features' os.chdir(function_dir) import eegPipelineFunctions try: file_dir = 'D:\\NING - spindle\\training set\\road_trip\\' # file_dir = 'D:\\NING - spindle\\training set\\road_trip_29_channels\\' os.chdir(file_dir) except: file_dir = 'C:\\Users\\ning\\Downloads\\road_trip\\' # file_dir = 'C:\\Users\\ning\\Downloads\\road_trip_29_channels\\' os.chdir(file_dir) if False: signal_features_dict = {} graph_features_dict = {} for directory_1 in [f for f in os.listdir(file_dir) if ('epoch_length' in f)]: sub_dir = file_dir + directory_1 + '\\' epoch_length = directory_1[-3] os.chdir(sub_dir) df_cc, df_pli, df_plv, df_signal,df_graph = [],[],[],[],[] for sub_fold in os.listdir(sub_dir): sub_fold_dir = sub_dir + sub_fold + '\\' os.chdir(sub_fold_dir) cc_features, pli_features, plv_features, signal_features = [pd.read_csv(f) for f in os.listdir(sub_fold_dir) if ('csv' in f)] #df_cc.append(cc_features) #df_pli.append(pli_features) #df_plv.append(plv_features) label = cc_features['label'] cc_features = eegPipelineFunctions.get_real_part(cc_features) pli_features = eegPipelineFunctions.get_real_part(pli_features) plv_features = eegPipelineFunctions.get_real_part(plv_features) cc_features.columns = ['cc_'+name for name in cc_features] pli_features.columns = ['pli_'+name for name in pli_features] plv_features.columns = ['plv_'+name for name in plv_features] cc_features = cc_features.drop('cc_label',1) pli_features = pli_features.drop('pli_label',1) plv_features = plv_features.drop('plv_label',1) df_combine = pd.concat([cc_features,pli_features,plv_features],axis=1) df_combine['label']=label df_signal.append(signal_features) df_graph.append(df_combine) signal_features_dict[directory_1] = pd.concat(df_signal) graph_features_dict[directory_1] =
pd.concat(df_graph)
pandas.concat
"""Extended DataFrame functionality.""" from typing import Any, Iterator, Optional, Sequence, Text, Tuple, Union, cast import numpy as np import pandas as pd from snmp_fetch.utils import cuint8_to_int from .types import ip_address as ip def column_names( n: Optional[int] = None, alphabet: Sequence[Text] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ) -> Iterator[Text]: """Generate unique temporary column names.""" base_gen = column_names(alphabet=alphabet) base = '' letters = alphabet while True: if n is not None: if n <= 0: return n = n - 1 if not letters: base = next(base_gen) # pylint: disable=stop-iteration-return # infinite generator letters = alphabet column, letters = letters[0], letters[1:] yield base + column @
pd.api.extensions.register_dataframe_accessor('inet')
pandas.api.extensions.register_dataframe_accessor
# -*- coding: utf-8 -*- """ Created on Thu Feb 10 00:10:23 2022 @author: <NAME> Adapted from <NAME> """ r""" Forward Model """ # Standard Library imports import gzip import numpy as np import pandas as pd import xarray as xr # Third party imports from collections import OrderedDict # Semi-local imports import name_qch4_couple.io # Local imports import routines # Function used to create the emissions map # For Section 2.9.: factor_q = a (Table B.1); factor_s = b (Table B.1); factor_sce = 0 # For Section 2.11.: factor_q = 1; factos_s = 1; factor_sce - Table 2.4 def read_Qsink(dates_tHour, factor_q, factor_s, factor_sce): grid_info = routines.define_grid() nlat = grid_info['nlat'] nlon = grid_info['nlon'] Qfiles_H2 = OrderedDict([ (0, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_AWB.nc', 'CO_emissions', '1M'], ]), (1, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_ENE.nc', 'CO_emissions', '1M'], ]), (2, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_REF.nc', 'CO_emissions', '1M'], ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_IND.nc', 'CO_emissions', '1M'], ]), (3, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_CDS.nc', 'CO_emissions', '1M'], ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_CRS.nc', 'CO_emissions', '1M'], ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_TRO.nc', 'CO_emissions', '1M'], ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_LTO.nc', 'CO_emissions', '1M'], ]), (4, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_RCO.nc', 'CO_emissions', '1M'], ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_PRO.nc', 'CO_emissions', '1M'], ]), (5, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_FFF.nc', 'CO_emissions', '1M'], ]), (6, [ ['inputs/emissions/CO_emissions_processed/prior_edgar_v6_0_co_SWD.nc', 'CO_emissions', '1M'], ]), (7, [ ['inputs/emissions/biomass/gfed_2012.nc', 'H2_emissions', '1M'], ]), (8, [ ['inputs/emissions/prior_edgar_v6_0_PRO_GAS.nc', 'CH4_emissions', '1M'], ]), ]) Q_factor = { 0: [0.0357], 1: [0.0143], 2: [0.0143], 3: [0.0357], 4: [0.0217], 5: [0.0143], 6: [0.005], 7: [1], 8: [factor_sce], } Q = np.zeros((nlat, nlon)) for s, vs in Qfiles_H2.items(): for v in vs: with xr.open_dataset(v[0]) as ds_read: with ds_read.load() as Q_in: t_Q = Q_in['time'] if v[2] == '1Y': t = np.datetime64( dates_tHour[0].floor('d').replace(month=1, day=1) ) t_in = min(t_Q, key=lambda x: abs(x - t)) else: t = np.datetime64( dates_tHour[0].floor('d').replace(day=1) ) t_in = min( t_Q[t_Q.dt.month==dates_tHour[0].month], key=lambda x: abs(x - t) ) Q += Q_in[v[1]].sel(time=t_in).values * Q_factor[s] * 1.e3 * factor_q # kg -> g lwfile = 'inputs/sink/land_mask.nc' with xr.open_dataset(lwfile) as ds_read: lwin = ds_read.load() soil_sink = np.array(lwin.lo_land)/100 * -0.000000005 * factor_s Q += soil_sink return Q def r_decc(fpath): odata = pd.read_csv( fpath, usecols=lambda x: x.lower() in ['time', 'h2_ppb'], index_col=['time'], skipinitialspace=True, parse_dates=['time'] ).dropna() odata.columns = odata.columns.str.lower() return odata def read_obs(timestamps, site, factor, resample='1H'): date = timestamps[0].strftime('%Y-%m') t0 = timestamps[0].strftime('%Y-%m-%d %H') t1 = timestamps[-1].strftime('%Y-%m-%d %H') if site == 'WAO': ifile = 'inputs/obs/WAO_H2_oct2021.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 elif site == 'MHD_10magl': ifile = 'inputs/baseline/MHD_2018.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 elif site == 'bas': ifile = 'outputs/models/mhd_bas/chi0_proc.csv' col_or_no = 'chi0p_H2' sigma_col_or_no = 0.2 elif site == 'mod': ifile = f'outputs/scenarios/new_merged/merged_wao_scenario_{factor}.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 elif site == 'bas_mhd': ifile = 'outputs/scenarios/merged/merged_bas_mhd.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 elif site == 'bas_wao': ifile = 'outputs/scenarios/merged/merged_bas_wao.csv' col_or_no = 'h2_ppb' sigma_col_or_no = 0.2 else: ifile = False col_or_no = np.nan sigma_col_or_no = np.nan if ifile: all_obs_raw = r_decc(ifile).sort_index().loc[t0:t1] obs_raw = all_obs_raw[col_or_no] sigma_obs_raw = (all_obs_raw[sigma_col_or_no] if isinstance(sigma_col_or_no, str) else pd.Series(sigma_col_or_no, index=all_obs_raw.index)) if isinstance(col_or_no, str): obs = (obs_raw if resample is False else obs_raw.resample('1H').mean().reindex(timestamps)) else: obs = pd.Series(col_or_no, index=timestamps) if isinstance(sigma_col_or_no, str) or isinstance(col_or_no, str): sigma_obs = ( sigma_obs_raw if resample is False else sigma_obs_raw.resample('1H').apply( lambda x: np.sum(x**2)).reindex(timestamps)) else: sigma_obs = pd.Series(sigma_col_or_no, index=timestamps) return obs, sigma_obs def read_baseline(timestamps, site, btype="default"): date = timestamps[0].strftime('%Y-%m') year = timestamps[0].strftime('%Y') if site == 'MHD_10magl': if btype == 'default': chi0file = ( 'outputs/baseline/baseline-MHD_10magl-h2-2018.nc' ) with xr.open_dataset(chi0file) as ds_read: #put as with ds_read.load() as ds: chi0 = ds.chi_H2.sel(time=date).to_series() var_chi0 = ds.var_chi_H2.sel(time=date).to_series() elif btype == 'intem': if timestamps[0] < pd.to_datetime('2020-07'): bmonth = '2020-07' bflag = 1 elif timestamps[0] > pd.to_datetime('2020-12'): bmonth = '2020-12' bflag = 2 else: bmonth = date bflag = 0 m_sta = (pd.to_datetime(bmonth)).date().strftime('%Y%m%d') m_end = ( pd.to_datetime(bmonth)+pd.tseries.offsets.MonthEnd(0) ).date().strftime('%Y%m%d') chi0file = ( '/home/ec5/hpc-work/data_archive/decc/' 'EUROPE_UKV_HFD_100magl/Pos_CH4/' 'H1_C_MHT1T2R1ANH1B2CBWB_ch4_OBUSEXL_4h_Fnc10_' f'{m_sta}-{m_end}_average_f.gz' ) with gzip.open(chi0file, mode='r') as chi0in: chi0_0all = pd.read_csv( chi0in, sep=' ', skipinitialspace=True, skiprows=[5], header=4, parse_dates={'datetime': ['YYYY', 'MM', 'DD', 'HH', 'MI']}, #converters={ # 'datetime': lambda Y, m, d, H, M: # pd.to_datetime(f'{Y} {m} {d} {H} {M}', # format='%Y %m %d %H %M'), # }, #index_col='datetime' ) chi0_0all.index = pd.to_datetime( chi0_0all['datetime'], format='%Y %m %d %H %M') chi0_0 = chi0_0all['BasePos'] var_chi0_0 = chi0_0all['BasePos'] if bflag == 1: chi0 =
pd.Series(chi0_0.iloc[-1], index=timestamps)
pandas.Series
import pandas as pd from business_rules.operators import (DataframeType, StringType, NumericType, BooleanType, SelectType, SelectMultipleType, GenericType) from . import TestCase from decimal import Decimal import sys import pandas class StringOperatorTests(TestCase): def test_operator_decorator(self): self.assertTrue(StringType("foo").equal_to.is_operator) def test_string_equal_to(self): self.assertTrue(StringType("foo").equal_to("foo")) self.assertFalse(StringType("foo").equal_to("Foo")) def test_string_not_equal_to(self): self.assertTrue(StringType("foo").not_equal_to("Foo")) self.assertTrue(StringType("foo").not_equal_to("boo")) self.assertFalse(StringType("foo").not_equal_to("foo")) def test_string_equal_to_case_insensitive(self): self.assertTrue(StringType("foo").equal_to_case_insensitive("FOo")) self.assertTrue(StringType("foo").equal_to_case_insensitive("foo")) self.assertFalse(StringType("foo").equal_to_case_insensitive("blah")) def test_string_starts_with(self): self.assertTrue(StringType("hello").starts_with("he")) self.assertFalse(StringType("hello").starts_with("hey")) self.assertFalse(StringType("hello").starts_with("He")) def test_string_ends_with(self): self.assertTrue(StringType("hello").ends_with("lo")) self.assertFalse(StringType("hello").ends_with("boom")) self.assertFalse(StringType("hello").ends_with("Lo")) def test_string_contains(self): self.assertTrue(StringType("hello").contains("ell")) self.assertTrue(StringType("hello").contains("he")) self.assertTrue(StringType("hello").contains("lo")) self.assertFalse(StringType("hello").contains("asdf")) self.assertFalse(StringType("hello").contains("ElL")) def test_string_matches_regex(self): self.assertTrue(StringType("hello").matches_regex(r"^h")) self.assertFalse(StringType("hello").matches_regex(r"^sh")) def test_non_empty(self): self.assertTrue(StringType("hello").non_empty()) self.assertFalse(StringType("").non_empty()) self.assertFalse(StringType(None).non_empty()) class NumericOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, err_string): NumericType("foo") def test_numeric_type_validates_and_casts_decimal(self): ten_dec = Decimal(10) ten_int = 10 ten_float = 10.0 if sys.version_info[0] == 2: ten_long = long(10) else: ten_long = int(10) # long and int are same in python3 ten_var_dec = NumericType(ten_dec) # this should not throw an exception ten_var_int = NumericType(ten_int) ten_var_float = NumericType(ten_float) ten_var_long = NumericType(ten_long) self.assertTrue(isinstance(ten_var_dec.value, Decimal)) self.assertTrue(isinstance(ten_var_int.value, Decimal)) self.assertTrue(isinstance(ten_var_float.value, Decimal)) self.assertTrue(isinstance(ten_var_long.value, Decimal)) def test_numeric_equal_to(self): self.assertTrue(NumericType(10).equal_to(10)) self.assertTrue(NumericType(10).equal_to(10.0)) self.assertTrue(NumericType(10).equal_to(10.000001)) self.assertTrue(NumericType(10.000001).equal_to(10)) self.assertTrue(NumericType(Decimal('10.0')).equal_to(10)) self.assertTrue(NumericType(10).equal_to(Decimal('10.0'))) self.assertFalse(NumericType(10).equal_to(10.00001)) self.assertFalse(NumericType(10).equal_to(11)) def test_numeric_not_equal_to(self): self.assertTrue(NumericType(10).not_equal_to(10.00001)) self.assertTrue(NumericType(10).not_equal_to(11)) self.assertTrue(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.1'))) self.assertFalse(NumericType(10).not_equal_to(10)) self.assertFalse(NumericType(10).not_equal_to(10.0)) self.assertFalse(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.0'))) def test_other_value_not_numeric(self): error_string = "10 is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, error_string): NumericType(10).equal_to("10") def test_numeric_greater_than(self): self.assertTrue(NumericType(10).greater_than(1)) self.assertFalse(NumericType(10).greater_than(11)) self.assertTrue(NumericType(10.1).greater_than(10)) self.assertFalse(NumericType(10.000001).greater_than(10)) self.assertTrue(NumericType(10.000002).greater_than(10)) def test_numeric_greater_than_or_equal_to(self): self.assertTrue(NumericType(10).greater_than_or_equal_to(1)) self.assertFalse(NumericType(10).greater_than_or_equal_to(11)) self.assertTrue(NumericType(10.1).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000001).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000002).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10).greater_than_or_equal_to(10)) def test_numeric_less_than(self): self.assertTrue(NumericType(1).less_than(10)) self.assertFalse(NumericType(11).less_than(10)) self.assertTrue(NumericType(10).less_than(10.1)) self.assertFalse(NumericType(10).less_than(10.000001)) self.assertTrue(NumericType(10).less_than(10.000002)) def test_numeric_less_than_or_equal_to(self): self.assertTrue(NumericType(1).less_than_or_equal_to(10)) self.assertFalse(NumericType(11).less_than_or_equal_to(10)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.1)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000001)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000002)) self.assertTrue(NumericType(10).less_than_or_equal_to(10)) class BooleanOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType("foo") err_string = "None is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType(None) def test_boolean_is_true_and_is_false(self): self.assertTrue(BooleanType(True).is_true()) self.assertFalse(BooleanType(True).is_false()) self.assertFalse(BooleanType(False).is_true()) self.assertTrue(BooleanType(False).is_false()) class SelectOperatorTests(TestCase): def test_contains(self): self.assertTrue(SelectType([1, 2]).contains(2)) self.assertFalse(SelectType([1, 2]).contains(3)) self.assertTrue(SelectType([1, 2, "a"]).contains("A")) def test_does_not_contain(self): self.assertTrue(SelectType([1, 2]).does_not_contain(3)) self.assertFalse(SelectType([1, 2]).does_not_contain(2)) self.assertFalse(SelectType([1, 2, "a"]).does_not_contain("A")) class SelectMultipleOperatorTests(TestCase): def test_contains_all(self): self.assertTrue(SelectMultipleType([1, 2]). contains_all([2, 1])) self.assertFalse(SelectMultipleType([1, 2]). contains_all([2, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). contains_all([2, 1, "A"])) def test_is_contained_by(self): self.assertTrue(SelectMultipleType([1, 2]). is_contained_by([2, 1, 3])) self.assertFalse(SelectMultipleType([1, 2]). is_contained_by([2, 3, 4])) self.assertTrue(SelectMultipleType([1, 2, "a"]). is_contained_by([2, 1, "A"])) def test_shares_at_least_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_at_least_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_at_least_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_at_least_one_element_with([4, "A"])) def test_shares_exactly_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_exactly_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_exactly_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_exactly_one_element_with([4, "A"])) self.assertFalse(SelectMultipleType([1, 2, 3]). shares_exactly_one_element_with([2, 3, "a"])) def test_shares_no_elements_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_no_elements_with([4, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_no_elements_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2, "a"]). shares_no_elements_with([4, "A"])) class DataframeOperatorTests(TestCase): def test_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ], }) result: pd.Series = DataframeType({"value": df}).exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_not_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ] }) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, "", 7, ], "var2": [3, 5, 6, "", 2, ], "var3": [1, 3, 8, "", 7, ], "var4": ["test", "issue", "one", "", "two", ] }) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to({ "target": "--r1", "comparator": "--r3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 20 }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var4", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False, False, ]))) def test_not_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": 20 }).equals(pandas.Series([True, True, True]))) def test_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "", "new", "val"], "var2": ["WORD", "", "test", "VAL"], "var3": ["LET", "", "GO", "read"] }) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "NEW" }).equals(pandas.Series([False, False, True, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False]))) def test_not_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "new", "val"], "var2": ["WORD", "test", "VAL"], "var3": ["LET", "GO", "read"], "var4": ["WORD", "NEW", "VAL"] }) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) def test_less_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than({ "target": "--r1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": 3 }).equals(pandas.Series([True, True, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than_or_equal_to({ "target": "--r1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([False, False, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 5, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than_or_equal_to({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_greater_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": 5000 }).equals(pandas.Series([False, False, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than_or_equal_to({ "target": "var1", "comparator": "--r4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([True, True, False]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 3, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than_or_equal_to({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_contains(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([True, False, False]))) def test_does_not_contain(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": 5 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).does_not_contain({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([False, True, True]))) def test_contains_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["pikachu", "charmander", "squirtle"], "var2": ["PIKACHU", "CHARIZARD", "BULBASAUR"], "var3": ["POKEMON", "CHARIZARD", "BULBASAUR"], "var4": [ ["pikachu", "charizard", "bulbasaur"], ["chikorita", "cyndaquil", "totodile"], ["chikorita", "cyndaquil", "totodile"] ] }) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "PIKACHU" }).equals(
pandas.Series([True, False, False])
pandas.Series
from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd # plt.close("all") CURRENT_DIRECTORY = Path(__file__).parent def plot_01(): ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) ts = ts.cumsum() ts.plot() # Display plot in Pycharm or terminal # plt.show() plt.savefig(CURRENT_DIRECTORY / 'pandas_plot_01.png') def plot_02(): ts = pd.Series(np.random.randn(1000), index=
pd.date_range('1/1/2000', periods=1000)
pandas.date_range
#!/usr/bin/env python # coding: utf-8 # In[4]: # -*- coding: utf-8 -*- """ Created on Tue May 4 17:39:59 2021 Collection of custom evaluation functions for embedding @author: marathomas """ import numpy as np import pandas as pd from sklearn.neighbors import NearestNeighbors from sklearn.metrics import silhouette_samples, silhouette_score import seaborn as sns import matplotlib.pyplot as plt def make_nn_stats_dict(calltypes, labels, nb_indices): """ Function that evaluates the labels of the k nearest neighbors of all datapoints in a dataset. Parameters ---------- calltypes : 1D numpy array (string) or list of strings set of class labels labels: 1D numpy array (string) or list of strings vector/list of class labels in dataset nb_indices: 2D numpy array (numeric integer) Array I(X,k) containing the indices of the k nearest nearest neighbors for each datapoint X of a dataset Returns ------- nn_stats_dict : dictionary[<class label string>] = 2D numpy array (numeric) dictionary that contains one array for each type of label. Given a label L, nn_stats_dict[L] contains an array A(X,Y), where Y is the number of class labels in the dataset and each row X represents a datapoint of label L in the dataset. A[i,j] is the number of nearest neighbors of datapoint i that are of label calltypes[j]. Example ------- >>> """ nn_stats_dict = {} for calltype in calltypes: # which datapoints in the dataset are of this specific calltype? # -> get their indices call_indices = np.asarray(np.where(labels==calltype))[0] # initialize array that can save the class labels of the k nearest # neighbors of all these datapoints calltype_counts = np.zeros((call_indices.shape[0],len(calltypes))) # for each datapoint for i,ind in enumerate(call_indices): # what are the indices of its k nearest neighbors nearest_neighbors = nb_indices[ind] # for eacht of these neighbors for neighbor in nearest_neighbors: # what is their label neighbor_label = labels[neighbor] # put a +1 in the array calltype_counts[i,np.where(np.asarray(calltypes)==neighbor_label)[0][0]] += 1 # save the resulting array in dictionary # (1 array per calltype) nn_stats_dict[calltype] = calltype_counts return nn_stats_dict def get_knn(k,embedding): """ Function that finds k nearest neighbors (based on euclidean distance) for each datapoint in a multidimensional dataset Parameters ---------- k : integer number of nearest neighbors embedding: 2D numpy array (numeric) a dataset E(X,Y) with X datapoints and Y dimensions Returns ------- indices: 2D numpy array (numeric) Array I(X,k) containing the indices of the k nearest nearest neighbors for each datapoint X of the input dataset distances: 2D numpy array (numeric) Array D(X,k) containing the euclidean distance to each of the k nearest neighbors for each datapoint X of the input dataset. D[i,j] is the euclidean distance of datapoint embedding[i,:] to its jth neighbor. Example ------- >>> """ # Find k nearest neighbors nbrs = NearestNeighbors(metric='euclidean',n_neighbors=k+1, algorithm='brute').fit(embedding) distances, indices = nbrs.kneighbors(embedding) # need to remove the first neighbor, because that is the datapoint itself indices = indices[:,1:] distances = distances[:,1:] return indices, distances def make_statstabs(nn_stats_dict, calltypes, labels,k): """ Function that generates two summary tables containing the frequency of different class labels among the k nearest neighbors of datapoints belonging to a class. Parameters ---------- nn_stats_dict : dictionary[<class label string>] = 2D numpy array (numeric) dictionary that contains one array for each type of label. Given a label L, nn_stats_dict[L] contains an array A(X,Y), where Y is the number of class labels in the dataset and each row X represents a datapoint of label L in the dataset. A[i,j] is the number of nearest neighbors of datapoint i that are of label calltypes[j]. (is returned from evaulation_functions.make_nn_statsdict) calltypes : 1D numpy array (string) or list of strings set of class labels labels: 1D numpy array (string) or list of strings vector/list of class labels in dataset k: Integer number of nearest neighbors Returns ------- stats_tab: 2D pandas dataframe (numeric) Summary table T(X,Y) with X,Y = number of classes. T[i,j] is the average percentage of datapoints with class label j in the neighborhood of datapoints with class label i stats_tab_norm: 2D pandas dataframe (numeric) Summary table N(X,Y) with X,Y = number of classes. N[i,j] is the log2-transformed ratio of the percentage of datapoints with class label j in the neighborhood of datapoints with class label i to the percentage that would be expected by random chance and random distribution. (N[i,j] = log2(T[i,j]/random_expect)) Example ------- >>> """ # Get the class frequencies in the dataset overall = np.zeros((len(calltypes))) for i,calltype in enumerate(calltypes): overall[i] = sum(labels==calltype) overall = (overall/np.sum(overall))*100 # Initialize empty array for stats_tab and stats_tab_norm stats_tab = np.zeros((len(calltypes),len(calltypes))) stats_tab_norm = np.zeros((len(calltypes),len(calltypes))) # For each calltype for i, calltype in enumerate(calltypes): # Get the table with all neighbor label counts per datapoint stats = nn_stats_dict[calltype] # Average across all datapoints and transform to percentage stats_tab[i,:] = (np.mean(stats,axis=0)/k)*100 # Divide by overall percentage of this class in dataset # for the normalized statstab version stats_tab_norm[i,:] = ((np.mean(stats,axis=0)/k)*100)/overall # Turn into dataframe stats_tab =
pd.DataFrame(stats_tab)
pandas.DataFrame
#!/usr/bin/env python # stdlib imports import os.path import argparse from collections import OrderedDict import sys import warnings import textwrap import logging # third party imports import pandas as pd # local imports from gmprocess.io.read import _get_format, read_data from gmprocess.utils.args import add_shared_args from gmprocess.core.stationtrace import REV_PROCESS_LEVELS COLUMNS = ['Filename', 'Format', 'Process Level', 'Start Time', 'End Time', 'Duration (s)', 'Network', 'Station', 'Channel', 'Sampling Rate (Hz)', 'Latitude', 'Longitude'] ERROR_COLUMNS = ['Filename', 'Error'] def get_dataframe(filename, stream): df = pd.DataFrame(columns=COLUMNS, index=None) row = pd.Series(index=COLUMNS) fpath, fname = os.path.split(filename) for trace in stream: row['Filename'] = filename row['Format'] = trace.stats['standard']['source_format'] plevel = trace.stats['standard']['process_level'] row['Process Level'] = REV_PROCESS_LEVELS[plevel] row['Start Time'] = trace.stats.starttime row['End Time'] = trace.stats.endtime dt = trace.stats.endtime - trace.stats.starttime row['Duration (s)'] = dt row['Network'] = trace.stats.network row['Station'] = trace.stats.station row['Channel'] = trace.stats.channel row['Sampling Rate (Hz)'] = trace.stats.sampling_rate row['Latitude'] = trace.stats.coordinates['latitude'] row['Longitude'] = trace.stats.coordinates['longitude'] df = df.append(row, ignore_index=True) return df def render_concise(files, save=False): errors = pd.DataFrame(columns=ERROR_COLUMNS) df = pd.DataFrame(columns=COLUMNS, index=None) folders = [] for filename in files: fpath, fname = os.path.split(filename) if fpath not in folders: sys.stderr.write('Parsing files from subfolder %s...\n' % fpath) folders.append(fpath) try: streams = read_data(filename) for stream in streams: tdf = get_dataframe(filename, stream) df = pd.concat([df, tdf], axis=0) except BaseException as e: row = pd.Series(index=ERROR_COLUMNS) row['Filename'] = os.path.abspath(filename) row['Error'] = str(e) errors = errors.append(row, ignore_index=True) continue # organize dataframe by network, station, and channel df = df.sort_values(['Network', 'Station', 'Channel']) if not save: print(df.to_string(index=False)) return (df, errors) def render_dir(rootdir, concise=True, save=False): datafiles = [] for root, dirs, files in os.walk(rootdir): for tfile in files: ffile = os.path.join(root, tfile) datafiles.append(ffile) if concise: df, errors = render_concise(datafiles, save=save) else: errors = render_verbose(datafiles) df = None return (df, errors) def render_verbose(files): errors = pd.DataFrame(columns=ERROR_COLUMNS) for fname in files: try: fmt = _get_format(fname) stream = read_data(fname)[0] stats = stream[0].stats tpl = (stats['coordinates']['latitude'], stats['coordinates']['longitude'], stats['coordinates']['elevation']) locstr = 'Lat: %.4f Lon: %.4f Elev: %.1f' % tpl mydict = OrderedDict( [('Filename', fname), ('Format', fmt), ('Station', stats['station']), ('Network', stats['network']), ('Source', stats['standard']['source']), ('Location', stats['location']), ('Coordinates', locstr), ]) print() print(pd.Series(mydict).to_string()) for trace in stream: channel = OrderedDict() stats = trace.stats channel['Channel'] = stats['channel'] channel['Start Time'] = stats['starttime'] channel['End Time'] = stats['endtime'] channel['Number of Points'] = stats['npts'] channel['Units'] = stats['standard']['units'] channel['Peak Value'] = trace.max() print() chstr = pd.Series(channel).to_string() parts = ['\t' + line for line in chstr.split('\n')] chstr = '\n'.join(parts) print(chstr) except BaseException as e: row = pd.Series(index=ERROR_COLUMNS) row['Filename'] = os.path.abspath(fname) row['Error'] = str(e) errors = errors.append(row, ignore_index=True) continue return errors def main(): description = '''Display summary information about a file, multiple files, or directories of files containing strong motion data in the supported formats. Use the -p option to print errors for files that could not be read. Use the -s option to save summary data AND errors to Excel/CSV format. .''' parser = argparse.ArgumentParser(description=description) parser.add_argument('files_or_dir', nargs='+', help='Files or directory to inspect.', type=str) chelp = '''Print out results in concise CSV form. Columns are: Filename Format Process Level Start Time End Time # of Traces Duration Network Station Channels Sampling rate Latitude Longitude ''' parser.add_argument('-c', '--concise', action='store_true', help=chelp) shelp = '''Save concise results to CSV/Excel file (format determined by extension (.xlsx for Excel, anything else for CSV.)) ''' parser.add_argument('-s', '--save', metavar='OUTFILE', help=shelp) phelp = 'Print error log containing files that could not be parsed.' parser.add_argument('--quiet-errors', action='store_true', help=phelp) # Shared arguments parser = add_shared_args(parser) args = parser.parse_args() if not args.concise and args.save: msg = ''' **************************************************************** Saving verbose output is not supported. Use -c and -s options together to save tabular summary/error information about the data. **************************************************************** ''' print(textwrap.dedent(msg)) parser.print_help() sys.exit(1) logger = logging.getLogger() logger.setLevel(logging.CRITICAL) warnings.filterwarnings("ignore")
pd.set_option('display.max_columns', 10000)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Sun Dec 2 21:53:00 2018 @author: RomanGutin """ import numpy as np import pandas as pd plot_data={} #####AM_Tuning With Wavelet def AM_W(x,first,last,steps): sweep = list(np.linspace(first,last,(last-first)/steps)) #the first amino acid for acid in count_df.index: CrossValidation_Scores= [] for score in sweep: A = x.copy() ltw_AM[acid]= score A.replace(ltw_AM,inplace=True) MHat_Transformed= pd.DataFrame(W(A), index=just_let.index) MHat_Transformed['pMeas']= nine_pep['pMeas'] MHat_Transformed['pMeas']= nine_pep['pMeas'] CrossValidation_Scores.append(CrossValidation(A,10)) ltw_AM[acid] = sweep[CrossValidation_Scores.index(max(CrossValidation_Scores))] plt.plot(sweep,CrossValidation_Scores) plt.title(str(acid)) plt.show() plot_data[acid]=
pd.DataFrame([sweep,CrossValidation_Scores])
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b'])
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_timedelta64_block(self): from pandas import to_timedelta rng = to_timedelta(np.arange(10), unit="s") df = DataFrame({"time": rng}) result = concat([df, df]) assert (result.iloc[:10]["time"] == rng).all() assert (result.iloc[10:]["time"] == rng).all() def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat(dict(a=None, b=df0, c=df0[:2], d=df0[:1], e=df0)) expected = concat(dict(b=df0, c=df0[:2], d=df0[:1], e=df0)) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = pd.concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_same_names_ignore_index(self): dates = date_range("01-Jan-2013", "01-Jan-2014", freq="MS")[0:-1] s1 = Series(randn(len(dates)), index=dates, name="value") s2 = Series(randn(len(dates)), index=dates, name="value") result = concat([s1, s2], axis=1, ignore_index=True) expected = Index([0, 1]) tm.assert_index_equal(result.columns, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(pd.concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(pd.concat(CustomIterator2(), ignore_index=True), expected) def test_concat_invalid(self): # trying to concat a ndframe with a non-ndframe df1 = tm.makeCustomDataframe(10, 2) for obj in [1, dict(), [1, 2], (1, 2)]: msg = ( f"cannot concatenate object of type '{type(obj)}'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): concat([df1, obj]) def test_concat_invalid_first_argument(self): df1 = tm.makeCustomDataframe(10, 2) df2 = tm.makeCustomDataframe(10, 2) msg = ( "first argument must be an iterable of pandas " 'objects, you passed an object of type "DataFrame"' ) with pytest.raises(TypeError, match=msg): concat(df1, df2) # generator ok though concat(DataFrame(np.random.rand(5, 5)) for _ in range(3)) # text reader ok # GH6583 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = read_csv(StringIO(data), chunksize=1) result = concat(reader, ignore_index=True) expected = read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = pd.concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), )
tm.assert_frame_equal(res, exp)
pandas._testing.assert_frame_equal
"""figures of merit is a collection of financial calculations for energy. This module contains financial calculations based on solar power and batteries in a given network. The networks used are defined as network objects (see evolve parsers). TODO: Add inverters: Inverters are not considered at the moment and Improve Nan Handeling """ import numpy import pandas as pd from c3x.data_cleaning import unit_conversion #Todo: #Add inverters: Inverters are not considered at the moment #Improve Nan Handeling def meter_power(meas_dict: dict, meter: int, axis: int = 0, column: int = 0) -> pd.Series: """ calculates the power for a meter of individual measurement points by summing load, solar and battery power Args: meas_dict (dict): dict with measurement for one or multiple nodes. meter(int): Id for a meter axis (int): how data is concatenated for results column (int): column index to be used return: meter_p (pd.Series): combined power (solar, battery, load) """ meter_p = pd.DataFrame() if meas_dict[meter]: meter_p = pd.DataFrame() for meas in meas_dict[meter]: if 'load' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'solar' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'batteries' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) meter_p = meter_p.sum(axis=1) return meter_p def financial(meter_p: pd.Series, import_tariff: pd.Series, export_tariff: pd.Series) -> pd.Series: """ Evaluate the financial outcome for a customer. A conversion from kW to kWh is handled internally Note: assumes constant step size in timestamps (use forth index beforehand) Args: meter_p (pd.Series ): Power of a node import_tariff (pd.Series): Expects this to be in $/kWh. export_tariff (pd.Series): Expects this to be in $/kWh. Returns: cost (pd.Series): cost per measurement point, using import and export tariffs """ # Note: need to ensure meter data is converted to kWh timestep = numpy.timedelta64(meter_p.index[1] - meter_p.index[0]) meter = unit_conversion.convert_watt_to_watt_hour(meter_p, timedelta=timestep) import_power_cost = meter.where(meter >= 0).fillna(value=0.0) export_power_revenue = meter.where(meter < 0).fillna(value=0.0) cost = import_power_cost * import_tariff + export_power_revenue*export_tariff return cost def customer_financial(meas_dict: dict, node_keys: list = None, tariff: dict = None) -> dict: """ Evaluate the financial outcome for a selected customer or for all customers. Note: not currently setup to handle missing data (eg NANs) #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list nodes for which financials are calculated. tariff (dict): nodes tariff data. Expects this to be in $/kWh. Returns: results_dict: cost per node and the average cost over all nodes """ results_dict = {} average = [] nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: if key in tariff: meter_p = meter_power(meas_dict, key, axis=1) meter_p_cost = financial(meter_p, tariff[key]['import_tariff'], tariff[key]['export_tariff']) results_dict[key] = meter_p_cost initiate = 0 for node in results_dict.values(): average = node if initiate == 0 else average.append(node) initiate = 1 average = numpy.nanmean(average) results_dict["average"] = average return results_dict def customer_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_solar_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the customers cost Args: tariff: specifies tariffs to be applied to aggregation of customers. energy_grid_load: specifies the energy flow between grid and load energy_solar_grid: specifies the energy flow between solar and gird energy_battery_load: specifies the energy flow between battery and load energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load Returns: customer_cost (pd.Series): """ customer_cost = financial(energy_grid_load, tariff['re_import_tariff'], 0) customer_cost += financial(energy_grid_load, tariff['rt_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['le_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['lt_import_tariff'], 0) customer_cost -= financial(energy_solar_grid, tariff['re_export_tariff'], 0) customer_cost += financial(energy_solar_grid, tariff['rt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_battery, tariff['lt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_import_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_export_tariff'], 0) return customer_cost def battery_cost_financial(tariff: dict, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series) -> pd.Series: """ evaluates the battery cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and gird energy_battery_load (pd.Series): specifies the energy flow between battery and load energy_solar_battery (pd.Series): specifies the energy flow between solar and battery Returns: battery_cost (pd.Series): """ battery_cost = financial(energy_solar_battery, tariff['le_import_tariff'], 0) battery_cost += financial(energy_solar_battery, tariff['lt_import_tariff'], 0) battery_cost -= financial(energy_battery_load, tariff['le_export_tariff'], 0) battery_cost += financial(energy_battery_load, tariff['lt_export_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['re_import_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['rt_import_tariff'], 0) battery_cost -= financial(energy_battery_grid, tariff['re_export_tariff'], 0) battery_cost += financial(energy_battery_grid, tariff['rt_export_tariff'], 0) return battery_cost def network_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the network cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.Series): specifies the energy flow between grid and load energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and grid energy_battery_load (pd.Series): specifies the energy flow between battery and solar energy_solar_battery (pd.Series) : specifies the energy flow between solar and battery energy_solar_load (pd.Series): specifies the energy flow between solar and load Returns: network_cost(pd.Series) """ network_cost = -financial(energy_grid_load, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_grid_battery, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_grid, tariff['rt_export_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_export_tariff'], 0) return network_cost def lem_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_solar_grid, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load, battery_tariffs=None): """ evaluate the cost for the local energy model Args: customer_tariffs: specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.series): specifies the energy flow between grid and load energy_grid_battery: specifies the energy flow between grid and battery energy_solar_grid: specifies the energy flow between solar and grid energy_battery_grid: specifies the energy flow between battery and grid energy_battery_load: specifies the energy flow between battery and solar energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load battery_tariffs: specifies tariffs to be applied to aggregation of battery. (if none given customer_tariffs ware used) Returns: customer_cost, battery_cost, network_cost """ customer_cost = customer_cost_financial(customer_tariffs, energy_grid_load, energy_solar_grid, energy_battery_load, energy_solar_battery, energy_solar_load) bt_choice = battery_tariffs if battery_tariffs else customer_tariffs battery_cost = battery_cost_financial(bt_choice, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery) network_cost = network_cost_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load) return customer_cost, battery_cost, network_cost def peak_powers(meas_dict: dict, node_keys: list = None) -> dict: """ Calculate the peak power flows into and out of the network. #TODO: consider selecting peak powers per phase #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. Returns: results_dict (dict): dictionary of peak power into and out of network in kW, and in kW/connection point. """ nodes = node_keys if node_keys else meas_dict.keys() sum_meter_power = pd.DataFrame([]) for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: meter_p = meter_power(meas_dict, key, axis=1) if sum_meter_power.empty: sum_meter_power = meter_p.copy() else: sum_meter_power = pd.concat([sum_meter_power, meter_p], axis=1, sort=True) sum_power = sum_meter_power.sum(axis=1) aver_power = numpy.nanmean(sum_meter_power, axis=1) return {"peak_power_import": numpy.max(sum_power), "peak_power_export": numpy.min(sum_power), "peak_power_import_av": numpy.max(aver_power), "peak_power_export_av": numpy.min(aver_power), "peak_power_import_index": sum_power.idxmax(), "peak_power_export_index": sum_power.idxmax()} def self_sufficiency(load_p: pd.DataFrame, solar_p: pd.DataFrame, battery_p: pd.DataFrame): """ Self-sufficiency = 1 - imports / consumption Note: the function expects a full index #TODO: consider inverters and how to avoid double counting with solar, batteries Args: load_p (pd.dataframe): measurement data for load of a s single node. solar_p (pd.dataframe): measurement data for solar of a s single node. battery_p(pd.dataframe): measurement data for battery of a s single node. Returns: results_dict: self_consumption_solar, self_consumption_batteries """ self_sufficiency_solar = numpy.nan self_sufficiency_battery = numpy.nan if not load_p.empty: net_load_solar = pd.concat((load_p, solar_p), axis=1).sum(axis=1) net_load_solar_battery = pd.concat((load_p, solar_p, battery_p), axis=1).sum(axis=1) #create an array that contains which entries are import and which are export mask_import_solar = (net_load_solar >= 0) mask_import_solar_battery = (net_load_solar_battery >= 0) net_import_solar = net_load_solar * mask_import_solar net_import_solar_battery = net_load_solar_battery * mask_import_solar_battery sum_load = numpy.nansum(load_p) sum_solar = numpy.nansum(solar_p) # it doesn't make sense to calculate this if there is no solar or the load date is missing (0.0) if sum_solar < 0 and sum_load != 0: self_sufficiency_solar = 1 - (numpy.nansum(net_import_solar) / sum_load) self_sufficiency_battery = 1 - (numpy.nansum(net_import_solar_battery) / sum_load) else: print("Warning: not enough data to calculate") return {"self_sufficiency_solar": self_sufficiency_solar, "self_sufficiency_batteries": self_sufficiency_battery} def self_consumption(load_p: pd.DataFrame, solar_p: pd.DataFrame, battery_p: pd.DataFrame) -> dict: """ Self-consumption = 1 - exports / generation Note: the function expects a full index #TODO: consider inverters and how to avoid double counting with solar, batteries Args: load_p (pd.dataframe): measurement data for load of a s single node. solar_p (pd.dataframe): measurement data for solar of a s single node. battery_p(pd.dataframe): measurement data for battery of a s single node. Retruns: results_dict: self_consumption_solar, self_consumption_batteries """ net_load_solar = pd.concat((load_p, solar_p), axis=1).sum(axis=1) net_load_solar_battery = pd.concat((load_p, solar_p, battery_p), axis=1).sum(axis=1) # create an array that contains which entries are import and which are export mask_export_solar = (net_load_solar < 0) mask_export_solar_battery = (net_load_solar_battery < 0) net_export_solar = net_load_solar * mask_export_solar net_import_solar_battery = net_load_solar_battery * mask_export_solar_battery sum_solar = numpy.nansum(solar_p) self_consumption_solar = numpy.nan self_consumption_battery = numpy.nan if sum_solar < 0: self_consumption_solar = 1 - (numpy.nansum(net_export_solar) / sum_solar) self_consumption_battery = 1 - (numpy.nansum(net_import_solar_battery) / sum_solar) return {"self_consumption_solar": self_consumption_solar, "self_consumption_batteries": self_consumption_battery} def self_sufficiency_self_consumption_average(self_consumption_self_sufficiency_dict: dict) -> dict: """ calculates the average for self sufficiency and consumption over a given measurement. #TODO: consider inverters and how to avoid double counting with solar, batteries Args: self_consumption_self_sufficiency_dict: The dictionary has a node Id as Key and 4 values per node Returns: results_dict: dictionary with averages for the given network """ self_sufficiency_solar = [] self_sufficiency_batteries = [] self_consumption_solar = [] self_consumption_batteries = [] for node in self_consumption_self_sufficiency_dict.values(): self_sufficiency_solar.append(node["self_sufficiency_solar"]) self_sufficiency_batteries.append(node["self_sufficiency_batteries"]) self_consumption_solar.append(node["self_consumption_solar"]) self_consumption_batteries.append(node["self_consumption_batteries"]) av_self_sufficiency_solar = numpy.nanmean(self_sufficiency_solar) av_self_sufficiency_batteries = numpy.nanmean(self_sufficiency_batteries) av_self_consumption_solar = numpy.nanmean(self_consumption_solar) av_self_consumption_batteries = numpy.nanmean(self_consumption_batteries) return {"av_self_sufficiency_solar": av_self_sufficiency_solar, "av_self_sufficiency_batteries": av_self_sufficiency_batteries, "av_self_consumption_solar": av_self_consumption_solar, "av_self_consumption_batteries": av_self_consumption_batteries} def self_sufficiency_self_consumption(meas_dict: dict, node_keys: list = None, column: int = 0) -> dict: """ Self-sufficiency = 1 - imports / consumption Self-consumption = 1 - exports / generation And average over those #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. column (int): Column index used for calculation Returns: results_dict: self_sufficiency_solar, self_sufficiency_batteries, self_consumption_solar, self_consumption_batteries """ results_dict = {} nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: load_p = pd.DataFrame() solar_p = pd.DataFrame() battery_p = pd.DataFrame() for meas in meas_dict[key]: data_df = meas_dict[key][meas] if not data_df.empty: if 'loads' in meas: load_p = pd.concat([load_p, meas_dict[key][meas].iloc[:,column]]) elif 'solar' in meas: solar_p = pd.concat([solar_p, meas_dict[key][meas].iloc[:,column]]) elif 'batteries' in meas: battery_p = pd.concat([battery_p, meas_dict[key][meas].iloc[:,column]]) self_sufficiency_dict = self_sufficiency(load_p, solar_p, battery_p) self_consumption_dict = self_consumption(load_p, solar_p, battery_p) results_dict[key] = self_sufficiency_dict.copy() results_dict[key].update(self_consumption_dict) averages_dict = self_sufficiency_self_consumption_average(results_dict) results_dict.update(averages_dict) return results_dict def network_net_power(meas_dict: dict, node_keys: list = None, column: int = 0) -> dict: """ Calculate the net power (kW) of the network on the point of common coupling (ignoring network structure and losses etc). Import and Export are the net_load with all values set to zero, which are not matching. Note: net_load is calculated by using load, solar and battery values for each node at each time. If your load already has solar factored into it, then you should not pass the solar data on as a separate column in your measurement dict #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. column (int): Column index used for calculation Returns: dictionary of net_load, net_import, net_export """ nodes = node_keys if node_keys else meas_dict.keys() load_p = pd.DataFrame() solar_p = pd.DataFrame() battery_p = pd.DataFrame() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: for meas in meas_dict[key]: if 'load' in meas: load_p = pd.concat([load_p, meas_dict[key][meas].iloc[:,column]], axis=1) elif 'solar' in meas: solar_p = pd.concat([solar_p, meas_dict[key][meas].iloc[:,column]], axis=1) elif 'batteries' in meas: battery_p = pd.concat([battery_p, meas_dict[key][meas].iloc[:,column]],axis=1) net_load = pd.DataFrame() net_load = pd.concat([net_load, load_p, solar_p, battery_p], axis=1).sum(axis=1) # create an array that contains which entries are import and which are export net_import = numpy.copy(net_load) net_export = numpy.copy(net_load) net_import[net_import < 0] = 0 net_export[net_export > 0] = 0 return {'net_load': net_load, 'net_import': net_import, 'net_export': net_export} def solar_kwh_per_kw(meas_dict: dict, node_info: pd.DataFrame, node_keys: list = None, column: int = 0) -> dict: """ Calculates the amount of solar energy generated per kW of rated solar capacity for all given meters Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_info (pd.DataFrame) : Data frame with additional information on each node node_keys (list): list of Node ID's in the network. column (int): Column index used for calculation Returns: results_dict(dict): rated capacity for all given meters """ results_dict = {} hours_in_day = 24 initiate = 0 nu_nonzero_properties = 0 nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: solar_power = pd.DataFrame([]) solar_capacity = 0 for meas in meas_dict[key]: if 'solar' in meas: solar_power =
pd.concat([solar_power, meas_dict[key][meas].iloc[:,column]])
pandas.concat
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """Implement GroupBy public API as pandas does.""" import numpy as np import pandas import pandas.core.groupby from pandas.core.dtypes.common import is_list_like, is_numeric_dtype from pandas.core.apply import reconstruct_func from pandas._libs.lib import no_default import pandas.core.common as com from types import BuiltinFunctionType from collections.abc import Iterable from modin.error_message import ErrorMessage from modin.utils import ( _inherit_docstrings, try_cast_to_pandas, wrap_udf_function, hashable, wrap_into_list, ) from modin.core.storage_formats.base.query_compiler import BaseQueryCompiler from modin.core.dataframe.algebra.default2pandas.groupby import GroupBy from modin.config import IsExperimental from .series import Series from .utils import is_label @_inherit_docstrings(pandas.core.groupby.DataFrameGroupBy) class DataFrameGroupBy(object): def __init__( self, df, by, axis, level, as_index, sort, group_keys, squeeze, idx_name, drop, **kwargs, ): self._axis = axis self._idx_name = idx_name self._df = df self._query_compiler = self._df._query_compiler self._columns = self._query_compiler.columns self._by = by self._drop = drop if ( level is None and
is_list_like(by)
pandas.core.dtypes.common.is_list_like
import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import pandas as pd import numpy as np import os import time # prepare data (X_train_full, y_train_full),(X_test, y_test) = keras.datasets.fashion_mnist.load_data() num_valid = 5000 X_valid = X_train_full[:num_valid] / 255. X_train = X_train_full[num_valid:] / 255. y_valid = y_train_full[:num_valid] y_train = y_train_full[num_valid:] class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] # check data X_train_full.shape X_train_full.dtype plt.imshow(X_train_full[0],cmap="binary") plt.axis('off') # prepare for saving a model checkpoint_cb = keras.callbacks.ModelCheckpoint("../model/fc_sample.h5", save_best_only=True) earlystopping_cb = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True) logdir = os.path.join(os.curdir, time.strftime("../log/%Y_%m_%d_%H_%M_%S")) tensorboard_cb = keras.callbacks.TensorBoard(logdir) # create model and train model = keras.models.Sequential([keras.layers.Flatten(input_shape=[28,28]), keras.layers.Dense(200, activation="relu"), keras.layers.Dense(50), keras.layers.Dense(10, activation="softmax")]) # model.compile(optimizer="sgd", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) model.compile(optimizer=keras.optimizers.SGD(lr=0.05), loss="sparse_categorical_crossentropy", metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid,y_valid), callbacks=[checkpoint_cb, earlystopping_cb, tensorboard_cb]) # check result
pd.DataFrame(history.history)
pandas.DataFrame
# -*- coding: utf-8 -*- import yfinance as yf import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import pandas as pd import os import math import matplotlib.pylab as plt import matplotlib from Machine_Learning_for_Asset_Managers import ch2_fitKDE_find_best_bandwidth as best_bandwidth from Machine_Learning_for_Asset_Managers import ch2_marcenko_pastur_pdf as mp from Machine_Learning_for_Asset_Managers import ch2_monte_carlo_experiment as mc from Machine_Learning_for_Asset_Managers import ch4_optimal_clustering as oc import onc as onc from Machine_Learning_for_Asset_Managers import ch5_financial_labels as fl from Machine_Learning_for_Asset_Managers import ch7_portfolio_construction as pc #import mlfinlab.trend_scanning as ts #import mlfinlab.nco as nco #import mlfinlab as ml # used for testing code #from mlfinlab.portfolio_optimization.mean_variance import MeanVarianceOptimisation #from mlfinlab.portfolio_optimization.returns_estimators import ReturnsEstimators #Resources: #Random matrix theory: https://calculatedcontent.com/2019/12/03/towards-a-new-theory-of-learning-statistical-mechanics-of-deep-neural-networks/ #Review: [Book] Commented summary of Machine Learning for Asset Managers by <NAME> #https://gmarti.gitlab.io/qfin/2020/04/12/commented-summary-machine-learning-for-asset-managers.html #Chapter 2: This chapter essentially describes an approach that Bouchaud and his crew from the CFM have #pioneered and refined for the past 20 years. The latest iteration of this body of work is summarized in #Joel Bun’s Cleaning large correlation matrices: Tools from Random Matrix Theory. #https://www.sciencedirect.com/science/article/pii/S0370157316303337 #Condition number: https://dominus.ai/wp-content/uploads/2019/11/ML_WhitePaper_MarcoGruppo.pdf # Excersize 2.9: # 2. Using a series of matrix of stock returns: # a) Compute the covariance matrix. # What is the condition number of the correlation matrix # b) Compute one hundredth efficient frontiers by drawing one hundred # alternative vectors of expected returns from a Normal distribution # with mean 10% and std 10% # c) Compute the variance of the errors against the mean efficient frontier. def get_OL_tickers_close(T=936, N=234): # N - num stocks in portfolio, T lookback time ol = pd.read_csv('csv/ol_ticker.csv', sep='\t', header=None) ticker_names = ol[0] closePrice = np.empty([T, N]) covariance_matrix = np.empty([T, N]) portfolio_name = [ [ None ] for x in range( N ) ] ticker_adder = 0 for i in range(0, len(ticker_names)): #len(ticker_names)): # 46 ticker = ticker_names[i] print(ticker) ol_ticker = ticker + '.ol' df = yf.Ticker(ol_ticker) #'shortName' in df.info and try: ticker_df = df.history(period="7y") if ticker=='EMAS': print("****EMAS******") if ticker=='AVM': print("****AVM*********") if ticker_df.shape[0] > T and ticker!='EMAS' and ticker != 'AVM': # only read tickers with more than 30 days history #1.Stock Data closePrice[:,ticker_adder] = ticker_df['Close'][-T:].values # inserted from oldest tick to newest tick portfolio_name[ticker_adder] = ol_ticker ticker_adder += 1 else: print("no data for ticker:" + ol_ticker) except ValueError: print("no history:"+ol_ticker) return closePrice, portfolio_name def denoise_OL(S, do_plot=True): np.argwhere( np.isnan(S) ) # cor.shape = (1000,1000). If rowvar=1 - row represents a var, with observations in the columns. cor = np.corrcoef(S, rowvar=0) eVal0 , eVec0 = mp.getPCA( cor ) print(np.argwhere(np.isnan(np.diag(eVal0)))) # code snippet 2.4 T = float(S.shape[0]) N = S.shape[1] q = float(S.shape[0])/S.shape[1] #T/N eMax0, var0 = mp.findMaxEval(np.diag(eVal0), q, bWidth=.01) nFacts0 = eVal0.shape[0]-np.diag(eVal0)[::-1].searchsorted(eMax0) if do_plot: fig = plt.figure() ax = fig.add_subplot(111) ax.hist(np.diag(eVal0), density = True, bins=100) #, normed = True) #normed = True, pdf0 = mp.mpPDF(var0, q=S.shape[0]/float(S.shape[1]), pts=N) pdf1 = mp.fitKDE( np.diag(eVal0), bWidth=.005) #empirical pdf #plt.plot(pdf1.keys(), pdf1, color='g') #no point in drawing this plt.plot(pdf0.keys(), pdf0, color='r') plt.show() # code snippet 2.5 - denoising by constant residual eigenvalue corr1 = mp.denoisedCorr(eVal0, eVec0, nFacts0) eVal1, eVec1 = mp.getPCA(corr1) return eVal0, eVec0, eVal1, eVec1, corr1, var0 #consider using log-returns def calculate_returns( S, percentageAsProduct=False ): ret = np.zeros((S.shape[0]-1, S.shape[1])) cum_sums = np.zeros(S.shape[1]) for j in range(0, S.shape[1]): cum_return = 0 S_ret = np.zeros(S.shape[0]-1) for i in range(0,S.shape[0]-1): if percentageAsProduct==True: S_ret[i] = 1+((S[i+1,j]-S[i,j])/S[i,j]) else: S_ret[i] = ((S[i+1,j]-S[i,j])/S[i,j]) cum_return = np.prod(S_ret)-1 cum_sums[j] = cum_return ret[:, j] = S_ret return ret, cum_sums def getVolatility(S): #std of instruments return [np.std(S[:,i]) for i in range(0, S.shape[1])] def test_exception_in_plotting_efficient_frontier(S_value): # pylint: disable=invalid-name, protected-access """ Test raising of exception when plotting the efficient frontier. """ mvo = MeanVarianceOptimisation() pdPrice = pd.DataFrame(S_value) pdPrice.index = pd.RangeIndex(start=0, stop=6, step=1) dates = ['2019-01-01','2019-02-01','2019-03-01','2019-04-01','2019-05-01','2019-06-01'] pdPrice['Datetime'] = pd.to_datetime(dates) pdPrice.set_index('Datetime') expected_returns = ReturnsEstimators().calculate_mean_historical_returns(asset_prices=pdPrice, resample_by=None) #'W') covariance = ReturnsEstimators().calculate_returns(asset_prices=pdPrice, resample_by=None).cov() plot = mvo.plot_efficient_frontier(covariance=covariance, max_return=1.0, expected_asset_returns=expected_returns) assert len(plot._A) == 41 plot.savefig('books_read.png') print("read books") # Chapter 7 - apply the Nested Clustered Optimization (NCO) algorithm def testNCO(): N = 5 T = 5 S_value = np.array([[1., 2,3, 4,5], [1.1,3,2, 3,5], [1.2,4,1.3,4,5], [1.3,5,1, 3,5], [1.4,6,1, 4,5.5], [1.5,7,1, 3,5.5]]) S_value[:,1] =1 S_value[5,1] =1.1 S, _ = calculate_returns(S_value) _, instrument_returns = calculate_returns(S_value, percentageAsProduct=True) np.testing.assert_almost_equal(S, pd.DataFrame(S_value).pct_change().dropna(how="all")) mu1 = None cov1_d = np.cov(S ,rowvar=0, ddof=1) #test baseClustering corr1 = mp.cov2corr(cov1_d) a,b,c = nco.NCO()._cluster_kmeans_base(pd.DataFrame(corr1)) d,e,f = oc.clusterKMeansBase(pd.DataFrame(corr1)) #b={0: [0, 1, 2], 1: [3, 4]} #e={0: [0, 3, 4], 1: [1, 2]} min_var_markowitz = mc.optPort(cov1_d, mu1).flatten() #compare min_var_markowitz with mlfinlab impl #ml. min_var_NCO = pc.optPort_nco(cov1_d, mu1, max(int(cov1_d.shape[0]/2), 2)).flatten() mlfinlab_NCO= nco.NCO().allocate_nco(cov1_d, mu1, max(int(cov1_d.shape[0]/2), 2)).flatten() cov1_d = np.cov(S,rowvar=0, ddof=1) mlfinlab_NCO= nco.NCO().allocate_nco(cov1_d, mu1, int(cov1_d.shape[0]/2)).flatten() expected_return_markowitz = [min_var_markowitz[i]*instrument_returns[i] for i in range(0,cov1_d.shape[0])] e_m = sum(expected_return_markowitz) expected_return_NCO = [min_var_NCO[i]*instrument_returns[i] for i in range(0,cov1_d.shape[0])] e_NCO = sum(expected_return_markowitz) vol = getVolatility(S_value) m_minVol = [min_var_markowitz[i]*vol[i] for i in range(0, cov1_d.shape[0])] NCO_minVol = [mlfinlab_NCO[i]*vol[i] for i in range(0, cov1_d.shape[0])] if __name__ == '__main__': testNCO() N = 333 #3 T = 936 S_value = np.loadtxt('csv/ol184.csv', delimiter=',') if S_value.shape[0] < 1 or not os.path.exists('csv/portfolio_name.csv'): S_value, portfolio_name = get_OL_tickers_close(T, N) np.savetxt('csv/ol184.csv', S_value, delimiter=',') np.savetxt('csv/portfolio_name.csv', portfolio_name, delimiter=',', fmt='%s') portfolio_name = pd.read_csv('csv/portfolio_name.csv', sep='\t', header=None).values lastIndex = 173 S_value = S_value[:,0:lastIndex] # S = S[:,6:9] portfolio_name = portfolio_name[0:lastIndex] #portfolio_name = portfolio_name[6:9] # use matrix of returns to calc correlation S, instrument_returns = calculate_returns(S_value) _, instrument_returns = calculate_returns(S_value, percentageAsProduct=True) print(np.asarray(portfolio_name)[np.argsort(instrument_returns)]) #prints performance ascending #calculate_correlation(S) eVal0, eVec0, denoised_eVal, denoised_eVec, denoised_corr, var0 = denoise_OL(S) detoned_corr = mp.detoned_corr(denoised_corr, denoised_eVal, denoised_eVec, market_component=1) detoned_eVal, detoned_eVec = mp.getPCA(detoned_corr) denoised_eigenvalue = np.diag(denoised_eVal) eigenvalue_prior = np.diag(eVal0) plt.plot(range(0, len(denoised_eigenvalue)), np.log(denoised_eigenvalue), color='r', label="Denoised eigen-function") plt.plot(range(0, len(eigenvalue_prior)), np.log(eigenvalue_prior), color='g', label="Original eigen-function") plt.xlabel("Eigenvalue number") plt.ylabel("Eigenvalue (log-scale)") plt.legend(loc="upper right") plt.show() #from code snippet 2.10 detoned_cov = mc.corr2cov(detoned_corr, var0) w = mc.optPort(detoned_cov) print(w) #min_var_port = 1./nTrials*(np.sum(w, axis=0)) #print(min_var_port) #expected portfolio variance: W^T.(Cov).W #https://blog.quantinsti.com/calculating-covariance-matrix-portfolio-variance/ minVarPortfolio_var = np.dot(np.dot(w.T, detoned_corr), w) #Expected return: w.T . mu # https://www.mn.uio.no/math/english/research/projects/focustat/publications_2/shatthik_barua_master2017.pdf p8 # or I.T.cov^-1.mu / I.T.cov^-1.I #inv = np.linalg.inv(cov) #e_r = np.dot(np.dot(ones.T, inv), mu) / np.dot(ones.T, np.dot(ones.T, inv)) #Chapter 4 optimal clustering # recreate fig 4.1 colormap of random block correlation matrix nCols, minBlockSize = 183, 2 print("minBlockSize"+str(minBlockSize)) corr0 = detoned_corr corr1, clstrs, silh = oc.clusterKMeansTop(pd.DataFrame(detoned_corr)) #1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] tStatMeanDepth = np.mean([np.mean(silh[clstrs[i]]) / np.std(silh[clstrs[i]]) for i in clstrs.keys()]) print("tstat at depth:") print(tStatMeanDepth) corr1, clstrs, silh = oc.clusterKMeansTop(pd.DataFrame(detoned_corr)) #1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] tStatMeanDepth = np.mean([np.mean(silh[clstrs[i]]) / np.std(silh[clstrs[i]]) for i in clstrs.keys()]) print("tstat at depth:") print(tStatMeanDepth) raise SystemExit #corr11, clstrs11, silh11 = onc.get_onc_clusters(pd.DataFrame(detoned_corr)) #test with mlfinlab impl: 1: [18, 24, 57, 81, 86, 99, 112, 120, 134, 165] matplotlib.pyplot.matshow(corr11) #invert y-axis to get origo at lower left corner matplotlib.pyplot.gca().xaxis.tick_bottom() matplotlib.pyplot.gca().invert_yaxis() matplotlib.pyplot.colorbar() matplotlib.pyplot.show() #Chapter 5 Financial labels #Lets try trend-following on PHO idxPHO =118 idxBGBIO = 29 idxWWI = 169 pho = S_value[:,idxBGBIO] df0 =
pd.Series(pho[-50:])
pandas.Series
import pandas as pd import config import numpy as np import os import datetime class AttendanceMarker: def __init__(self): # current datetime to put attendance now = datetime.datetime.now() self.time = now.strftime(config.DATE_TIME_FORMAT) def _create_new_csv(self): names = os.listdir(config.FACE_DATABASE_DIR) names = np.array(names) df =
pd.DataFrame(data=names,columns=[config.CSV_COL_NAME])
pandas.DataFrame
# Import required Libraries import csv from bs4 import BeautifulSoup from selenium import webdriver from openpyxl import Workbook import pandas as pd # Function to get the search term def get_url(search_term): """Generate a URL from search term""" template = 'https://www.amazon.com/s?k={}' search_term = search_term.replace(' ', '+') #add term query to url url = template.format(search_term) #add page query placeholder url += '&page={}' return url def extract_record(item): try: atag = item.h2.a description = atag.text.strip() url = 'https://www.amazon.com'+atag.get('href') except: pass try: # Price price_parent = item.find('span', 'a-price') price = price_parent.find('span', 'a-offscreen').text except AttributeError: return try: #Ratings rating = item.i.text # Ratings Count review_count = item.find('span', {'class': 'a-size-base', 'dir': 'auto'}).text except AttributeError: rating = '' review_count = '' result = {description, price, rating, review_count, url} return result def main(search_term): # start the driver driver = webdriver.Chrome() records = [] url = get_url(search_term) for page in range(1, 5): driver.get(url.format(page)) soup = BeautifulSoup(driver.page_source, 'html.parser') results = soup.find_all('div', {'data-component-type':'s-search-result'}) for item in results: record = extract_record(item) if record: records.append(record) driver.close() #save results in .csv #with open('results.csv', 'w', newline='', encoding='utf-8') as f: # writer = csv.writer(f) # writer.writerow(['Description', 'Price', 'Rating', 'Review_count','URL']) # writer.writerows(records) try: wb = Workbook() ws = wb.worksheets[0] ws.append(['Description', 'Price', 'Rating', 'Review_count','URL']) for row in records: ws.append(row) ws.save(f'data.xlsx') wb.close() except: df =
pd.DataFrame({'Product Name':records})
pandas.DataFrame
from __future__ import absolute_import # PopulationSim # See full license in LICENSE.txt. from builtins import object import logging import os import numpy as np import pandas as pd from activitysim.core.config import setting from .lp import get_single_integerizer from .lp import STATUS_SUCCESS from .lp import STATUS_OPTIMAL logger = logging.getLogger(__name__) def smart_round(int_weights, resid_weights, target_sum): """ Round weights while ensuring (as far as possible that result sums to target_sum) Parameters ---------- int_weights : numpy.ndarray(int) resid_weights : numpy.ndarray(float) target_sum : int Returns ------- rounded_weights : numpy.ndarray array of ints """ assert len(int_weights) == len(resid_weights) assert (int_weights == int_weights.astype(int)).all() assert target_sum == int(target_sum) target_sum = int(target_sum) # integer part of numbers to round (astype both copies and coerces) rounded_weights = int_weights.astype(int) # find number of residuals that we need to round up int_shortfall = target_sum - rounded_weights.sum() # clip to feasible, in case target was not achievable by rounding int_shortfall = np.clip(int_shortfall, 0, len(resid_weights)) # Order the residual weights and round at the tipping point where target_sum is achieved if int_shortfall > 0: # indices of the int_shortfall highest resid_weights i = np.argsort(resid_weights)[-int_shortfall:] # add 1 to the integer weights that we want to round upwards rounded_weights[i] += 1 return rounded_weights class Integerizer(object): def __init__(self, incidence_table, control_importance_weights, float_weights, relaxed_control_totals, total_hh_control_value, total_hh_control_index, control_is_hh_based, trace_label=''): """ Parameters ---------- control_totals : pandas.Series targeted control totals (either explict or backstopped) we are trying to hit incidence_table : pandas.Dataframe incidence table with columns only for targeted controls control_importance_weights : pandas.Series importance weights (from control_spec) of targeted controls float_weights blanaced float weights to integerize relaxed_control_totals total_hh_control_index : int control_is_hh_based : bool """ self.incidence_table = incidence_table self.control_importance_weights = control_importance_weights self.float_weights = float_weights self.relaxed_control_totals = relaxed_control_totals self.total_hh_control_value = total_hh_control_value self.total_hh_control_index = total_hh_control_index self.control_is_hh_based = control_is_hh_based self.trace_label = trace_label def integerize(self): sample_count = len(self.incidence_table.index) control_count = len(self.incidence_table.columns) incidence = self.incidence_table.values.transpose().astype(np.float64) float_weights = np.asanyarray(self.float_weights).astype(np.float64) relaxed_control_totals = np.asanyarray(self.relaxed_control_totals).astype(np.float64) control_is_hh_based = np.asanyarray(self.control_is_hh_based).astype(bool) control_importance_weights = \ np.asanyarray(self.control_importance_weights).astype(np.float64) assert len(float_weights) == sample_count assert len(relaxed_control_totals) == control_count assert len(control_is_hh_based) == control_count assert len(self.incidence_table.columns) == control_count assert (relaxed_control_totals == np.round(relaxed_control_totals)).all() assert not np.isnan(incidence).any() assert not np.isnan(float_weights).any() assert (incidence[self.total_hh_control_index] == 1).all() int_weights = float_weights.astype(int) resid_weights = float_weights % 1.0 if (resid_weights == 0.0).all(): # not sure this matters... logger.info("Integerizer: all %s resid_weights zero. Returning success." % ((resid_weights == 0).sum(), )) integerized_weights = int_weights status = STATUS_OPTIMAL else: # - lp_right_hand_side - relaxed_control_shortfall lp_right_hand_side = relaxed_control_totals - np.dot(int_weights, incidence.T) lp_right_hand_side = np.maximum(lp_right_hand_side, 0.0) # - max_incidence_value of each control max_incidence_value = np.amax(incidence, axis=1) assert (max_incidence_value[control_is_hh_based] <= 1).all() # - create the inequality constraint upper bounds num_households = relaxed_control_totals[self.total_hh_control_index] relax_ge_upper_bound = \ np.maximum(max_incidence_value * num_households - lp_right_hand_side, 0) hh_constraint_ge_bound = \ np.maximum(self.total_hh_control_value * max_incidence_value, lp_right_hand_side) # popsim3 does does something rather peculiar, which I am not sure is right # it applies a huge penalty to rounding a near-zero residual upwards # the documentation justifying this is sparse and possibly confused: # // Set objective: min sum{c(n)*x(n)} + 999*y(i) - 999*z(i)} # objective_function_coefficients = -1.0 * np.log(resid_weights) # objective_function_coefficients[(resid_weights <= np.exp(-999))] = 999 # We opt for an alternate interpretation of what they meant to do: avoid log overflow # There is not much difference in effect... LOG_OVERFLOW = -725 log_resid_weights = np.log(np.maximum(resid_weights, np.exp(LOG_OVERFLOW))) assert not np.isnan(log_resid_weights).any() if (float_weights == 0).any(): # not sure this matters... logger.warn("Integerizer: %s zero weights out of %s" % ((float_weights == 0).sum(), sample_count)) assert False if (resid_weights == 0.0).any(): # not sure this matters... logger.info("Integerizer: %s zero resid_weights out of %s" % ((resid_weights == 0).sum(), sample_count)) # assert False integerizer_func = get_single_integerizer() resid_weights, status = integerizer_func( incidence=incidence, resid_weights=resid_weights, log_resid_weights=log_resid_weights, control_importance_weights=control_importance_weights, total_hh_control_index=self.total_hh_control_index, lp_right_hand_side=lp_right_hand_side, relax_ge_upper_bound=relax_ge_upper_bound, hh_constraint_ge_bound=hh_constraint_ge_bound ) integerized_weights = \ smart_round(int_weights, resid_weights, self.total_hh_control_value) self.weights = pd.DataFrame(index=self.incidence_table.index) self.weights['integerized_weight'] = integerized_weights delta = (integerized_weights != np.round(float_weights)).sum() logger.debug("Integerizer: %s out of %s different from round" % (delta, len(float_weights))) return status def do_integerizing( trace_label, control_spec, control_totals, incidence_table, float_weights, total_hh_control_col): """ Parameters ---------- trace_label : str trace label indicating geography zone being integerized (e.g. PUMA_600) control_spec : pandas.Dataframe full control spec with columns 'target', 'seed_table', 'importance', ... control_totals : pandas.Series control totals explicitly specified for this zone incidence_table : pandas.Dataframe float_weights : pandas.Series balanced float weights to integerize total_hh_control_col : str name of total_hh column (preferentially constrain to match this control) Returns ------- integerized_weights : pandas.Series status : str as defined in integerizer.STATUS_TEXT and STATUS_SUCCESS """ # incidence table should only have control columns incidence_table = incidence_table[control_spec.target] if total_hh_control_col not in incidence_table.columns: raise RuntimeError("total_hh_control column '%s' not found in incidence table" % total_hh_control_col) zero_weight_rows = (float_weights == 0) if zero_weight_rows.any(): logger.debug("omitting %s zero weight rows out of %s" % (zero_weight_rows.sum(), len(incidence_table.index))) incidence_table = incidence_table[~zero_weight_rows] float_weights = float_weights[~zero_weight_rows] total_hh_control_value = control_totals[total_hh_control_col] status = None if setting('INTEGERIZE_WITH_BACKSTOPPED_CONTROLS') \ and len(control_totals) < len(incidence_table.columns): ########################################## # - backstopped control_totals # Use balanced float weights to establish target values for all control values # note: this more frequently results in infeasible solver results ########################################## relaxed_control_totals = \ np.round(np.dot(np.asanyarray(float_weights), incidence_table.values)) relaxed_control_totals = \ pd.Series(relaxed_control_totals, index=incidence_table.columns.values) # if the incidence table has only one record, then the final integer weights # should be just an array with 1 element equal to the total number of households; assert len(incidence_table.index) > 1 integerizer = Integerizer( incidence_table=incidence_table, control_importance_weights=control_spec.importance, float_weights=float_weights, relaxed_control_totals=relaxed_control_totals, total_hh_control_value=total_hh_control_value, total_hh_control_index=incidence_table.columns.get_loc(total_hh_control_col), control_is_hh_based=control_spec['seed_table'] == 'households', trace_label='backstopped_%s' % trace_label ) # otherwise, solve for the integer weights using the Mixed Integer Programming solver. status = integerizer.integerize() logger.debug("Integerizer status for backstopped %s: %s" % (trace_label, status)) # if we either tried backstopped controls or failed, or never tried at all if status not in STATUS_SUCCESS: ########################################## # - unbackstopped partial control_totals # Use balanced weights to establish control totals only for explicitly specified controls # note: this usually results in feasible solver results, except for some single hh zones ########################################## balanced_control_cols = control_totals.index incidence_table = incidence_table[balanced_control_cols] control_spec = control_spec[control_spec.target.isin(balanced_control_cols)] relaxed_control_totals = \ np.round(np.dot(np.asanyarray(float_weights), incidence_table.values)) relaxed_control_totals = \
pd.Series(relaxed_control_totals, index=incidence_table.columns.values)
pandas.Series
from rest_framework import permissions, status from rest_framework.decorators import api_view, authentication_classes, permission_classes from rest_framework.response import Response from rest_framework.views import APIView from datetime import date, datetime, timedelta from django.forms.models import model_to_dict from django.db.models import Q, Count, F, Sum from django.db.models.functions import TruncWeek, TruncMonth, TruncYear from django.apps import apps from django.core.files.storage import default_storage from .serializers import * from .models import * from .content_based_recommender import ContentBasedRecommender from .utils import * from pathlib import Path from google.analytics.data_v1beta import BetaAnalyticsDataClient from google.analytics.data_v1beta.types import DateRange from google.analytics.data_v1beta.types import Dimension from google.analytics.data_v1beta.types import Metric from google.analytics.data_v1beta.types import RunReportRequest from apiclient.discovery import build from oauth2client.service_account import ServiceAccountCredentials from slugify import slugify import pandas as pd import random import json import uuid import os import pydash import urllib3 import dotenv # Read configure file base_dir = Path(__file__).resolve().parent.parent module_dir = os.path.dirname(__file__) mapping_template_file_path = os.path.join(module_dir, 'configuration/mapping_template.json') schema_table_file_path = os.path.join(module_dir, 'configuration/schema_table.json') schema_detail_file_path = os.path.join(module_dir, 'configuration/schema_detail.json') ga4_json = os.path.join(module_dir, 'configuration/ga4.json') ua_json = os.path.join(module_dir, 'configuration/ua.json') # Initialize environment variables dotenv.load_dotenv(os.path.join(base_dir, '.env')) # Global vaos.environrial API_KEY = os.environ['API_KEY'] IP_DOMAIN = os.environ['IP_DOMAIN'] scope = 'https://www.googleapis.com/auth/analytics.readonly' dimensions = ['date', 'eventName', 'pageLocation', 'browser', 'deviceCategory', 'operatingSystem', 'country'] metrics = ['eventCount', 'sessions'] ua_dimensions = ['ga:date', 'ga:eventCategory', 'ga:pagePath', 'ga:browser', 'ga:deviceCategory', 'ga:operatingSystem', 'ga:country'] ua_metrics = ['ga:totalEvents', 'ga:sessions'] @api_view(['GET']) def home(request): try: # Initialize KPI reports web_activity_report = [] event_report = [] product_report = [] traffics = {} # Total number of web activities (interactions) web_activities_file = len(Interaction_f.objects.all()) web_activities_ga = Interaction_ga.objects.all().aggregate(Sum('event_count'))['event_count__sum'] if (web_activities_ga is None): web_activities_ga = 0 web_activities = web_activities_file + web_activities_ga # Total number of sessions (a session includes multiple interactions) sessions_file = len(Interaction_f.objects.values('session_id').distinct()) sessions_ga = Interaction_ga.objects.all().aggregate(Sum('session_count'))['session_count__sum'] if (sessions_ga is None): sessions_ga = 0 sessions = sessions_file + sessions_ga # Total number of web activities by page location pages_file = Interaction_f.objects.all().values('page_location').annotate(total=Count('page_location')) pages_ga = Interaction_ga.objects.all().values('page_location').annotate(total=Sum('event_count')) pages = list(pages_file) + list(pages_ga) if (len(pages)): pages = pd.DataFrame(pages).groupby(['page_location'], as_index=False).sum().to_dict('r') pages = sorted(pages, key=lambda k : k['total'], reverse=True) # Total number of web activities by device categories device_categories_file = Interaction_f.objects.all().values('device_category').annotate(total=Count('device_category')) device_categories_ga = Interaction_ga.objects.all().values('device_category').annotate(total=Sum('event_count')) device_categories = list(device_categories_ga) + list(device_categories_file) for category in list(device_categories): type = category['device_category'] if (type not in traffics): traffics[type] = 0 traffics[type] += category['total'] # Web activities report - Total number of web activities by event name web_activity_data_file = Interaction_f.objects.all().values('event_name').annotate(total=Count('event_name')) web_activity_data_ga = Interaction_ga.objects.all().values('event_name').annotate(total=Sum('event_count')) web_activity_data = list(web_activity_data_file) + list(web_activity_data_ga) if (len(web_activity_data)): web_activity_data =
pd.DataFrame(web_activity_data)
pandas.DataFrame
#!/usr/bin/env python3 """ Gaussian mixture fitting with Nested Sampling. This module was tested in the main `nestfit` repo on bare arrays and Gaussian components -- without a spectral axis, units, or other necessary complications. The `.wrapped` references a Cython implementation of the Gaussian model class. """ import ctypes import operator from pathlib import Path import h5py import numpy as np import pandas as pd from scipy import (special, stats) from matplotlib import ticker from matplotlib import pyplot as plt import corner import pymultinest from .wrapped import CGaussianModel plt.rc('font', size=10, family='serif') plt.rc('text', usetex=True) plt.rc('xtick', direction='out', top=True) plt.rc('ytick', direction='out', right=True) ROOT_DIR = Path('/lustre/aoc/users/bsvoboda/temp/nestfit') DATA_DIR = ROOT_DIR / Path('data') PLOT_DIR = ROOT_DIR / Path('plots') class SyntheticSpectrum: def __init__(self, xaxis, amp, cen, std, noise=0.03, set_seed=False): """ Construct a mixture of Gaussians expressed as: f(x) = A * exp(-(x - c)^2 / (2 * s^2)) for "A" amplitude, "c" centroid, and "s" standard deviation. Parameters ---------- xaxis : np.ndarray amp : np.ndarray Array of Gaussian amplitudes cen : np.ndarray Array of Gaussian centroid positions std : np.ndarray Array of Guassian standard deviations noise : float, default=0.03 Noise standard deviation set_seed : bool, default=False If `True` will use a default seed of 5 for the np.random module. """ if set_seed: np.random.seed(5) else: np.random.seed() self.xaxis = xaxis.reshape(-1, 1) self.ncomp = len(amp) self.size = self.xaxis.shape[0] self.amp = amp self.cen = cen self.std = std self.truths = np.concatenate([amp, cen, std]) self.noise = noise self.components = self.profile().T self.sum_spec = self.components.sum(axis=0) self.noise_spec = np.random.normal(scale=self.noise, size=self.size) self.sampled_spec = self.sum_spec + self.noise_spec def profile(self): return self.amp * np.exp(-(self.xaxis - self.cen)**2 / (2 * self.std**2)) def resample_spectrum(self, noise=None): if noise is not None: self.noise = noise noise_spec = np.random.normal(scale=self.noise, size=self.size) self.noise_spec = noise_spec self.sampled_spec = self.sum_spec + self.noise_spec def test_spectrum(): return SyntheticSpectrum( np.linspace(-6, 6, 100), amp=np.array([0.3, 0.5, 0.4]), cen=np.array([-1, 0, 3]), std=np.array([1.5, 1.0, 0.5]), noise=0.03, set_seed=True, ) class GaussianModel: model_name = 'gaussian' def __init__(self, xaxis, ydata, noise, ncomp): self.xaxis = xaxis.reshape(-1, 1) self.size = xaxis.shape[0] self.ydata = ydata self.noise = noise self.ncomp = ncomp self.n_params = 3 * ncomp self.lnpin = -self.size / 2 * np.log(2 * np.pi * noise**2) self.null_lnZ = self.lnpin - np.sum(ydata**2) / (2 * self.noise**2) #self.array_type = np.ctypeslib.ndpointer( # ctypes.c_double, 1, (self.n_params,), 'C_CONTIGUOUS') @property def par_labels(self): comps = range(1, self.ncomp+1) return [ f'{label}{n}' for label in ('a', 'c', 's') for n in comps ] def loglikelihood(self, theta, ndim, nparams): n = self.ncomp #atheta = ctypes.cast(theta, self.array_type).contents atheta = np.ctypeslib.as_array(theta, shape=(self.n_params,)) amp = atheta[0 : n] cen = atheta[ n:2*n] std = atheta[2*n:3*n] ymodel = np.sum( amp * np.exp(-(self.xaxis - cen)**2 / (2 * std**2)), axis=1, ) difsqsum = np.sum((self.ydata - ymodel)**2) lnL = self.lnpin - difsqsum / (2 * self.noise**2) return lnL def prior_transform(self, utheta, ndim, nparams): n = self.ncomp # amplitude -- uniform [0.06, 1.00] for i in range(0, n): utheta[i] = 0.94 * utheta[i] + 0.06 # centroid velocity -- uniform [-5.00, 5.00] # but enforce ordering from left-to-right for the peaks to sort # and limit multi-modality in posteriors vmin, vmax = -5.0, 5.0 for i in range(n, 2*n): v = (vmax - vmin) * utheta[i] + vmin utheta[i] = vmin = v # standard deviation -- uniform [0.30, 3.00] for i in range(2*n, 3*n): utheta[i] = 2.7 * utheta[i] + 0.30 return utheta # XXX def run_nested(spec, model, basename='run/test_run'): pymultinest.run( model.loglikelihood, model.prior_transform, model.n_params, outputfiles_basename=basename, resume=False, verbose=True, evidence_tolerance=0.3, n_live_points=400, sampling_efficiency=0.3, n_iter_before_update=2000, ) analyzer = pymultinest.Analyzer( outputfiles_basename=basename, n_params=model.n_params, ) lnZ = analyzer.get_stats()['global evidence'] print(':: Evidence Z:', lnZ/np.log(10)) return analyzer def test_nested(ncomp=3): spec = test_spectrum() model = GaussianModel( spec.xaxis, spec.sampled_spec, spec.noise, ncomp, ) analyzer = run_nested(spec, model) return spec, model, analyzer def test_nested_cython(ncomp=3): spec = test_spectrum() model = CGaussianModel( spec.xaxis.flatten(), spec.sampled_spec, spec.noise, ncomp, ) analyzer = run_nested(spec, model) return spec, model, analyzer def marginals_to_pandas(a_stats): margs = a_stats['marginals'] df =
pd.DataFrame(margs)
pandas.DataFrame
import pandas as pd import bentoml from bentoml.artifact import PickleArtifact from bentoml.handlers import DataframeHandler from data_preprocess import Posts from word_embedding_vectorizer import WordEmbeddingVectorizer from gensim.models import Word2Vec @bentoml.artifacts([PickleArtifact('word_vectorizer'), PickleArtifact('word_embedding_rf')]) @bentoml.env(pip_dependencies=["pandas", "numpy", "gensim", "scikit-learn", "nltk"]) class WordEmbeddingModel(bentoml.BentoService): @bentoml.api(DataframeHandler, typ='series') def preprocess(self, series): preprocess_series = Posts(series).preprocess() input_matrix = self.artifacts.word_vectorizer.fit(preprocess_series).transform(preprocess_series) return input_matrix @bentoml.api(DataframeHandler, typ='series') def predict(self, series): input_matrix = self.preprocess(series) pred_labels = self.artifacts.word_embedding_rf.predict(input_matrix) pred_proba = self.artifacts.word_embedding_rf.predict_proba(input_matrix) confidence_score = [prob[1] for prob in pred_proba] output =
pd.DataFrame({'text': series, 'confidence_score': confidence_score, 'labels': pred_labels})
pandas.DataFrame
#!/usr/bin/env python3 import websocket import config import json import pandas as pd import numpy as np from src.data_methods import get_gestures from src.leap_methods import collect_frame import src.features as features import random import time import argparse parser = argparse.ArgumentParser() parser.add_argument("-v", "--version", type=int, help="select which gesture file version to use", default=3) args = parser.parse_args() websocket_cache = {} # get gestures gestures, _, _ = get_gestures(version=args.version) FINGERS = ["thumb", "index", "middle", "ring", "pinky"] # note: the modes expect no_gesture to be in first place current_gesture = 0 change_time = time.time() warned = False next_gesture = 0 current_gesture = 0 # whether or not to store captured frames record = True # collect only every nth frame, use this for lowering frame rate n = 4 if __name__ == "__main__": frames = [] frames_total = 0 # variables for gesture messages gesturing = False message = '' # frame at which user is notified of impending change notify_frame = 0 mode = int(input('Select mode:\n1 for alternating between gestures randomly\ \n2 for performing each gesture in succession\ \n3 for alternating no gesture with other gestures in sequential order\ \n4 for continuously performing a single gesture\ \n5 for viewing variables recorded\n')) if mode == 1 or mode == 2 or mode == 3: # where are we up to in the sequence of gestures? seq_n = 0 g_i = np.arange(len(gestures)) # seconds warning to receive before performing a gesture warn_time = 1 # delay between gestures delay = float(input('enter time length for each gesture: ')) elif mode == 4: print('Available gestures:') for i, g in enumerate(gestures): print(f'{i}. {g}') print() gesture_n = int(input('Select gesture to record: ')) gesture = gestures[gesture_n] elif mode == 5: record = False print_variable = input('input variable name (e.g. right_grabAngle): ') else: raise Exception('Input not a valid mode') try: while True: frames_total += 1 packed_frame = collect_frame(frames_total, n, websocket_cache) if len(packed_frame) > 0: # store variable indicating gesture if mode == 1 or mode == 2 or mode == 3: packed_frame["gesture"] = gestures[current_gesture] elif mode == 4: packed_frame["gesture"] = gesture if record: frames.append(packed_frame) # change to the next gesture if (mode == 1 or mode == 2) and change_time < time.time(): current_gesture = next_gesture change_time = time.time() + delay # + random.uniform(-1,1) print('###### Start ' + gestures[current_gesture]) warned = False seq_n += 1 # set the next gesture, and warn user of impending change elif (mode == 1 or mode == 2) and change_time - 1 < time.time() and warned == False: if seq_n >= len(gestures): #check that we're not out of range seq_n = 0 if mode == 1: #randomize np.random.shuffle(g_i) next_gesture = g_i[seq_n] print('Prepare to perform ' + gestures[next_gesture]) # the user has been warned warned = True elif mode == 3 and change_time < time.time(): current_gesture = next_gesture change_time = time.time() + delay # + random.uniform(-1,1) # can include a slight randomness in change time print('###### Start ' + gestures[current_gesture]) warned = False if current_gesture == 0: seq_n += 1 # set the next gesture, and warn user of impending change elif mode == 3 and change_time - warn_time < time.time() and warned == False: if seq_n >= len(gestures): #check that we're not out of range seq_n = 1 if current_gesture == 0: next_gesture = g_i[seq_n] else: next_gesture = 0 print('Prepare to perform ' + gestures[next_gesture]) # the user has been warned warned = True elif mode == 5: if frames_total % 1 == 0: try: print(print_variable + ': ', packed_frame[print_variable]) except KeyError: print(print_variable + ' not found') except KeyboardInterrupt: if mode != 5: fn = input("Enter filename to save recording to: ") df =
pd.DataFrame(frames)
pandas.DataFrame
# Author: <NAME> # Email: <EMAIL> import numpy as np import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import matplotlib.pyplot as plt import logging class TrajDataset: def __init__(self): """ data might include the following columns: "scene_id", "frame_id", "agent_id", "pos_x", "pos_y" "vel_x", "vel_y", """ self.critical_columns = ["frame_id", "agent_id", "pos_x", "pos_y"] self.data = pd.DataFrame(columns=self.critical_columns) # a map from agent_id to a list of [agent_ids] that are annotated as her groupmate # if such informatoin is not available the map should be filled with an empty list # for each agent_id self.groupmates = {} self.title = '' self.goals_areas = None def postprocess(self, fps, sampling_rate=1, use_kalman=False): """ This function should be called after loading the data by loader It performs the following steps: -: check fps value, should be set and bigger than 0 -: check critical columns should exist in the table -: update data types -: fill 'groumates' if they are not set -: checks if velocity do not exist, compute it for each agent -: compute bounding box of trajectories :param fps: video framerate :param sampling_rate: if bigger than one, the data needs downsampling, otherwise needs interpolation :param use_kalman: for smoothing agent velocities :return: None """ # check for critical_column in self.critical_columns: if critical_column not in self.data: raise ValueError("Error! some critical columns are missing from trajectory dataset!") # modify data types self.data["frame_id"] = self.data["frame_id"].astype(int) if str(self.data["agent_id"].iloc[0]).replace('.', '', 1).isdigit(): self.data["agent_id"] = self.data["agent_id"].astype(int) self.data["pos_x"] = self.data["pos_x"].astype(float) self.data["pos_y"] = self.data["pos_y"].astype(float) self.data["label"] = self.data["label"].str.lower() # search with lower-case labels # fill scene_id if "scene_id" not in self.data: self.data["scene_id"] = 0 # fill timestamps based on frame_id and video_fps if "timestamp" not in self.data: self.data["timestamp"] = self.data["frame_id"] / fps # fill groupmates agent_ids = pd.unique(self.data["agent_id"]) for agent_id in agent_ids: if agent_id not in self.groupmates: self.groupmates[agent_id] = [] # down/up sampling frames if sampling_rate >= 2: # FixMe: down-sampling sampling_rate = int(sampling_rate) self.data = self.data.loc[(self.data["frame_id"] % sampling_rate) == 0] self.data = self.data.reset_index() elif sampling_rate < (1-1E-2): # TODO: interpolation pass else:pass # remove the trajectories shorter than 2 frames data_grouped = self.data.groupby(["scene_id", "agent_id"]) single_length_inds = data_grouped.head(1).index[data_grouped.size() < 2] self.data = self.data.drop(single_length_inds) # fill velocities if "vel_x" not in self.data: data_grouped = self.data.groupby(["scene_id", "agent_id"]) dt = data_grouped["timestamp"].diff() if (dt > 2).sum(): logging.warn('Too big dt in {}'.format(self.title)) self.data["vel_x"] = (data_grouped["pos_x"].diff() / dt).astype(float) self.data["vel_y"] = (data_grouped["pos_y"].diff() / dt).astype(float) nan_inds = np.array(np.nonzero(dt.isnull().to_numpy())).reshape(-1) self.data["vel_x"].iloc[nan_inds] = self.data["vel_x"].iloc[nan_inds + 1].to_numpy() self.data["vel_y"].iloc[nan_inds] = self.data["vel_y"].iloc[nan_inds + 1].to_numpy() # ============================================ if use_kalman: def smooth(group): if len(group) < 2: return group logging.info('Smoothing trajectories {:d} / {:d}'.format((group["agent_id"].iloc[0], len(data_grouped)))) dt = group["timestamp"].diff().iloc[1] kf = KalmanModel(dt, n_dim=2, n_iter=7) smoothed_pos, smoothed_vel = kf.smooth(group[["pos_x", "pos_y"]].to_numpy()) group["pos_x"] = smoothed_pos[:, 0] group["pos_y"] = smoothed_pos[:, 1] group["vel_x"] = smoothed_vel[:, 0] group["vel_y"] = smoothed_vel[:, 1] return group data_grouped = self.data.groupby(["scene_id", "agent_id"]) self.data = data_grouped.apply(smooth) # compute bounding box # Warning: the trajectories should belong to the same (physical) scene # self.bbox['x']['min'] = min(self.data["pos_x"]) # self.bbox['x']['max'] = max(self.data["pos_x"]) # self.bbox['y']['min'] = min(self.data["pos_y"]) # self.bbox['y']['max'] = max(self.data["pos_y"]) def interpolate_frames(self, inplace=True): all_frame_ids = sorted(pd.unique(self.data["frame_id"])) if len(all_frame_ids) < 2: # FixMe: print warning return frame_id_A = all_frame_ids[0] frame_A = self.data.loc[self.data["frame_id"] == frame_id_A] agent_ids_A = frame_A["agent_id"].to_list() interp_data = self.data # "agent_id", "pos_x", "pos_y", "vel_x", "vel_y" # df.append([df_try] * 5, ignore_index=True for frame_id_B in all_frame_ids[1:]: frame_B = self.data.loc[self.data["frame_id"] == frame_id_B] agent_ids_B = frame_B["agent_id"].to_list() common_agent_ids = list(set(agent_ids_A) & set(agent_ids_B)) frame_A_fil = frame_A.loc[frame_A["agent_id"].isin(common_agent_ids)] frame_B_fil = frame_B.loc[frame_B["agent_id"].isin(common_agent_ids)] for new_frame_id in range(frame_id_A+1, frame_id_B): alpha = (new_frame_id - frame_id_A) / (frame_id_B - frame_id_A) new_frame = frame_A_fil.copy() new_frame["frame_id"] = new_frame_id new_frame["pos_x"] = frame_A_fil["pos_x"].to_numpy() * (1 - alpha) +\ frame_B_fil["pos_x"].to_numpy() * alpha new_frame["pos_y"] = frame_A_fil["pos_y"].to_numpy() * (1 - alpha) +\ frame_B_fil["pos_y"].to_numpy() * alpha new_frame["vel_x"] = frame_A_fil["vel_x"].to_numpy() * (1 - alpha) +\ frame_B_fil["vel_x"].to_numpy() * alpha new_frame["vel_y"] = frame_A_fil["vel_y"].to_numpy() * (1 - alpha) +\ frame_B_fil["vel_y"].to_numpy() * alpha if inplace: self.data = self.data.append(new_frame) else: self.data = self.data.append(new_frame) # TODO frame_id_A = frame_id_B frame_A = frame_B agent_ids_A = agent_ids_B self.data = self.data.sort_values('frame_id') # FixMe: rename to add_row()/add_entry() def add_agent(self, agent_id, frame_id, pos_x, pos_y): """Add one single data at a specific frame to dataset""" new_df = pd.DataFrame(columns=self.critical_columns) new_df["frame_id"] = [int(frame_id)] new_df["agent_id"] = [int(agent_id)] new_df["pos_x"] = [float(pos_x)] new_df["pos_y"] = [float(pos_y)] self.data = self.data.append(new_df) def get_agent_ids(self): """:return all agent_id in data table""" return pd.unique(self.data["agent_id"]) def get_trajectories(self, label=""): """ Returns a list of trajectories :param label: select agents from a specific class (e.g. pedestrian), ignore if empty :return list of trajectories """ df = self.data if label: label_filtered = self.data.groupby("label") df = label_filtered.get_group(label.lower()) trajectories = [g for _, g in df.groupby(["scene_id", "agent_id"])] trl_np_list = [] for trl in trajectories: trl_np = trl[["pos_y", "pos_x", "vel_y", "vel_x", "timestamp"]].to_numpy() trl_np_list.append(trl_np) return(trl_np_list) # TODO: def get_entries(self, agent_ids=[], frame_ids=[], label=""): """ Returns a list of data entries :param agent_ids: select specific agent ids, ignore if empty :param frame_ids: select a time interval, ignore if empty # TODO: :param label: select agents from a specific label (e.g. car), ignore if empty # TODO: :return list of data entries """ output_table = self.data # no filter if agent_ids: output_table = output_table[output_table["agent_id"].isin(agent_ids)] if frame_ids: output_table = output_table[output_table["frame_id"].isin(frame_ids)] return output_table def get_frames(self, frame_ids: list = [], scene_ids=""): if not frame_ids: frame_ids =
pd.unique(self.data["frame_id"])
pandas.unique
import pandas as pd def generate_train(playlists): # define category range cates = {'cat1': (10, 50), 'cat2': (10, 78), 'cat3': (10, 100), 'cat4': (40, 100), 'cat5': (40, 100), 'cat6': (40, 100),'cat7': (101, 250), 'cat8': (101, 250), 'cat9': (150, 250), 'cat10': (150, 250)} cat_pids = {} for cat, interval in cates.items(): df = playlists[(playlists['num_tracks'] >= interval[0]) & (playlists['num_tracks'] <= interval[1])].sample( n=1000) cat_pids[cat] = list(df.pid) playlists = playlists.drop(df.index) playlists = playlists.reset_index(drop=True) return playlists, cat_pids def generate_test(cat_pids, playlists, interactions, tracks): def build_df_none(cat_pids, playlists, cat, num_samples): df = playlists[playlists['pid'].isin(cat_pids[cat])] df = df[['pid', 'num_tracks']] df['num_samples'] = num_samples df['num_holdouts'] = df['num_tracks'] - df['num_samples'] return df def build_df_name(cat_pids, playlists, cat, num_samples): df = playlists[playlists['pid'].isin(cat_pids[cat])] df = df[['name', 'pid', 'num_tracks']] df['num_samples'] = num_samples df['num_holdouts'] = df['num_tracks'] - df['num_samples'] return df df_test_pl = pd.DataFrame() df_test_itr = pd.DataFrame() df_eval_itr = pd.DataFrame() for cat in list(cat_pids.keys()): if cat == 'cat1': num_samples = 0 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) # all interactions used for evaluation df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] df_eval_itr = pd.concat([df_eval_itr, df_itr]) # clean interactions for training interactions = interactions.drop(df_itr.index) print("cat1 done") if cat == 'cat2': num_samples = 1 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[df_itr['pos'] == 0] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat2 done") if cat == 'cat3': num_samples = 5 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat3 done") if cat == 'cat4': num_samples = 5 df = build_df_none(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat4 done") if cat == 'cat5': num_samples = 10 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat5 done") if cat == 'cat6': num_samples = 10 df = build_df_none(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat6 done") if cat == 'cat7': num_samples = 25 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat7 done") if cat == 'cat8': num_samples = 25 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) for pid in cat_pids[cat]: df = df_itr[df_itr['pid'] == pid] df_sample = df.sample(n=num_samples) df_test_itr = pd.concat([df_test_itr, df_sample]) df = df.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df]) print("cat8 done") if cat == 'cat9': num_samples = 100 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) df_sample = df_itr[(df_itr['pos'] >= 0) & (df_itr['pos'] < num_samples)] df_test_itr = pd.concat([df_test_itr, df_sample]) df_itr = df_itr.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df_itr]) print("cat9 done") if cat == 'cat10': num_samples = 100 df = build_df_name(cat_pids, playlists, cat, num_samples) df_test_pl = pd.concat([df_test_pl, df]) df_itr = interactions[interactions['pid'].isin(cat_pids[cat])] # clean interactions for training interactions = interactions.drop(df_itr.index) for pid in cat_pids[cat]: df = df_itr[df_itr['pid'] == pid] df_sample = df.sample(n=num_samples) df_test_itr = pd.concat([df_test_itr, df_sample]) df = df.drop(df_sample.index) df_eval_itr = pd.concat([df_eval_itr, df]) print("cat10 done") tids = set(df_eval_itr['tid']) df = tracks[tracks['tid'].isin(tids)] df = df[['tid', 'arid']] df_eval_itr =
pd.merge(df_eval_itr, df, on='tid')
pandas.merge
#!/usr/bin/env python # coding: utf-8 # In[66]: #置入所需套件 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.decomposition import PCA # Load in the data df =
pd.read_csv("InterestsSurvey.csv")
pandas.read_csv
import time import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm as cm import seaborn as sns sns.set_style("whitegrid") import sys import os from pathlib import Path from sklearn import metrics from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold, GridSearchCV, StratifiedKFold,RepeatedKFold, learning_curve from xgboost.sklearn import XGBClassifier from utils import data_handler from utils import bayesiantests as bt root_dir = str(Path(os.getcwd())) #.parent to_dir = root_dir + '/results/' import warnings warnings.filterwarnings('ignore') #res= None ##------------------------------ font, fig size setup------------------------------ plt.rc('font', family='serif') def set_fig_fonts(SMALL_SIZE=22, MEDIUM_SIZE=24,BIGGER_SIZE = 26): plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title set_fig_fonts() ##------------------------------functions---------------------------------------- def save_fig(fig, title): to_path = data_handler.format_title(to_dir,title,'.png') fig.savefig(to_path ,dpi=1000,bbox_inches="tight",pad_inches=0)#, bbox_inches='tight', pad_inches=10 print("Successfully saved to: ",to_path) return to_path def plot_correlation_matrix(X,title, col_list, toSaveFig=True): set_fig_fonts(12,14,16) # standardization scaler = StandardScaler() df_transf = scaler.fit_transform(X) df = pd.DataFrame(df_transf,columns = col_list) fig = plt.figure() ax1 = fig.add_subplot(111) cmap = cm.get_cmap('coolwarm', 30) #cax = ax1.pcolor(df.corr(), cmap=cmap, vmin=-1, vmax=1) mat = df.corr() flip_mat = mat.iloc[::-1] cax = ax1.imshow(flip_mat , interpolation="nearest", cmap=cmap,vmin=-1, vmax=1) ax1.grid(True) #plt.suptitle('Features\' Correlation', y =0) labels=df.columns.tolist() x_labels = labels.copy() labels.reverse() #ax1.xaxis.set_ticks_position('top') ax1.set_xticks(np.arange(len(labels)))#np.arange(len(labels)) ax1.set_yticks(np.arange(len(labels))) # want a more natural, table-like display #ax1.xaxis.tick_top() ax1.set_xticklabels(x_labels, rotation = -45, ha="left") #, , rotation = 45,horizontalalignment="left" ax1.set_yticklabels(labels, ha="right") #plt.xticks(rotation=90) # Add colorbar, make sure to specify tick locations to match desired ticklabels fig.colorbar(cax, boundaries=np.linspace(-1,1,21),ticks=np.linspace(-1,1,5)) plt.show() if(toSaveFig): save_fig(fig,title+'_confusion_matrix') set_fig_fonts() def plot_ROC_curve(pipe, tuned_parameters, title = 'roc_curve', save_csv = True,task=0): # cross validation settup Ntrials = 1 outter_nsplit = 10 inner_nsplit = 10 # Results store Y_true = pd.Series(name='Y_true') pred_results = pd.Series(name='pred_prob') # load data assert (task ==0 or task ==2),'Error: invalid task spec!' X_df, Y_df = data_handler.load_XY(task) X = X_df.values Y = Y_df.values for i in range(Ntrials): train_index = [] test_index = [] outer_cv = StratifiedKFold(n_splits=outter_nsplit, shuffle=True, random_state=i) for train_ind,test_ind in outer_cv.split(X,Y): train_index.append(train_ind.tolist()) test_index.append(test_ind.tolist()) for j in range(outter_nsplit):#outter_nsplit print("progress >> ",j,' / ',outter_nsplit) X_train = X[train_index[j]] Y_train = Y[train_index[j]] X_test = X[test_index[j]] Y_test = Y[test_index[j]] inner_cv = StratifiedKFold(n_splits=inner_nsplit, shuffle=False, random_state=j) clf = GridSearchCV(pipe,tuned_parameters, cv=inner_cv,scoring='roc_auc') clf.fit(X_train, Y_train) pred = pd.Series(clf.predict_proba(X_test)[:,1]) pred_results = pd.concat([pred_results, pred], axis=0,ignore_index=True) Y_test_df = pd.Series(Y_test,name='Y_test') Y_true = pd.concat([Y_true,Y_test_df], axis=0,ignore_index=True) # plotting fpr, tpr, thresholds = metrics.roc_curve(Y_true,pred_results) roc_auc = metrics.auc(fpr, tpr) auc_value = metrics.roc_auc_score(Y_true, pred_results) fig = plt.figure(figsize=(12,12/1.618)) ax1 = fig.add_subplot(111) labl = np.linspace(0,1,6) labels = [float("{0:.2f}".format(x)) for x in labl] ax1.set_xticks(labels) ax1.set_xticklabels(labels) labels[0] = '' ax1.set_yticklabels(labels) plt.grid(False) ax1.plot(fpr, tpr, lw=2, label='ROC curve (area = {:.2f})'.format(auc_value),marker='.', linestyle='-', color='b') ax1.plot([0,1],[0,1], linestyle='--', color='k') ax1.set_xlabel('False Positive Rate') ax1.set_ylabel('True Positive Rate') ax1.set_xlim(0, 1) ax1.set_ylim(0,1) ax1.legend(loc='lower right') color = 'black' plt.setp(ax1.spines.values(), color=color) ax1.yaxis.set_visible(True) ax1.xaxis.set_visible(True) ax1.yaxis.set_ticks_position('left') ax1.xaxis.set_ticks_position('bottom') ax1.get_yaxis().set_tick_params(direction='out', width=2) plt.show() fig.savefig(data_handler.format_title(to_dir,title+'_ROC_curve','.png'),dpi=1000,bbox_inches="tight",pad_inches=0) # save results to csv if true if save_csv: data_mat = np.array([fpr,tpr]).T ret = pd.DataFrame(data_mat,columns=['fpr','tpr']) data_handler.save_csv(ret,title+'_ROC_curve') return True; def plot_learning_curve_versus_tr_epoch(title='',ntrials=1, nfolds=10, save_csv=False,verbose=True, save_fig=False): X_df,Y_df = data_handler.load_XY() X = X_df.values Y = Y_df.values _ylabel = 'Mean AUROC' n_jobs=4 # cross validation settup Ntrials = ntrials outter_nsplit = nfolds tot_count = Ntrials * outter_nsplit # Results store train_mat = np.zeros((tot_count,500)) test_mat = np.zeros((tot_count,500)) for i in range(Ntrials): init_time = time.time() print("trial = ",i) train_index = [] test_index = [] outer_cv = StratifiedKFold(n_splits=outter_nsplit, shuffle=True, random_state=i) for train_ind,test_ind in outer_cv.split(X,Y): train_index.append(train_ind.tolist()) test_index.append(test_ind.tolist()) for j in range(outter_nsplit):#outter_nsplit count = i * outter_nsplit + j print(str(count), " / ",str(tot_count)) X_train = X[train_index[j]] Y_train = Y[train_index[j]] X_test = X[test_index[j]] Y_test = Y[test_index[j]] eval_sets = [(X_train, Y_train), (X_test,Y_test)] clf = XGBClassifier(objective="binary:logistic",min_child_weight=1,**{'tree_method':'exact'},silent=True, n_jobs=4,random_state=3,seed=3, learning_rate=0.01, colsample_bylevel=0.9, colsample_bytree=0.9, n_estimators=500, gamma=0.8, max_depth =11, reg_lambda = 0.8, subsample=0.4) clf.fit(X_train,Y_train, eval_metric=['auc'], eval_set = eval_sets, verbose=False) results = clf.evals_result() epochs = len(results['validation_0']['auc']) # record results train_mat[count] = results['validation_0']['auc'] test_mat[count] = results['validation_1']['auc'] if(verbose): print('Iter: %d, epochs: %d'%(count, epochs)) print('training result: %.4f, testing result: %.4f'%(train_mat[count][499], test_mat[count][499])) print('total time: %.4f mins'% ((time.time()-init_time)/60)) # Results store epoch_lists=list(range(1,epochs+1)) train_results = pd.DataFrame(data=train_mat,columns=['epoch_'+str(i) for i in epoch_lists]) test_results = pd.DataFrame(data=test_mat,columns=['epoch_'+str(i) for i in epoch_lists]) if(save_csv): data_handler.save_csv(train_results,title='mos2_learning_curve_train_raw') data_handler.save_csv(test_results,title='mos2_learning_curve_test_raw') print('end') _ylim=(0.5, 1.01) n_jobs=4 # create learning curve values train_scores_mean = np.mean(train_mat, axis=0) train_scores_std = np.std(train_mat, axis=0) test_scores_mean = np.mean(test_mat, axis=0) test_scores_std = np.std(test_mat, axis=0) tr_size_df = pd.Series(epoch_lists, name='training_epoch') tr_sc_m_df = pd.Series(train_scores_mean, name='training_score_mean') val_sc_m_df = pd.Series(test_scores_mean, name='val_score_mean') tr_sc_std_df =
pd.Series(train_scores_std, name='training_score_std')
pandas.Series
# encoding: utf-8 ''' 组合策略测试 ''' import sys sys.path.append('../../') from vnpy.app.cta_strategy.strategies.strategyMulti import MultiStrategy import argparse import pandas as pd import numpy as np from datetime import datetime from setup_logger import setup_logger setup_logger(filename='logsBackTest/vnpy_{0}.log'.format(datetime.now().strftime('%m%d_%H%M')), debug=False) from vnpy.app.cta_strategy.backtesting import BacktestingEngine, OptimizationSetting from vnpy.app.cta_strategy.backtestingPatch import BacktestingEnginePatch from datetime import datetime,date,timedelta import time import json import traceback ######################################################################## ''' backtesting ''' def backtesting(settingFile, kLineCycle = 30, vt_symbol = 'rb1801', vt_symbol2 = None, mode = 'B', startDate = None, days = 1, historyDays = 0, optimization = False): # 创建回测引擎 engine = BacktestingEnginePatch() # 设置回测用的数据起始日期 if startDate: startDate = startDate endDate = datetime.strptime(startDate, '%Y%m%d') + timedelta(days) else: startDate = date.today() - timedelta(days + historyDays) endDate = date.today() engine.set_parameters( vt_symbol=vt_symbol, interval="1m", start= startDate, end=endDate, rate=1/10000, slippage=1, size=10, pricetick=1, capital=1_000_000, ) setting = {} setting['vt_symbol'] = vt_symbol setting['kLineCycle'] = kLineCycle setting['settingFile'] = settingFile engine.add_strategy(MultiStrategy, setting) engine.load_data() engine.run_backtesting() df = engine.calculate_result() engine.calculate_statistics() #engine.show_chart() # 显示回测结果 resultList = engine.showBacktestingResult() # try: # engine.showDailyResult() # except: # print ('-' * 20) # print ('Failed to showDailyResult') # #traceback.print_exc() # pass try: # 显示定单信息 import pandas as pd orders = pd.DataFrame([i.__dict__ for i in resultList['resultList']]) try: orders['holdTime'] = (orders.exitDt - orders.entryDt).astype('timedelta64[m]') except: pass pd.options.display.max_rows = 100 pd.options.display.width = 300 pd.options.display.precision = 2 engine.output ('-' * 50) engine.output(str(orders)) except: print ('-' * 20) print ('Failed to print result') #traceback.print_exc() try: # 显示详细信息 import pandas as pd from utils import plot_candles, plot_candles1 import talib import numpy as np # analysis #engine.loadHistoryData() orders = pd.DataFrame([i.__dict__ for i in resultList['resultList']]) pricing =
pd.DataFrame([i.__dict__ for i in engine.history_data])
pandas.DataFrame
import numpy as np import pytest from pandas import Categorical, Series import pandas._testing as tm @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, False, False, True, True, False])), ("last", Series([False, True, True, False, False, False, False])), (False, Series([False, True, True, False, True, True, False])), ], ) def test_drop_duplicates(any_numpy_dtype, keep, expected): tc = Series([1, 0, 3, 5, 3, 0, 4], dtype=np.dtype(any_numpy_dtype)) if tc.dtype == "bool": pytest.skip("tested separately in test_drop_duplicates_bool") tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize( "keep, expected", [ ("first", Series([False, False, True, True])), ("last", Series([True, True, False, False])), (False, Series([True, True, True, True])), ], ) def test_drop_duplicates_bool(keep, expected): tc = Series([True, False, True, False]) tm.assert_series_equal(tc.duplicated(keep=keep), expected) tm.assert_series_equal(tc.drop_duplicates(keep=keep), tc[~expected]) sc = tc.copy() sc.drop_duplicates(keep=keep, inplace=True) tm.assert_series_equal(sc, tc[~expected]) @pytest.mark.parametrize("values", [[], list(range(5))]) def test_drop_duplicates_no_duplicates(any_numpy_dtype, keep, values): tc = Series(values, dtype=np.dtype(any_numpy_dtype)) expected = Series([False] * len(tc), dtype="bool") if tc.dtype == "bool": # 0 -> False and 1-> True # any other value would be duplicated tc = tc[:2] expected = expected[:2] tm.assert_series_equal(tc.duplicated(keep=keep), expected) result_dropped = tc.drop_duplicates(keep=keep) tm.assert_series_equal(result_dropped, tc) # validate shallow copy assert result_dropped is not tc class TestSeriesDropDuplicates: @pytest.mark.parametrize( "dtype", ["int_", "uint", "float_", "unicode_", "timedelta64[h]", "datetime64[D]"], ) def test_drop_duplicates_categorical_non_bool(self, dtype, ordered_fixture): cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) # Test case 1 input1 = np.array([1, 2, 3, 3], dtype=np.dtype(dtype)) tc1 = Series(Categorical(input1, categories=cat_array, ordered=ordered_fixture)) if dtype == "datetime64[D]": # pre-empty flaky xfail, tc1 values are seemingly-random if not (np.array(tc1) == input1).all(): pytest.xfail(reason="GH#7996") expected = Series([False, False, False, True]) tm.assert_series_equal(tc1.duplicated(), expected) tm.assert_series_equal(tc1.drop_duplicates(), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(inplace=True) tm.assert_series_equal(sc, tc1[~expected]) expected = Series([False, False, True, False]) tm.assert_series_equal(tc1.duplicated(keep="last"), expected) tm.assert_series_equal(tc1.drop_duplicates(keep="last"), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(keep="last", inplace=True) tm.assert_series_equal(sc, tc1[~expected]) expected = Series([False, False, True, True]) tm.assert_series_equal(tc1.duplicated(keep=False), expected) tm.assert_series_equal(tc1.drop_duplicates(keep=False), tc1[~expected]) sc = tc1.copy() sc.drop_duplicates(keep=False, inplace=True) tm.assert_series_equal(sc, tc1[~expected]) # Test case 2 input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype)) tc2 = Series(Categorical(input2, categories=cat_array, ordered=ordered_fixture)) if dtype == "datetime64[D]": # pre-empty flaky xfail, tc2 values are seemingly-random if not (np.array(tc2) == input2).all(): pytest.xfail(reason="GH#7996") expected = Series([False, False, False, False, True, True, False]) tm.assert_series_equal(tc2.duplicated(), expected) tm.assert_series_equal(tc2.drop_duplicates(), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(inplace=True) tm.assert_series_equal(sc, tc2[~expected]) expected = Series([False, True, True, False, False, False, False]) tm.assert_series_equal(tc2.duplicated(keep="last"), expected) tm.assert_series_equal(tc2.drop_duplicates(keep="last"), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(keep="last", inplace=True) tm.assert_series_equal(sc, tc2[~expected]) expected = Series([False, True, True, False, True, True, False]) tm.assert_series_equal(tc2.duplicated(keep=False), expected) tm.assert_series_equal(tc2.drop_duplicates(keep=False), tc2[~expected]) sc = tc2.copy() sc.drop_duplicates(keep=False, inplace=True) tm.assert_series_equal(sc, tc2[~expected]) def test_drop_duplicates_categorical_bool(self, ordered_fixture): tc = Series( Categorical( [True, False, True, False], categories=[True, False], ordered=ordered_fixture, ) ) expected = Series([False, False, True, True]) tm.assert_series_equal(tc.duplicated(), expected) tm.assert_series_equal(tc.drop_duplicates(), tc[~expected]) sc = tc.copy() sc.drop_duplicates(inplace=True)
tm.assert_series_equal(sc, tc[~expected])
pandas._testing.assert_series_equal
# External Libraries from datetime import date import pandas as pd pd.options.mode.chained_assignment = None import os from pathlib import Path import logging, coloredlogs # Internal Libraries import dicts_and_lists as dal import Helper # ------ Logger ------- # logger = logging.getLogger('get_past_datasets.py') coloredlogs.install(level='DEBUG') folder = 'past_data/2017_2018/' months = ['october', 'november', 'december', 'january', 'february', 'march', 'april', 'may', 'june'] for month in months: url = 'https://www.basketball-reference.com/leagues/NBA_2018_games-'+ month + '.html' df_url = pd.read_html(url)[0] df_url = df_url.rename(columns= { 'Visitor/Neutral' : 'AwayTeam', 'Home/Neutral' : 'HomeTeam', 'PTS' : 'AwayPoints', 'PTS.1' : 'HomePoints' } ) df_url = df_url.drop(['Unnamed: 6', 'Unnamed: 7', 'Attend.', 'Notes'], axis=1) # Remove non interesting columns df_url = df_url.dropna(subset=['AwayPoints', 'HomePoints']) # Remove rows containing games not yet played my_file = Path(os.getcwd() + '/' + folder + month + '_data.csv') if not my_file.exists(): # If current data is not present in past_data folder, add it df_url.to_csv(my_file, index=False) # Save the df as .csv logger.info(f'An update has been made: {month}_data.csv has been created.') logger.info(f'{month}_data.csv is up to date.') # Create a big dataset october_df = pd.read_csv(folder + 'october_data.csv') november_df = pd.read_csv(folder + 'november_data.csv') december_df = pd.read_csv(folder + 'december_data.csv') january_df = pd.read_csv(folder + 'january_data.csv') february_df = pd.read_csv(folder + 'february_data.csv') march_df = pd.read_csv(folder + 'march_data.csv') april_df = pd.read_csv(folder + 'april_data.csv') may_df = pd.read_csv(folder + 'may_data.csv') june_df = pd.read_csv(folder + 'june_data.csv') #season_df = pd.concat([october_df, november_df, december_df, january_df, february_df, march_df, april_df, may_df, june_df]) season_df = pd.concat([april_df, may_df, june_df]) season_df.to_csv(folder + 'half_season.csv', index=False) df = pd.DataFrame(columns = dal.columns_data_dict) for _, row in season_df.iterrows(): print(row['HomeTeam']) print(row['AwayTeam']) try: date = row['Date'].partition(', ')[2] month = dal.months_dict[date[:3]] day = date.partition(',')[0][4:] if len(day) == 1: day = '0' + day year = date[-4:] except Exception as e: logger.error(e) try: home_team_short = dal.teams_dict[row['HomeTeam']] url = 'https://www.basketball-reference.com/boxscores/' + year + month + day + '0' + home_team_short + '.html' logger.info(f'Fetching data from: {url}') except Exception as e: logger.error(e) try: tables =
pd.read_html(url, match='Basic')
pandas.read_html
""" Name: foneutil Version: 0.4.4 Info: Python based script in order to record customer interactions, allowing the user to record relevant information from customer interaction. The script allows for the user to edit already entered in real time. Requirements: Pandas, pyfiglet and termcolor modules Created by: <NAME> - <EMAIL> """ import datetime import readline import os import sys import pandas as pd import numpy as np from pyfiglet import figlet_format def clear(): """ Clear the screen at the start of the script """ _ = os.system('clear') try: from termcolor import colored except ImportError: colored = None def banner(string, color, font="speed", figlet=False): """ Add a color banner on the top of the menu when loading script """ if colored: if not figlet: print(colored(string, color)) else: print(colored(figlet_format(string, font=font), color)) else: print(string) def rlinput(prompt, prefill=''): """ Function to allow the user to go back and edit the existing variable data when entering call info. This in effect allows the form to act as an interactive utility. """ readline.set_startup_hook(lambda: readline.insert_text(prefill)) try: return input(prompt) finally: readline.set_startup_hook() def display_file_content(filename): """ This function reads in the data file and displays the rows along with a numberical index value. The pd.set_option() is there to stop the displayed rows being truncated. """ clear() df_csv = pd.read_csv(filename) df_csv = df_csv.replace(np.nan, '', regex=True) pd.set_option('display.max_rows', None) print(df_csv) def get_record(var): """ Pull the row related to the index ID that is provided by the user when the read records area. """ df_csv =
pd.read_csv(filename)
pandas.read_csv
import matplotlib.pyplot as pl import numpy as np import pandas as pd from pyitab.analysis.results.base import filter_dataframe from pyitab.analysis.results.dataframe import apply_function import seaborn as sns from matplotlib.colors import LinearSegmentedColormap def find_distance_boundaries(data): scene_center = .5*(d['Scena_offset_sec'] - d['Scena_onset_sec']) distance_offset = scene_center - d['VAS sec'] value_click = np.int_(np.sign(distance_offset) == 1) return value_click def windowed_similarity(x, y, window): spearman = [] for i in range(len(x) - window): s = spearmanr(x[i:i+window], y[i:i+window]) spearman.append(s[0]) return spearman def bootstrap(x, y, n=100, fx=windowed_similarity, window=10): permutations = [] for p in range(n): idx = np.sort(np.random.choice(len(x), size=len(x), replace=True)) spearman = windowed_similarity(x[idx], y[idx], window) permutations.append(spearman) return permutations def plot_fit(x, y, ax, linestyle='--', color='gray'): from scipy.stats import linregress m, b, r, p, s = linregress(x, y) ax.plot(x, m*x+b, linestyle=linestyle, c=color, label=r**2) #ax.legend() pl.style.use("seaborn") fontsize = 18 style = { 'figure.figsize': (19, 15), 'axes.facecolor': 'white', 'axes.spines.top': False, 'axes.spines.right': False, 'axes.spines.bottom': True, 'axes.spines.left': True, 'axes.edgecolor': 'black', 'axes.linewidth': 1.5, 'axes.grid': False, 'grid.color': 'white', 'xtick.color': 'black', 'ytick.color': 'black', 'xtick.direction': 'in', 'ytick.direction': 'in', 'xtick.major.size': 3, 'ytick.major.size': 3, 'xtick.minor.size': 2, 'ytick.minor.size': 2, 'ytick.labelsize': fontsize-2, 'xtick.labelsize': fontsize-2, 'legend.fontsize': fontsize-5, 'legend.title_fontsize': fontsize-4, 'font.size': fontsize, 'axes.labelsize': fontsize-1, 'axes.titlesize': fontsize, 'svg.fonttype':'none' } pl.rcParams.update(style) palette_scatter = LinearSegmentedColormap.from_list("scatter_click", ['#73a87c', '#eba2b6'], N=2) palette_half = LinearSegmentedColormap.from_list("palette_part", ['purple', 'orange'], N=2) experiment_list = [ "VAS_DOPPIA_Delayed", "VAS_DOPPIA_Immediate", "VAS_Mid", "VAS_NewIns" ] experiment_figure = { 'VAS_DOPPIA_Delayed':'Exp. 3 | Delayed', 'VAS_DOPPIA_Immediate': 'Exp. 3 | Immediate', 'VAS_Mid': 'Exp. 2', 'VAS_NewIns': 'Exp. 1' } palette = { 'VAS_NewIns': sns.light_palette("dimgray", n_colors=9), 'VAS_Mid': sns.light_palette("#046c9a", n_colors=9), 'VAS_DOPPIA_Immediate': sns.light_palette("#f2300f", n_colors=9), 'VAS_DOPPIA_Delayed': sns.light_palette("#0b775e", n_colors=9), } for e in experiment_list: pl.figure() sns.palplot(palette[e]) path = "/home/robbis/Dropbox/PhD/experiments/memory_movie/paper_2/" full_dataset = list() for experiment in experiment_list[:]: print(experiment) data = pd.read_excel(os.path.join(path, experiment+"_Recognition.xlsx")) d = filter_dataframe(data, corresp=[1], **{'IR.ACC':[1]}) d = d.dropna() if experiment == "VAS_DOPPIA_Delayed": d = filter_dataframe(d, Session=[2]) if experiment == "VAS_DOPPIA_Immediate": d = filter_dataframe(d, Session=[1]) d['experiment'] = [experiment for _ in range(d.shape[0])] d['Experiment'] = [experiment_figure[experiment] for _ in range(d.shape[0])] full_dataset.append(d) ds =
pd.concat(full_dataset)
pandas.concat
# -*- coding: utf-8 -*- #%% from datetime import datetime startTime =datetime.now() import pandas as pd """ import numpy as np import glob import matplotlib.pyplot as plt import sys import time import datetime from datetime import timedelta import matplotlib.gridspec as gridspec import matplotlib.cm as mpl_cm from scipy.stats import ttest_ind from scipy.stats import ttest_rel from scipy import stats """ import string pd.options.display.float_format = '{:.6f}'.format #%% READ IN DATA FILES # Read in user data user = pd.read_csv("user.csv", low_memory=False) # Read in activity data mylist = [] for chunk in pd.read_csv("activitydf.csv",chunksize=1000,low_memory=False): mylist.append(chunk) active = pd.concat(mylist, axis= 0) del mylist #%% CLEAN USER DATA: Age and gender # calculate age of users # data collected in 2016 user["Age_calc"] = "2016" # calculate age in 2016 user["Age"] = pd.to_numeric(user["Age_calc"])- pd.to_numeric(user["Year_Of_Birth"]) # remove column used to calculate age user = user.drop("Age_calc", axis=1) # ensure consistent age formatting user['Age']= user['Age'].astype(float) # consistent Gender label formatting user["Gender"]= user["Gender"].replace({"Female":"female"}) user["Gender"]= user["Gender"].replace({"Male":"male"}) user["Gender"] =user["Gender"].fillna("Unknown") user.head(),user.shape # n=539979 ### CLEANING PseudoUserId #### user= user.drop(user.loc[user['PseudoUserId'].duplicated()==True].index) user.shape # n=539957 ### CLEANING AGE #### # create dataframes for known and unknown ages # can use for later statistical comparison - is there a difference in gender between those who choose to enter their age dem_users_unknown_age = pd.concat([user.loc[(user['Age']>100)],user.loc[(user['Age']<18)], user.loc[(user['Age'].isnull())]]) dem_users_known_age = user.loc[(user['Age']<=100) & (user['Age']>=18)] # check add up to 539957 (145962 + 393995) dem_users_unknown_age.shape[0]+ dem_users_known_age.shape[0] # Number of users with unknown or excluded age: 145,962 dem_users_unknown_age.shape #145962 # Of these users (uncomment to check) # Users with no recorded age: # user.loc[user['Age'].isnull()].shape # 135,381 # Users older than 100: # user.loc[(user['Age']>100)].shape #493 # Users younger than 18: # user.loc[(user['Age']<18)].shape # 10,088 # Check add up to total number of users with unknown or excluded ages # 135381 + 493 + 10088 # = 145962 # Number of users with known and included ages: dem_users_known_age.shape #393995 # check no variables not in either dataframe (should return blank df) temp =pd.concat([dem_users_known_age,dem_users_unknown_age]) user.loc[~user['PseudoUserId'].isin(temp['PseudoUserId'])].copy() ### CLEANING GENDER #### # create dataframes for known and unknown genders # located unknown gender dem_users_unknown_gender = user.loc[user["Gender"]=='Unknown'] # located known gender dem_users_known_gender = pd.concat([user.loc[user["Gender"]=='male'], user.loc[user["Gender"]=='female']]) # check add up to 539957 (102784+ 437173) dem_users_unknown_gender.shape[0]+ dem_users_known_gender.shape[0] ### drop unwanted variables # drop the unknown + unwanted age variables # (only do once investigated other cleaning) user = user.drop(pd.concat([user.loc[(user['Age']>100)],user.loc[(user['Age']<18)], user.loc[(user['Age'].isnull())]]).index) # user.loc[user["Gender"]=='Unknown'].shape # 3138 # drop the unknown gender variables # (only do once investigated other cleaning) user=user.drop(user.loc[user["Gender"]=='Unknown'].index) #%% ### POSTCODE CLEANING ### # get postcode sector data sectors = pd.read_csv("postcode_sectors.csv", low_memory=False) sectors_nssec = pd.read_csv("sector_nssec.csv", low_memory=False) sectors = sectors.merge(sectors_nssec, left_on='Postdist',right_on='postdist', how='left') sectors.to_csv("postcode_sectors_merged.csv") # subset data sectors['Sectlen_three'] =sectors['Postcode_nospace'].str.slice(stop=3) sectors['SectFour'] =sectors['Postcode_nospace'].str.slice(stop=4) print('Number of unique postcode districts:', sectors['Postdist'].nunique()) # 2960 unique postcode districts #%% # create temporary copy of users dataframe df_user_temp = user # remove users with no postcode df_user_temp = df_user_temp.drop(df_user_temp.loc[df_user_temp['Postcode'].isnull()].index) # number of users with non-null postcode df_user_temp.shape[0] # n= 359311 # remove letters and white space from the end of the postcode df_user_temp['Postcode_stripletter'] = df_user_temp['Postcode'].str.rstrip(string.ascii_letters + string.whitespace) def add_space(string, length): return ' '.join(string[i:i+length] for i in range(0,len(string),length)) # add column with postcode separated by a space after first 2 characters df_user_temp['Postcode_space2'] = df_user_temp['Postcode'].apply(lambda x : add_space(x,2)) # remove letters and white space from the end of the postcode df_user_temp['Postcode_space2'] = df_user_temp['Postcode_space2'].str.rstrip(string.ascii_letters + string.whitespace) # Apply series of postcode length matching, there are several postal district formats # L: Letter # N: Number # e.g. LLNN: Letter Letter Number Number i.e. OX10 SO22, LS12 # LLNN postal district format LLNN = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isalpha() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isnumeric() ==True)] LLNN.shape[0] # n=310137 # LLNL postal district format LLNL = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isalpha() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isalpha() ==True)] LLNL.shape[0] # n=1868 # LNL postal district format LNL = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isnumeric() ==True) & (df_user_temp.Postcode.str[2].str.isalpha() ==True)] LNL['LNL']= LNL['Postcode'].str.slice(stop=3) LNL.shape[0] # n=2020 # LN postal district format LN = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isnumeric() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isalpha() ==True)] LN.shape[0] # n= 10772 # LNN postal district format LNN = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isnumeric() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isnumeric() ==True)] LNN['LNN'] = LNN['Postcode'].str.slice(stop=3) # LNN_L postal district format LNN_L = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isnumeric() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isalpha() ==True)] LNN_L['Postcode_strip2']= LNN_L['Postcode_stripletter'].str.slice(stop=2) LNN_L.shape[0] # n= 10772 # Get postcodes 3 characters long to avoid missing matches len_three= df_user_temp.loc[df_user_temp['Postcode'].apply(lambda x: len(x) ==3) ] len_three.shape[0] # n=603 # Get postcodes 2 characters long to avoid missing matches len_two= df_user_temp.loc[df_user_temp['Postcode'].apply(lambda x: len(x) ==2) ] len_two.shape[0] # n=252 LLNN = df_user_temp.loc[(df_user_temp.Postcode.str[0].str.isalpha() ==True) & (df_user_temp.Postcode.str[1].str.isalpha() ==True) & (df_user_temp.Postcode.str[2].str.isnumeric() ==True)& (df_user_temp.Postcode.str[3].str.isnumeric() ==True)] LLNN.shape[0] # n= 310137 #%% Subset refernce sector data in same way # get sectors with the LLNL postal district format sectors_LLNL = sectors.loc[(sectors.Postdist.str[0].str.isalpha() ==True) & (sectors.Postdist.str[1].str.isalpha() ==True) & (sectors.Postdist.str[2].str.isnumeric() ==True)& (sectors.Postdist.str[3].str.isalpha() ==True)].drop_duplicates(subset=['Postdist']) sectors_LLNL.shape[0] # 51 unique postal districts with the LLNL format # get sectors with the LNL postal district format sectors_LNL = sectors.loc[(sectors.Postdist.str[0].str.isalpha() ==True) & (sectors.Postdist.str[1].str.isnumeric() ==True) & (sectors.Postdist.str[2].str.isalpha() ==True)].drop_duplicates(subset=['Postdist']) sectors_LNL.shape[0] # 15 unique postal districts with the LLNL format # get sectors with the LN postal district format sectors_LN = sectors.loc[(sectors.Postcode_nospace.str[0].str.isalpha() ==True) & (sectors.Postcode_nospace.str[1].str.isnumeric() ==True) & (sectors.Postcode_nospace.str[2].str.isnumeric() ==True)].drop_duplicates(subset=['Postdist']) sectors_LN.shape[0] # 336 unique postal districts with the LN format # get sectors with the LNN postal district format sectors_LNN = sectors.loc[(sectors.Postdist.str[0].str.isalpha() ==True) & (sectors.Postdist.str[1].str.isnumeric() ==True) & (sectors.Postdist.str[2].str.isnumeric() ==True)].drop_duplicates(subset=['Postdist']) sectors_LNN.shape[0] # 268 unique postal districts with the LN format # get sectors with the LLN postal district format sectors_LLN = sectors.loc[sectors['Postcode_nospace'].str.len()==4] sectors_LLN.shape[0] # 5261 unique postal districts with the LLN format # get sectors with the LLNN postal district format sectors_LLNN = sectors.loc[sectors['Postcode_nospace'].str.len()==5] sectors_LLNN.shape[0] # 5481 unique postal districts with the LLNN format #%% join bounts postal districts to sector postla districts data to get cleaned postal districts. Across the different district formats. # get Bounts users with LLNL postal district format LLNL_clean = LLNL.merge(sectors_LLNL, left_on='Postcode', right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) print(LLNL_clean.shape[0]) # n= 1597 users with LLNL postal district format # get Bounts users with LNL postal district format LNL_clean = LNL.merge(sectors_LNL, left_on='LNL', right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) print(LNL_clean.shape[0]) # n= 857 users with LNL postal district format # get Bounts users with LN postal district format LN_clean = LN.merge(sectors_LN, left_on='Postcode_space2', right_on='Postcode').dropna(subset=['ns_sec_1']) print(LN_clean.shape[0]) # n= 2038 users with LNL postal district format LNN_L_clean = LNN_L.merge(sectors.drop_duplicates(subset=['Postdist']), left_on='Postcode_stripletter',right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) print(LNN_L_clean.shape[0]) LNN_L_clean2 = LNN_L.merge(sectors.drop_duplicates(subset=['Postdist']), left_on='Postcode_strip2',right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) print(LNN_L_clean2.shape[0]) len_three_clean =len_three.merge(sectors.drop_duplicates(subset=['Postdist']), left_on='Postcode',right_on='Postdist').dropna(subset=['ns_sec_1']) print(len_three_clean.shape[0]) len_two_clean = len_two.merge(sectors.drop_duplicates(subset=['Postdist']), left_on='Postcode',right_on='Postdist').dropna(subset=['ns_sec_1']) print(len_two_clean.shape[0]) LNN_clean = LNN.merge(sectors_LNN, left_on='LNN', right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) print(LNN_clean.shape[0]) LLNN_temp_1 = LLNN.merge(sectors_LLNN, left_on='Postcode', right_on='Postdist', how='left').dropna(subset=['ns_sec_1']) # 11723 LLNN_temp_2= LLNN.merge(sectors_LLN, left_on='Postcode', right_on='Postcode_nospace', how='left').dropna(subset=['ns_sec_1']) # define user postal districts that could be LLN or LLNN # can be used for exploratory analysis LLN_LLNN = LLNN_temp_1.loc[LLNN_temp_1['PseudoUserId'].isin(LLNN_temp_2['PseudoUserId'])==True].drop_duplicates(subset=['PseudoUserId','Postdist']) # LLN clean is in LLN_sectors but not LLNN sectors LLN_clean = LLNN_temp_2.loc[LLNN_temp_2['PseudoUserId'].isin(LLNN_temp_1['PseudoUserId'])==False].drop_duplicates(subset=['PseudoUserId','Postdist']) # LLNN clean is in LLNN_sectors but not LLN sectors LLNN_clean = LLNN_temp_1.loc[LLNN_temp_1['PseudoUserId'].isin(LLNN_temp_2['PseudoUserId'])==False].drop_duplicates(subset=['PseudoUserId','Postdist']) d1 = LLNL_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d2 = LNL_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d3 = LN_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d4 = LNN_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d5 = LLNN_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d6 = LLN_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d7 = len_two_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d8 = len_three_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d9 = LNN_L_clean[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] d10 = LNN_L_clean2[['PseudoUserId', 'Gender', 'Postcode_x', 'Year_Of_Birth',\ 'Age', 'Postdist','Latitude', 'Longitude', 'Easting', 'Northing', 'Grid Ref', 'Postcodes', 'Active postcodes', 'Population', 'Households', 'Built up area', 'postdist', 'ns_sec_1', 'ns_sec_1_per', 'ns_sec_2', 'ns_sec_2_per', 'ns_sec_3', 'ns_sec_3_per', 'ns_sec_4', 'ns_sec_4_per', 'ns_sec_5', 'ns_sec_5_per', 'ns_sec_6', 'ns_sec_6_per', 'ns_sec_7', 'ns_sec_7_per', 'ns_sec_8', 'ns_sec_8_per', 'ns_sec_notclass', 'ns_sec_notclass_per']] df_user_postcode =
pd.concat([d1,d2,d3,d4,d5,d6,d7,d8,d9,d10])
pandas.concat
""" This is used for visualizing -- not really needed otherwise """ import os os.environ["DISPLAY"] = "" import argparse import h5py import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import numpy as np import json import pandas as pd from matplotlib.animation import FuncAnimation COLORS = np.array( [0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286, 0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714, 0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000 ] ).astype(np.float32).reshape((-1, 3)) parser = argparse.ArgumentParser(description='Visualize Trajectories') parser.add_argument( '-fn', dest='fn', type=str, help='fn to use' ) args = parser.parse_args() data_h5 = h5py.File(args.fn, 'r') meta_info = json.loads(data_h5['meta_info'][()].decode('utf-8')) meta_info['task_name'] = meta_info['task_name'].strip('_') output_actions = json.loads(data_h5['output_actions'][()].decode('utf-8')) output_actions.append({'action': 'Done'}) aliases = json.loads(data_h5['alias_object_id_to_old_object_id'][()].decode('utf-8')) object_id_to_states = json.loads(data_h5['object_id_to_states'][()].decode('utf-8')) # Last action / next action def action_txt(action_t): action_str = [action_t['action']] if 'objectId' in action_t: action_str.append(action_t['objectId'].split('|')[0]) if 'receptacleObjectId' in action_t: action_str.append(action_t['receptacleObjectId'].split('|')[0]) return '< {} >'.format(' , '.join(action_str)) action_txt = [action_txt(action_t) for action_t in output_actions] goal_txt = '{}:\n{}'.format(meta_info['task_name'], meta_info['text']) for i, mid in enumerate(meta_info['main_object_ids']): goal_txt = goal_txt.replace(f'${i+1}', '[{}]'.format(mid.split('|')[0])) # Cheap latex style alignment goal_txt = goal_txt.replace('. ', '.\n') for s2 in goal_txt.split('\n'): if len(s2) < 30: continue for s1 in s2.split(', ')[:-1]: goal_txt = goal_txt.replace(s1 + ', ', s1 + ',\n') ims = [] num_frames = data_h5['frames'].shape[0] frames = np.array(data_h5['frames'], dtype=np.int32) IM_SIZE = (384, 640) DPI = 128 fig = plt.figure(frameon=False) fig.set_size_inches(IM_SIZE[1] / DPI, IM_SIZE[0] / DPI) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) # Compute interesting state changes accross aliases def _column_interestingness_score(col): vcs = col.value_counts().values.astype(np.float32) vcs_p = vcs / vcs.sum() return -np.sum(vcs_p * np.log(vcs_p)) dfs = {} for oid in meta_info['main_object_ids']: df = [] oid_and_aliases = [oid] + [k for k, v in aliases.items() if v == oid] for t in range(num_frames): # Add a dummy None which will get overwritten df.append(None) for oid_k in oid_and_aliases: if str(t) in object_id_to_states[oid_k]: df[t] = object_id_to_states[oid_k][str(t)] if df[t] is None: assert t > 0 df[t] = df[t-1] df =
pd.DataFrame(df)
pandas.DataFrame
from sklearn.metrics import pairwise_distances import pandas as pd import geopandas as gpd import lib.helpers as helpers def zone_distances(zones): """ :param zones GeoDataFrame [*index, zone, geometry] Must be in a CRS of unit: metre """ for ax in zones.crs.axis_info: assert ax.unit_name == 'metre' print("Calculating distances between zones...") distances_meters = pairwise_distances( list(zip( zones.geometry.centroid.x.to_list(), zones.geometry.centroid.y.to_list(), )) ) distances = pd.DataFrame( distances_meters / 1000, columns=zones.zone, index=zones.zone, ).stack() return distances def distance_quantiles(zone_dist): print("Calculating quantiles...") quantiles, bins = pd.qcut(zone_dist, q=100, retbins=True) qgrps = quantiles.groupby(quantiles) return qgrps, bins def crs_convert_visits(visits, zones): print("Convering visits to zone CRS") visits = gpd.GeoDataFrame( visits, crs="EPSG:4326", geometry=gpd.points_from_xy(visits.longitude, visits.latitude), ) return visits.to_crs(zones.crs) def align_visits_to_zones(visits, zones): print("Aligning region-visits to zones...") regional_visits = visits[visits.kind == 'region'] n_regional_visits_before = regional_visits.shape[0] user_regions = regional_visits.groupby(['userid', 'region']).head(1) user_zones = gpd.sjoin(user_regions, zones, op='intersects')[['region', 'zone']] regional_visits = user_zones.merge(regional_visits, on=['userid', 'region']) print("removed", n_regional_visits_before - regional_visits.shape[0], "region-visits due to missing zone geom") print("Aligning point-visits to zones...") point_visits = visits[visits.kind == 'point'] if point_visits.shape[0] > 0: n_point_visits_before = point_visits.shape[0] point_visits = gpd.sjoin(point_visits, zones, op='intersects') print("removed", n_point_visits_before - point_visits.shape[0], "point-visits due to missing zone geom") else: point_visits = point_visits.assign(zone='0') # Recombine columns = ['day', 'timeslot', 'zone'] # Special handling of created at in order to have baseline and baseline 24h time threshold. if 'createdat' in visits: columns.append('createdat') visits = pd.concat([ regional_visits[columns], point_visits[columns] ]) print(visits.shape[0], "visits left after alignment") # Re-sort to chronological order visits = visits \ .reset_index().set_index(['userid', 'day', 'timeslot']).sort_index() \ .reset_index().set_index('userid') return visits def align_raw_visits_to_zones(visits, zones): print("Aligning visits to zones...") regional_visits = visits.copy() n_regional_visits_before = regional_visits.shape[0] user_regions = regional_visits.groupby(['userid', 'region']).head(1) user_zones = gpd.sjoin(user_regions, zones, op='intersects')[['region', 'zone']] regional_visits = user_zones.merge(regional_visits, on=['userid', 'region']) print("removed", n_regional_visits_before - regional_visits.shape[0], "region-visits due to missing zone geom") # Recombine columns = ['zone', 'createdat'] visits = regional_visits[columns] print(visits.shape[0], "visits left after alignment") # Re-sort to chronological order visits = visits \ .reset_index().set_index(['userid', 'createdat']).sort_index() \ .reset_index().set_index('userid') return visits def aligned_visits_to_odm(visits, multiindex, timethreshold_hours=None): print("Creating odm...") gaps_columns = ['zone'] if "createdat" in visits: gaps_columns.append("createdat") if "weight" in visits: gaps_columns.append("weight") gaps = helpers.visit_gaps(visits[gaps_columns]) if timethreshold_hours is not None: print("Applying timethreshold to gaps [{} hours]...".format(timethreshold_hours)) gaps = gaps.assign(duration=gaps.createdat_destination - gaps.createdat_origin) gaps = gaps[gaps.duration <
pd.Timedelta(timethreshold_hours, "hours")
pandas.Timedelta
__version__ = '0.1.3' __maintainer__ = '<NAME> 31.12.2019' __contributors__ = '<NAME>, <NAME>' __email__ = '<EMAIL>' __birthdate__ = '31.12.2019' __status__ = 'dev' # options are: dev, test, prod #----- imports & packages ------ if __package__ is None or __package__ == '': import sys from os import path sys.path.append(path.dirname(path.dirname(path.dirname(__file__)))) import pprint import pandas as pd import numpy as np import warnings from pathlib import Path from zipfile import ZipFile class DataParser: def __init__(self, configDict: dict, datasetID: str, loadEncrypted=False): """ Basic class for parsing a mobility survey trip data set. Currently the both German travel surveys MiD 2008 and MiD 2017 are pre-configured and one of the two can be given (default: MiD 2017). The data set can be provided from an encrypted file on a server in which case the link to the ZIP-file as well as a link to the file within the ZIP-file have to be supplied in the globalConfig and a password has to be supplied in the parseConfig. Columns relevant for the EV simulation are selected from the entirety of the data and renamed to VencoPy internal variable names given in the dictionary parseConfig['dataVariables'] for the respective survey data set. Manually configured exclude, include, greaterThan and smallerThan filters are applied as they are specified in parseConfig. For some columns, raw data is transferred to human readable strings and respective columns are added. Pandas timestamp columns are synthesized from the given trip start and trip end time information. :param configDict: A dictionary containing multiple yaml config files :param datasetID: Currently, MiD08 and MiD17 are implemented as travel survey data sets :param loadEncrypted: If True, load an encrypted ZIP file as specified in parseConfig """ self.parseConfig = configDict['parseConfig'] self.globalConfig = configDict['globalConfig'] self.localPathConfig = configDict['localPathConfig'] self.datasetID = self.checkDatasetID(datasetID, self.parseConfig) self.rawDataPath = Path(self.localPathConfig['pathAbsolute'][self.datasetID]) / self.globalConfig['files'][self.datasetID]['tripsDataRaw'] self.subDict = {} self.rawData = None self.data = None self.__filterDict = {} self.columns = self.compileVariableList() self.filterDictNameList = ['include', 'exclude', 'greaterThan', 'smallerThan'] self.updateFilterDict() print('Parsing properties set up') if loadEncrypted: print(f"Starting to retrieve encrypted data file from " f"{self.globalConfig['pathAbsolute']['encryptedZipfile']}") self.loadEncryptedData(pathToZip=Path(self.globalConfig['pathAbsolute']['encryptedZipfile']) / self.globalConfig['files'][self.datasetID]['encryptedZipFileB2'], pathInZip=self.globalConfig['files'][self.datasetID]['tripDataZipFileRaw']) else: print(f"Starting to retrieve local data file from {self.rawDataPath}") self.loadData() def updateFilterDict(self) -> None: """ Internal function to parse the filter dictionary of a specified data set from parseConfig.yaml :return: None """ self.__filterDict[self.datasetID] = self.parseConfig['filterDicts'][self.datasetID] self.__filterDict[self.datasetID] = {iKey: iVal for iKey, iVal in self.__filterDict[self.datasetID].items() if self.__filterDict[self.datasetID][iKey] is not None} def checkDatasetID(self, datasetID: str, parseConfig: dict) -> str: """ General check if data set ID is defined in parseConfig.yaml :param datasetID: list of strings declaring the datasetIDs to be read in :param parseConfig: A yaml config file holding a dictionary with the keys 'pathRelative' and 'pathAbsolute' :return: Returns a string value of a mobility data """ availableDatasetIDs = parseConfig['dataVariables']['datasetID'] assert datasetID in availableDatasetIDs, \ f'Defined datasetID {datasetID} not specified under dataVariables in parseConfig. Specified datasetIDs ' \ f'are {availableDatasetIDs}' return datasetID def compileVariableList(self) -> list: """ Clean up the replacement dictionary of raw data file variable (column) names. This has to be done because some variables that may be relevant for the analysis later on are only contained in one raw data set while not contained in another one. E.g. if a trip is an intermodal trip was only assessed in the MiD 2017 while it wasn't in the MiD 2008. This has to be mirrored by the filter dict for the respective data set. :return: List of variables """ listIndex = self.parseConfig['dataVariables']['datasetID'].index(self.datasetID) variables = [val[listIndex] if not val[listIndex] == 'NA' else 'NA' for key, val in self.parseConfig['dataVariables'].items()] variables.remove(self.datasetID) self.removeNA(variables) return variables def removeNA(self, variables: list): """ Removes all strings that can be capitalized to 'NA' from the list of variables :param variables: List of variables of the mobility dataset :return: Returns a list with non NA values """ vars = [iVar.upper() for iVar in variables] counter = 0 for idx, iVar in enumerate(vars): if iVar == 'NA': del variables[idx - counter] counter += 1 def loadData(self): """ Loads data specified in self.rawDataPath and stores it in self.rawData. Raises an exception if a invalid suffix is specified in self.rawDataPath. READ IN OF CSV HAS NOT BEEN EXTENSIVELY TESTED BEFORE BETA RELEASE. :return: None """ # Future releases: Are potential error messages (.dta not being a stata file even as the ending matches) # readable for the user? Should we have a manual error treatment here? if self.rawDataPath.suffix == '.dta': self.rawData = pd.read_stata(self.rawDataPath, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) # This has not been tested before the beta release elif self.rawDataPath.suffix == '.csv': self.rawData = pd.read_csv(self.rawDataPath) else: Exception(f"Data type {self.rawDataPath.suffix} not yet specified. Available types so far are .dta and " f".csv") print(f'Finished loading {len(self.rawData)} rows of raw data of type {self.rawDataPath.suffix}') def loadEncryptedData(self, pathToZip, pathInZip): """ Since the MiD data sets are only accessible by an extensive data security contract, VencoPy provides the possibility to access encrypted zip files. An encryption password has to be given in parseConfig.yaml in order to access the encrypted file. Loaded data is stored in self.rawData :param pathToZip: path from current working directory to the zip file or absolute path to zipfile :param pathInZip: Path to trip data file within the encrypted zipfile :return: None """ with ZipFile(pathToZip) as myzip: if '.dta' in pathInZip: self.rawData = pd.read_stata(myzip.open(pathInZip, pwd=bytes(self.parseConfig['encryptionPW'], encoding='utf-8')), convert_categoricals=False, convert_dates=False, preserve_dtypes=False) else: # if '.csv' in pathInZip: self.rawData = pd.read_csv(myzip.open(pathInZip, pwd=bytes(self.parseConfig['encryptionPW'], encoding='utf-8')), sep=';', decimal=',') print(f'Finished loading {len(self.rawData)} rows of raw data of type {self.rawDataPath.suffix}') def selectColumns(self): """ Function to filter the rawData for only relevant columns as specified by parseConfig and cleaned in self.compileVariablesList(). Stores the subset of data in self.data :return: None """ self.data = self.rawData.loc[:, self.columns] def harmonizeVariables(self): """ Harmonizes the input data variables to match internal VencoPy names given as specified in the mapping in parseConfig['dataVariables']. So far mappings for MiD08 and MiD17 are given. Since the MiD08 doesn't provide a combined household and person unique identifier, it is synthesized of the both IDs. :return: None """ replacementDict = self.createReplacementDict(self.datasetID, self.parseConfig['dataVariables']) dataRenamed = self.data.rename(columns=replacementDict) if self.datasetID == 'MiD08': dataRenamed['hhPersonID'] = (dataRenamed['hhID'].astype('string') + dataRenamed['personID'].astype('string')).astype('int') self.data = dataRenamed print('Finished harmonization of variables') def createReplacementDict(self, datasetID: str, dictRaw: dict) -> dict: """ Creates the mapping dictionary from raw data variable names to VencoPy internal variable names as specified in parseConfig.yaml for the specified data set. :param datasetID: list of strings declaring the datasetIDs to be read in :param dictRaw: Contains dictionary of the raw data :return: Dictionary with internal names as keys and raw data column names as values. """ if datasetID in dictRaw['datasetID']: listIndex = dictRaw['datasetID'].index(datasetID) return {val[listIndex]: key for (key, val) in dictRaw.items()} else: raise ValueError(f'Data set {datasetID} not specified in parseConfig variable dictionary.') def convertTypes(self): """ Convert raw column types to predefined python types as specified in parseConfig['inputDTypes'][datasetID]. This is mainly done for performance reasons. But also in order to avoid index values that are of type int to be cast to float. The function operates only on self.data and writes back changes to self.data :return: None """ # Filter for dataset specific columns conversionDict = self.parseConfig['inputDTypes'][self.datasetID] keys = {iCol for iCol in conversionDict.keys() if iCol in self.data.columns} self.subDict = {key: conversionDict[key] for key in conversionDict.keys() & keys} self.data = self.data.astype(self.subDict) def returnDictBottomValues(self, baseDict: dict, lst: list = []) -> list: """ Returns a list of all dictionary values of the last dictionary level (the bottom) of baseDict. The parameter lst is used as an interface between recursion levels. :param baseDict: Dictionary of variables :param lst: empty list, is used as interface to next recursion :return: Returns a list with all the bottom dictionary values """ for iKey, iVal in baseDict.items(): if isinstance(iVal, dict): lst = self.returnDictBottomValues(iVal, lst) else: if iVal is not None: lst.append(iVal) return lst def checkFilterDict(self): """ Checking if all values of filter dictionaries are of type list. Currently only checking if list of list str not typechecked all(map(self.__checkStr, val). Conditionally triggers an assert. :return: None """ assert all(isinstance(val, list) for val in self.returnDictBottomValues(self.__filterDict[self.datasetID])), \ f'All values in filter dictionaries have to be lists, but are not' def returnDictBottomKeys(self, baseDict: dict, lst: list = None) -> list: """ Returns the lowest level keys of baseDict and returns all of them as a list. The parameter lst is used as interface between recursion levels. :param baseDict: Dictionary of variables :param lst: empty list, used as interface between recursion levels :return: Returns a list with all the bottom level dictionary keys """ if lst is None: lst = [] for iKey, iVal in baseDict.items(): if isinstance(iVal, dict): lst = self.returnDictBottomKeys(iVal, lst) else: if iVal is not None: lst.append(iKey) return lst def filter(self): """ Wrapper function to carry out filtering for the four filter logics of including, excluding, greaterThan and smallerThan. If a filterDict is defined with a different key, a warning is thrown. The function operates on self.data class-internally. :return: None """ print(f'Starting filtering, applying {len(self.returnDictBottomKeys(self.__filterDict[self.datasetID]))} filters.') ret = pd.DataFrame(index=self.data.index) # Future releases: as discussed before we could indeed work here with a plug and pray approach. # we would need to introduce a filter manager and a folder structure where to look for filters. # this is very similar code than the one from ioproc. If we want to go down this route we should # take inspiration from the code there. It was not easy to get it right in the first place. This # might be easy to code but hard to implement correctly. for iKey, iVal in self.__filterDict[self.datasetID].items(): if iKey == 'include': ret = ret.join(self.setIncludeFilter(iVal, self.data.index)) elif iKey == 'exclude': ret = ret.join(self.setExcludeFilter(iVal, self.data.index)) elif iKey == 'greaterThan': ret = ret.join(self.setGreaterThanFilter(iVal, self.data.index)) elif iKey == 'smallerThan': ret = ret.join(self.setSmallerThanFilter(iVal, self.data.index)) else: warnings.warn(f'A filter dictionary was defined in the parseConfig with an unknown filtering key. ' f'Current filtering keys comprise include, exclude, smallerThan and greaterThan.' f'Continuing with ignoring the dictionary {iKey}') self.data = self.data[ret.all(axis='columns')] self.filterAnalysis(ret) def setIncludeFilter(self, includeFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for include filter dict from parseConfig.yaml :param includeFilterDict: Dictionary of include filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a data frame with individuals using car as a mode of transport """ incFilterCols = pd.DataFrame(index=dataIndex, columns=includeFilterDict.keys()) for incCol, incElements in includeFilterDict.items(): incFilterCols[incCol] = self.data[incCol].isin(incElements) return incFilterCols def setExcludeFilter(self, excludeFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for exclude filter dict from parseConfig.yaml :param excludeFilterDict: Dictionary of exclude filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a filtered data frame with exclude filters """ exclFilterCols = pd.DataFrame(index=dataIndex, columns=excludeFilterDict.keys()) for excCol, excElements in excludeFilterDict.items(): exclFilterCols[excCol] = ~self.data[excCol].isin(excElements) return exclFilterCols def setGreaterThanFilter(self, greaterThanFilterDict: dict, dataIndex): """ Read-in function for greaterThan filter dict from parseConfig.yaml :param greaterThanFilterDict: Dictionary of greater than filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: """ greaterThanFilterCols = pd.DataFrame(index=dataIndex, columns=greaterThanFilterDict.keys()) for greaterCol, greaterElements in greaterThanFilterDict.items(): greaterThanFilterCols[greaterCol] = self.data[greaterCol] >= greaterElements.pop() if len(greaterElements) > 0: warnings.warn(f'You specified more than one value as lower limit for filtering column {greaterCol}.' f'Only considering the last element given in the parseConfig.') return greaterThanFilterCols def setSmallerThanFilter(self, smallerThanFilterDict: dict, dataIndex) -> pd.DataFrame: """ Read-in function for smallerThan filter dict from parseConfig.yaml :param smallerThanFilterDict: Dictionary of smaller than filters defined in parseConfig.yaml :param dataIndex: Index for the data frame :return: Returns a data frame of trips covering a distance of less than 1000 km """ smallerThanFilterCols = pd.DataFrame(index=dataIndex, columns=smallerThanFilterDict.keys()) for smallerCol, smallerElements in smallerThanFilterDict.items(): smallerThanFilterCols[smallerCol] = self.data[smallerCol] <= smallerElements.pop() if len(smallerElements) > 0: warnings.warn(f'You specified more than one value as upper limit for filtering column {smallerCol}.' f'Only considering the last element given in the parseConfig.') return smallerThanFilterCols def filterAnalysis(self, filterData: pd.DataFrame): """ Function supplies some aggregate info of the data after filtering to the user Function does not change any class attributes :param filterData: :return: None """ lenData = sum(filterData.all(axis='columns')) boolDict = {iCol: sum(filterData[iCol]) for iCol in filterData} print(f'The following values were taken into account after filtering:') pprint.pprint(boolDict) print(f"All filters combined yielded a total of {lenData} was taken into account") print(f'This corresponds to {lenData / len(filterData)* 100} percent of the original data') def filterConsistentHours(self): """ Filtering out records where starting hour is after end hour but trip takes place on the same day. These observations are data errors. :return: No returns, operates only on the class instance """ if self.datasetID == 'MiD17' or self.datasetID == 'MiD08': dat = self.data self.data = dat.loc[(dat['tripStartClock'] <= dat['tripEndClock']) | (dat['tripEndNextDay'] == 1), :] # If we want to get rid of tripStartClock and tripEndClock (they are redundant variables) # self.data = dat.loc[pd.to_datetime(dat.loc[:, 'tripStartHour']) <= pd.to_datetime(dat.loc[:, 'tripEndHour']) | # (dat['tripEndNextDay'] == 1), :] def addStrColumnFromVariable(self, colName: str, varName: str): """ Replaces each occurence of a MiD/KiD variable e.g. 1,2,...,7 for weekdays with an explicitly mapped string e.g. 'MON', 'TUE',...,'SUN'. :param colName: Name of the column in self.data where the explicit string info is stored :param varName: Name of the VencoPy internal variable given in config/parseConfig['dataVariables'] :return: None """ self.data.loc[:, colName] \ = self.data.loc[:, varName].replace(self.parseConfig['Replacements'][self.datasetID][varName]) def addStrColumns(self, weekday=True, purpose=True): """ Adds string columns for either weekday or purpose. :param weekday: Boolean identifier if weekday string info should be added in a separate column :param purpose: Boolean identifier if purpose string info should be added in a separate column :return: None """ if weekday: self.addStrColumnFromVariable(colName='weekdayStr', varName='tripStartWeekday') if purpose: self.addStrColumnFromVariable(colName='purposeStr', varName='tripPurpose') def composeTimestamp(self, data: pd.DataFrame = None, colYear: str = 'tripStartYear', colWeek: str = 'tripStartWeek', colDay: str = 'tripStartWeekday', colHour: str = 'tripStartHour', colMin: str = 'tripStartMinute', colName: str = 'timestampStart') -> np.datetime64: """ :param data: a data frame :param colYear: year of start of a particular trip :param colWeek: week of start of a particular trip :param colDay: weekday of start of a particular trip :param colHour: hour of start of a particular trip :param colMin: minute of start of a particular trip :param colName: :return: Returns a detailed time stamp """ data[colName] = pd.to_datetime(data.loc[:, colYear], format='%Y') + \ pd.to_timedelta(data.loc[:, colWeek] * 7, unit='days') + \ pd.to_timedelta(data.loc[:, colDay], unit='days') + \ pd.to_timedelta(data.loc[:, colHour], unit='hour') + \ pd.to_timedelta(data.loc[:, colMin], unit='minute') # return data def composeStartAndEndTimestamps(self): """ :return: Returns start and end time of a trip """ self.composeTimestamp(data=self.data) # Starting timestamp self.composeTimestamp(data=self.data, # Ending timestamps colHour='tripEndHour', colMin='tripEndMinute', colName='timestampEnd') def updateEndTimestamp(self): """ :return: """ endsFollowingDay = self.data['tripEndNextDay'] == 1 self.data.loc[endsFollowingDay, 'timestampEnd'] = self.data.loc[endsFollowingDay, 'timestampEnd'] + pd.offsets.Day(1) def updateEndTimestamps(self) -> np.datetime64: """ :return: Returns start and end time of a trip """ self.updateEndTimestamp() def harmonizeVariablesGenericIdNames(self): """ """ self.data['genericID'] = self.data[str(self.parseConfig['IDVariablesNames'][self.datasetID])] print('Finished harmonization of ID variables') def process(self): """ Wrapper function for harmonising and filtering the dataset. """ self.selectColumns() self.harmonizeVariables() self.convertTypes() self.checkFilterDict() self.filter() self.filterConsistentHours() self.addStrColumns() self.composeStartAndEndTimestamps() self.updateEndTimestamps() self.harmonizeVariablesGenericIdNames() print('Parsing completed') class ParseMiD(DataParser): # Inherited data class to differentiate between abstract interfaces such as vencopy internal # variable namings and data set specific functions such as filters etc. Currently not used (06/14/2021) pass class ParseKiD(DataParser): # Inherited data class to differentiate between abstract interfaces such as vencopy internal # variable namings and data set specific functions such as filters etc. def __init__(self, configDict: dict, datasetID: str): super().__init__(configDict, datasetID) def loadData(self): rawDataPathTrips = Path(configDict['localPathConfig']['pathAbsolute'][self.datasetID]) / configDict['globalConfig']['files'][self.datasetID]['tripsDataRaw'] rawDataPathVehicles = Path(configDict['localPathConfig']['pathAbsolute'][self.datasetID]) / configDict['globalConfig']['files'][self.datasetID]['vehiclesDataRaw'] rawDataTrips = pd.read_stata(rawDataPathTrips, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) rawDataVehicles = pd.read_stata(rawDataPathVehicles, convert_categoricals=False, convert_dates=False, preserve_dtypes=False) rawDataVehicles.set_index('k00', inplace=True) rawData = rawDataTrips.join(rawDataVehicles, on='k00') self.rawData = rawData print(f'Finished loading {len(self.rawData)} rows of raw data of type .dta') def addStrColumns(self, weekday=True, purpose=True): """ Adds string columns for either weekday or purpose. :param weekday: Boolean identifier if weekday string info should be added in a separate column :param purpose: Boolean identifier if purpose string info should be added in a separate column :return: None """ # from tripStartDate retrieve tripStartWeekday, tripStartWeek, tripStartYear, tripStartMonth, tripStartDay # from tripStartClock retrieve tripStartHour, tripStartMinute # from tripEndClock retrieve tripEndHour, tripEndMinute self.data['tripStartDate'] = pd.to_datetime(self.data['tripStartDate'], format='%d.%m.%Y') self.data['tripStartYear'] = self.data['tripStartDate'].dt.year self.data['tripStartMonth'] = self.data['tripStartDate'].dt.month self.data['tripStartDay'] = self.data['tripStartDate'].dt.day self.data['tripStartWeekday'] = self.data['tripStartDate'].dt.weekday self.data['tripStartWeek'] = self.data['tripStartDate'].dt.isocalendar().week self.data['tripStartHour'] = pd.to_datetime(self.data['tripStartClock'], format='%H:%M').dt.hour self.data['tripStartMinute'] = pd.to_datetime(self.data['tripStartClock'], format='%H:%M').dt.minute self.data['tripEndHour'] = pd.to_datetime(self.data['tripEndClock'], format='%H:%M').dt.hour self.data['tripEndMinute'] =
pd.to_datetime(self.data['tripEndClock'], format='%H:%M')
pandas.to_datetime
import pandas as pd from datetime import datetime as dt # Here we should fetch our data from the Twitter API but since now we have to # apply for getting API's credentials we pass this step for the sake of the tutorial. # We use data.csv as source of tweets. LOCAL_DIR = '/tmp/' def main(): # Create the dataframe from data.csv tweets =
pd.read_csv('~/airflow/dags/data/data.csv', encoding='latin1')
pandas.read_csv
import pandas as pd import numpy as np index =
pd.date_range('1/1/2000', periods=8)
pandas.date_range
import os from pathlib import Path import json import pandas as pd from google.cloud import bigquery from datetime import datetime, timedelta, timezone JST = timezone(timedelta(hours=+9), 'JST') class Database: def __init__(self): super().__init__() self._usr_table = pd.DataFrame() self._ch_table = pd.DataFrame() self._msg_table = pd.DataFrame() self._JST = timezone(timedelta(hours=+9), 'JST') # property @property def usr_table(self) -> pd.DataFrame(): return self._usr_table @usr_table.setter def usr_table(self, value: pd.DataFrame): self._usr_table = value # setter @property def ch_table(self) -> pd.DataFrame(): return self._ch_table @ch_table.setter def ch_table(self, value: pd.DataFrame): self._ch_table = value # setter @property def msg_table(self) -> pd.DataFrame(): return self._msg_table @msg_table.setter def msg_table(self, value: pd.DataFrame): self._msg_table = value # setter # method def _mk_usr_table(self, usr_dict: dict) -> bool: uid_list = [] uname_list = [] for usr_ditem in usr_dict: if usr_ditem['deleted'] is True: continue uid_list.append(usr_ditem['id']) uname_list.append(usr_ditem['profile']['real_name_normalized']) self._usr_table =
pd.DataFrame({'uid': uid_list, 'uname': uname_list})
pandas.DataFrame
import warnings from typing import Union import re import pandas as pd import numpy as np from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer, make_column_selector from sklearn import metrics from feature_engine.imputation import ( CategoricalImputer, AddMissingIndicator, MeanMedianImputer) from feature_engine.encoding import OneHotEncoder, RareLabelEncoder from feature_engine.selection import DropConstantFeatures, DropFeatures from xgboost.sklearn import XGBClassifier from utils import str_cleaner_df def create_pipeline(params : dict = None): """ Create sklearn.pipeline.Pipeline Parameters ---------- params : dict dictionary of parameters for the pipeline Returns ------- sklearn.pipeline.Pipeline """ # pipeline for numeric variables p_num = Pipeline([ ("num_nan_ind",AddMissingIndicator(missing_only = True)), ("rmmean",MeanMedianImputer()), ("drop_quasi_constant",DropConstantFeatures(tol=0.97)) ]) # pipeline for categorical variables p_cat = Pipeline([ ("fill_cat_nas",CategoricalImputer(fill_value = 'MISSING')), ("rlc",RareLabelEncoder()), ("one_hot_encoder", OneHotEncoder()) ]) # list of pipelines to combine transformers = [ ("num",p_num,make_column_selector(dtype_include = np.number)), ("cat",p_cat,make_column_selector(dtype_include = object)) ] # combine pipelines and add XGBClassifier col_transforms = ColumnTransformer(transformers) p = Pipeline([ ("col_transformers",col_transforms), ("xgb", XGBClassifier(min_child_weight=1, gamma=0, objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=1, gpu_id=0, tree_method = 'gpu_hist')) ]) if params: p.set_params(**params) return p def name_tracker(p, X): """ Track names through pipeline. This function is specific to the architecture of the given pipeline. If the architecture of the pipeline changes, this function will need to change. TODO: Figure out if this can be made pipeline-architecture independent Parameters ---------- p : sklearn.pipeline.Pipeline must have already been fit X : pandas.DataFrame the input to the pipeline Returns ------- pandas.DataFrame contains feature importances """ cols_in = X.columns.tolist() df = pd.DataFrame({"cols":cols_in,"cols_in":cols_in}) # Indicators for Missing Numeric Columns nni = p['col_transformers'].transformers_[0][1]['num_nan_ind'] try: nan_num_ind = pd.DataFrame({ "cols":[i+"_na" for i in nni.variables_], "cols_in":nni.variables_}) df =
pd.concat([df, nan_num_ind])
pandas.concat
# -*- coding:utf-8 -*- ############################################################## # Created Date: Wednesday, September 2nd 2020 # Contact Info: <EMAIL> # Author/Copyright: Mr. <NAME> ############################################################## import random, urllib3, json, requests, math, plotly import pandas as pd import datetime as dt import numpy as np import plotly.figure_factory as ff from time import sleep from plotly import io as pio from deap import algorithms from datetime import datetime import random,datetime,plotly,math from itertools import combinations from deap import base, creator, tools import random, numpy,sys import time def generate3tables(): Table_SchedulingInfo_New = pd.DataFrame() Table_Changeovers_New = pd.DataFrame() Table_ShiftCalendar_New = pd.DataFrame() Table_SchedulingInfo_New_Extended = pd.DataFrame() LenOfSimulatedData = 100 DataRange_StartOfStart_EndOfStart = 10 DataDiff_StartDate_EndDate = 7 ProcessingTime_Max = 300 ProcessingTime_Min = 1 ChangeOverTime_Max = 30 ChangeOverTime_Min = 5 ProductionLine_Count = 4 Family_Count = 6 Priority_Count = 3 Families_List = [] ProductionLines_List = [] Priorities_List = [] start_date = [] end_date = [] processing_time = [] family_type = [] ProductionLine = [] workorder_num = [] changeover_time = [] Priority = [] Families_List = [np.append(Families_List,"Family_"+str(i+1)).tolist() for i in range (Family_Count )] ProductionLines_List = [np.append(ProductionLines_List, int(i+1)).tolist() for i in range (ProductionLine_Count)] Priorities_List = [np.append(Priorities_List, str(i+1)).tolist() for i in range (Priority_Count)] newFamily_List = [] for fly in Families_List: newFamily_List = np.append(newFamily_List, fly) Families_List = newFamily_List # Generate the Lists of Families_List and Production Lines start = datetime.datetime.strptime(datetime.datetime.today().strftime("%Y-%m-%d"), "%Y-%m-%d") date_list = [(start + datetime.timedelta(days=x)).strftime("%Y-%m-%d") for x in range(0, DataRange_StartOfStart_EndOfStart)] for i in range(LenOfSimulatedData): start_date = np.append(start_date, random.choice(date_list)) end_date = np.append(end_date,(datetime.datetime.strptime(random.choice(date_list), '%Y-%m-%d')+ datetime.timedelta(days=DataDiff_StartDate_EndDate)).strftime("%Y-%m-%d")) processing_time = np.append(processing_time,random.randint(ProcessingTime_Min,ProcessingTime_Max)) family_type = np.append(family_type, random.choice(Families_List)) ProductionLine = np.append(ProductionLine, random.choice(ProductionLines_List)) Priority = np.append(Priority, random.choice(Priorities_List)) workorder_num = np.append(workorder_num, i) for j in range(Family_Count): changeover_time = np.append(changeover_time, random.randint(ChangeOverTime_Min,ChangeOverTime_Max)) Table_SchedulingInfo_New["Start_date"] = start_date Table_SchedulingInfo_New["Due_date"] = end_date Table_SchedulingInfo_New["Processing_time"] = processing_time Table_SchedulingInfo_New["Family"] = family_type Table_SchedulingInfo_New["ProductionLine"] = ProductionLine Table_SchedulingInfo_New["Priority"] = Priority Table_SchedulingInfo_New["ChangeoverSort"] = Table_SchedulingInfo_New["Family"] Table_SchedulingInfo_New["WorkOrderNum"] = workorder_num Lines = [i+1 for i in range(ProductionLine_Count)] Possible_Com_Of_Lines = sum([list(map(list, combinations(Lines, i))) for i in range(len(Lines) + 1)], []) del Possible_Com_Of_Lines[0] WO_Num = 0 for index, row in Table_SchedulingInfo_New.iterrows(): OpLines = random.choice(Possible_Com_Of_Lines) Option_Lines_Len = len(OpLines) for i in range(Option_Lines_Len): Table_SchedulingInfo_New_Extended = Table_SchedulingInfo_New_Extended.append({'OptionalLine': OpLines[i], 'BasicStartDate': row.Start_date, 'DeliveryDate':row.Due_date, 'ProcessingTimeMins':row.Processing_time+i, 'FamilyName':row.Family, 'ProductionLine': row.ProductionLine, 'WorkOrderNum': row.WorkOrderNum, 'MaterialPriority': row.ProductionLine, 'ChangeoverSort':row.ChangeoverSort, 'Priority':Priority}, ignore_index=True) WO_Num += 1 Table_SchedulingInfo_New["Resource"] = Table_SchedulingInfo_New["Family"] Table_SchedulingInfo_New["Task"] = Table_SchedulingInfo_New["ProductionLine"] Table_SchedulingInfo_New["Start"] = Table_SchedulingInfo_New["Start_date"] Table_SchedulingInfo_New["Finish"] = Table_SchedulingInfo_New["Due_date"] color_dict = dict(zip(Table_SchedulingInfo_New.Resource.unique(),['rgb({},{},{})'.format(i[0],i[1],i[2]) for i in list(np.random.randint(255, size = (len(Table_SchedulingInfo_New.Resource.unique()),3)))])) fig = ff.create_gantt(Table_SchedulingInfo_New.to_dict('records'), colors = color_dict, index_col='Resource', show_colorbar=True, group_tasks=True) Table_Changeovers_New['ToChangeOver'] = Families_List Table_Changeovers_New['MaxChangeOverTimeMin'] = changeover_time # print(Table_Changeovers_New.ToChangeOver) for date in date_list: Table_ShiftCalendar_New = Table_ShiftCalendar_New.append({"ProductionDate":date,"ShiftAStart": "05:15:00", "ShiftAEnd":"15:20:00", "ShiftBStart":"15:30:00","ShiftBEnd":"01:35:00"}, ignore_index=True) # Table_SchedulingInfo_New_Extended.to_csv('Table_SchedulingInfo_New.csv',index=False) # Table_Changeovers_New.to_csv('Table_Changeovers_New.csv',index=False) # Table_ShiftCalendar_New.to_csv('Table_ShiftCalendar_New.csv',index=False) return Table_SchedulingInfo_New_Extended,Table_Changeovers_New,Table_ShiftCalendar_New class ClosedLoopScheduling: def __init__(self): # plotly.io.orca.config.executable = '/Users/roche/anaconda3/pkgs/plotly-orca-1.3.1-1/orca.cmd' # plotly.io.orca.config.save() self.__Import_And_CleanData() # This line would get the intial solution, and optional lines to chose for each WO self. HardConstraintPenalty = 150 def __len__(self): return self.WO_SIZE def __Import_And_CleanData(self): JobID = random.randint(1,1000) self.Table_SchedulingInfo,self.Table_ChangeOverInfo,self.Table_CalendarInfo = generate3tables() self.Table_SchedulingInfo['ProductionLineCode_Cap'] = self.Table_SchedulingInfo.OptionalLine#.apply(lambda x: x.split('')[-1]) self.Table_CalendarInfo["ProductionDate_ShiftA"] = pd.to_datetime(self.Table_CalendarInfo["ProductionDate"] +' '+ self.Table_CalendarInfo["ShiftAStart"]) self.Table_CalendarInfo['ShiftAStart'] = pd.to_datetime(self.Table_CalendarInfo['ShiftAStart'] ) self.Table_CalendarInfo['ShiftAEnd'] = pd.to_datetime(self.Table_CalendarInfo['ShiftAEnd'] ) self.Table_CalendarInfo["ShiftA_deltaT_minutes"] = ((self.Table_CalendarInfo["ShiftAEnd"] - self.Table_CalendarInfo["ShiftAStart"]).dt.total_seconds())/60 self.Table_CalendarInfo["ShiftB_deltaT_minutes"] = self.Table_CalendarInfo["ShiftA_deltaT_minutes"] FamilyGp_DupCount = self.Table_SchedulingInfo.groupby('FamilyName').size().sort_values(ascending=False).to_frame('DuplicateCount') # save the results in a dataframe [FamilyName, DuplicateCount] self.Schedule_Info =pd.DataFrame() for FamulyNameGroupItem, _ in FamilyGp_DupCount.iterrows(): df_grouped = self.Table_SchedulingInfo.loc[self.Table_SchedulingInfo.FamilyName == FamulyNameGroupItem] # df_grouped.loc[~df_grouped.ChangeoverSort.isin(self.Table_ChangeOverInfo.ToChangeOver.tolist()), 'ChangeoverSort'] = '1020Other' self.Schedule_Info = self.Schedule_Info.append(df_grouped, ignore_index = True) self.Schedule_Info.assign(MaxChangeOverTimeMin="") # 5.1. ACurrent_Start Maximum ChangeOver Time of each family to the self.Schedule_Info table for i, val in enumerate(self.Table_ChangeOverInfo.ToChangeOver.tolist()): self.Schedule_Info.loc[self.Schedule_Info.ChangeoverSort == val, 'MaxChangeOverTimeMin'] = self.Table_ChangeOverInfo.MaxChangeOverTimeMin.iloc[i] # ----------------------- 6. Create a completely new table to save the scheduled work (!!! 6.1. Sort WPT based on Family Group ) - # self.minor_ChangeOver_Mins = 2.53 ## print('#---------------- 6.1. Sort WPT based on Family Group ---------------#') self.Schedule_Info["Optional_Lines"] = self.Schedule_Info.ProductionLineCode_Cap # # ==================================== Objective Function Construction ======================================= # self.Unique_WO_Array = self.Schedule_Info['WorkOrderNum'].unique() self.WO_SIZE = len(self.Unique_WO_Array) Unique_WO_Df = pd.DataFrame({'WorkOrderNum':self.Unique_WO_Array}) ## print("# 2D Matrics for each work order:O_Lines,P_Times,WP_Times ") O_Lines = [list((self.Schedule_Info['Optional_Lines'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()] P_Times = [list((self.Schedule_Info['ProcessingTimeMins'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()] ## print("# 2D-1. Zaro paCurrent_Starting to make sure all optionals lines have same number of lines") self.O_Lines_Array = np.array([i + [0]*(len(max(O_Lines, key=len))-len(i)) for i in O_Lines]) self.P_Times_Array = np.array([i + [0]*(len(max(P_Times, key=len))-len(i)) for i in P_Times]) ## print("# 2D-2. If an element equalt to 0, relace with previous value in the row") for idx, item in np.ndenumerate(self.O_Lines_Array): if item == 0: self.O_Lines_Array[(idx[0],idx[1])] = self.O_Lines_Array[(idx[0],idx[1]-1)] self.P_Times_Array[(idx[0],idx[1])] = self.P_Times_Array[(idx[0],idx[1]-1)] ## print("# 1D Matrics for each work order:self.CV_Times, self.CV_Sorts, self.Fmily_T, self.BStart_Dates, self.Del_Dates") self.Schedule_Info['BasicEndDate'] = self.Schedule_Info['DeliveryDate'] self.CV_Times = np.array([list(set(self.Schedule_Info['MaxChangeOverTimeMin'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.CV_Sorts = np.array([list(set(self.Schedule_Info['ChangeoverSort'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.Fmily_T = np.array([list(set(self.Schedule_Info['FamilyName'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) self.BStart_Dates = np.array([list(set(self.Schedule_Info['BasicStartDate'].loc[self.Schedule_Info['WorkOrderNum'] == x['WorkOrderNum']])) for _, x in Unique_WO_Df.iterrows()]) def Run_ToGetAllLines_Objectives(self,Chromosome_Solution): Performances_df = pd.DataFrame() line_viol = self.CandidateViolation(Chromosome_Solution) for Line_Code in range(1,5): self.__Objectives_Of_Each_Line(Line_Code,Chromosome_Solution) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'Line '+str(Line_Code), 'MakeSpanTime':(self.Line_Total_PT+self.Line_Total_CV_Times)/(60)}, index=[0]), ignore_index = True) MkSpan_Dif = round(Performances_df['MakeSpanTime'].max() - Performances_df['MakeSpanTime'].min(),2) return 150*line_viol+50*(MkSpan_Dif/24) def Final_Run(self,Chromosome_Solution): print(Chromosome_Solution) Performances_df = pd.DataFrame() PT_Mini = 0 line_viol = self.CandidateViolation(Chromosome_Solution) self.OutputData_Of_Lines =pd.DataFrame() OutputData =pd.DataFrame() Unique_Lines = self.Schedule_Info.Optional_Lines.nunique() for Line_Code in range(1,Unique_Lines+1): Schedule_Of_The_Line,Start,Finish = self.__FinalRun_Obj_Of_Each_Line_SaveData(Line_Code,Chromosome_Solution) self.OutputData_Of_Lines = self.OutputData_Of_Lines.append(Schedule_Of_The_Line) Schedule_Of_The_Line.Start = Start Schedule_Of_The_Line.Finish = Finish OutputData = OutputData.append(Schedule_Of_The_Line) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'Line '+str(Line_Code), 'FamilyAtDayStartFactor':1, 'ProcessingTime':self.Line_Total_PT/(60), 'ChangeoverTime':self.Line_Total_CV_Times/(60), 'MakeSpanTime':(self.Line_Total_PT+self.Line_Total_CV_Times)/(60)}, index=[0]), ignore_index = True) MkSpan_Dif = round(Performances_df['MakeSpanTime'].max() - Performances_df['MakeSpanTime'].min(),2) PT_Mini =round(Performances_df['ProcessingTime'].sum(),2) CVTimes_Mini =round(Performances_df['ChangeoverTime'].sum(),2) Performances_df = Performances_df.append(pd.DataFrame({'LineName':'AllLines', 'FamilyAtDayStartFactor':1, 'ProcessingTime':PT_Mini, 'ChangeoverTime':CVTimes_Mini, 'MakeSpanTime':(PT_Mini+CVTimes_Mini)}, index=[0]), ignore_index = True) single_Objective = 150*line_viol+50*(MkSpan_Dif/24) OutputData = OutputData.rename(columns={"Task": "LineName", "Start":"BasicStartDate", "Finish":"BasicEndDate", "Resource":"Family"}) def Plot_Gantt_Chart(self): # ------------------------------- Ploting the results by using Plotly Gantt Chart ---------------------------------------------- # print(f'{"The shape of the OutputData_Of_Lines: "}{self.OutputData_Of_Lines.shape[0]}') color_dict = dict(zip(self.OutputData_Of_Lines.Resource.unique(),['rgb({},{},{})'.format(i[0],i[1],i[2]) for i in list(np.random.randint(255, size = (len(self.OutputData_Of_Lines.Resource.unique()),3)))])) fig = ff.create_gantt(self.OutputData_Of_Lines.to_dict(orient = 'records'), colors = color_dict, index_col = "Resource", title = "Genetic Algorithm based Optimization", show_colorbar = True, bar_width = 0.3, showgrid_x = False, showgrid_y = True, show_hover_fill=True) fig_html = pio.to_html(fig) # fig.show() # print(fig_html) # fig.write_image(r"CLS_GanttChart.png") return fig_html def CandidateViolation(self,Chromosome_Solution): line_viol = 0 for idx, item in np.ndenumerate(Chromosome_Solution): if item not in self.O_Lines_Array[idx[0]]: line_viol += 1 return line_viol def __Objectives_Of_Each_Line(self,Line_Code,Chromosome_Solution): ## print('#---------------- 6.2. Reset the initial start and end -------------#') Line_Curr_End = self.Table_CalendarInfo.ProductionDate_ShiftA + pd.to_timedelta(self.minor_ChangeOver_Mins*60, unit='s') Line_Curr_End = Line_Curr_End[0] Shift_AandB_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] + self.Table_CalendarInfo.ShiftB_deltaT_minutes.values[0] ShiftBAPeriod = 220 # in mins (3 hours 40 minutes) self.Line_CumMakeSpan = 0 self.Line_Total_PT = 0 self.Line_Total_CV_Times = 0 Line_WO_Idxes = [] Chromosome_Solution = np.array(Chromosome_Solution) for ii, item in np.ndenumerate(np.array(np.where(Chromosome_Solution == Line_Code))): Line_WO_Idxes.append(item) # 2D Matrics Line_CV_Sorts = self.CV_Sorts[(Line_WO_Idxes),0] self.Line_Families = self.Fmily_T[(Line_WO_Idxes),0] Line_CV_Times = self.CV_Times[(Line_WO_Idxes),0] ## print("6.2. Use all lines WorkOrder indexes to find total CV time and Family Sort Change ") Previous_CV = Line_CV_Sorts[0] self.CV_Times_Each_Order = [] for CV_idx, CV_ele in np.ndenumerate(Line_CV_Sorts): if CV_ele != Previous_CV: self.Line_Total_CV_Times += Line_CV_Times[CV_idx] self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,Line_CV_Times[CV_idx]) else: self.Line_Total_CV_Times += self.minor_ChangeOver_Mins self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,self.minor_ChangeOver_Mins) Previous_CV = CV_ele ## print("6.3.=========== Use all lines WorkOrder indexes to find the total processing time ================= ") self.P_Times_Each_Order = [] self.Line_Late_Falg = [] curr_line_idx = 0 for _, WO_idx in np.ndenumerate(Line_WO_Idxes): for i in np.where(self.O_Lines_Array[WO_idx]==Line_Code): for j in i: curr_line_idx=j self.Line_Total_PT += self.P_Times_Array[(WO_idx,curr_line_idx)] self.P_Times_Each_Order = np.append(self.P_Times_Each_Order,self.P_Times_Array[(WO_idx,curr_line_idx)]) def __FinalRun_Obj_Of_Each_Line_SaveData(self,Line_Code,Chromosome_Solution): ## print('#---------------- 6.2. Reset the initial start and end -------------#') Line_Curr_End = self.Table_CalendarInfo.ProductionDate_ShiftA + pd.to_timedelta(self.minor_ChangeOver_Mins*60, unit='s') Line_Curr_End = Line_Curr_End[0] self.PlanStartTime = Line_Curr_End intial_start_date = Line_Curr_End Shift_AandB_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] + self.Table_CalendarInfo.ShiftB_deltaT_minutes.values[0] Shift_A_Period = self.Table_CalendarInfo.ShiftA_deltaT_minutes.values[0] ShiftBAPeriod = 220 # in mins (3 hours 40 minutes) self.Line_CumMakeSpan = 0 self.Line_Total_PT = 0 self.Line_Total_CV_Times = 0 ## print("4. Obtain the line work order indexes for the line by determine at what positon line 1/2/3/4 is used") Line_WO_Idxes = [] Chromosome_Solution = np.array(Chromosome_Solution) for ii, item in np.ndenumerate(np.array(np.where(Chromosome_Solution == Line_Code))): Line_WO_Idxes.append(item) ## print("5. Find the processing time, setup time, CV sorts, families, line calendar start time and delivery time for each line") Line_WO_Num = self.Unique_WO_Array[(Line_WO_Idxes)] # 2D Matrics Line_CV_Sorts = self.CV_Sorts[(Line_WO_Idxes),0] self.Line_Families = self.Fmily_T[(Line_WO_Idxes),0] Line_CV_Times = self.CV_Times[(Line_WO_Idxes),0] Previous_CV = Line_CV_Sorts[0] self.CV_Times_Each_Order = [] for CV_idx, CV_ele in np.ndenumerate(Line_CV_Sorts): if CV_ele != Previous_CV: self.Line_Total_CV_Times += Line_CV_Times[CV_idx] self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,Line_CV_Times[CV_idx]) else: self.Line_Total_CV_Times += self.minor_ChangeOver_Mins self.CV_Times_Each_Order = np.append(self.CV_Times_Each_Order,self.minor_ChangeOver_Mins) Previous_CV = CV_ele ## print("6.3. Use all lines WorkOrder indexes to find the total processing time ") self.P_Times_Each_Order = [] curr_line_idx = 0 for _, WO_idx in np.ndenumerate(Line_WO_Idxes): for i in np.where(self.O_Lines_Array[WO_idx]==Line_Code): for j in i: curr_line_idx=j self.Line_Total_PT += self.P_Times_Array[(WO_idx,curr_line_idx)] self.P_Times_Each_Order = np.append(self.P_Times_Each_Order,self.P_Times_Array[(WO_idx,curr_line_idx)]) ## print("# 6.3.1. Define a dataframe to save all results for plotting") LineSequence = 0 Schedule_Of_The_Line =pd.DataFrame() for P_Time_idx, P_Time_ele in np.ndenumerate(self.P_Times_Each_Order): Line_Remainder = self.Line_CumMakeSpan%(Shift_AandB_Period) Line_Curr_CV_Time = self.CV_Times_Each_Order[P_Time_idx] Line_Curr_P_Time = self.P_Times_Each_Order[P_Time_idx] self.Line_CumMakeSpan += Line_Curr_P_Time + Line_Curr_CV_Time if (Line_Remainder + Line_Curr_P_Time) > Shift_AandB_Period: SecondP_of_P_Time = Line_Remainder + Line_Curr_P_Time-Shift_AandB_Period FirstP_of_P_Time = Line_Curr_P_Time - SecondP_of_P_Time Line_Curr_Start = Line_Curr_End + pd.to_timedelta((Line_Curr_CV_Time)*60, unit='s') Line_Curr_End = Line_Curr_Start + pd.to_timedelta((FirstP_of_P_Time*60), unit='s') Schedule_Of_The_Line = Schedule_Of_The_Line.append(pd.DataFrame({'Task':'Line '+str(Line_Code), 'Start':Line_Curr_Start, 'Finish':Line_Curr_End, 'ProcessingTimeInMins':FirstP_of_P_Time, 'WorkOrderNum':str(Line_WO_Num[P_Time_idx]) , 'Resource': self.Line_Families[P_Time_idx], 'ChangeoverTimeInMins':Line_Curr_CV_Time, 'WorkOrderSplitCounter':0, }, index=[0]), ignore_index = True) Line_Curr_Start_b = Line_Curr_End + pd.to_timedelta((ShiftBAPeriod)*60, unit='s') Line_Curr_End = Line_Curr_Start_b + pd.to_timedelta(SecondP_of_P_Time*60, unit='s') Schedule_Of_The_Line = Schedule_Of_The_Line.append(pd.DataFrame({'Task':'Line '+str(Line_Code), 'Start':Line_Curr_Start_b, 'Finish':Line_Curr_End, 'ProcessingTimeInMins':Line_Curr_P_Time, 'WorkOrderNum':str(Line_WO_Num[P_Time_idx]) , 'Resource': self.Line_Families[P_Time_idx], 'ChangeoverTimeInMins':0, 'WorkOrderSplitCounter':0, }, index=[LineSequence]), ignore_index = True) else: Line_Curr_Start = Line_Curr_End +
pd.to_timedelta(Line_Curr_CV_Time*60, unit='s')
pandas.to_timedelta
import csv import math from absl import app, flags import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import numpy as np from pylot_utils import ProfileEvent, ProfileEvents, fix_pylot_profile from utils import setup_plot import pandas as pd import seaborn as sns from utils import * from pylot_color_utils import get_colors FLAGS = flags.FLAGS flags.DEFINE_string('base_dir', '', 'Path to the base dir where the logs are') flags.DEFINE_bool('small_paper_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('stretched', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('paper_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('slide_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_bool('poster_mode', False, 'Adjusts the size of the plots.') flags.DEFINE_string('file_format', 'png', 'File type of the output plot.') flags.DEFINE_integer('ignore_first_sim_time_ms', 0, 'Ignore data from the first simulation time ms.') flags.DEFINE_bool('verbose', False, 'Enables verbose logging.') flags.DEFINE_integer('start_route', 1, 'Id of the first completed route.') flags.DEFINE_integer('end_route', 9, 'Id of the last completed route.') flags.DEFINE_integer('num_reps', 5, 'Number of experiment repetitions.') flags.DEFINE_list('towns', ['1'], 'List of towns.') flags.DEFINE_bool('plot_histogram', False, 'Plot a single histogram of runtimes.') flags.DEFINE_bool('plot_multi_histograms', False, 'Plot configs in different subplots.') flags.DEFINE_bool('plot_violin', False, 'Plot config runtimes as violion plots.') def read_challenge_runtimes(csv_file_path): csv_file = open(csv_file_path) csv_reader = csv.reader(csv_file) sensor_send_runtime = {} print("WARNING: End-to-end runtime includes sensor send time") sim_times = [] e2e_runtimes = [] for row in csv_reader: sim_time = int(row[1]) event_name = row[2] if event_name == 'e2e_runtime': e2e_runtime = float(row[3]) if e2e_runtime > 600: # Ignorning outlier entries because the policy experiments # didn't have a deadline exception handler for detection. # Therefore each run has 1-2 outlier runtimes when a new # detection model is loaded. print("WARNING: Ignoring entry {}".format(row)) continue e2e_runtimes.append(e2e_runtime - sensor_send_runtime[sim_time]) #e2e_runtimes.append(e2e_runtime) sim_times.append(sim_time) elif event_name == 'sensor_send_runtime': sensor_send_runtime[sim_time] = float(row[3]) return sim_times, e2e_runtimes def read_data(log_dir_base, town, route, detector, num_reps, segmentation_name, segmentation_value): e2e_runtimes = [] for run in range(1, num_reps + 1): log_dir = '{}_run_{}/'.format(log_dir_base, run) csv_file = log_dir + 'challenge.csv' # Get the end-to-end runtimes. (sim_times, run_e2e) = read_challenge_runtimes(csv_file) e2e_runtimes = e2e_runtimes + run_e2e entries = len(e2e_runtimes) runtimes_df = pd.DataFrame({ 'town': [town] * entries, 'route': [route] * entries, 'detector': [detector] * entries, segmentation_name: [segmentation_value] * entries, 'e2eruntime': e2e_runtimes, }) return runtimes_df def main(argv): matplotlib.rc('font', family='serif', size=7) matplotlib.rc('text.latex', preamble=r'\usepackage{times,mathptmx}') matplotlib.rc('text', usetex=True) matplotlib.rc('legend', fontsize=6) matplotlib.rc('figure', figsize=(3.33, 2.22)) # matplotlib.rc('figure.subplot', left=0.10, top=0.90, bottom=0.12, right=0.95) matplotlib.rc('axes', linewidth=0.5) matplotlib.rc('lines', linewidth=0.5) plt.figure(figsize=(3.3, 0.85)) colors = get_colors(['No-Constraints', 'Deadlines', 'Policy']) towns = [int(town) for town in FLAGS.towns] detector = 4 runtimes_dfs = [] for town in towns: for route in range(FLAGS.start_route, FLAGS.end_route + 1): # log_dir_base = FLAGS.base_dir + \ # 'logs_town_{}_route_{}_timely_True_edet_{}'.format( # town, route, detector) # runtimes_df = read_data(log_dir_base, town, route, detector, # FLAGS.num_reps, 'configuration', # 'no-deadlines') # runtimes_dfs.append(runtimes_df) log_dir_base = FLAGS.base_dir + \ 'logs_deadlines_town_{}_route_{}_timely_True_edet_{}'.format( town, route, detector) runtimes_df = read_data(log_dir_base, town, route, detector, FLAGS.num_reps, 'configuration', 'deadlines') runtimes_dfs.append(runtimes_df) # log_dir_base = FLAGS.base_dir + \ # 'logs_nopolicy_town_{}_route_{}_timely_True_edet_{}'.format( # town, route, detector) # runtimes_df = read_data( # log_dir_base, town, route, detector, FLAGS.num_reps, # 'configuration', 'no-policy') # runtimes_dfs.append(runtimes_df) log_dir_base = FLAGS.base_dir + \ 'logs_policy_town_{}_route_{}_timely_True'.format( town, route) runtimes_df = read_data(log_dir_base, town, route, detector, FLAGS.num_reps, 'configuration', 'policy') runtimes_dfs.append(runtimes_df) runtime_data =
pd.concat(runtimes_dfs)
pandas.concat
# Created on 2020/7/16 # This module is for functions generating random time series. # Standard library imports from datetime import datetime from typing import Union # Third party imports import numpy as np import pandas as pd from typeguard import typechecked # Local application imports from .. import timeseries as ts #---------#---------#---------#---------#---------#---------#---------#---------#---------# ### TIME SERIES MODELS ### # Simple models @typechecked def constant(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, cst: float=0., sigma: float=0., tz=None, unit=None, name="" ) -> ts.TimeSeries: """ Defines a time series with constant numerical value and eventually add a noise to it. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). cst : int or float The constant to build the time series from. sigma : float Standard deviation for the Gaussian noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The constant time series with eventual Gaussian noise. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate data if float(sigma) != 0.: rand_val = np.random.normal(loc=0., scale=sigma, size=T) data_vals = [cst] * T + rand_val else: data_vals = [cst] * T # Make time series df = pd.DataFrame(index=data_index, data=data_vals) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs # These models describe the evolution of time series. @typechecked def auto_regressive(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, start_values: list, cst: float, order: int, coeffs: list, sigma: float, tz: str=None, unit: str=None, name: str="", verbose: bool=False ) -> ts.TimeSeries: """ Generates a time series from the Auto-Regressive (AR) model of arbitrary order P. The model is of the form: x_t = cst + coeffs[0] * x_{t-1} + ... + coeffs[P-1] * x_{t-P} + a_t where a_t is the white noise with standard deviation sigma. Initial values for {x_0, ..., x_P} are imposed from the values in start_values. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). start_values : list Initial values of the process (P of them). cst : float Constant value of the process. order : int Order of the process (i.e. value of P). coeffs : list Coefficients of the process. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. verbose : bool Verbose option. Returns ------- TimeSeries The time series resulting from the Auto-Regressive process. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(coeffs)==order) assert(len(start_values)==order) P = len(start_values) # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise (Note: p first values are not used) a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T for t_ini in range(P): x[t_ini] = start_values[t_ini] for t in range(P,T,1): x[t] = cst + a[t] for p in range(P): x[t] += coeffs[p] * x[t-p-1] # Compute theoretical expectation value if verbose: E = cst / (1 - sum(coeffs)) print(f"Under stationarity assumption, the expected value for this AR({str(P)}) model is: {str(E)} \n") # Combine them into a time series df = pd.DataFrame(index=data_index, data=x) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def random_walk(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, start_value: float, sigma: float, tz: str=None, unit: str=None, name: str="" ) -> ts.TimeSeries: """ Generates a time series from the Random Walk process, i.e. an AR(1) model with {cst = 0, coeff[0] = 1}. The model is of the form: x_t = x_{t-1} + a_t where a_t is the white noise with standard deviation sigma. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). start_value : float Initial value of the process. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The time series resulting from the Random Walk process. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise (Note: first value is not used) a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T x[0] = start_value for t in range(1,T,1): x[t] = x[t-1] + a[t] # Combine them into a time series df = pd.DataFrame(index=data_index, data=x) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def drift_random_walk(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, start_value: float, drift: float, sigma: float, tz: str=None, unit: str=None, name: str="" ) -> ts.TimeSeries: """ Generates a time series from the Random Walk with Drift process, i.e. an AR(1) model with {cst != 0, coeffs[0] = 1}. The model is of the form: x_t = drift + x_{t-1} + a_t where a_t is the white noise with standard deviation sigma. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). start_value : float Initial value of the process. drift : float Value of the drift. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The time series resulting from the Random Walk process with drift. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise (Note: first value is not used) a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T x[0] = start_value for t in range(1,T,1): x[t] = drift + x[t-1] + a[t] # Combine them into a time series df = pd.DataFrame(index=data_index, data=x) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def moving_average(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, cst: float, order: int, coeffs: list, sigma: float, tz: str=None, unit: str=None, name: str="", verbose: bool=False ) -> ts.TimeSeries: """ Generates a time series from the Moving Average (MA) model of arbitrary order Q. The model is of the form: x_t = cst + a_t + coeffs[0] * a_{t-1} + ... + coeffs[Q-1] * a_{t-Q} where {a_t} is the white noise series with standard deviation sigma. We don't need to impose any initial values for {x_t}, they are imposed directly from {a_t}. To be clear, the initial steps of the process are: x_0 = cst + a_0 x_1 = cst + a_1 + coeffs[0] * a_0 x_2 = cst + a_2 + coeffs[0] * a_1 + coeffs[1] * a_0 Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). cst : float Constant value of the process. order : int Order of the process (i.e. value of Q). coeffs : list List of coefficients. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. verbose : bool Verbose option. Returns ------- TimeSeries The time series resulting from the Moving Average process. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(coeffs)==order) Q = order # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T for t in range(T): x[t] = cst + a[t] for q in range(Q): if t-q > 0: x[t] -= coeffs[q] * a[t-q-1] # Compute theoretical values if verbose: V = 1. for q in range(Q): V += coeffs[q]**2 V *= sigma**2 print(f"The expected value for this MA({str(Q)}) model is: {str(cst)}") print(f"The estimation of the variance for this MA({str(Q)}) model is: {str(V)}" + \ f" , i.e. a standard deviation of: {str(np.sqrt(V))} \n") # Combine them into a time series df = pd.DataFrame(index=data_index, data=x) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def arma(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, start_values: list, cst: float, ARorder: int, ARcoeffs: list, MAorder: int, MAcoeffs: list, sigma: float, tz: str=None, unit: str=None, name: str="" ) -> ts.TimeSeries: """ Function generating a time series from the Auto-Regressive Moving Average (ARMA) model of orders (P,Q). The model is of the form: x_t = cst + Sum_{i=0}^{P-1} ARcoeffs[i] * a_{t-i-1} + a_t + Sum_{j=0}^{Q-1} MAcoeffs[j] * a_{t-j-1} where {a_t} is the white noise series with standard deviation sigma. Initial values for {x_0, ..., x_P} are imposed from the values in start_values. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). start_values : list Initial values of the process (P of them). cst : float Constant value of the process. ARorder : int Order of the AR part of the process (i.e. value of P). ARcoeffs : list List of coefficients for the AR part of the process. MAorder : int Order of the MA part of the process (i.e. value of Q). MAcoeffs : list List of coefficients for the MA part of the process. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The time series resulting from the ARMA process. Raises ------ None Notes ----- White noise is Gaussian here. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(ARcoeffs)==ARorder) assert(len(MAcoeffs)==MAorder) assert(len(start_values)==ARorder) P = ARorder Q = MAorder # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T # Taking care of {x_0, x_1, ..., x_P} for t_ini in range(P): x[t_ini] = start_values[t_ini] # Taking care of the rest for t in range(P,T,1): x[t] = cst + a[t] for p in range(P): x[t] += ARcoeffs[p] * x[t-p] for q in range(Q): if t-q > 0: x[t] -= MAcoeffs[q] * x[t-q-1] # Combine them into a time series df = pd.DataFrame(index=data_index, data=x) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def rca(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, cst: float, order: int, ARcoeffs: list, cov_matrix: list, sigma: float, tz: str=None, unit: str=None, name: str="" ) -> ts.TimeSeries: """ Function generating a time series from the Random Coefficient Auto-Regressive (RCA) model of order M. The model is of the form: x_t = cst + Sum_{m=0}^{M-1} (ARcoeffs[m] + coeffs[m]) * x_{t-m-1} + a_t. Here {a_t} is a Gaussian white noise with standard deviation sigma and coeffs_t are randomly generated from the covariance matrix cov_matrix. In addition, we have some imposed coefficients of the Auto-Regressive type in ARcoeffs. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). cst : float Constant value of the process. order : int Order of the process (i.e. value of M). ARcoeffs : list List of coefficients for the AR part of the process. cov_matrix: list of lists Covariance matrix for the random part of the process. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The time series resulting from the RCA process. Raises ------ None Notes ----- We assume coeffs_t follow a multivariate Gaussian distribution. Also cov_matrix should be a non-negative definite matrix. Here we do not have an argument called start_value, compared with randomseries.auto_regressive(). This choice is made as there are already random coefficients involved. There is no real use in imposing the first values of the time series other than just ARcoeffs and the generated coeffs. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(ARcoeffs)==order) assert(len(cov_matrix)==order and len(cov_matrix[0])==order) for row in cov_matrix: for x in row: assert(x>=0) M = order # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the white noise a = np.random.normal(loc=0., scale=sigma, size=T) # Generate the random series x = [0.] * T for t in range(T): x[t] = cst + a[t] # Generate the list of coefficients coeffs = np.random.multivariate_normal(mean=[0.] * M, cov=cov_matrix, size=1)[0] for m in range(M): if t-m > 0: x[t] += (ARcoeffs[m] + coeffs[m]) * a[t-m-1] # Combine them into a time series df = pd.DataFrame(index=data_index, data=a) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs ### HETEROSCEDASTIC MODELS ### # These models describe the volatility of a time series. @typechecked def arch(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, cst: float, order: int, coeffs: list, tz: str=None, unit: str=None, name: str="", verbose: bool=False ) -> ts.TimeSeries: """ Function generating a volatility series from the Auto-Regressive Conditional Heteroscedastic (ARCH) model of order M. The model is of the form: a_t = sig_t * eps_t with sig_t^2 = cst + coeffs[0] * a_{t-1}^2 + ... + coeffs[M-1] * a_{t-M}^2. Here {eps_t} is a sequence of idd random variables with mean zero and unit variance, i.e. a white noise with unit variance. The coefficients cst and coeffs[i] are assumed to be positive and must be such that a_t is finite with positive variance. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). cst : float Constant value of the process. order : int Order of the process (i.e. value of M). coeffs : list List of coefficients of the process. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. verbose : bool Verbose option. Returns ------- TimeSeries The time series resulting from the ARCH process. Raises ------ None Notes ----- For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(coeffs)==order) # Non-negativity if(cst<=0): print("cst must be strictly positive.") assert(cst>0) for x in coeffs: if (x<0): print("coefficients are not allowed to take negative values.") assert(x>=0) # Sum less than unity if(sum(coeffs)>=1): print("Sum of coefficients must be < 1 in order to have positive variance.") assert(sum(coeffs)<1) M = order # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the "unit" white noise eps = np.random.normal(loc=0., scale=1, size=T) # Generate the random series a = [0.] * T for t in range(T): sig_square = cst for m in range(M): if t-m > 0: sig_square += coeffs[m] * a[t-m-1]**2 sig = np.sqrt(sig_square) a[t] = sig * eps[t] # Compute theoretical values if verbose: print(f"The expected value for this ARCH({str(M)}) model is 0, like any other ARCH model," \ + f" and the estimated value is: {str(np.mean(a))}") V = cst / (1 - sum(coeffs)) print(f"The theoretical standard deviation value for this ARCH({str(M)}) model is: {str(V)}") # Combine them into a time series df = pd.DataFrame(index=data_index, data=a) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def garch(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, cst: float, order_a: int, coeffs_a: list, order_sig: int, coeffs_sig: list, tz: str=None, unit: str=None, name: str="", verbose: bool=False ) -> ts.TimeSeries: """ Function generating a volatility series from the Generalized ARCH (GARCH) model of order M. The model is of the form: a_t = sig_t * eps_t with sig_t^2 = cst + Sum_{i=0}^{M-1} coeffs_a[i] * a_{t-i-1}^2 + Sum_{j=0}^{S-1} coeffs_sig[j] * sig_{t-j-1}^2. Here {eps_t} is a sequence of idd random variables with mean zero and unit variance, i.e. a white noise with unit variance. The coefficients cst and coeffs[i] are assumed to be positive and must be such that a_t is finite with positive variance. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). cst : float Constant value of the process. order_a : int Order of the a_t part of the process (i.e. value of M). coeffs_a : list List of coefficients of the a_t part of the process. order_sig : int Order of the sig_t part of the process (i.e. value of S). coeffs_sig : list List of coefficients of the sig_t part of the process. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. verbose : bool Verbose option. Returns ------- TimeSeries The time series resulting from the GARCH process. Raises ------ None Notes ----- For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(coeffs_a)==order_a) assert(len(coeffs_sig)==order_sig) # Non-negativity if(cst<=0): print("cst must be strictly positive.") assert(cst>0) for x in coeffs_a + coeffs_sig: if (x<0): print("coefficients are not allowed to take negative values.") assert(x>=0) # Sum less than unity if(sum(coeffs_a) + sum(coeffs_sig) >= 1): print("Sum of coefficients must be less than one in order to have positive variance.") assert(sum(coeffs_a) + sum(coeffs_sig) < 1) M = order_a S = order_sig # Generate index data_index = pd.date_range(start=start_date, end=end_date, freq=frequency) T = len(data_index) # Generate the "unit" white noise eps = np.random.normal(loc=0., scale=1, size=T) # Generate the random series a = [0.] * T sig = [0.] * T for t in range(T): sig_square = cst for m in range(M): if t-m > 0: sig_square += coeffs_a[m] * a[t-m-1]**2 for s in range(S): if t-s > 0: sig_square += coeffs_sig[s] * sig[t-s-1]**2 sig[t] = np.sqrt(sig_square) a[t] = sig[t] * eps[t] # Compute theoretical values if verbose: V = cst / (1 - sum(coeffs_a) - sum(coeffs_sig)) print(f"The theoretical standard deviation for this GARCH({str(M)}, {str(S)}) model is: {str(np.sqrt(V))}") # Combine them into a time series df = pd.DataFrame(index=data_index, data=a) rs = ts.TimeSeries(df, tz=tz, unit=unit, name=name) return rs @typechecked def charma(start_date: Union[str, datetime.date], end_date: Union[str, datetime.date], frequency: str, order: int, cov_matrix: list, sigma: float, tz: str=None, unit: str=None, name: str="" ) -> ts.TimeSeries: """ Function generating a volatility series from the Conditional Heterescedastic ARMA (CHARMA) model of order M. The model is of the form: a_t = Sum_{m=0}^{M-1} coeffs[m] * a_{t-m-1} + eta_t. Here {eta_t} is a Gaussian white noise with standard deviation sigma and coeffs_t are generated from the covariance matrix cov_matrix. Parameters ---------- start_date : str or datetime Starting date of the time series. end_date : str or datetime Ending date of the time series. frequency : str or DateOffset Indicates the frequency of data as an offset alias (e.g. 'D' for days, 'M' for months, etc.). order : int Order of the process (i.e. value of M). cov_matrix: list of lists Covariance matrix for the random part of the process. sigma : float Standard deviation of the Gaussian white noise. tz : str Timezone name. unit : str or None Unit of the time series values. name : str Name or nickname of the series. Returns ------- TimeSeries The time series resulting from the CHARMA process. Raises ------ None Notes ----- White noise is Gaussian here. We assume coeffs_t follow a multivariate Gaussian distribution. Also cov_matrix should be a non-negative definite matrix. For offset aliases available see: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases. Examples -------- None """ # Checks assert(len(cov_matrix)==order and len(cov_matrix[0])==order) for row in cov_matrix: for x in row: assert(x>=0) M = order # Generate index data_index =
pd.date_range(start=start_date, end=end_date, freq=frequency)
pandas.date_range
import numpy as np import pandas as pd from datetime import datetime, timedelta from tqdm import tqdm import yaml import os from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from joblib import dump, load from category_encoders import OrdinalEncoder from src.data.spdat import get_spdat_data def load_df(path): ''' Load a Pandas dataframe from a CSV file :param path: The file path of the CSV file :return: A Pandas dataframe ''' # Read HIFIS data into a Pandas dataframe df = pd.read_csv(path, encoding="ISO-8859-1", low_memory=False) return df def classify_cat_features(df, cat_features): ''' Classify categorical features as either single- or multi-valued. :param df: Pandas dataframe :param cat_features: List of categorical features :return: list of single-valued categorical features, list of multi-valued categorical features ''' def classify_features(client_df): ''' Helper function for categorical feature classification, distributed across clients. :param client_df: Dataframe with 1 client's records :return List of single-valued categorical features, list of multi-valued categorical features ''' for feature in cat_features: # If this feature takes more than 1 value per client, move it to the list of multi-valued features if client_df[feature].nunique() > 1: sv_cat_features.remove(feature) mv_cat_features.append(feature) return sv_cat_features = cat_features # First, assume all categorical features are single-valued mv_cat_features = [] df.groupby('ClientID').progress_apply(classify_features) return sv_cat_features, mv_cat_features def get_mv_cat_feature_names(df, mv_cat_features): ''' Build list of possible multi-valued categorical features :param df: DataFrame containing HIFIS data :param mv_cat_features: List of multi-valued categorical features :return: List of all individual multi-valued categorical features ''' mv_vec_cat_features = [] for f in mv_cat_features: mv_vec_cat_features += [(f + '_' + v) for v in list(df[f].unique()) if type(v) == str] return mv_vec_cat_features def vec_multi_value_cat_features(df, mv_cat_features, cfg, load_ct=False, categories=None): ''' Converts multi-valued categorical features to vectorized format and appends to the dataframe :param df: A Pandas dataframe :param mv_categorical_features: The names of the categorical features to vectorize :param cfg: project config :param load_ct: Flag indicating whether to load a saved column transformer :param categories: List of columns containing all possible values to encode :return: dataframe containing vectorized features, list of vectorized feature names ''' orig_col_names = df.columns if categories is None: categories = 'auto' # One hot encode the multi-valued categorical features mv_cat_feature_idxs = [df.columns.get_loc(c) for c in mv_cat_features if c in df] # List of categorical column indices if load_ct: col_trans_ohe = load(cfg['PATHS']['OHE_COL_TRANSFORMER_MV']) df_ohe = pd.DataFrame(col_trans_ohe.transform(df), index=df.index.copy()) else: col_trans_ohe = ColumnTransformer( transformers=[('col_trans_mv_ohe', OneHotEncoder(categories=categories, sparse=False, handle_unknown='ignore', dtype=int), mv_cat_feature_idxs)], remainder='passthrough' ) df_ohe = pd.DataFrame(col_trans_ohe.fit_transform(df), index=df.index.copy()) dump(col_trans_ohe, cfg['PATHS']['OHE_COL_TRANSFORMER_MV'], compress=True) # Save the column transformer # Build list of feature names for the new DataFrame mv_vec_cat_features = [] for i in range(len(mv_cat_features)): feat_names = list(col_trans_ohe.transformers_[0][1].categories_[i]) for j in range(len(feat_names)): mv_vec_cat_features.append(mv_cat_features[i] + '_' + feat_names[j]) ohe_feat_names = mv_vec_cat_features.copy() for feat in orig_col_names: if feat not in mv_cat_features: ohe_feat_names.append(feat) df_ohe.columns = ohe_feat_names return df_ohe, mv_vec_cat_features def vec_single_value_cat_features(df, sv_cat_features, cfg, load_ct=False): ''' Converts single-valued categorical features to one-hot encoded format (i.e. vectorization) and appends to the dataframe. Keeps track of a mapping from feature indices to categorical values, for interpretability purposes. :param df: A Pandas dataframe :param sv_cat_features: The names of the categorical features to encode :param cfg: project config dict :param load_ct: Flag indicating whether to load saved column transformers :return: dataframe containing one-hot encoded features, list of one-hot encoded feature names ''' # Convert single-valued categorical features to numeric data cat_feature_idxs = [df.columns.get_loc(c) for c in sv_cat_features if c in df] # List of categorical column indices cat_value_names = {} # Dictionary of categorical feature indices and corresponding names of feature values if load_ct: col_trans_ordinal = load(cfg['PATHS']['ORDINAL_COL_TRANSFORMER']) df[sv_cat_features] = col_trans_ordinal.transform(df) else: col_trans_ordinal = ColumnTransformer(transformers=[('col_trans_ordinal', OrdinalEncoder(handle_unknown='value'), sv_cat_features)]) df[sv_cat_features] = col_trans_ordinal.fit_transform(df) # Want integer representation of features to start at 0 dump(col_trans_ordinal, cfg['PATHS']['ORDINAL_COL_TRANSFORMER'], compress=True) # Save the column transformer # Preserve named values of each categorical feature for i in range(len(sv_cat_features)): cat_value_names[cat_feature_idxs[i]] = [] for j in range(len(col_trans_ordinal.transformers_[0][1].category_mapping[i])): # Last one is nan; we don't want that cat_value_names[cat_feature_idxs[i]] = col_trans_ordinal.transformers_[0][1].category_mapping[i]['mapping'].index.tolist()[:-1] # One hot encode the single-valued categorical features if load_ct: col_trans_ohe = load(cfg['PATHS']['OHE_COL_TRANSFORMER_SV']) df_ohe = pd.DataFrame(col_trans_ohe.transform(df), index=df.index.copy()) else: col_trans_ohe = ColumnTransformer( transformers=[('col_trans_ohe', OneHotEncoder(sparse=False, handle_unknown='ignore'), cat_feature_idxs)], remainder='passthrough' ) df_ohe = pd.DataFrame(col_trans_ohe.fit_transform(df), index=df.index.copy()) dump(col_trans_ohe, cfg['PATHS']['OHE_COL_TRANSFORMER_SV'], compress=True) # Save the column transformer # Build list of feature names for OHE dataset ohe_feat_names = [] for i in range(len(sv_cat_features)): for value in cat_value_names[cat_feature_idxs[i]]: ohe_feat_names.append(sv_cat_features[i] + '_' + str(value)) vec_sv_cat_features = ohe_feat_names.copy() for feat in df.columns: if feat not in sv_cat_features: ohe_feat_names.append(feat) df_ohe.columns = ohe_feat_names cat_feat_info = {} # To store info for later use in LIME cat_feat_info['SV_CAT_FEATURES'] = sv_cat_features cat_feat_info['VEC_SV_CAT_FEATURES'] = vec_sv_cat_features cat_feat_info['SV_CAT_FEATURE_IDXS'] = cat_feature_idxs # To use sparse matrices in LIME, ordinal encoded values must start at 1. Add dummy value to MV categorical features name lists. for i in range(len(sv_cat_features)): cat_value_names[cat_feature_idxs[i]].insert(0, 'DUMMY_VAL') cat_feat_info['SV_CAT_VALUES'] = cat_value_names return df, df_ohe, cat_feat_info def process_timestamps(df): ''' Convert timestamps in raw date to datetimes :param df: A Pandas dataframe :return: The dataframe with its datetime fields updated accordingly ''' features_list = list(df) # Get a list of features for feature in features_list: if ('Date' in feature) or ('Start' in feature) or ('End' in feature) or (feature == 'DOB'): df[feature] = pd.to_datetime(df[feature], errors='coerce') return df def remove_n_weeks(df, train_end_date, dated_feats): ''' Remove records from the dataframe that have timestamps in the n weeks leading up to the ground truth date :param df: Pandas dataframe :param train_end_date: the most recent date that should appear in the dataset :param dated_feats: list of feature names with dated events :return: updated dataframe with the relevant rows removed ''' df = df[df['DateStart'] <= train_end_date] # Delete rows where service occurred after this date df['DateEnd'] = df['DateEnd'].clip(upper=train_end_date) # Set end date for ongoing services to this date # Update client age if 'DOB' in df.columns: df['CurrentAge'] = (train_end_date - df['DOB']).astype('<m8[Y]') return df.copy() def calculate_ground_truth(df, chronic_threshold, days, end_date): ''' Iterate through dataset by client to calculate ground truth :param df: a Pandas dataframe :param chronic_threshold: Minimum # of days spent in shelter to be considered chronically homeless :param days: Number of days over which to count # days spent in shelter :param end_date: The last date of the time period to consider :return: a DataSeries mapping ClientID to ground truth ''' def client_gt(client_df): ''' Helper function ground truth calculation. :param client_df: A dataframe containing all rows for a client :return: the client dataframe ground truth calculated correctly ''' client_df.sort_values(by=['DateStart'], inplace=True) # Sort records by service start date gt_stays = 0 # Keep track of total stays, as well as # stays during ground truth time range last_stay_end = pd.to_datetime(0) last_stay_start = pd.to_datetime(0) # Iterate over all of client's records. Note itertuples() is faster than iterrows(). for row in client_df.itertuples(): stay_start = getattr(row, 'DateStart') stay_end = min(getattr(row, 'DateEnd'), end_date) # If stay is ongoing through end_date, set end of stay as end_date service_type = getattr(row, 'ServiceType') if (stay_start > last_stay_start) and (stay_end > last_stay_end) and (service_type == 'Stay'): if (stay_start.date() >= start_date.date()) or (stay_end.date() >= start_date.date()): # Account for cases where stay start earlier than start of range, or stays overlapping from previous stay stay_start = max(start_date, stay_start, last_stay_end) if (stay_end - stay_start).total_seconds() >= min_stay_seconds: gt_stays += (stay_end.date() - stay_start.date()).days + (stay_start.date() != last_stay_end.date()) last_stay_end = stay_end last_stay_start = stay_start # Determine if client meets ground truth threshold if gt_stays >= chronic_threshold: client_df['GroundTruth'] = 1 return client_df start_date = end_date - timedelta(days=days) # Get start of ground truth window min_stay_seconds = 60 * 15 # Stays must be at least 15 minutes df_temp = df[['ClientID', 'ServiceType', 'DateStart', 'DateEnd']] df_temp['GroundTruth'] = 0 df_temp = df_temp.groupby('ClientID').progress_apply(client_gt) if df_temp.shape[0] == 0: return None if 'ClientID' not in df_temp.index: df_temp.set_index(['ClientID'], append=True, inplace=True) df_gt = df_temp['GroundTruth'] df_gt = df_gt.groupby(['ClientID']).agg({'GroundTruth': 'max'}) return df_gt def calculate_client_features(df, end_date, noncat_feats, counted_services, timed_services, start_date=None): ''' Iterate through dataset by client to calculate numerical features from services received by a client :param df: a Pandas dataframe :param end_date: The latest date of the time period to consider :param noncat_feats: List of noncategorical features :param counted_services: Service features for which we wish to count occurrences and create a feature for :param timed_services: Service features for which we wish to count total time received and create a feature for :param start_date: The earliest date of the time period to consider :return: the dataframe with the new service features included, updated list of noncategorical features ''' def client_features(client_df): ''' Helper function for total stay, total income and ground truth calculation. To be used on a subset of the dataframe :param client_df: A dataframe containing all rows for a client :return: the client dataframe with total stays and ground truth columns appended ''' if start_date is not None: client_df = client_df[client_df['DateEnd'] >= start_date] client_df['DateStart'].clip(lower=start_date, inplace=True) client_df = client_df[client_df['DateStart'] <= end_date] client_df['DateEnd'].clip(upper=end_date, inplace=True) # If ongoing through end_date, set end as end_date client_df.sort_values(by=['DateStart'], inplace=True) # Sort records by service start date total_services = dict.fromkeys(total_timed_service_feats, 0) # Keep track of total days of service prior to training data end date last_service_end = dict.fromkeys(timed_services + counted_services, pd.to_datetime(0)) # Unix Epoch (1970-01-01 00:00:00) last_service_start = dict.fromkeys(timed_services + counted_services, pd.to_datetime(0)) last_service = '' # Iterate over all of client's records. Note: itertuples() is faster than iterrows(). for row in client_df.itertuples(): service_start = getattr(row, 'DateStart') service_end = getattr(row, 'DateEnd') service = getattr(row, 'ServiceType') if (service in timed_services): if (service_start > last_service_start[service]) and (service_end > last_service_end[service]): service_start = max(service_start, last_service_end[service]) # Don't count any service overlapping from previous service if (service == 'Stay') and ((service_end - service_start).total_seconds() < min_stay_seconds): continue # Don't count a stay if it's less than 15 minutes total_services['Total_' + service] += (service_end.date() - service_start.date()).days + \ (service_start.date() != last_service_end[service].date()) last_service_end[service] = service_end last_service_start[service] = service_start elif (service in counted_services) and \ ((service_end != last_service_end[service]) or (getattr(row, 'ServiceType') != last_service)): service = getattr(row, 'ServiceType') client_df['Num_' + service] += 1 # Increment # of times this service was accessed by this client last_service_end[service] = service_end last_service = service # Set total length of timed service features in client's records for feat in total_services: client_df[feat] = total_services[feat] # Calculate total monthly income for client client_income_df = client_df[['IncomeType', 'MonthlyAmount', 'DateStart', 'DateEnd']]\ .sort_values(by=['DateStart']).drop_duplicates(subset=['IncomeType'], keep='last') client_df['IncomeTotal'] = client_income_df['MonthlyAmount'].sum() return client_df total_timed_service_feats = ['Total_' + s for s in timed_services] for feat in total_timed_service_feats: df[feat] = 0 df['IncomeTotal'] = 0 df['MonthlyAmount'] = pd.to_numeric(df['MonthlyAmount']) min_stay_seconds = 60 * 15 # Stays must be at least 15 minutes numerical_service_features = [] for service in counted_services: df['Num_' + service] = 0 numerical_service_features.append('Num_' + service) df_temp = df.copy() df_temp = df_temp.groupby('ClientID').progress_apply(client_features) df_temp = df_temp.droplevel('ClientID', axis='index') df.update(df_temp) # Update all rows with corresponding stay length and total income # Update list of noncategorical features noncat_feats.extend(numerical_service_features) noncat_feats.extend(total_timed_service_feats) noncat_feats.extend(['IncomeTotal']) return df, noncat_feats def calculate_ts_client_features(df, end_date, timed_services, counted_services, total_timed_service_feats, numerical_service_feats, feat_prefix, start_date=None): ''' Iterate through dataset by client to calculate numerical features from services received by a client :param df: a Pandas dataframe :param end_date: The latest date of the time period to consider :param timed_services: Service features for which we wish to count total time received and create a feature for :param counted_services: Service features for which we wish to count occurrences and create a feature for :param total_timed_service_feats: Names of features to represent totals for timed service features :param numerical_service_feats: Names of features to represent totals for numerical service features :param feat_prefix: Prefix for total or timestep features :param start_date: The earliest date of the time period to consider :return: the dataframe with the new service features included, updated list of noncategorical features ''' def client_services(client_df): ''' Helper function for total stay, total income and ground truth calculation. To be used on a subset of the dataframe :param client_df: A dataframe containing all rows for a client :return: the client dataframe with total stays and ground truth columns appended ''' if start_date is not None: client_df = client_df[client_df['DateEnd'] >= start_date] client_df['DateStart'].clip(lower=start_date, inplace=True) else: if not (client_df['ServiceType'].isin(timed_services + counted_services)).any(): return pd.DataFrame() client_df = client_df[client_df['DateStart'] <= end_date] client_df['DateEnd'].clip(upper=end_date, inplace=True) client_df.sort_values(by=['DateStart'], inplace=True) # Sort records by service start date total_services = dict.fromkeys(total_timed_service_feats, 0) # Keep track of total days of service prior to training data end date last_service_end = dict.fromkeys(timed_services + counted_services, pd.to_datetime(0)) # Unix Epoch (1970-01-01 00:00:00) last_service_start = dict.fromkeys(timed_services + counted_services, pd.to_datetime(0)) last_service = '' # Iterate over all of client's records. Note: itertuples() is faster than iterrows(). for row in client_df.itertuples(): service_start = getattr(row, 'DateStart') service_end = getattr(row, 'DateEnd') service = getattr(row, 'ServiceType') if (service in timed_services): if (service_start > last_service_start[service]) and (service_end > last_service_end[service]): service_start = max(service_start, last_service_end[service]) # Don't count any service overlapping from previous service if (service == 'Stay') and ((service_end - service_start).total_seconds() < min_stay_seconds): continue # Don't count a stay if it's less than 15 minutes total_services[feat_prefix + service] += (service_end.date() - service_start.date()).days + \ (service_start.date() != last_service_end[service].date()) last_service_end[service] = service_end last_service_start[service] = service_start elif (service in counted_services) and \ ((service_end != last_service_end[service]) or (getattr(row, 'ServiceType') != last_service)): service = getattr(row, 'ServiceType') client_df[feat_prefix + service] += 1 # Increment # of times this service was accessed by this client last_service_end[service] = service_end last_service = service # Set total length of timed service features in client's records for feat in total_services: client_df[feat] = total_services[feat] # Calculate total monthly income for client client_income_df = client_df[['IncomeType', 'MonthlyAmount', 'DateStart', 'DateEnd']]\ .sort_values(by=['DateStart']).drop_duplicates(subset=['IncomeType'], keep='last') client_df['IncomeTotal'] = client_income_df['MonthlyAmount'].sum() return client_df if df is None: return df df_temp = df.copy() min_stay_seconds = 60 * 15 # Stays must be at least 15 minutes end_date -= timedelta(seconds=1) # To make calculations easier df_temp = df_temp.groupby('ClientID').progress_apply(client_services) if df_temp.shape[0] == 0: return None df_temp = df_temp.droplevel('ClientID', axis='index') if start_date is not None: df_temp.drop(['DateStart', 'DateEnd'], axis=1, inplace=True) # Don't want to keep the clipped dates return df_temp def assemble_time_sequences(cfg, df_clients, noncat_feats, include_gt): ''' Appends most recent values for time series service features to data examples :param cfg: Project config :param df_clients: Dataframe of client data indexed by ClientID and Date :param noncat_feats: list of noncategorical features :param include_gt: Boolean indicating whether ground truth is included in data (False if in prediction mode) :return: Dataframe with recent time series service features, updated list of noncategorical features ''' def client_windows(client_ts_df): ''' Helper function to create examples with time series features going back T_X time steps for a client's records :param client_ts_df: A Dataframe of a client's time series service features :return: A Dataframe with client's current and past T_X time series service features in each row ''' client_ts_df.sort_values(by=['Date'], ascending=False, inplace=True) # Sort records by date for i in range(1, T_X): for f in time_series_feats: client_ts_df['(-' + str(i) + ')' + f] = client_ts_df[f].shift(-i, axis=0) return client_ts_df T_X = cfg['DATA']['TIME_SERIES']['T_X'] time_series_feats = [f for f in df_clients.columns if '-Day_' in f] df_ts_idx = list(df_clients.columns).index(time_series_feats[0]) # Get column number of first time series feature for i in range(1, T_X): for f in reversed(time_series_feats): new_ts_feat = '(-' + str(i) + ')' + f df_clients.insert(df_ts_idx, new_ts_feat, 0) noncat_feats.append(new_ts_feat) df_clients = df_clients.groupby('ClientID', group_keys=False).progress_apply(client_windows) # Records at the beginning of a client's experience should have 0 for past time series feats df_clients.fillna(0, inplace=True) # Cut off any trailing records that could have possible false 0's N_WEEKS = cfg['DATA']['N_WEEKS'] DAYS_PER_YEAR = 365.25 cutoff_date = (pd.to_datetime(cfg['DATA']['GROUND_TRUTH_DATE']) - timedelta(days=N_WEEKS * 7)).floor('d') if include_gt: cutoff_date -= timedelta(days=int(cfg['DATA']['TIME_SERIES']['YEARS_OF_DATA'] * DAYS_PER_YEAR)) df_clients = df_clients[df_clients.index.get_level_values(1) >= cutoff_date] return df_clients, noncat_feats def aggregate_df(df, noncat_feats, vec_mv_cat_feats, vec_sv_cat_feats): ''' Build a dictionary of columns and arguments to feed into the aggregation function, and aggregate the dataframe :param df: a Pandas dataframe :param noncat_feats: list of noncategorical features :param vec_mv_cat_feats: list of one-hot encoded multi-valued categorical features :param vec_sv_cat_feats: list of one-hot encoded single-valued categorical features :return: A grouped dataframe with one row for each client ''' grouping_dictionary = {} temp_dict = {} if 'DateStart' in noncat_feats: noncat_feats.remove('DateStart') if 'ClientID' in noncat_feats: noncat_feats.remove('ClientID') # Create a dictionary of column names and function names to pass into the groupby function for i in range(len(noncat_feats)): if noncat_feats[i] in df.columns: if noncat_feats[i] == 'ExpenseAmount': grouping_dictionary[noncat_feats[i]] = 'sum' elif noncat_feats[i] == 'TotalScore': grouping_dictionary[noncat_feats[i]] = 'first' else: grouping_dictionary[noncat_feats[i]] = 'max' for i in range(len(vec_sv_cat_feats)): if vec_sv_cat_feats[i] in df.columns: temp_dict[vec_sv_cat_feats[i]] = 'first' # Group single-valued categorical features by first occurrence grouping_dictionary = {**grouping_dictionary, **temp_dict} temp_dict = {} for i in range(len(vec_mv_cat_feats)): temp_dict[vec_mv_cat_feats[i]] = lambda x: 1 if any(x) else 0 # Group multi-valued categorical features by presence grouping_dictionary = {**grouping_dictionary, **temp_dict} if 'GroundTruth' in df.columns: temp_dict = {'GroundTruth': 'max', } grouping_dictionary = {**grouping_dictionary, **temp_dict} # Group the data by ClientID (and Date if time series) using the dictionary created above groupby_feats = ['ClientID'] if 'Date' in df.columns: groupby_feats += ['Date'] df_unique_clients = df.groupby(groupby_feats).agg(grouping_dictionary) return df_unique_clients def calculate_gt_and_service_feats(cfg, df, categorical_feats, noncategorical_feats, gt_duration, include_gt, calculate_gt): # Calculate ground truth and save it. Or load pre-saved ground truth. n_weeks = cfg['DATA']['N_WEEKS'] timed_service_feats = cfg['DATA']['TIMED_SERVICE_FEATURES'] counted_service_feats = cfg['DATA']['COUNTED_SERVICE_FEATURES'] gt_end_date = pd.to_datetime(cfg['DATA']['GROUND_TRUTH_DATE']) train_end_date = gt_end_date - timedelta(days=(n_weeks * 7)) # Maximum for training set records if include_gt: if calculate_gt: print("Calculating ground truth.") ds_gt = calculate_ground_truth(df, cfg['DATA']['CHRONIC_THRESHOLD'], gt_duration, gt_end_date) ds_gt.to_csv(cfg['PATHS']['GROUND_TRUTH'], sep=',', header=True) # Save ground truth else: ds_gt = load_df(cfg['PATHS']['GROUND_TRUTH']) # Load ground truth from file ds_gt = ds_gt.set_index('ClientID') ds_gt.index = ds_gt.index.astype(int) # Remove records from the database from n weeks ago and onwards print("Removing records ", n_weeks, " weeks back. Cutting off at ", train_end_date) df = remove_n_weeks(df, train_end_date, cfg['DATA']['TIMED_EVENTS']) # Compute total stays, total monthly income, total # services accessed for each client. print("Calculating total service features, monthly income total.") df, noncategorical_feats = calculate_client_features(df, train_end_date, noncategorical_feats, counted_service_feats, timed_service_feats) return df, ds_gt, noncategorical_feats def calculate_time_series(cfg, cat_feat_info, df, categorical_feats, noncategorical_feats, gt_duration, include_gt, calculate_gt, load_ct): ''' Calculates ground truth, service time series features for client, client monthly income. Vectorizes multi-valued categorical features. Aggregates data to be indexed by ClientID and Date. :param cfg: Project config dict :param cat_feat_info: Generated config with feature information :param df: Dataframe of raw data :param categorical_feats: List of categorical features :param noncategorical_feats: List of noncategorical features :param gt_duration: Length of time used to calculate chronic homelessness ground truth :param include_gt: Boolean indicating whether to include ground truth in processed data :param calculate_gt: Boolean indicating whether to calculate ground truth :param load_ct: Boolean indicating whether to load serialized column transformers :return: Aggreated client Dataframe with time series features and one-hot encoded multi-valued categorical features, Dataframe containing client ground truth, updated list of noncategorical features, list of all multi-valued categorical variables ''' gt_end_date =
pd.to_datetime(cfg['DATA']['GROUND_TRUTH_DATE'])
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 #get_ipython().magic('load_ext autoreload') #get_ipython().magic('reload_ext autoreload') import requests import lxml.html as hl from xml.etree import ElementTree import pandas as pd import numpy as np from bs4 import BeautifulSoup from queue import Queue, Empty from urllib.parse import urljoin, urlparse import urllib.robotparser import string import json import pickle import re import unicodedata from unidecode import unidecode from itertools import chain from collections import Counter from urllib.parse import unquote import operator from matplotlib import pyplot as plt import math import statistics import WOSutilities as wosutil from nameparser import HumanName import name_tools import enchant d=enchant.Dict('en_US') import imp #import load_data as load_data get_ipython().run_cell_magic('bash', '', 'jupyter nbconvert Nobel_prize_crawl.ipynb --to script') def strip_accents(text): """ Strip accents from input String. :param text: The input string. :type text: String. :returns: The processed String. :rtype: String. """ try: text = unicode(text, 'utf-8') except (TypeError, NameError): # unicode is a default on python 3 pass text = unicodedata.normalize('NFD', text) text = text.encode('ascii', 'ignore') text = text.decode("utf-8") return str(text) def copytofile(raw_html,filename): with open(filename, 'wb') as outfile: outfile.write(raw_html) #retrieve nobel prize lauarates from main WIKI page nobel_prize_page='https://en.wikipedia.org/wiki/List_of_Nobel_laureates_in_Physics' page = requests.get(nobel_prize_page) doc = lh.fromstring(page.content) list_of_nobel_prize_winners=[] tr_elements=doc.xpath('//*[@id="mw-content-text"]/div/table[1]/tbody/tr') prev=None #print(tr_elements) for each_tr_element in tr_elements: winner_href=None winner_title=None year=None #print(each_tr_element) td_elements=each_tr_element.xpath('.//td') if td_elements: if td_elements[0].xpath('boolean(.//a[contains(@class,"image")])') is False: year=td_elements[0].text year=year.strip("\n") # for shared prices in a year if year == '' or year == '–': year=prev prev=year else: year=prev th_elements=each_tr_element.xpath('.//th') if th_elements: winner_href=th_elements[0].xpath('./a/@href') winner_title=th_elements[0].xpath('./a/@title') if winner_href and winner_title: list_of_nobel_prize_winners.append([int(year),re.sub(r"\(chemist\)|\(physicist\)",'',clean_data.strip_accents(winner_title[0])),winner_href[0],parse_web.urlCanonicalization(winner_href[0], base_url=nobel_prize_page)]) #creating dataframe with winners,year they were awarded and url of the winner page nobel_prize_winners=pd.DataFrame(list_of_nobel_prize_winners,columns=['Year','Name','Url','Cannonicalized_Url']) #to retrieve all information relevant information available in the winner page in WIKI def update_winner_information(prize_type,prize_winners_dataframe,path_to_store_crawled_info): winner_wiki_information={} doc_num=0 count=0 visited_seed=set() for index,row in prize_winners_dataframe.iterrows(): count=count+1 url=row['Cannonicalized_Url'] if url in visited_seed or not parse_web.ispolite(url): continue print(row['Name']) visited_seed.add(url) page = requests.get(url) doc_num=doc_num+1 raw_html=page.content doc = lh.fromstring(page.content) path=path_to_store_crawled_info+'/'+prize_type+'-document-{0}' copytofile(raw_html,path.format(doc_num)) winner_wiki_information.update(parse_web.get_wiki_information(prize_type,doc_num,doc)) return winner_wiki_information nobel_winner_wiki_information=update_winner_information('nobel',nobel_prize_winners,'/home/apoorva_kasoju2712/nobel_crawled_data') #store nobel_winner_wiki_information as pickled file with open('/home/apoorva_kasoju2712/wos_samplecode/nobel_winner_wiki_p.pickle', 'wb') as handle: pickle.dump(nobel_winner_wiki_information, handle, protocol=pickle.HIGHEST_PROTOCOL) #retrieve stored nobel_winner_wiki_information with open('/home/apoorva_kasoju2712/wos_samplecode/nobel_winner_wiki_p.pickle', 'rb') as handle: nobel_winner_wiki_information = pickle.load(handle) path2rawdata='/home/apoorva_kasoju2712/WOS_data' #loading article_df article_df=load_data.load_article_data(path2rawdata) #converting author_df from hdf5 article_df.to_hdf('/home/apoorva_kasoju2712/wos_samplecode/article_df_data.h5','article_df',mode='w',format='table',complevel=9,complib ='blosc') #or use loaded article_df #article_df=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/article_df_data.h5','article_df') #loading author df author_df=load_data.load_author_data(path2rawdata) #converting author_df from hdf5 author_df.to_hdf('/home/apoorva_kasoju2712/wos_samplecode/author_df_data_full.h5','author_df_full',mode='w',format='table',complevel=9,complib ='blosc') #or use loaded article_df author_df=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/author_df_data_full.h5','author_df_full') #loading address df address_df=load_data.load_address_data(path2rawdata) #converting address df to hdf5 and store address_df.to_hdf('/home/apoorva_kasoju2712/wos_samplecode/address_df_data.h5','address_df',mode='w',format='table',complevel=9,complib ='blosc') #or use loaded address_df #address_df=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/address_df_data.h5','address_df',mode='w',format='table',complevel=9,complib ='blosc') #loading paper_address df paper_address_df=load_data.load_paper_address_data(path2rawdata) #converting paper_address df to hdf5 and store paper_address_df.to_hdf('/home/apoorva_kasoju2712/wos_samplecode/paper_address_df_data.h5','paper_address_df',mode='w',format='table',complevel=9,complib ='blosc') #or use loaded paper_address_df paper_address_df=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/paper_address_df_data.h5','paper_address_df') #merge paper_address and address_df address_df_merged=pd.merge(paper_address_df[['ArticleID','AddressOrder','Organization','SubOrganization']], address_df[['ArticleID','AuthorOrder','AddressOrder']], how='inner', on=['ArticleID','AddressOrder']) address_df_merged["AddressOrder"]=address_df_merged["AddressOrder"].astype('int64') address_df_merged["AuthorOrder"]=address_df_merged["AuthorOrder"].astype('int64') address_df_merged.sort_values(by = ['AuthorOrder','AddressOrder'], inplace = True) address_df_merged.dropna(subset=['AuthorOrder','ArticleID'], inplace=True) #prepare author_address author_address=pd.merge(author_df[['ArticleID','FullName', 'LastName', 'FirstName','AuthorDAIS','AuthorOrder']],address_df_merged[['ArticleID','AuthorOrder','Organization']],on=['ArticleID','AuthorOrder'], how='inner') #or use loaded author_address author_address=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/author_address_data.h5','author_address') #getting relevant records for nobel prize winners matching in the WOS nobel_author_df=match_utilities.get_wos_records(nobel_winner_wiki_information,author_df) #storing the relevant data to hdf5 prize_type='nobel' nobel_author_df.to_hdf('/home/apoorva_kasoju2712/wos_samplecode/'+prize_type+'_author_df_data.h5',prize_type+'_author_df',mode='w',format='table',complevel=9,complib ='blosc') # In[7]: #loading nobel_author_df prize_type='nobel' nobel_author_df=pd.read_hdf('/home/apoorva_kasoju2712/wos_samplecode/'+prize_type+'_author_df_data.h5',prize_type+'_author_df') #retrieving co-authors for the articles in nobel_author_df nobel_article_co_author_temp=pd.merge(author_df[['ArticleID','FullName','LastName']],nobel_author_df[['ArticleID']],how='inner',on=['ArticleID']) nobel_article_co_author=nobel_article_co_author_temp.groupby(['ArticleID']).agg({'LastName':lambda x: list(x.unique()),'FullName':lambda x: list(x.unique())}).reset_index() nobel_article_co_author.to_pickle("/home/apoorva_kasoju2712/wos_samplecode/nobel_article_co_author_df.pkl") #loading nobel_article_co_author as pandas Dataframe #nobel_article_co_author=pd.read_pickle("/home/apoorva_kasoju2712/wos_samplecode/nobel_article_co_author_df.pkl") #retrieving nobel_author_df articles from article_df nobel_author_article=
pd.merge(article_df[['ArticleID','Title']],nobel_author_df[['ArticleID','AuthorOrder','AuthorDAIS','FullName','LastName']],on=['ArticleID'],how='inner')
pandas.merge
import toml import pandas as pd from pathlib import Path def excel_mqtt_topics_to_toml( excelFile="metadata.xlsx", tomlDestination="src/backend/.config/topics.toml" ): df = pd.read_excel(excelFile, sheet_name="mqtt_topics") d = df.to_dict() topics = [d["topic"][row] for row in d["topic"]] qos = [d["quality_of_service"][row] for row in d["quality_of_service"]] if topics: tomlTopics = {"top": topics, "qos": qos} else: print( "WARNING! No topics defined in excel file. Will instead add wildcard '#' as subscription, " "meaning backend will subscribe to all topics from broker. " "If you do not wish this, either rerun the conversion from excel with topics in excel file, " "or remove the subscroption from 'src/backend/.config/topics.toml'." ) tomlTopics = {"top": ["#"], "qos": [1]} for topic, qlevel in zip(topics, qos): print(f"Adding topic '{topic}' with qos {qlevel}.") with open(tomlDestination, "w") as f: toml.dump(tomlTopics, f) def excel_meta_to_toml( excelFile="metadata.xlsx", tomlDestination="src/backend/.config/metadata.toml" ): # Process the date_range sheet df = pd.read_excel( excelFile, sheet_name="date_range", dtype={"Project_start": str, "Project_end": str}, ) d = df.to_dict() dateDict = { "Project_start": d["Project_start"][0], "Project_end": d["Project_end"][0], } # Process the tbrs sheet df = pd.read_excel(excelFile, sheet_name="tbrs") d = df.to_dict() tbrDict = {} for row in d["tbr_serial_id"]: tbrDict[f"tbr_{row}"] = { "tbr_serial_id": d["tbr_serial_id"][row], "frequency": d["frequency"][row], "include": d["include"][row], "cage_name": d["cage_name"][row], } # Process the 3D sheet df = pd.read_excel(excelFile, sheet_name="3D") d = df.to_dict() dict3D = { "include": d["include"][0], "active_cages": list(str.split(d["active_cages"][0], ", ")), } # Process the 3D_cages sheet if include is set to True if dict3D["include"]: df =
pd.read_excel(excelFile, sheet_name="3D_cages")
pandas.read_excel
import operator import functools as f import json from pkg_resources import resource_filename import pandas as pd def _events_cleaning_map(): with open(resource_filename(__name__, 'events_cleaning_map.json')) as json_map: return(json.load(json_map)) def _find(element_path): return lambda json: f.reduce(lambda a, b: a[b] if a and a == a and b in a else None, element_path.split('.'), json) def format_events(events, details_col, paths): details = pd.DataFrame({ json_field: events[details_col].apply(_find(path)) for json_field, path in paths.items() }) events_without_generic_cols = events.loc[ :, (events.columns != details_col) & (events.columns != 'type') ] return
pd.concat([events_without_generic_cols, details], axis=1)
pandas.concat
""" Tests for the blaze interface to the pipeline api. """ from __future__ import division from collections import OrderedDict from datetime import timedelta, time from unittest import TestCase import warnings import blaze as bz from datashape import dshape, var, Record from nose_parameterized import parameterized import numpy as np from numpy.testing.utils import assert_array_almost_equal from odo import odo import pandas as pd from pandas.util.testing import assert_frame_equal from toolz import keymap, valmap, concatv from toolz.curried import operator as op from zipline.pipeline import Pipeline, CustomFactor from zipline.pipeline.data import DataSet, BoundColumn from zipline.pipeline.engine import SimplePipelineEngine from zipline.pipeline.loaders.blaze import ( from_blaze, BlazeLoader, NoDeltasWarning, ) from zipline.pipeline.loaders.blaze.core import ( NonNumpyField, NonPipelineField, no_deltas_rules, ) from zipline.utils.numpy_utils import ( float64_dtype, int64_dtype, repeat_last_axis, ) from zipline.utils.test_utils import tmp_asset_finder, make_simple_equity_info nameof = op.attrgetter('name') dtypeof = op.attrgetter('dtype') asset_infos = ( (make_simple_equity_info( tuple(map(ord, 'ABC')), pd.Timestamp(0), pd.Timestamp('2015'), ),), (make_simple_equity_info( tuple(map(ord, 'ABCD')), pd.Timestamp(0), pd.Timestamp('2015'), ),), ) with_extra_sid = parameterized.expand(asset_infos) def _utc_localize_index_level_0(df): """``tz_localize`` the first level of a multiindexed dataframe to utc. Mutates df in place. """ idx = df.index df.index = pd.MultiIndex.from_product( (idx.levels[0].tz_localize('utc'), idx.levels[1]), names=idx.names, ) return df class BlazeToPipelineTestCase(TestCase): @classmethod def setUpClass(cls): cls.dates = dates = pd.date_range('2014-01-01', '2014-01-03') dates = cls.dates.repeat(3) cls.sids = sids = ord('A'), ord('B'), ord('C') cls.df = df = pd.DataFrame({ 'sid': sids * 3, 'value': (0., 1., 2., 1., 2., 3., 2., 3., 4.), 'int_value': (0, 1, 2, 1, 2, 3, 2, 3, 4), 'asof_date': dates, 'timestamp': dates, }) cls.dshape = dshape(""" var * { sid: ?int64, value: ?float64, int_value: ?int64, asof_date: datetime, timestamp: datetime } """) cls.macro_df = df[df.sid == 65].drop('sid', axis=1) dshape_ = OrderedDict(cls.dshape.measure.fields) del dshape_['sid'] cls.macro_dshape = var * Record(dshape_) cls.garbage_loader = BlazeLoader() cls.missing_values = {'int_value': 0} def test_tabular(self): name = 'expr' expr = bz.Data(self.df, name=name, dshape=self.dshape) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ) self.assertEqual(ds.__name__, name) self.assertTrue(issubclass(ds, DataSet)) self.assertIs(ds.value.dtype, float64_dtype) self.assertIs(ds.int_value.dtype, int64_dtype) self.assertTrue(np.isnan(ds.value.missing_value)) self.assertEqual(ds.int_value.missing_value, 0) invalid_type_fields = ('asof_date',) for field in invalid_type_fields: with self.assertRaises(AttributeError) as e: getattr(ds, field) self.assertIn("'%s'" % field, str(e.exception)) self.assertIn("'datetime'", str(e.exception)) # test memoization self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ), ds, ) def test_column(self): exprname = 'expr' expr = bz.Data(self.df, name=exprname, dshape=self.dshape) value = from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ) self.assertEqual(value.name, 'value') self.assertIsInstance(value, BoundColumn) self.assertIs(value.dtype, float64_dtype) # test memoization self.assertIs( from_blaze( expr.value, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ), value, ) self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ).value, value, ) # test the walk back up the tree self.assertIs( from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ), value.dataset, ) self.assertEqual(value.dataset.__name__, exprname) def test_missing_asof(self): expr = bz.Data( self.df.loc[:, ['sid', 'value', 'timestamp']], name='expr', dshape=""" var * { sid: ?int64, value: float64, timestamp: datetime, }""", ) with self.assertRaises(TypeError) as e: from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, ) self.assertIn("'asof_date'", str(e.exception)) self.assertIn(repr(str(expr.dshape.measure)), str(e.exception)) def test_auto_deltas(self): expr = bz.Data( {'ds': self.df, 'ds_deltas': pd.DataFrame(columns=self.df.columns)}, dshape=var * Record(( ('ds', self.dshape.measure), ('ds_deltas', self.dshape.measure), )), ) loader = BlazeLoader() ds = from_blaze( expr.ds, loader=loader, missing_values=self.missing_values, ) self.assertEqual(len(loader), 1) exprdata = loader[ds] self.assertTrue(exprdata.expr.isidentical(expr.ds)) self.assertTrue(exprdata.deltas.isidentical(expr.ds_deltas)) def test_auto_deltas_fail_warn(self): with warnings.catch_warnings(record=True) as ws: warnings.simplefilter('always') loader = BlazeLoader() expr = bz.Data(self.df, dshape=self.dshape) from_blaze( expr, loader=loader, no_deltas_rule=no_deltas_rules.warn, missing_values=self.missing_values, ) self.assertEqual(len(ws), 1) w = ws[0].message self.assertIsInstance(w, NoDeltasWarning) self.assertIn(str(expr), str(w)) def test_auto_deltas_fail_raise(self): loader = BlazeLoader() expr = bz.Data(self.df, dshape=self.dshape) with self.assertRaises(ValueError) as e: from_blaze( expr, loader=loader, no_deltas_rule=no_deltas_rules.raise_, ) self.assertIn(str(expr), str(e.exception)) def test_non_numpy_field(self): expr = bz.Data( [], dshape=""" var * { a: datetime, asof_date: datetime, timestamp: datetime, }""", ) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, ) with self.assertRaises(AttributeError): ds.a self.assertIsInstance(object.__getattribute__(ds, 'a'), NonNumpyField) def test_non_pipeline_field(self): # NOTE: This test will fail if we ever allow string types in # the Pipeline API. If this happens, change the dtype of the `a` field # of expr to another type we don't allow. expr = bz.Data( [], dshape=""" var * { a: string, asof_date: datetime, timestamp: datetime, }""", ) ds = from_blaze( expr, loader=self.garbage_loader, no_deltas_rule=no_deltas_rules.ignore, ) with self.assertRaises(AttributeError): ds.a self.assertIsInstance( object.__getattribute__(ds, 'a'), NonPipelineField, ) def test_complex_expr(self): expr = bz.Data(self.df, dshape=self.dshape) # put an Add in the table expr_with_add = bz.transform(expr, value=expr.value + 1) # Test that we can have complex expressions with no deltas from_blaze( expr_with_add, deltas=None, loader=self.garbage_loader, missing_values=self.missing_values, ) with self.assertRaises(TypeError): from_blaze( expr.value + 1, # put an Add in the column deltas=None, loader=self.garbage_loader, missing_values=self.missing_values, ) deltas = bz.Data( pd.DataFrame(columns=self.df.columns), dshape=self.dshape, ) with self.assertRaises(TypeError): from_blaze( expr_with_add, deltas=deltas, loader=self.garbage_loader, missing_values=self.missing_values, ) with self.assertRaises(TypeError): from_blaze( expr.value + 1, deltas=deltas, loader=self.garbage_loader, missing_values=self.missing_values, ) def _test_id(self, df, dshape, expected, finder, add): expr = bz.Data(df, name='expr', dshape=dshape) loader = BlazeLoader() ds = from_blaze( expr, loader=loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ) p = Pipeline() for a in add: p.add(getattr(ds, a).latest, a) dates = self.dates with tmp_asset_finder() as finder: result = SimplePipelineEngine( loader, dates, finder, ).run_pipeline(p, dates[0], dates[-1]) assert_frame_equal( result, _utc_localize_index_level_0(expected), check_dtype=False, ) def test_custom_query_time_tz(self): df = self.df.copy() df['timestamp'] = ( pd.DatetimeIndex(df['timestamp'], tz='EST') + timedelta(hours=8, minutes=44) ).tz_convert('utc').tz_localize(None) df.ix[3:5, 'timestamp'] = pd.Timestamp('2014-01-01 13:45') expr = bz.Data(df, name='expr', dshape=self.dshape) loader = BlazeLoader(data_query_time=time(8, 45), data_query_tz='EST') ds = from_blaze( expr, loader=loader, no_deltas_rule=no_deltas_rules.ignore, missing_values=self.missing_values, ) p = Pipeline() p.add(ds.value.latest, 'value') p.add(ds.int_value.latest, 'int_value') dates = self.dates with tmp_asset_finder() as finder: result = SimplePipelineEngine( loader, dates, finder, ).run_pipeline(p, dates[0], dates[-1]) expected = df.drop('asof_date', axis=1) expected['timestamp'] = expected['timestamp'].dt.normalize().astype( 'datetime64[ns]', ).dt.tz_localize('utc') expected.ix[3:5, 'timestamp'] += timedelta(days=1) expected.set_index(['timestamp', 'sid'], inplace=True) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], finder.retrieve_all(expected.index.levels[1]), )) assert_frame_equal(result, expected, check_dtype=False) def test_id(self): """ input (self.df): asof_date sid timestamp value 0 2014-01-01 65 2014-01-01 0 1 2014-01-01 66 2014-01-01 1 2 2014-01-01 67 2014-01-01 2 3 2014-01-02 65 2014-01-02 1 4 2014-01-02 66 2014-01-02 2 5 2014-01-02 67 2014-01-02 3 6 2014-01-03 65 2014-01-03 2 7 2014-01-03 66 2014-01-03 3 8 2014-01-03 67 2014-01-03 4 output (expected) value 2014-01-01 Equity(65 [A]) 0 Equity(66 [B]) 1 Equity(67 [C]) 2 2014-01-02 Equity(65 [A]) 1 Equity(66 [B]) 2 Equity(67 [C]) 3 2014-01-03 Equity(65 [A]) 2 Equity(66 [B]) 3 Equity(67 [C]) 4 """ with tmp_asset_finder() as finder: expected = self.df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], finder.retrieve_all(expected.index.levels[1]), )) self._test_id( self.df, self.dshape, expected, finder, ('int_value', 'value',) ) def test_id_ffill_out_of_window(self): """ input (df): asof_date timestamp sid other value 0 2013-12-22 2013-12-22 65 0 0 1 2013-12-22 2013-12-22 66 NaN 1 2 2013-12-22 2013-12-22 67 2 NaN 3 2013-12-23 2013-12-23 65 NaN 1 4 2013-12-23 2013-12-23 66 2 NaN 5 2013-12-23 2013-12-23 67 3 3 6 2013-12-24 2013-12-24 65 2 NaN 7 2013-12-24 2013-12-24 66 3 3 8 2013-12-24 2013-12-24 67 NaN 4 output (expected): other value 2014-01-01 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-02 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 1 Equity(66 [B]) 3 3 Equity(67 [C]) 3 4 """ dates = self.dates.repeat(3) - timedelta(days=10) df = pd.DataFrame({ 'sid': self.sids * 3, 'value': (0, 1, np.nan, 1, np.nan, 3, np.nan, 3, 4), 'other': (0, np.nan, 2, np.nan, 2, 3, 2, 3, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder() as finder: expected = pd.DataFrame( np.array([[2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4], [2, 1], [3, 3], [3, 4]]), columns=['other', 'value'], index=pd.MultiIndex.from_product( (self.dates, finder.retrieve_all(self.sids)), ), ) self._test_id( df, var * Record(fields), expected, finder, ('value', 'other'), ) def test_id_multiple_columns(self): """ input (df): asof_date sid timestamp value other 0 2014-01-01 65 2014-01-01 0 1 1 2014-01-01 66 2014-01-01 1 2 2 2014-01-01 67 2014-01-01 2 3 3 2014-01-02 65 2014-01-02 1 2 4 2014-01-02 66 2014-01-02 2 3 5 2014-01-02 67 2014-01-02 3 4 6 2014-01-03 65 2014-01-03 2 3 7 2014-01-03 66 2014-01-03 3 4 8 2014-01-03 67 2014-01-03 4 5 output (expected): value other 2014-01-01 Equity(65 [A]) 0 1 Equity(66 [B]) 1 2 Equity(67 [C]) 2 3 2014-01-02 Equity(65 [A]) 1 2 Equity(66 [B]) 2 3 Equity(67 [C]) 3 4 2014-01-03 Equity(65 [A]) 2 3 Equity(66 [B]) 3 4 Equity(67 [C]) 4 5 """ df = self.df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder() as finder: expected = df.drop('asof_date', axis=1).set_index( ['timestamp', 'sid'], ).sort_index(axis=1) expected.index = pd.MultiIndex.from_product(( expected.index.levels[0], finder.retrieve_all(expected.index.levels[1]), )) self._test_id( df, var * Record(fields), expected, finder, ('value', 'int_value', 'other'), ) def test_id_macro_dataset(self): """ input (self.macro_df) asof_date timestamp value 0 2014-01-01 2014-01-01 0 3 2014-01-02 2014-01-02 1 6 2014-01-03 2014-01-03 2 output (expected): value 2014-01-01 Equity(65 [A]) 0 Equity(66 [B]) 0 Equity(67 [C]) 0 2014-01-02 Equity(65 [A]) 1 Equity(66 [B]) 1 Equity(67 [C]) 1 2014-01-03 Equity(65 [A]) 2 Equity(66 [B]) 2 Equity(67 [C]) 2 """ asset_info = asset_infos[0][0] nassets = len(asset_info) with tmp_asset_finder() as finder: expected = pd.DataFrame( list(concatv([0] * nassets, [1] * nassets, [2] * nassets)), index=pd.MultiIndex.from_product(( self.macro_df.timestamp, finder.retrieve_all(asset_info.index), )), columns=('value',), ) self._test_id( self.macro_df, self.macro_dshape, expected, finder, ('value',), ) def test_id_ffill_out_of_window_macro_dataset(self): """ input (df): asof_date timestamp other value 0 2013-12-22 2013-12-22 NaN 0 1 2013-12-23 2013-12-23 1 NaN 2 2013-12-24 2013-12-24 NaN NaN output (expected): other value 2014-01-01 Equity(65 [A]) 1 0 Equity(66 [B]) 1 0 Equity(67 [C]) 1 0 2014-01-02 Equity(65 [A]) 1 0 Equity(66 [B]) 1 0 Equity(67 [C]) 1 0 2014-01-03 Equity(65 [A]) 1 0 Equity(66 [B]) 1 0 Equity(67 [C]) 1 0 """ dates = self.dates - timedelta(days=10) df = pd.DataFrame({ 'value': (0, np.nan, np.nan), 'other': (np.nan, 1, np.nan), 'asof_date': dates, 'timestamp': dates, }) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder() as finder: expected = pd.DataFrame( np.array([[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]), columns=['value', 'other'], index=pd.MultiIndex.from_product( (self.dates, finder.retrieve_all(self.sids)), ), ).sort_index(axis=1) self._test_id( df, var * Record(fields), expected, finder, ('value', 'other'), ) def test_id_macro_dataset_multiple_columns(self): """ input (df): asof_date timestamp other value 0 2014-01-01 2014-01-01 1 0 3 2014-01-02 2014-01-02 2 1 6 2014-01-03 2014-01-03 3 2 output (expected): other value 2014-01-01 Equity(65 [A]) 1 0 Equity(66 [B]) 1 0 Equity(67 [C]) 1 0 2014-01-02 Equity(65 [A]) 2 1 Equity(66 [B]) 2 1 Equity(67 [C]) 2 1 2014-01-03 Equity(65 [A]) 3 2 Equity(66 [B]) 3 2 Equity(67 [C]) 3 2 """ df = self.macro_df.copy() df['other'] = df.value + 1 fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] asset_info = asset_infos[0][0] with tmp_asset_finder(equities=asset_info) as finder: expected = pd.DataFrame( np.array([[0, 1], [1, 2], [2, 3]]).repeat(3, axis=0), index=pd.MultiIndex.from_product(( df.timestamp, finder.retrieve_all(asset_info.index), )), columns=('value', 'other'), ).sort_index(axis=1) self._test_id( df, var * Record(fields), expected, finder, ('value', 'other'), ) def test_id_take_last_in_group(self): T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'sid', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), 65, 0, 0], [T('2014-01-01'), T('2014-01-01 01'), 65, 1, np.nan], [T('2014-01-01'), T('2014-01-01 00'), 66, np.nan, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 66, np.nan, 1], [T('2014-01-01'), T('2014-01-01 00'), 67, 2, np.nan], [T('2014-01-01'), T('2014-01-01 01'), 67, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 65, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 65, np.nan, 1], [T('2014-01-02'), T('2014-01-02 00'), 66, np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 01'), 66, 2, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 67, 3, 3], [T('2014-01-02'), T('2014-01-02 01'), 67, 3, 3], [T('2014-01-03'), T('2014-01-03 00'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 65, 2, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 66, 3, 3], [T('2014-01-03'), T('2014-01-03 01'), 66, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 00'), 67, np.nan, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 67, np.nan, 4], ], ) fields = OrderedDict(self.dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder() as finder: expected = pd.DataFrame( columns=['other', 'value'], data=[ [1, 0], # 2014-01-01 Equity(65 [A]) [np.nan, 1], # Equity(66 [B]) [2, np.nan], # Equity(67 [C]) [1, 1], # 2014-01-02 Equity(65 [A]) [2, 1], # Equity(66 [B]) [3, 3], # Equity(67 [C]) [2, 1], # 2014-01-03 Equity(65 [A]) [3, 3], # Equity(66 [B]) [3, 3], # Equity(67 [C]) ], index=pd.MultiIndex.from_product( (self.dates, finder.retrieve_all(self.sids)), ), ) self._test_id( df, var * Record(fields), expected, finder, ('value', 'other'), ) def test_id_take_last_in_group_macro(self): """ output (expected): other value 2014-01-01 Equity(65 [A]) NaN 1 Equity(66 [B]) NaN 1 Equity(67 [C]) NaN 1 2014-01-02 Equity(65 [A]) 1 2 Equity(66 [B]) 1 2 Equity(67 [C]) 1 2 2014-01-03 Equity(65 [A]) 2 2 Equity(66 [B]) 2 2 Equity(67 [C]) 2 2 """ T = pd.Timestamp df = pd.DataFrame( columns=['asof_date', 'timestamp', 'other', 'value'], data=[ [T('2014-01-01'), T('2014-01-01 00'), np.nan, 1], [T('2014-01-01'), T('2014-01-01 01'), np.nan, np.nan], [T('2014-01-02'), T('2014-01-02 00'), 1, np.nan], [T('2014-01-02'), T('2014-01-02 01'), np.nan, 2], [T('2014-01-03'), T('2014-01-03 00'), 2, np.nan], [T('2014-01-03'), T('2014-01-03 01'), 3, 3], ], ) fields = OrderedDict(self.macro_dshape.measure.fields) fields['other'] = fields['value'] with tmp_asset_finder() as finder: expected = pd.DataFrame( columns=[ 'other', 'value', ], data=[ [np.nan, 1], # 2014-01-01 Equity(65 [A]) [np.nan, 1], # Equity(66 [B]) [np.nan, 1], # Equity(67 [C]) [1, 2], # 2014-01-02 Equity(65 [A]) [1, 2], # Equity(66 [B]) [1, 2], # Equity(67 [C]) [2, 2], # 2014-01-03 Equity(65 [A]) [2, 2], # Equity(66 [B]) [2, 2], # Equity(67 [C]) ], index=pd.MultiIndex.from_product( (self.dates, finder.retrieve_all(self.sids)), ), ) self._test_id( df, var * Record(fields), expected, finder, ('value', 'other'), ) def _run_pipeline(self, expr, deltas, expected_views, expected_output, finder, calendar, start, end, window_length, compute_fn): loader = BlazeLoader() ds = from_blaze( expr, deltas, loader=loader, no_deltas_rule=no_deltas_rules.raise_, missing_values=self.missing_values, ) p = Pipeline() # prevent unbound locals issue in the inner class window_length_ = window_length class TestFactor(CustomFactor): inputs = ds.value, window_length = window_length_ def compute(self, today, assets, out, data): assert_array_almost_equal(data, expected_views[today]) out[:] = compute_fn(data) p.add(TestFactor(), 'value') result = SimplePipelineEngine( loader, calendar, finder, ).run_pipeline(p, start, end) assert_frame_equal( result, _utc_localize_index_level_0(expected_output), check_dtype=False, ) @with_extra_sid def test_deltas(self, asset_info): expr = bz.Data(self.df, name='expr', dshape=self.dshape) deltas = bz.Data(self.df, dshape=self.dshape) deltas = bz.Data( odo( bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[10.0, 11.0, 12.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[11.0, 12.0, 13.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[12.0, 13.0, 14.0], [12.0, 13.0, 14.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( list(concatv([12] * nassets, [13] * nassets, [14] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def test_deltas_only_one_delta_in_universe(self, asset_info): expr = bz.Data(self.df, name='expr', dshape=self.dshape) deltas = pd.DataFrame({ 'sid': [65, 66], 'asof_date': [self.dates[1], self.dates[0]], 'timestamp': [self.dates[2], self.dates[1]], 'value': [10, 11], }) deltas = bz.Data(deltas, name='deltas', dshape=self.dshape) expected_views = keymap(pd.Timestamp, { '2014-01-02': np.array([[0.0, 11.0, 2.0], [1.0, 2.0, 3.0]]), '2014-01-03': np.array([[10.0, 2.0, 3.0], [2.0, 3.0, 4.0]]), '2014-01-04': np.array([[2.0, 3.0, 4.0], [2.0, 3.0, 4.0]]), }) nassets = len(asset_info) if nassets == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan]], expected_views, ) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( columns=[ 'value', ], data=np.array([11, 10, 4]).repeat(len(asset_info.index)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), ) dates = self.dates dates = dates.insert(len(dates), dates[-1] + timedelta(days=1)) self._run_pipeline( expr, deltas, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) def test_deltas_macro(self): asset_info = asset_infos[0][0] expr = bz.Data(self.macro_df, name='expr', dshape=self.macro_dshape) deltas = bz.Data( self.macro_df.iloc[:-1], name='deltas', dshape=self.macro_dshape, ) deltas = bz.transform( deltas, value=deltas.value + 10, timestamp=deltas.timestamp + timedelta(days=1), ) nassets = len(asset_info) expected_views = keymap(pd.Timestamp, { '2014-01-02': repeat_last_axis(np.array([10.0, 1.0]), nassets), '2014-01-03': repeat_last_axis(np.array([11.0, 2.0]), nassets), }) with tmp_asset_finder(equities=asset_info) as finder: expected_output = pd.DataFrame( list(concatv([10] * nassets, [11] * nassets)), index=pd.MultiIndex.from_product(( sorted(expected_views.keys()), finder.retrieve_all(asset_info.index), )), columns=('value',), ) dates = self.dates self._run_pipeline( expr, deltas, expected_views, expected_output, finder, calendar=dates, start=dates[1], end=dates[-1], window_length=2, compute_fn=np.nanmax, ) @with_extra_sid def test_novel_deltas(self, asset_info): base_dates = pd.DatetimeIndex([ pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-04') ]) repeated_dates = base_dates.repeat(3) baseline = pd.DataFrame({ 'sid': self.sids * 2, 'value': (0., 1., 2., 1., 2., 3.), 'int_value': (0, 1, 2, 1, 2, 3), 'asof_date': repeated_dates, 'timestamp': repeated_dates, }) expr = bz.Data(baseline, name='expr', dshape=self.dshape) deltas = bz.Data( odo( bz.transform( expr, value=expr.value + 10, timestamp=expr.timestamp + timedelta(days=1), ), pd.DataFrame, ), name='delta', dshape=self.dshape, ) expected_views = keymap(pd.Timestamp, { '2014-01-03': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [10.0, 11.0, 12.0]]), '2014-01-06': np.array([[10.0, 11.0, 12.0], [10.0, 11.0, 12.0], [11.0, 12.0, 13.0]]), }) if len(asset_info) == 4: expected_views = valmap( lambda view: np.c_[view, [np.nan, np.nan, np.nan]], expected_views, ) expected_output_buffer = [10, 11, 12, np.nan, 11, 12, 13, np.nan] else: expected_output_buffer = [10, 11, 12, 11, 12, 13] cal = pd.DatetimeIndex([
pd.Timestamp('2014-01-01')
pandas.Timestamp
from numbers import Number from typing import List import pandas as pd from pandas.api.types import is_integer_dtype, is_float_dtype, is_string_dtype, is_numeric_dtype from sklearn.base import TransformerMixin from sklearn.impute import KNNImputer from sklearn.preprocessing import LabelEncoder from model_config import ModelConfig from transformers import BaseTransformer # TODO: Merge with set default feature names def _default_transformer(col, train_df): if is_integer_dtype(train_df[col]): return int if
is_float_dtype(train_df[col])
pandas.api.types.is_float_dtype